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Abstract
MODELING THE SPREAD OF EPIDEMICS

by Teun HENDRIKS

The COVID-19 pandemic led to a renewed interest in modeling epidemics with mathematical
models across various research fields. We propose an epidemic model based on often-used
compartmental models such as the SIR and SEIR models, incorporated with mobility between
regions. This results in a so-called remote-force-of-infection epidemic model. We analyze the
influence of model parameters on the model dynamics and the spreading velocity in one and
two spatial dimensions. We observe traveling epidemic waves with similar properties as soli-
tary waves for one or two spatial dimensions. However, our traveling waves annihilate during
a collision. Analytically, we describe the asymptotic behavior of our model, resulting in a mod-
ified diffusion equation and a modified telegraph equation. We find analytical expressions
describing the propagation velocity of the epidemic wave, which we verify numerically. Next,
we investigate how to balance the trade-off between mobility restrictions and transmissions of
COVID-19 in a case-study in The Netherlands. We propose a model extension to incorporate
so-called super spreaders. We quantify the trade-off between blocking mobility and spreading
the infection in terms of a single parameter. Our epidemic model evaluates mobility restric-
tions’ effectiveness where the country is divided into separate regions. We propose heuristic
methods to approximate optimal choices for these regions. The results show that our mobility
restrictions are highly effective when the infections are concentrated around a few municipali-
ties.
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Chapter 1

Introduction

The COVID-19 pandemic has, by mid-March 2021, caused well over 100 million infected indi-
viduals worldwide, of which more than 2 million passed away in over 200 countries. Many
countries across the globe are taking measures to contain the virus, such as social-distancing,
national lock-downs, curfews, and more.

Similar to other infectious diseases, such as the H1N1 outbreak in 2009 [1], the SARS epidemic
in 2003 [2], and influenza epidemics [3, 4], the geographical spread is determined by human
behavior and human mobility patterns across multiple spatial scales [5]. While infectious con-
tacts of individuals give rise to local outbreaks of a disease, the combination with mobility of
people causes spatial spread [6].

To understand, for example, how fast diseases spread [7], find the outbreak location [8], or
which regions would benefit from mobility restrictions to contain an outbreak [9], researchers
use mathematical models to describe epidemics spreading through a population.

Single population epidemic models [10, 11] divide a population into different compartments.
For example, the so-called SIR model divides individuals into susceptible, infected, and recov-
ered compartments, see Figure 1.2. Another example is the susceptible-exposed-infected-recovered
(SEIR) model.

In many diseases, there is a significant period between getting infected and actually being
infectious. This period is called the latent period. In this period, people are considered ex-
posed. Example diseases with such a latent period are Ebola [12], measles [13], and COVID-19
[14].

FIGURE 1.1: COVID-19 waves. Image provided by Getty Images [15].
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FIGURE 1.2: Susceptible-infected-recovered compartment model. Individuals are
initially susceptible to the disease. They can get infected through contact with
infectious individuals. After an infectious period, individuals become removed,

which means they have recovered or have passed away.

While these classical compartmental models can describe the disease’s exponential growth,
they do not capture spatial effects. A class of epidemic models that includes spatial differences
is based on reaction-diffusion models [16, 17]. The combination of diffusive dispersal (mobility
process) between different populations and local exponential growth within a single population
resembles observed epidemic behavior.

A closely related class of models is based on the remote-force-of-infection. These models have
the advantage that the mobility process does not need to be modeled explicitly [18, 19, 20].
Instead, only the mobility process consequences, i.e., new infections, are modeled rather than
individuals moving to different locations.

In these models, the population is subdivided into multiple connected subpopulations rep-
resenting, for example, regions of a country. The connection between regions resembles the
mobility between them. A network of subpopulations is called a metapopulation. Models us-
ing the metapopulation framework are usually very coarse. Some more detailed models have
been used to describe epidemics [21, 22, 23].

These detailed so-called agent-based models try to capture and model individuals referred to
as agents. Agents can be part of households, local communities, schools, and/or work-groups.
A disadvantage of these detailed models is that they use many assumptions and parameters,
making the analysis of the model and its parameters harder. In general, these detailed models
are better suited for small-scale simulations as they require a lot more computational power
In contrast, the metapopulation compartment models are often used for large-scale analysis
[4].

In this work, we focus on large-scale analysis of epidemics that spreads through populations.
This work is motivated by the current COVID-19 pandemic. We analyze and apply epidemic
models to evaluate the effectiveness of mobility restrictions on a single nation’s scale. For this,
we want to understand the dynamics of the epidemic model and investigate the influence of
different model parameters. This can be summarized in the following research questions:

1. How is the dynamic of an epidemic model and specifically the spreading velocity influ-
enced by model parameters?

2. How to balance the trade-off between mobility restrictions and transmission of COVID-
19?

We consider restrictions where we divide a country into different regions. We block the mo-
bility between different regions but allow for mobility within these regions. This raises two
sub-questions for research question 2:

(a) How large should a ’region’ be for effective containment of the disease?

(b) How to evaluate the effectiveness of mobility restrictions?
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1.1 Methodology

This work focuses on epidemic models using a remote-force-of-infection and different metapop-
ulation networks. The actual movement of individuals is not modeled, but the results of these
movements, i.e., the disease’s transmission, are.

We consider multiple compartment arrangements, but we focus mainly on SIR and SEIR mod-
els. The SEIR model is used to model COVID-19, and it is closely related to the SIR model.
Other compartment setups are discussed briefly.

Stochastic effects in such models play a role when the systems are small, but when the number
of individuals is large, the stochastic effects can be neglected. We mainly focus on large systems,
where stochastic effects are negligible, and a deterministic mean-field approach describes the
epidemic well.

In real-world applications, the underlying mobility networks can be complex. We can observe
wave-like patterns for relatively simple networks, such as a one-dimensional network or a two-
dimensional grid.

We analyze these patterns both numerically and analytically for a one-dimensional metapop-
ulation network. In particular, the focus is on the wave profile, wave velocity, and outbreak
threshold. The threshold determines whether the disease dies out early or grows exponentially
in size. We verify analytical results numerically.

Shortly after a concentrated outbreak, the wave profile in an SIR model can be approximated by
a modified diffusion equation. In the case of an SEIR model, by a modified telegraph equation
[24]. The telegraph equation also arises when studying the propagation of electrical signals in
a cable or transmission line, but it appears in more branches of science [25, 26].

After the diffusive regime, a traveling wave with constant shape and propagation velocity
appears. In the literature, waves with similar properties are called solitary waves [27]. We
show that the traveling waves we observe are different from solitary waves.

Next, we compare these findings with results obtained on a two-dimensional grid. We compare
wave-like patterns and the speed at which the disease spreads. Even for two initial outbreak
locations, we show that the wavefront eventually becomes circular.

Finally, as an application of our model, we evaluate strategies that impose mobility restrictions
upon subpopulations. We use The Netherlands as an example. Mobility is estimated from a
dataset, which contains the average number of traveling people between Dutch municipali-
ties.

The number of new infections is weighted against loss of mobility for different mobility restric-
tion strategies. As mobility goes hand in hand with economic activity, measures that restrict
mobility have a potentially large social-economic impact [28].

We quantify the trade-off between the spreading of the disease and mobility in a single pa-
rameter. Based on this parameter, we present mobility restriction strategies to minimize the
number of new infections while maximizing mobility. We propose a method for determining
the mobility restrictions, which is inspired by community detection.

We analyze stochastic effects in the spreading of the epidemic. For COVID-19, super-spreaders
play a role in spreading the disease [29, 30, 31]. They transmit the disease to many others. We
propose an epidemic model, which incorporates super-spreading effects.

All the code to reproduce the experiments is publicly available at https://github.com/teunhend/
master-thesis.

https://github.com/teunhend/master-thesis
https://github.com/teunhend/master-thesis
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1.2 Thesis outline

Chapter 2 provides a theoretical background and an overview of different epidemic models. In
Chapter 3 we present analytical results regarding the models. We provide analytical solutions
that are valid shortly after an outbreak. Also, we present expressions for the wave propagation
velocity. In Chapter 4, we verify our analytical results numerically for a one-dimensional net-
work. We show results on a two-dimensional network. Chapter 5 presents the results related to
our second research question. We introduce the mobility patterns of The Netherlands. We se-
lect mobility restrictions and evaluate these restrictions. The last chapter provides a summary
of conclusions and suggestions for future work.
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Chapter 2

Theory and background

This chapter serves as a theoretical background for this work. The most well-known classical
epidemic model is developed by Kermack and McKendrick and published in 1927 [10]. As this
article is fundamental to the field, it is republished in 1991 [32].

The idea behind their model is to divide a population into different compartments: Susceptible,
Infected, and Removed. The model is referred to as the SIR-model; see Figure 1.2. This setup
allows for the description of infectious diseases where individuals are resistant to the disease
after recovery.

This is not the case for every disease. For example, individuals do not build up a life-long
resistance to the common cold [33]. By varying the compartment setup, we can apply the ideas
of the SIR model to different kinds of infectious diseases.

In Section 2.1.1, we describe some possible variations of the SIR model and the applications
of these variations. In Section 2.1.2, we explain the SIR model in more depth, as it is a good
introduction to field of modeling epidemics. In Section 2.1.3, we explain a compartmental
model relevant for COVID-19 in more detail. We discuss model behavior in Section 2.1.4.

In Section 2.2.1, we describe how to include a spatial component in the classical epidemic mod-
els. Often, reaction-diffusion models are used, which we describe in Section 2.2.2. For The
Netherlands, commuters dominate the daily mobility patterns. For these patterns, we show
that reaction-diffusion models reduce to so-called remote-force-of-infection models in Section
2.2.3.

Lastly, in Section 2.3, we discuss the stochastic effects for epidemics.
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2.1 Classic epidemic models

In this section, we show different variations and applications of epidemic models similar to
the classical SIR model. We discuss the SIR model as an introduction to the field of epidemic
models. We analyze its behavior. Lastly, we discuss the Susceptible Exposed Infected Recovered
(SEIR) model in more detail, as this model is relevant to COVID-19.

2.1.1 Model variations

Extensions and variations are developed to describe different infectious diseases. For example,
by modifying what happens after recovery of the disease or by adding a fourth compartment:
Exposed. We show some variations in Table 2.1 and discuss the different models in the remain-
der of this section.

We can choose to include a latent period to model the period between getting infected and
becoming infectious. This state is modeled by an Exposed period. An example model is the
Susceptible-Exposed-Infected-Recovered (SEIR) model. See Figure 1.2 versus Figure 2.4.

We consider three different outcomes after recovery of a disease:

1. Individuals have a permanent resistance to the disease after recovery. Examples are the
SIR and SEIR models, see Figure 1.2 and Figure 2.4.

2. Individuals have built up no resistance after recovery. Example models are the Suscepti-
ble Infected (SI) model, where people remain infectious and never recover, and the Sus-
ceptible Infected Susceptible (SIS) model, see Figure 2.1 and Figure 2.2.

3. Individuals lose resistance over time. An example model is the SEIRS model. This model
is similar to the SEIR model, but individuals become susceptible again after some period
in which they lose resistance to the disease, see Figure 2.5.

An epidemic model should match a disease, but also the time scale of interest. For example,
in Table 2.1, influenza is modeled using an SIR model and an SIRS model. In the first case,
influenza is modeled in a single year. Within this year, individuals do not lose their resistance
to influenza [34]. But when multiple years are considered, an SIRS model is more suited, as
people are susceptible to next year’s variant of influenza [35].

Model name Lasting immunity Compartment diagram Example applications

SIR yes Figure 1.2 Modeling influenza [34]
SI no Figure 2.1 Modeling HIV [36]
SIS no Figure 2.2 Modeling tuberculosis [37]
SIRS temporal Figure 2.3 Modeling influenza [35]
SEIR yes Figure 2.4 Modeling COVID-10 [9]
SEIRS temporal Figure 2.5 Modeling computer malware [38]

TABLE 2.1: Overview of different compartmental models and applications.

In the case of COVID-19, it remains unclear if and for how long immunity lasts after recovery
of the disease [39, 40]. However, there is a latent period present for COVID-19 infections [41].
In Chapter 5, we consider a total time of 30 days, in which it is expected that individuals do not
lose their resistance to COVID-19 [39]. Therefore we focus on the SEIR model for COVID-19
related results.
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FIGURE 2.1: Schematic overview of a Susceptible-Infectious model. After trans-
mission of the disease, individuals become and remain infectious.

FIGURE 2.2: Schematic overview of a Susceptible-Infectious-Susceptible model.
After the infectious period, individuals become susceptible again.

FIGURE 2.3: Schematic overview of a Susceptible-Infectious-Removed-
Susceptible model. After the infectious period, individuals have a temporal re-

sistance to the disease.

FIGURE 2.4: Schematic overview of a Susceptible-Exposed-Infectious-Removed
model. In this case, after getting infected, individuals are not directly contagious
to others. The are exposed and become eventually infectious with after a latent

period 1/ν.

