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Abstract

Magnetic state has been the basis for various, increasingly performant digital storage devices,
supporting the stunning rise of the computer in recent history. The field of Spintronics studies how
the electronic spin corresponding to magnetic state can be used and manipulated, improving our
ability to exploit magnetism in future devices.

Recent experiments have shown that laser-induced ultrafast demagnetisation of thin-film ferro-
magnets can cause a spin transport between magnetic layers. The mechanism producing this spin
current is not well understood, potentially preventing this effect from being applied in useful ways.
One proposed explanation of the spin transfer is optical excitation creating “hot” electrons with
ballistic trajectories, moving their spin angular momentum. A second hypothesis is the ultrafast
demagnetisation causing a local spin accumulation that would drive a diffusive spin current.

In this thesis a model for ultrafast spin dynamics is proposed that includes both of these effects.
This allows the behaviour of the two processes to be compared, potentially giving insight into their
relative importance to the experimental observations. Approximations of this model are proposed
to significantly simplify it, making it substantially simpler to interpret and apply. Applying this to
models of experiments gives closed-form expressions of possible behaviour, this in contrast to the
numerical approach used in other studies. These results are compared to the experimental results
that motivated this study. The hot electron mechanism explaining the observed spin transfer seems
to be unlikely, while the diffusion of a demagnetisation-driven spin accumulation might be consistent
with the experimental observations.
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Chapter 1

Introduction

This chapter will introduce the context of magnetism and spintronics. More specifically, ultrafast
demagnetisation and femtomagnetism will be presented. This will lead into the current state of the
field, and the study presented in this thesis attempted to advance this. Section 1.3 will lay out the
structure of this thesis.

1.1 Context

1.1.1 Magnetism and spintronics

Magnetism is a fascinating and useful effect. An extremely valuable application of magnetism was
found in digital data storage. In particular digital storage that does not need electricity to retain
its information. Various types of digital storage rely on magnetism. Early computers made use
of magnetic tape or magnetic core memory. Later advancements brought the hard disk drive and
various improvements of this technology, which are still widely used today. These technologies
have been some of the more important developments facilitating the stunning improvements of
computers. The three types of magnetic digital data storage devices listed above rely on magnetic
fields to read and write the magnetic state. The use of magnetic fields does however have some
drawbacks regarding energy use and size.

The field of spintronics studies transport of electron spin. As magnetism is a consequence of
the ordering of spin in a material, spin transport is closely tied to magnetisation. In particular,
we can change the magnetic state of a material by pumping electron spin into the material using a
so-called “spin current”. These spin currents are simply moving electrons, but instead of looking at
the charge they transport, we are interested in the electron spin carried and transported by these
electrons. Spin transport and spin currents are the basis of various technologies and devices being
developed by the spintronics field. Some of these devices show promise of being able to improve
future computers, both by improved memory devices and other components[1, 2].
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1.1.2 Magnetoresistance and the Valet-Fert model

Magnetism relates to the state of electrons in materials, while electric currents correspond to a
movement of electrons. This makes it sensible that there is a fairly direct connection between the
two. Various effects connecting magnetism with electric resistance have been discovered[3].

Figure 1.1: A cartoon of the giant magnetoresistance effect. A multilayer consisting of two magnetic
layers (blue) and a conductive spacer (orange) has an out-of-plane voltage applied to it. Current
flowing through the multilayer (drawn as the vertical arrow) changes substantially by the mag-
netisations of the magnetic layers being aligned in parallel or antiparallel. Subfigure (A) shows
the parallel, low resistivity configuration, while (B) shows the antiparallel configuration which has
relatively large resistivity.

In the late 1980s, the electric resistance in samples consisting of alternating layers of nonmagnetic
metals and ferromagnetic metals was studied. It was found that the electrical conductivity is
substantially smaller if the magnetisations of the ferromagnetic layers are parallel, compared to the
case when the layers are antiparallel[4, 5]. Figure 1.1 shows these two configurations; subfigure
A has the magnetisations parallel to give a relatively large charge current, while subfigure B has
the magnetisation of the lower layer reversed to substantially decrease the charge current flowing
through the multilayer. In fact, the change in resistance was substantially larger than previously
observed magnetoresistance effects, so this effect was named giant magnetoresistance. It found
application in magnetic field sensors such as the read head of hard disk drives, and in 2007 the
Nobel prize in physics would be awarded to Albert Fert and Peter Grünberg for their discovery of
the giant magnetoresistance effect.

It only took a few years for a satisfying explanation of this behaviour to be found[6]. In the
Valet-Fert model, the conducting electrons are modeled as being either spin up or spin down with
respect to the magnetisation of one of the ferromagnetic layers, though electrons can occasionally
flip their spin to the opposite state. In a ferromagnetic layer, the conductivity related of spin up
electrons can differ from the conductivity of spin down electrons. This imbalance in conductivity
causes the electron current driven through the magnetic layers to have imbalanced spin; the currents
are spin polarised. If the magnetisations of the two ferromagnetic layers are the same, the electron
current leaving the first magnetic layer is equally spin polarised as the current entering the second
magnetic layer. However if the magnetisations are opposite, most of the electrons leaving the first
layer have the wrong spin to efficiently flow through the second layer, causing the electric resistance
to be larger than in the aligned case.
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1.1.3 Ultrafast demagnetisation

In 1996 the discovery was made that illuminating a thin-film ferromagnet by a femtosecond laser-
pulse can lower the magnetisation substantially within picosecond time scales[7], as shown in Figure
1.2. The horizontal axis of the figure is the time interval between the laser pulse that excites the
thin-film ferromagnet and the moment the magnetisation is probed. The vertical axis represents
the magnetisation of the magnetic layer, measured using the magneto-optical Kerr effect (MOKE).
The magnetisation is observed to decrease by as much as 40 % within a picosecond after optical
excitation, with a small remagnetisation in the following picoseconds. The effect was dubbed as
“ultrafast demagnetisation”. Its discovery spawned a subfield of spintronics called femtomagnetism,
where laser pulses are used to manipulate magnetic state at extremely short time scales.

Figure 1.2: Ultrafast demagnetisation in thin film Ni samples. On the vertical axis the magneto
optic Kerr effect signal measuring the magnetisation of the sample, with 1 corresponding to the
room temperature equilibrium magnetisation and 0 to not being magnetised. The time interval
between laser excitation and moment of probing on the horizontal axis, where t = 0 is the moment
of laser excitation. The magnetisation is reduced by 40 % within a ps. Adapted from [7], Figure 2.

The observation of ultrafast demagnetisation spawned experimental and theoretical efforts to in-
vestigate the underlying physical process. In particular, the quenched magnetisation corresponds
to a decrease in electron spin, which has associated angular momentum. The angular momentum
corresponding to the magnetisation being dissipated on timescales of some 100 fs would require a
particularly strong angular momentum dissipation channel. The paper that demonstrated ultrafast
demagnetisation claimed that this angular momentum is dissipated locally [7].
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1.1.4 Non-local spin dissipation

About ten years later a similar experiment[8] was performed, but like in the samples of giant
magnetoresistance the sample consisted of two separate magnetic layers which could be aligned
either parallel or anti-parallel relative to each other. The ultrafast demagnetisation of these samples
was measured in both the parallel and anti-parallel configurations, and with versions of the sample
where the layer between the magnetic layers is either electrically conducting or isolating. These
four types of samples are shown in Figure 1.3.

Figure 1.3: Sketch of the various samples studied in [8]. The samples consist of two ferromagnetic
layers, which are either aligned (left) or anti-aligned (right). The spacer layer between the magnetic
is either insulating (lower) or conducting (upper). Only when the spacer layer is conducting and
the magnetisations are anti-aligned (lower right subfigure) can transport of spin contribute to the
demagnetisation of the magnetic layers. Adapted from [8].

It was observed that if the spacer layer between the ferromagnetic layers is a conductor, the anti-
parallel magnetic configuration shows a stronger peak demagnetization than the parallel configura-
tion. The interpretation of this effect is that the conducting spacer allows electrons to be transported
between the magnetic layers. The laser excitation causing demagnetisation would also cause elec-
trons to move between the layers. This movement would slightly mix the spin angular momentum
between the layers. If the magnetic layers have opposite magnetisation this mixing decreases the
magnetisation of both layers, causing the stronger peak magnetisation. Figure 1.3 sketches how
spin transport would only contribute to demagnetisation in multilayers with a conducting spacer
layer and the magnetisations being anti-aligned. This showed that non-local effects may play a role
in ultrafast demagnetisation, and suggests that ultrafast demagnetisation is able to cause a flow of
electron spin; a spin current.

This observation inspired researchers to develop models of ultrafast demagnetisation where spin
angular momentum is not locally dissipated at all[9]. Instead, electron movement would transport
the spin corresponding to the magnetisation out of the magnetic film into an adjacent nonmagnetic
layer, causing the measured loss of magnetisation. The basic idea is that the laser pulse optically
excites electrons from the Fermi sea to states far above the Fermi level. These states are called
“hot”, as their energy is much more than the thermal energy above the Fermi level. Electrons in hot
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states would have a large velocity, and move through the material on ballistic trajectories. They
will occasionally scatter with electrons in the Fermi sea, transferring some energy such that both of
these electrons are now in hot states. This would result in a cascade of many electrons transitioning
from the Fermi sea to hot states, to start moving on ballistic trajectories. Such a cascade of hot
electrons is shown in Figure 1.4. During this process the electrons would maintain their spin, such
that the ballistic movement of hot electrons can transport electron spin. If the lifetime of hot
electrons strongly depends on their spin, the hot electron current leaving the magnetic layer could
even become quite spin polarised.

Figure 1.4: The hot electron cascade of the superdiffusive model of demagnetisation. A laser pulse
incident on the nickel ferromagnetic layer excites electrons to “hot” states, which are the drawn
electrons. These electrons take ballistic trajectories through the multilayer and will occasionaly
scatter with other electrons, exciting them to hot states. Electrons conserve their spin during
excitation, transport and scattering. The lifetime of hot electrons does depend on their spin. In the
nickel layer, spin up electrons to have a longer lifetimes than spin down electrons. This causes most
electrons leaving the nickel layer to be spin up, such that hot electrons cause a nett spin transfer.
Adapted from [9].

This process of a hot electron cascade being created, and the difference in hot electron lifetimes
causing a spin polarised hot electron current is shown in Figure 1.4. If hot electron movement
transports enough spin out of the magnetic layer this process would cause a demagnetisation of the
magnetic layer. As a side effect, the non-magnetic layer adjacent to the magnetic layer would have
spin injected into it. Such a spin accumulation was observed in experiment shortly afterwards[10].
This demagnetisation model is named the “superdiffusive” model, in reference to the hot electrons
being modelled to travel ballistic trajectories between scattering events. This would cause the hot
electrons spread out more quickly than diffusive models would predict.
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1.1.5 Spin-transfer torques

Moreover, this laser-induced spin current was successfully used to manipulate the magnetisation
of a second magnetic layer[11, 12]. In these experiments, the angular momentum carried by the
optically induced spin current is absorbed in a different magnetic layer, changing the magnetisation
direction of the second layer. The relaxed state of the multilayer is as sketched in Figure 1.5 A. The
samples used in these experiments are thin-film stacks consisting of two magnetic layers (drawn
in blue and red) separated by a conducting spacer layer. One of the magnetic layers is oriented
out of plane (by perpendicular magnetic anisotropy), drawn as the blue layer in the figure. The
other layer, drawn in red, has in-plane magnetisation due to the shape anisotropy of thin layers. An
in-plane magnetic field is applied to which the magnetisation orients itself. The optical excitation of
this sample is sketched in Figure 1.5 B, it causes the magnetic layers demagnetise (not drawn) and
exchange spin with each other. The magnetic layers absorbing spin of a different orientation than
the magnetisation direction of the layer will cause the magnetisation direction to slightly change.
This change of magnetic orientation due to absorbed spin is called a spin-transfer torque, its effect
on the magnetisation direction of the layers in the discussed experiment is shown in Figure 1.5 C.

Figure 1.5: The structure of the sample used in spin-transfer torque experiment of [11]. The
multilayers consist of two thin-film magnets, one with out-of-plane magnetisation, and another one
with in-plane magnetisation, biased by an external magnetic field. (A) is the system at rest. On
laser excitation, shown in (B), spin currents transfer angular momentum between the layers; a spin-
transfer torque. This effect affects the magnetisation direction of both magnetic layers as shown
in (C). The mechanisms pulling the magnetisation of both layers back to their equilibrium state
provide a torque on the magnetisation of both layers, causing the magnetisation to precess as is
shown in (D). Adapted from [11], Figure 1.

Most relevant to the observation of spin-transfer torques in these experiments is the in-plane mag-
netised layer (red) now having its magnetisation slightly canted out of plane, as is visible in the
figure. The magnetisation now not being aligned to the external field will induce a torque on
the magnetisation of the red layer. As magnetisation corresponds to an angular momentum, this
torque does not cause the magnetisation to align to the external field, but will instead cause the
magnetisation to precess around the external field direction1. This magnetic precession is sketched

1Magnetic precessions are exactly like gyroscopic precessions that one might be more familiar with. Both are
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in Figure 1.5 D, where the dashed ellipse shows the various magnetisations that will materialise
after allowing the precession to evolve.

The related change of magnetisation over time can be measured, and is shown in Figure 1.6.
This figure shows the MOKE signal corresponding to the out of plane magnetisation of the sample,
so the change in out of plane magnetisation of both magnetic layers contributes to the signal. The
ultrafast demagnetisation of the out of plane layer gives a strong contribution to the signal, but
in the 100 ps time-scale a clear precession of the MOKE signal can be observed. This oscillating
signal indicates a precession of the magnetisation, indicating that magnetisation of the red layer
had been canted out of plane, proving the effect of an optically induced spin-transfer torque altering
the magnetisation of a magnetic layer2.

Figure 1.6: From the experimental set-up sketched in Figure 1.5, a MOKE time trace after laser
excitation at t = 0. The MOKE signal measures the out of plane magnetisation of the sample.
The ultrafast demagnetisation and subsequent remagnetisation of the out of plane layer is the
dominant part of the signal. During the re-magnetisation we can see oscillations corresponding to
the magnetic precession of both magnetised layers. Adapted from [11], Figure 2C.

It turns out that the electrons that transfer spin into the other layer have their spin absorbed fairly
quickly, causing the absorption of spin angular momentum to only occur close to the interface where
these electrons enter the layer. This makes the magnetisation of the magnetic layer non-uniform,
exciting inhomogeneous spin waves. These spin waves can again be measured in a pump-probe setup
for measuring the MOKE depending on the time since laser excitation[13]. These inhomogeneous
modes have much larger frequencies than the homogeneous modes; up to 1 THz, in contrast to
10 GHz.

caused by a torque being applied to something win angular momentum, but this torque not being aligned with the
angular momentum.

2In reality the experiment is somewhat more involved than this. In particular the out of plane layer also experiences
a precession caused by an entirely different effect, but which causes an additional oscillation in the MOKE signal.
This precession is drawn in Figure 1.5 d. Fortunately, the contributions of the two effects can be separated effectively,
such that we can be sure that the IP magnetised layer does precess as spin transport would predict it to.
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These experiments demonstrating spin-transfer torques caused by laser excitation were interesting
to the field of spintronics. A novel way of manipulating magnetic state was found, in particularly one
that works on extremely short time scales. This new effect would potentially provide a foundation for
new kinds of technologies and devices. Furthermore, the excitation method being optical connects
the fields of photonics to magnetism and spintronics. Already shortly afterwards a different type of
magnetic multilayer was found to be able to switch between binary magnetic states using a laser-
induced spin currents[14], a first step towards new digital storage devices based on laser induced
spin currents.

1.1.6 Alternative models for demagnetisation and spin currents

The superdiffusive model for demagnetisation described before would indicate that hot electron
movement would potentially cause a movement of spin, explaining the observed spin current.
Around the time when the first spin-transfer torque measurements were performed, an alterna-
tive explanation for demagnetisation and spin currents was proposed in the “s-d model”[12, 15, 16].
This model is based on a separating the electrons in two groups; localised electrons and itinerant
electrons. The localised electrons carry most of the spin corresponding to the magnetisation, but
can not contribute to currents. In contrast, the itinerant electrons can move through sample, mov-
ing their spin angular momentum. This movement of itinerant electrons can even cross material
interfaces, transporting spin between different layers. Through spin-orbit coupling the itinerant
electrons may experience spin-flips, eventually dissipating their spin angular momentum into the
crystal lattice.

The s-d model claims that laser excitation causes spin to be transferred between the localised
electrons and the itinerant electrons. Initially most spin is tied to the localised electrons, so this
spin transfer will reduce the amount of spin of localised electrons. The itinerant electrons however
gain a substantial amount of spin. As the spin of itinerant electrons in the magnetic layer now is
unbalanced, spin flips of itinerant electrons will start to dissipate this imbalance. Spin flips serve as a
local process that dissipate spin angular momentum, causing part of the ultrafast demagnetisation.

This is not the only channel of spin dissipation in the s-d model. If the magnetic layer is adjacent
to a conducting, nonmagnetic layer, the itinerant electrons in the magnetic layer can move into this
second layer. The spin accumulation in itinerant electrons in the magnetic layer will therefore
diffuse into the adjacent layer, transporting spin out of the magnetic layer. This transport of spin
would reduce the magnetisation of the magnetic layer, aiding the ultrafast demagnetisation. These
diffusive spin currents could potentially explain the spin currents observed in experiments.

Furthermore, a spin-dependent Seebeck effect has been proposed as being the cause of the spin
currents[17]. While the superdiffusive, s-d and spin-dependent Seebeck models describe a spin
current induced by laser excitation of thin-film magnets, the processes they describe are quite
different. Which of these effects best describes spin currents in what experiment is still debated.
Gaining a better understanding of the effect driving spin currents could lead to new improvements
in our capability of manipulating magnetism.
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1.2 Objective

The main interest of this study is to describe laser-induced ultrafast spin currents, in particular
those relevant to experiments such as [11, 12, 13]. Based on the Valet-Fert model[6], we propose a
model for ultrafast spin dynamics including both hot electron[9] and s-d model[15] contributions.
Combining these effects in the same model allows the behaviour of spin currents produced by
hot electrons and s-d effects to be compared more carefully, potentially yielding insight in their
relative contribution to experimental observations. The proposed model for spin dynamics will be
interpreted and simplified. Furthermore, it will be used to model the relevant experimental systems
and their measurements.

1.3 Structure of this thesis

A model for spin transport is set up in Chapter 2. It is based on the Valet-Fert model, but is modified
to include time dependence and the studied effects driving spin currents; an s-d spin source and hot
electrons. Later chapters have the goal of simplifying the model. This simplification will also make
it conceptually more clear what sorts of behaviour the model could show. In particular, the model
set up in Chapter 2 contains the electric charge density caused by the electrons, the electric fields
created and the resulting current of the thermal electrons. On the time-scales of spin diffusion this
is approximately instantaneous, so in Chapter 3 we are able to simplify the model substantially by
making this process exactly instantaneous.

Using some abstract mathematical properties of the model (linearity and time invariance), the
time-dependence of the model can effectively be removed when studying some relevant measure-
ments. With this, the model will appear like a steady-state model, hugely reducing its complexity.
The justification of this change of perspective is discussed in Chapter 4. The model simplified using
this perspective is shown and discussed in Chapter 5.

With this infrastructure build up, simple models of the studied experiments become tractable
to solve in closed form. A variety of models based on s-d like spin sources and hot electrons are
given in Chapter 6. These results are compared to measurements of the experiments they meant
to describe, giving insight into which model more plausibly explains the true process causing the
observed spin transfer.
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Chapter 2

Model

To study spin currents induced by hot electrons and s-d spin sources, we need a model for the
dynamics related to electrons that constitute the spin currents. This chapter will build such a
model, based on the Valet-Fert model of magnetoresistance. Section 2.1 will describe the Valet-
Fert model, to later generalise the model to introduce time-dependence, compatibility with the s-d
model, and the the interaction with hot electrons. The resulting generalisation of the Valet-Fert
model will be the foundation of the remainder of the thesis. The various processes of this model that
are relevant to ultrafast spin currents will be explained in Section 2.2. Section 2.3 will introduce
some notation for later convenience, and Section 2.4 derives conservation laws of the model. The
way the proposed model relates to the experiments we are interested in is discussed in Section
2.5. Finally, Section 2.6 will discuss three sensible ways to parameterise the state of the model in
preparation of the next chapter.

2.1 Generalised Valet-Fert model

This section is concerned with deriving the generalised Valet-Fert model that will be the basis of
our efforts to describe ultrafast spin currents. The original Valet-Fert model will be introduced in
Section 2.1.1. The later subsections will introduce some more structure of the model, and then
extend it to make a model for electron currents related to ultrafast spin currents. The remainder
of the thesis will be build on the model derived in this section.

2.1.1 The original Valet-Fert model

The Valet-Fert model was developed to describe the giant magnetoresistance effect in magnetic
multilayers. Giant magnetoresistance (GMR) is the effect where an electric current is driven through
a multilayer consisting of both ferromagnetic (FM) and non-magnetic (NM) layers in the out-of-
plane (OOP) direction. Such configurations are shown in Figure 2.1. If the magnetisations of the
FM layers are aligned (Figure 2.1 a), the electric resistivity of the multilayer is substantially smaller
than if the FM layers have alternating magnetisations (Figure 2.1 b).

