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Introduction

Retinal imaging is frequently used in the analysis and screening of diseases with a vascular component
because it allows for a non-invasive observation of the human circulatory system. For example, high
tortuosity of retina vessels is used as an early indicator of diabetes, see Figure 1. To monitor the
development of pathologies, the vascular network of the retina is encoded with a mathematical model
that can be compared over time. One of the methods to create these models is by automated vessel
tracking.

Figure 1: Retinal images of a healthy patient (left) and a patient with diabetes (right). Images taken
from the DRIVE dataset.

Intersections pose a major problem in vessel tracking. At a point where two vessels overlap, a tracking
algorithm may jump from one vessel to the next, resulting in nonsensical paths. To prevent this, we pull
the retina image apart into an additional dimension that encodes the orientation of vessels. An example
of the resulting orientation score [5] is shown in Figure 2. Note how the diagonal lines are mapped
to different orientations. Their intersection has disappeared as the lines have been separated by the new
dimension in the orientation score.

Figure 2: Transforming an image into an orientation score. Adapted from [2].

Every orientation score is equipped with a coordinate frame that rotates with a vessel as its orientation
changes, see Figure 3. Referred to as the left invariant frame, it allows for a geometrical interpretation
of vessel tracking techniques. In previous work by E.J. Bekkers, R. Duits, G.R. Sanguinetti, J-M. Mirebeau
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and others [3, 4, 8, 17], quality tracking results are obtained by disallowing movements perpendicular to
the vessel direction.

Figure 3: Slices of the orientation score showing the rotation of the left invariant frame (red). Adapted
from [2].

Alas, the left invariant frame can fail to align with the vessel structure in two distinct ways.

1. Estimating the orientation of a vessel is an imperfect process. As a result, a portion of a vessel
might be assigned an angular coordinate in the orientation score that does not match their true
orientation. The left invariant frame however is based on the angular coordinate, so it then fails
to align with the vessel data. This is called deviation of horizontality [15] and it is illustrated
in Figure 4. In practice this effect is worsened. We often take a low resolution for the angular
dimension of an orientation score to limit computation time, but this also means that a large range
of vessel orientations are mapped to the same angular coordinate.

2. The left invariant frame only lines up with the vessel structure in the spatial dimensions of the
orientation score. This is fine for straight vessels as their orientation is constant, but the changing
orientation of curved vessels is ignored.

Figure 4: A straight line provokes responses at multiple orientations. The (mis)alignment of the left
invariant frame is shown by the white arrows.

Deviation of horizontality and ignoring curvature can steer the vessel tracking algorithm away from the
actual vessel. For example, taking curvature into account might help to better track highly tortuous
vessels, something current methods fail at, see Figure 5.

Explicitly fitting a frame to the vessels in an orientation score solves the misalignment problem of the
left invariant frame. The result is called a locally adaptive frame or gauge frame [7]. A comparison
with such a frame and a left invariant frame is shown in Figure 6. Although gauge frames allow for an
even better geometrical interpretation of processing techniques, they have one major drawback: they are
not smooth. Due to noise, the direction that best fits a vessel can vary suddenly. In areas without a
clear line structure, a gauge frame can jump all over the place. Several smoothing methods exists that
attempt to ameliorate this issue.
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Figure 5: Shortcut taken by tracking algorithm from [cite] over a highly tortuous curve.

Figure 6: Comparison of a left invariant frame (left) and a gauge frame (right).

In this report we explore the extent to which gauge frames can be used in lieu of the left invariant frame
to steer vessel tracking. The results are compared with the tracking results obtained by Erik Bekkers [4]
that disallow side-stepping in the left invariant frame. The results are presented in Chapter 2.

The final chapter characterizes the paths resulting from the gauge frame tracking methods as curves with
auto-parallel momentum. Previously this characterization had only been shown for techniques that use
a fixed scaling of the left invariant frame [9]. As it turns out, the old proof can be extended to a more
general setting including the class of gauge frame based methods investigated in this report.

In this work we integrate for the first time both locally adaptive frame theory [7] and (sub-Riemannian)
geodesic tracking in SE(2) [4].
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Chapter 1

Geometrical Theory

This chapter serves to explain the geometrical concepts used for vessel tracking in the next chapter. The
first half introduces a lot of new concepts, the second half discusses the different frames one can use to
construct geometrical tracking methods. Of these frames, the largest amount of text is spent on gauge
frames.

1.1 Main Concepts

1.1.1 Positions, Orientations and Roto-Translations

Definition 1 (2D positions and orientations). The space of two-dimensional positions and orientations
M2 is defined as the smooth manifold

M2 := R2 × S1 ,

where we take the circle S1 to be the quotient space S1 := R / 2πZ .

The manifold S1 is smooth since the transition functions of its coordinate charts are simply translations
of R by an integer multiple of 2π .

Definition 2 (2D roto-translations). The space of two-dimensional roto-translations is the Lie group
SE(2) := R2 o SO(2) . Its elements are pairs (z,Rα) denoting a translation by z ∈ R2 and a rotation
Rα ∈ SO(2) by α ∈ S1 radians. A roto-translation (z,Rα) represents a rotation by α radians followed
by a translation by z , both with respect to a fixed coordinate frame, see Figure 1.1. The group product
is given by

(z,Rα) · (w,Rβ) := (z + Rαw,RαRβ) , (1.1)

and represents performing the roto-translation (w,Rβ) followed by the roto-translation (z,Rα) (see
Figure 1.1).

The notation o in R2 o SO(2) emphasizes that SE(2) is not a direct product of the translation and
rotation groups R2 and SO(2). Both groups are commutative so their direct product is as well, but as
we know from experience, composition of roto-translations is not commutative (again, see Figure 1.1).

The inverse of a roto-translation (z,Rα) is given by

(z,Rα)−1 := (−R−1
α z,R−1

α ) , (1.2)

as is readily verified:

(z,Rα) · (−R−1
α z,R−1

α ) = (z−RαR−1
α z,RαR−1

α ) = (0, I)

(−R−1
α z,R−1

α ) · (z,Rα) = (−R−1
α z + R−1

α z,R−1
α Rα) = (0, I) .

6



1/8 turn left, translate left 
1/4 turn right, translate right 

Figure 1.1: Composed roto-translations of the Mona Lisa w.r.t. a fixed coordinate frame.

Remark. Although in two dimensions there is a bijection between orientations θ and rotations Rθ, this
is not the case in higher dimensions. For this reason we keep the homogeneous space M2 and the Lie
group SE(2) separate.

1.1.2 Group Actions

Roto-translations can be applied to lots of constructions. Mathematically this is formulated in terms of
group actions.

Definition 3 (Group action). Given a set A , the set of automorphisms Aut(A) is a group w.r.t.
composition. The action of a group G on a set A is a group homomorphism ρ : G → Aut(A) . Given a

group element g ∈ G , we denote the corresponding bijection by ρg := ρ(g) : A
∼=−→ A or we use the infix

notation g . x := ρg(x) for the application of g ∈ G to x ∈ A .

The infix notation allows us to write out explicitly what it means for a group action to be a group
homomorphism. Since the product and unit structures are preserved, respectively the following identities
hold:

(gh) . x = g . (h . x) (1.3)

e . x = x , (1.4)

for group elements g, h ∈ G, the unit element e ∈ G and an element x ∈ A .

Consider the following two group actions of SE(2) .

Definition 4. The action of SE(2) on the space of positions R2 is given by

(z,Rα) .x = z + Rα x , (1.5)

for a roto-translation (z,Rα) ∈ SE(2) and a position x ∈ R2 . We denote this action by Lg : R2 → R2 .

Definition 5. The action of SE(2) on the space of positions and orientations M2 is given by

(z,Rα) . (x, θ) = (z + Rα x, α+ θ) , (1.6)

for a roto-translation (z,Rα) ∈ SE(2) and combined position and orientation (x, θ) ∈ M2 . We denote
this action by Ug .
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The fact that group actions respect the group product emphasizes that the group product (z,Rα)·(w,Rβ)
represents a roto-translation (w,Rβ) followed by a roto-translation (z,Rα) .

Once we have a group action G→ Aut(A) there is a straightforward way that the group G acts on a set
of functions A→ B .

Lemma 1. Given a group action ρ : G → Aut(A) , the group G acts canonically on the set Hom(A,B)
of functions f : A→ B via the action

(g . f)(x) := f(g−1 . x) , (1.7)

for g ∈ G and x ∈ A .

Proof. The map G → Aut(Hom(A,B)) defined above is indeed a group homomorphism. The product
structure is respected since for all g, h ∈ G , f : A→ B and x ∈ A we have that

((gh) . f)(x) = f((gh)−1 . x) = f((h−1g−1) . x) = f(h−1 . (g−1 . x)) = (h . f)(g−1 . x) = (g . (h . f))(x) .

The identity structure is also respected. Given the unit element e ∈ G , we have that

(e . f)(x) = f(e−1 . x) = f(e . x) = f(x) .

�

1.1.3 Images

We model gray-scale images by functions f : R2 → [0, 1] where the value f(x) ∈ [0, 1] represents the
image lightness at position x ∈ R2 . Black and white correspond to the values 0 and 1 respectively. This
is however a very wild class of images that cannot all be turned into orientation scores. Hence, we also
consider the smaller class of images L2(R2 ; [0, 1]) . This is not too strong a restriction, since any image
f : R2 → [0, 1] with a bounded support is also an element of L2(R2 ; [0, 1]) . One can think of these images
as displaying information in a limited area against a black background.

By Lemma 1, the action of the roto-translation group on the space of positions (Definition 4) induces a
group action of SE(2) on images f : R2 → [0, 1] . This action is given by

((z,Rα) . f) (x) = f ((z,Rα)−1 .x) = f (−R−1
α z + R−1

α x) = f (R−1
α (x− z)) . (1.8)

First the image is rotated by α radians, then it is translated by z . We use the notation Ug for the action
of g ∈ SE(2) on images R2 → [0, 1] .

1.1.4 Orientation Score

An orientation score transformation Wψ extends the domain of an image f ∈ L2(R2 ; [0, 1]) to the space
of positions and orientations M2 . The result is an orientation score Wψf : M2 → [−1, 1] . The value
|Wψf(x, θ)| ∈ [0, 1] encodes the extend to which a line structure with orientation θ ∈ S1 is present in
the original image f at position x ∈ R2 . An orientation score is computed by probing an image with
a wavelet ψ ∈ L2(R2) ∩ L1(R2) that measures line structures in a certain place and orientation. By
roto-translating the wavelet via the group action in (1.8), all positions are probed for line structures of
all possible orientations. The explicit definition is as follows.

Definition 6. Given an image f : L2(R2 ; [0, 1]) , its orientation score Wψf : M2 → [−1, 1] is given by

(Wψf) (x, θ) :=
(
U (x,Rθ)ψ, f

)
L2(R2)

=

∫
R2

ψ (R−1
θ (y − x)) f(y) dy , (1.9)

where ψ ∈ L2(R2) ∩ L1(R2) denotes a wavelet measuring a line structure at the origin with a horizontal
orientation. Requiring that

∫
R2 |ψ(y)|2dy ≤ 1 guarantees that the orientation score takes values in the

range [−1, 1] .
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Remark. To extend this definition to higher dimensional images f ∈ L2(Rd; [0, 1]) , one needs to consider
that there is no longer a bijection between orientations and rotations. Let the space of d-dimensional
orientations be denoted by S d−1 := {y ∈ Rd | ||y|| = 1} and suppose that we have a reference orientation
a ∈ S d−1 . To evaluate the orientation score transform Wψf at orientation n ∈ S d−1, one needs to pick
a rotation Rn that maps the reference orientation a to the requested orientation n . There is no canonical
choice of rotation and thus, to have a well-posed orientation score, we require that the wavelet ψ is axially
symmetric around the reference orientation. Well-posedness then follows since U(x,Rn)ψ = U(x,R′n)ψ for
any two rotations Rn,R

′
n that rotate the vector a towards the vector n .

More details about the orientation score transform such as its inversibility can be found in [11,12], which
also describe several options for wavelets ψ. For our application, we will be using cake wavelets, so
called for their resemblance to pieces of cake in the Fourier domain.

As with images on R2 , we also have a group action for functions on the space M2 . By applying Lemma 1
to the group action SE(2) → Aut(M2) defined by (1.6), we obtain an action of SE(2) on functions
V : M2 → R given by

((z,Rα) . V ) (x, θ) = V ((z,Rα)−1 . (x, θ)) = V (−R−1
α z+R−1

α x,−α+θ) = V (R−1
α (x−z), θ−α) . (1.10)

Similar to the action of SE(2) on images, this represents a rotation of the function followed by a
translation. Since V is a function on M2 , the rotation also translates the function in the angular
dimension. We use the notation Lg to denote the effect of the group element g ∈ SE(2) on the function
space Hom(M2,R) .

1.1.5 Vessel Tracking

For our purposes, the problem of vessel tracking is as follows. Given an image of a vascular structure
f : L2(R2 ; [0, 1]) , find a curve γ : Lip([0, 1],R2) that follows a single vessel from a specified starting
point p = γ(0) to an end point q = γ(1) . For γ to represent a geometrical path, we require that it is
Lipschitz continuous. To prevent jumping from vessel to vessel at crossings, the image f is first lifted to
an orientation score Wψf : M2 → [−1, 1] and the actual tracking takes place in the space of positions and
orientations M2 . Hence, we can demand that the starting and end points contain orientation data as
well, i.e. p, q ∈M2 . After the tracking process Φ is complete, we can discard the angular component via
a projection P to obtain a curve γ in the space of positions R2 . This process is captured in the following
diagram:

orientation score Wψf curve γ̃ in M2

image f curve γ in R2

Φ

PWψ

The tracking process Φ takes as input a function V : M2 → R and two points p, q ∈ M2 from which it
produces a curve Φ(V, p, q) ∈ Lip([0, 1],M2) . For the actual tracking algorithm, it is common to compute
a path from p to q that minimizes a length functional. Based on the input data, one constructs a metric
tensor field G(V ) that induces a metric dG(V ) on the space of positions and orientations by

dG(V )(x, y) := min
γ∈Lip([0,1],M2)

γ(0)=x
γ(1)=y

∫ 1

0

||γ̇(t)||2G(V ) dt , (1.11)

where the norm of a vector u ∈ TxM2 is given by ||u||2G(V ) = G(V )
∣∣
x
(u, u) . Curves minimizing such a

problem are also called shortest curves. The output of the tracking process Φ(V, p, q) = γ̃ is a shortest
curve between the starting and end points p, q ∈ M2 according to the metric dG(V ) . Note that we write
‘a shortest curve’ since these might not be unique. The computational technique used in this report does
give a unique output however. For more details, see Section 2.1.2.

Although the problem of vessel tracking might sound intimidating at first, in the context of curve
minimization, it boils down to picking a suitable metric tensor field that encourages movement along
vessels.
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1.1.6 Roto-Translation Equivariance

So far we have discussed several actions of the roto-translation group SE(2) :

• the action Ug on positions (1.5);

• the action Lg on positions and orientations (1.6);

• the action Ug on images (1.8);

• the action Lg on orientation scores(1.10).