FIGURE 2.5: Schematic overview of a Susceptible-Exposed-Infectious-Removed-
Susceptible model. This model is similar to the SEIR model in Figure 2.4, but
individuals lose their resistance to the disease with rate α and become susceptible

again.

Important parameters which we use in the remainder of this work are the average periods
individuals spend in the exposed and infected compartments. We call these periods the latent
period, 1/ν, and the infectious period, 1/γ, respectively.

As mentioned before, we discuss the model equations of the SIR and SEIR models in the next
sections. For the other models, we refer to Appendix A. In Section 2.1.4, we briefly compare
the behavior of the models from Table 2.1.
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2.1.2 SIR epidemic model

The first compartment in the SIR model is the group of healthy individuals. While these in-
dividuals are currently healthy, they are prone to contract the disease and are therefore called
susceptible. We denote the number of susceptible individuals by S.

The second compartment consists of individuals who currently have the disease and are con-
tagious to other people. They are called infectious. This group allows the disease to spread.
Contact between a contagious individual and a susceptible individual may lead to the infec-
tion of the susceptible. We denote the number of infectious individuals by I.

Lastly, a group of individuals have had the disease and are now resistant to the disease. These
individuals are called recovered. We denote the number of removed individuals by R.

The number of individuals in the different compartments changes over time. So S(t), I(t), and
R(t) are all functions of time t. We assume the total population size N to be constant over time,
i.e., individuals cannot leave or enter the system. N can be calculated by summing the different
compartments:

N = S(t) + I(t) + R(t).

Kermack and McKendrick propose ordinary differential equations (ODEs) that describe how
the number of individuals in each compartment change over time. Transmission of the disease
can only happen when a susceptible individual gets in contact with an infectious individual.
During this contact, the disease is transmitted to the susceptible person with a certain proba-
bility.

We use incidence to refer to how many people move from susceptible to being infectious per
unit of time. Incidence depends on the transmission probability and on the number of contacts
people have per unit of time. We assume the following:

• The number of contacts per unit of time an individual has is equal to C. We assume this
is independent of the population size; this is reasonable for larger populations.

• The probability that a given contact of a susceptible individual is with an infectious indi-
vidual is I

N , also known as perfect mixing. So, the expected number of connections with
infectious individuals per susceptible individual per unit of time is equal to C I

N .

• The transmission probability of the disease is denoted by ε. It is equal to the probability
of the susceptible individual getting infected with the disease during contact with an
infectious individual. Then, the rate at which one susceptible person gets infected is then
equal to εC I

N .

• The incidence is equal to the number of susceptible individuals times the rate described
above, which equals εC SI

N . The infection rate β is equal to εC. We can thus write the
incidence as β SI

N .

Since we assume that the number of contacts a person has is independent of the population
size, the type of incidence is called normal incidence. Next, we define the force-of-infection λ as
λ = β I

N .

In Section 2.2.3, models based on a remote-force-of-infection are described. In these models,
multiple populations exert a remote force of infection upon each other, which results in the
transmission of the disease to different populations.
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As incidence is defined as how many people move from being susceptible to being infectious
per unit of time, we find the derivative of the number of susceptible individuals with respect
to time to be equal to minus incidence

dS
dt

= −β
SI
N

. (2.1)

These people move into the infectious compartment. People leave the infectious compartment
when they recover or pass away. Kermack and McKendrick assume this to be a constant per
capita rate per unit of time.

Let γ be the recovery rate. The inverse of the recovery rate is equal to the infectious period.
Combining influx and outflux of contagious individuals, we find

dI
dt

= β
SI
N
− γI. (2.2)

Finally, infectious individuals eventually move to the removed compartment,

dR
dt

= γI. (2.3)

The equations above combine into a system of ODEs:

dS
dt

= −β
SI
N

, (2.4)

dI
dt

= β
SI
N
− γI, (2.5)

dR
dt

= γI. (2.6)

This system comes with initial conditions S(t0), I(t0), and R(t0). Note that we did not write
down the time dependence of S, I, and R in all equations explicitly. There exist analytical
solutions for this system of ODEs [42].

We can simplify the system of ODEs if we scale it with the population size N and define
a dimensionless time t∗ = γt. After dropping the asterisk, we obtain the following equa-
tions:

ds
dt

= −R0si, (2.7)

di
dt

= (R0s− 1)i, (2.8)

dr
dt

= i, (2.9)

where s = S
N , i = I

N , and r = R
N . Equation (2.9) can be replaced by the conservation equation:

r = 1− s − i. The only parameter in this system of ODEs is R0 = β
γ . This systems requires

initial conditions s(t = 0), i(t = 0), and r(t = 0).

R0 is the so-called Basic Reproduction Number. R0 and is important for the model behavior.
In Figure 2.6, we present two results for different values of R0. Before we discuss the model
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behavior in more detail the Section 2.1.4, we introduce the model equations for the Susceptible-
Exposed-Infected-Recovered (SEIR) model in the next section.
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(a) R0 = 2
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(b) R0 = 0.5

FIGURE 2.6: Solutions of (2.7), (2.8), and r = 1− s− i for different values of the
model parameterR0. Both results are based on initial conditions s(t = 0) = 0.95,

i(t = 0) = 0.05, and r(t = 0) = 0.

2.1.3 SEIR epidemic model

The Susceptible-Exposed-Infectious-Susceptible model has four compartments. Once infected,
individuals are not immediately infectious but instead are exposed. After a latent period, indi-
viduals become eventually infectious.

In the SEIR model, we denote the rate at which people move from the exposed to the infectious
compartment by ν. This means that the average duration of the latent period, the time spent in
the exposed compartment, is equal to 1/ν. We follow similar steps as described in the previous
section to obtain the following equations:

ds
dt

= −βsi, (2.10)

de
dt

= βsi− νe, (2.11)

di
dt

= νe− γi, (2.12)

dr
dt

= γi. (2.13)

We define a dimensionless time t∗ = γt. When we substitute this dimensionless time and after
dropping the asterisk, we obtain the following equations:
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ds
dt

= −R0si, (2.14)

de
dt

= R0si− ae, (2.15)

di
dt

= ae− i, (2.16)

dr
dt

= i, (2.17)

where R0 = β/γ and a = ν/γ. The basic reproduction number of an SEIR model is equal
to the R0 in an SIR model for equal β and γ. The parameter a can be interpreted as the ratio
of the infectious period over the latent period. For large values of a, the SEIR model can be
approximated by the SIR model.

The systems has initial conditions s(t = 0), e(t = 0), i(t = 0), r(t = 0) and can be solved
analytically [43]. The model behavior is similar to the SIR model, as we will discuss in the next
section.
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(b) R0 = 0.5

FIGURE 2.7: Solutions of (2.14), (2.15), (2.16), and r = 1− s− e− i, where a = 1
and for different values of the model parameter R0 and . Both results are based
on initial conditions s(t = 0) = 0.95, e(t = 0) = 0.05, i(t = 0) = 0, and r(t =

0) = 0.

2.1.4 Model behavior

In this section, we explain the influence of the Basic Reproduction Number, R0, on the dynamics
of the epidemic. We introduce the reproduction number communicated by many governments
and health authorities to the general public as the Effective Reproduction Number, Re(t) [44].
We also discuss at the mathematical properties of the model and the so-called final size of the
epidemic. These aid us in analyzing the results in this work. Lastly, we show different model
behavior for models presented in Table 2.1.

The threshold in an epidemic model is based on the value of the basic reproduction number,R0.
It is defined as the number of expected successful transmissions of the disease in a completely
susceptible population by a singly infectious individual [45]; see Figure 2.8.
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FIGURE 2.8: Visualization of a basic reproduction number R0 = 3. Infectious
individuals each transmit the disease to three susceptible individuals. Hereby,

on average, they cause three new cases.

From (2.8), we can see that there can only be exponential growth in the number of infectious
individuals if R0 > 1. Note that 0 ≤ s ≤ 1. However, from 2.7(a), we also see that exponential
growth eventually turns into exponential decay.

From(2.8) we also see that there is only actual exponential growth when s(t)R0 > 1. We define
the effective reproduction number Re(t) as Re(t) = s(t)R0. There is exponential growth at
time t during an epidemic outbreak if Re(t) > 1 , while when Re(t) is less than 1, there is an
exponential decay at time t. We can also see this behavior in Figure 2.6.

From this, we can derive the notion of herd immunity. This is defined as the fraction of the
population that needs to be resistant to the disease such that there is no exponential growth
in the number of infectious individuals possible anymore. It is only defined for R0 > 1. We
have herd immunity when Re ≤ 1. In other words, sR0 ≤ 1. This means that s ≤ 1

R0
. Note

that 1− r ≤ s, which results in the following equation for the fraction of recovered individuals
r:

r ≥ 1− 1
R0

. (2.18)

For example, for COVID-19, R0 is estimated at 2.5 [46]. This means that herd immunity is
achieved when r = 0.6. In other words, when 60% of the people are resistant.

In Figure 2.9, we see two solutions of (2.7), (2.8), and r = 1− s− i with different initial condi-
tions for R0 = 1. While the infectious concentration i(t) starts to decay slowly, the fraction of
the population that ends up in the recovered compartment is different. The fraction r(t) for t
when the epidemic has died out is called the final size of the epidemic. Figure 2.9 shows us that
the final size not only depends on the model parameter R0, but also on the initial conditions.

As the derivative in (2.7) is always negative, s(t) is a monotonically decreasing function. For
s(t) to have a physical meaning, we have 0 ≤ s ≤ 1. These properties combined results in

lim
t→∞

s(t) = s∞. (2.19)

Here, s∞ is the fraction of individuals in the susceptible compartment after an epidemic out-
break. Similarly, we can see in Figures 2.6 and 2.9 that

lim
t→∞

i(t) = 0. (2.20)
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(a) i(t = 0) = 0.05
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(b) i(t = 0) = 0.1

FIGURE 2.9: Solutions of (2.7), (2.8), and r = 1− s− i for R0 = 1. (a): Result is
based on initial conditions s(t = 0) = 0.95, i(t = 0) = 0.05, and r(t = 0) = 0.
(b): Result is based on initial conditions s(t = 0) = 0.9, i(t = 0) = 0.1, and

r(t = 0) = 0.

Using the conservation equation r = 1− s− i, we find

lim
t→∞

r(t) = 1− s∞. (2.21)

For the susceptible-infected-removed (SIR) model, the final size equation is given by :

r∞ = 1− s(t = 0) exp
[
−R0r∞

]
. (2.22)

From this equation, we can see when s(t = 0) becomes smaller, or equivalently, i(t = 0) is
larger, solutions r∞ become larger. This is in line with Figure 2.9. For the derivation of (2.22),
we refer to Appendix B.

Another interesting value we will use in our results analysis is the peak concentration of infec-
tious individuals. This peak number is defined as

ipeak = max
t

i(t). (2.23)

In Figures 2.6 and 2.9, the peak concentration is the maximum value obtained by the red curve.
The peak concentration tells something about the epidemic’s intensity.

The final size of the epidemic in the SEIR model can also be calculated via (2.22). However, the
peak concentration (2.23) is lower as a fraction of the infected individuals is only exposed and
not yet infectious. This lower concentration of infectious individuals is sustained for longer
periods of time.

Figure 2.6(a) and Figure 2.7(a) clearly show this. When the epidemic has died out, in other
words, i(t) = 0, the value of r(t) is in both models at approximately 0.8. While the peak
intensity of i(t) in Figure 2.7(a) is lower, it is sustained for longer periods of time compared to
Figure 2.6(a).

The SIR and SEIR models both result in life-long resistance to a disease. In the SI model, indi-
viduals become infectious and never recover. This eventually results in everybody becoming
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infectious, see Figure 2.10(a). In the SIS model, individuals have no resistance to the disease
after recovery. In the SIRS and the SEIRS model, lose the resistance to the disease after recov-
ery. This results in a sustained fraction of people that are infectious, see Figure 2.10(b), Figure
2.10(c), and Figure 2.10(d). In these cases, the infectious disease has become endemic and re-
mains active in the population.
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(b) SIS model
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(c) SIRS model
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(d) SEIRS model

FIGURE 2.10: Solutions of different models described in Appendix A. (a): Initial
conditions are s(t = 0) = 0.95 and i(t = 0) = 0.05. (b): R0 = 2 and initial
conditions are s(t = 0) = 0.95 and i(t = 0) = 0.05. (c): R0 = 2, α = 1 and initial
conditions are s(t = 0) = 0.95, i(t = 0) = 0.05, and r(t = 0) = 0. Result is based
on initial conditions s(t = 0) = 0.95, i(t = 0) = 0.05, and r(t = 0) = 0. (d):
R0 = 2, α = 1, and ν=1, and initial conditions are s(t = 0) = 0.95, i(t = 0) = 0.05,
and r(t = 0) = 0. Result is based on initial conditions s(t = 0) = 0.95, e(t = 0) =

0.05, i(t = 0) = 0, and r(t = 0) = 0.