The Valet-Fert model describes this observed magnetoresistance by modelling the spin compo-
sition of the electron current flowing through the multilayer. Furthermore, the Valet-Fert model
concerns thin-film magnetic systems and the currents flowing in the OOP direction. As the spin
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Figure 2.1: A cartoon of the giant magnetoresistance effect. A multilayer consisting of two fer-
romagnetic layers (blue) and a conductive spacer (orange) has an out-of-plane voltage applied to
it. Current flowing through the multilayer (drawn as the vertical arrow) changes substantially by
the magnetisations of the magnetic layers being aligned or not. Subfigure a shows the low resis-
tivity configuration, while subfigure b shows the large resistivity configuration. The convention for
coordinates are shown on the right of the figure.

transport experiments we are interested in also concern OOP spin currents through magnetic mul-
tilayers, this makes the Valet-Fert model a suitable foundation to base our study on.

Because we apply an OOP current to the multilayers and these multilayers are much wider than
they are thick, the in-plane (IP) coordinates x and y are mostly unimportant. Furthermore, the
Valet-Fert model is a steady state model, making it independent of the time t. This makes the
model one-dimensional, only referencing the OOP coordinate. We use the convention that the OOP
coordinate is written as z.

The goal of the Valet-Fert model is to calculate the OOP current through the magnetic multilayer
when a potential is applied over it. We will write J t(z) for the current density flowing through the
xy plane at coordinate z. We use number density currents, so the values of currents represent the
number of electrons per area per time. The superscript t states that the quantity relates to thermal
electrons, which are the only electrons present in these GMR measurements and the Valet-Fert
model. We will later modify the Valet-Fert model by adding hot electrons to it, to make the model
compatible with superdiffusive models for spin currents. Please do not confuse these t superscripts
with the coordinate of time t, which will be written as function evaluation.

Every electron has a spin direction, which could potentially be oriented in any direction. The
Valet-Fert model is a two-current model, which simplifies the problem by modelling spin to be only
in one of two directions. A direction is chosen, and every spin must either be aligned with this
direction or have the exact opposite spin direction. Spin being aligned to the quantisation direction
is called “spin up”, while the anti-aligned spin is called “spin down”. The quantisation direction will
always be chosen as the majority spin in one of the magnetic layers. For example in the multilayers
shown in Figure 2.1), we would choose the quantisation direction as the +x direction. Both layers
in the low resistivity case would then be majority spin up, while in the large resistivity case only
the upper layer is majority spin up, with the lower layer being majority spin down.
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Quantities related to the spin up electron population will be labeled with a subscript +, while those
related to spin down electrons are labeled with subscript −. Equations will be written using ±
and ∓ to describe both the spin up and spin down populations simultaneously. For example, an
equation a± = ±b∓ would be shorthand for the combination of the equation with the upper signs,
a+ = +b−, and the equation with lower signs used; a− = −b+.

As electrons are labeled as being either spin up, +, or spin down, −, these subpopulations have
an electron current of themselves. J t±(z) is the current density of spin ± electrons flowing through
the xy plane at z. J t+ and J t− are the two currents that are referenced by the name “two current
model”. These currents are related to the total electron current through simple addition of the spin
populations;

J t = J t+ + J t−. (2.1)

The Valet-Fert paper derives a macroscopic transport equation describing the spin specific currents
J t±, which is given as

J t± = −σ±
∂µ±
∂z

. (2.2)

σ± is a the conductivity related to the spin ± electron population, while µ± is the electrochemical
potential of spin ± electrons. The conductivities σ± and chemical potentials µ± are functions of the
OOP coordinate z, just like J t and J t± were. The conductivity σ± is a material property, so σ±(z)
depends on the material at coordinate z. If the material at z is ferromagnetic, the local conductivity
of spin + electrons, σ+(z), will in general differ from the conductivity of spin − electrons, σ−(z).

The electrochemical potential µ± describes the energy of the spin± Fermi level. More concretely,
µ±(z) is the energy required to add a single spin ± electron to the Fermi sea at coordinate z. Spatial
gradients of the electrochemical potential imply that energy can be dissipated by electrons flowing
from larger to smaller µ±, so will cause a flow of electrons. As is shown by Equation (2.2), this
flow is proportional to the gradient of the relevant electrochemical potential and proportional to
the relevant conductivity. The negative sign makes sure that electrons flow from large to small
electrochemical potential, as the conductivity must be a non-negative number.

As the Valet-Fert model describes a steady state solution and electrons are conserved, the
number of electrons flowing into some region [z1, z2] must be the same as the number of electrons
flowing out of it. This implies J t(z1) = J t(z2). In this region some electrons may however flip their
spin, so electrons that flow into the region with spin ± may flow out of the region with spin ∓,
allowing the spin specific currents to change with z; J t±(z1) 6= J t±(z2).

Like differences in electrochemical potential drive electron flow, it also drives electrons to change
their spin; spin flips. In this case, the spin flips at z are driven by the difference between µ+(z) and
µ−(z). This difference is an important enough quantity to give a name and symbol. We define the
spin accumulation µs as

µs = µ+ − µ−. (2.3)

Besides the rate of spin flips being proportional to this energy difference, there again is a factor
of proportionality involved. This factor of proportionality is written as r. This makes the rate of
spin flips from spin + to spin − at z equal to r(z)µs(z). Using this with the continuity of spin ±
electrons gives

J t±
′

= ∓r µs. (2.4)

For example; suppose we have a positive spin accumulation µs(z) > 0, so µ+(z) > µ−(z). This
energy difference will push spins to flip from spin + to spin −, so the current of spin + electrons
leaving z must be smaller than the current flowing into it, implying J t+

′
< 0. As r(z) ≥ 0 this
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is consistent with the above equation. Also note that this equation is consistent with the total
electron current being constant in space; J t

′
= J t+

′
+ J t−

′
= −rµs + rµs = 0.

Equations (2.2) and 2.4 form the system of equations defining the Valet-Fert model. Provided the
material properties σ± and r, and the boundary conditions of the problem (the applied potential) we
can use these equations to calculate the electrochemical potentials µ± and the spin specific currents
J t±. Adding the spin specific currents together gives the total electron current J t. Comparing this
to the potential applied by the boundary conditions the resistivity of the multilayer is calculated,
allowing the Valet-Fert model to describe the GMR effect.

To illustrate the behaviour of the Valet-Fert model somewhat, we briefly study how it behaves
in magnetic multilayers composed of a number of distinct, internally homogeneous layers. Within
the homogeneous layers, the material properties σ± and r are constant in space (reducing from z-
dependent functions to real numbers). This causes the solution of µ± and J t± within homogeneous
layers to have the form{

µ±(z) = a− Jt

σtot
z ± σ∓

(
b1 e

+z/λ + b2 e
−z/λ)

J t±(z) = −σ±
(
− Jt

σtot
± σ∓

λ

(
b1 e

+z/λ − b2 e−z/λ
)) (2.5)

where a, J t, b1 and b2 are parameters of the solution, and we introduced the derived material
properties

σtot = σ+ + σ−, λ =

√
σ+σ−
r σtot

. (2.6)

Given the material properties, the solution has four degrees of freedom; a, J t, b1 and b2. As the
notation suggests, J t is exactly the total electron current, which corresponds to a slope of both spin
specific electrochemical potentials µ±. The parameter a is related to a constant being added to both
µ± which does not effect spin specific electron currents, nor the rate of spin flips. The parameters
b1 and b2 are related to a spin accumulation at large z, respectively small z. Diffusion of this spin
accumulation will give a contribution to the spin specific currents. This spin accumulation and the
related currents decay over distance with the length scale λ, which is called the spin diffusion length
of the material. This is a material property that is well documented for magnetic materials[3, 16].

As an example of the Valet-Fert model describing multilayers, consider a space filled by a FM
layer on z < 0, where the conductivity of spin + electrons is larger than that of spin − electrons;
σ+ > σ−. The half space at z > 0 is filled by an NM material, such that symmetry forces the spin
specific conductivities in this layer to be equal; σ+ = σ−. Within the z < 0 and z > 0 half-spaces,
the solution of the electrochemical potentials and spin currents are described by Equation (2.5). On
the interface between these homogeneous layers, both the spin specific electrochemical potentials
and electron currents must be continuous. Applying a potential to this multilayer to drive electrons
from negative to positive z would give a solution such as the one shown in Figure 2.2.

As is visible in Figure 2.2b, the imbalanced conductivity in the FM layer causes the spin current
in it to be spin polarised, while far enough from the interface in the NM layer we have J t+ = J t−.
This difference in spin currents causes more spin + to flow towards the interface than leave it, while
the opposite holds for spin − electrons. This causes a spin accumulation near the interface, which
can be seen in Figure 2.2a. This spin accumulation is associated with diffusive currents away from
the interface. Spin flips cause this diffusive current to decay with the spin diffusion length of the
respective material.
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Figure 2.2: Example of the electrochemical potentials µ± and spin specific electron currents J t± as
a function of z as modeled by the Valet-Fert model. All quantities are dimensionless. An external
current source drives a particle current of J t = 1 through a space consisting of a magnetic layer in
the z < 0 half-space and a nonmagnetic metal in the z > 0 half-space. The two materials having
different spin-specific conductivities causes µ+ to differ from µ− near the interface. Spin flips restore
the balance between the spin + and spin − subpopulations far away from the interface.

In making this figure, total conductivity σtot of the NM layer was chosen to be smaller than that
of the FM layer. This is the cause of the slope of the electrochemical potential to be steeper in the
NM layer.

The GMR samples as shown in Figure 2.1 have multiple FM-NM interfaces. If the distance
between these is small enough, this will cause the spin accumulations related to the individual
interfaces to interact. Depending on the magnetisation of the FM layers this interaction will either
increase or decrease the spin accumulation, affecting the current flowing through the multilayer.

2.1.2 The spin-specific electrochemical potential

To extend the Valet-Fert model we need to take a slightly closer look at it. Most importantly,
introducing time dependence will allow the number of thermal electrons at some position to change
over time.

We stated earlier that the electrochemical potential µ±(z) is the energy required to add an
electron with spin ± to some position z. There are two contributions to this energy. Firstly, we
have to move the electron through the electric potential to z. As electrons have a charge −e, the
energy required to do this is −e V (z). Once this is done we still need to overcome the chemical
potential, representing the orbital energy of the state we put the electron in. The chemical potential
at z will be written as µ0,±(z). As these two energies constitute the electrochemical potential, we
have

µ± = µ0,± − e V. (2.7)

This composition of the electrochemical potential is made visual in Figure 2.3, which shows that
even if the electrochemical potential is constant there might be spatial differences in the Coulomb
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energy of electrons, −eV , and the chemical potential. The figure also indicates that the density of
electrons with spin ± is related to the chemical potential µ0,±, which we will use later.

Figure 2.3: For either the spin + or − subpopulation, a constant electrochemical potential µ±
(red) composed by a spatially varying Coulomb energy −eV (green) and chemical potential µ0,±
(blue arrows). On the vertical axis energy, and on the horizontal axis position. The black curves
represent the density of states (width of the curves) at the locations where the chemical potential
are drawn, with vertically the electron energy composed both of the Coulomb energy and the orbital
energy. Drawing the figure as if in zero temperature, all electron states with smaller energy than
the electrochemical potential are filled. These filled states are drawn as the shaded areas in the
drawn densities of states. Note that the density of electrons depends only on the density of states
and the chemical potential.

To calculate the electrical potential we resort to electrostatics1. As we deal with thin films, the
electric fields and potentials are approximately independent of the IP coordinates x and y, and the
electric field may not have an IP component. The laws of electrostatics then reduce to the scalar
equations

∂E

∂z
= ρ/ε0,

∂V

∂z
= −E. (2.8)

E(z) is the OOP electric field component at z, V (z) is the electric potential and ε0 the vacuum
permittivity. The charge density ρ is specified by the density of electrons, which we will introduce
and relate to the charge density shortly. Using these equations allows Equation (2.2) describing
spin specific electron currents to be rewritten as

J t± = −σ±
(
∂µ0,±

∂z
+ eE

)
, (2.9)

showing that there are two causes of electron currents; electric fields and gradients in the chemical
potential. At this point we will depart from the original treatment of the Valet-Fert model and
introduce some extensions for treating ultrafast spin dynamics.

2.1.3 Time dependence

In steady state, Equation (2.4) guaranteed that the number of electrons flowing into some region
equals the number leaving it, where entering and leaving can be caused by either transport or

1We work with length-scales on the order of 10 nm, which takes the speed of light a mere 3.3 · 10−2 fs to traverse.
This is extremely short compared to the dynamics we will be studying, which last tens of femtoseconds or more.
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the electron flipping spin. Allowing the state of the system to change over time, the continuity
equations become substantially weaker. We now introduce the number density of electrons with
spin ±, written as N t

±. It is a function of both space and time; N t
±(z, t) is the number density

of spin ± electrons at position z and time t. This number density can only be changed by the
processes of transport and spin flips. Thermal electron transport is J t±, while the rate of spin flips
is still r µs. Continuity then requires the time evolution of the electron density to conform to

∂N t
±

∂t
= −

∂J t±
∂z
∓ r µs. (2.10)

While hidden in this notation, the current J t± and spin accumulation µs have become functions of
both space and time, whereas they were only functions of space in the Valet-Fert model. r is a
material property, so it still only a function of space. As a sanity check, setting the time derivative
to zero reproduces Equation (2.4).

The chemical potential µ0,±(z, t) and the number density N t
±(z, t) are related, as already was

shown in Figure 2.3. If the number density of electrons changes, the number of orbitals that are
filled changes, in turn changing the chemical potential. This relation is given by the spin specific
density of states D±, which is defined by

D± =
dN t
±

dµ0,±
. (2.11)

Like the conductivities σ± and r, the density of states is a material property so will depend on
position but not on time. In principle the density of states depends on the energy of the orbitals
we are considering, which would be the chemical potential µ0,±. However, we approximate this as
being constant to make our model linear.

We have freedom to choose the zero energy of the chemical potential. Also, all previous steps
are insensitive to N t

± being shifted by a function that is constant in time. At this point it is
most convenient to define zero chemical potential and zero electron density to be their respective
equilibrium values if the system experiences no external influence. To first order, this would make
the electron density N t

± depend on the chemical potential µ0,± through

N t
± = D± µ0,±. (2.12)

Furthermore, having the electron densities N t
± we can now make a statement about the charge

density. If N t
± = 0 the system is relaxed, so has zero charge density. Any additional electron

contributes a charge −e, so the charge density must be

ρ = −e
(
N t

+ +N t
−
)
. (2.13)

2.1.4 External spin source

Now that the Valet-Fert model is expanded to allow time dependence it is straight-forward to
introduce the modification required to combine it with the s-d model. The s-d model claims that
some electrons are localised, while other are itinerant. These electron populations can exchange
spin on laser excitation. The Valet-Fert model and its extension to time dependence only describes
electrons that can flow; the itinerant electrons. By adding an external spin source term to the time-
dependent Valet-Fert model, we can model the itinerant electrons gaining or losing spin angular
momentum by interaction with the localised electrons.

20



Such a spin source is is incorporated as simply introducing a second term driving spin flips, which
will be written as S. We will choose the convention that these driven spin flips have positive sign
if they increase the spin accumulation, so S > 0 corresponds to spin − electrons flipping to spin +.
Previously the rate of spin flips from spin + to − was r µs, which now becomes r µs−S. Regarding
the equations describing the model, this only affects the time evolution of the spin density, which
now becomes

∂N t
±

∂t
= −

∂J t±
∂z
∓ rµs ± S. (2.14)

We attempt to build a model describing ultrafast spin currents. The s-d interactions causing the
spin source S to be non-zero is outside the scope of this model, so we will use S as an input of the
model. We do not provide equations describing it.

2.1.5 Hot electrons

The superdiffusive model of demagnetisation and spin transport relies on electrons in hot states
moving through the multilayer, transferring their spin. The Valet-Fert model however only describes
electrons in thermal states, which is why all previous electron densities and currents had been labeled
with a superscript t. To include hot electrons to the model, we choose to model all electrons as either
being thermalised or in a hot state, though in reality this distinction is admittedly not this binary.
Figure 2.4 C provides a sketch of the states filled by electrons arranged by their energy, sketching
the distinction between thermal electrons and hot electrons. The hot electron subpopulation will
be labeled with superscript h, while the thermalised electrons have superscript t.

Figure 2.4: A sketch of laser excitation of electrons from thermal state to hot states. The filling
of spin ± electron states at some position is shown before (A), during (B) and after (C) optical
excitation. The blue area represents electron states filled by thermal electrons, while the orange
area are electron states filled by hot electrons. The unshaded area represents empty electron states.
Subfigure A shows the situation before laser excitation, where all electrons are thermalised such that
state filling follows a Fermi-Dirac distribution. Subfigure B shows a single thermal electron being
excited to a hot state by raising its energy. Subfigure C shows the situation after laser excitation of
many electrons. Excited electrons leave their original state empty, reducing the effective chemical
potential µ0,±related to the thermalised electrons.
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The density of spin ± hot electrons is written as Nh
±, while the associated current is Jh±. The

convention for Nh
± = 0 is there not being any spin ± hot electrons2. Immediately, the equation for

the charge density must be changed to account for the charge of hot electrons. The charge density
now becomes

ρ = −e
(
N t

+ +N t
− +Nh

+ +Nh
−
)
. (2.15)

Laser excitation of thermal electrons to become hot is sketched in Figure 2.4. Optical excitation
increases the energy of a number of thermal electrons, such that the original states they occupied
have become empty. Having absorbed the photon energy, the hot electrons occupy states with
larger energy than the states filled by thermal electrons. The figure also shows how electrons are
conceptually split in the thermal and hot populations we label with superscript t, respectively
h. Laser excitation is shown to move electrons from thermal states to hot states, increasing the
number of hot electrons but decreasing the number of thermal electrons. The opposite happens
during decay of hot electrons.

We introduce R±(z, t) as the local signed rate of electrons of spin ± transferring from a thermal
state to a hot state at position z and time t. Excitation removes electrons from the thermal state,
so corresponds to positive R±(z, t). Hot electron decay adds electrons to the thermal state, and
has negative R±(z, t). This gives a new contribution to the time evolution of the thermal electrons,
which now becomes

∂N t
±

∂t
= −

∂J t±
∂z
∓ r µs ± S −R±. (2.16)

Regarding the hot electron populations, the superdiffusive model assumes that hot electrons con-
serve their spin during excitation, transport and decay. If a spin ± thermal electron is excited, it
becomes a hot spin ± electron. When this electron decays is has spin ± still, becoming a spin ±
thermal electron again. The only things that affect the hot electrons density is hot electron trans-
port and excitation/decay. Continuity then requires that the time evolution of the hot electron
density follows

∂Nh
±

∂t
= −

∂Jh±
∂z

+R±. (2.17)

We assume that hot electron excitation/decay R± and hot electron currents Jh± to not depend on
the state of the thermal electron system.

Like is done for the s-d spin source S, these functions describing the hot electrons are treated
as an input to the model of the thermal electrons. As far as the model of the thermal electrons is
concerned, it does not matter what procedure gives the excitation rates R±, hot electron densities
Nh
± and hot electron currents Jh±, as long as they are are consistent with above continuity equation.

To make a complete model for ultrafast spin dynamics, a model for the excitation rate and hot
electron currents is required. Such a model is given in Appendix A. The provided model is linear
and satisfies the continuity equation stated in Equation (2.17). While such a hot electron required
to provide a complete model for ultrafast spin dynamics, the remainder of this thesis will focus
mostly on the behaviour of the thermal electrons. The study will therefore not actually use the
model presented in Appendix A, or be limited by the choices made in this model. Because of this
independence on the used hot electron model, it is not discussed in the main text.

2This is in contrast to thermal electrons, where Nt
± = 0 implied that there as many thermal electrons as there

would be if the system is not externally perturbed.
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2.1.6 Final generalised Valet-Fert model

Because we introduced quite a few modifications to the original Valet-Fert model, let us summarise
the equations governing the proposed generalisation of the Valet-Fert model. The equations gov-
erning the model can roughly be divided into three groups; the equations governing the state of
the thermal electrons, the electric field equations, and the continuity equations. To simplify the
notation beyond this point, we will use notation of primes for spatial partial derivatives, f ′ = ∂f/∂z.

Equations governing thermal electrons

Thermal electron currents are governed by

J t± = −σ± µ±′, (2.18)

which depends on the spin specific conductivity and the electrochemical potential,

µ± = µ0,± − eV. (2.19)

In turn, the electrochemical potential depends on the electric potential discussed below and the
chemical potential, which is related to the density of thermal electrons through

N t
± = D± µ0,±. (2.20)

For convenience we introduced the spin accumulation

µs = µ+ − µ−, (2.21)

describing the energy difference that serves to drive spin currents.

Electric charge and field equations

The charge density that produces electric fields depends on the number densities of electrons through

ρ = −e
(
N t

+ +N t
− +Nh

+ +Nh
−
)
. (2.22)

We use Gauss’ law to calculate the electric field as

E′ = ρ/ε0, (2.23)

which is used to calculate the electric potential

V ′ = −E. (2.24)

Continuity equations

Having the state of thermal electrons and the resulting currents, continuity requires the time evo-
lution of thermal electrons to conform to

∂N t
±

∂t
= −J t±

′ −R± ∓ rµs ± S. (2.25)
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Hot electrons densities are only changed through hot electron transport and excitation/decay, such
that its time evolution must be

∂Nh
±

∂t
= −Jh±

′
+R±. (2.26)

These continuity equations describe the time evolution of the four electron subpopulations Nh
+, N t

+,
N t
−, Nh

−. These populations can change by transport and excitation/decay of electrons. The thermal
electron populations are additionally affected by spin flips. In Figure 2.5 these subpopulations are
arranged, and the processes transferring electrons between them are drawn as arrows. This serves
as a visual confirmation to show how electrons are never created or removed, but can only move
spatially (drawn with horizontal arrows) or transition between different electron subpopulations
(vertical arrows).