These actions all serve a single purpose: we want to show that the results of the tracking algorithm are
equivariant under roto-translations of the input image. When the input image is roto-translated, the
output curve should roto-translate with it. To achieve this, every step of the computation P ◦ Φ ◦Wψ

needs to be roto-translation equivariant.

Definition 7 (Roto-translation equivariant). Let ρA : SE(2) → Aut(A) and ρB : SE(2) → Aut(B)
be two group actions. We say that a map Ψ : A → B is roto-translation equivariant if for each roto-
translation g ∈ SE(2)

Ψ ◦ (ρA)g = (ρB)g ◦Ψ . (1.12)

Lemma 2. The orientation score transformation Wψ is roto-translation equivariant, i.e. it holds that

Wψ ◦ Ug = Lg ◦Wψ .

Proof. Note that the action Ug ∈ Aut(L2(R2)) is unitary for each g = (z,Rα) ∈ SE(2). For two functions
ψ,ϕ ∈ L2(R2) , we have that

(Ugψ,ϕ)L2(R2) =

∫
R2

ψ (R−1
α (y − z))ϕ(y) dy =

∫
R2

ψ(u)ϕ (Rαu + z) du =
(
ψ,Ug−1ϕ

)
L2(R2)

,

where we apply the substitution u := R−1
α (y − z) in the second step. So we indeed have unitarity:

U∗g = Ug−1 = (Ug)−1
. This implies that

(Wψ(Ugf)) (x, θ) =
(
U(x,Rθ)ψ, Ugf

)
L2(R2)

=
(
Ug−1(U(x,Rθ)ψ), f

)
L2(R2)

=
(
Ug−1(x,Rθ)ψ, f

)
L2(R2)

= (Wψf) (g−1 . (x, θ)) = (Lg(Wψf)) (x, θ) ,

so Wψ is indeed roto-translation equivariant. �

To speak of roto-translation equivariance for the tracking and projection steps, we need a define a group
action on curves.

Definition 8. For a curve γ in R2 or M2 , the action of roto-translations is given by post-composition
of γ with the action on the respective spaces:

(g . γ) (t) := g . γ(t) . (1.13)

To prevent introducing too many symbols, we express roto-translation of curves by using the temporal
parameter t . For a curve γ(t) in R2 , its roto-translation is given by Ug(γ(t)) . Similarly for a curve γ(t)
in M2 the roto-translated curve is Lg(γ(t)) .

Lemma 3. The projection P of curves in M2 onto curves in R2 is roto-translation equivariant.

Proof. The projection of a roto-translated curve in M2 is the same as the roto-translation of a projected
curve. This is because the actions of roto-translations on the spaces R2 and M2 agree in the spatial
component (see (1.5) and (1.6)), which is all that matters to the projection P . �
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Lemma 4. If the metric tensor field on M2 is roto-translation invariant in the sense that for any function
V : M2 → R and vectors u, v ∈ TxM2 :

G(LgV )
∣∣
Lgx

((Lg)∗u, (Lg)∗v) = G(V )
∣∣
x
(u, v) , (1.14)

a curve γ(t) minimizes dG(V )(p, q) if and only if its roto-translation Lg(γ(t)) minimizes the roto-translated
optimization problem of dG(LgV )(Lgp, Lgq) .

Proof. Let γ(t) be a curve that minimizes dG(V )(p, q) . Its roto-translation Lg(γ(t)) is a curve from Lgp to
Lgq and because the metric tensor field G(V ) is roto-translation invariant, Lg(γ(t)) has the same ’length’
as the original curve γ(t) :∫ 1

0

∣∣∣∣∣∣∣∣ ddt (Lg(γ(t)))

∣∣∣∣∣∣∣∣2
G(LgV )

dt =

∫ 1

0

||(Lg)∗γ̇(t)||2G(LgV ) dt =

∫ 1

0

||γ̇(t)||2G(V ) dt .

Let δ(t) denote any curve from Lgp to Lgq . Then Lg(γ(t)) is shorter than δ(t) because γ(t) is shorter
than Lg−1(δ(t)) . Thus, the roto-translated curve Lg(γ(t)) minimizes the roto-translated optimization
problem of dG(LgV )(Lgp, Lgq) . The converse proof is analogous. �

Hence, we shall only consider roto-translation invariant metric tensor fields for vessel tracking. The
following lemma aids in designing such metrics.

Lemma 5. The metric tensor field G(V ) is roto-translation invariant in the sense of (1.14) if it can be
expressed in terms of a global dual frame {ψi(V )}3i=1 with components gij(V ) : M2 → R as

G(V ) =

n∑
i,j=1

gij(V )ψi(V )⊗ ψj(V ) , (1.15)

where the components are equivariant

gij(Lg(V )) = Lg(gij(V )) (1.16)

and the corresponding frame {Ei(V )}3i=1 defined by
〈
ψi, Ej

〉
= δ ij satisfies

(Lg)∗ Ei(V ) = Ei(LgV ) . (1.17)

Proof. Substituting the decomposition (1.15) into the roto-translation invariance requirement (1.14), we
see that components need to satisfy

(gij(LgV )) (Lgx) = (gij(V )) (x) ,

which is a rephrasing of roto-translational equivariance (1.16). For the dual frame we have that

ψi(LgV )
∣∣
Lgx

((Lg)∗u) = ψi(V )
∣∣
x
(u)

holds for all u ∈ TxM2 . Since the corresponding frame is characterized by
〈
ρi(V ), Ej(V )

〉
= δ ij and it

holds that 〈
ψi(LgV )

∣∣
Lgx

, (Lg)∗ Ej(V )
∣∣
x

〉
=
〈
ψi(V )

∣∣
x
, Ej(V )

∣∣
x

〉
= δij ,

we have that equation (1.17) holds for the frame {Ei(V )}3i=1 :

(Lg)∗ Ei(V )
∣∣
x

= Ei(LgV )
∣∣
Lgx

.

�

With the above lemma as our motivation, we discuss three frames one can use to construct a metric
tensor field suitable to vessel tracking.
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1.2 The Canonical Frame

The first frame we consider is a canonical one {∂x, ∂y, ∂θ} induced by the coordinate functions x, y, θ for
points in M2. As is convention, the dual frame for the cotangent bundle T ∗M2 is denoted by {dx, dy, dθ} ,
where the symbol d truely denotes the exterior derivative. For example, the value dx

∣∣
z
(v) denotes the

rate of change of the first coordinate in the direction v ∈ TzM2 .

The spatial vector fields ∂x and ∂y are not invariant under rotation

L(0,Rα)∗ ∂x = cos(α) ∂x + sin(α) ∂y

L(0,Rα)∗ ∂y = − sin(α) ∂x + cos(α) ∂y

but their span is, meaning that roto-translations of spatial vectors remain spatial vectors.

1.3 The Left Invariant Frame

Thanks to the bijection between two-dimensional orientations θ and rotations Rθ , it is possible to
construct a roto-translation invariant frame {A1,A2,A3} . It is defined by

Ai
∣∣
(x,θ)

:= L(x,Rθ)∗Ai
∣∣
0

for i = 1, 2, 3

A1

∣∣
0

:= ∂x
∣∣
0

A2

∣∣
0

:= ∂y
∣∣
0

A3

∣∣
0

:= ∂θ
∣∣
0

(1.18)

We call this the left invariant frame and we denote its dual by {ω1, ω2, ω3} . Roto-translational
invariance (Lg)∗Ai = Ai holds as

L(z,Rα)∗Ai
∣∣
(x,θ)

(1.18)
===== L(z,Rα)∗ L(x,Rθ)∗Ai

∣∣
0

= L(z,Rα)·(x,Rθ)∗Ai
∣∣
0

(1.18)
===== Ai

∣∣
(z,Rα) . (x,θ)

,

where the second equation is the chain rule. By a small calculation, we find that at orientation θ the
frame is given by  A1 = cos(θ) ∂x + sin(θ) ∂y

A2 = − sin(θ) ∂x + cos(θ) ∂y
A3 = ∂θ

(1.19)

Observe that the left invariant frame rotates with us as we move through the angular dimension of M2 as
shown in Figure 3. This is very useful for the manipulation of orientation scores. At an angle of θ , the
orientation score contains the line structures of the image with the same orientation. Hence, the vector
field A1 lies parallel to these structures and the vector field A2 is orthogonal to them. We say that these
vector fields point forward and left respectively.

Curves with constant speed w.r.t. the left invariant frame form spirals in the angular direction. For

constants c1, c2, c3 ∈ R , the formula for a curve γ(t) = (x(t), y(t), z(t)) with derivative γ̇(t) =
n∑
i=1

ciAi
∣∣
γ(t)

and initial condition γ(0) = 0 ∈M2 is given by
x(t) = c1

c3 sin(c3 t) + c2

c3 (1− cos(c3 t))

y(t) = c1

c3 (1− cos(c3 t)) + c2

c3 sin(c3 t)

θ(t) = c3 t

if c3 6= 0 (1.20)


x(t) = c1 t

y(t) = c2 t

θ(t) = 0

otherwise (1.21)

Figure 1.2 shows some of these curves. By roto-translation these curves can be made to go through any
point in M2 which does not change their speed w.r.t. the left invariant frame.

Remark. The reason that other spaces like R2 or M d> 2 do not admit a left invariant frame is because
they do not have enough space to accommodate all their possible rotations.
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Figure 1.2: Left: plot of some curves with constant speed w.r.t. the left invariant frame. The curves have
no velocity in the sideways direction A2 . Right: projection of these curves onto the space of positions R2 .

1.4 Gauge Frames

Instead of the left invariant frame aligning with line structures as a side effect, we can take this to be our
guiding principle when constructing a frame. By explicitly fitting to the line structures in an orientation
score, we obtain a locally adaptive frame which is also referred to as a gauge frame. A gauge frame
and its dual are denoted by {B1,B2,B3} and {χ1, χ2, χ3} respectively. If we need to be explicit about
what data V : M2 → R the frame is fitted to, we write {B1(V ),B2(V ),B3(V )} .

As stated before in the Introduction, there are two ways in which the left invariant vector A1 fails to line
up with line structures.

1. Since line structures are lifted to the extended domain M2 via convolutions with wavelets (recall
Definition 6), line structures with a slightly different orientation also yield a response. Hence, the
orientation score contains line structures whose orientation differs from their orientation coordinate
in the manifold. This phenomenon is called deviation of horizontality. In practice this effect is
exaggerated even further since we often work with a low angular resolution. See Figure 4 for an
illustration.

2. The left invariant vector field A1 aligns with line structures in a fixed orientation slice of M2 . A
curving line structure moves through multiple of these slices however and the left invariant frame
completely ignores the angular component of its tangent vector.

These issues are solved by gauge frames, see Figure 6, but at a cost. Because the frame is directly fitted
to data, it is susceptible to noise, especially in the absence of a line structure. Moreover, one needs to
apply some stabilization technique to obtain even basic levels of smoothness.

1.4.1 Fitting the First Gauge Vector

To detect line structures, one considers the second order differential structure of an image. Consider an
image f as a three-dimensional landscape. Line structures are the ridges in such a landscape. Taking a
cross section of a ridge reveals the profile of a bump function. As we move along the ridge to the top
of the mountain, the vertical position of the bump function might change, but its profile stays roughly
the same. To ignore (linear) increases in the ridge’s height, we consider the differential of the image df .
Ridges in the original image still appear in the differential, albeit with a different profile. Since this
profile remains the same along the ridge, the direction of the ridge is found by minimizing a directional
derivative of df . See Figure 1.3 for an illustration of what goes wrong when minimizing the directional
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derivative of the image f instead of the derivative df . The method to detect line structures described
here, is captured in the following definition of the first gauge vector.

Figure 1.3: A ridge visualized. From left to right: as image, as 3D landscape and as contour plot. Note
that minimizing the directional derivative of the image f returns vectors that follow the level curves in
the contour plot. At the top of the ridge, the level curves become salient curves and their derivative is
orthogonal to the ridge’s direction.

Definition 9 (First gauge vector). Given a function V : M2 → R , the first gauge vector at the point
x ∈M2 is given by the optimization problem

B1

∣∣
x

= arg min
c∈TxM2

||c||=1

∣∣∣∣ (∇∗c dV )
∣∣
x

∣∣∣∣2
∗ , (1.22)

where ∇∗ is a connection on the cotangent bundle T ∗M2 and the norms are induced by a metric tensor
field on M2 .

Metric Tensor Field

To fit the gauge vectors, we use the following metric tensor field.

Definition 10. The weighted Euclidean metric tensor field Gξ is given by

Gξ = ξ2 (dx⊗ dx+ dy ⊗ dy) + dθ ⊗ dθ . (1.23)

The parameter ξ > 0 is used to scale the spatial dimensions against the angular dimension of M2 , as
shown by ||∂x|| = ||∂y|| = ξ and ||∂θ|| = 1 .

Alternatively, the weigthed Euclidean metric tensor field can be expressed as

Gξ = ξ2
(
ω1 ⊗ ω1 + ω2 ⊗ ω2

)
+ ω3 ⊗ ω3 , (1.24)

so by Lemma 5, it is roto-translation invariant.

Connection

For a connection, we utilize the left invariant frame. This frame induces an isomorphism of vector bundles

ϕ : T M2

∼=−→M2×R3 and the latter has a canonical connection given by the exterior derivative d . Pulling
the exterior derivative back along ϕ , we obtain a connection ∇ := ϕ∗d on T M2 given by

∇XY =

3∑
j=1

〈
dyj , X

〉
Aj =

3∑
j=1

X(yj)Aj , (1.25)

for vector fields X and Y =
3∑
j=1

yjAj in T M2 . The corresponding dual connection is defined by imposing

a condition similar to the product rule:

X 〈λ, Y 〉 = 〈∇∗Xλ, Y 〉+ 〈λ,∇XY 〉 , (1.26)
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for vector fields X,Y ∈ X(M2) and covector field λ ∈ Ω1(M2) . Expressing the fields Y and λ in the left

invariant frame as Y =
3∑
j=1

yjAj and λ =
3∑
j=1

λj ω
j gives us that

〈
∇∗Xλ, Y

〉
= X 〈λ, Y 〉 −

〈
λ,∇XY

〉
=

3∑
j=1

X(λjy
j)−

3∑
j=1

λjX(yj) =

3∑
j=1

X(λj)y
j .

Hence, the dual connection ∇∗ is given by

∇∗Xλ =

3∑
j=1

X(λj)ω
j . (1.27)

The 2-form ∇∗dV is also referred to as the hessian H V . To see why, we express the hessian with the
dual connection induced by the left invariant frame. The differential dV is decomposed as

df =

3∑
j=1

Aj(V )ωj ,

so by formula (1.27) the hessian H V is given by

H V =

3∑
i,j=1

AiAj(V )ωi ⊗ ωj . (1.28)

This expression is reminiscent of the familiar hessian matrix with the derivatives replaced by left invariant
derivatives.

Solving for the First Gauge Vector

Having explored the concepts involved with fitting the first gauge vector, it is about time that we solve
its optimization problem.

Lemma 6 (Solving first gauge vector). Let A : TxM2 → T ∗xM2 denote the map given by c 7→ H V
∣∣
x
(c, · ) .

The first gauge vector is a Gξ-unit eigenvector of A∗A : TxM2 → TxM2 with the smallest eigenvalue.