2.2 Metapopulation epidemic models

In the previous section, we mentioned that we focus on SIR and SEIR models. In our results,
we use the Dutch mobility data in combination with our models. In The Netherlands, trav-
eling individuals are typically commuters who travel between a destination and their base
location.
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In this chapter, we show that a remote-force-of-infection model suits these properties well.
Firstly, we explain the metapopulation framework in Section 2.2.1. Then, we discuss often used
reaction-diffusion models in Section 2.2.2 and show how these models reduce to remote-force-
of-infection models when we consider mobility patterns of commuters. We discuss remote-
force-of-infection models in Section 2.2.3.

2.2.1 Metapopulation framework

The spatial population distribution and the interplay between mobility patterns and the mixing
of people cannot be captured by models described in Section 2.1. Those models consider a
single population with no spatial differences within its population. With a model formulated in
the framework of a so-called meta-population, it is possible to introduce spatial differences.

We can divide a single population into many different subpopulations. For example, based on
gender, age, or location. The subpopulation sizes do not have to be equal. These subpopula-
tions may or may not be interconnected to other subpopulations in other regions. The network
of all subpopulations is called a metapopulation [47]. In this work, we divide a population into
subpopulations based on their location.

Let A be the set of all different subpopulations. We assign to each location a number between
1 and n, which is equal to the total number of different locations. Each location is represented
by a subpopulation. x is said to be a location if x ∈ [1, ..., n] = A.

The subpopulation size of location x is equal to Nx. In the case of compartments, we can express
the number of people in, for example, compartment S at location x at time t via Sx(t). When
considering concentrations, we write for location x: sx(t) = Sx(t)/Nx. Similarly, we have for
other compartments ex(t) = Ex(t)/Nx, ix(t) = Ix(t)/Nx, and rx(t) = Rx(t)/Nx.

Mobility networks can be used to set up a metapopulation. In this work, we consider the mo-
bility network of The Netherlands; see Section 5.2.3. Worldwide air travel is another example
of a mobility network [48]. In the latter, the relevant time scales are in the order weeks and are
in general longer than the relevant timescales within the mobility network of The Netherlands,
which are of time scales less than a day.

Nodes in these networks represent different locations with subpopulation sizes Nx. The edges
between the nodes represent the connection between to locations. The edge weight tells us how
strong this connection is. In other words, the edge weight represents how many people travel
between the two subpopulations.

These networks can be highly heterogeneous in subpopulation sizes, number of edges and,
edge weights [49]. We show this heterogeneity in the Dutch mobility dataset in Section 5.2.3.

FIGURE 2.11: Example meta-population SIR model, see Figure 1.2. Each subpop-
ulation consists of many individuals who are in one of the four compartments. S:
Susceptible, Infected, R: Recovered. Ovals represent different populations. Black

lines represent connections between these populations.
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2.2.2 Reaction-diffusion model

Epidemic models based on reaction-diffusion models are often used in combination with a
metapopulation structure. In these models, we model the spreading of individuals through
different subpopulations. We show in this section that reaction-diffusion models can reduce
to remote-force-of-infections models. In the latter, we model the spreading of information, in
other words, the spreading of new infectious cases, while individuals remain fixed to their
base location.

Figure 2.11 shows an example of an the SIR model in a metapopulation framework. We extend
(2.4), (2.5), and (2.6) with diffusive dispersal among different subpopulations. Dispersal is
defined by mobility rates ωyx > 0 from subpopulation x to y; see Figure 2.12. Note that ωxy
does not need to be equal to ωyx.

FIGURE 2.12: Meta-population model with mobility. Shapes represent different
populations, and arrows represent mobility rates. Left: Diffusive dispersal of in-
distinguishable individuals between different locations is captured by different
mobility rates ωxy. Right: Individual mobility patterns of commuters are cap-
tured in the dispersal process. Individuals from base location x travel from and

to connected location z with mobility rates ωx
xz and ωx

zx, respectively.

These rates are usually based on mobility data (see Section 5.2.3) or simulated using gravity-like
models [50, 51]. The idea behind these models is that the mobility rate between subpopulation
x and w is proportional to

ωxy ∼
Nx Ny

d(x, y)
, (2.24)

where d(x, y) is a distance between subpopulation x and y. If these mobility rates are included
in (2.4), (2.5), and (2.6), the result is a meta-population reaction-diffusion system:

dSx(t)
dt

= −β
Sx(t)Ix(t)

Nx
+ ∑

y∈A

(
ωxySy(t)−ωyxSx(t)

)
, (2.25)

dIx(t)
dt

= β
Sx(t)Ix(t)

Nx
− γIx(t) + ∑

y∈A

(
ωxy Iy(t)−ωyx Ix(t)

)
, (2.26)

dRx(t)
dt

= γIx(t) + ∑
y∈A

(
ωxyRy(t)−ωyxRx(t)

)
, (2.27)
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where Nx is the population size present location x in the steady-state. Nx can be calculated
using the following conservation law and steady-state conditions:

Ntot = ∑
x∈A

(
Sx(t) + Ix(t) + Rx(t)

)
(2.28)

Nx

Ny
=

ωxy

ωyx
for x 6= y and x, y ∈ A (2.29)

Lastly, the system has initial condition S(x, t = 0), I(x, t = 0), and R(x, t = 0) for x ∈ A.

The left side of Figure 2.12 shows the diffusion process. Now we include return rates by keep-
ing track of the individual’s base location. This allows us to use commuters’ mobility patterns.
The right side of Figure 2.12 shows these mobility patterns.

We define the mobility rate ωz
xy as the rate of individuals that travel to x, who are currently in

y, and have their base location at z. From now on, we only consider commuters. Hence we
assume ωz

xy = 0 when x 6= z or y 6= z. This results in traveling individuals between certain
destinations and their base location.

Let Sz
x(t), Iz

x(t), and Rz
x(t) be the number of susceptible, infectious, and recovered individuals

with base location z who are currently at location x at time t, respectively. For each base location
z ∈ Awe can rewrite (2.25), (2.26), and (2.27). For example, susceptible individuals from z who
are currently at x can get infected by infectious individuals from all other y ∈ A, who are also
currently at x, see 2.30. This results in the following equations:

dSz
x(t)
dt

= −β
Sz

x(t)
Nx

∑
y∈A

Iy
x(t) + ∑

y∈A

(
ωz

xySz
y(t)−ωz

yxSz
x(t)

)
, (2.30)

dIz
x(t)
dt

= β
Sz

x(t)
Nx

∑
y∈A

Iy
x(t)− γIz

x(t) + ∑
y∈A

(
ωz

xy Iz
y(t)−ωz

yx Iz
x(t)

)
, (2.31)

dRz
x(t)
dt

= γIz
x(t) + ∑

y∈A

(
ωz

xyRz
y(t)−ωz

yxRz
x(t)

)
, (2.32)

for z ∈ A. The total number of people at location x equals Nx = ∑
z

(
Sz

x(t) + Iz
x(t) + Rz

x(t)
)

.

If ωz
xy is independent of z, these equations reduce to the system described earlier (2.25), (2.26),

and (2.27).

If the mobility rates are large compared to the epidemic parameters (infection and recovery
rate), ωz

xy � β, γ, then the steady-states for the number of susceptible, infectious, and removed
individuals are reached separately. This happens because in this case, the time scale of com-
muting τc ∼ 1/ωz

xy is much shorter than the timescales at which people get infected or recover,
τi ∼ 1/β and τr ∼ 1/γ. This means the terms with mobility rates in (2.30), (2.31), and (2.32)
vanish, and the model has reduced to the remote-force-of-infection model. Results in the re-
mainder of this work are based on a remote-force-of-infection model.

2.2.3 Remote-force-of-infection model

The advantage of remote-force-of-infection models is that the movement of individuals is not
explicitly modeled.
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In the last part of the previous section, we argued that the mobility terms vanish from (2.30),
(2.31), and (2.32) if we assume mobility rates to be much larger than the infection and recovery
rates. In other words, the duration of visits is short compared to the timescales of the epidemic
(e.g., the infectious period).

We sum (2.30), (2.31), and (2.32) over z ∈ A. We obtain the following equations:

dSx(t)
dt

= −β
Sx(t)

Nx
∑

y∈A
Iy
x(t), (2.33)

dIx(t)
dt

= β
Sx(t)

Nx
∑

y∈A
Iy
x(t)− γIx(t), (2.34)

dRx(t)
dt

= γIx(t). (2.35)

Iy
x(t) are the number of infectious individuals who are currently at x but have y as their base

location. Iy
x(t) is a fraction of the total number of infectious individuals with base location y,

and the fraction depends on the connection between location x and y. We include this fraction
in the infection rate β and write βxy. So, we can write in terms of the total number of infectious
individuals Iy(t):

dSx(t)
dt

= −Sx(t)
Nx

∑
y∈A

βxy Iy(t), (2.36)

dIx(t)
dt

=
Sx(t)

Nx
∑

y∈A
βxy Iy(t)− γIx(t), (2.37)

dRx(t)
dt

= γIx(t). (2.38)

These equations are exactly equal to remote-force-of-infection models used by others [52, 53].
This system of coupled equations has the following conservation law:

Nx = Sx(t) + Ix(t) + Rx(t) for x ∈ A, (2.39)

and initial conditions Sx(0), Ix(0), and Rx(0) for x ∈ A.

In this work, we focus on a particular form of the infection rate βxy. We distinguish the local
transmission, βxx from the non-local transmission, βxy for x 6= y.

For local transmission, we use an infection rate βl . For non-local transmissions, we use another
infection rate βm multiplied by a fraction that depends on how strong location x and y are
coupled. In other words, it depends on how much mobility there is between x and y.

For non-local transmission, we distinguish two mechanisms: (1) infectious visitors from other
locations come here and infect susceptible here, or (2) because susceptible individuals visit
other regions and get infected there. Higher-order interactions are usually negligible [54].

To include these two mechanisms in βxy, we introduce the mobility parameter Mxy. It is defined
as the number of individuals who live in y and commute with location x on a daily basis.
We scale Mxy with the population size at y, mxy = Mxy/Ny. mxy can be interpreted as the
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probability of an individual living in y visiting location x. Note that mxx = 0. We can estimate
Mxy from the mobility data of The Netherlands; see Section 5.2.3.

This means that the local incidence (see Section 2.1.2) at location x equals βlSx(t)Ix(t)/Nx.
The non-local incidence is related to mobile individuals comes in two different ways: (1)
βm

Sx(t)
Nx

mxy Iy(t) and (2) βm
Iy(t)
Ny

myxSx(t). Note, mxy does not need to be equal to myx.

In summary, βxy as used in (2.36), (2.37), and (2.38), becomes:

{
βxy = βl if x = y,
βxy = (mxy + myx)βm if x 6= y,

(2.40)

where βl is the local transmission rate, βm the non-local (mobile) transmission rate, and mxy is
the fraction of individuals with base locations y who visit location x.

When we substitute the expressions for βxy in (2.36), (2.37), and (2.38) and write the equation
in terms of concentrations (sx(t) instead of Sx(t), etc.) we find:

dsx(t)
dt

= −βlsx(t)ix(t)− βm ∑
y∈A

(sx(t)myxiy(t) + iy(t)myxsx(t)) (2.41)

dix(t)
dt

= βlsx(t)ix(t) + βm ∑
y∈A

(sx(t)myxiy(t) + iy(t)myxsx(t))− γix(t) (2.42)

drx(t)
dt

= γix(t) (2.43)

For the SEIR model, we can follow similar steps as we did so far for the SIR model. This leads
to the following system of equations for the SEIR model:

dsx(t)
dt

= −βlsx(t)ix(t)− βm ∑
y∈A

(
sx(t)myxiy(t) + iy(t)myxsx(t)

)
(2.44)

dex(t)
dt

= βlsx(t)ix(t) + βm ∑
y∈A

(
sx(t)myxiy(t) + iy(t)myxsx(t)

)
− νex(t) (2.45)

dix(t)
dt

= νex(t)− γix(t) (2.46)

drx(t)
dt

= γix(t) (2.47)

Note that in both models we sum over all other location y ∈ A. When there is no edge between
x and y in the meta-population network, then mxy and myx are both equal to zero.

2.2.4 Epidemic threshold

As we now have many coupled subpopulations, calculating the R0 is not trivial. It might
depend on the mobility between different locations.

To calculate the basic reproduction number, we introduce the idea of a next generation matrix,
NGM, which we denote by K [45]. Elements of K represent the number of expected new in-
fections caused by current infectious individuals at different locations. We can think of this as
being the next generation of infectious individuals.
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The NGM can be constructed using epidemiological reasoning [55]. The element in column
and row x represents the average number of infections in subpopulation x caused by an infec-
tious individual who belongs to population x. In the same column, but in row y, the element
represents infections caused in population y by a contagious individual from x. In general,
element Kyx represents infections caused in a completely susceptible population y by and an
infectious individual from population x.