Figure 2.5: The four electron sub-populations and the processes that affect the subpopulations on
the interval z1 < z < z2. The four electron subpopulations are arranged vertically, with the upper
half corresponding to spin + and the lower half to spin −. The orange populations are hot electrons,
while the blue populations are thermal electrons. Vertical arrows therefore correspond to processes
moving electrons between different subpopulations. These are either excitation/decay or spin flips.
The spatial OOP position is arranged horizontally with arbitrary values of z0 < z1 < z2 < z3, such
that horizontal arrows represent spatial transport of electrons. The arrows represent the convention
for flow when the associated quantity is positive. .
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2.2 Modelled processes

The derivation of our proposed generalisation of the Valet-Fert model does show what effects are
modelled, but not how they interact with each other to predict a spin current. To give a better feel
for the various processes and how they relate to the spin currents that the model might predict,
this section will discuss how the hot electron processes, the s-d effect and diffusion of electrons
contribute to the spin current. This exposition is quite verbose and the connection to the model
is somewhat indirect in places, but the next chapter will be able to make the processes described
here substantially more concrete.

Before the optical excitation happens the system would be in equilibrium. The densities of
thermal electrons N t

± would be zero, implying that the chemical potentials are zero, such that
there is zero spin accumulation3. The charge is neutral such that there are no electric fields, and
there would be no currents of thermal electrons. This equilibrium can be destroyed by an s-d source
injecting spin into the thermal electron system, or hot electrons being excited and moved through
the material.

2.2.1 s-d driven processes

The s-d model states that on laser excitation of ferromagnetic (FM) layers, localised electrons that
carry most of the magnetic spin will transfer spin with the electrons that we call thermal electrons.
The generalised Valet-Fert model was made capable of describing such an effect by having an
external spin source S that can flip the spin of thermal electrons, exactly like the interaction with
localised electrons would. On laser excitation, this spin source would momentarily become non-
zero in any FM layer, causing thermal electrons in a FM layer to have their spins flipped. For
concreteness, let us take the external spin source to increase the thermal spin density by flipping
spin − electrons to spin + in the FM layer. In this FM layer, the local density of spin + electrons
is increased, while the density of spin − electrons is decreased. This comes with an increase in the
chemical potential of spin + electrons, and the chemical potential of the spin − electron population
being lowered. This difference in chemical potential comes with a finite spin accumulation in the
FM layer. This spin accumulation would immediately drive spin flips, working to lower the spin
accumulation.

Such an external spin source is not present in nonmagnetic (NM) layers. The spin specific
electric potentials will therefore have a gradient over FM - NM material interfaces. In the FM
layer, the chemical potential of spin + has become positive, while it has remained zero in the NM
layer. This gradient pushes spin + thermal electrons from the FM layer into the NM layer. The
opposite happens for the spin − thermal electron population, where electrons are pulled out of the
NM layer into the FM layer. We have spin + electrons moving in the opposite direction to spin −
electrons; a spin current.

A more intuitive way of thinking about this process is the spin accumulation in the FM layer
diffusing into the adjacent NM layer. Figure 2.6 visualises the spatially imbalanced electrochemical
potentials caused by an imbalanced spin accumulation. These imbalances in the electrochemical
potential cause electron currents and spin flips, which are drawn in the figure as horizontal, respec-
tively vertical arrows. This spin diffusion of the created spin accumulation is the sole manner in
which the s-d process is able to induce a spin current.

3Remind that the density of thermal electron is taken relatively from equilibrium, so by definition in equilibrium
Nt
± = 0.
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Figure 2.6: A cartoon of the electrochemical potential of spin ± electrons µ±. The spin + electro-
chemical potential is drawn above the horizontal axis, while the spin − electrochemical potential
is drawn below it. The shaded are corresponds to states with less energy than the electrochemical
potential, so taking zero temperature these states would be filled. Gradients in electrochemical
potential cause a net flow of electrons with the corresponding spin (horizontal arrows). A difference
between µ+ and µ− causes electrons to flip spin (vertical arrows), transitioning between the spin
populations.

2.2.2 Hot electron driven processes

The superdiffusive model models ultrafast demagnetisation to be caused by the laser pulse optically
exciting electrons to hot states. These hot electrons would move through the multilayer, potentially
excite other electrons to hot states and eventually decay back to a thermal state. Figure 2.7
visualises a single electron being excited to a hot state to be transported to a different layer and
decay there. The hot electrons maintain their spin, so the movement of hot electrons may move
spin through the material. Hot electron currents can directly contribute to the spin current, as is
also clear from the equation for the total spin current; Js = J ts + Jhs . Furthermore, hot electron
excitation and decay affect the density of thermal electrons. Excitation and decay can therefore
induce spin accumulations, which cause diffusive currents as was sketched in Figure 2.6.

Furthermore, hot electrons are charged. Moving hot electrons will therefore move charge, and
in turn create electric fields. These electric fields would drive thermal electron currents until charge
neutrality is restored. Any hot electron current will therefore cause a thermal electron current in
the opposite direction; a screening current. Such a screening current is represented by the green
dots and the corresponding arrows in Figure 2.7. These screening currents may carry spin, and
therefore contribute to spin currents. Screening currents transporting spin implies that they affect
the spin accumulation, and again this spin accumulation can diffuse to cause spin transport.
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Figure 2.7: A cartoon of a multilayer composed of a ferromagnetic and nonmagnetic layer being
optically excited to excite hot electrons. The horizontal axis represents the out of plane coordinate z,
while the vertical axis represents electron energy. The red dot represents an electron that is excited
in the ferromagnetic layer, which moves into the nonmagnetic layer to finally decay. The green dot
represents electrons being moved in the opposite direction to the hot electron to compensate for
the transport of charge. The spin polarisation of these screening currents depends on the material
property, which is why it is drawn separately in the different layers.

2.3 Notation

For convenience of writing we will now introduce some variables. We already encountered the total
thermal electron current J t = J t+ + J t−, and the spin accumulation µs = µ+ − µ−, and the total
conductivity σtot = σ+ + σ−. These follow a pattern that we now extend to define many more
variables.

The electrons we describe can be either spin + or spin −, and are either in a thermal or hot
state. This gives four electron subpopulations. The number densities related to these are N t

+,
N t
−, Nh

+, Nh
−, and their related current densities are J t+, J t−, Jh+, Jh−. Often we will use sums or

differences of these terms. For example the thermal current J t was the sum of the thermal currents
of both spin species, while the spin accumulation µs is the difference between the two. The notation
we use is to suppress a subscript or superscript to denote taking the sum over both subspecies; in
J t the spin subscript is suppressed, so J t = J t+ + J t−.

We will also often take the difference between the spin subspecies, which is written with subscript
s. The spin accumulation µs = µ+ − µ− is an example of this convention in action. All symbols
related to electron densities and currents defined by these conventions are shown in Table 2.1.

spin ± thermal hot all electrons

density N±= N t
± +Nh

± N t= N t
+ +N t

− Nh= Nh
+ +Nh

− N = N t
+ +N t

− +Nh
+ +Nh

−

current J± = J t± + Jh± J t = J t+ + J t− Jh = Jh+ + Jh− J = J t+ + J t− + Jh+ + Jh−

spin density N t
s= N t

+ −N t
− Nh

s = Nh
+ −Nh

− Ns= N t
+ −N t

− +Nh
+ −Nh

−

spin current J ts = J t+ − J t− Jhs = Jh+ − Jh− Js = J t+ − J t− + Jh+ − Jh−

Table 2.1: Symbols derived from the density and current of the four electron sub-populations, with
their defining equation.
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The spin accumulation µs is the only symbol following this pattern but is not in the table. We
could also take the difference between the chemical potentials µ0,±, but from their relation with
the electrochemical potential given in Equation (2.19) this is exactly the spin accumulation;

µs = µ+ − µ− = µ0,+ − µ0,−. (2.27)

Some of the variables in the table are important enough to give a name. The goal of the model
is study the amount of spin that is transported, which is done by Js. We call Js the (total) spin
current. The total spin current is composed of the thermal electron spin current J ts, and the hot
electron spin current Jhs . The local amount of spin in the thermal system is reflected by N t

s so it
will be called the spin density of the thermal system. Despite the naming, currents are expressed
in terms of number current densities (number of particles per area per time), while N t

s is a number
density (number of particles per volume).

This is a good moment to point out the difference between the spin accumulation µs and the
thermal spin density N t

s . Both specify a local imbalance between the spin populations, but the spin
accumulation does so in terms of an energy and the spin density in terms of a density. The relation
between the two will be revisited in Section 2.6.

As was done by introducing σtot, we will also introduce notation for the sum of material prop-
erties. Instead of suppressing the spin subscript we will write a subscript “tot” for total, such that
we define

Dtot = D+ +D−, σtot = σ+ + σ−. (2.28)

2.4 Conservation laws

With the new notation it becomes simpler to study combinations of electron subpopulations. In
particular it is interesting to take a look at the spin ± electron density N±, which includes both
the thermal and hot electrons with spin ±. Taking the sum of Equations (2.25) and (2.26) gives a
continuity equation for spin ± electrons, as

∂

∂t
N± = −J ′± ∓ rµs ± S. (2.29)

This indicates that the density of electrons with spin ± is changed only by spin ± electron transport
or spin-flips of thermal electrons, as was shown in Figure 2.5. Subtracting the spin down result
from the spin up result gives

∂

∂t
Ns = −J ′s − 2rµs + 2S (2.30)

relating the spin current Js and spin accumulation µs with the evolution of the total spin density
Ns densities of the four electron populations. Moreover, it is clear that spin flips are the only events
that may change the total amount of spin. Looking instead at the time evolution of the density of
all electrons

∂

∂t
N = −J ′, (2.31)

we see that the electrons density can only be changed by transport in a way that is consistent with
continuity of electrons, verifying that the number of electrons is conserved. Equations (2.30) and
(2.31) provide a sort of conservation law for spin, respectively electrons. These conservation laws
will be useful in later chapters.
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2.5 Application to experiments

We now have a model of optically excited ultrafast spin dynamics. We will focus on using this model
to better understand experimental measurements of magnetic precessions excited by ultrafast spin
currents, such as done in [11, 12, 13]. In this section we will describe these experiments, and
how the proposed model can be used to describe them. First, the sample structure and processes
occurring in the experiments are described. How our proposed model connects to these is discussed
afterwards.

Figure 2.8: The structure of the sample used in the spin-transfer torque experiment of [11]. The
multilayers consist of two thin-film magnets. One layer has out-of-plane magnetisation (blue). The
other has in-plane magnetisation (red), biased by an external magnetic field. (A) is the system
at rest. On laser excitation, shown in (B), spin currents transfer angular momentum between the
layers; a spin-transfer torque. This effect affects the magnetisation direction of both magnetic layers
as shown in (C). The mechanisms pulling the magnetisation of both layers back to their equilibrium
state provide a torque on the magnetisation of both layers, causing the magnetisation to precess as
is shown in (D). Adapted from [11], Figure 1.

The samples used in the experiments under consideration consist of thin films of two FM layers
separated by a NM conducting spacer. One of the magnetic layers has out-of-plane (OOP) mag-
netisation, while the second is in-plane (IP) parallel to an externally applied magnetic field. This
configuration is sketched in Figure 2.8 a. On laser excitation both layers demagnetise. A spin
current between the layers will arise, causing spin to be transferred between the FM layers. This
exchange of spin causes the magnetisation of both layers to change, tilting it slightly away from
their relaxed orientation. Most relevant to the measurements is the spin from the OOP magnetised
layer flowing into the IP magnetised layer, causing the magnetisation of the IP layer to cant slightly
out of plane. The state of the multilayer at this moment is sketched in Figure 2.8 c. Because the
magnetisation of the IP magnetised layer is now misaligned with the external field, the external
field will apply a torque to its magnetisation. Spin being angular momentum, a torque acting on
the magnetisation of a magnetic layer will not cause its magnetisation to align with the external
field. Instead the magnetisation will experience a precession around the direction of the external
field, with a small dampening causing this precession to decay over time. In Figure 2.8 d this path
of precession of both the IP and OOP magnetisations are shown 4.

4There is a second precession contributing to the signal, which is the cause of the beating that can be seen in
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The dynamics in such experiments are observed by the magneto optical Kerr effect (MOKE) in the
“polar configuration”. This signal is related to the OOP magnetisation of the multilayer. A time
trace of a typical MOKE signal in such experiments is shown in Figure 2.9. In such a measurement
we can see how the OOP magnetisation of the sample changes over time5. Indeed, on the time-
scale of picoseconds we can see the ultrafast demagnetisation of the OOP layer quickly lowering the
MOKE signal. On longer time-scales of tens to hundreds of ps we can see the remagnetisation of
the OOP layer giving a gradual increase in the MOKE signal. Magnetic precessions of both layers
gives the oscillating component of the signal. This oscillation is caused by the laser-induced spin
currents between the layers, so is the most relevant component of the signal. By fitting the MOKE
signal to a demagnetisation model with an additive dampened oscillation, we can calculate the
amplitude of this oscillation. This amplitude can be compared to the amount of magnetisation that
was lost in the initial demagnetisation. For this reason the experimental papers tend to quantify
to what extend the precession is excited in terms of an efficiency; the precession amplitude per
demagnetisation. Usually this can alternatively be thought of as the fraction of spin removed from
the OOP layer that was absorbed by the IP layer 6.

Figure 2.9: From the experimentel setup sketched in Figure 1.5, a MOKE time trace after laser
excitation at t = 0. The MOKE signal measures the out-of-plane magnetisation of the sample. The
ultrafast demagnetisation and subsequent remagnetisation of the out of plane layer is the dominant
part of the signal. During the remagnetisation we can see oscillations corresponding to the magnetic
precession of the in-plane magnetised layer. Adapted from [11], Figure 2C.

At this point the problem is applying the model introduced earlier in this chapter to such exper-
iments. The goal is to calculate the excitation of the magnetic precession of the IP magnetised
layer. This excitation is caused by an OOP polarised spin current being absorbed by the IP layer.
To study the OOP component of the spin current we will chose spin up of our model as the OOP

the figure. This is an oscillation of the OOP magnetisation caused by the external magnetic field slightly canting
it in-plane, and laser heating causing a demagnetisation and change in magnetic anisotropy. The two processions
can effectively be separated from the data by a fit, such that it does not pose a problem to our discussion of spin
currents.

5Technically, how the MOKE signal changes with the delay between the laser excitation and probing pulse.
6This interpretation of efficiency is only allowed when the transferred spin contributes to the excitation with

approximately the same phase. Chapter 4 will further explore this situation.
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direction, or alternatively the majority spin in the OOP magnetised layer. We write zIP for the
coordinate of the interface between the spacer and the IP magnetised layer, so the canting of the
IP layer is then caused by the spin current over time Js(zIP, t).

Both theory and experiments suggest that in a ferromagnet, electrons with spin orthogonal to
the majority spin are absorbed exceptionally efficiently [13]. Considering we have chosen spin up
and down to be in the OOP direction, this causes the IP magnetised layer to quickly dissipate a
spin up or spin down accumulation. We therefore choose to model the IP magnetised layer as being
an ideal spin sink to OOP spin. In terms of the material parameters this corresponds to setting
the spin-flip scattering rate r → +∞ in the IP layer. Any spin accumulation of thermal electrons
in the IP layer is quenched as this effectively sets µs = 0 within the IP magnetised layer. More
specifically µs(zIP, t) = 0.

Figure 2.10: Working region of the spin-dynamics model applied to a typical model model of an
experiment. The out of plane coordinate z on the horizontal axis. At z = 0 the interface with an
insulating layer provides an insulating boundary condition, while at z = zIP the IP magnetic layer
being an ideal spin sink gives a zero spin accumulation boundary condition. Applying the presented
model on such a system to find the excitation of the magnetic precession of the IP layer, we are
ultimately interested in the spin current into the IP layer over time, Js(zIP, t).

We will tend to model the OOP magnetic layer to be sandwiched between the spacer and an
insulator. The position of the interface between the insulator and OOP layer is chosen as z = 0.
The insulator will give an insulating boundary condition at z = 0, and the IP layer being a perfect
spin sink gives a boundary condition on z = zIP. This restricts the region where the spin dynamics
have to be simulated to 0 < z < zIP. This region contains the OOP magnetic layer and the spacer
between the magnetic layers.

Figure 2.11: Sketch of the spin current into the IP magnetised layer over time after the multilayer
experiencing laser excitation.
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At this point the proposed model can be used for calculating the spin current into the IP magnetised
layer over time. Figure 2.11 gives a rough sketch of what this spin current pulse could look like.
In the case of hot electron effects causing the spin current, the flow of hot electrons would cause a
spin current. The spin depletion caused by the excitation of these hot electrons would also cause a
diffusion current with opposite sign, giving the two lobes with opposite signs sketched in the figure.
When an s-d source is considered, the ultrafast demagnetisation inject a large spin accumulation
which will diffuse into the IP layer to give a positive spin current. The following remagnetisation
would extract spin from the thermal electrons, giving a spin depletion and a diffusion current with
opposite sign, potentially giving a second lobe. The figure draws the two lobes as being distinct to
clarify that multiple effects contribute to the spin current, which manifest at different times. This
does not have to be the case in reality. The duration of the spin current pulse in question would
have roughly have a ps duration, owing to the laser pulse used for excitation lasting some 100 fs,
and the various processes contributing to the spin current equilibrating in similar time scales.

We still need some way to relate the calculated spin current over time to the thing we are ac-
tually measuring; the out-of-plane magnetic component corresponding to the magnetic precession
of the in-plane magnetised layer. Because the initial canting is small, the canting process and the
subsequent precession are approximately linear. We also neglect the dampening of the precession
during excitation. The excitation amplitude Aω of a magnetic precession mode with angular fre-
quency ω, excited by a time-dependent spin current Js(zIP, t) into the magnetic layer can then be
calculated using

Aω =

∫ +∞

−∞
dt Js(zIP, t) e

iωt. (2.32)

The spin current Js(zIP, t) is the rate at which the IP magnetisation is canting at time t, while eiωt

is the phase of this contribution. This Aω contains both the amplitude and phase of the excitation.
Taking the absolute value of it will extract purely the amplitude of excitation, which is the quantity
we can relate to experiments. The current formulation of the model for ultrafast spin dynamics
could already be applied to experiments, but we will refrain from doing so until approximations
discussed in later chapters vastly simplify the problem.

2.6 Alternative parameterisations

To parameterise the state of the thermal electron system it is most straight-forward to use {N t
+, N

t
−}

(or similarly {µ0,+, µ0,−}). While this works, there are alternative parameterisations that will have
their use. In Chapter 3 we will change the model by requiring the charge to be zero everywhere,
putting a constraint on the state of the thermal electron system. Using a parameterisation in terms
of ρ will complement this constraint, so in Section 3.4 we will make use of the parameterisations
introduced below.

Specifying the state of the thermal electrons in terms of the charge density ρ, the remaining
degree of freedom can conveniently be specified by the spin accumulation µs or the thermal spin
density N t

s . The first gives a parameterisation in terms of {µs, ρ}, while the second parameterisation
would use {N t

s , ρ}. Both of these alternative parameterisations can be interpreted as the thermal
electron system consisting out of a spin and charge degree of freedom, the dynamics of which are
interconnected. The transformations between {N t

+, N
t
−}, {µs, ρ} and {N t

s , ρ} are one-to-one as
long as the densities of state D± are both finite, so no information is lost by such a change in
parameterisation.
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Using (2.25) we can already calculate the time evolution of µs and N t
s . The time evolution of the

spin accumulation µs becomes

∂

∂t
µs = −µs

τ
+ S

Dtot

D+D−
−
J t+
′

D+
+
J t−
′

D−
− R+

D+
+
R−
D−

, τ =
D+D−
rDtot

. (2.33)

Here we introduced the spin-flip time scale τ . From (2.25) the time evolution of the thermal spin
density N t

s must be
∂

∂t
N t
s = −2rµs + 2S − J ts

′ −R+ +R−. (2.34)

In both Equation (2.33) and Equation (2.34) there is a term corresponding to spin flips, a term for
the transport contribution, and the excitation or decay of hot electrons. To use (2.34) in practice, we
would have to calculate µs from N t

s using the cross transformation between the parameterisations
provided below. This makes this parameterisation slightly awkward, but N t

s does more clearly
relate to continuity equations, in particular conservation of spin by transport.

To transform between the two parameterisations, we have the transformation from spin density
to spin accumulation

µs =
1

2

D+ −D−
D+D−

(
ρ/e+Nh

)
+

1

2
N t
s

Dtot

D+D−
, (2.35)

and the transformation from spin accumulation to spin density

N t
s = −

(
ρ/e+Nh

) D+ −D−
Dtot

+ 2
D+D−
Dtot

µs. (2.36)

The density of states is required to transform between units of energy and units of number density.
Note that µs and N t

s are in general not simply proportional. If the density of states changes (as
happens in multilayers) the local density of state changes and the proportionality factor depends on
the position z. Also, a term proportional to ρ/e+Nh = −N t with a correction for density of states

also makes an additive contribution. These relations do show that 2D+D−
Dtot

relates a change in µs
to a change in N t

s , so this factor can informally be thought of as an effective spin density of states.
This factor appeared in Equation (2.33) too, where it could also be interpreted as an effective spin
density of states.