Expressed in the left invariant frame, the first gauge vector is a coordinate vector c = (c1, c2, c3)> ∈ R3 . It
is an eigenvector of the matrix M2H>M2H with the smallest eigenvalue and it has length ||M−1c||`2 = 1.
The matrices M and H are given by

M = diag{1/ξ, 1/ξ, 1} and Hij = AjAi (f)
∣∣
x
, (1.29)

where i and j denote rows and columns respectively.

Proof. To find the first gauge vector, we need to solve the optimization problem

arg min
c∈TxM2

||c||=1

||Ac ||2∗ .

Note that the problem is convex, so it suffices to find the local minima using the Euler-Lagrange method.
The Lagrangian of the optimization problem is given by

L(c, λ) = ||Ac ||2 − λ (||c||2 − 1)

whose derivative w.r.t. c ∈ TxM2 is expressed using the adjoint operator A∗ :

∇cL(c, λ) = 2(A∗A)c− 2λc .
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Note that ∇c denotes the directional derivative in the vector space TxM2 , not a connection on T M2 .
The directional derivative vanishes if c is an eigenvector of A∗A ,

(A∗A)c = λc .

Substituting this and the constraint ||c|| = 1 into the goal function, we find that the value for an
eigenvector is determined by its eigenvalue:

||Ac ||2∗ = Gξ(A∗Ac, c) = λ ||c||2 = λ .

Since the operator A∗A is self-adjoint and positive definite, all its eigenvalues are real valued and positive.
Hence, the optimization problem is solved by an eigenvector with the smallest eigenvalue.

Now for the coordinate expression, we consider the operator A . With the left invariant frame for its
domain TxM2 and the left invariant dual frame for its codomain T ∗xM2 , we find that A corresponds to
the matrix H , since

A
(
Aj
∣∣
x

)
= H V (Aj

∣∣
x
, · ) (1.28)

=====

3∑
i=1

AjAi(V )
∣∣
x
ωi =

3∑
i=1

Hij ω
i .

However, to quickly obtain the matrix corresponding to the adjoint A∗ , the domain and codomain of
A need to be expressed in orthonormal frames. The left invariant frame is already orthogonal (see
the alternate expression (1.24)), so the in- and outputs of the matrix H just need to be scaled by the
matrix M . As a result, the operator A corresponds to the matrix MHM , and its dual A∗ corresponds
to the transposition (MHM)> . Expressed in the normalized left invariant frame, the solution to the
optimization problem is as follows. Recall that c = (c1, c2, c3)> represents the first gauge vector in the
left invariant frame. Scaled to the orthonormal frame, M−1c is an eigenvector of (MHM)>(MHM)
with the smallest eigenvalue λ . The eigenvalue problem

λM−1c = (MHM)>(MHM)(M−1c) = MH>M2H c

is equivalent to
λ c = M2H>M2H c .

The length constraint ||c||Gξ = 1 translates to ||M−1c||`2 = 1 . �

Remark. In areas without a clear line structure the first gauge vector might not be unique. Moreover,
for any eigenvector c that solves the optimization problem, the problem is also solved by its opposite −c .
Because of this, gauge frames might flip suddenly even when a clear line structure is present. To prevent
this, we multiply the fitted eigenvector c with the sign of its first component signω1(c) such that the
resulting vector has a positive forward component. The left invariant frame is smooth and we already
expect the forward vector field A1 to be somewhat aligned with the line structure.

1.4.2 Constructing the Gauge Frame

Having fitted the first gauge vector to the line structure, we have a lot of freedom to complete the frame.
Even if we require that the gauge frame is orthonormal w.r.t. the weighted Euclidean metric tensor field
and that it has a right-handed orientation, we can freely spin the frame around the first gauge vector.
As a solution, we use the left invariant frame to pinpoint a certain gauge frame. The first gauge vector
can be seen as a correction of the first left invariant vector, so we might look at the entire gauge frame
from this perspective.

Definition 11 (Remaining gauge vectors). Let the first gauge vector be given by B1

∣∣
x

= c =
3∑
j=1

cjAj
∣∣
x

.

Let P B1

∣∣
x

be the projection of the first gauge frame on the spatial part of TxM2 . The curvature of the
line structure is expressed by the angle between the first gauge frame and its projection

ν := ∠(A1

∣∣
x
, P B1

∣∣
x
) = arctan

(
c3√

(c1)2 + (c2)2

)
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and the deviation of horizontality is expressed by the angle between the projected first gauge vector and
the forward direction:

χ := ∠(P B1

∣∣
x
,A1

∣∣
x
) = arctan

(
c2

c1

)
.

Using these angles, the left invariant frame is corrected such that the forward vector lines up with the
first gauge vector.

1. Correct for curvature by anticlockwise rotation of −ν radians around the left vector A2

∣∣
x

.

2. Correct for deviation of horizontality by anticlockwise rotation of χ radians around the (previous)
angular vector A3

∣∣
x

.

3. Normalize the vectors of the new frame w.r.t. the weighted Euclidean metric tensor field.

The rotation steps are illustrated in Figure 1.4. They are expressed in the left invariant frame by the
rotation matrices

Re2,−ν =

cos ν 0 − sin ν
0 1 0

sin ν 0 cos ν

 and Re3,χ =

cosχ − sinχ 0
sinχ cosχ 0

0 0 1

 .

After the rotation Re3,χRe2,−ν the coordinates of the second and third left invariant vector are given by

(d1, d2, d3)> := Re3,χRe2,−ν (0, 1, 0)> and (e1, e2, e3)> := Re3,χRe2,−ν (0, 0, 1)>

respectively. The second and third gauge vector are then defined as

B2

∣∣
x

:=

3∑
j=1

djAj
∣∣
x∣∣∣∣∣

∣∣∣∣∣ 3∑
j=1

djAj
∣∣
x

∣∣∣∣∣
∣∣∣∣∣
Gξ

and B3

∣∣
x

:=

3∑
j=1

ejAj
∣∣
x∣∣∣∣∣

∣∣∣∣∣ 3∑
j=1

ejAj
∣∣
x

∣∣∣∣∣
∣∣∣∣∣
Gξ

.

Remark. Since the directions of the second and third gauge vector are determined by a rotation of the
the left invariant frame, the gauge frame is orthonormal w.r.t. the weighted Euclidean metric tensor field
and it has a right-handed orientation. Furthermore, the second gauge frame lies in the horizontal part of
the tangent space, i.e. B2 ∈ span {A1,A2} .

1.4.3 External Regularization

One way to smooth the gauge frame is by external regularization. The hessian is replaced by a locally
averaged hessian such that the first gauge vectors are not fitted in isolation of each other.

Definition 12 (External regularization). Let the scaling matrix M and the hessian matrices H
∣∣
x

be
given as in (1.29). Consider the component-wise Gaussian smoothed hessians given by

H̃
∣∣∣
(x,θ)

:=

∫
R2

∫
S1

GR2

ρs (x− y)GS
1

ρa (θ − φ) H
∣∣
(y,φ)

dσ(φ)dy , (1.30)

where σ is the normalized Borel measure on the sphere S1 and the smoothing functions GMρ are isotropic
heat kernels centred around origins on manifolds M with time parameter ρ > 0 . See Section 2.7 of [7]
for more details.

The externally regularized first gauge vector c =
3∑
j=1

cjAj
∣∣
x

is then given by the coordinate vector

c = (c1, c2, c3)> ∈ R3 of length ||M−1c||`2 = 1 that is an eigenvector of the smoothed matrix M2H̃>M2H̃
with the smallest eigenvector.
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Figure 1.4: Rotations performed to turn the left invariant frame into the (not yet normalized) gauge
frame. Remark how the angles ν and χ express curvature and deviation of horizontality respectively.
Adapted from [7].

1.4.4 Iterated Stabilization

The second method to smooth gauge frames is to iteratively fit them. First, a gauge frame is fitted to an
orientation score. From this gauge frame a measurement is derived that expresses which gauge vectors
B1

∣∣
x

actually follow a line structure. A second gauge frame is fitted to this measurement and the process
continues from here. The measurement described is called the orientation confidence of a gauge frame.

Definition 13 (Orientation confidence). Given a gauge frame {B1,B2,B3} fitted to an orientation score
V : M2 → R, consider the Laplacian in the plane orthogonal to the principal direction B1

∣∣
x

(∆oV )(x) := (B2B2 V )(x) + (B3B3 V )(x) .

The orientation confidence S(V ) : M2 → [0, 1] is defined as

S(V ) (x) :=
(−(∆oV ))+(x)

||(−(∆oV ))+||∞
, (1.31)

where ( · )+ denotes the non-negative part of a function, for example f+(x) = max{0, f(x)} .

Why this definition? Recall that if the first gauge vector B1

∣∣
x

lines up with the line structure, the cross
section of orientation score orthogonal to the first gauge vector shows a bump function, see the middle
column of Figure 1.3. The amount to which a ‘bump’ is present is measured by the negative Laplacian
−∆ . Suppose now that the orientation score contains two parallel line structures. The first gauge vector
in-between these lines also aligns with them, resulting in a negative response of the negative Laplacian.
This response should be ignored since it does not represent a genuine line structure and this is achieved
by only considering the non-negative part (−∆)+ . Finally, the responses are scaled to fit in the unit
interval.

Note that the orthogonal Laplacian is efficiently computed from the hessian matrix H
∣∣
x

(1.29) and the
coordinates of gauge vectors in the left invariant frame. Both are already computed in the process
of fitting to a function V : M2 → R . Let a gauge vector Bi

∣∣
x

be given by the coordinate vector

c = (c1, c2, c3)> ∈ R3 in the left invariant frame. The second order derivative of V in the direction of Bi
∣∣
x

is then given by
(BiBi V )(x) = c>H

∣∣
x
c .

The iterated stabilization of gauge frames is as follows. Given an orientation score V : M2 → R , an initial
gauge frame is fitted to V with resulting orientation confidence S(V ) . Next, a gauge frame is fitted to the
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orientation confidence S(V ) with resulting orientation confidence S(S(V )) = S2(V ) . This process can
be repeated ad infinitum. In practice the computational cost of fitting additional gauge frames outweighs
the benefit of improved smoothness after four gauge frames.

This iterative refinement scheme has been proposed in Section 11.3.3 in [2], but a formal proof of
convergence Sn(V ) → S∗ has not been published yet. Possible proofs rely on Banach contraction
theorems, but this is beyond the scope of this report.

1.4.5 Roto-Translation Invariance

For any metric based on a gauge frame to be roto-translation invariant, the frame itself should also be
roto-translation invariant (see Lemma 5). Showing invariance for gauge frames requires a bit more work
than for the left invariant frame.

Lemma 7. For any orientation score V : M2 → R the first gauge vector satisfies

(Lg)∗ B1(V ) = B1(LgV ) , (1.32)

for all roto-translations g ∈ SE(2) .

Proof. Consider optimization problem (1.22) defining the first gauge vector:

B1

∣∣
x

= arg min
c∈TxM2

||c||=1

∣∣∣∣∣∣ (∇∗c dV ) ∣∣∣
x

∣∣∣∣∣∣2
G∗ξ

.

Let c̄ denote a vector minimizing this problem in x ∈ M2 for orientation score V . We need to show
that the roto-translated vector (Lg)∗c̄ also minimizes the roto-translated optimization problem in Lgx
for the score LgV . Because the weighted Euclidean metric tensor field Gξ is roto-translation invariant
(see (1.24)), we have that for any vector c ∈ TxM2

|| c ||Gξ = 1 ⇔ ||(Lg)∗c ||Gξ = 1 ,

so a roto-translated solution satisfies the constraints of the roto-translated optimization problem. Moreover,
invariance of the metric tensor field Gξ also implies that the dual metric is roto-translation invariant in
the sense that

G∗ξ
∣∣
x
((Lg)

∗λ, (Lg)
∗µ) = G∗ξ

∣∣
Lgx

(λ, µ) (1.33)

for covectors λ, µ ∈ T ∗LgxM2 . Hence, it suffices to show for any vector c ∈ TxM2 that

(Lg)
∗
(
∇∗(Lg)∗c d(LgV )

) ∣∣∣
Lgx

=
(
∇∗c dV

) ∣∣∣
x
.

Expanding the definition of ∇∗ (1.27) and the exterior derivative d, we find that this is equivalent to
showing the equality of coordinates

(Lg∗c) (Ai(LgV )) = c (Ai(V )) (1.34)

and the equality of covectors
(Lg)

∗ωi
∣∣
Lgx

= ωi
∣∣
x
. (1.35)

We immediately see that the latter holds by evaluation on the left invariant frame. To prove (1.34), let
γi be an integral curve to Ai

∣∣
x

, i.e. γ̇i(0) = Ai
∣∣
x

. We then have that

Ai
∣∣
Lgx

(LgV ) =
(
(Lg)∗Ai

∣∣
x

)
(LgV ) =

d

dt

∣∣∣∣
t=0

(LgV ) (Lgγi(t))

=
d

dt

∣∣∣∣
t=0

V (Lg−1(Lgγi(t))) =
d

dt

∣∣∣∣
t=0

V (γi(t)) = Ai
∣∣
x
(V ) .

Now let γ be an integral curve of c ∈ TxM2 . Using the equality above, we show the equality of coordinates:

(Lg∗c) (Ai(LgV )) =
d

dt

∣∣∣∣
t=0

Ai
∣∣
Lgγ(t)

(LgV ) =
d

dt

∣∣∣∣
t=0

Ai
∣∣
γ(t)

(V ) = c (Ai(V )) .

�
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Corollary 7.1. The gauge frame is roto-translation invariant, i.e. for any orientation score V : M2 → R ,
the gauge vectors satisfy

(Lg)∗ Bi(V ) = Bi(LgV ) , (1.36)

for all roto-translations g ∈ SE(2) .

Proof. The directions of the remaining gauge vectors B2 and B3 are determined by the coordinates of the
first gauge vector in the left invariant frame. Because both the first gauge vector and the left invariant
frame are roto-translation invariant, these directions are as well. Since the weighted Euclidean metric
tensor field Gξ used to normalize these directions is roto-translation invariant as well, the remaining gauge
vectors are also invariant. �

This is nice, but in practice we use smoothed gauge frames. Fortunately, these are also invariant under
roto-translations as we show next.

Lemma 8. The externally regularized gauge frame is roto-translation invariant.

Proof. According to Definition 12, the externally regularized gauge frame is roto-translation invariant if
the smoothed hessian matrices H̃(V ) satisfy the equation

H̃(V )
∣∣∣
x

= H̃(LgV )
∣∣∣
Lgx

.

This equation is satisfied by the non-smoothed hessians H(V )
∣∣
x

as by the proof of equation (1.34) we
have that (

H(LgV )
∣∣
Lgx

)
ij

= (AiAj(LgV ))(Lgx)
(1.34)

===== (AiAj(V ))(x) =
(
H(V )

∣∣
x

)
ij
.