The number of subpopulations n determines the size of the NGM; it is a square n× n matrix.
Diagonal elements of the NGM are local infections. These elements are the product of the local
infection rate βl multiplied with the infectious period 1/γ. Therefore, we have,

Kxx =
βl

γ
. (2.48)

For off-diagonal elements, infections are related to mobility. It is the non-local infection rate βm
times the infectious period 1/γ and now multiplied with the value that someone from x going
to y or the other way around, which is equal to myx + myx. We sum mxy and myx because, as
mentioned before, non-local transmission from a contagious individual from x can occur at x
or at y. We find,

Kxy = (mxy + myx)
βm

γ
= m′xy

βm

γ
. (2.49)

We have seen in Section 2.1.3 that the addition of the exposed compartment does not influence
the reproduction number. Similarly, here, we can follow the reasoning from the SIR model to
find that elements of K for the SEIR model are equal to those of the SIR model.

How many new infections a specific person is expected to cause depends on how long he or
she is infectious (= infectious period = 1/γ) and the number of infections he or she causes
per unit of time (= the infection rate βxy). It depends not on whether we include an exposed
compartment.

Once all elements of K are calculated, R0 is the largest eigenvalue of the NGM, denoted by
ρ(K). To understand this, consider the size of the infectious population after m generations.
The infectious population is a vector of length n, ~i0 =

(
i1(t0), i2(t0), ..., in(t0)

)
. After the m

generations,~im = Km ·~i0. On average, the infectious population grows with a factor ||Km|| 1
m

per generation. When m goes to infinity, we have [56]

lim
m→∞

||Km|| 1
m = ρ(K) = R0. (2.50)

Similarl to what we discussed in Section 2.1.4, a value of R0 > 1 is necessary for exponential
growth in the number of infectious individuals. For a metapopulation this means that the
disease can spreads through the different subpopulation before it dies out.

2.3 Stochasticity

Until now, we have only discussed models in terms of systems of differential equations. Evalu-
ation of these systems results in a mean-field approach and is valid when the population sizes
become infinitely large, often referred to as the fluid limit or the thermodynamic limit. For small



21

systems, stochasticity plays an important role [57, 58]. In this section, we introduce a possible
way of including stochasticity into the SEIR and SIR models.

When neglecting stochastic effects, an epidemic always shows exponential growth if R0 > 1
initially. However, there is the probability that an infectious individual does not transmit the
disease before he or she recovers whileR0 > 1. If this happens with all infected individuals, the
epidemic dies out. The probability becomes very small as the number of infectious individuals
becomes large and whenR0 � 1 [11].

Secondly, stochastic effects play a role in distinguishing two different kinds of infectious indi-
viduals based on their contagiousness. E.g. with a small probability, an individual is highly
contagious. In a deterministic setting, we would obtain mean-field results, and it becomes im-
possible to see the effect of this distinction. For small numbers of infectious individuals and a
distinction between their level of contagiousness, stochastic effects play an important role; see
Section 5.3.

We use stochastic rounding as a way to include stochastic effects [46]. It is based on a forward
Euler scheme that can provide a numerical solution for a differential equation with initial con-
ditions. For example, if we want to find a numerical solution of a function f (t), the forward
Euler scheme is

f (t + ∆t) = f (t) + ∆t
d f
dt

. (2.51)

Here,d f (t)/dt is the derivative of f (t) that we want the numerically evaluate. ∆t is the step size.
When applying stochastic rounding, we let ∆t d f

dt be the parameter of a Poisson distribution [59].
We define the random variable F ∼ Pois(λ = ∆t d f

dt ). This results in the following scheme:

f (t + ∆t) = f (t) + F. (2.52)

In the remainder of this work, we mainly focus on a deterministic approach instead of a
stochastic approach. However, in Section 5.3 and Appendix H, we do stochastic simulations.
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Chapter 3

Analytical results

In this chapter, we present the analytical results for an SIR and SEIR metapopulation model.
We consider a one-dimensional network, which we show in Figure 3.1. This network structure
allows us to rewrite the model equations in Section 2.2.3 in terms of a continuous position
coordinate instead of a discrete subpopulation number. sx(t) −→ s(x, t), ix(t) −→ i(x, t), rx(t) −→
r(x, t), and in the SEIR model we also have ex(t) −→ e(x, t)

Our numerical results for localized initial conditions show different behavior for R0 > 1 and
R ≤ 1, see Figure 3.2. For R0 > 1, we observe a growth in the infectious concentration i(x, t),
which broadens diffusively. While forR0 ≤ 1, we observe that the infected concentration i(x, t)
broadens and decays exponentially. This decay of i(x, t) is in line with what we saw in Figures
2.9 and Figure 2.9(b) for i(t).

If R0 > 1, we observe that i(x, t) eventually transitions into two traveling waves that move
with constant shape and velocity in opposite directions in both the SIR and SEIR models. These
traveling waves share properties with solitary waves [60]. In the literature, work has been done
on solitary-like waves in reaction-diffusion epidemic models [61], but, to our knowledge, no
reports are made for remote-force-of-infection epidemic models, which we use.

In the next chapter, we further analyze traveling waves when R0 > 1. The main difference
compared to solitary waves is that our traveling waves annihilate during a collision with other
traveling waves. We numerically evaluate this by using periodic boundaries and a finite spatial
domain. Analytically, we let the spatial domain range from −∞ to +∞.

In Figure 3.3, we zoom in on numerical results for R0 = 1. We observe that i(x, t) transitions
into two decaying traveling waves that move in opposite directions in both the SIR and SEIR
models. Also, we observe this forR0 < 1, where the waves decay even faster.

In this chapter, we derive the model equations for a continuous space coordinate in Section 3.1.
Then, in Section 3.2 we argue that for localized initial conditions and for times shortly after an
outbreak, s(x, t) ≈ 1. This allows us to find solutions for the SIR and SEIR models. For the
SIR model, we find a modified diffusion equation. For the SEIR model, we find a modified
telegraph equation.

FIGURE 3.1: Metapopulation network. Each subpopulation is connected to its
two nearest neighbors. Location x is an element of the set of all locations A,

x ∈ A = [1, ..., n].
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FIGURE 3.2: Numerical results of the infected concentration ix(t) for an SIR
model on a network with 100 subpopulations, see Figure 3.1, for different val-
ues of R0. Initial conditions are sx(t = 0) = 1, ix(t = 0) = 0, rx(t = 0) = 0
for x ∈ [1, .., n], except for x = 50, which we initialize as s50(t = 0) = 0.99,

i50(t = 0) = 0.01, and r50(t = 0) = 0.
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FIGURE 3.3: Numerical results of the infected concentration ix(t) for an SIR
model on a network with 100 subpopulations, see Figure 3.1, for R0 = 1. Ini-
tial conditions are sx(t = 0) = 1, ix(t = 0) = 0, rx(t = 0) = 0 for x ∈ [1, .., n],
except for x = 50, which we initialize as s50(t = 0) = 0.99, i50(t = 0) = 0.01, and

r50(t = 0) = 0. Infected concentration axes are different.

Lastly, at the wavefront, we can also assume s(x, t) ≈ 1. We use this to find an expression for
the wave propagation velocity as a function of the model parameters in Section 3.3.

The code to reproduce the figures is publicly available at https://github.com/teunhend/
master-thesis.

In Chapter 4, we discuss our numerical results in more detail and compare them with our
analytical results.

3.1 SIR and SEIR meta-population models

The network in Figure 3.1 allows us to rewrite the SIR model equations (2.41), (2.42), (2.43),
and the SEIR model equations, (2.44), (2.45), (2.46), and (2.47), in terms of a continuous spatial
coordinate.

To obtain analytical results, we make some assumptions that simplify the model equations. We
assume mobility terms mxy independent of x and y in both models by setting them equal to
mxy ≡ m. We assume that the population density is constant for all x. And lastly, we assume
the distance between subpopulation x and x + 1 to be equal to ∆x.

In Equation (2.41) and Equation (2.42), for subpopulation x ,the sum over all connected loca-
tions y can be rewritten as a sum over populations x− 1 and x + 1, as we only include nearest
neighbors, see Figure 3.1. Then, we approximate ix−1(t) + ix+1(t) by using a Taylor series ap-
proximation [62]:

∆x2 ∂2i(x, t)
∂x2 + 2i(x, t) ≈ ix−1(t) + ix+1(t) (3.1)

https://github.com/teunhend/master-thesis
https://github.com/teunhend/master-thesis
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For the SIR model, Equation (2.41) and Equation (2.42), we find the following equations:

∂s(x, t)
∂t

= −(βl + 4mβm)s(x, t)i(x, t)− 2mβm∆x2s(x, t)
∂2i(x, t)

∂x2 , (3.2)

∂i(x, t)
∂t

= (βl + 4mβm)s(x, t)i(x, t) + 2mβm∆x2s(x, t)
∂2i(x, t)

∂x2 − γi(x, t). (3.3)

We can calculate r(x, t) via the conservation law r(x, t) = 1− s(x, t)− i(x, t). We render both
equations dimensionless by transforming time as t = 1

βl+4mβm
t∗ and the spatial coordinate in

our network as x =
√

2mβm∆x2

βl+4mβm
x∗. Substituting these in Equation (3.2) and Equation (3.3) and

dropping the asterisks, we find:

∂s(x, t)
∂t

= −s(x, t)i(x, t)− s(x, t)
∂2i(x, t)

∂x2 , (3.4)

∂i(x, t)
∂t

= s(x, t)i(x, t) + s(x, t)
∂2i(x, t)

∂x2 − 1
R0

i(x, t). (3.5)

Here, the basic reproduction number R0 is the only remaining parameter and R0 = βl+4mβm
γ .

Together with initial conditions ,s(x, t = 0), i(x, t = 0), and r(x, t = 0), and the conservation
law r(x, t) = 1− s(x, t)− i(x, t), the system of PDEs in Equation (3.4) and Equation (3.5) forms
a well-defined system. The domain for t = [0, ∞). Note that these equations are different
compared to what others use in modeling spatial spread of epidemics as they use so-called
reaction-diffusion models. For a comparison, see Appendix E.

We can choose the domain of x to be infinitely large, x = (−∞, ∞), or of finite size L, x =
(−L/2, L/2). In the latter, we can use periodic boundary conditions. s(x = −L/2, t) = s(x =
+L/2, t), i(x = −L/2, t) = i(x = +L/2, t), and r(x = −L/2, t) = r(x = +L/2, t), or we can
use absorbing boundary conditions, s(x = ±L/2, t) = 0, i(x = ±L/2, t) = 0, r(x = ±L/2, t) =
1.

Periodic boundary conditions lead to collisions of the traveling waves, while absorbing bound-
ary conditions lead to a collision with a wall. In both cases, we observe in numerical results
that the traveling waves are annihilated.

In rewriting the SEIR model, Equations (2.44), (2.45), (2.46), and (2.47), we follow similar steps
as we did for the SIR model.

We use again a Taylor series approximation to replace ix−1(t) + ix+1(t) ≈ ∆x2 d2i(x,t)
dx2 + 2i(x, t).

Time and space in our network are transformed into dimensionless parameters via t = 1
βl+4mβm

t∗

and x =
√

2mβm∆x2

βl+4mβm
x∗. These substitutions and transformations in combination with dropping

the asterisk lead to the following equations:

∂s(x, t)
∂t

= −s(x, t)i(x, t)− s(x, t)
∂2i(x, t)

∂x2 (3.6)

∂e(x, t)
∂t

= s(x, t)i(x, t) + s(x, t)
∂2i(x, t)

∂x2 − ce(x, t) (3.7)

∂i(x, t)
∂t

= ce(x, t)− 1
R0

i(x, t) (3.8)

Based on Section 2.1.4, we expectR0 to be equal in the SIR and SEIR models. Here, the basic re-
production numberR0 is equal to what we obtained in the SIR model. Namely,R0 = βl+4mβm

γ .
The parameter c is related to the rate at which individuals leave the exposed compartment,
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c = ν
βl+4mβm

. Like the latent period in Section 2.1.1, 1/ν, we interpret 1/c as the dimensionless
latent period.

We calculate r(x, t) using Equations (3.6), (3.7), (3.8) and the conservation law as via r(x, t) =
1− s(x, t)− e(x, t)− i(x, t). Together with initial conditions, s(x, t = 0), e(x, t = 0), i(x, t = 0),
and r(x, t = 0), and the domains of t = [0, ∞) and x = [−∞, ∞], Equations (3.6), (3.7), (3.8)
form a well-defined system.

In discrete systems, we initialize a localized outbreak by setting the infected concentration in
one subpopulation x0 initially at i0 and zero is all other subpopulations in the case of an SIR
model:

sx(t = 0) = 1− i0δx,x0 , (3.9)
ix(t = 0) = i0δx,x0 . (3.10)
rx(t = 0) = 0. (3.11)

Here, δx,x0 is a Kronecker delta function that is equal to 1 when x = x0 and equal to 0 otherwise.
For the SEIR model, we expose a fraction in a single subpopulation to initialize a localized
outbreak:

sx(t = 0) = 1− e0δx,x0 , (3.12)
ex(t = 0) = e0δx,x0 . (3.13)
ix(t = 0) = 0. (3.14)
rx(t = 0) = 0. (3.15)

In this case, e0 is the initial fraction of exposed individuals in subpopulation x0.