This chapter introduced a model for the conducting electrons relevant for ultrafast spin currents,
based on the Valet-Fert model. We discussed how the model and the various processes it describes
are related to the studied experiments. Furthermore we showed some results relating to conservation
laws in the model, and useful parameterisations of its state.

In principle, given the external processes driving spin currents, the model as it is presented can
be implemented numerically to study the experiments under consideration. However, as is made
clear by using one of the paramerisations of Section 2.6, this model includes both spin and charge
dynamics. The charge dynamics complicates interpretation and implementation of the model, while
we are only interested in the spin dynamics. The next chapter will provide an approximation to
the model presented here with charge dynamics eliminated, making the model better suited for its
intended application.
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Chapter 3

Strong screening approximation

The model described in Chapter 2 includes both spin dynamics and charge dynamics. As the charge
dynamics occurs on much faster time scales than the studied spin processes, we wish to remove
these charge dynamics from the model. This would simplify further derivations, enable further
intuition to be formed and improve performance of its numerical implementation. This chapter
provides an approximation to the previously introduced model but with charge dynamics removed.

Section 3.1 will introduce and motivate the modification we make to the model. Section 3.2
will build on this modification to derive the related equation describing the currents of thermal
electrons, with Section 3.3 using these to give equations for the spin currents. The strong screening
approximation has simplified the equations for the thermal electron currents, which makes it inter-
esting to revisit the time evolution of the thermal electron system state. This is done in Section
3.4.

3.1 The Strong screening approximation

The model proposed in Chapter 2 models both the accumulation of charge and the accumulation
of spin, the charge and spin current and how all of these evolve over time. We are purely interested
in the spin dynamics, so the charge dynamics is somewhat of a nuisance. Furthermore, the charge
dynamics occur on much shorter time scales than the spin dynamics. This would be particularly
inconvenient for numerical implementations of the model, as the numerical time step would have
to be on the order of the charge dynamics time scales.

As the charge dynamics happen on substantially shorter time scales than the other processes
contained in the model, during these other processes the charge dynamics is capable of nearly
restoring its equilibrium. The charge dynamics would exactly be in equilibrium if there is zero
local charge density at every position. The charge dynamics occurring at short time scales can
then alternatively be put as any deviation of the charge ρ from 0 inducing an electric current that
quickly (compared to time-scales of spin dynamics) restores ρ ≈ 0. If we would approximate the
charge dynamics as being instantaneous, this would give the stronger requirement of the system
always having zero local charge density; ρ = 0.

The charge density being zero at all positions and times is not satisfied by the model described
earlier, even if the system is prepared with ρ = 0. Movement of hot electrons carries charge,
potentially producing a non-zero charge density. Even when no hot electrons are present charge can
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build up in this model. If the spin specific conductivities at some point are different and a gradient
in spin accumulation exists, a nett thermal electron current will arise, changing the accumulation
of electrons. Interfaces between different materials with different conductivity provide another
opportunity for the charge density to become non-zero.

While screening is fast, the screening time is finite as a non-zero charge density ρ is required for
the E-field to become non-zero, which causes the screening. To have ρ = 0 exactly at all positions
and times, the screening must be instantaneous; the E-field must screen charge before ρ deviates
from 0. To do this, we should modify the behaviour of the E-field to work in an “active” instead
of “reactive” manner. A natural step would be to replace the electric field equation E′ = ρ/ε0
with a different specification of the E field, while keeping the remainder of the model unchanged.
It turns out that keeping the remainder of the model and the exactly zero charge requirement
uniquely specifies the E-field for any system state. Note that keeping the remaining equations of
the model, we still have V ′ = −E relating the electric field to the electric potential V . The electric
potential V will still contribute to the electrochemical potentials µ± in a non-trivial way, making
µ± substantially different than µ0,±. In fact, this contribution is exactly the screening.

From conservation of electrons as described in Equation (2.31), ρ = 0 implies that the total
electron current J is constant1. Furthermore, the multilayers in the experiments we attempt to
describe have an insulating boundary condition, fixing this electron current to J = 02. This zero
electron current will serve as the foundation of the strong screening approximation.

Note that imposing zero current stops the discussed model from being a generalisation of the
Valet-Fert model, as the giant magnetoresistance measurements clearly have a non-zero out of plane
current flowing through the multilayer.

3.2 Thermal electron currents

We wish to calculate the spin specific thermal electron currents J t±. Equation (2.9) states that
these are described by

J t± = −σ±
(
µ′0,± + eE

)
. (3.1)

Now that we are in the strong screening approximation, the electric field E is no longer specified by
Gauss’ law. Instead, we now require no total electron current, J = 0, which implies J t+ +J t− = −Jh.
With above equation this requires the electric field to conform to

eE =
Jh − σ+µ

′
0,+ − σ−µ′0,−
σtot

. (3.2)

This is our new equation for calculating the electric field, replacing Gauss’ law. Substituting this
into (3.1) gives

J t± = − σ±
σtot

(
σtot µ

′
0,± + Jh − σ+ µ

′
0,+ − σ− µ′0,−

)
. (3.3)

Writing the equation for both spin + and − and simplifying shows that the spin specific thermal
electron currents J t± are specified by

J t± = ∓σdiff µ
′
s −

σ±
σtot

Jh, σdiff =
σ+σ−
σtot

. (3.4)

1In turn J ′ = 0 implies ρ is constant in time, so enforcing J ′ = 0 and neutral charge in the initial state is sufficient
to satisfy the constraint ρ = 0.

2More-over, there is an interface with air which definitely does not conduct electrons to a meaningful extent.
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The thermal currents are composed of two terms, the first is a diffusion current proportional to µ′s
through the “spin diffusion conductivity” σdiff . Other work refers to this material property as the
“spin averaged conductivity” or the “effective conductivity”. The spin + diffusion current is equal
and opposite to the spin − diffusion current, so non-zero diffusion will never move charge but always
move spin. The second term is the screening of the hot electron current Jh. The fraction of spin +
screening electrons to spin − screening electrons is simply the ratio of spin specific conductivities
σ+/σ−.

It is interesting to see that the diffusion term depends on the state of the thermal system µ0,±
only through µs. To see why this happened, write µ0,± in an even and odd (under change of spin
label) component; µ0,± = 1

2 (µ0,+ + µ0,−) ± 1
2µs. In Equation (3.1) the spatial derivative of the

even term contributes to both J t± exactly as an electric field would, and it being non-zero would
contribute to the total charge current. However, we choose the electric field such that no total
charge current exists; the electric field will perfectly cancel any contribution of the even term. Put
differently, [µ0,+ + µ0,−]′ 6= 0 attempts to move charge but is overruled by strong screening.

Moreover, the diffusion term only depends on the material properties σ± through σdiff . This
will be convenient in the important special case of the model where no hot electrons are present,
so only diffusive processes remain. We have actually seen σdiff appear in such a situation earlier;
the spin diffusion length λ as was given in Equation (2.6) can be written as

λ =

√
σdiff

r
. (3.5)

3.3 Spin currents

Combining both versions of Equation (3.4) gives the full thermal contribution to the spin current
as

J ts = −2σdiff µ
′
s −

σ+ − σ−
σtot

Jh, (3.6)

and the total spin current

Js = −2σdiff µ
′
s + Jh+ − Jh− −

σ+ − σ−
σtot

Jh, (3.7)

where we see that spin current is caused by three contributions. In the order of appearing in above
equation; diffusion of thermal electrons, flow of hot electrons, and flow of thermal electrons to screen
the hot electrons. Diffusion and screening are contained in J ts, while hot electron flow is contained
in Jhs . We can choose to to combine the hot electron and screening terms in a term called J∗s , giving

Js = −2σdiff µ
′
s + J∗s , J∗s = 2

σ−J
h
+ − σ+J

h
−

σtot
. (3.8)

We can calculate J∗s using only Jh±, so not requiring any knowledge of the state of the thermal system
through µs. Note that J∗s may be substantially different from Jhs , it can even have a different sign.
This approach of grouping the spin current contributions will become particularly convenient when
studying the steady state solution of the model as will be done in Chapter 5.
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3.4 Time evolution

Before imposing strong screening, the thermal electron system had N t
± as mutually independent

electron densities, with J t± as the associated electron current densities. When strong screening
was enforced, the constraints ρ = 0, J = 0 dropped one degree of freedom in the system of
thermal electrons. The thermal electron model is reduced from two interacting populations, +
and −, to effectively a single spin density population with the associated thermal spin current 3.
Parameterising the thermal electron system in terms of N t

± under the strong screening constraint is
therefore somewhat inconvenient. As is done in Lagrangian mechanics, it is often more convenient
to deal with constraints by using a different parameterisation in which the constraint is simpler
to enforce. In this case either of the parameterisations introduced in 2.6 parameterise the thermal
electron system in therms of ρ, making it easier to enforce ρ = 0. Using these, the remaining
degree of freedom is either µs or N t

s . The time evolution associated with these were shown in (2.33)
and (2.34). Now that we have derived Equation (3.4) providing J t± under the strong screening
approximation we can rewrite the time derivative of the spin accumulation and the time derivative
of the thermal spin density as

∂
∂t
µs =−µs

τ
+ S Dtot

D+D−
+ [σdiff µ

′
s]
′ Dtot
D+D−

−R+

D+
+

R−
D−

+ Jh
′

σtot

(
σ+
D+
− σ−

D−

)
+Jh σdiff

σtot

(
σ′+
σ+
− σ′−

σ−

)
Dtot
D+D−

, (3.9)

∂
∂t
N t
s = −2 r µs + 2S +2 [σdiffµ

′
s]
′ −R+ +R− +Jh

′ σ+−σ−
σtot

+2Jh σdiff
σtot

(
σ′+
σ+
− σ′−

σ−

)
. (3.10)

A B C D E

If we choose to parameterise the system in terms of the spin density N t
s , we would still need

to calculate the spin accumulation µs using Equation (2.35) with ρ = 0 to evaluate the system
evolution. These equations show the five effects that may contribute to the time evolution of the
thermal electron system. The various terms in Equations (3.9) and (3.10) are explained in more
detail below, but briefly stating what these terms represent; (A) captures spin-flips of thermal
electrons, either driven by µs or by the external spin source S. (B) describes diffusion of spin in
the thermal electron system. (C) gives the contribution of excitation (respectively, decay) of hot
electrons, which removes (adds) electrons and their spin from (to) the thermal electron system,
changing the spin accumulation and spin density. Finally, (D) and (E) are related to transport of
hot electrons which induces screening currents in the thermal electron system. More specifically,
(D) describes the effect of screening currents in bulk material. When the conductivity changes on
material interfaces an additional contribution (E) appears.

Note that all terms in Equation (3.9) contain a factor of the density of states (internalized in
the case of τ) which is required to translate from the rate of change of the number density to the
rate of change in chemical potential 4. In contrast Equation (3.10) does not mention density of
states, but when calculating µs from N t

s the density of states needs to be used.
Spin flips (A) and spin diffusion (B) are the only processes that are mostly “internal” to the

thermal electron system, as the terms (C), (D) and (E) stem from interactions with hot electrons.

3This is related to the importance of σ± in calculating Jt±. In Equation (3.1) σ± were important, but strong
screening reducing the thermal electrons to effectively a single population, a single combined conductivity σdiff
appeared in (3.4).

4The opposite effect of this is that in steady state the rate of change of both the number density and chemical
potential must be 0, so the density of states becomes unimportant. This will become clear in Chapter 5.
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If the hot electron system is disabled by setting R± = 0, Jh± = 0 to only study s-d spin current
sources, we are left with (A) and (B) and the model reduces to

∂
∂tµs =−µsτ + S Dtot

D+D−
+ [σdiff µ

′
s]
′ Dtot

D+D−
, (3.11)

∂
∂tN

t
s = −2 r µs + 2S +2 [σdiff µ

′
s]
′
. (3.12)

A B

These equations closely resemble the standard diffusion equation ∂φ
∂t = source + ∂

∂x [D ∂φ
∂x ] with a

source term, but the density of states present a crucial difference. Only where Dtot/D+D− is
constant in space we can pull it through a spatial derivative to get the diffusion coefficient

D = σdiff
Dtot

D+D−
, (3.13)

where technically the diffusion coefficient D may still change with z if σdiff does. This approach
breaks down on material interfaces, where Dtot/D+D− will in general change over z, so only within
uniform layers the diffusion equation can be used. In uniform layers we get a new relation for the
spin diffusion length in terms of the diffusion coefficient as defined by Equation (3.13)

λ =
√
τD, (3.14)

which is the standard equation for the mean free path in diffusive transport. A sketch of the
diffusive processes within a single homogeneous layer is shown in Figure 3.1. The figure shows
a spatially varying spin accumulation. The gradients cause a diffusive spin current, drawn as
horizontal arrows representing the movement of spin. Also, the spin accumulation will drive spin
flips, which are drawn as vertical arrows representing the decrease of the local spin accumulation
by these local spin flips. If the spin accumulation shown in Figure 3.1 are translated back to the
underlying spin accumulations, Figure 2.6 would be reproduced.

Figure 3.1: Spin flips and diffusion in the strong screening model. On the vertical axis the spin
accumulation µs, and position z on the horizontal axis. The horizontal arrows represent diffusive
spin currents, transporting spin from large to small spin accumulation. The vertical arrows represent
spin flips from the −2 r µs term, working to reduce the local spin accumulation. This figure conveys
the same processes as shown in figure 2.6. Instead of the separate spin + and spin − populations
shown in that figure, the strong screening has reduced these to effectively a single population.
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The hot electron system can be thought of as providing additional source terms to the thermal
system, either by adding or removing spin, or imposing thermal electron currents through screening.
Adding or removing spin is caused by hot electron excitation and decay, as captured by (C) in
Equations (3.9) and (3.10). Through screening, a hot electron current will cause a thermal electron
current. Figure 3.2 shows an example of a hot electrons current causing a screening current. Change
in the spin accumulation and spin density can be caused by a difference in the in-flow of thermal
electrons compared to the out-flow. The figure shows two ways in which this can happen; a change
in hot electron current or a change in material properties. A change in hot electron current happens
at the initial and final positions of the hot electron. At the initial position of the hot electron, there
is a screening current in-flow without out-flow. At the final position there is no in-flow but a finite
out-flow. These contributions to the time evolution of the spin accumulation and spin density are
contained in (D) of Equations (3.9) and (3.10).

Figure 3.2: A hot electron current (orange) and the spin specific screening currents (blue) associated
with it. z on the horizontal axis. The left half of the figure represents a ferromagnetic material,
while the right is a nonmagnetic metal. At every position the screening currents must exactly
compensate the hot electron current. The spin composition of the screening currents depends
on the spin-specific conductivity, so the spin-specific screening currents will change over material
interfaces.

At the interface between the ferromagnetic and nonmagnetic layer, the spin polarisation of in-flow
screening current differs to that of the out-flow. In this example more spin + electrons flow away
from the interface than towards it, and more spin − flow in than out. This allows screening currents
to change the spin density and spin accumulation at material interfaces, which is described by the
(E) term of Equations (3.9) and (3.10).
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The strong screening approximation has substantially simplified the model of thermal electrons.
Where the model initially consisted of two thermal electron populations and dynamics on screening
time-scales, we now have effectively a single population changing on spin diffusion time-scales.
Writing a numerical implementation of the model becomes much more tractable. Also the model
has become less complex to interpret. In particular, because motion of hot electron now directly
modifies the thermal electrons instead of indirectly through electric fields, their effect has become
clearer. While we are set to calculate spin current profiles, realise that the measurements from
experiments we are studying do not provide spin currents, but only the tilting of a magnetisation.
In the next chapter we show how this measurement process allows further simplification of the
model in the context of the experiments under consideration.
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Chapter 4

Zero phase approximation

In Chapters 2 and 3 a model was build up that can be used to calculate spin currents in the context
of ultrafast spin dynamics. In the experiments under consideration these spin currents cause the
canting and subsequent precession of a magnetisation, which is the effect that is measured. It turns
out that the spin current causing the canting is effectively instantaneous compared to the period
of the precession. As will be expanded on in Section 4.1 this causes only the total amount of spin
injected to be of relevance to the experimental observations. Realising that we are not interested
in the spin current over time, but just its integral over time allows the model to be simplified even
further. This simplification will be discussed in Section 4.2.

4.1 Excitation of magnetic precessions

One of the main goals of the model derived in Chapters 2 and 3 was to study ultrafast spin currents
exciting a magnetic precession in experiments such as [11, 12, 13]. How the presented model would
be applied to these was discussed in Section 2.5. Equation (2.32) stated that the amplitude Aω
of a mode with angular frequency ω by a time-dependent spin current Js(zIP, t) into the in-plane
magnetic layer can be calculated as

Aω =

∫ +∞

−∞
dt Js(zIP, t) e

iωt. (4.1)

It is interesting to compare the time-scale of Js(zIP, t) with the time scale of the magnetic preces-
sions, captured in eiωt. In experiments studying homogeneous magnetic precessions, these preces-
sions have a frequency in the order of 10 GHz giving a period of some 100 ps [11]. Regarding the
duration of spin current pulses, the slowest process in our model is remagnetisation driving spin
flips through S, which tends to be of picosecond time scale. This suggests that spin currents should
be much shorter than the magnetic precessions they excite. The experimental observations seem
to verify this, as the MOKE measurements in the first tens of ps are already well described by the
fit to a damped oscillation.

As the period is much longer than the spin current, so eiωt is approximately constant during
the period when Js(zIP, t) is non-negligible. Approximating eiωt as being constant during the spin
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current pulse, we can approximate Equation (4.1) as

Aω ≈ eiφ
∫ +∞

−∞
dt Js(zIP, t), (4.2)

where φ gives the phase related to the center of the spin current pulse. Luckily, the magnitude
of excitation can be calculated without requiring knowledge of the phase. In conclusion, to find
the magnitude of excitation we can approximately solve the problem by just finding the total spin
transfer;

|Aω| ≈
∫ +∞

−∞
dt Js(zIP, t). (4.3)

To find the magnitude of excitation |Aω| we could go through the process of using the model for
ultrafast spin currents to calculate the spin current into the absorbing layer Js(zIP, t) to plug this
result into Equation (4.3). Because we are ultimately interested in calculating |Aω| we might as
well compose these steps into a single larger one. The next section will show that this combined
step can be simplified substantially.

So far this section only discussed homogeneous magnetic precessions with frequencies of the order
10 GHz. However, in similar experiments inhomogeneous spin wave modes have been observed.
These have much higher frequencies, up to THz [13], giving periods as short as ps. These periods
are potentially similar to the spin current pulse duration, so the validity of using the zero-phase
approximation to these experiments is less clear. Still, it is quite possible that the spin currents
pulses have a duration of few tens of ps, which would give a big enough margin for the zero-phase
approximation to hold. In the experiment of [13] the excitation efficiency seems fairly constant for
the observed range of frequencies, from 0.5 THz to 1.2 THz. This would suggest that the driving
spin current pulse has little Fourier components in this frequency range, giving some hope that the
spin current pulse could be short enough to use the zero-phase approximation when studying these
experiments1.

4.2 Relation with linear time invariance of the model

The models derived earlier are linear time invariant (LTI); both before and after the strong screening
approximation was applied. Time invariance of a system means that shifting the moment labeled
as t = 0 does not affect the model. Linearity of a system S means that given two inputs I1, I2
and the related system responses O1 = S[I1], O2 = S[I2], the response of the input I1 + I2 is
S[I1 + I2] = O1 +O2. Also, scaling an input will give a scaling of the output S[αI] = αS[I]. In the
model described in the previous chapters, external influences of the s-d spin source or hot electron
dynamics would be the input. The output we are most interested in is the spin current into the spin
absorbing layer over time. As above section showed that its time integral relates to the measured
precession amplitude.

1Even if slower processes contribute to the spin current pulse, these contributions being slow would prevent them
from efficiently contributing to the excitation. In that case, removing these processes from the spin current pulse
would barely change the excitation. For example, suppose that the remagnetisation gives a slow s-d contribution
while the other processes are plenty short. We could cheat by removing remagnetisation from the model, barely
affecting excitation of magnetic precessions, and afterwards use the zero-phase approximation on the short spin
current pulse that remains.
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For a moment we keep the discussion more abstract and discuss any LTI system where we want
to study the integral of its output signal over all time,

∫ +∞
−∞ dtO(t). To keep the discussion simple,

we will take the input as being a real valued function of time. We can then decompose the input
into Dirac delta functions

I(t) =

∫ +∞

−∞
dt′ I(t′) δt′(t) (4.4)

where δt′ is the Dirac delta peaking at t′; δt′(t) = δ(t − t′). In this section primes are used as
part of the variable name instead of a spatial derivative. If we now calculate the integral of the
related output, above decomposition works well with the linearity of the system. Furthermore using
time-invariance and a change of variables we find∫ +∞

−∞
dtO(t) =

∫ +∞

−∞
dt S[I](t)

=

∫ +∞

−∞
dt S

[∫ +∞

−∞
dt′ I(t′)δt′

]
(t)

=

∫ +∞

−∞
dt′ I(t′)

∫ +∞

−∞
dt S [δt′ ] (t)

=

∫ +∞

−∞
dt′ I(t′)

∫ +∞

−∞
dt S [δ0] (t− t′)

=

(∫ +∞

−∞
dt′ I(t′)

)(∫ +∞

−∞
dt′′ S [δ0] (t′′)

)
.