Next, consider formula (1.30) of the smoothed hessian

H̃
∣∣∣
(x,θ)

:=

∫
R2

∫
S1

GR2

ρs (x− y)GS
1

ρa (θ − φ) H
∣∣
(y,φ)

dσ(φ) dy ,

We need to show that besides the hessian, the rest of the integral is also roto-translation invariant. Let
the roto-translation be given by g = (z,Rα) . The heat kernel on R2 is rotationally invariant, so we have

that GR2

ρs (x− y) = GR2

ρs (Rα(x− y)) . The circle measure σ is also rotationally invariant and the spatial
measure is roto-translationally invariant. Combinig this, we have that

H̃(LgV )
∣∣∣
Lg(x,θ)

=

∫
R2

∫
S1

GR2

ρs (z + Rαx− y)GS
1

ρa (α+ θ − φ) H(LgV )
∣∣
(y,φ)

dσ(φ) dy

=

∫
R2

∫
S1

GR2

ρs (Rα(x− y))GS
1

ρa (θ − φ) H(LgV )
∣∣
Lg(y,φ)

dσ(α+ φ) d(z + Rαy)

=

∫
R2

∫
S1

GR2

ρs (x− y)GS
1

ρa (θ − φ) H(V )
∣∣
(y,φ)

dσ(α+ φ) d(z + Rαy)

=

∫
R2

∫
S1

GR2

ρs (x− y)GS
1

ρa (θ − φ) H(V )
∣∣
(y,φ)

dσ(φ) dy

= H̃(V )
∣∣∣
(x,θ)

.

�

Lemma 9. Orientation confidences are roto-translation equivariant, i.e.

S(LgV ) = Lg(S(V )) ,

so the iteratively fitted gauge frames are roto-translation invariant.
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Proof. The orientation confidences S(V ) and S(LgV ) are computed from the corresponding gauge frames
that satisfy

(Lg)∗ Bi(V ) = Bi(LgV ) ,

see Corollary 7.1. Following the proof of equation (1.34), we have that for second order derivatives:

Bi(LgV )
∣∣
x

(Bi(LgV ) (LgV )) = Bi(V )
∣∣
Lg−1x

(Bi(V )V ) .

This implies the roto-translation equivariance of the orientation confidence score

S(LgV ) (x) = Lg(S(V )) (x) = S(V ) (Lg−1x) .

The roto-translational invariance of iterated gauge frames follows since

(Lg)∗ Bi(S(V ))
∣∣
x

= Bi(Lg(S(V )))
∣∣
Lgx

= Bi(S(LgV ))
∣∣
Lgx

.

�
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Chapter 2

Vessel Tracking

The goal of this chapter is to explore the extent to which gauge frames (i.e. frames locally fitted to the
data) can be used for vessel tracking. We will show some benefits of using these frames and address
possible pitfalls.

The motivation for using gauge frames is that one hopes to improve tracking by adapting to deviation of
horizontality and curvature. Here we stress that the inclusion of gauge frames improved other geometric
processing tasks such as in recent works on vessel segmentation tasks [18] and crossing preserving denoising
[13]. Furthermore, gauge frames enable the incorporation of these adaptations in the geometric notions
of ‘short’ and ‘straight’ curves. How this is done is explained in the next chapter.

We briefly repeat the vessel tracking algorithm described in Section 1.1.5. To deal with intersecting
vessels, input images are first lifted to an orientation score. The tracking process takes place in this
expanded domain as illustrated by Figure 2.1. A vessel is tracked between two points by computing the
shortest curve between them, i.e. a curve that minimizes a length functional

dG(p, q) = min
γ∈Lip([0,1],M2)

γ(0)=p
γ(1)=q

∫ 1

0

||γ̇(t)||2G dt , (2.1)

where G is a metric tensor field that may depend on the orientation score data. The metric tensor field
is chosen such that curves along vessels are assigned a shorter length.

Section 2.1 describes how shortest curves and gauge frames are computed in practice. The gauge frame
based metric tensor fields considered in this project are outlined in Section 2.2 as well as their performance
on an artificial test image. Section 2.3 shows how these tensor fields perform on actual retinal images.

Figure 2.1: Tracking vessels in the orientation score (right) and the projection onto the input image (left).
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2.1 Practical Considerations

Although the previous chapter explains the underlying theory of vessel tracking, there are still some
practical things to consider.

2.1.1 Computing Shortest Curves

Consider the optimization problem in (2.1). A shortest curve from p to q is computed in two steps. First,
we compute the distance from p to every other point x ∈ M2 , i.e. a distance function W = dG(p, · ) .
This function is found by solving for the viscosity solution of the eikonal PDE{

‖gradW‖G = 1

W (p) = 0
(2.2)

where the gradient gradW is the vector reciprocal to the differential dW :

G(gradW, · ) = dW .

The shortest path γ is found by steepest descent on the distance map W . This is also referred to as
backtracking. For the underlying theory, see [14] and [10] for viscosity solutions on the respective spaces
Rd and M3 .

A useful interpretation of the distance function W is in terms of wavefront propagation. The levels
curves can be considered as wavefronts of a viscous fluid originating from the starting point p . Like
with a viscous fluid, the wavefronts do not propagate through each other, explaining the name viscosity
solution. Values at level curves of W , i.e. the distances to p , can be interpreted as the time needed for
the fluid to reach those points. As the wavefronts expand, they eventually reach the end point q . The
shortest path is found by tracking back along the path traversed by the wavefronts. This is done by
steepest descent since the gradient is perpendicular to the level curves.

The propagation of wavefronts is hard to visualize since the fronts are surfaces in the three-dimensional
space of positions and orientations M2 . By minimizing the distance function over all orientations, they
can be visualized in two dimensions, see Figure 2.2. The projection shows the wavefronts that first hit a
position, regardless of orientation. Discarding the orientation data makes it harder to predict the path
taken by backtracking, but in practice this is not too big of an issue.

2.1.2 Implementation Notes

The lifting of an input image to an orientation score is performed by the Lie Analysis [16] package for
Mathematica. This package also provides methods for taking left invariant derivatives that are used
throughout.

The eikonal PDE (2.2) is numerically solved by an iterative scheme as described in [4]. The derivatives
w.r.t. the gauge frame are computed by linear transformation of the left invariant derivatives obtained
using upwind differencing. The backtracking step is then performed on an interpolated gradient field of
the distance map. Interpolation is performed by expressing the gradient in terms of the left invariant
frame and interpolating the coordinate fields, taking into account the periodicity of the angular dimension.

Interpolating the gradient field need to be done carefully. For efficiency, it is useful to only consider
orientations modulo π radians when computing the orientation score and the distance map. This is
allowed since this symmetry is satisfied by both the orientation score transformation and the metric
tensor fields used. The spatial left invariant vector fields A1 and A2 however do not have this symmetry,
their rotation is only complete after 2π radians. As a result of the above, the gradient coordinates are
computed for the orientations [0, π] , but they do not have an angular periodicity of π radians. The solution
is to copy the gradient coordinates for the orientations [0, π] and to multiply the spatial coordinates with
−1 to obtain the gradient coordinates for the orientations [π, 2π] . Combined, these coordinates can be
interpolated with a periodicity of 2π in the angular dimension.
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Figure 2.2: Projection of wavefronts in the orientation score to wavefronts on the input image.
Remark 1: Wavefronts do not propagate to the diagonal lines since these have a different angular
coordinate in the orientation score. Remark 2: This is an idealized image, in practice the wavefronts
always leak through the vessel boundaries. Adapted from [6]

2.1.3 Fitting Gauge Frames in Practice

It turns out that fitting gauge frames to orientation scores is quite sensitive to the choice of the weighting
parameter ξ in the weighted Euclidean metric tensor field Gξ (see (1.23)). For each new orientation score,
we manually tune the parameter ξ by looking at the quality of the gauge frame produced. The main tool
used for this task is the orientation confidence (see Definition 13). Its pattern should match that of the
line structures in the orientation score. For a more detailed inspection, we use the visualization method
outlined below.

Visualizing Alignment

To visualize the alignment of the first gauge vector with line structure in the data, we plot integral curves
of this vectorfield at multiple locations on top of the data to see how well these agree. This can be done
in the orientation score, but this is hard to visualize in a report since it concerns three-dimensional data.
A solution is to project the integral curve onto the input image by discarding the orientation coordinates.
Alignment in the angular direction can still evaluated by looking whether the curvature of the integral
curves matches that of the line structures in the image. To prevent multiple integral curves being plotted
per position, only the integral curve corresponding to the orientation in the space M2 with the greatest
response in the orientation score is shown.

For the integral curve, we use a curve with constant speed w.r.t. the left invariant frame. For the explicit
formulas see (1.20). The advantage of these curves is that they have constant curvature which makes it
easier to evaluate how well they align with the data.

An example of this visualization is shown in Figure 2.3. Note that the curved line segments are shorter
than the straight ones. This is a consequence of the projection as the line segments are of equal length
in the space M2 .
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Type of Smoothing Used

The previous chapter listed two distinct techniques to smooth a gauge frame: external regularisation
(Section 1.4.3) and iterated stabilization (Section 1.4.4). To decide which method to use, we applied
both and compared their alignment with the input image, see Figure 2.3. The alignment of the externally
regularized gauge frame is worse than that of the non-smoothed frame and the iteratively stabilized frame.
Note that it is mainly the curvature of the externally regularized data that does not align well with the
data. Based on these results, we decided to only use iterated stabilization if the non-processed gauge
frame are too rough to be used for vessel tracking.

Figure 2.3: Comparison between alignment of gauge frames smoothed with different methods.

2.2 Experimental Design

Designing metric tensor fields based on gauge frames has been an experimental process. We show a
naive tensor field from the early stages of this process and a more sophisticated one from the end of the
project. Their performance on a test image is compared with that of left invariant frame based metric
tensor fields.

2.2.1 Metric Tensor Fields Used

This is section provides an overview of the metric tensor fields we have tested. To understand why these
metrics are defined the way they are, it is helpful to keep the following design principle in mind: vectors
aligned to vessels should have a small norm compared to other vectors.

Remark. The coefficients chosen for the metric tensor fields below look slightly awkward. This is because
when experimenting with different metrics, we mostly modified the coefficients of the dual metric tensor
fields that appear in the expression for the gradient gradW . In the discussion in Section 2.4.1, we propose
metric tensor fields for future research with more regular coefficients.

The following left invariant frame based metric tensor field is used to compare the gauge frame ones
against. The metric tensor field is derived from those in [4]. Recall that {ω1, ω2, ω3} denotes the frame
dual to the left invariant frame.

1. The left invariant metric tensor field G C,βξ,ζ is given by

G C,βξ,ζ :=
1

(β(1/C) + (1− β))
2

(
ξ2

(
ω1 ⊗ ω1 +

1

ζ2
ω2 ⊗ ω2

)
+ ω3 ⊗ ω3

)
. (2.3)

Paths outside vessels are discouraged by the cost function C : M2 → [δ, 1] that is bounded from
below by δ > 0 . The parameter β ∈ [0, 1] weighs the influence of the cost function. At β = 1 ,
the influence is maximized and the fraction at the front of the metric tensor field evaluates to C2 .
Vectors with a large sideways component are penalized by the anisotropy parameter ζ ∈ [0, 1] . As
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a result, the paths traced out are comparable to those of a car. In order to go sideways, one first
has to make a turn. This makes for natural looking paths even in the absence of a clear vessel
structure. For the experiments, we consider two versions of this tensor field: a isotropic one with
ζ = 1 and an anisotropic one with ζ = 1/8 .

The next metric tensor field was one of our first attempts to construct a gauge frame based metric tensor
field. The main reason for its inclusion is to show that it is a bad choice and that a more sophisticated
tensor field is required. Recall that {χ1, χ2, χ3} denotes the frame dual to the gauge frame.

2. The (anisotropic) gauge frame metric tensor field Gα is given by

Gα := χ1 ⊗ χ1 +
1

(1− α)2

(
χ2 ⊗ χ2 + χ3 ⊗ χ3

)
, (2.4)

where α ∈ [0, 1) is an anisotropy parameter. The larger α is, the more vectors orthogonal to the line
structure B1 are penalized. For α = 0 , the metric tensor field agrees with the weighted Euclidean
metric tensor field Gξ from (1.23). Note that the weighting parameter ξ implicitly influences the
gauge frame metric tensor field since the gauge frames are normalized w.r.t. the weighted Euclidean
tensor field Gξ .

The following metric tensor field is the final iteration of the gauge frame based metric tensor fields
designed over the course of the project.

3. The adaptive (anisotropic) gauge frame metric tensor field GSα is given by

GSα :=
1

S + (1− S)(1− α)2
χ1 ⊗ χ1 +

1

(1− α)2

(
χ2 ⊗ χ2 + χ3 ⊗ χ3

)
. (2.5)

The parameter α is the same anisotropy parameter as from the early iteration gauge frame based
metric tensor field above. The symbol S denotes the orientation confidence of the gauge frame.
The orientation confidence takes values in the interval [0, 1] and is used to control the anisotropy of
the tensor field. In areas with minimal orientation confidence, where S = 0 , the first gauge vector
is not aligned to a line structure. Hence, there is no motivation to prefer this direction over the
others and the tensor field is made isotropic. In areas where the first gauge vector most strongly
matches a line structure, where S = 1 , the anisotropy is maximized.

In areas of low orientation confidence, the anisotropy of the metric tensor field is lowered by scaling
up the coefficient in front of the first term χ1 ⊗ χ1 . As a result, the orientation confidence also
acts like a cost function. Finally, remark that since the orientation confidence takes values in the
interval [0, 1] , the coefficient in front of the first term takes values in the interval [(1− α)−2, 1] .

Parameter settings

The left invariant and gauge frame based metric tensor fields above share some parameters and differ in
others. Since the goal of the experiments is to compare their performance, the parameters are chosen to
enforce some consistency.

Per input image, the weighting parameter ξ is manually tuned by visually evaluating the gauge frames
produced as described in Section 2.1.3. The tuned value of ξ is also used for the left invariant metric
tensor fields. The values found for the different input images are shown in Table 2.1.

Input image ξ
Experiment I & II 0.08
Application I 0.08
Application II 0.01

Table 2.1: Tuned values of the weigthing parameter ξ for the different input images.
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The orientation confidence acts as a cost function for the adaptive anisotropic gauge frame metric tensor
field (2.5). For this reason we choose to also let the orientation confidence determine the cost function
used in the left invariant metric. For an orientation confidence S , the corresponding cost function is
given by

C :=
1

1 + λSp
,

where we take parameters λ = 200, p = 2 unless stated otherwise. This transformation is of the same
form as the one used in [4] to transform a different vesselness measure into a non-uniform cost function.

2.2.2 Experiment I

Figure 2.4: The task in experiment I is to trace the curve segment from the red arrow to the blue arrow.

The goal of the first experiment is to get a feeling for how the different metric tensor fields perform. The
task is relatively simple. The algorithm needs to cross several intersections along a curved line segment.
The exact task is shown in Figure 2.4.

Left Invariant Metric Tensor Fields

Figure 2.5: Experiment I: Wavefronts and paths produced by the isotropic left invariant metric tensor
field showing the influence of the cost function by varying the parameter β .

Figure 2.5 shows the tracking results of the isometric left invariant metric tensor field. The curves traced
out by all three variations nicely follow the curved line segment they are supposed to track. For this
metric tensor field, the wavefronts are purely steered by the cost function. This simplicity leads to some
undesirable behaviour. Consider the wavefronts expanding perpendicular to the line structure from the
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starting location. When they encounter the next line structure, their speed increases greatly. Ideally, one
would have that fronts only pick up speed when they align with the line structure.