In the continuum limit, we use a delta distribution function [24]. In the SIR model, we scale the
delta peak with i0:

s(x, t = 0) = 1− i0δ(x− x0), (3.16)
i(x, t = 0) = i0δ(x− x0), (3.17)
r(x, t = 0) = 0. (3.18)

Here, δ(x− x0) is a delta function, and i0 is the initial concentration, and x0 the spatial coordi-
nate of the location of the delta peak. In the SEIR model, we scale the delta peak with e0:

s(x, t = 0) = 1− e0δ(x− x0), (3.19)
e(x, t = 0) = e0δ(x− x0), (3.20)
i(x, t = 0) = 0, (3.21)
r(x, t = 0) = 0. (3.22)

This approach is somewhat artificial as at t = 0; the delta function is of infinite height. But it
ensures that the total concentration of infected individuals at t = 0 equals i0 in the SIR model
(or the total concentration of exposed individuals in the SEIR model):

∫ ∞

−∞
i0δ(x− x0)dx = i0 (3.23)
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In the next section, we derive a solution for i(x, t) shortly after a localized outbreak.

3.2 Model behavior shortly after outbreak

This section presents analytical solutions for infectious concentration i(x, t) for the SIR and
SEIR, which describe their behavior shortly after initialization. The infectious concentration is
influenced byR0.

For R0 > 1, i(x, t) grows and broadens diffusively. Then, i(x, t) transitions into two waves
that travel in the opposite direction, see Figure 3.2. For R0 ≤ 1, i(x, t) decays and broadens
diffusively. Due to the decay, at some point, the broadening stops. Figure 3.3 zooms in on
the result for R0 = 1 from Figure 3.2. While decaying, i(x, t) transitions into two decaying
traveling waves that move in different directions.

In this section, we provide a solution for the diffusive regime. In the next section, we present
results for the traveling wave regime (for R0 > 1). Here, we focus on the diffusive-like behav-
ior.

We argue that the approximation s(x, t) ≈ 1 is reasonable shortly after a localized outbreak.
This approximation allows us to find analytical solutions asymptotically. However, in Section
2.1.4, we argued that R0 > 1 is necessary for exponential growth, but at time t, there is only
exponential growth if the product s(x, t)R0 > 1. By approximating s(x, t) = 1, we can only
find solutions that either exponentially grow or decay. Still, numerical results show that growth
and decay succeed each other forR0 > 1 in the SIR model (and also in the SEIR model).

We start with the SIR model. Firstly, we rewrite Equation (3.4) to

1
s

∂s
∂t

= −
(

i +
∂2i
∂x2

)
. (3.24)

Integrating both sides with respect to t gives

ln
s(x, t)
s(x, 0)

= −
∫ t

t=0
(i +

∂2i
∂x2 )∂t, (3.25)

s(x, t) = s(x, 0) exp
[
−
∫ t

t=0
(i +

∂2i
∂x2 )dt

]
. (3.26)

For small values of t, the exponent is close to zero and therefore s(x, t) ≈ s(x, 0), which is equal
to Equation (3.16). The value i0 is the concentration we initialize as infectious. As we choose
this value to be small, we approximate s(x, 0) ≈ 1. So, also s(x, t) ≈ 1. We substitute this in
(3.5) and find for small values of t:

∂i
∂t

=
∂2i
∂x2 +

(
1− 1
R0

)
i. (3.27)

We solve Equation (3.27) using Green’s functions. The derivation can be found in Appendix C.
We use the initialization described by Equations (3.16), (3.17), and (3.18). The solution we find
is very similar to the standard diffusion equation:

i(x, t) =
i0√
4πt

exp
[
− (x− x0)2

4t

]
exp

[(
1− 1
R0

)
t
]

. (3.28)
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For all values ofR0, the disease spreads diffusively. As this solution describes the PDE in (3.5)
shortly after an outbreak, we conclude that what we see in numerical results is indeed diffusive
behavior.

We have an extra term that depends on the basic reproduction number R0. Depending on the
value of R0, the total infected concentrations grows, remains constant, or decays. For R0 <
1 the total infected concentration exponentially decays, while for R0 > 1 the solution gets
exponentially larger. ForR0 = 1, we obtain the standard diffusion equation.

Figure 3.4 shows solutions of Equation (3.28). For R0 > 1, we see that indeed i(x, t) grows
and broadens. However, i(x, t) continues to grow to the point where i(x, t) > 1, which is not
allowed as i(x, t) is a concentration value and cannot be larger than unity.

For R0 ≤ 1, we see a resemblance with Figure 3.2. However, when we take a closer look
at Figure 3.3, we observe a transition into two decaying traveling waves, which we do not
observe in Figure 3.4(c) and Figure 3.4(d).

Equation (3.28) describes observed behavior from Figure 3.2 shortly after the outbreak. Still,
for R0 > 1 it cannot describe the transition into two traveling waves, nor can it describe the
two decaying waves for R0 ≤ 1. A solution that is not based s(x, t) = 1 can probably provide
a solution for this transition.

(a) R0 = 5 (b) R0 = 2.5

(c) R0 = 1 (d) R0 = 0.5

FIGURE 3.4: Numerical evaluation of Equation 3.28 for different values ofR0 and
for x0 = 0 and i0 = 0.01.

In the case of the SEIR model, we also approximate s(x, t) ≈ 1. This is based on similar argu-
ments as for the SIR model. We take Equation (3.8) and calculate its derivative with respect to
time:
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∂e(x, t)
∂t

=
1
c

∂2i(x, t)
∂t2 +

1
cR0

∂i(x, t)
∂t

. (3.29)

We substitute this equation and Equation (3.8) into Equation (3.7). Together with s(x, t) ≈ 1,
we obtain an equation in terms of i(x, t) and model parameters. :

∂2i(x, t)
∂t2 +

(
1
R0

+ c
)

∂i(x, t)
∂t

− c
∂2i(x, t)

∂x2 = c
(

1− 1
R0

)
i(x, t) (3.30)

This equation is better known as the general telegraph equation. The telegraph equation has
been studied extensively, and its properties are well known [63]. For small values of t, the
solution shows traveling wave solutions, while for large values of t, the solution becomes dif-
fusive.

We numerically evaluate Equation (3.30), and we show the results in Figure 3.5. While Figure
3.2 and Figure 3.3 are based on an SIR model, the SEIR model results are similar as in that they
also show decaying traveling waves for R0 ≤ 1 and diffusive growth followed by traveling
waves of constant shape for R0 > 1. From Figure 3.5, we find that Equation (3.30) describes
the SEIR model well for R0 ≤ 1. It shows diffusive decay, then it transitions into decaying
traveling waves. For R0 > 1, Equation (3.30) results in exponential growth of i(x, t) beyond
i(x, t) = 1 for t� 1.

(a) SEIR model forR0 = 5 and c = 1 (b) SEIR model forR0 = 2.5 and c = 1

(c) SEIR model forR0 = 1 and c = 1 (d) SEIR model forR0 = 0.2 and c = 1

FIGURE 3.5: Numerical evaluation of Equation 3.30 for different values ofR0 and
c. Initial condition is a delta peak at x = 0, i(x, t = 0) = i0δ(x), where i0 = 0.01.
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We provide a solutions for Equation (3.30) based on a following boundary and initial conditions
for the domain x ∈ [0, L] and t ∈ [0, ∞):

i(x, 0) = i0δ(x− x0),
∂i
∂t

∣∣∣∣
t=0

= 0, i(0, t) = 0, i(L, t) = 0.

Using a method called separation of variables [64], we find the following solution:

i(x, t) =
1
2

∞

∑
n=1

An exp
[
−
(

c
2
+

1
2R0

)
t
] (

sin
(nπx

L
−ωnt + φn

)
+ sin

(nπx
L

+ ωnt− φn

))
,

(3.31)
where the constants are as follows:

ωn =

√
c
((nπ

L

)2
− 5

4
− 1

4cR0

)
, (3.32)

φn = arctan
(

c
2ωn

+
1

2ωnR0

)
, (3.33)

An =
2

L cos φn
sin
(nπx0

L

)
. (3.34)

In Appendix D, we present the full derivation of Equation (3.31).

From Equation (3.31), we can see that the wave-like solutions decay exponentially with an
exponent dependent on c andR0.

3.3 Wave propagation velocity

After some time, the solutions to our dynamical equations transition into a regime where two
traveling waves are observed. For R0 > 1, we observe traveling waves with constant velocity
and shape. In Section 4.1.1, we show that the numerical results strongly point towards a tem-
porally invariant solution, i.e., can be written as i(x, t) = f (x + vt) + f (x − vt) ≡ i(u) with
u = x± vt.

Here, we present analytical results for the wave velocity. The most important approximation
we use throughout this section is that at the wavefront s(x, t) ≈ 1.

SIR Model. Here, we write the solution of the SIR equations as i(x, t) = f (x + v∗t) + f (x−
v∗t) ≡ i(u), where v∗ is the dimensionless velocity (and x and t are the dimensionless position
and time) and u = x± v∗t. This allows us to rewrite the PDE of (3.5) into an ODE in terms of u
via ∂

∂t −→ ±v∗ ∂
∂u and ∂2

∂x2 −→ ∂2

∂u2 . We define i = i(u), i′ = ∂i(u)
∂u and i′′ = ∂2i(u)

∂u2 and obtain:

0 = si′′ + v∗i′ +
(

s− 1
R0

)
i. (3.35)

For sufficiently localized initialization (s(x, t) ≈ 1 at the wavefront), the PDE reduces to an
ODE:

0 = i′′ + v∗i′ +
(

1− 1
R0

)
i. (3.36)

We know the solution of this equation is of the following form:
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i(u) = c1 exp [λ1u] + c2 exp [λ2u]. (3.37)

Here, c1 and c2 are constants determined by initial conditions, and λ1 and λ2 are solutions to
the so-called characteristic equation:

0 = λ2 + v∗λ +

(
1− 1
R0

)
. (3.38)

i(u) has traveling wave solutions for real roots of Equation (3.38). This means that only for
specific values of v∗, traveling waves can be observed:

v∗ ≥ 2

√
R0 − 1
R0

. (3.39)

For R0 −→ ∞, the dimensionless velocity obtains its maximum v∗ −→ 2. This equation only
holds whenR0 > 1, as only then we observe traveling waves with constant shape and velocity.
We can transform this dimensionless velocity to a velocity with dimensions, using the position
and time scaling constants. This results in:

v ≥ 2
√

2mβm∆x2(βl + 4mβm − γ). (3.40)

This velocity is based on our SIR model, which is from the class of remote-force-of-infection
models. Surprisingly, this result is equal to the results obtained for reaction-diffusion epidemic
models [65, 66]. We refer to Appendix E for the differences between these two classes of mod-
els.

The actually observed velocity turns out to be equal to the lowest possible value of v∗ for
reaction-diffusion models [65]. For localized initial conditions, our wavefront is a so-called
pulled wavefront, for which the relevant propagation velocity is the minimal velocity [67]. We
see in Section 4.1.2 that for our remote-force-of-infection models, the observed velocity is also
the lowest possible value of v∗.

Following similar steps as in our discussion of the SIR model, we find the following ODE for
the SEIR model:

0 =

(
1− (v∗)2

c

)
i′′ + v∗

(
c +
R0

c

)
i′ + (1−R0) i. (3.41)

Again, we use the characteristic equation to find only real roots, which puts a condition on v∗.
For sufficiently localized initialization, this system has traveling wave solutions for

v∗ ≥ 2

√
R0 − 1
R0

c2

c2 + 4(c− 2/R0) + (1/R0)2 . (3.42)

For c −→ ∞, (3.42) reduces to (3.39), just as expected. Because 1/c can be interpreted as the
dimensionless latent period, the time spent in the exposed compartment. For c −→ ∞, the
time spent in the exposed compartment goes to zero, reducing the SEIR model to the SIR
model.
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We compare the dimensionless velocities v∗ from Equations (3.39) and (3.42) in Figure 3.6. We
observe that for large values ofR0 the system obtains its maximum velocity. For the SIR mode,
this maximum velocity equals 2. For the SEIR model, the maximum is determined by the model
parameter c. For small dimensionless latent periods, 1/c, or in other words, if the time spent in
the exposed compartment is short, the velocity is high. For large values of R0, Equation (3.42)
reduces to:

v∗ = ±2
√

c
c + 4

. (3.43)

In Section 4.1.2, we compare numerically obtained velocities in the SIR and SEIR models to the
velocities from Equations (3.39) and (3.42). Similar to what has been observed for epidemic
reaction-diffusion models, the wave propagation velocity equals to the lowest possible value
of Equations (3.39) and (3.39). We show these values in Figure 3.6.
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FIGURE 3.6: Analytical wave propagation velocities v∗ for the SIR model and
SEIR model as a function of the basic reproduction number R0. For the SIR
model, we show Equation (3.39). For the SEIR model, we show Equation (3.42)
for different values of 1/c. 1/c is the dimensionless latent period, the time spent

in the exposed compartment.

3.4 Other meta-population models

In Section 2.1.1, we described different epidemic compartmental models. In this chapter so far,
we analyzed the SIR and the SEIR model. For the reader more interested in the other compart-
mental models, we summarize the analytical results in this section. The models that we con-
sider are the SIS (susceptible-infected-susceptible) model, the SIRS (susceptible-infected-recovered-
susceptible) model, and the SEIRS (susceptible-exposed-infected-recovered-susceptible) model. We
leave the numerical analysis of the SIS, SIRS, SEIRS models to future work. In the next chapter,
we numerically analyze the SIR and the SEIR models.