(4.5)

This can be thought of as saying that to find the area under the output curve given some input,
we can multiply the area under the input curve by the area under the output curve corresponding
to a Dirac delta input. The result now depends on the system only through the response to a delta
input. We can further simplify the factor containing the system. Using time invariance to shift the
moment of evaluation to 0, using linearity of the system and evaluating an integral over a delta
function we get∫ ∞

−∞
dt S[δ0](t) =

∫ ∞
−∞

dt S[δ−t](0) =

(∫ ∞
−∞

dt S[δ−t]

)
(0) = S

[∫ ∞
−∞

dt δ−t

]
(0) = S [C1] (0),

(4.6)
where Ca stands for the function that returns a regardless of the input; Ca(t) = a. As we are
feeding a constant function into the system, it immediately follows that S[C1] is a system in steady
state. This potentially makes the problem much simpler to solve than the dynamic we started with.
Inserting this into Equation (4.5) and rewriting gives the final result∫ +∞

−∞
dtO(t) = S

[
C∫ +∞
−∞ dt I(t)

]
(0). (4.7)

Informally, this derivation shows that in LTI systems (with real valued input and output functions)
we may change an integral over the output to an integral over the input, making the new input
function constant in time. As the input is steady the entire system must be in steady state,
potentially hugely simplifying the equations to be solved and interpreted. In fact, Equation (4.7)
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holds in the much more general setting where the input and output functions may be in vector-
valued function spaces I : R → V and O : R → W 2. The derivation of this more general result is
performed in Appendix B. Note that the integral we are moving from output to input has dimensions
of time. This means that every property of the state has picked up a dimension time. For example,
starting with Equation (4.5) the output of S was the spin current, which we needed to integrate
over time to get the total transferred spin. In Equation (4.7) the output of the steady-state S is
the total transferred spin.

Connecting this abstract result to ultrafast spin dynamics, Equation (4.3) showed that we are
interested in the integral of a spin current. The thermal electron system is linear with combination of
the spin source S and hot electron system behaviour R±, Jh± as input. These inputs are in function
spaces, so we can use the generalized result to justify using the virtual steady state perspective.

The derivation above was based on the abstract property of the model in consideration being LTI.
It is also possible to algebraically perform this change in perspective by integrating the equations
governing the system over time and rearranging the result. As an example, we perform this change
in perspective for the thermal electron model with S, R± and Jh± as input. First, take the integral
over the local thermal spin current given by (3.6) over all time∫

dt J ts(z, t) = −2σdiff(z)

[∫
dt µs(z, t)

]′
− σ+(z)− σ−(z)

σtot(z)

∫
dt Jh(z, t). (4.8)

Notice the prime indicating that we take the spatial partial derivative of the therm in square
brackets. Similarly, integrate the evolution of the local thermal spin density as given by (2.34) over
all time 3

N t
s(z, t = +∞)−N t

s(z, t = −∞) = − 2 r(z)

∫
dt µs(z, t)−

[∫
dt J ts(z, t)

]′
+∫

dt
(
2S(z, t)−R+(z, t) +R−(z, t)

)
.

(4.9)

At time t = −∞ the system is prepared in an equilibrium state. At some time the experiment is
performed and after waiting an infinitely long time the system will return to this equilibrium. From
this N t

s(z, t = +∞) − N t
s(z, t = −∞) = 0. If we write an overline as the integral over all time of

the variable under it, for example J̄s(z) =
∫

dt Js(z, t), the two equations above can be written as

0 = −2 r µ̄s − J̄ t ′s + 2S̄ − R̄+ + R̄−, J̄ ts = −2σdiff µ̄
′
s −

σ+ − σ−
σtot

J̄h. (4.10)

This looks exactly like the equations we started with, but all time-dependent quantities picking up
an overline and a dimension time, and the time evolution was removed by setting N̄ t ′

s = 0 4. If the

2The vector spaces V and W are allowed to be of infinite dimensionality, so V and W may even be function
spaces.

3While we use the equation for Jt± under the strong screening approximation, the same can be done with the
original equation (2.2) and a longer derivation. It turns out the result of such a derivation will be the same as found
here, as will become clear in Section 5.1.

4This derivation shows a similarity between this approach of reducing a time dependent model to a steady state
one with the more common quasi-static approximation, which has the same effect of transforming a dynamic model
to a stationary one. The quasi-static approximation effectively approximates the change in local accumulation as
negligible compared to flow terms. In the approach presented here we were able to integrate the equations governing
the model over all time. The initial state is the same as the final state, so the total change in local accumulation must
be 0, and in the time-integrated model all terms corresponding to changes in accumulation vanish. In short, in the
quasi-static approximation in-flow and out-flow approximately cancel each other in every instant, but when studying
a time-integrated LTI model with the same initial as final state, the total in-flow and cancels the total out-flow.
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external processes acting on the thermal system (S̄, R̄± and J̄h±) are known, we can use this as a
coupled differential equation to solve for µ̄s and J̄ ts. Adding the time integrated hot electron spin
current we have found the total spin transfer into the absorbing layer

∫
dt Js(zIP, t) = J̄s(zIP) =

J̄ ts(zIP) +
∫

dt Jhs (zIP, t). The zero phase approximation showed that the total spin transfer equals
the excitation of the magnetic precession, J̄s(zIP) = Aω, which is exactly what we wanted to know.
In this process we have avoided calculating the time-dependent Js or µs and having to deal with
the partial differential equations governing them.

Again, note that the steady state system we have changed perspective to has added a dimension
time to every parameter. If we are interested in the total spin transfer into the IP layer of the
dynamic model,

∫
dt Js(zIP, t), that means we are interested in the virtual spin current of the

steady-state model J̄s(zIP). This extra unit time appearing through the model makes it clear that
the “virtual steady state solution” in this new perspective (the right side of Equation (4.7) or
µ̄s, J̄ ts in (4.10)) does not represent a state that will physically materialize at some time during
the studied process. Rather, it represents the combination of all transient states. Some transient
states may show substantially different behaviour than this integral. For example, consider hot
electrons temporarily moving a lot of spin out of a magnetic layer, but shortly afterwards much
of the spin diffuses back. The dynamic model would show a brief spin depletion in the magnetic
layer. Experimentally such a temporal depletion could be measured by MOKE as part of the
demagnetisation. The steady-state perspective would provide little information on such effects.
Instead, performing the time integral will cause the hot electron spin current and diffusive spin
current to overlap, showing the net spin transfer to be marginal. This example shows that spin
transport causing a demagnetisation signal does not need to imply a net spin transfer. The original
paper introducing superdiffusive spin transport[9] was concerned with demagnetisation in the first
few hundred femtoseconds. The net spin transfer is a related but different effect, making our study
of superdiffusive spin transport largely orthogonal to its original treatment.

Besides the model having to be LTI, a major constraint is calculating the relevant inputs of the
model without need of the internal state of the model. As a concrete and important example; one
might model the external spin source S to depend on the spin accumulation µs already present in
the thermal electrons. We would have to calculate the time-dependent spin accumulation in order
to calculate the time-dependent external spin source. If the contribution of µs to S is LTI we could
potentially resolve the problem by studying a larger LTI model that describes the combination
of thermal electrons, the external spin source and their interaction. This larger model also being
LTI, the presented abstract proofs show that this model can also be analysed from a steady-state
perspective.

In this chapter, we showed that the process of observing the spin currents through an excited
magnetic precession implies that we often only need to know the total spin transfer. In turn, only
being interested in the total spin transfer allows the transient dynamics to be “forgotten”, and
a simpler model that appears like a steady state model provides enough information to calculate
the excitation of magnetic precessions. The next chapter will discuss this simpler model in more
depth.
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Chapter 5

Steady-state

Chapter 4 showed that some experimental observations can be studied using a virtual steady-state
system, governed by the same equations as the dynamic model with all time derivatives set to 0.
We can use this approach to use the model presented in this thesis, but as we are looking for a
steady state solution the model can be simplified substantially. This chapter will discuss the these
simplified equations governing solutions in steady state.

Section 5.1 will discuss the relation between the steady-state constraint and the strong screening
approximation. The equations governing the steady state case are shown in Section 5.2. The steady-
state requirement makes the system a lot simpler, the governing equations are a lot shorter and
steady-state makes conservation laws much more restrictive. Section 5.3 will use this to give some
insights into the behaviour of the steady-state model. The spin diffusion length is an important
parameter emerging from the underlying material properties. Section 5.4 will discuss some of the
intuition related to it.

While the governing equations of steady state and “virtual steady state” are the same, they
describe different functions. For example spin currents in the “virtual steady state” correspond to
the total spin transfer, i.e. time integrated spin current of the dynamic model. While the virtual
steady state is used for interpreting experiments, in this chapter we will write everything as the
dynamic model being in steady state. That the results regarding steady state spin currents can be
applied to time integrated spin currents of the dynamic model is understood implicitly.

5.1 Relation to strong-screening approximation

Reminding ourselves of conservation of electrons as given by Equation (2.31) it is obvious that in
steady state J must be a constant. Because we study multi-layers with air interfaces and non-
conducting substrates this constant is fixed as J = 0. This is exactly the assumption that the
steady state approximation given in Chapter 3 was built on top of, so in steady state the equations
for J t± derived under the steady state approximation have become exact. Alternatively this can be
thought of as the model from Chapter 2 and its modification from Chapter 3 reducing to the same
model once being in steady-state is imposed.
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5.2 Governing system of differential equations

The obvious way of finding the equations governing the steady state solution is to take the equations
for the time evolution, Equation (3.9) or (3.10), and simply set the time derivative to 0. This is valid
and the interpretation of effects related to their terms remain useful, but the resulting differential
equation of the spin accumulation or spin density are fairly involved 1. Also, we are ultimately not
interested in the spin accumulation µs or spin density N t

s themselves, but in the resulting total spin
current Js.

Being in steady state, the conservation of spin as stated in Equation (2.30) becomes much more
restrictive. Combined with Equation (3.8) we get the system of differential equations

0 = −J ′s − 2 r µs + 2S, Js = −2σdiff µ
′
s + J∗s (5.1)

that given some boundary conditions and the “inputs” S and J∗s uniquely fix Js and µs. Alter-
natively this system of equations can be written as a second order differential equation describing
the thermal electron state in terms of µs by taking the spatial derivative of the right equation to
eliminate J ′s from the left equation. This gives

2 r µs − 2 [σdiff µ
′
s]
′

= 2S − J∗s
′. (5.2)

Once a solution µs is found, Equation (3.8) can be used to find the corresponding spin current.
Similarly we can take the first derivative of the left equation in (5.1) to eliminate µs and get a
second order equation in the total spin current Js, as

σdiff [(J ′s − 2S) /r]
′

= Js − J∗s . (5.3)

The hot electron system affects the thermal electron system through excitation, decay and screening,
but above equations show that in steady-state these mechanisms only act on the thermal electron
system through the screened hot electron spin current J∗s . In particular Equation (5.2) shows that
J∗s acts on the thermal system exactly like some spin source would. From the perspective of the
thermal electron system the only thing the hot electron system does is removing spin at one position
and placing it elsewhere. To calculate the total spin current we also do not need more knowledge
of the hot electron system than J∗s .

A reason these equations are convenient is that we were able to combine the influences of
the hot electron system, R± and Jh±, into J∗s , combining excitation and transport of both spins.
Unfortunately such a formulation is impossible in the dynamic case. The fundamental reason for
this is that in the time-dependent system excitation and transport of hot electrons may occur at
different moments, so rate of excitation and transport are decoupled. This prevents us from being
able to say something about the excitation rate solely on hot electron currents. In steady state the
continuity equation for hot electrons as written in (2.26) becomes strong enough that a given hot

electron current Jh± uniquely fixes the related excitation rate R± = Jh±
′
.

The model was initially constructed as an extension of the Valet-Fert[6] model to include time
dependence, driven spin flips and hot electrons. Because we are back to steady state, we have lost
the time dependence. This makes it interesting to compare the presented model with Valet-Fert

1Observe that (3.9) involves the density of states D±. To use (3.10) we would have to use transformation (2.35),
also containing the density of states. It is not obvious how these equations can be rewritten to remove them, but this
section will show that the density of states turns out to be mostly unimportant if we are looking for a steady-state
solution.
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once again. Both of these models include spin diffusion driven by gradients in the spin accumulation
µ′s and spin flips driven by the spin accumulation itself µs. The combination of these gives the spin-
diffusion length-scale λ. The fundamental difference between the models is that our model has S
and J∗s driving the spin-accumulation, but in constraining ourselves to samples with a metal-air
interface we have imposed no current flow through J = 0. The Valet-Fert model does not provide S
and J∗s , instead the combination J 6= 0 with spatial differences in spin specific conductivity creates
a non-zero spin accumulation2. Comparing the processes contained in the two models, the Valet-
Fert model allows two independent currents J±, which can alternatively be written as an electron
current J and a spin current Js. The model proposed here is constrained by J = 0, so there is
effectively only a single degree of freedom to the current in the thermal electrons.

Note that in this formulation we have lost any direct dependence on the density of states,
which is also one of the improvements regarding simplicity. In the dynamic case these were really
prominent and crucial to satisfy conservation laws. We can think of the density of states as the
number of electron states that need to be filled for the chemical potential to change one unit, in
that sense describing how much time it takes for some transfer of electrons (spin) to change the
local chemical potential (spin accumulation). In the steady state such time-scales are irrelevant so
the need for the density of states for finding the spin accumulation disappears3.

In relating to other work performed in dynamic settings we are bothered by the existence of the
density of states. In the dynamic case it is common to quantify material properties using the spin-
flip time τ and the spin diffusion coefficient D, which in our discussion emerged in Equations (2.33)
and (3.13). Our fundamental material properties for the same processes are r and σdiff . These are
related to τ and D through the density of states, more specifically, the factor D+D−/Dtot appearing
in both equations. This factor can be thought of as an effective density of states, as justified by
(2.36). To use values of τ and D given in literature we therefore need to use the density of states
to calculate r and σdiff . However, equation (3.14) showed that we can compute the spin diffusion
length λ =

√
σdiff/r =

√
τD from τ and D without using the density of states.

5.3 Conservation of spin and spin currents

Section 2.5 described how the model at that point could be applied to experiments. In Chapter 4
we showed how this can be changed to an interest in Js(zIP) in a steady-state setting. Now that we
have the equations governing this steady state worked out in a convenient way, lets investigate some
immediate consequences of the steady state model applied to the experiments we are interested in.

The left equation of (5.1) represents conservation of spin. Working in the context of experiments
as was described in Section 2.5, we can integrate this from the interface with the insulator at z = 0
to the interface into the IP magnetised layer at z = zIP. As the insulator at z = 0 prevents current
at this place Js(0) = 0, so conservation of spin gives the spin current into the IP layer as

Js(zIP) =

∫ zIP

0

dz (−2 r(z)µs(z) + 2S(z)) . (5.4)

This simply states that any spin flowing into the IP layer must come from a spin flip between
z = 0 and z = zIP. Comparing the s-d model to hot electron based models, if the spin current

2To emphasize this, if we were to impose J = 0 in the Valet-Fert model the solution would be trivial. In particular
the spin accumulation and spin current would vanish; µs = 0, Js = 0.

3If we would care about finding µ0,± we would still need to know the density of states despite being in steady
state.
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is driven by an external spin source S, the spin source itself provides the spin flips. Any spin
flips on 0 < z < zIP driven by the spin accumulation µs will reduce the amount of spin left to
contribute to Js(zIP). The situation is opposite when studying spin currents caused by hot electron
currents. While transporting spin, hot electron excitation, transport and decay do not flip spin by
themselves. Excitation of electrons does however cause a depletion region, as can be seen from the
right side of Equation (5.2). This depletion region causes spins to flip. As Equation (5.4) shows,
the more spin-flip events, the larger Js(zIP) will become. This gives an interesting contrast between
spin currents as predicted by the s-d and hot electron models of spin transport. For external spin
sources S to give a large spin current we want few spin flips driven by the spin accumulation, but
for screened hot electron transport J∗s to give a large spin current the spin accumulation must cause
many spin flips.

To make this relation more concrete we consider some multilayer and compare the spin current
created by an external spin source S localized at zS to one caused by a constant 4 screened hot
electron current J∗s originating from zS . We again work in the context as introduced in Section 2.5,
which requires 0 < zS < zIP. We write the source as

S(z) =
α

2
δ(z − zS), J∗s (z) = βΘ(z − zS). (5.5)

Here Θ is the Heaviside theta and δ the Dirac delta distribution. The factor 1/2 in the source
term for spin flips is chosen to compensate for our conventions allowing 1 spin flip to contribute 2
to the spin transfer; the up electron moving one way and the down electron oppositely. α and β
represent to what extend spin flips or screened electron currents are the cause of the spin current.
By introducing them we can put both sources in the same system at the same time, and after
finding a solution change α and β to select if we are considering S or J∗s as driving the spin current.
If we use Equation (5.2) to describe the state of the thermal electrons, these will give a combined
source term to the thermal spin accumulation of

2S(z)− J∗s
′(z) = (α− β) δ(z − zS). (5.6)

This essentially states that the spin accumulation caused by a spin source at zS gives is precisely
opposite to the spin depletion caused by the excitation and screening currents corresponding to a
screened spin current originating from the same position. As the differential equation is linear, this
also implies that the spin accumulation over space must also precisely be opposite when comparing
these cases. This is illustrated in Figure 5.1.

If we provide some material properties and boundary conditions for the system under consid-
eration we can now solve the differential equation to find µs. Because the differential equation we
are solving is linear we can find some dimensionless constant φ such that for all α and β

µ′s(zIP) = − φ (α− β)

2σdiff(zIP)
. (5.7)

We can use this with Equation (5.1) to calculate the total spin current into the IP magnetised layer
as

Js(zIP) = φ (α− β) + β = φα+ β (1− φ). (5.8)

4The constraint for J∗s to be constant is troublesome. Even if we choose to model hot electrons as non-decaying,
they might traverse different materials, such that the screening currents will carry different amounts of spin. In those
cases we can use linearity to write J∗s (z) = ΣNn=1βnΘ(z − zS,n) and use the superposition principle to find the spin
transfer caused by the total, but multiple spin sources to the thermal electrons will emerge.
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Figure 5.1: Comparison of a spin accumulation profile caused by an external spin source (a), and
a screened hot electron spin current (b) of the same magnitude. On the vertical axis the spin
accumulation µs, on the horizontal axis z. Equation (5.6) shows that the source term to the
thermal spin accumulation is the same but opposite sign. As the differential equation governing the
spin accumulation is linear, the spin accumulation and spin current in (a) and (b) also only differ
in sign. In particular the diffusive spin current into the IP layer is equal and opposite.

Js(zIP) is the rate of spin flowing into the IP magnetised layer, while α represents the rate of spin
being injected by an external source and β is the rate of spin moved into the IP magnetised layer
by a screened hot electron current.

Switching off the screened hot electron current by setting β = 0 gives Js(zIP) = φα, so φ can be
interpreted as the efficiency for an s-d source at zS to transport the introduced spin to zIP where it
contributes to the spin current Js(zIP). Similarly, switching off the external spin source by setting
α = 0 gives Js(zIP) = β (1 − φ). From this, 1 − φ is the efficiency for a screened hot electron spin
current originating from zS to contribute to Js(zIP). The efficiency is different from 1 because the
screened hot electron current creates a depletion region that will diffuse to the IP layer. Equation
(5.6) shows that this depletion is similar to that of an s-d spin source, so will have efficiency φ, but
giving a contribution of opposite sign. This shows that in such a configuration the efficiency of spin
injection by hot electrons is exactly opposite to the efficiency of spin injection by a spin source. If
one is efficient the other is not, and the other way around.

This highlights a big difference between the s-d and hot electron based model of ultrafast spin
currents. s-d and hot electron driven spin currents behave quite differently because s-d sources are
a spin source while hot electron related processes are not. The s-d spin source therefore competes
with with equilibrating spin flips r, which in this case acts as a spin sink. Hot electron driven spin
currents need nonzero r to make the transferred spin. This principle is based on the conservation
law of spin, so while this exposition was done in the virtual steady state setting, it does not depend
on it. In cases where changing to a virtual steady state perspective is not allowed this difference
between s-d and superdiffusive sources will therefore remain relevant.
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5.4 Spin diffusion lengths

The observation of the previous section is interesting, but not having any indication of the value of
φ is not that satisfying5. In general one would have to solve a differential equation to find it but
we can give a little intuition regarding its behaviour. Equation (5.8) shows that φ is the fraction
of injected spin (from either an s-d source or screened hot electrons) that diffuses to zIP . The only
other thing that can happen to this spin is being dissipated through a spin flip. This means that
φ can also be thought of as comparing how much spin is transported out of a region to how much
is lost to spin flips in that region. This is closely related to the spin diffusion length λ =

√
σdiff/r.