Figure 2.6: Experiment I: Wavefronts and paths produced by the anisotropic left invariant metric tensor
field showing the influence of the cost function by varying the parameter β .

The results of the anisotropic left invariant metric tensor field are shown in Figure 2.6. Like with the
isotropic metric tensor field, the paths traced out by this tensor field also follow the curved line segment.
However, as the influence of the cost function increases, the continuous turn becomes a smooth zigzag.
The wavefronts fit more tightly around the line structures as compared to those produced by the isotropic
tensor field and note that the problem of accelerating wavefronts mentioned above does not occur here.
An issue the anisotropic tensor field does have is that the wavefronts propagate faster in several distinct
global directions. This is a side effect of using a low angular resolution for processing on the space M2 .

Gauge Frame Metric Tensor Field

Figure 2.7 shows the results of the gauge frame metric tensor field with increasing anisotropy. The
wavefronts of this tensor field do not look nice. Although their general expansion follows the line structures
in the image, the fronts themselves are very sharp and zigzag back and forth. The paths traced out still
look okay, but they are rougher than those from the left invariant tensor fields. The curve generated with
an anisotropy of α = 0.8 takes a sharp corner at the first crossing.

We attempted to resolve the sharpness of the wavefronts by using a smoothed gauge frame. This did not
have the desired result as the wavefronts still show the same level of sharpness for increasing anisotropy,
see Figure 2.8. The paths traced out by this tensor field are quite bad. For α = 0.5 , the path takes
a rough shortcut instead of following the curved line segment. For α = 0.8 , the backtracking process
stops since the interpolated gradient field vanishes. Critical points like this occur when the gradient flips
direction from one point to the next, see Figure 2.9. However, the gradient fields used for vessel tracking
are not supposed to exhibit such behaviour as they are gradients of viscosity solutions. This issue is
discussed in more detail in Section 2.4.1.

Adaptive Gauge Frame Metric Tensor Field

The tracking results of adaptive gauge frame metric tensor field are shown in Figure 2.10. The wavefronts
are smooth and follow the line structures in the image. The paths traced also follow the curved line
segment, although they get a bit more bumpy as the anisotropy increases.
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Figure 2.7: Experiment I: Wavefronts and paths produced by the gauge frame metric tensor field showing
the influence of anisotropy by varying the parameter α .

Figure 2.8: Experiment I: Wavefronts and paths produced by the gauge frame metric tensor field using
iteratively stabilized gauge frames showing the influence of anisotropy by varying the parameter α .

We more closely compare the wavefronts of the adaptive gauge frame tensor field to those of the left
invariant metrics. Comparing Figures 2.5 and 2.10, we see that the general shape of the wavefronts
of the isotropic left invariant tensor field and the adaptive gauge frame tensor field are very similar
for equal parameters α = β . This is remarkable since the formulas of the metric tensor fields are so
different. Figure 2.11 shows the wavefronts of the metric tensor fields side-by-side. Here we see that the
left invariant metric tensor fields overly strong promote wavefronts along the outer curves of the spirals,
whereas the adaptive gauge frame tensor field does not. Moreover, the adaptive gauge frame tensor field
does not suffer from the negative aspects of both left invariant tensor fields. Whereas the isotropic left
invariant tensor field allows fast propagation of wavefronts perpendicular to line structures, the adaptive
gauge frame tensor field does not. The wavefronts of the adaptive gauge frame tensor field also do not
suffer from the low angular resolution that plagues the those of the anisotropic left invariant tensor field.
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Figure 2.9: Close-up of the gradient fields around the critical point (red dot) where the backtracking
algorithm got stuck. The field corresponds to wavefronts and curve in the middle column of Figure 2.8.
Left and right show the fields at the discrete orientation levels closest to the critical point. Note how the
vectors close to the red dot flip direction from one orientation level to the next.

Figure 2.10: Experiment I: Wavefronts and paths produced by the adaptive gauge frame metric tensor
field showing the influence of anisotropy by varying the parameter α .

Figure 2.11: Side-by-side comparison of wavefronts produced by different metric tensor fields for
parameters α = β = 0.8 .
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Figure 2.12: The task in experiment II is to trace the longer curve segment from the red arrow to the
blue arrow. The possible shortcut is indicated by the dashed green line.

2.2.3 Experiment II

For the second experiment we let the metric tensor fields follow a large curve of the spirals with a large
number of intersections. It is more difficult because it is possible to take a shortcut by jumping bewteen
curve segments at two intersections, see Figure 2.12. For this experiment, we consider the left invariant
metric tensor fields and the adaptive gauge frame tensor field with the parameters α = β = 0.8 . The
results are shown in Figure 2.13.

Figure 2.13: Experiment II: Wavefronts and paths produced by the different metric tensor fields.
Parameters β = α = 0.8 .

The wavefronts in Figure 2.13 show the same general behaviour as in the previous experiment. The curves
however are interesting to look at! Both left invariant tensor fields take the shortcut, but the adaptive
gauge frame tensor field takes the correct path, albeit a bit wobbly.

Note that the path of the anisotropic left invariant metric tensor field has two cusps. In this case, the
problem of cusps has been thoroughly analysed [8]. They are prevented by only allowing wavefronts
to propagate forwards, i.e. in the direction of A1 , not in the direction of −A1 . This method has not
been discussed in this report as it uses Finsler functions instead of metric tensor fields to steer the vessel
tracking algorithm. For sake of completeness, we also test this improved version of the anisotropic left
invariant metric tensor field. The results in Figure 2.14 show this algorithm avoids cusps but is still
problematic as it bends towards the wrong line.
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Figure 2.14: Experiment II: Wavefronts and paths produced by the anisotropic left invariant metric tensor
field without reverse gear [8]. Parameter β = 0.8 .

2.3 Application to Retina Vessels

The adaptive gauge frame metric tensor field shows promising results on the test image. In this section
we explore whether these results hold up when the tracking algorithm is applied to actual retinal images.
Two settings are explored that have been proven difficult for other vessel tracking algorithms. The input
images used are zoomed-in patches of retina images from the DRIVE dataset.

2.3.1 Application I: Low Spatial Resolution

Figure 2.15: The task in the first application is to trace the vessel from the red arrow to the blue arrow.
Instead of staying on the correct vessel, the tracking methods might take a shortcut via the lower vessel.

The first task is similar to the setting of Experiment II. The tracking algorithms are expected to follow
a certain vessel whilst a shortcut can be taken by jumping to another vessel at an intersection. In
addition, the spatial resolution is scaled down to speed up calculations, a useful property for any real life
application. The exact task is shown in Figure 2.15.

Remark. The anisotropic left invariant tensor field is missing in Figure 2.17 since during its computation
the numerical solution to the eikonal PDE (2.2) diverged. This is a problem that we will encounter more
often when we attempt to strictly prevent the propagation of wavefronts to undesired areas by increasing
the parameters α and β .

The results in Figures 2.16 and 2.17 show that none of the tensor fields pick the correct vessel. Considering
the wavefronts, we see that the anisotropic left invariant and adaptive gauge frame metric tensor fields
are closer to choosing the correct vessel than the isotropic left invariant one. Their wavefronts have
propagated further along the upper vessel before being cut of by those in the lower one. Figure 2.16 also
shows that the isotropic left invariant tensor field produces a very jittery path whereas the other two
tensor fields do not. Apparantly, the low spatial resolution of a vessel greatly influences the path when
the metric tensor field does not punish sideways movement.

The vessel tracking results on this image are a bit surprising. Why did no single metric tensor field
steer the curve along the upper vessel? After investigation, the problem turned out to be the orientation
confidence used to guide the paths: its value is much greater along the bottom vessel than along the
upper one. Curious about the results of an orientation confidence with equal values on both vessels, we
modified the orientation confidence S into an ‘amplified’ version given by:

Sampl(x) := max{3S(x), 1} .
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Figure 2.16: Application I: Wavefronts and paths produced by the different metric tensor fields.
Parameters β = α = 0.8 .

Figure 2.17: Application I: Wavefronts and paths produced by the different metric tensor fields.
Parameters β = α = 0.9 . The anisotropic left invariant tensor field is missing since the numerical
solution to the eikonal PDE diverged.

The two orientation confidences are shown in Figure 2.18 where the maximum is taken along the angular
dimension to display these functions in two dimensions.

Figure 2.18: Orientation confidences visualized by maximization along the angular dimension.

The amplified orientation confidence had been tested for all three metric tensor fields with parameters
α, β ∈ {0.8, 0.9} . Unfortunately, for only a handful of these the numerical computation converged. The
results of these are shown in Figure 2.19. The isotropic left invariant metric already takes the correct
path for β = 0.8 , whereas the adaptive gauge frame tensor field needs a higher anisotropicty parameter
of α = 0.9 . The isotropic left invariant tensor field follows the vessel slightly better than the adaptive
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gauge frame tensor field, but as before its curve is more jittery.

Figure 2.19: Application I: Wavefronts and paths produced by the different metric tensor fields with an
amplified orientation confidence.

2.3.2 Application II: High Tortuosity

Figure 2.20: The task in the second application is to trace the highly tortuous vessel from the red arrow
to the blue arrow. The tracking methods might go straight and bypass the bend in the vessel.

The second application of the metric tensor fields is on an image of a highly tortuous vessel. The task is
shown in Figure 2.20. We are interested whether the paths from the vessel tracking methods follow the
strongly bended vessel or skip it.

When fitting the gauge frame to the orientation score, we noticed that the orientation confidence showed
a line structure that would promote skipping the tortuous vessel. This line segment vanishes when the
gauge frame is smoothed by iterated stabilization. Hence, the stabilized gauge frame is used in this
application. The orientation confidences of the non-processed and stabilized gauge frames are shown in
Figure 2.21

Figure 2.22 shows the tracking results of the left invariant and adaptive gauge frame metric tensor fields.
Note that we have used very high parameters α and β in an attempt to prevent the wavefronts from
traversing the shortcut before other wavefronts complete the bend. Despite these efforts, none of the
methods succeed at this. The wavefronts of the anisotropic left invariant tensor field stand out from the
others because they strongly show the effects of the angular resolution used for the orientation score. The
paths traced out by both left invariant metric tensor fields take the shortcut across the tortuous vessel.
For the adaptive gauge frame metric tensor field, the backtracking algorithm gets stuck in an critical
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Figure 2.21: Orientation confidences visualized by maximization along the angular dimension. The
shortcut enabled by the non-stabilized orientation confidence is indicated by the dashed green line.

Figure 2.22: Application II: Wavefronts and paths produced by the different metric tensor fields.
Parameters β = α = 0.95 .

point like the stabilized gauge frame method in Section 2.2.2. Looking at the wavefronts, we expect that
this path would have also taken the shortcut if it had not terminated prematurely.

In a final attempt to force the paths to go around the bend, we cranked up the parameters to α = β = 0.98 .
This is at the edge of what the numerical eikonal PDE solver can handle. The results are shown in Figure
2.23. Now all paths follow the vessel instead of taking the shortcut. The path traced out by the adaptive
gauge frame metric tensor field does stand out because of its irregularities. It is not exactly clear how
these nasty segments follow from the wavefronts above the path, but these fronts do look a bit wilder
than those of the other metric tensor fields.
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Figure 2.23: Application II: Wavefronts and paths produced by the different metric tensor fields.
Parameters β = α = 0.98 .

2.4 Discussion and Conclusion

The experiments in section 2.2.2 and 2.2.3 show that the adaptive gauge frame metric tensor field performs
well on an artificial test image, combining positive aspects from both the isotropic and anisotropic
left invariant tensor fields. In the second experiment, it even outperformed all other tensor fields.
Unfortunately, these results do not translate to the real world applications in Section 2.3. In the first
application, the adaptive gauge frame tensor field performed on par with the anisotropic left invariant
tensor field, but in the second application, it performed worse than both left invariant tensor fields.
Figure 2.22 shows the backtracking algorithm breaking down and the path in Figure 2.23 contains sharp
irregularities that are absent from the smooth paths of the left invariant tensor fields.

The drop in performance indicates that the artificial test image is not representative of actual retina
vessel images. Its line structures are too clearly defined and they do not vary in intensity. In previous
work [4], the cost function could be modified to account for deficiencies in real images. By having the
orientation confidence double as cost function in the adaptive gauge frame metric tensor field, we have
mistakenly thrown out this flexibility. To promote the desired results in our applications, we have had
to apply ad hoc fixes to the orientation confidence.

2.4.1 Future Research

Metric Tensor Field Proposal

The use of gauge frames does have potential for vessel tracking. On artificial test images, the adaptive
gauge frame metric tensor field outperforms the left invariant tensor fields. For real images however,
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the cost function cannot be replaced by anisotropic gauge frames alone. To draw conclusions about the
use of gauge frames on real life data, a future gauge frame based metric tensor field should separate
the anisotropic component from the cost function. This offers more flexibility when dealing with real
images and it allows for a better comparison with left invariant metric tensors that also separate these
components. We do believe that anisotropy w.r.t. the gauge frame should only be applied in areas where
the first gauge vector actually aligns with a line structure in the data. The orientation confidence is a
natural choice to control this kind of anisotropy.

With above considerations in mind, we would like to propose a specific metric tensor field to be explored
in future work. It is based on an orientation confidence controlled interpolation of the left invariant frame
and a gauge frame. Recall that a gauge frame is constructed by rotating and scaling the left invariant
frame, see Section 1.4.2:

Bi
∣∣
x

:=
RA3,χRA2,−ν Ai

∣∣
x∣∣∣∣RA3,χRA2,−ν Ai
∣∣
x

∣∣∣∣
Gξ

,

where the angles χ and ν express deviation of horizontality and curvature at the point x ∈M2 respectively.
An orientation score S takes values in the interval [0, 1] , so it can be used to control the rotations. Consider
a new frame {E1, E2, E3} given by

Ei
∣∣
x

:=
RA3,S(x)χRA2,−S(x)ν Ai

∣∣
x∣∣∣∣RA3,S(x)χRA2,−S(x)ν Ai
∣∣
x

∣∣∣∣
Gξ

.

For S(x) = 0 , this frame coincides with the normalized left invariant frame {(1/ξ)A1, (1/ξ)A2,A3} . For
S(x) = 1 , the frame coincides with the gauge frame {B1,B2,B3} . Let the dual frame be denoted by
{ψ1, ψ2, ψ3} . The metric tensor field we propose is the following:

GC,βζ,S := (β C + (1− β))
2

(
ψ1 ⊗ ψ1 +

1

ζ2
ψ2 ⊗ ψ2 +

(
(1− S) + S

1

ζ

)2

ψ3 ⊗ ψ3

)
, (proposed)

where C is a cost function with values in the range [δ, 1] for some δ > 0, β is parameter to scale the
influence of the cost function and ζ ∈ (0, 1] denotes an anisotropy parameter. For S(x) = 0 , this metric
coincides with the left invariant metric tensor field

GC,βξ,ζ = (β C + (1− β))
2

(
ξ2

(
ω1 ⊗ ω1 +

1

ζ2
ω2 ⊗ ω2

)
+ ω3 ⊗ ω3

)
and for S(x) = 1 , the proposed metric tensor field coincides with an anisotropic gauge frame metric
tensor field

GC,βζ = (β C + (1− β))
2

(
χ1 ⊗ χ1 +

1

ζ2

(
χ2 ⊗ χ2 + χ3 ⊗ χ3

))
.