Following similar steps as in the previous sections of this chapter, we derive model equations
using a continuous spatial coordinate for a network structure as depicted, in Figure 3.1. We
show the model equation and relate these to asymptotic solutions, which are valid shortly after
an outbreak. Also, we briefly present wave propagation velocities.
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For results shortly after a localized outbreak, we see that it does not matter whether or not resis-
tance is eventually lost. What matters is whether or not individuals become directly infectious
instead of becoming exposed.

SIS model. People become susceptible to the disease after they have been infectious. In Equa-
tions (A.5) and (A.6), non-local transmission is included, similar to (2.41). The result is then
transformed using a dimensionless time and dimensionless position, which results in:

∂s(x, t)
∂t

= −s(x, t)i(x, t)− s(x, t)
∂2i(x, t)

∂x2 +
1
R0

i(x, t), (3.44)

∂i(x, t)
∂t

= s(x, t)i(x, t) + s(x, t)
∂2i(x, t)

∂x2 − bi(x, t) = −∂s(x, t)
∂t

. (3.45)

Here, R0 is the only remaining parameter, and R0 = βl+4mβm
γ . Together with initial conditions

s(x, 0) and i(x, 0) and the conservation equation 1 = s + i, the system of PDEs in Equations
(3.44) and (3.45) form a well-defined system. Using s = 1− i, we can reduce the system to a
single PDE,

∂i(x, t)
∂t

= (1− i(x, t)− b)i(x, t) + (1− i(x, t))
∂2i(x, t)

∂x2 . (3.46)

For i(x, t) small, Equation (3.46) reduces to Equation (3.27). This means that the initial response
to a localized outbreak in the SIR and SIS model are described by the same asymptotic solution
in Equation (3.28). This also means for the SIS model that the wave propagation velocity is
expected to be equal to Equation 3.39, ifR0 > 1.

SIRS model. Following similar steps as described above, we find the dimensionless equation
for the meta-population SIRS model to be

∂s(x, t)
∂t

= −s(x, t)i(x, t)− s(x, t)
∂2i(x, t)

∂x2 + d(1− s(x, t)− i(x, t)), (3.47)

∂i(x, t)
∂t

= s(x, t)i(x, t) + s(x, t)
∂2i(x, t)

∂x2 − 1
R0

i(x, t). (3.48)

Here, R0 = βl+4mβm
γ and d = α

βl+4mβm
. α equals the rate at which individuals lose their im-

munity to the disease. Together with initial conditions s(x, 0) and i(x, 0) and the conservation
equation r = 1− s− i, the system of PDEs is a well-defined system. Note that for d −→ ∞ this
model reduces to the SIS model, while for d −→ 0, this model reduces to the SIR model.

For i(x, t) small, Equation (3.48) reduces to Equation (3.27). This means that the initial response
to a localized outbreak in the SIR and SIRS model is described by the same asymptotic solution
in Equation (3.28). Also, for the SIRS model, the wave propagation velocity is expected to be
equal to Equation 3.39, ifR0 > 1.

SEIRS model. Following similar steps as described above, we find for the dimensionless
equation for the meta-population SIRS model:
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∂s(x, t)
∂t

= −s(x, t)i(x, t)− s(x, t)
∂2i(x, t)

∂x2 + d(1− s(x, t)− i(x, t)− e(x, t)), (3.49)

∂e(x, t)
∂t

= s(x, t)i(x, t) + s(x, t)
∂2i(x, t)

∂x2 − ce(x, t), (3.50)

∂i(x, t)
∂t

= ce(x, t)− 1
R0

i(x, t), (3.51)

where R0 = βl+4mβm
γ , c = ν

βl+4mβm
, and d = α

βl+4mβm
. Again, α equals the rate at which indi-

viduals lose their immunity to the disease. Together with initial conditions s(x, 0), e(x, 0), and
i(x, 0) and the conservation equation r = 1− s − e − i, the system of PDEs is a well-defined
system. Note, for d −→ ∞, this model reduces to the SEIS model (not discussed here), while for
d −→ 0, this model reduces to the SEIR model.

For i(x, t) small, Equation (3.51) reduces to Equation (3.30). This means that the initial response
to a localized outbreak in the SEIR and SEIRS model are described by the same asymptotic so-
lution in Equation (3.31). Also, for the SEIRS model, the wave propagation velocity is expected
to be equal to Equation (3.42), ifR0 > 1.

We leave the numerical analysis of the SIS, SIRS, SEIRS models to future work. In the next
chapter, we numerically analyze the SIR and the SEIR models.
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Chapter 4

Numerical results

In this chapter, we present and analyze numerical results for the SIR and SEIR models. In the
previous chapter, we showed that for a specific metapopulation structure, as in Figure 3.1, we
can rewrite sx(t) −→ s(x, t), ex(t) −→ e(x, t), etc.

For this one-dimensional network, we discuss the traveling waves that appear for R0 > 1 in
both the SIR and SEIR models. We show arguments why the solution in the traveling wave
regime is an invariant solution, i.e. i(x, t) = i(x ± v∗t) ≡ i(u). In addition, we analyze how
the model parameters influence the shape of the i(x, t) curve, we compare the SIR model to
the SEIR model, and we verify the dimensionless velocity equations (3.39) and (3.42). We find
that the traveling waves are robust to parameter variations, population density variations, and
stochastic effects.

Numerically, we also analyze other metapopulation networks. Such as a network that resem-
bles a two-dimensional grid. Subpopulations are connected to their four or eight nearest neigh-
bors. We observe similar behavior as in our one-dimensional network. Namely, a diffusive
decay for R0 ≤ 1 and diffusive growth for R0 > 1, which transitions into a circular travel-
ing wavefront. Even for multiple initial outbreak locations, a large circular wavefront appears
eventually.

For more complex metapopulation structures where subpopulations are not connected to only
their nearest neighbors, wave-like patterns are also observed [8]. We expect that our results
from Chapter 3 and Chapter 4 also hold for more complex metapopulation structures. In Chap-
ter 5, such a complex metapopulation structure is considered, as it is based on mobility patterns
of The Netherlands.

4.1 Epidemic waves

Firstly, we show that within the traveling-wave regime, R0 > 1, the wave’s shape remains
constant for a given combination of model parameters. Therefore, the solution can be written
as i(x, t) = i(x± vt). To demonstrate this, we use a network similar to Figure 3.1 with n = 100.
Then, we discuss the influence of the model parameter on the actual shape of i(x, t). In the last
part of this section, we present numerical results for the propagation velocity of the wave.

In Figure 4.1, we present the infected concentration i(x, t) in the SIR model for two values ofR0.
i(x, t) is scaled by the peak concentration imax. We define the normalized infected concentration
i∗(x, t) as i(x, t)/imax. We plot i∗(x, t) versus x± v∗t, where x is the dimensionless positions, v∗

the dimensionless velocity (see Equation (3.39)), and t the dimensionless time. We add φ, such
that the peak of i(x, t) is at exactly zero.

The spatial domain x ∈ [0, 1, ..., 99] and we initialize as described by Equations (3.9), (3.10),
(3.11). We arbitrarily set x0 = 50 and i0 = 0.01. Results in this section do not depend on the
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exact value of i0. The system has periodic boundaries. So, eventually, the waves collide at
x = 0. All positions x ∈ [1, 2, .., 49] (wave traveling to the left) and x ∈ [51, 52, ..., 99] (wave
traveling to the right) are included in Figure 4.1. The collapse of all i∗(x, t) on a single curve
strongly hints towards a traveling wave solution with a constant propagation velocity.

Similarly, for the SEIR model, we present the normalized infected concentration i∗(x, t) versus
x ± v∗t in Figure 4.2. Here, v∗ is based on Equation (3.42). We plot i∗(x, t) for two different
values of R0 and c. Again, the collapse of all i∗(x, t) on a single curve strongly hints towards a
traveling wave solution with a constant propagation velocity.
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FIGURE 4.1: Scaled infected concentration i∗(x, t) in the SIR model as a function
of x ± v∗t + φ for two values of R0. The infected concentration i(x, t) is scaled
such that maximum is equal to 1. v∗ is the dimensionless velocity as described by
Equation (3.39). φ is added such that the peak of the curve is at 0. Left and right

show the collapse of i∗(x, t) onto a single curve.

Solitary waves are waves that maintain their shape while they propagate with constant velocity
[60]. While our traveling waves appear similar to solitary waves, our traveling waves are
slightly different. Like solitary waves, our traveling waves are localized and of constant shape
and velocity, but they behave differently in a collision compared to solitary waves.

We observe that our traveling waves are annihilated after a collision. We show this in Figure
3.2, where forR0 = 5, the traveling waves collide at around t = 400 and annihilate. The waves
collide because the system has periodic boundaries. This is completely different than what we
would expect of a solitary wave. A solitary wave survives a collision with other solitary waves
without losing energy and emerges from a collision with only a phase shift [60].

We analyze the shape of the normalized curves in Figure 4.1 and Figure 4.2 in the next section.
In particular, we show results for a universal curve, results on the max curve height imax, and
results for the width of the curves via the full width at half maximum, FWHM.

4.1.1 Shape and parameter influence

Based on Figure 4.1 and Figure 4.2, we try to find a universal curve. For the SIR model, we
see that higher values of R0 result in a more asymmetric shape of i∗(x, t). This relation is
confirmed in Figure 4.3. For the SEIR model, we see that the shape is influenced by R0 in in
a completely different way in Figure 4.4. Larger values of R0, reduce the width of the curve,
instead of increasing the asymmetry. When we compare multiple ratios of the latent period
over the infectious period, 1/(cR0), we see that the shapes of i∗(x, t) overlap.
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FIGURE 4.2: Scaled infected concentration i∗(x, t) in the SEIR model as a function
of x± v∗t + φ for different values of R0 and c. The infected concentration i(x, t)
is scaled such that maximum is equal to 1. v∗ is the dimensionless velocity as
described by Equation (3.42). φ is added such that the peak of the curve is at 0.

Left and right show the collapse of i∗(x, t) onto a single curve.
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FIGURE 4.3: Scaled infected concentration i∗(x, t) in the SIR model as a function
of x± v∗t + φ for multiple values ofR0 in a single figure. v∗ is the dimensionless
velocity as described by Equation (3.39). φ is added such that the peak of the

curve is at 0.

Before we show results on the maximum height of the non-normalized curve i(x, t), imax, we
briefly recapitulate on the final size of the epidemic r∞. In Section 2.1.4, we discussed the final



38

20 10 0 10 20
x ± vt +

0.0

0.2

0.4

0.6

0.8

1.0

i* (
x,

t)

SEIR 0 = 1.6
SEIR 0 = 2.4
SEIR 0 = 3.2
SEIR 0 = 4

FIGURE 4.4: Scaled infected concentration i∗(x, t) in the SEIR model as a function
of x± v∗t + φ for multiple values ofR0 in a single figure while 1/c = 1. v∗ is the
dimensionless velocity as described by Equation (3.42). φ is added such that the

peak of the curve is at 0.
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FIGURE 4.5: Scaled infected concentration i∗(x, t) in the SEIR model as a function
of x± v∗t + φ for multiple values of 1/c in a single figure whileR0 = 2. v∗ is the
dimensionless velocity as described by Equation (3.42). φ is added such that the

peak of the curve is at 0.

size of the epidemic r∞. It represents the fraction of the population that has had the disease
when the epidemic dies out eventually. This value only depends on R0 in both the SIR and
SEIR models. We can calculate it now via:

r∞(x) =
∫ ∞

0
i(x, t)dt (4.1)

We can think of r∞(x = x′) as the area under i(x′, t) for t ∈ [0, ∞). For both models, large
values ofR0 result in higher maximum values of i(x, t) and the shape becomes more asymmet-
ric.

For the SIR model, Figure 4.6(a) shows imax as a function of R0. imax increases for larger R0.
Plotting the results in a log-log plot gives no constant slope. The full width of the peaks at
half the maximum, the FWHM, is shown in Figure 4.6(b). Although the FWHM remains ap-
proximately equal for all values R0, it shows an unexpected kink in the curve around R0 ≈
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2.5.
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FIGURE 4.6: Results on the maximum value of the i(x, t) curve, imax and the
full width at half maximum, FWHM, for the SIR model. Results are plotted for
different values of R0. Initially, a fraction i0 = 0.01 is initialized in a single sub-

population.

For the SEIR model, Figure 4.7 shows imax as a function ofR0 and the ratio of the latent period
over the infectious period, 1/(cR0). As expected, for relatively large latent periods (1/(cR0) is
large), the peak intensity is low. If the latent period is relatively short, thenR0 has an influence
on imax similar as in Figure 4.6(a).