Within homogeneous systems it can be thought of as “how far spin will diffuse before flipping”.
In totally homogeneous space the spin diffusion length completely specifies how far spin is able

to diffuse, and φ will just be the exponential decay φ = 1
2e

(zS−zIP)/λ. However, by setting an
insulating boundary condition at z = 0 and an ideal spin sink at z = zS we already made the
system inhomogeneous. Despite this, within the individual layers of the system the spin diffusion
length specifies how far spin will diffuse.

When studying spin diffusion in multilayers, this makes it tempting to look at the spin diffusion
lengths of the constituent layers to estimate how efficient diffusion is in the multilayer. Here the spin
diffusion lengths of the constituent layers can paint a misleading picture of the relative efficiency
of spin diffusion and spin flips in the combined system. As an example, think of a multilayer
consisting of alternating layers of materials A and B, with all layers having the same thickness and
many repeats on a distance of 1 unit length. Material A has material properties σdiff = 10, r = 10,
giving λ = 1. Material B has properties σdiff = 0.1, r = 0.1, also giving it a spin diffusion length of
λ = 1. One might expect the multilayer to behave similarly to a material with λ = 1 in regards to
how the efficiency of spin diffusion and spin flips compare. In reality, spin diffusion will be limited
by material B, giving an effective σdiff ≈ 0.2, and spin flips are dominated by material A such that
effectively r ≈ 5 6. These combine to give an effective spin diffusion length of λ ≈

√
0.2/5 = 1/5,

substantially smaller than λ = 1 of the constituent layers. While this example concerns many
layers, similar effects can even arise when just two layers and a single interface is present. Next
chapter will present an example of this in Section 6.2.1.

In this chapter the consequences of enforcing steady state on the proposed model were explored,
with the results being useful to understand dynamic experiments through the results from Chapter
4. The governing equations were presented, and we discussed the various changes making it more
convenient to use than dynamic model. The simpler governing equations allowed some behaviour
of the model to be better understood. This chapter concludes the mathematical infrastructure
presented in this thesis. The following chapter will apply what has been build up to the experiments
that motivated this work.

5Other than φ being between 0 and 1, as spin flips and diffusion can only dissipate spin, and it can dissipate no
more spin than was injected.

6The factor 2 or 1/2 appears in both cases because in the multilayer material A and B take up half the thickness.
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Chapter 6

Application to Experiments

In the previous chapters we derived and simplified a model for studying the experiments performed
in [11, 12, 13]. This chapter will use the final simplification of the “virtual steady state” described
in the previous chapter to build models of the experiments we are trying to better understand. The
measurement most relevant to this discussion is from [11], where the efficiency of excitation of the
magnetic precession is measured for different spacer thicknesses.

Section 6.1 will describe how the proposed model will be applied to this experiment. With
this set up done, Section 6.2 will study how spin currents stemming from an s-d would behave in
this experiment. Section 6.3 will study spin currents driven by hot electron dynamics. For both
processes driving spin currents, the respective results will be compared to the measurements of [11]
to attempt to find out which of the processes gives the spin transfer observed in this experiment.

6.1 Model of experiments

How to apply the proposed model to the experiments under consideration was introduced in Section
2.5. This section will briefly recap the setup and make it more specific. The direction of spin up is
chosen along the OOP direction. An insulator is modeled at z < 0, giving an insulating boundary
conditions at z = 0. The IP magnetised layer is positioned at z > zIP, which is modeled to act as an
ideal spin sink for OOP spin. This gives a no spin accumulation boundary condition; µs(zIP) = 0.
These boundary conditions cause that only the range 0 < z < zIP needs to be studied. Working
in the virtual steady state perspective makes the state of the model constant in time, and the spin
current into the IP magnetised layer Js(zIP) represents the excitation of the magnetic precession.

In this chapter we choose to model the region of interest 0 < z < zIP as consisting of the OOP
magnetic layer and a spacer layer, both of which are internally homogeneous. The OOP layer will
be labeled with subscript 1, while the spacer layer has subscript 2. This setup is sketched in Figure
6.1. The figure shows the OOP coordinate on the horizontal axis, divided into the separate relevant
layers of the sample. Furthermore, the boundary conditions at interfaces between the various layers
are shown below these interfaces.
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Figure 6.1: Sketch of the multilayer and the relevant boundary conditions we will be considering in
this chapter. The horizontal axis corresponds to the out-of-plane coordinate z.

6.2 s-d source

First we study s-d spin sources as the cause of spin currents. The hot electron system is disabled by
setting J∗s = 0, so only the external spin source S will cause a spin current to exist. This external
spin source was related to conservation of spin angular momentum during ultrafast demagnetisation,
the spin from localised electrons being transferred to the itinerant, i.e. thermal electrons. As we are
working in the virtual steady state picture, S represents the total amount of spin injected locally
into the thermal electrons system. For this reason, this external spin source S is nonzero only in
the OOP magnetised layer, where we model it to be uniform1.

In Section 6.2.2 a fairly general solution will be given, but the derivation is involved and it
turns out that the spin accumulation inside the OOP magnetised layer is not that important to
much of the behaviour. For this reason we will first restrict ourselves to the limiting case of an
infinitesimal OOP layer, such that the internal state of the OOP layer is effectively removed. Even
this limiting case will be introduced by showing special cases before discussing the more general
infinitesimal OOP layer problem. Spin flips in the spacer layer and spin flips in the OOP magnetic
layer are switched off in turn. After these results the infinitesimal OOP solution is shown, which is
interpreted in terms of the special cases. Finally the case of finite OOP layers is discussed, which
is interpreted by comparison to the solution to the infinitesimal OOP layer problem.

6.2.1 Infinitesimal OOP layer

We consider a system with an infinitesimal OOP magnetised layer, corresponding to a limit L1 ↓ 0.
We will write 0+ for this limit to 0 from the positive side, so the OOP magnetised layer spans
0 < z < 0+ and the spacer layer spans 0+ < z < zIP

2. The OOP layer being shrunk to thickness

1This will allow us to write S both for the function it referred to previously and the constant value it takes in the
OOP magnetised layer. Which of the two is used in equations will be clear from context.

2Because the OOP layer is infinitesimal we have simply zIP = L2. In anticipation for studying the case with
finite OOP magnetised layer we will use L2 where the thickness of the spacer is relevant, and zIP when evaluating
functions at the interface with the IP magnetised layer.
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0 prevents it from having any internal state. Instead it will act as a boundary condition to the
spin accumulation in the spacer layer, which we will derive now. If we integrate the left equation
in (5.1) (conservation of spin) from z = 0 to z = 0+, we get

Js(0
+)− Js(0) = −2

∫ 0+

0

dz r1(z)µs(z) + 2

∫ 0+

0

dz S(z). (6.1)

Informally, because the distance between z = 0 and z = 0+ is infinitesimal we take µs to be constant
over this region. This motivates us to simplify above integrals by introducing S̃ and r̃ as3

r̃ µs(0
+) =

∫ 0+

0

dz r1(z)µs(z), S̃ =

∫ 0+

0

dz S(z). (6.2)

Using this with the no current boundary condition on the interface with the insulator Js(0) = 0
gives

Js(0
+) = 2 S̃ − 2 r̃ µs(0

+), (6.3)

which will serve as the boundary condition on the state of the spacer layer on the interface with the
FM layer. Note that a single spin flip contributes two to the spin current into the spacer4. With
this, the maximum spin current reachable with source S̃ is Js(zIP) = 2S̃.

The boundary condition of the spacer layer at its interface with the IP magnetised layer is
µs(zIP) = 0, by modeling the IP layer to be an ideal spin sink. Now we need to solve the differential
equation of the spin accumulation in the spacer layer with the boundary conditions stated above.
We will use Equation (5.2) and the right-hand side of Equation (5.1). Within the spacer layer these
reduce to

r2 µs = σdiff,2 µ
′′
s , Js = −2σdiff,2 µ

′
s, (6.4)

where r2 and σdiff,2 are positive real numbers. This sets up the problem of spin currents caused by
an s-d source in infinitesimal OOP magnetised layers.

No spin flips in OOP layer

First we consider the special case when no spin flips occur in the OOP layer, which means r̃ = 0.
From (6.4), the solution of µs in the spacer layer can be written as

µs(0
+ < z < zIP) = µ+e+z/λ2 + µ−e−z/λ2 (6.5)

where µ± are real numbers parameterising the solution and λ2 =
√
σdiff,2/r2 is the spin diffusion

length of the spacer layer. The boundary condition on the interface with the IP magnetised layer
is µs(zIP) = 0, while r̃ = 0 reduces the boundary condition with the OOP layer as given in (6.3) to
Js(0

+) = 2S̃. This gives a system of equations that can be used to solve for µ±, which can be used
to calculate the spin current into the IP magnetised layer as

Js(zIP) =
4S̃

e+L2/λ2 + e−L2/λ2
. (6.6)

3Mathematically, this step should be thought of as taking the limit 0+ ↓ 0, with r and S increasing to keep S̃ and
r̃ constant. Ultimately though, the main justification of this approach is that its result agrees with a limiting case
of the model with finite OOP layer, which will be discussed in Section 6.2.2.

4Every spin-flip, a spin is removed and an electron with opposite spin is inserted. Both the removed and injected
spin will contribute, giving the factor 2.
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We see that on changing the spacer thickness L2, the only relevant length-scale is the spacer spin
diffusion length λ2. The behaviour of Js(zIP) on changing L2 is shown in Figure 6.2. We see in
the equation and figure that setting the spacer thickness to 0 will give Js(zIP) = 2S̃, so all injected
spin diffuses into the IP magnetised layer. On the other hand, in the limit of large spacer thickness,
limL2→∞ Js(zIP) = 0, so all spin is dissipated by flips in the spacer layer.
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Figure 6.2: Js(zIP) as function of L2 in the limiting case r̃ → 0; no spin flips occur in the OOP
magnetised layer. Vertical axis in units 2 S̃, horizontal axis in units λ2.

No spin flips in spacer layer

Now we discuss the special case of infinitesimal OOP magnetised layers where no spin flips occur
in the spacer layer. Any spin injected into the OOP layer can either dissipate in the OOP layer
itself or diffuse into the IP magnetised layer. Mathematically, disabling spin flips in the spacer
layer amounts to setting r2 = 0. This makes the differential equation in the spacer, the left side of
Equation (6.4), reduce to µ′′s = 0. The solution of µs within the spacer layer can then be written as

µs(0
+ < z < zIP) = µs(0)− Js

2σdiff,2
z. (6.7)

Using this with the right side of Equation (6.4) gives the spin current in the spacer being constant;
Js(0

+ < z < zIP) = Js, justifying the notation. With the boundary condition with the IP layer
µs(zIP) = 0, and Equation (6.3) as the boundary condition for the interface with the OOP layer we
get a system of equations that can be solved for µs(0) and Js. With these we can derive the spin
current into the IP layer to be

Js(zIP) =
2S̃

1 + L2/γ
, γ = σdiff,2/r̃ (6.8)

Now, changing the spacer layer thickness L2 will affect the spin current through the newly introduced
length scale γ. Figure 6.3 shows the behaviour of Js(zIP) when changing L2. As in the previous
case, the limit of L2 ↓ 0 makes all injected spin diffuse to the IP layer, and the limit L2 → ∞
prevents any spin from diffusing into the IP layer.
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Figure 6.3: Js(zIP) as function of L2 in the limiting case r → 0; no spin flips in the spacer layer.
Vertical axis in units of 2 S̃, horizontal axis in units of γ.

This is the simplest example that shows that on changing L2, we might see behaviour at quite
different length scales than the spin-diffusion length of the spacer layer5. The cause is the interplay
between the different layers, which is clear by γ comparing the rate of spin decay through the
OOP layer (r̃) with diffusion through the spacer layer (σdiff,2). The use of r̃ (which only exists in
a non-physical limit of infinitesimal OOP layers) in the equation for γ makes it hard to give an
estimate on what order of magnitude γ may be. This problem will be solved when studying finite
OOP layers as will be done in Section 6.2.2.

General infinitesimal OOP layer case

Now that we have studied the special cases of only allowing spin flips in the spacer layer or the
OOP magnetised layer, we are set for the more general case of spin flips allowed in both layers.
Still, we are dealing with infinitesimal OOP layers. The derivation of this problem largely follows
those of the special cases discussed before. The spin current into the IP layer turns out to be

Js(zIP) =
4 S̃

e+L2/λ2 + e−L2/λ2 + λ2

γ

(
e+L2/λ2 − e−L2/λ2

) , γ = σdiff,2/r̃. (6.9)

In the limit γ → +∞ the right part of the denominator is killed, and the solution reduces to that
of the special case where no spin-flips occur in the OOP layer as given by Equation (6.6). In the
limit λ2 → +∞ we can expand the exponents to first order to recover the solution to the special
case where no spin-flips occur in the spacer layer, given by Equation (6.8).

Js(zIP) depends on L2, λ2 and γ. Because all three are in units of length, effectively there are
only two independent degrees of freedom. In Figure 6.4 the behaviour of Js(zIP) is sketched. We
see that if λ2 and γ are substantially different, the solution will closely resemble the limiting case
of the larger of the two tending to infinity. Put differently, the shortest of λ2 and γ will dominate
the behaviour of Js(zIP) with changing spacer thickness L2.

5In setting r2 ↓ 0 we have effectively set λ2 →∞.
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(a) Js(zIP) depending on L2 and γ, both in units of
λ2. Including the limiting case γ → ∞ as described
by Equation (6.6).
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(b) Js(zIP) depending on L2 and λ2, both in units of
γ. Including the limiting case λ2 → ∞ as described
by Equation (6.8).

Figure 6.4: The behaviour of spin current flowing into the IP magnetised layer as given by Equation
(6.9), depending on L2, λ2 and γ. On the vertical axes Js(zIP) in units of S̃. On the horizontal axis
the spacer thickness L2. Note that the non-limiting solutions (solid curves) are the same in both
figures (λ2 = aγ corresponds to γ = 1/a λ2), but the curves appear different because the horizontal
axis has different units.

6.2.2 Finite FM layers

Now that the limiting case of infinitesimal OOP layers is discussed we are prepared to study finite
OOP layers. The derivation mostly follows the steps in the derivations above, but the derivation
has become substantially larger because we now have to consider the internal state of the OOP
layer besides the internal state of the spacer layer dealt with previously. Here we will only state the
result, the derivation of which can be found in Appendix C.1. In the case of finite OOP magnetised
layers in virtual steady state, the spin current into the IP layer is

Js(zIP) =
4S T

e+L2/λ2 + e−L2/λ2 + λ2

γ (e+L2/λ2 − e−L2/λ2)
, γ =

σdiff,2

r1 T
, T = λ1 tanh(L1/λ1)

(6.10)
where the quantities T and γ in units of length were introduced. The behaviour of Js(zIP) on
changing λ2, γ and L2 is identical to that in case of an infinitesimal OOP layer case. This justifies
the new equation for γ as a generalisation of the γ of the infinitesimal OOP layer case and allows us
to carry over much of the intuition formed when studying the infinitesimal OOP layer. In particular
Figure 6.4 carries over exactly to finite OOP layers6. The limiting cases of γ →∞ and λ2 →∞ as
discussed for the infinitesimal OOP layer case also have their counterparts as

lim
γ→∞

Js(zIP) =
4S T

e+L2/λ2 + e−L2/λ2
, lim

λ2→∞
Js(zIP) =

2S T

1 + L2/γ
. (6.11)

The behaviour of these on changing L2 is exactly like their counterparts in the infinitesimal OOP
layer case, which were plotted in Figures 6.2, 6.3 and 6.4.

6Where the vertical axis is now in units of S T .
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The only differences between the finite and infinitesimal OOP layer case are the replacements of S̃
becoming S T in the equation for Js(zIP), and r̃ becoming r1 T in the new definition of γ. Remind
that in Equation (6.2) the symbols S̃ and r̃ were defined as integrals of S, respectively r1, over the
OOP layer. With T being of unit length and S̃ ∼ S T , r̃ ∼ r1 T , we can think of T as the thickness
of the region in the OOP that contributes spin to the spin current into the IP layer. The definition
of T also conforms to what one might expect under such an interpretation of it. In the limiting
case L1 << λ1 we get T = L1; the OOP layer is much smaller than its spin diffusion length so the
entire layer contributes. The other extreme λ1 << L1 gives T = λ1; only the region closer than one
spin flip length from the spacer will contribute to Js. In general T is approximately the shortest of
λ1 and L1.

In the limiting case of infinitesimal OOP layer we were not able to give reasonable estimates of
γ as it depended on the non-physical r̃, but now we can attempt to estimate it. The equation for γ
provided in Equation (6.10) can be rewritten using the definition of T and λ1, giving alternatively

γ = λ1
σdiff,2

σdiff,1
/ tanh(L1/λ1). (6.12)

As an example, based on a stack consisting of a Co/Pt OOP magnetised layer and a Cu spacer and
the material properties of these materials specified in [16], in Appendix D we estimate that we would
expect γ to be between 15 nm and 80 nm. In contrast, [16] provides the spin diffusion length of the
copper as 400 nm. While we can not give much confidence in any value of γ, is seems likely that γ
is substantially shorter than λ2 in this material system. This would make the resulting behaviour
of Js(zIP) on changing the spacer thickness L2 reasonably described by the right of (6.11).

6.2.3 Relation to experimental observations

In the MOKE measurements used to study experiments the most accessible way of quantifying the
spin transfer is the efficiency, as the MOKE is sensitive of the out-of-plane magnetisation of the
entire stack. The study of [11] varied the spacer thickness to measure the spin transfer efficiency.
This measurement is shown in Figure 6.5. The model presented above will be used to interpret the
measurements in this paper.

We will write the efficiency of spin diffusing to the IP layer relative to the injected spin as φ.
To calculate the efficiency of spin transfer, we need to divide the spin transfer given by Equation
(6.10) by the total amount of injected spin, 2S L1. As the s-d model states that the spin lost
by demagnetisation equals the spin injected into the thermal electron, this justifies the relation
between the calculated φ and the efficiency observed in experiment. This gives

φ =
2T/L1

e+L2/λ2 + e−L2/λ2 + λ2

γ (e+L2/λ2 − e−L2/λ2)
, (6.13)

While it is difficult to calculate γ in the experiment in question, we can observe from Figure 6.5
that the change of φ with L2 is on much shorter length-scales than the spin diffusion length of the
copper spacer of some 400 nm. Assuming the proposed model is correct would therefore imply that
γ << λ2. This allows us to use the λ2 →∞ limit, which simplifies the spin transfer efficiency to

φ =
T/L1

1 + L2/γ
. (6.14)
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Fitting this to the measurements with γ and T/L1 as fitting variables gives γ = 7.6 nm and T/L1 =
0.024, though a substantial range of other values would fit the measurements fairly well. The fit
to the measurement data is shown in Figure 6.5, together with the exponential decay fit as used in
the original paper.
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Figure 6.5: For various spacer thicknesses the efficiency of spin transfer, i.e. the spin absorbed by
the in-plane magnetised layer relative to the demagnetisation of the out-of-plane magnetised layer.
In black the measurement data from [11]. The red, dashed curve is the exponential fit as used in
the original paper, with a length-scale of 13 nm. The green curve is the fit of Equation (6.14) to
the measurement data, with fitting variables γ = 7.6 nm and T/L1 = 0.024.

Using the definition of T to write T/L1 as

T/L1 =
λ1

L1
tanh

(
L1

λ1

)
(6.15)

shows that T/L1 = 0.024 would approximately imply λ1/L1 = 0.024. Knowing that the OOP layer
of the experiments has a thickness of L1 = 3.2 nm this would give an impossibly short spin diffusion
length of the OOP layer of λ1 = 0.08 nm. The fit value of γ also seems implausibly short. These
discrepancies give some problems for using the s-d model as used here to describe the experiment
in question.

An important difference with the stack as modelled here compared to the stack used in the
experiment of [11] is the platinum layer adjacent to the OOP layer, where we have modelled an
insulating interface. Platinum is a heavy metal, so it does conduct electrons and its large mass
causes it to relatively quickly dissipate spin. This layer would give a third place for spin to be
dissipated, besides the previously mentioned spin flips in the spacer layer and OOP magnetised
layer. It seems sensible that such an additional spin dissipation channel would lower the spin
transfer efficiency relative to the model presented here, explaining the implausibly small fit value of
T/L1 when not including the Pt layer. Also, if r T ∼ r̃ can be interpreted as the effectiveness of spin
to be flipped before reaching the spacer layer, it seems plausible that the added spin sink would give
an effective increase in r̃. This might in turn result in a decrease in the length-scale γ = σdiff,2/r̃,
explaining the small value obtained in the fit to the experimental data. Finally, including the effect
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of interfacial conductivities between the several layers might change the behaviour of the model,
potentially acting as an additional cause for the small observed spin transfer efficiency in comparison
to above model. It seems plausible that such modifications would significantly improve the ability
of the s-d of reproducing the behaviour observed in the studied measurements, but a lack of time
has prevented these modifications from being studied further.

6.3 Hot electrons

Having discussed the s-d effect as a source of spin currents, we now switch our attention to hot
electron excitation and transport as the cause of spin currents. Here we disable the external spin
source by setting S = 0 everywhere in the multilayer, while the screened hot electron current J∗s
can now be non-zero.