Because these metric tensor fields coincide for certain values of the orientation confidence S , they are
more easily compared with each other. Hence, we hope that they yield more conclusive results on the
effectiveness of gauge frames in vessel tracking.

Vanishing Gradient Field

In the experiments and applications, the backtracking algorithm sometimes got stuck in a critical point
that was not the starting point of the tracking process (see the middle column of Figure 2.8 and the right
column of Figure 2.22). As mentioned before, this is not supposed to happen since the distance functions
are viscosity solutions to the eikonal PDE (2.2). For viscosity solutions, the gradient can only vanish at
the initial position or at points where two wavefronts meet. Inspecting the plotted wavefronts, the latter
does not seem to be the case here. It seems that the viscosity requirement has been violated.

The fact that this might be such a fundamental issue instead of a numerical fluke did not dawn on us until
at the end of the project. Hence, we did not have the time to fully investigate, nor fix the problem. We
assume the cause of the issue to be the computation of the gauge frame derivatives in the numerical PDE
solver. The upwind differencing scheme is used to calculate the left invariant derivatives, meaning that
whether a forward or backward differencing scheme is used depends on the direction of the left invariant
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vectors. However, gauge vectors can point in directions completely opposite to the left invariant vectors.
At points where this is the case, the wrong choice is made between forward and backward scheme.

We propose the following upwind differencing scheme for gauge frames. Due to time constraints we were
unable to implement it. Let A+

i

∣∣
x
(W ) and A−i

∣∣
x
(W ) denote the forward and backward finite difference

approximations of Ai
∣∣
x
(W ) respectively. The upwind approximation of Ai

∣∣
x
(W ) as used in previous

implementations is given by

Aupwind
i

∣∣∣
x
(W ) := max{A−i

∣∣
x
(W ),−A+

i

∣∣
x
(W ), 0} ,

see [4]. Now consider a gauge frame vector Bi
∣∣
x

=
3∑
j=1

cjAi
∣∣
x

. Let B+
i

∣∣
x
(W ) and B−i

∣∣
x
(W ) denote the

respective forward and backward finite difference approximations of Bi
∣∣
x
(W ) which are given by

B+
i

∣∣
x
(W ) =

3∑
j=1

cjAsign(cj)
j

∣∣∣
x
(W )

B−i
∣∣
x
(W ) =

3∑
j=1

cjA−sign(cj)
j

∣∣∣
x
(W ) ,

where we interpret the function ‘sign’ to take values in the set {−,+} . The upwind approximation of
Bi
∣∣
x
(W ) is then similar as that of Ai

∣∣
x
(W ) above:

Bupwind
i

∣∣∣
x
(W ) := max{B−i

∣∣
x
(W ),−B+

i

∣∣
x
(W ), 0} .

We hope that this differencing scheme eliminates the presence of unexpected critical points, but this is
a topic for future research. As a final note, we demonstrate the importance of the choice of differencing
scheme by switching to the central differencing scheme instead the current scheme, which leads to the
numerical solution quickly exploding, see Figure 2.24.

Figure 2.24: Wavefronts of a quickly exploding numerical solution using the central differencing scheme.
The metric tensor field used was the same as in the middle column of Figure 2.8 whose backtracking
came to a premature halt.
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Chapter 3

Data-Driven Connections

In the previous chapter we demonstrated how gauge frames can be used to improve vessel tracking. In
this chapter we investigate the gauge frame based tracking methods theoretically. It turns out that by
choosing a specific differentiable structure on the tangent space TM2 , i.e. the connection ∇̂ (3.11), we
can characterize the shortest curves as curves with auto-parallel momentum. Moreover, it turns out that
w.r.t. this connection, the flowlines of the first gauge vector field are straight curves. In other words, the
curves that best follow the line structures in an orientation score are straight.

Such a characterization has been proven before [9], but only for metric tensor fields with constant
coefficients w.r.t. to the left invariant dual frame. The straight curves of this connection are the curves
with constant speed w.r.t. the left invariant frame (1.20). These curves might align only briefly with the
line structures in an orientation score.

The setting for the new characterization is more general than gauge frames on M2 alone. For the theorem,
we consider an arbitrary smooth d-dimensional manifold M with a global frame {Bi}di=1 and a metric
tensor field G with constant coefficients w.r.t. to the corresponding dual frame {χi}di=1 . (We use the
same notation for the arbitrary frame as for gauge frames since this was the application we had in mind.)
Note that because of the generic nature of the new characterization, it can also be applied to diagonal
metric tensor fields with non-constant coefficients. This is because for diagonal metric tensor fields the
variability of the coefficients can be considered as variability of the global frame. Using this trick, the
characterization can be applied to all metric tensor fields used in the previous chapter.

We start the chapter by investigating the space T (T ∗M) the tangent bundle of the cotangent bundle
of M , in Section 3.1. This space features prominently in the characterization’s proof, and its elements
have let to a lot of confusion in the past, so a close inspection is warranted. Section 3.2 serves to explain
several concepts from symplectic geometry used by the proof. It is followed by the proposal of a new
connection in Section 3.3 and an analysis of covariant derivatives along a curve in Section 3.4. Finally
we have the characterization and its proof in Section 3.5.

3.1 The Tangent Bundle of the Cotangent Bundle

A central idea in symplectic geometry is that shortest curves in M can be described using a flow on the
cotangent bundle T ∗M . Given a frame {Bi}di=1 of the tangent bundle TM , we can decompose T (T ∗M)
into a horizontal component diffeomorphic to TM and a vertical component

T (T ∗M) ∼= TM × Rd .

We denote elements of T ∗M by

ν = (x, p) ∈
∐
y∈M

T ∗yM = T ∗M .

Using the projection π : T ∗M → M , we sometimes write π(ν) instead of x for the first component to
emphasize its dependence on ν . To ease notation, we may also choose to identify ν with p .
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3.1.1 Horizontal Part

Any point ν ∈ T ∗M in the cotangent bundle can be expressed as a linear combination of the frame
{χi}di=1 dual to {Bi}di=1 :

ν =

d∑
j=1

µj(ν)χj
∣∣
π(ν)

.

Remark that the coordinate functions µi : T ∗M → R are given by

µi(ν) = µi(x, p) =
〈
p ,Bi

∣∣
x

〉
.

The decomposition of ν allows us to define a tangent vector Bi
∣∣
ν
∈ Tν(T ∗M) in terms the vector Bi

∣∣
π(ν)

in the tangent bundle TM . Let γ be an integral curve to Bi
∣∣
π(ν)
∈ Tπ(ν)M , then define

Bi
∣∣
ν

:=
d

dt

∣∣∣∣
t=0

d∑
j=1

µj(ν)χj
∣∣
γ(t)

. (3.1)

The horizontal part of T (T ∗M) is spanned by the vector fields {Bi}di=1 defined by the method above.

3.1.2 Vertical Part

Together with a coordinate chart (x1, . . . , xd) : U → Rd for open U ⊂ M , the coordinate functions µi
form a coordinate chart of (T ∗M)

∣∣
U

:

(x1, . . . , xd, µ1, . . . , µn) : (T ∗M)
∣∣
U
→ Rd × Rd .

Hence, the coordinate functions µi induce vector fields ∂µi ∈ X(T ∗M) . (We use X( · ) to denote the
smooth vector fields of a space. The vector fields ∂µi span the vertical part of T (T ∗M) .

The next lemma shows that the horizontal and vertical parts fully span T (T ∗M) .

Lemma 10. Consider the differential π∗ : T (T ∗M)→ TM of the projection π : T ∗M →M . We have

π∗
(
Bi
)

= Bi and π∗ (∂µi) = 0 ,

hence {B1, . . . ,Bn, ∂µ1 , . . . , ∂µn} is a frame for T (T ∗M) .

Proof. We find the first two identities by direct computation. Let γ be an integral curve to Bi
∣∣
π(ν)

as in

the definition of Bi
∣∣
ν

, see (3.1), then

π∗
(
Bi
∣∣
ν

)
=

d

dt

∣∣∣∣
t=0

π

 d∑
j=1

µj(ν)χj
∣∣
γ(t)

 =
d

dt

∣∣∣∣
t=0

γ(t) = Bi
∣∣
π(ν)

.

Secondly,

π∗
(
∂µi
∣∣
ν

)
=

d

dt

∣∣∣∣
t=0

π

 d∑
j=1

(µj(ν) + δij t) χ
j
∣∣
π(ν)

 =
d

dt

∣∣∣∣
t=0

π(ν) = 0 .

It remains to show that the set {B1, . . . ,Bn, ∂µ1
, . . . , ∂µn} is linearly independent. Let αi, βi ∈ R be such

that
d∑
i=1

αi Bi + βi ∂µi = 0 .

Applying the differential π∗ , the above computations imply that
d∑
i=1

αiBi = 0 . Because {Bi}di=1 is a

frame by assumption, it holds that αi = 0 . Substitution results in
d∑
i=1

βi∂µi = 0. The set {∂µi}di=1 is

linearly independent as well since the vector fields arise from a coordinate chart, implying that βi = 0 .
Hence, the original set is linearly independent. �
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3.1.3 A Canonical Frame for T (T ∗M)

Given a coordinate chart (x1, . . . , xd) : U → Rd for an open U ⊂ M , one has a local frame {∂xi}di=1

for (TM)
∣∣
U

. Remark that the decomposition of T (T ∗M) into a horizontal and vertical part can also be

done locally, hence we can write covectors as ν =
d∑
j=1

ξj(ν) dxj and obtain vector fields ∂xi and ∂ξi for the

horizontal and vertical parts. However, since (x1, . . . , xd, ξ1, . . . , ξn) is a coordinate chart for T (T ∗M) ,
we also have the regular vector fields ∂xi . Fortunately, this is no cause for confusion as ∂xi = ∂xi .

Lemma 11. Given a coordinate chart ϕ = (x1, . . . , xd) : U → Rd for an open U ⊂ M , the vector fields
∂xi and ∂xi ∈ X(T ∗M) coincide.

Proof. The coordinate map (x1, . . . , xn, ξ1, . . . , ξn) : (T ∗M)
∣∣
U
→ Rd × Rd is given by

ν =

d∑
j=1

ξj(ν) dxj
∣∣
π(ν)
7→ (x1(π(ν)), . . . , xd(π(ν)), ξ1(ν), . . . , ξn(ν)) = (ϕ(π(ν)), ξ1(ν), . . . , ξn(ν)) ,

so ∂xi
∣∣
ν

is defined by a curve γ given by

γ(t) :=

d∑
j=1

ξj(ν) dxj
∣∣
ϕ−1(x1,...,xi+t,...,xd)

.

Note that this is the same curve that we have used to define ∂xi
∣∣
ν

, see (3.1), so the vector fields coincide:

∂xi = ∂xi ∈ X(T ∗M) .

�

3.1.4 Change of Basis

The embedding of vectors ( · ) : TM → T (T ∗M) does not commute with a change of basis. Consider a
change of basis S between two frames {Bi}di=1 and {Ei}di=1 :

Ei =

d∑
j=1

SjiBj ⇔ Bi =

d∑
j=1

(
S−1

)j
i
Ej

This implies that for the respective dual frames {χi}di=1 and {ψi}di=1

ψi =

d∑
j=1

(
S−1

)i
j
χj ⇔ χi =

d∑
j=1

Sijψ
j (3.2)

because 〈
ψi,Bj

〉
=

〈
ψi,

d∑
k=1

(
S−1

)k
j
Ek

〉
=

d∑
k=1

(
S−1

)k
j
δik =

(
S−1

)i
j
.

For the respective coordinate functions {µi}di=1 and {ρi}di=1 we have that

ρi =

d∑
j=1

Sji µj ⇔ µi =

d∑
j=1

(
S−1

)j
i
ρj

since

ν =

d∑
j=1

µj(ν)χj
∣∣
π(ν)

=

d∑
j=1

µj(ν)

(
d∑
i=1

Sji (π(ν))ψi
∣∣
π(ν)

)
=

d∑
i=1

 d∑
j=1

Sji (π(ν))µj(ν)

ψj
∣∣
π(ν)

.

These transformation rules allow us to prove our claim:
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Lemma 12. Given the context above, define Êi :=
d∑
j=1

SjiBj . Then Ei 6= Êi in general, since their effect

on the coordinate function ρj differs:

Ei (ρj) = 0 and Êi (ρj) =

d∑
k,`=1

Ski Bk
(
S`j
)
µ` .

Proof. Both equalities follow from direct computation and the definition of ( · ) and Êi respectively. Let γ
denote an integral curve for Ei

∣∣
π(ν)

, then

Ei
∣∣
ν
(ρj) =

d

dt

∣∣∣∣
t=0

ρj

(
d∑
k=1

ρk(ν)ψk
∣∣
γ(t)

)
=

d

dt

∣∣∣∣
t=0

ρj(ν) = 0 .

Next,

Êi (ρj) =

d∑
k=1

Ski Bk

(
d∑
`=1

S`jµ`

)
=

d∑
k,`=1

Ski
(
Bk
(
S`j
)
µj + S`j Bk(µj)

)
=

d∑
k,`=1

Ski Bk
(
S`j
)
µj

because analogous to the computation above Bk(µj) = 0 and because S`j is constant on fibers T ∗xM , we

can write Bk
(
S`j
)

= Bk
(
S`j
)

. �

3.2 Some (Symplectic) Geometry Concepts

Here we present some (symplectic) geometry tools used in the proof of the characterization in Section
3.5. A good reference on symplectic geometry and its use in geometric control theory is the book [1].

3.2.1 Symplectic Form

As its name suggests, the symplectic form plays a major role in symplectic geometry. In order to define
it, we first look at a different form.

The Liouville 1-form s ∈ Ω1(T ∗M) is given by s
∣∣
(x,p)

:= p ◦ π∗ = 〈p , π∗(·)〉 where π∗ is the derivative

of the projection π : TM →M . It takes a vector in T(x,p)(T
∗M) , projects it onto TxM and then applies

the covector p . Using the frame {Bi}di=1 , we can write a vector w ∈ X(T ∗M) as

w =

d∑
i=1

αi Bi + βi ∂µi .

Writing p =
d∑
j=1

µj(x, p)χ
j
∣∣
x
, this gives us a coordinate expression for s :

s
∣∣
ν

= s
∣∣
(x,p)

= 〈p, π∗(w)〉 =

〈
p ,

d∑
i=1

αiBi

〉
=

d∑
j=1

µj(x, p)α
j =

d∑
j=1

µj(ν)αj ,

i.e. s =
d∑
j=1

µjχj where χi is the covector dual to Bi. In canonical coordinates (Section 3.1.3) we find

that

s =

d∑
j=1

ξj dx
j ,

because ∂xi = ∂xi (Lemma 11). Note that when we identify ν = (x, p) with p , the expression for s(ν) is
syntactically equal to ν . Hence, s is also referred to as the tautological 1-form.