For numerical evaluations with equal R0 but different latent periods 1/c, r∞, as calculated by
Equation (4.1) remains constant. For a lower value of imax, we would expect a wider peak.
However, from Figure 4.5, we expect constant widths for different values of 1/(cR0). This
can be explained by the role of the wave propagation velocity and its effect on the calculation
of r∞(x). For example, a slow, low peak could result in a larger r∞(x) than a very fast high-
intensity peak.

Figure 4.8 shows the FWHM also as a function of R0 and 1/(cR0). We expect the width for
a given value of R0 is independent on 1/(cR0) . However, we observe a small influence and
that the FWHM is lowest for 1/(cR0) around unity. The reason for this is unclear.
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FIGURE 4.7: Results on the maximum value of the i(x, t) curve, imax, for the SEIR
model. Results are plotted for different values of R0 and 1/(cR0). Initially, a

fraction i0 = 0.01 is initialized in a single subpopulation.
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curve for the SEIR model. Results are plotted for different values of R0 and

1/(cR0). Initially, a fraction i0 = 0.01 is initialized in a single subpopulation.
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FIGURE 4.9: Numerical evaluation of wave propagation velocity v∗num divided
by the analytical propagation velocity from Equation (3.39) in an SIR model as a
function of R0. The meta-population network is a circular network where mo-
bility is only present between nearest neighbors. Initially, a fraction i0 = 0.01 is

initialized in a single subpopulation.

4.1.2 Propagation velocity and robustness

The propagation velocity of the epidemic wave is described by Equations (3.39) and (3.42) in
terms of the model parameters. In this section, we verify both equations and show that these
equations indeed correspond to the wave propagation velocity. Also, we check that the wave
propagation velocity is robust to to population distribution changes, as long asR0 > 1.

We calculate the velocity by dividing the distance from the initial outbreak position x0 by the
time at which the wave arrives at the location ta:

v∗num =
|x− x0|

ta
. (4.2)

We define the arrival time ta as when the infection concentration has reached a value of i(x, t) =
0.001. This value is chosen arbitrarily. We could have also used the maximum value of the wave
imax instead of 0.01.

For the SIR model, the numerical results on the dimensionless velocity, v∗num, and the theoret-
ical results from (3.39), denoted by v∗theo, correspond very well, see Figure 4.9. In this figure,
we show the ratio v∗num/v∗theo. There is a small downward trend in this ratio. For systems
with higher velocity, see Figure 3.6, we have decreased the numerical step size to improve the
result.

Similarly, for the SEIR model, we show the ratio of the numerical dimensionless velocity over
the theoretical numerical velocity from Equation (3.42) in Figure 4.10. The numerical velocities
correspond very well. Again, for high propagation velocities, see Figure 3.6, the numerical
velocity is a little lower. We reduce the numerical step size, which leads to a smaller error.

So far, we have seen that travelings waves with constant shape and velocity appear in the SIR
and SEIR models if R0 > 1. Model parameters change the shape of i(x, t). We also explored
how a different population distribution influences the waves. We observe traveling waves for
R0, with velocities predicted by Equations 3.39 and 3.42. We leave further analysis on the effect
on wave properties by varying the population distribution to future work. In the next section,
we discuss networks with more nearest neighbors.
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FIGURE 4.10: Numerical evaluation of wave propagation velocity v∗num divided
by the analytical propagation velocity from Equation (3.42) in an SEIR model
as function of its model parameters, R0 and c. The meta-population network
is a circular network where mobility is only present between nearest neighbors.

Initially, a fraction i0 = 0.01 is initialized in a single subpopulation.

4.2 Two dimensional network

In this section, we consider a more complex but still structured metapopulation network. We
show that for a more complex network, we still see a diffusive broadening initially, which tran-
sitions into traveling waves of constant velocity and shape for R0 > 1. We expect that this
behavior also can be observed in more complex networks with even more connected neigh-
bors.

So far, we have considered a metapopulation as depicted in Figure 3.1. This particular network
allowed us to rewrite sx(t), ex(t), ix(t), and rx(t) into s(x, t), (e(x, t)), i(x, t), and r(x, t). In the
sx(t) notation, x refers to the subpopulation number, see Section 2.2.1. In the s(x, t) notation, x
is a spatial coordinate. For a network similar as in Figure 4.11, we could rewrite all concentra-
tions in terms of two spatial coordinates, for example., sx(t) −→ s(x, y, t). The network in Figure
4.11 resembles a two-dimensional grid.

We numerically evaluate our model on a network using Equations (2.41), (2.42), and (2.43)
for the SIR model and Equations (2.44), (2.45), (2.46), and (2.47) for the SEIR model. We use
four nearest neighbors (network inspired by a Von-Neumann lattice) or eight nearest neighbors
(network inspired by a Moore lattice); see Figure 4.11. We use a homogeneous population
distribution. We use a total mobile fraction equal to m ≡ ∑y(x) mxy, where y(x) represents
subpopulations y connected to x, in other words, the nearest neighbors of x. For four neighbors,
this results in mxy = m/4, while for eight nearest neighbors, this results in mxy = m/8.

We expect to see diffusive behavior, traveling waves for R0 > 1, and collisions for periodic
boundaries or multiple outbreak locations like we saw for our one-dimensional networks in the
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previous sections. Our results confirm these expectations. Namely, we see the concentration of
infectious individuals grows diffusively shortly after an outbreak. Then, it turns into a circular
expanding traveling wave. The exact shape of the wavefront depends on how many nearest
neighbors we include; see Figure 4.12.

FIGURE 4.11: A metapopulation network inspired by a lattice with on the left a
location with its four nearest neighbors in yellow and on the right a location with

its eight nearest neighbors in red.

When comparing the top and bottom row of Figure 4.12, we see that the shape is more circu-
lar for eight nearest neighbors than for four neighbors. The wavefront velocity is not constant
across the traveling wavefront as it depends on the number of infectious neighbor popula-
tions.
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FIGURE 4.12: Two numerical evaluations of the infected concentration ix(t) in an
SIR model with R0 = 2 on a 70x70 grid with periodic boundaries and a single
outbreak location. Initially in this outbreak location x0, we set sx0(t) = 0.99,
ix0(t) = 0.01 and rx0(t) = 0. The infected concentration at all locations is plotted
for different moments in time. From left to right, t = 50, t = 150, and t = 300.
Each location has four nearest neighbors in the top row, while in the bottom row,

each location has eight nearest neighbors, see Figure 4.11.



44

Compared to a one-dimensional network, the wave propagation velocity is lower for a two-
dimensional network. To understand this, we need to realize that the force that drives trans-
mission via neighboring subpopulations is proportional to mxy for each neighbor, see Equation
(2.41) and (2.44). We kept the total mobile fraction m of a population constant; m ≡ ∑y(x) mxy,
where y(x) represents subpopulations y that are connected to x, in other words, the nearest
neighbors of x.

In a one-dimensional network, we have two neighbors, so mxy is set to m/2. In a two-dimensional
network, the force that drives transmission via neighboring subpopulations is proportional to
m/4 or m/8, for a network with four or eight nearest neighbors, respectively. A higher force
that drives transmission of the disease also means a higher wave propagation velocity.

For a localized initialization, a subpopulation is attacked by the epidemic via one neighbor in
a one-dimensional network. The force and the velocity are proportional to m/2. In a two-
dimensional network with four nearest neighbors, the force and velocity are proportional to
m/4 per infectious neighbor.

For a localized initialization, we can easily see that the number of infected neighbors at the
wave-front is less than er equal to two. This results in a force of infection and wave propagation
velocity, which is proportional to ≤ 2m/4 = m/2. As a result, the velocity in a 2D grid is
smaller or equal to the velocity in a 1D network for a localized initial outbreak.

Multiple outbreak locations. Here, we simulate multiple outbreaks in combination with
eight nearest neighbors. The outbreaks locations relatively close to each other; the distance
equals 6∆x, where ∆x is the distance between two neighbors. We expect the separate wave-
fronts to combine into a single wavefront of circular shape. In Figure 4.13, we see exactly
happening what we expected.

When the traveling wavefront radius becomes much larger than the initial separation in out-
break locations, the shape of the wavefront approaches Figure 4.12. In other words, as if the
epidemic had a single source instead of multiple sources.
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FIGURE 4.13: A numerical evaluation of the infected concentration ix(t) in an SIR
model with R0 = 2 on a 70x70 grid with periodic boundaries and two outbreak
locations. Initially in this outbreak location x1 and x2, we set sx1(t) = sx2(t) =
0.99, ix1(t) = ix2(t) = 0.01 and rx1(t) = rx2(t) = 0. The infected concentration at
all locations is plotted for different moments in time. From left to right, first row,
t = 50, t = 80, and t = 110. From left to right on the second row t = 150, t = 200,
and t = 300. Each location has eight nearest neighbors. The wave fronts collide

and merge into a single larger traveling wave front.
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Chapter 5

Mobility restrictions

In this chapter, we present the article published in The Royal Society Interface, entitled: Trade-
offs between mobility restrictions and transmission of SARS-CoV-2 [9]. The article has been slightly
modified to fit to the narrative and style of the thesis, some sections are rewritten or left
out.

In this chapter, we address research question 2: How to balance the trade-off between mobility re-
strictions and transmissions of COVID-19?. We formalize this trade-off in terms of a single trade-
off parameter. This parameter can be interpreted as the number of movements between areas
that we are willing to restrict to prevent the occurrence of a single new infection. We consider
restrictions where we divide a country into different regions. We block the mobility between
different regions but allow for mobility within these regions. We use this definition to answer
the two subsequent questions: How to evaluate the effectiveness of mobility restrictions? And How
large should a ’region’ be for effective containment of the disease?. We use an SEIR epidemic model
to evaluate the impact of mobility restriction and propose heuristic methods to approximate
optimal choices for mobility restrictions.

The author of this thesis is a co-author of the article. The contributions of all co-authors are as
follows:

• Martijn Gösgens MSc. formalized the problem, helped develop the methodology and
drafted the article;

• Teun Hendriks helped formalize the problem, helped develop the methodology, analyzed
the model and drafted the article;

• Dr. ir. Marko Boon helped set up the project, helped obtain the data and critically revised
the manuscript;

• Wim Steenbakkers provided the mobility data;

• Prof. dr. ir. Hans Heesterbeek contributed to the discussions and helped draft the main
text;

• Prof. dr. Remco van der Hofstad contributed to the discussions and helped draft the
main text;

• Prof. dr. Nelly Litvak contributed to the discussions and helped draft the main text.
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5.1 Introduction

At any given moment in the outbreak of a virus-transmitted disease, there is a mix of countries
and regions where the virus is temporarily under control, countries where the epidemic is
decreasing, and countries where the epidemic is increasing. After an initial peak in cases,
countries remain at risk for second and subsequent peaks, even if no cases are reported in the
country for long periods of time. As in principle, everybody is susceptible to some degree, not
reaching herd immunity (see section 2.1.4) after the initial wave of infection leaves a largely
susceptible population that can sustain subsequent outbreaks [31].

Mobility between regions plays a potentially important role in increasing transmission. Still,
measures aimed at restricting mobility also have a potentially large social and economic im-
pact: mobility and economic activity are often studied as two sides of the same coin [28]. In the
initial wave of infection, countries, to a large extent, impose national mobility restrictions. More
regional or local mobility restrictions can perhaps achieve containment strategies for prevent-
ing subsequent infection waves. This has the advantage of reducing the social and economic
burden on society yet has the risk that the restrictions may not be sufficiently effective and need
to be scaled-up after all to a national level at some later point in time.

It is, however, unclear how one could gauge the effectiveness of regional restrictions based on
realistic mobility patterns specific to the country, balancing trade-offs between mobility and
transmission. It is also unclear how large a ‘region’ should be for effective containment and
how different recognizable regions (for example, administrative regions such as provinces,
large cities, or postal code regions).

In the remainder of this chapter, we provide a framework to evaluate regional strategies’ effec-
tiveness to restrict mobility, allowing for a range of choices of how regions are characterized,
using The Netherlands as a case study. This is essential to determine the scale at which inter-
ventions can be effectively imposed or lifted, and addresses a range of key modeling questions
for COVID-19 and future pandemic outbreaks [68].

We base the framework on actual mobility patterns in The Netherlands. We distinguish be-
tween extreme situations where the infection is distributed evenly between areas, and situa-
tions where the infection is highly concentrated in a restricted number of areas, for example, as
a result of a super spreading event. We show that regions defined based on mobility patterns
provide better strategies than regions based on administrative characteristics and that focusing
on administrative regions, therefore, leads to sub-optimal strategies. We also quantify and ex-
plore the non-linear relation between mobility and outbreak size for a range of choices of the
trade-off between mobility and transmission.

5.2 Methodology

In this section, we describe the overview of our approach. We consider restrictions where we
divide a country into different regions. We block the mobility between different regions but
allow for mobility within these regions. This chapter aims to devise regions that allow for as
much mobility as possible yet restrict infections as much as possible. For this, we need to strike
a careful balance between mobility and infections, which we formalize in terms of a trade-off
parameter that policymakers need to impose.