We will keep the discussion limited to infinitesimal OOP layers. This substantially simplifies
the problem, but it discards potentially interesting behaviour caused by the screening currents in
the OOP layer having a different spin polarisation than that in the spacer layer7. The approach of
introducing the infinitesimal OOP magnetised layers is the same as was done in the s-d case. The
boundary condition related to the interface between the OOP layer and spacer layer, as given by
Equation (6.3) in the s-d case, now becomes

Js(0
+) = −2 r̃ µs(0

+). (6.16)

In the s-d case, the spin current into the IP layer was purely the diffusive current. Now we both
have a diffusive spin current and the screened hot electrons themselves contributing to the spin
transfer.

Initially we will discuss the special case where no hot electron decay occurs in the spacer layer.
Afterwards we will include hot electron decay, but only in the limiting cases when either no spin
flips occur in the OOP magnetised layer (r̃ → 0), or no spin flips occur in the space layer (r2 → 0).

6.3.1 No hot electron decay

First considering the simple case when hot electrons do not decay. Every hot electron leaving the
OOP magnetised layer reaches the IP magnetised layer. This makes the screened hot electron
current J∗s constant over the spacer layer. This constant will be written as J∗s (0+) in anticipation
to the case when hot electron decay will be included. It represents the screened hot electron spin
current leaving the OOP magnetised layer both here and when hot electron decay will be included.

When calculating the spin transfer into the IP magnetised layer, the screened hot electron
current contribution will be J∗s (zIP) = J∗s (0+). The diffusive contribution to the spin current can
be derived by a similar derivation as the one related to s-d driven spin currents in infinitesimal
spacer layers. In fact we can use the result described there with the result of Section 5.3 where we

7Electron excitation and the screening current of hot electron transport cause a spin depletion region. Depending
on the spin polarisation of the screening currents in the OOP layer, this spin depletion region could either be where
electrons are excited, or on the OOP layer - spacer layer interface where the spin polarisation of the screening current
changes. In the extreme case of spin neutral screening currents in the OOP layer, the spin polarisation does not
change over the interface so there is no interfacial spin accumulation. On the other hand, if the screening current in
the OOP layer is as spin polarised as the hot electron current, in the OOP layer the screened hot electron current
will have 0 spin polarisation; J∗s = 0. In that case the spin depletion region would exist at the OOP layer - spacer
layer interface.

60



showed how in the case of constant J∗s , spin currents as predicted by the s-d model are related to
those predicted by a hot electron model. The derivation shows that the spin transfer caused by a
constant screened hot electron current is

Js(zIP) = J∗s (0+)

(
1− 2

e+L2/λ2 + e−L2/λ2 + λ2

γ

(
e+L2/λ2 − e−L2/λ2

)) , γ = σdiff,2 / r̃. (6.17)

Like in the s-d case, the spin current into the IP magnetised layer depends on the spacer thickness
L2 and the length-scales λ2 and γ. We also have the limiting cases of no spin flips in the OOP layer
(γ →∞) and no spin flips in the spacer layer (λ2 →∞) carrying over

lim
γ→∞

Js(zIP) = J∗s (0+)

(
1− 2

e+L2/λ2 + e−L2/λ2

)
, lim

λ2→∞
Js(zIP) = J∗s (0+)

(
1− 1

1 + L2/γ

)
.

(6.18)
The behaviour of Js(zIP) on varying L2, λ2 and γ, including the limiting cases, is shown in Figure
6.6.

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

L2 ( 2)

J
s
(z
IP
)

(J
s
*
(0

+
))

= 1/9 2

= 1/3 2

= 1 2

= 3 2

= 9 2

-> Infinity

(a) Js(zIP) depending on L2 and γ, both in units of
λ2. Including the limiting case γ → ∞ as described
by left equation of (6.18).

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

L2 ( )

J
s
(z
IP
)

(J
s
*
(0

+
))

2 = 9

2 = 3

2 = 1

2 = 1/3

2 = 1/9

2 -> Infinity

(b) Js(zIP) depending on L2 and λ2, both in units of
γ. Including the limiting case λ2 → ∞ as described
by the right equation of(6.18).

Figure 6.6: The behaviour of spin current flowing into the IP magnetised layer as given by Equation
(6.17), depending on L2, λ2 and γ. On the vertical axes Js(zIP) in units of J∗s (0+). On the horizontal
axis the spacer thickness L2. Note that the non-limiting solutions (solid curves) are the same in
both figures (λ2 = a γ corresponds to γ = 1/a λ2), but the curves appear different because the
horizontal axis has different units.

Again, λ2 is the length scale related to spin flips in the spacer layer, while γ is the length-scale
related to spin flips in the OOP layer. If the spacer layer thickness L2 is smaller than both of these,
spin will not flip in the OOP layer nor in the spacer layer. Instead a diffusive current from the IP
layer will compensate the spin depletion caused by excitation and screening of hot electrons. This
diffusive spin current exactly compensates the screened hot electron spin current, causing the total
spin current to be small when the spacer is small; limL2→0 Js(zIP) = 0, as visible in Figure 6.6.

On the other hand, if the spacer thickness L2 is larger then one of λ2 or γ, the process related
to it is capable of dissipating the spin-depletion caused by the screened hot electron current. This
causes the diffusion current flowing back to the depletion region to be small. In the extreme case
the diffusion current flowing out of the IP magnetised layer is zero, achieving the largest possible
spin injection of J∗s (0+). From this, the shortest of λ2 and γ dictated the length scale of Js(zIP)
when changing the spacer thickness L2, as happened in the s-d case.
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This can also be observed in Figure 6.6. Subfigure 6.6a shows that the rise of of spin transfer with
increasing spacer thickness is at the length scale λ2 or faster. On the other hand, Subfigure 6.6b
shows this rise being at the scale of γ or more quickly. As these are the only length scales involved,
this shows that the shortest of λ2 and γ must dictates the length scale at which the spin transfer
rises.

Not having hot electrons decay is an unrealistic modelling choice, but it does show an important
contrast to the s-d source of spin currents. Firstly that hot electron induced spin currents in
combination with having a tiny spacer would prevent a net spin transfer to take shape. In this
situation, increasing the number of spin flips in the OOP magnetised layer or the spacer layers
actually causes an increase of the total spin current. This makes the length-scales related to spin-
flips, λ2 and γ, to now be a length-scales related to the spin transfer Js(zIP) increasing with spacer
thickness L2. However for sufficiently thick spacer layers the assumption of hot electrons not
decaying becomes problematic. The next section will investigate how hot electron decay changes
the behaviour.

6.3.2 Hot electron decay

We now allow hot electrons to decay. To keep the derivations and their solutions simple, we choose
an exponential decay of the screened hot electron current J∗s over z with a characteristic length-scale
λh, subscript h for “hot”. This makes the screened hot electron current follow

J∗s (0+ < z < zIP) = J∗s (0+) e−z/λh . (6.19)

In the limit λh →∞ hot electrons will not decay, reproducing J∗s being constant as was investigated
above. The limit λh → 0 will make hot electrons decay before traveling any meaningful distance,
such that J∗s = 0. This gives a trivial limiting case limλh→0 Js(zIP) = 0.

Hot electron decay will change the spin transfer into the IP magnetised layer in two ways. The
most obvious way is the screened hot electron current J∗s (zIP) into the IP layer now decreasing
with growing spacer thickness L2. Somewhat more hidden, the decay of hot electrons in the spacer
will inject a spin accumulation into the spacer layer. This spin accumulation can contribute to the
diffusive spin current into the IP magnetised layer.

We already saw in the case of no hot electron decay that λ2 and γ are length scales related to
Js(zIP) increasing with the spacer thickness L2. In contrast, the hot electron length scale λh is a
length scale related to the decrease of Js(zIP ) with increasing L2.

Working with infinitesimal OOP magnetised layers and hot electron decay is still fairly difficult,
so we will not give a general solution including both spin flips in the OOP magnetised layer and in
the spacer layer. Instead we present the limiting cases of disabling spin flips in the OOP layer or
the spacer layer.

No spin flips in OOP magnetised layer

In this case, no spin flips are allowed in the OOP magnetised layer, corresponding to the limit r̃ → 0,
or alternatively γ →∞. We have the screened hot electron current causing a spin depletion at the
OOP layer, transporting this spin either to the IP magnetised layer or letting it decay somewhere in
the spacer layer. The spin accumulation in the spacer will potentially cause a diffusive contribution
to the spin current into the IP layer. The derivation corresponding to this problem is given in

62



Appendix C.2, the solution gives the spin current into the IP layer as

Js(zIP) = J∗s (0+)
λ2
h

λ2
h − λ2

2

(
e−L2/λh

(
1 +

λ2

λh
· e

+L2/λ2 − e−L2/λ2

e+L2/λ2 + e−L2/λ2

)
− 2

e+L2/λ2 + e−L2/λ2

)
.

(6.20)
While non-obvious, this function seems to be continuous when λ ≈ λh. The behaviour of Js(zIP)
on changing L2, λ2 and λh is shown in Figure 6.7. The figure shows that having spacers much
smaller than the spin diffusion length (L2 << λ2) prevents a spin spin current from being formed,
as happened before introducing hot electron decay8. Due to hot electrons decaying, having spacer
thickness larger than the hot electron decay length (λh << L2) will now also prevent a net spin
current from taking shape. Given some material parameters λ2 and λh there now is some spacer
thickness that maximises the total spin current into the IP layer.
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Figure 6.7: The behaviour of spin current flowing into the IP magnetised layer as given by Equation
(6.20), depending on L2, λ2 and λh. On the vertical axes Js(zIP) in units of J∗s (0+). On the
horizontal axis the spacer thickness L2. Note that the non-limiting solutions (solid curves) are
the same in both figures (λh = a λ2 corresponds to λ2 = 1/a λh), but the curves appear different
because the horizontal axis has different units.

Besides the limits of λh → 0 (λh << L2) and λ2 → ∞ (L2 << λ2) causing no spin to flow into
the IP layer, the solution has two more interesting limiting cases. The limit λh → ∞ implies no
hot electron decay. As we also imposed no spin flips in the OOP layer this limit reproduces the left
of Equation (6.18). The last limit we can take is λ2 → 0, corresponding to the spacer layer being
an ideal spin sink. This prevents any diffusive spin currents to contribute to Js(zIP), leaving only
the screened hot electron current contribution; limλ2→0 Js(zIP) = J∗s (zIP). Even when not in this
limit, the decay of spin transfer with increasing spacer thickness closely resembles the decay of hot
electrons in this case.

8More specifically, in the case without hot electron decay and no spin flips in the spacer; the limit γ →∞.
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No spin flips in spacer layer

If no spin is able to flip in the spacer layer, continuity requires the nett spin current to be constant
over the spacer layer. Hot electron decay will still inject spin into the spacer layer, which must
diffuse to either the OOP or IP magnetised layer to be dissipated. This gives a fairly interesting
situation. The derivation related to this case is given in Appendix C.3, with the solution for the
spin current into the IP layer being

Js(zIP) = J∗s (0+)
λh
(
1− e−L2/λh

)
γ + L2

, γ = σdiff,2 / r̃. (6.21)

Now, Js(zIP) depends on L2, γ and λh. Its behaviour is plotted in Figure 6.8. Again, γ is related
to a spin-flip process, so gives a length-scale at which Js(zIP) increases with spacer thickness Ls.
In the case L2 << γ this prevents a spin current from reaching the IP magnetised layer. The hot
electron decay length λh again acts as a length-scale related to the decrease of spin transfer with
increasing spacer thickness, so λh << L2 causes Js(zIP) = 0. Because of these effects, again there
is a specific spacer thickness that maximises Js(zIP) given material properties γ and λh.
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Figure 6.8: The behaviour of spin current flowing into the IP magnetised layer as given by Equation
(6.21), depending on L2, γ and λh. On the vertical axes Js(zIP) in units of J∗s (0+). On the horizontal
axis the spacer thickness L2. Note that the non-limiting solutions (solid curves) are the same in
both figures (λh = a γ corresponds to γ = 1/a λh), but the curves appear different because the
horizontal axis has different units.

Note that the decrease in spin transfer with increasing spacer thickness is substantially slower than
the hot electron decay, as can be seen in Figure 6.8b. The difference stems from hot electron decay
in the spacer layer, which will contribute to the spin accumulation in the spacer layer. Part of this
will diffuse to the IP layer. Especially as we are considering a case where spin flips in the spacer
layer are not modelled, so any spin deposited by hot electrons will have to diffuse to either the OOP
or IP magnetised magnetic layer.

Of the two other limiting cases, the limit λh →∞ removes hot electron decay, reproducing the
right of Equation (6.18). The remaining limit of γ → 0 is an interesting one. It is related to r̃ →∞,
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such that the OOP magnetised layer becomes an ideal spin sink. It results in the spin current into
the IP layer following

lim
γ→0

Js(zIP) = J∗s (0+)
λh
L2

(
1− e−L2/λh

)
. (6.22)

This limit is shown in Subfigure 6.8b. Like the solutions with finite γ, this solution has a quite
different behaviour than the screened hot spin current into the IP magnetised layer, J∗s (zIP).

6.3.3 Relation to experimental observations

Like we did for spin currents driven by the s-d process, we will compare the behaviour of Js(zIP)
changing with the spacer thickness L2 to the behaviour observed in [11], as was shown in Figure
6.5. We are looking for a good fit of the models with realistic values of the spacer spin diffusion
length λ2, the hot electron decay length λh, and the length-scale comparing diffusion through the
spacer to spin flips in the OOP layer, γ.

The spacer used in the experiments is a copper layer, such that the spin diffusion length is of
order λ2 = 400 nm [16]. This is much larger than the thickness of the studied spacers, which range
from 2 to 11 nm. This should make spin flips in the spacer layer a small contribution, so we will
approximate the problem has having no spin flips in the spacer layer and use the result derived in
Section 6.3.2. The dependence of Js(zIP ) on the spacer thickness L2 is given by Equation (6.21),
which depends only on λh and γ. We will fit this relation to the experimental measurements,
including a free vertical scaling9. It turns out that a good fit is achieved for a substantial range of
values of γ, so two extremes of this range are explored. These fits are shown in Figure 6.9.

As was discussed before, γ is related to how quickly Js(zIP) increases with spacer thickness,
while λh relates to the rate of decay. The measurements showing no indication of an increase of
spin transfer with increasing spacer thickness makes the fit is fairly insensitive to the value of γ.
The only constraint is γ being small enough to provide a sufficiently strong dissipation of spin. This
spin dissipation must be strong enough for the corresponding increase of spin transfer with layer
thickness to be finished before L2 = 2 nm, the smallest measured spacer thickness. While we can
not give accurate estimates of γ based on the material properties and other experiments, it seems
that γ < 0.7 nm is an order of magnitude too small to be realistic. It seems more sensible for γ
to be on the order of 20 nm, which would cause the spin transfer to substantially increase when
increasing spacer thicknesses in the studied range.

In infinitesimal OOP layers, γ is the sole parameter determining the rate of spin decay. γ would
then have to be small for the related spin decay to dissipate the spin depletion caused by hot electron
excitation. However in finite OOP layers, the spin depletion caused by hot electron excitation and
transport could take shape further away from the spacer layer. This would reduce the spin diffusion
current out of the OOP layer and increase the rate of spin-flips. Also, the samples have a platinum
layer adjacent to the OOP magnetised layer, which would further aid the rate of spin-flips. This
enhances the spin decay, potentially allowing the true value of γ to be substantially larger than the
values suggested by the fit of infinitesimal OOP layer models, explaining the discrepancy between
its fit value and realistic values of it.

In contrast to the wide range of γ that fit to the measurements, the hot electron decay length
is fit to a relatively tight range of 3.6 nm < λh < 5.4 nm, as it must fit the gradual decrease of

9The vertical scaling is required because the presented hot electron model provides the amplitude of excited
precessions, while the measurement data show an efficiency spin transfer in relation to a demagnetisation that this
model does not provide.
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Figure 6.9: For various spacer thicknesses the efficiency of spin transfer, i.e. the spin absorbed
by the in-plane magnetised layer relative to the demagnetisation of the out-of-plane magnetised
layer. In black the measurement data from [11]. The red, dashed curve is the exponential fit as
used in the original paper, with a length-scale of 13 nm. The green and blue curves both are fits of
Equation (6.22) with a fitted vertical scaling. The green fit has γ = 0 imposed, giving a fit value of
λh = 5.4 nm. The Blue curve has γ = 0.7 nm, giving a fit value of λh = 3.6 nm.

Js(zIP) with increasing spacer thickness L2 seen in the measurements. This range of hot electron
decay lengths is considerably shorter than the 13 nm length-scale of the exponential decay fit. This
difference arises because the hot electrons decaying in the spacer may still diffuse to the IP layer,
making the total spin current Js(zIP) behave quite different than its screened hot electron component
J∗s (zIP). This discrepancy was also visible in Figure 6.8b, where it is clear that regardless of γ the
screened hot electron current into the IP layer, J∗s (zIP), decreases with spacer thickness much more
quickly than the total spin current Js(zIP) that we fit to the measurements.

These values of the hot electron decay length λh seem to conflict with other measurements on hot
electron decay in copper. Other experiments show hot electrons in copper to have life times in the
order of 40 fs [18]. As Fermi velocities typically are of order 1 nm/fs, the z component of velocity of
hot electrons would be some 0.5 nm/fs. This would suggest hot electron decay lengths in the order
of 20 nm, a factor four larger than proposed hot electron model applied to the studied measurements
would suggest. This discrepancy is a major problem when interpreting the measurements in terms
of hot electrons.

The choice of the screened hot electron current J∗s following an exponential decay was introduced
fairly ad-hoc, without substantial basis in models of hot electron dynamics. Certainly the superdif-
fusive model of hot electrons, including multiple generations of hot electrons and a spin-dependent
decay length, would behave substantially different from a simple exponential decay. This difference
might be the cause of the discrepancy between the fit value of λh and its interpretation in terms of
hot electron decay lengths. However, it still seems implausible that modelling multiple generations
of hot electrons would lead to an effective decay length as short as the fit value of λh.
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In this chapter we studied spin transfer in models of experiments. Both for spin currents driven by
the s-d effect and hot electrons, we derived closed form expressions for spin transfer as a function
of the spacer layer thickness and relevant material properties. These results were compared to
measurements of spin transfer depending on spacer thickness, checking if the studied models are
able to reproduce the behaviour observed in experiments. Both models could give a good fit to the
data, but also in both cases the fitting variables seemed somewhat too unrealistic to trust these
fits as being physical. In the case of the s-d model a possible explanation for the discrepancy was
proposed. The model based on hot electron currents was plagued by hot electrons having to decay
after unrealistically short lengths to be able to reproduce the measured behaviour. This seems to
be an insurmountable problem for using hot electrons to describe the studied spin transfer process,
making spin diffusion caused by an s-d source a more plausible explanation for the observed spin
transfer.
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Chapter 7

Conclusion and discussion

The goal of this thesis was to study ultrafast spin currents caused by optical excitation of thin-
film magnetic layer. In particular to provide a model of ultrafast spin currents. This model was
constructed as a generalisation of the Valet-Fert model to include time-dependence, hot electrons,
and external spin sources. Including both hot electron transport and external spin sources would
make this model useful for comparing these two possible causes of spin currents on an equal footing.
Specifically, the relative contribution of these effects to experiments measuring spin currents through
the excitation of a magnetic precession.

In the first chapter of this thesis, the proposed model was set up. Later chapters would modify
the model to simplify its use in the context of the studied experiments. The strong screening
approximation was able to remove charge dynamics from the model, simplifying understanding of
the various effects that might occur and make subsequent calculations easier. Furthermore this step
would improve stability and ease of implementation of numerical implementations of the model.

The observation that the ultrafast spin current pulses have a much shorter duration than the
magnetic precession they induce in studied experiments inspired the zero-phase approximation.
Only the total amount of spin injected into the absorbing magnetic layer would be of relevance to
the measured signal. Linear-time-invariance of the spin dynamics model allowed the calculation
of the total spin transfer to be simplified tremendously. While this approach is limited to the
specific experiments of our interest, it made it feasible for the experimentally observed behaviour
to be studied in an analytical manner. Also, the simplified equations following from it would
immediately give further insight into behaviour of experimental signals allowed by the model.

With the model simplified and adapted to the experiments under investigation, the model was
applied to these experiments. The measurements of spin transfer depending on spacer thickness
were the main focus of the study. These experiments show interesting behaviour by the efficiency
of spin transfer decreasing quite quickly with increasing spacer thickness, more quickly than one
might expect. Also, as only the spacer thickness is varied between measurements, the data points
can be compared in a relatively fair way. Spin currents driven by s-d induced spin accumulations
where studied separately from spin currents caused by hot electron excitation and motion.

s-d induced spin currents were able to give a potential explanation for the quick decrease in
efficiency with increasing spacer thickness. This model applied to study the modelled experiment
suggests that most of the spin flips that decrease the spin transfer occur in the out-of-plane mag-
netised layer. In comparison, the amount of spin flips in the spacer layer would be negligible. The
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spin flips in the out-of-plane magnetised layer could plausibly be the effect that makes spin transfer
decrease with spacer thickness as quickly as is observed, though it is hard to check if the fit values
of the model correspond to realistic material properties. The low spin transfer efficiency measured
in experiments was not reproduced by the model driven by the s-d effect. The lack of modeling
a platinum layer present in the experimental samples might be the reason for this discrepancy
between model and measurements. The used model not including finite interfacial conductivities
between the spacer layer and magnetised layers might also substantially affect the efficiency of spin
transfer and its relation to spacer thickness. Including the platinum layer and finite interfacial
conductivities to the model would therefore be an interesting next step.