42



The symplectic form is σ := −ds ∈ Ω2(T ∗M) , a 2-form on T ∗M . Applying the exterior derivative d
to the coordinate expression of s , we can express σ w.r.t. the frame {Bi}di=1 by

σ = −
d∑
j=1

dµj ∧ χj + µj dχj .

The 2-forms dχj cause a lot of headaches when doing computations. Luckily they disappear in canonical
coordinates as dd = 0 , leaving

σ = −
d∑
j=1

dξj ∧ dxj =

d∑
j=1

dxj ∧ dξj . (3.3)

3.2.2 Lifting to Vector Fields on the Cotangent Bundle

The symplectic form σ can be used to ‘lift’ functions f ∈ C∞(T ∗M) to vector fields
−→
f ∈ X(T ∗M) by

requiring that

σ
(−→
f , ·

)
= df . (3.4)

Assume we can write
−→
f =

d∑
j=1

αj∂xj + βj∂ξj in canonical coordinates, then by coordinate formula (3.3)

∂f

∂xi
= df (∂xi) = σ

(−→
f , ∂xi

)
= −βi and

∂f

∂ξi
= df (∂ξi) = σ

(−→
f , ∂ξi

)
= αi ,

hence
−→
f =

d∑
j=1

∂f

∂ξj
∂xj −

∂f

∂xi
∂ξj . (3.5)

Performing a change of basis does not alter the structure of this formula as the next lemma shows.

Lemma 13. Assume S to be a change of basis s.t. Bi =
d∑
j=1

Sji ∂xj ∈ X(M) and use it to define vector

fields B̂i :=
d∑
j=1

Sji ∂xj ∈ X(T ∗M). Then for f ∈ C∞(T ∗M) we have that

∂f

∂ξi
=

d∑
j=1

Sij
∂f

∂µj

where µi are the coordinate functions w.r.t. to the basis {χi}di=1 dual to {Bi}di=1 . Consequentially

−→
f =

d∑
j=1

∂f

∂µj
B̂j − B̂j (f) ∂µj , (3.6)

Proof. Using that dxi =
d∑
j=1

Sij χ
j (see equation (3.2) in Section 3.1.4), we find that for ν = (x, p) ∈ T ∗M

∂f

∂ξi
(x, p) =

d

dt

∣∣∣∣
t=0

f
(
p+ t dxi

∣∣
x

)
=

d

dt

∣∣∣∣
t=0

f

p+ t

d∑
j=1

Sij(x)χj
∣∣
x


=

d

dt

∣∣∣∣
t=0

f

 d∑
j=1

(
µj(x, p) + t Sij(x)

)
χj
∣∣
x

 =

d∑
j=1

Sij(x)
∂f

∂µj
(x, p) ,
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where the last step follows from the chain rule. Substituting the above and the definition of B̂i into the

coordinate expression for
−→
f in canonical coordinates, finishes our proof.

−→
f =

d∑
j=1

∂f

∂ξj
∂xj −

∂f

∂xi
∂ξj =

d∑
j=1

((
d∑
k=1

Sjk
∂f

∂µk

)(
d∑
`=1

(
S−1

)`
j
B̂`

)
−

(
d∑
k=1

(
S−1

)k
j
B̂k(f)

)(
d∑
`=1

Sj`∂µ`

))

=

d∑
k,`=1

δ`k
∂f

∂µk
B̂` − δk` B̂k(f)∂µ` =

d∑
k=1

∂f

∂µk
B̂k − B̂k(f)∂µk .

�

3.2.3 Poisson Bracket

The Poisson bracket is an important tool in symplectic geometry as it helps to find new functions

C∞(T ∗M) that are preserved along the flowlines of lifted vector fields
−→
h ∈ T (T ∗M) (constants of motion).

It is defined on functions f, g ∈ C∞(T ∗M) by

{f, g} := σ
(−→g ,−→f ) = dg

(−→
f
)
. (3.7)

Using the formulas from the previous section, we can express it as

{f, g} =

d∑
j=1

∂f

∂ξj

∂g

∂xj
− ∂f

∂xj
∂g

∂ξj
(3.8)

in canonical coordinates or as

{f, g} =

d∑
j=1

∂f

∂µj
B̂j(g)− B̂j(f)

∂g

∂µj
(3.9)

w.r.t. the change of basis Bi =
d∑
j=1

Sji ∂xj ∈ X(M). Note that we use vector fields B̂i and not Bi in (3.9).

They are not the same, as shown in Lemma 12.

Similarly to finding new constants of motion, our main result uses the Poisson bracket to compute the

canoncical ODE’s of momenta ν(t) ∈ T ∗M along the flowlines of a lifted vector field
−→
h ∈ T (T ∗M) .

(More specifically, along the flowlines of the lifted hamiltonian according to the Pontryagin Maximum
Principle.) The following three lemmas outlining properties of the Poisson bracket will be used in the
calculations.

Lemma 14. The Poisson bracket is bilinear, i.e. for functions f, g ∈ C∞(T ∗M) and constants α, β ∈ R
we have that

{αf + βf, g} = α {f, g}+ β {f, g} = {f, αg + βg} (bilinearity)

Secondly, for functions f, g, h ∈ C∞(T ∗M) , the Poisson bracket satisfies a Leibniz rule:

{fg, h} = {f, h} g + f {g, h} . (Leibniz rule)

Proof. The first statement follows from linearity of the exterior derivative and the ability to write

{f, g} = σ
(−→g ,−→f ) = dg(

−→
f ) .

Similarly, the second statement follows from the product rule for the exterior derivative:

{fg, h} = σ
(−→
h ,
−→
fg
)

= −σ
(−→
fg ,
−→
h
)

= −d(fg)(
−→
h ) = −df(

−→
h ) g − f dg(

−→
h ) = {f, h} g + f {g, h} .

�
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Lemma 15 (Relation between Poisson and Lie bracket). Consider the C∞(M)-linear mapping
a(·) : X(M)→ C∞(T ∗M) given by aX := 〈 · , X〉 , then for vector fields X,Y ∈ X(M)

{aX , aY } = a[X,Y ] .

Proof. We write X and Y w.r.t. a canonical coordinate system as
d∑
j=1

Xj∂xj and
d∑
j=1

Y j∂xj . In these

coordinates, aX =
d∑
j=1

ξj X
j where ξi are the corresponding coordinate function s.t. ν =

d∑
j=1

ξj(ν) dxj
∣∣
π(ν)

,

hence

∂aX
∂ξi

= Xi and
∂aX
∂xi

=

d∑
j=1

∂ξj
∂xi

Xj + ξj
∂Xj

∂xi
=

d∑
j=1

ξj
∂Xj

∂xi
.

Note that the term ∂xi(ξj) vanishes because

∂xi(ξj)
Lemma 11

======== ∂xi(ξj)
Lemma 12

======== 0 .

We use the derivatives to explicitly compute {aX , aY } :

{aX , aY } =

d∑
j=1

∂aX
∂ξj

∂aY
∂xj

− ∂aX
∂xj

∂aY
∂ξj

=

d∑
j=1

Xj

(
d∑
k=1

ξk
∂Y k

∂xj

)
−

(
d∑
k=1

ξk
∂Xk

∂xj

)
Y j

=

d∑
k=1

ξk

 d∑
j=1

Xj ∂Y
k

∂xj
− Y j ∂X

k

∂xj

 =

d∑
k=1

ξk
(
X
(
Y k
)
− Y

(
Xk
))

= a[X,Y ] ,

where the final equality holds because the coordinate expression for the Lie bracket in canonical coordinates
is given by

[X,Y ] =

d∑
k=1

(
X
(
Y k
)
− Y

(
Xk
))
∂xk .

�

Lemma 16 (Liouville’s theorem). Let f, g ∈ C∞(T ∗M) and let ν(t) = (γ(t), p(t)) ∈ T ∗γ(t)M denote a

flowline of the lifted vector field −→g , i.e. ν̇(t) = −→g (ν(t)) , then

d(f ◦ ν)

dt
(t) = {g, f} (ν(t)) .

Proof. By rewriting the left hand side and definition of the Poisson bracket (3.7) :

d(f ◦ ν)

dt
(t) = df

∣∣
ν(t)

(ν̇(t)) = df
∣∣
ν(t)

(−→g (ν(t))) = df (−→g )
∣∣
ν(t)

= {g, f} (ν(t)) .

�

3.2.4 Reciprocal (Co)Vectors

We recap a bit metric tensor manipulation. Assume we have a metric tensor field G =
d∑

i,j=1

gij χ
i ⊗ χj .

Here, we do not yet require the coefficients gij to be constant. By Riesz’ representation theorem, we have

bijections on fibers G̃
∣∣∣
x

: TxM → T ∗xM given by

G̃
∣∣∣
x
(X) := G

∣∣
x
(X, · ) ,

for X ∈ TxM . Since G̃
∣∣∣
x

is a bijection, we can think of the coefficients gij as entries of a symmetric

invertible matrix field. The entries of the inverse matrix field are denoted by gij . G̃
∣∣∣
x
(X) is called

45



the covector reciprocal to X and analogously, G̃−1
∣∣∣
x
(λ) is called the vector reciprocal to λ ∈ T ∗xM .

Writing X =
d∑
j=1

xjBj
∣∣
x

and λ =
d∑
j=1

µjχ
j
∣∣
x
, we denote the reciprocal coefficients of G̃

∣∣∣
x
(X) and

G̃−1
∣∣∣
x
(λ) by xj and µj respectively, i.e.

xj =

d∑
i=1

gijx
i and µj =

d∑
i=1

gijµi . (3.10)

3.3 Proposed Connection induced by a Global Frame

Definition 14. Given a global frame {Bi}di=1 with dual frame {χi}di=1 , we propose the connection ∇̂ on
TM given by

∇̂XY :=

d∑
k=1

X
(
yk
)
Bk +

d∑
i,j=1

xiyj [Bi,Bj ] , (3.11)

for vector fields X =
d∑
j=1

xjBj and Y =
d∑
j=1

yjBj .

Lemma 17. ∇̂ is a connection.

Proof. Clearly ∇̂ is C∞(M)-linear in X . Remains to check the Leibniz rule. Let f ∈ C∞(M) , then

∇̂X(f Y ) =

d∑
k=1

X
(
f yk

)
Bk +

d∑
i,j=1

xi(f yj) [Bi,Bj ]

=

d∑
k=1

(
X(f) yk + f X

(
yk
))
Bk + f

 d∑
i,j=1

xiyj [Bi,Bj ]


=

d∑
k=1

X(f) ykBk + f

 d∑
k=1

X
(
yk
)
Bk +

d∑
i,j=1

xiyj [Bi,Bj ]


= X(f)Y + f

(
∇̂XY

)
.

�

For our theorem, we need an expression of the dual connection ∇̂∗ on T ∗M . Dual connections are defined
in general by enforcing the product rule

X (〈λ, Y 〉) = 〈∇∗Xλ, Y 〉+ 〈λ,∇XY 〉

for an arbitrary connection∇ , vector fieldsX,Y ∈ X(M) and covector field λ ∈ Ω1(M) . The computation
is captured in the following lemma.

Lemma 18. Any connection ∇ with local expression in terms of Christoffel symbols Γkij

∇XY =

d∑
k=1

X (yk)+

d∑
i,j=1

xiyjΓkij

Bk
has their dual ∇∗ expressed by

∇∗Xλ =

d∑
i=1

X(λi)−
d∑

j,k=1

xjλkΓkji

χi ,
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where X =
d∑
j=1

xjBj , Y =
d∑
j=1

yjBj and λ =
d∑
j=1

λjχ
j .

Proof. By direct computation.

〈∇∗Xλ, Y 〉 = X (〈λ, Y 〉)− 〈λ,∇XY 〉 = X

(
d∑
k=1

λk y
k

)
−

d∑
k=1

λk

X(yk) +

d∑
i,j=1

xiyjΓkij


=

d∑
k=1

X(λk) yk − λk
d∑

i,j=1

xiyjΓkij

 =

d∑
i=1

X(λi) y
i −

d∑
i,j,k=1

xjλkΓkjiy
i

=

〈
d∑
i=1

X(λi)−
d∑

j,k=1

xjλkΓkji

χi, Y

〉
.

�

Corollary 18.1. Introduce the functions Ckij ∈ C∞(M) defined by
d∑
k=1

CkijBk = [Bi,Bj ] , then we have

that the dual ∇̂∗ of the proposed connection has the coordinate expression

∇̂∗Xλ =

d∑
i=1

X(λi) +

d∑
j,k=1

xjλkC
k
ij

χi , (3.12)

for X =
d∑
j=1

xjBj and λ =
d∑
j=1

λjχ
j .

Proof. We have the Christoffel symbols Γkij = Ckij as ∇̂BiBj = [Bi,Bj ] . Because of the antisymmetry in

the Lie bracket, we also have antisymmetry in the lower indices of Ckij . �

3.4 Covariant Derivative along a Curve

Our goal is to proof a statement about shortest and straight curves, hence we will use concepts like the
acceleration ∇̂γ̇ γ̇ and change in momentum ∇̂∗γ̇ p of a curve γ(t) ∈ M . Intuitively, the interpretation
of these terms is quite straightforward. γ̇(t) is a vector that varies along γ as t increases. Hence, we
can take its covariant derivative along γ , i.e. in the direction γ̇(t) itself. The formalisation however is

quite involved, whilst we only need coordinate formulas for ∇̂γ̇ γ̇ and ∇̂∗γ̇ p . Hence, the details of the next
lemma are pushed to Appendix A.

Lemma 19. For any vector bundle E → M with a local frame {Ei}di=1 , the covariant derivative of a

section s(t) =
d∑
j=1

sj(t) Ej
∣∣
γ(t)

along a curve γ(t) ∈M w.r.t. an arbitrary connection ∇ is given by

(∇γ̇ s) (t) =

d∑
j=1

(
dsj

dt
(t) Ej

∣∣
γ(t)

+ sj(t)
(
∇γ̇(t) Ej

∣∣
γ(t)

))
. (3.13)

Corollary 19.1. Suppressing the temporal and spatial parameters t ∈ [0, 1] and γ(t) ∈ M we have the
coordinate formulas

∇̂γ̇ γ̇ =

d∑
k=1

γ̈k +

d∑
i,j=1

γ̇iγ̇jCkij

Bk (3.14)

∇̂∗γ̇ p =

d∑
i=1

ṗi +

d∑
j,k=1

γ̇jpkC
k
ij

χi , (3.15)
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with the functions Ckij ∈ C∞(M) defined by
d∑
k=1

CkijBk = [Bi,Bj ] as in Corollary 18.1.

Proof. We have the decompositions

γ̇(t) =

d∑
j=1

γ̇j(t)Bj
∣∣
γ(t)

and p(t) =

d∑
j=1

pj(t)χ
j
∣∣
γ(t)

.

Next, by the definition of ∇̂ (3.11) and the formula for ∇̂∗ (3.12) we have that

∇̂γ̇(t) Bj
∣∣
γ(t)

=

d∑
i=1

γ̇i(t) [Bi,Bj ] =

d∑
i,k=1

γ̇i(t)Ckij Bk

∇̂∗γ̇(t) χ
k
∣∣
γ(t)

=

d∑
i,j=1

γ̇j(t)Ckij χ
i .