Regarding spin transfer caused by hot electrons, the model showed the importance of having
an efficient spin sink channel for the spin depletion associated with the excitation of spin polarised
hot electrons. In fact, to reproduce the measurements, this spin sink channel would need to be
so efficient that it seems not to be realistic. Also, the model shows that spacer layers being much
thinner than their spin diffusion length would cause the spin deposited by decaying hot electrons
to diffuse out of the spacer layer. This effect would enable hot electron currents to cause spin
currents through substantially larger spacers than the hot electron decay length. Together with the
spin transfer quickly decreasing with spacer thickness, this requires the hot electrons to decay on
length scales much shorter than other experiments indicate. This makes it seem unrealistic for the
measured spin transfer to stem from hot electrons as they are modeled in this thesis.
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Appendix A

Hot electron model

This appendix will give a model of hot electrons, which complements the model of thermal electrons
given in Section 2.1 to make a complete model for ultrafast spin dynamics. Like the superdiffusive
model for hot electrons, this model treats hot electrons as moving on ballistic trajectories. How-
ever, unlike the superdiffusive model, the model presented here does not include electron-electron
scattering, allowing hot electrons to excite other electrons to a hot state.

All electron excitation is optical, effectively only describing first generation hot electrons as
modelled in the superdiffusive model[9]. The rate of electrons with spin ± moving from thermal to
the hot system, R±, is composed of a rate of excitation Rex,± and rate of decay Rdc,±

R± = Rex,± −Rdc,±. (A.1)

When a laser excites the multilayer, it provides energy according to the distribution p(z, t). We
model this energy to be absorbed by electrons, exciting them to hot states. Any excitation takes up
the photon energy Ep, such that the excitation rate is Rex = p/Ep. We introduce the parameters
E± to specify the fraction that is excited to spin + or spin −. With this, the spin specific excitation
rate is

Rex,± =
p

Ep

E±
Etot

, Etot = E+ + E−. (A.2)

On excitation, new hot electrons are assigned a random 3-d velocity of which is uniformly distributed
over the sphere with the Fermi velocity vf as radius. We model the hot electrons as ballistic, such
that they maintain their velocity during their lifetime. However, they will experience specular
reflection on metal-air interfaces. Hot electrons have a chance of decaying to the thermal system
that depends on the spin and material, which will be encoded in the hot electron life-time τ±(z).
The hot electron state is a distribution in the z, v,± space. At time t, the density of hot electrons
at position z with velocity v and spin ± is n±(z, v, t). This is related to the density of hot electrons
Nh
± through

Nh
±(z, t) =

∫ +∞

−∞
dv n±(z, v, t). (A.3)
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The hot electron system evolution is described by the Boltzmann equation

n±(z + v∆t, v, t+ ∆t) =n±(z, v, t) e−∆t/τ±(z)+∫ t+∆t

t

dt̃
Θ(vf + v)Θ(vf − v)

2 vf
Rex,±

(
z + v

(
t̃− t

)
, t̃
)
e−(t+∆t−t̃)/τ±(z),

(A.4)

where Θ is the Heaviside theta function. Hot electrons in the state n±(z, v, t) will after time ∆t
either decay or with probability e−∆t/τσ move to nσ(z+v∆t, v, t+∆t), explaining the first term. To
derive the contribution of excitation, realize that for a hot electron to reach z+v∆t, v, t+∆t it must
be excited to velocity v, so the time and position of excitation z̃, t̃ are linked via z̃ = z + v(t̃ − t),
with t̃ ∈ [t, t + ∆t]. To add all contributing excitation events, we integrate over t̃, taking into
account the excitation rate at z̃, t̃, the probability density for an excited electron to get a velocity
v (being uniformly distributed on a sphere gives Θ(vf + v)Θ(vf − v)/2vf ), and the probability for
the electron to decay before reaching z + v∆t, v, t+ ∆t. This gives the right term. Observing that
velocities do not change and hot electrons can only be excited to velocities |v| < vf , it follows
immediately that |v| > vf implies nσ(z, v, t) = 0. Taking the derivative with respect to ∆t and
evaluating at ∆t = 0 gives

∂

∂t
n±(z, v, t) = −nσ(z, v, t)

τ±(z)
− v ∂

∂z
n±(z, v, t) +

Rex,±(z, t)

2vf
Θ(vf + v)Θ(vf − v). (A.5)

The left side of the equation is the time evolution. The first term on the right side represents the
hot electron decay contribution, the second therm the transport contribution and the third term
electron excitation. To find the local decay rate, we just need to integrate the decay term from the
previous equation over all velocities, giving

Rdc,±(z, t) =

∫ vf

−vf
dv

n±(z, v, t)

τ±(z)
=
Nh
±(z, t)

τ±(z)
. (A.6)

This model of hot electrons provides two ways in which the hot electron current can be spin-
polarized, which makes them contribute to the spin current we are ultimately interested in. On
excitation, E+ 6= E− will cause a different number of spin up electrons than spin down electrons to
be excited. Transport is independent of spin, but the decay rate depends on spin through τ±. In
the paper on superdiffusive demagnetisation this difference is the main cause of the hot electrons
being spin polarized [9].
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Appendix B

Derivation generalized change to
steady state perspective

In Section 4.2 we showed a derivation concluding with Equation (4.7). This derivation concerned a
system S which transformed time-dependent real valued signals to other such signals, in a manner
that is linear-time-invariant. It was claimed that the result in the form∫ ∞

−∞
dt S [f ] (t) = S

[
C∫∞
−∞ dt f(t)

]
(0) (B.1)

would also apply in a much more general case, where the input and output signals of S are vector-
valued functions. Here we show the derivation of this result.

We have the two vector spaces V and W over R (finite-dimensionality of the vector spaces
is not required, so these vector spaces may contain function spaces). The domain of system S
is the function space R → V , while the codomain is the function space R → W . Alternatively;
S : (R → V ) → (R → W ). The function spaces R → V , R → W are themselves vector spaces by
pointwise addition and multiplication: (f + g)(x) = f(x) + g(x), (a f)(x) = a f(x).

S is linear time invariant. Linearity gives that for all f, g ∈ R→ V and all α ∈ R

S[f + g] = S[f ] + f [g], S[α f ] = αS[f ]. (B.2)

Introducing the time shift operator Tτ , defined as (Tτ (f))(t) = f(t− τ). In therms of this, the time
invariance of S implies

Tτ (S[f ]) = S [Tτ (f)] . (B.3)

Having set up this context we can start with the derivation. Given an input f ∈ R → V , we
are interested in the system output S[f ] integrated over all time. First we use linearity and time
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invariance properties of S to change the integral over the output to an integral over the input∫ ∞
−∞

dt S [f ] (t) =

∫ ∞
−∞

dt
(
T−t (S [f ])

)
(0) Definition of time shift operator

=

∫ ∞
−∞

dt
(
S [T−t(f)]

)
(0) Time invariance of S

=

(∫ ∞
−∞

dt
(
S [T−t(f)]

))
(0) Pointwise adition of functions

=

(
S

[∫ ∞
−∞

dt T−t(f)

])
(0) Linearity of S

= S

[∫ ∞
−∞

dt T−t(f)

]
(0). Brackets can be dropped

At this point, just looking at the input function to S∫ ∞
−∞

dt T−t(f) = t̃ 7→
∫ ∞
−∞

dt
(
T−t(f)

)
(t̃) Introducing arrow notation; f = x 7→ f(x)

= t̃ 7→
∫ ∞
−∞

dt f(t+ t̃) Definition of time shift operator

= t̃ 7→
∫ ∞
−∞

dt f(t) Change of integration variable

= C∫∞
−∞ dt f(t). Introduction of the constant function

The constant function Ca was introduced in the last line. It is defined by Ca(x) = a. Combining
this with the previous result gives in conclusion∫ ∞

−∞
dt S [f ] (t) = S

[
C∫∞
−∞ dt f(t)

]
(0). (B.4)

The one step of this derivation that was not formal was the use of linearity of S to justify moving
the integral from the output of S to the input of S. More abstractly this step can be written as∫ +∞

−∞
dxS[fx] = S

[∫ +∞

−∞
dx fx

]
. (B.5)

This is a known result in the field of vector measures[19][page 123], as long as a sufficient level of
continuity is met. Intuitively this step can be made plausible by defining the integral as a Riemann
sum for some sufficiently small step size h. In this case the linearity of S is sufficient to rewrite∫ +∞

−∞
dxS[fx] =

+∞∑
n=−∞

hS[fhn] = S

[
+∞∑

n=−∞
h fhn

]
= S

[∫ +∞

−∞
dx fx

]
. (B.6)

Unfortunately we can not do this in the limit limh→0, as we would need some appropriate continuity
to move this limit through S.
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Appendix C

Derivations model applied to
experiments

This appendix contains the derivations from Chapter 6 that were too large to show in the main
text. The set up of these derivations will only succinctly be recited here, and the results derived
here are discussed in the main text.

C.1 Derivation diffusion model of multilayer

Here we show the derivation relevant to Section 6.2.2, of which the main text used the result in
Equation (6.10). To simplify the derivation we use a slightly different convention for the position
of the layers than is used in the main text. Here the finite OOP magnetic layer spans −L1 < z < 0,
while the spacer spans 0 < z < L2.

On z = −L1 we have an insulator, so Js(−L1) = 0 as boundary condition, while at z = L2 an
ideal spin sink imposes µs(L2) = 0. On the interface between the FM layer and the spacer layer, at
z = 0, the boundary conditions are continuity of µs and Js. The differential equations within both
layers are based on Equation (5.2), but simplified by being in the absence of hot electrons (J∗s = 0)
and the material being uniform within the layer

r µs − σdiff µ′′s = S, Js = −2σdiff µ
′
s. (C.1)

In the FM layer, S is constant while it is zero in the spacer layer, so as abuse of notation we will
use S both as the label for the spin source function and the scalar that represents the function’s
magnitude in the FM layer. Also, because this derivation only uses diffusive conductivities we will
write σdiff,1 = σ1 and σdiff,2 = σ2 in this section. The homogeneous solution to above differential
equation in a homogeneous layer would be

µs(z) = µ+e+z/λ + µ−e−z/λ + S/r, (C.2)

with as usual λ =
√
σdiff/r. We use this to write the solution of the spin accumulation in the

OOP layer as
µs(−L1 < z < 0) = µ+

1 e
+z/λ1 + µ−1 e

−z/λ1 + S/r1, (C.3)
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while the spin accumulation in the spacer layer is

µs(0 < z < L2) = µ+
2 e

+z/λ2 + µ−2 e
−z/λ2 . (C.4)

Here we paramaterised the solution by the four real numbers µ±1 , µ±2 . We will now fix these.
The relevant boundary conditions are no spin current at z = −L1, giving Js(−L1) = 0. At

z = L2 we have zero spin accumulation, µs(L2) = 0. On the interface between the OOP layer
and spacer layer we have continuity of spin accumulation and spin current, giving µs(0

−) = µs(0
+)

and Js(0
−) = Js(0

+). In terms of µ±1 and µ±2 , these boundary conditions impose the following
constraints; Js(−L1) = 0 gives

µ+
1 e
−L1/λ1 = µ−1 e

+L1/λ1 , (C.5)

µs(L2) = 0 gives
µ+

2 e
+L2/λ2 + µ−2 e

−L2/λ2 = 0, (C.6)

µs(0
−) = µs(0

+) gives
µ+

1 + µ−1 + S/r1 = µ+
2 + µ−2 , (C.7)

and Js(0
−) = Js(0

+) gives
σ1

λ1
(µ+

1 − µ
−
1 ) =

σ2

λ2
(µ+

2 − µ
−
2 ). (C.8)

Equation (C.5) can be used to eliminate µ+
1 through µ+

1 = µ−1 e
2L1/λ1 . Equation (C.6) is used

to eliminate µ−2 using µ−2 = −µ+
2 e

2L2/λ2 . The remaining system of equations is{
µ−1 (1 + e2L1/λ1) + S/r1 = µ+

2 (1− e2L2/λ2)
σ1

λ1
µ−1 (−1 + e2L1/λ1) = σ2

λ2
µ+

2 (1 + e2L2/λ2)
(C.9)

We eliminate µ−1 (as µ±2 is more interesting if we want to know Js(L2)) using the second equation
written as

µ−1 = µ+
2

λ1

λ2

σ2

σ1

e2L2/λ2 + 1

e2L1/λ1 − 1
. (C.10)

Plugging this into the first gives µ+
2 as

µ+
2 =

S/r1

(1− e2L2/λ2)− λ1

λ2

σ2

σ1

e+L1/λ1+e−L1/λ1

e+L1/λ1−e−L1/λ1
(1 + e2L2/λ2)

. (C.11)

Using the benefit of hindsight we can already introduce γ in this equation, rewriting it as

µ+
2 =

S/r1

(1− e2L2/λ2)− γ
λ2

(1 + e2L2/λ2)
, γ = λ1

σ2

σ1
/ tanh(L1/λ1). (C.12)

We can now calculate Js(L2) using

Js(L2) = −2σ2µ
′
s(L2) = −2

σ2

λ2
(µ+

2 e
+L2/λ2 − µ−2 e−L2/λ2) = −4

σ2

λ2
µ+

2 e
+L2/λ2 . (C.13)

This gives

Js(L2) = 4
σ2

λ2

S

r1

1

e+L2/λ2 − e−L2/λ2 + γ
λ2

(e+L2/λ2 + e−L2/λ2)
. (C.14)
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We then Multiply the numerator and denominator by λ2/γ

Js(L2) = 4σ2
S

r1

1

γ

1

e+L2/λ2 + e−L2/λ2 + λ2

γ (e+L2/λ2 − e−L2/λ2)
, (C.15)

and write out 1/γ using σ1/r1 = λ2
1

Js(L2) =
4S λ1 tanh(L1/λ1)

e+L2/λ2 + e−L2/λ2 + λ2

γ (e+L2/λ2 − e−L2/λ2)
. (C.16)

Taking the limit of λ2 → +∞ (with σ2 fixed) shows that the value of γ we had anticipated is
correct.

To write this in the form used in the main text, Equation (6.10), we introduce T as

T = λ1 tanh(L1/λ1), (C.17)

which allows us to write Js(L2) and γ as

Js(L2) =
4S T

e+L2/λ2 + e−L2/λ2 + λ2

γ (e+L2/λ2 − e−L2/λ2)
, γ =

σ2

r1T
. (C.18)

C.2 Hot electrons, no spin flips in OOP layer

This section will show the derivation relevant to Section 6.3.2, the result was used in Equation
(6.20). We use the differential equation as presented in Equation (5.3). As we have S = 0 and no
differences in material properties in the region we are interested in, this reduces to

λ2
2 J
′′
s = Js − J∗s , (C.19)

where λ2 is the spin diffusion length of the spacer layer. The screened hot electron current J∗s is
imposed as

J∗s (z) = J∗s (0+)e−z/λh . (C.20)

The solution of the total spin current in the spacer layer can then be written in the functional form

Js(0
+ < z < L2) = j+e+z/λ2 + j−e−z/λ2 + c e−z/λh , (C.21)

where j± and c are real numbers parameterising the solution. Inserting this into Equation (C.19)
gives c as

c = J∗s (0+)
λ2
h

λ2
h − λ2

2

. (C.22)

The two other parameters j± are fixed by the boundary conditions. The first of these is a zero
spin current boundary condition into the OOP layer, giving Js(0

+) = 0. Using this with Equation
(C.21) gives

j+ + j− + c = 0. (C.23)
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The second boundary condition is zero spin accumulation at the interface with the IP magnetised
layer, µs(L2) = 0. Using the left side of Equation (5.1) this can alternatively be written as J ′s(L2) =
0. With Equation (C.21) this gives

1

λ2

(
j+e+L2/λ2 − j−e−L2/λ2

)
− c

λh
e−L2/λh = 0. (C.24)

These two equations can be used to solve for j±. We use the first to write −j− = j+ + c. Using
this to eliminate j− gives j+ as

j+ = c

λ2

λh
e−L2/λh − e−L2/λ2

e+L2/λ2 + e−L2/λ2
. (C.25)

Now we will can use the found substitutions to calculate Js(L2), as

Js(L2) = j+ e+L2/λ2 + j− e−L2/λ2 + c e−L2/λh

= j+ e+L2/λ2 − (j+ + c) e−L2/λ2 + c e−L2/λh

= j+
(
e+L2/λ2 − e−L2/λ2

)
+ c e−L2/λh − c e−L2/λ2

= c

((
λ2

λh
e−L2/λh − e−L2/λ2

)
e+L2/λ2 − e−L2/λ2

e+L2/λ2 + e−L2/λ2
+ e−L2/λh − e−L2/λ2

)
= J∗s (0+)

λ2
h

λ2
h − λ2

2

((
λ2

λh
e−L2/λh − e−L2/λ2

)
e+L2/λ2 − e−L2/λ2

e+L2/λ2 + e−L2/λ2
+ e−L2/λh − e−L2/λ2

)
.

(C.26)

With a bit of rewriting, this can be changed to

Js(zIP ) = J∗s (0+)
λ2
h

λ2
h − λ2

2

(
e−L2/λh

(
1 +

λ2

λh

eL2/λ2 − e−L2/λ2

eL2/λ2 + e−L2/λ2

)
− 2

e+L2/λ2 + e−L2/λ2

)
, (C.27)

which was used in the main text.

C.3 Hot electrons, no spin flips in spacer layer

Here we perform the derivation related to Section 6.3.2, in particular the derivation of Equation
(6.21). Here there are no spin flips in the spacer layer. Continuity (left hand side of Equation
(5.1)) then requires that the spin current is constant in the spacer layer. This makes the derivation
in this section substantially different from those in the previous sections. We again impose zero
spin accumulation at the interface with the IP layer; µs(L2) = 0. The boundary condition to
the infinitesimal layer is Js(0

+) = −2 r̃ µs(0
+), from a derivation similar to the one performed in

Section 6.2.1.
We use the right hand side of Equation (5.1) adapted to this case,

Js = −2σdiff,2 µ
′
s(z) + J∗s (z). (C.28)

This way of writing made it explicit that Js and σdiff,2 are real numbers, independent of z. Inte-
grating this from z = 0+ to z = L2 gives

L2 Js = −2σdiff,2
(
µs(L2)− µs(0+)

)
+

∫ L2

0+

dz J∗s (z) (C.29)
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We have imposed the boundary conditions µs(L2) = 0 and Js = −2 r̃µs(0
+), so we can eliminate

both times the spin accumulation is mentioned. Furthermore, we have set J∗s (z) = J∗s (0+) e−z/λh ,
so the integral related to it can be performed. This gives

L2 Js = −σdiff,2 Js / r̃ − J∗s (0+)λh

(
e−L2/λh − 1

)
. (C.30)

Rearranging to solve for Js and introducing γ gives the result

Js = J∗s (0+)λh
1− e−L2/λh

γ + L2
, γ = σdiff,2/r̃. (C.31)
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Appendix D

Estimate of gamma

In Section 6.2.2 we studied spin transfer in systems with finite OOP magnetised layer. An important
variable of dimension length, γ, emerged. One of the equations for it is

γ = λ1
σdiff,2
σdiff,1

/ tanh(L1/λ1). (D.1)

We would like to have an estimate to give a realistic order of magnitude that γ may have in the
multilayers studied in experiments. We will make use of the material properties given in [16].

To use above equation for γ, we need the spin diffusion length of the OOP magnetised layer, and
the diffusive conductivity of both the OOP layer and the spacer layer. The spin diffusion length
of the listed materials is specified, but the spin diffusive conductivity σdiff used in our treatment
of spin diffusion is not. However, the total conductivity is given. We can write σ± in terms of the
total conductivity σtot and a spin polarization q as

σ+ = q σtot, σ− = (1− q)σtot (D.2)

Using this to calculate σdiff gives

σdiff =
σ+σ−
σtot

= q (1− q)σtot (D.3)

In the spacer we have symmetry so q = 0.5. The spin polarization in the out of plane magnetised
layer is q1. This gives γ as

γ =
λ1

4 q1 (1− q1)

σtot,2
σtot,1

/ tanh(L1/λ1). (D.4)

Now that we have this adapted equation for γ, we can use this with the given material properties.
Considering a Co/Pt magnetic multilayer and a Cu spacer, [16] gives the material properties λ1 =
1 nm, σtot,1 = 2.3 · 106 Ω−1 m−1, σtot,2 = 39 · 106 Ω−1 m−1. As we usually have L1 > 1 nm, we have
approximately tanh(L1/λ1) ≈ 1. Plugging these in Equation (D.4) gives

γ =
4.24 nm

q1 (1− q1)
. (D.5)
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We have no way to estimate q1 using this data, but as long as the current is not extremely spin
polarized, the estimate of γ is fairly insensitive to it. The value of γ for various values of q1 are
listed in Table D.1.

q1 γ
0.5 17 nm
0.6 18 nm
0.7 20 nm
0.8 27 nm
0.9 47 nm
0.95 89 nm
0.975 174 nm
0.99 428 nm

Table D.1: Estimates for γ, for various values of q1.

With q1 approaching 1 (or 0) γ diverges. For somewhat moderate spin polarizations having the value
of γ being in the order of 15 to 80 nm would be expected. More importantly, we should compare
γ to the spin diffusion length of copper. Provided as λ2 = 400 nm this is probably substantially
larger than γ. Comparing this relative difference with the behaviour of Equation (6.10), it seems
that the mechanism related to γ would be dominant in such samples.
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