The result follows by substitution of the above in equation (3.13). �

3.5 Characterizing Shortest and Straight Curves

Let M be a manifold with a global frame {Bi}di=1 and denote its dual frame by {χi}di=1 . Let G be a

metric tensor field that is constant w.r.t. this frame, i.e. G =
d∑

i,j=1

gij χ
i ⊗ χj with constant coefficients

gij ∈ R . The metric tensor field G induces a metric dG on M given by

dG(x, y) := min
γ∈Lip([0,1],M)

γ(0)=x
γ(1)=y

∫ 1

0

||γ̇(t)||2G dt .

Theorem 20. If γ is a shortest curve, i.e. it locally minimizes dG , then γ is the horizontal part of a
curve ν = (γ, p) in T ∗M which has momentum p = G̃(γ̇) that is parallel w.r.t. the dual connection ∇̂∗ :

∇̂∗γ̇ p = 0 . (part I)

Furthermore, γ is a straight curve w.r.t. the connection ∇̂ if and only if its velocity γ̇ is a constant linear
combination of the basis {Bi}di=1 :

∇̂γ̇ γ̇ = 0 iff γ̇ =

d∑
i=1

uiBi where ui ∈ R . (part II)

Remark. This theorem can also be applied to diagonal metric tensor fields with variable coefficients.
This is done by pushing the variability of the coefficients gii onto the frame {Bi}di=1 by creating a new
frame

Ei :=
√
gii Bi .

The metric tensor field is now constant w.r.t. this new frame.

Proof. We start with the proof of part I. The metric dG is defined in terms of the Lagrangian || · ||2G
induced by the metric tensor field G . The Lagrangian defines a hamiltonian function h ∈ C∞(T ∗M)

which can be lifted to a vector field
−→
h ∈ X(T ∗M) . The Pontryagin Maximum Principle states that if a

curve γ(t) locally minimizes dG , its momentum ν(t) = (γ(t), p(t)) is a flowline of
−→
h , see Theorem 12.10

in [1]. We start by unpacking the statement above and decoupling the flowline ODE.

The flowline ODE

48



The hamiltonian h is defined as the Legendre-Fenchel transform of the scaled Lagrangian 1
2 || · ||

2
G , i.e.

h(ν) = h(x, p) := sup
V ∈TxM

〈p, V 〉 − 1

2
G(V, V ) . (3.16)

For a fixed ν = (x, p) ∈ T ∗M , we denote the function inside the supremum by fp(V ) := 〈p, V 〉− 1
2G(V, V ) .

By convexity of G and linearity of 〈p, · 〉, fp is concave. In combination with continuity of G, we find that
the supremum is obtained when the differential dfp is zero. The differential dfp is found by expansion of
dfp(V + h) :

fp(V + h) = 〈p, V + h〉 − 1

2
G(V + h, V + h) = 〈p, V 〉 − 1

2
G(V, V ) + 〈p, h〉 − G(V, h)− 1

2
G(h, h) .

Hence the differential dfp
∣∣
V

= 〈p , · 〉 − G(V, · ) and the maximum is obtained when p = G(V, · ) which

is equivalent to V = G̃−1(p) . Expressing this in coordinates with p =
d∑
j=1

pj χ
j
∣∣
x

and V =
d∑
j=1

vj Bj
∣∣
x

we

find that vi = pi for all i (recall that pi are reciprocal coordinates (3.10)). Thus, the coordinate formula
for the hamiltonian h is given by

h = sup
v1,...,vd∈R

 d∑
i=1

µiv
i − 1

2

d∑
i,j=1

gijv
ivj

 =
1

2

d∑
i=1

µiµ
i . (3.17)

Remark that we use the coordinate functions µi, µ
i ∈ C∞(T ∗M) instead of specific coefficients pi, p

i ∈ R .

As stated before, the Pontryagin Maximum Principle implies that if γ(t) ∈ M is a shortest curve, its

momentum ν(t) = (γ(t), λ(t)) is a flowline of the lifted hamiltonian
−→
h , i.e. ν̇(t) =

−→
h (ν(t)) . The flowline

ODE can be split into a horizontal and a vertical part. We split the lifted hamiltonian
−→
h as in (3.6)

using frame {Bi}di=1 :

−→
h =

d∑
j=1

∂h

∂µj
B̂j − B̂j(h)∂µj . (3.18)

Next, recall that we can write the momentum curve ν(t) ∈ T ∗M as

ν(t) =

d∑
j=1

pj(t)χ
j
∣∣
γ(t)

,

where pj(t) := µj(ν(t)) so its derivative is given by

ν̇(t) =

d∑
j=1

ṗj(t) ∂µj
∣∣
ν(t)

+ γ̇j(t) B̂j
∣∣∣
ν(t)

. (3.19)

Combining (3.18) and (3.19), the flowline ODE is decoupled:{
γ̇i = ∂µi(h) (horizontal part)

ṗi = B̂i (h) (vertical part)

We continue with the computation of these parts.

Horizontal part

We have already characterized the hamiltonian h w.r.t. the coordinates µi in (3.17), so it remains to
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compute the derivatives.

∂h

∂µi

(3.17)
=====

∂

∂µi

1

2

d∑
j=1

µjµ
j

 (3.10)
=====

1

2

∂

∂µi

 d∑
j,k=1

µjg
jkµk

 =
1

2

∂

∂µi

 d∑
j=1

d∑
k=1
k 6=j

µjg
jkµk +

d∑
j=1

gjj(µj)
2



=
1

2

 d∑
j=1

d∑
k=1
k 6=j

(δijg
jkµk + µjg

jkδik) +

d∑
j=1

gjj2µjδij

 =
1

2


 d∑
k=1
k 6=i

gikµk +

d∑
j=1
j 6=i

µjg
ji

+ 2giiµi


=

d∑
j=1

gijµj
(3.10)

===== µi .

Thus, for the horizontal part we have that γ̇i(t) = µi(ν(t)) . Remark that µi(ν(t)) = pi(t) by definition,
so we have that the momentum curve p(t) ∈ T ∗γ(t)M satisfies

p(t) = G̃(γ̇(t)) . (3.20)

Vertical part

Unlike the differential equation in the horizontal part, the vertical equation ṗi = B̂i (h) is not so easily
computed directly. This is where the three lemmas from Section 3.2.3 about the Poisson bracket come
in.

By Liouville’s theorem (Lemma 16), we have that

ṗi(t)
def

===
d(µi ◦ ν)

dt
(t)

Lemma 16
======== {h, µi} (ν(t)) . (3.21)

We use the bilinearity and Leibniz rule of the Poisson bracket from Lemma 14 to compute the right hand
side:

{h, µi} =
1

2

d∑
k=1

{
µkµ

k, µi
}

=
1

2

d∑
k,`=1

gk` {µkµ`, µi}

=
1

2

d∑
k,`=1

gk` (µk {µ`, µi}+ {µk, µi}µ`)

=
1

2

d∑
`=1

{µ`, µi}µ` +
1

2

d∑
k=1

{µk, µi}µk = −
d∑
j=1

{µi, µj}µj . (3.22)

Remark that the coordinate functions µi ∈ C∞(T ∗M) are of the form

µi = 〈 · ,Bi〉 = aBi , (3.23)

with the linear mapping a(·) : X(M)→ C∞(T ∗M) from lemma 15 relating the Poisson and Lie brackets.

Using the functions Ckij ∈ C∞(M) defined by [Bi,Bj ] =
d∑
k=1

CkijBk as in Corollary 18.1 , this gives us that

{h, µi}
(3.22)

===== −
d∑
j=1

{µi, µj}µj
(3.23)

===== −
d∑
j=1

{
aBi , aBj

}
µj

Lemma 15
======== −

d∑
j=1

a[Bi,Bj ]µ
j

= −
d∑
j=1

a( d∑
k=1

CkijBk

)µj linearity and (3.23)
============== −

d∑
j,k=1

Ckijµkµ
j . (3.24)

Combining (3.21) and (3.24) with µi(ν(t)) = pi(t), we find that the differential equation for the vertical
part becomes

ṗi(t) = −
d∑

j,k=1

Ckij(γ(t)) pk(t) pj(t) .
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Using the result from the horizontal part (3.20), we can rewrite this just a bit more:

ṗi(t) +

d∑
j,k=1

Ckij(γ(t)) pk(t) γ̇j(t) = 0 . (3.25)

Proof part I

To prove part I of our claim, now simply substitute the result from the vertical part (3.25) into formula

(3.15) for the change in momentum ∇̂∗γ̇ p from Section 3.4.

Proof part II

For the second part of the theorem, recall that because of the antisymmetry of the Lie bracket, the
functions Ckij ∈ C∞(T ∗M) are also antisymmetric in the lower indices. This implies that formula (3.14)

for the acceleration ∇̂γ̇ γ̇ reduces to

∇̂γ̇ γ̇
(3.14)

=====

d∑
k=1

γ̈k +

d∑
i,j=1

γ̇iγ̇jCkij

Bk =

d∑
k=1

γ̈kBk ,

which is zero if and only if γ̇i is constant for all i . �

51



Appendix A

Formalisation of the Covariant
Derivative along a Curve

This appendix shows how to formalize the concept of a covariant derivative along a curve, like the velocity
∇γ̇ γ̇ along the curve γ(t) ∈M . Although we write ∇γ̇ γ̇ , this is not well defined as the second argument
γ̇ can have multiple values at points where γ intersects itself. Hence, it cannot be considered as a vector
field over γ . The solution is to actively use the time parameter t ∈ [0, 1] , resulting in a description that
more closely matches the intuitive definition. To do this, we need the language of pullback bundles and
pullback connections.

Definition 15 (Pullback bundle). Given a vector bundle πN : E → N and a smooth map ϕ : M → N ,
we define the pullback bundle ϕ∗E as the set

ϕ∗E := {(x, v) ∈M × E | ϕ(x) = πN (v)} ,

i.e. we have the equality of fibers (ϕ∗E)
∣∣
x

= E
∣∣
ϕ(x)

. The projection πM : ϕ∗E → M is πM (x, v) = x .

The smooth structure of ϕ∗E is specified by the smooth sections of πM , which are generated under the
C∞(M)-module structure by the maps s ◦ ϕ where s : N → E is a smooth section of πN .

To keep track of all objects involved, one draws the commutative diagram

ϕ∗E E

M N

ι

πM πN

ϕ

where ι is the embedding given by ι(x, v) = v .

In the case of ∇γ̇ γ̇ , the pullback bundle γ∗(TM) can be seen as a space consisting of copies of the vector
spaces Tγ(t)M strung together by the temporal parameter t ∈ [0, 1] . As the next lemma shows, there is
a unique section of γ∗(TM)→ [0, 1] that corresponds to the the velocity curve γ̇(t) ∈ Tγ(t)M .

Lemma 21. Let πM : ϕ∗E → M be a pullback of the vector bundle πN : E → N along a smooth map
ϕ : M → N . Assume that f : M → E is a smooth map such that f(x) ∈ E

∣∣
ϕ(x)

for all x ∈ M , then

there is a unique smooth section f∗ of πM such that f = ι ◦ f∗ .

Proof. Construct the map f∗ : M → ϕ∗E by f∗(x) := (x, f(x)) ∈ ϕ∗E . Clearly f∗ satisfies f = ι ◦ f∗ .
It is unique because we could not have made another choice for the second argument in (x, f(x)) ∈ ϕ∗E
such that this equality would hold. Smoothness of f∗ follows from smoothness of f . �

Hence we can speak of the section γ̇∗ instead of the velocity curve γ̇ : [0, 1]→M . Taking the derivative
of γ̇ along γ is done by applying a pullback connection on γ∗(TM) to the section γ̇∗ .
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Definition 16 (Pullback connection). Given a vector bundle πN : E → N with a connection∇ , we define
the pullback connection ϕ∗(∇) on the pullback bundle πM : ϕ∗E → M along ϕ : M → N by requiring
that it satisfies the Leibniz rule w.r.t. elements of C∞(M) and that it is compatible with sections Y of
πN , i.e.

(ϕ∗(∇))X (Y ◦ ϕ)∗ := ((∇ϕ∗XY ) ◦ ϕ)∗ (A.1)

for all vector fields X ∈ X(M) .

We now have all the ingredients to define the covariant derivative along a curve.

Definition 17 (Covariant derivative along a curve). Let s : [0, 1] → M be a vector field in the bundle
E →M over the curve γ : [0, 1]→M , i.e. s(t) ∈ E

∣∣
γ(t)

, then the covariant derivative of s along γ w.r.t.

to the connection ∇ is defined as
∇γ̇ s := ι ◦

(
(γ∗∇)∂t s

∗) ,
where ι is the embedding γ∗E → E and ∂t is the vector field in T [0, 1] induced by the temporal parameter
t ∈ [0, 1] .

Intuitively, we encode how the vector field s changes along the curve γ with the section s∗ : [0, 1]→ γ∗E .
Note that the fact that s is a vector field over γ is now completely encoded in the space γ∗E, so the
section s∗ only depends on the temporal parameter t . To take the derivative of s along γ, we then simply
take the derivative of s∗ w.r.t. t via the corresponding vector field ∂t ∈ X[0, 1] . The embedding at the
end decodes the result back into a vector field in E over γ .

We now proof the coordinate formula for the covariant derivative (3.13), Lemma 19.

Proof. Given a frame {Ei}di=1 for the vector bundle E →M , we can decompose the vector field
s : [0, 1]→ E as

s(t) =

d∑
j=1

sj(t) Ej
∣∣
γ(t)

.

This allows us to rewrite the derivative (γ∗∇)∂t s
∗ by using the Leibniz rule for the pullback connection

γ∗∇ with si ∈ C∞[0, 1] :

(γ∗∇)∂t s
∗ = (γ∗∇)∂t

 d∑
j=1

sj (Ej ◦ γ)

∗

= (γ∗∇)∂t

 d∑
j=1

sj (Ej ◦ γ)
∗


=

d∑
j=1

(
∂t(s

j) (Ej ◦ γ)
∗

+ sj (γ∗∇)∂t (Ej ◦ γ)
∗)

=

d∑
j=1

(
∂t(s

j) (Ej ◦ γ)
∗

+ sj ((∇γ̇ Ej) ◦ γ)
∗)

,

where the last equality is the compatibility of the pullback connection γ∗∇ with the sections Ei, see (A.1).
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By the definition of the derivative ∇γ̇ s, we then have that

(∇γ̇ s) (t) =
(
ι ◦
(
(γ∗∇)∂t s

∗)) (t)

=

ι ◦
 d∑
j=1

∂t(s
j) (Ej ◦ γ)

∗
+ sj ((∇γ̇Ej) ◦ γ)

∗

 (t)

= ι

 d∑
j=1

(
∂t(s

j)
)

(t)
(
t, Ej

∣∣
γ(t)

)
+ sj(t)

(
t, (∇γ̇ Ej)

∣∣
γ(t)

)
= ι

t, d∑
j=1

dsj

dt
(t) Ej

∣∣
γ(t)

+ sj(t)
(
∇γ̇(t) Ej

∣∣
γ(t)

)
=

d∑
j=1

(
dsj

dt
(t) Ej

∣∣
γ(t)

+ sj(t)
(
∇γ̇(t) Ej

∣∣
γ(t)

))
.

�
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