This section is organized as follows. We start in Section 5.2.1 by specifying the kind of mobility
strategies that we consider in this work. As we want to balance infections and mobility, we
describe how we estimate those in Section 5.2.2 and Section 5.2.3, respectively. Next, in Section
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5.2.4, we introduce a way to quantify mobility restriction strategies’ performance by formu-
lating the trade-off between mobility and infection spread as an explicit optimization problem
over the various choices of regions described in Section 5.2.1.

The optimization problem that formalizes our trade-off between mobility and infection con-
tainment is inspired by community-detection algorithms and is complex to solve explicitly.
In Section 5.2.4, we also describe how to rigorously and heuristically analyze such problems.
In Section 5.2.5, we provide heuristics that generate strategies with high performance. We
close this section by describing how we can evaluate the various divisions in regions in Section
5.2.6.

5.2.1 Strategies for mobility restrictions

Within the meta-population framework (see Section 2.2.1), a region is represented by a subset
D ⊆ A. For locations x, y ∈ D, the number of daily travels between x and y, Mxy, and the scaled
mobility mxy = Mxy/Ny is left unchanged, while for z 6∈ D, Mxz = 0 is set to zero. Finally, a
division is represented by a partition D = {D1, . . . , D|D|}. In our use case, we consider Dutch
municipalities to be sub-populations.

Many administrative divisions that might serve as examples for regions D already exist. For
example, we could use The Netherlands its divisions of its municipalities into 12 provinces or
25 so-called security regions1. An advantage of using such divisions is that they are already
known so that it may be easier to communicate and thus enforce mobility restrictions based on
them to the broad public. However, a disadvantage is that these divisions have been histori-
cally determined by decisions of governance. Thus their borders do not necessarily effectively
reflect the actual movement of people throughout the country. As a result, mobility restrictions
based on them may not be the most effective.

An illustrative example is the province of Flevoland (equal to the security region Flevoland).
The city of Almere, the most populous city of Flevoland, lies close to the city of Amsterdam,
where many of the city of Almere’s citizens work. Our mobility data shows that more than
90% of the mobility leaving Almere also leaves the province of Flevoland, as can be seen in
Figure 5.5. Therefore, choosing the division into provinces or security regions would dispro-
portionately affect Almere’s people in terms of mobility. In Section 5.2.5, we provide a method
to obtain divisions based on the mobility data by applying community detection methods. In
Figure 5.5, we see that this method’s divisions do consistently place Almere in the same region
as Amsterdam.

Another disadvantage of using existing administrative divisions is that these are, by their very
definition, inflexible and can hence not be tailored to the specific epidemiological situation. In
Section 5.2.5, we provide a method to obtain divisions that do take epidemiological information
into account.

5.2.2 Estimating infections

Infections are estimated with a SEIR remote-force-of-infection model, see Section 2.2.3. The
meta-population structure is based on The Netherlands and its municipalities.

We distinguish between Tested and Untested individuals. When individuals become infectious,
a fraction a gets tested, while the remainder (1− a) remains undetected. This distinction allows

1In The Netherlands, a safety region is an region in which various authorities and services work together to
carry out tasks in the field of fire departments, disaster and crisis management, medical assistance, public order
and safety.



49

us to initialize based on historical reported numbers of new infections easily. An important
assumption is that tested individuals do not transmit the disease to other locations. In other
words, they remain within their municipalities. This also means when a = 1, all infectious
individuals are known, and the disease does not spread to other locations.

This means we can rewrite infection rates between different locations from Equation 2.40 such
that only a fraction (1 − a) of the infectious individuals transmits the disease to other loca-
tions: {

βxy = βl if x = y,
βxy = (1− a)(mxy + myx)βm if x 6= y,

(5.1)

It is possible to calculate the actual number of people in the compartments via Sx = sx Nx,
Ex = ex Nx, etc., where Nx is the population size of location x. We present the parameter
estimates in Table 5.1. We estimate βl = clε and βm = cmε, where cl and cm are the local contact
rate and the non-local contact rate and ε is the transmission probability. In Section 2.1, we
explained that the infection rate β could be written as a product of c and ε.

Based on the literature, we estimate that the average number of contacts a person has per day
is 13.85 in The Netherlands [69], but the transmission probability is unknown. We assign ε a
value such that theR0 we calculate corresponds to theR0 of COVID-19.

We assume that the fraction of local contacts equals p = 0.5, which means that cl = pc and the
remainder of contacts are made when individuals travel. We calculate the R0 using the Next
Generation Matrix (see Section 2.1.4). For p = 0.5, we want Re f f = 1.25. This is not the actual
R0 of SARS-CoV-2, which is around 2.5 [46], but this 1.25 considers the efficacy of prevention
measures such as social distancing and wearing masks. By reducing mobility, we can then
reduce Re f f to values lower than 1. This leads to effective containment of the epidemic. For
more details on how these parameters are estimated, we refer to Appendix F.

For a = p = 0.5, we set Re f f = 1.25. When we vary the fraction of people who get tested a
and the fraction of local contacts p, we obtain different reproduction numbers. Figure 5.1 gives
insights into how the different combinations of a and p influence the reproduction number.
For example, if one would find almost all infectious individuals by testing (a ≈ 1), in combi-
nation with people having 50% of their contacts locally (p = 0.5), the reproduction number is
below 1 without mobility restrictions. We also see that if we do not test enough, the reproduc-
tion number is likely to be larger than 1 and additional mobility restrictions are necessary for
containment. For a list of parameters, we refer to Table 5.1.

In combination with initial conditions, we can simulate how the concentration evolves. We
numerically calculate sx(t), ex(t), ix(t), and rx(t) via a forward Euler scheme, that needs initial
conditions sx(t0), ex(t0), ix(t0), and rx(t0).

fx(t + ∆t) = fx(t) + ∆t
d fx(t)

dt
, (5.2)

where δt = 1 day. Using this method, we can estimate the number of infections for any number
of days after initialization. Let G (D, T) be the number of new infections within a certain total
time T, which depends on the mobility restriction by division D. This can be calculated using
the total number of susceptible individuals:

G (D, T) = ∑
x∈A

Nxsx(t0)− ∑
x∈A

Nxsx(t0 + T) (5.3)
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FIGURE 5.1: Effective reproduction number Re f f as a function of the fraction
of individuals who are tested a and the fraction of contacts each individual has
within its own municipality p. We use 1/γ = 5 days, c = 13.85 contacts per day,

and a transmission probability of ε = 0.0238.



51

Name Value Source

Fraction tested a 1/15 estimated
Fraction local contacts p 1/2 estimated
Infectious period 1

γ 5 days Deng et al [71]
Latent period 1

ν 4 days Shorter than incubation
period [41, 72]

Basic reproduction number R0 2.5 Li et al. [46]
Prevention measure efficacy 50% estimated
Effective reproduction number (with prevention measures) Reff 1.25 50% ofR0
Transmission probability per contact with infectious person ε 0.0238 NGM andReff = 1.25
Average contact rate (unique persons) c 13.85 Mossung et al. [69]
Transmission rate via local contacts βl 0.165 βloc = clocε
Transmission rate via mobility related contacts βm 0.141 βmob = cmobε

TABLE 5.1: Values of the parameters in our epidemic model.

Here, sx(t) is the fraction of susceptible individuals in subpopulation x, which has population
size Nx. We use that sx(t) is a decreasing function (see Section 2.1.4) and individuals only leave
the susceptible compartment because they are infected.

We consider three different initialization methods. One initialization is based on actual his-
toric infection numbers reported by the Dutch authorities, referred to as historic initialization
[70]. The other two demonstrate scenarios where initially the infectious are either evenly dis-
tributed across the country or where they are concentrated in a single municipality. All three
are described in more detail in Appendix F.

To visualize how concentrated the epidemic is, we introduce a concentration measure. This
measure compares the population distribution of the different locations with the infection dis-
tribution. The measure is equal to zero if the distributions are equal, which is the case after an
evenly distributed initialization. The measure is close to unity if it is extremely concentrated.
For historic initializations, it fluctuates between these two values. We present the results in Fig-
ure 5.4. For more details on how this concentration measure is calculated, we refer to Appendix
F.

5.2.3 Estimating mobility

We estimate mobility in the model using the Mezuro Mobility data. The data is collected in
2019 between the 1st of March and the 14th of March. It is aggregated to a daily average. We
have a daily average of how many people move between their base location and destination
locations for each municipality. We do not distinguish between working week and weekend
days. The period between March 1 and March 14 is not typical. It contains Carnaval, an event
in the southern provinces of The Netherlands, which attracts people from all regions of the
country. Therefore, we expect the southern municipalities to attract more visitors in our dataset
compared to average weeks.

The mobility data set contains Mxy for x and y municipalities of The Netherlands, which is
the average number of daily visitors who live at y and visit x. This daily average is equal
to Mxy from Section 2.2.3. While it is not an ideal data set, we still use it as a proxy for ac-
tual mobility patterns in The Netherlands. It serves as input for simulating epidemics in The
Netherlands. We can also scale the daily mobility to mxy by using the population size at y,
mxy = Mxy/Ny.
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Some interesting insights show the strong heterogeneity in population size distribution and
the degree distribution. Also, the average shortest path between any two municipalities is less
than 2, making it difficult to contain an epidemic.

The nodes in the network are Dutch municipalities. In 2019, The Netherlands had 380 munic-
ipalities. The population sizes of different municipalities vary between a little under 1000 in-
habitants up to around 900.000 (Municipality of Amsterdam) with an average value of around
45.000 inhabitants, see Figure 5.2(a).

The total degree of the nodes (the number of other nodes that have a direct connection, or in
other words, the number of nearest neighbors) is in the range 1 to 352 with an average of just
above 59 (see Figure 5.2(b)). We observe that some nodes have almost the maximum degree,
380, so they are connected to almost all other nodes. There appears to be a linear relationship
between the population size and the degree of the municipalities for smaller municipalities, see
Figure 5.2(c).

The weight of edges (number of daily travels between two municipalities) lies in the range of
36 to just over 48.000. This results in a total number of daily visitors for each node between 85
and just over 540.000 with an average of 28.000 daily visitors, see Figure 5.2(d).
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FIGURE 5.2: Descriptive data analysis on the mobility data set of The Nether-
lands. Municipalities are nodes in the network. Weighted edges represent the av-
erage number of daily travels. (a): Histogram of population size distribution. (b):
Histogram of degree distribution. The degree equals the number of connected
municipalities a certain municipality has. (c): Degree versus the population size

(d): Histogram of number of daily visitors.

Secondly, based on the division in regions D, some mobility between municipalities is not
allowed, because this is how we defined mobility restrictions. For these connections, Mxy = 0.
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Without restrictions, the total daily mobility equals

Mtot = ∑
x,y∈A

Mxy. (5.4)

With mobility restrictions, i.e., a division into regions, the allowed mobility is

Mallowed(D) = ∑
D∈D

∑
x,y∈D

Mxy. (5.5)

From this, we can calculate the percentage allowed mobility via:

percentage allowed mobility =
Mallowed(D)

Mtot
× 100%. (5.6)

LetM (D, T) be the actual allowed mobility within a total time of T. This can be calculated via
multiplication:

M (D, T) = Mallowed(D)T. (5.7)

5.2.4 Objective

On the one hand, freedom of movement has both economic and intrinsic value. On the other
hand, it also facilitates the spread of the disease. In essence, the problem for control is to find
a trade-off between mobility and infection containment, given the epidemiological characteris-
tics and normal mobility patterns. In this section, we provide a way to formalize this trade-off
to allow its characterization.

Trade-off parameter. To formalize the trade-off between public health and mobility, we intro-
duce a trade-off parameter α. This parameter can be interpreted as the number of movements
between areas that we are willing to restrict to prevent the occurrence of a single new infec-
tion. A higher value for α thus favors more severe restrictions. This trade-off parameter reflects
societal values and is a political choice that politicians or policy makers should make. There-
fore, we refrain from advising about a specific suitable value but instead provide a method that
advises a strategy given a choice for α.

Time horizon. Suppose that a certain set of mobility restrictions is in place. We consider some
time horizon of a total number of T days representing the number of days that the restriction
will be in place and count the number of infections and movements before this horizon. This
time horizon should thus not be too long, as it coincides with the duration that restrictions
are in place, and sometimes one needs to quickly respond to changes in the infection spread
quickly. Due to the delay between transmission and becoming infectious(latent period), the
time horizon should also not be too short, as otherwise, the effect of the imposed restrictions
cannot reasonably be observed. In this work, we use a time horizon of T = 30 days as an
example.

At the end of this time horizon, a new division into regions may be chosen based on the status
of the epidemic at that moment in time, thus allowing for a dynamic update of the strategy of
mobility restrictions.

Objective function. The above considerations lead to the objective function. In this function,
we balance the allowed mobility versus the new infections within a time horizon T. We want
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to maximize the objective function:

Qγ,T (D) =M (D, T)− αG (D, T) , (5.8)

whereM (D, T) and G (D, T) represent the total allowed mobility (5.7) and the total number
of new infections (5.3), respectively, that occur before the time horizon T, given a division D.
Note that in this formulation the current status of the epidemic, i.e., the number of infectious
and susceptible people at the start of the period T, is included because the value of G (D, T)
depends on that initial status.

The objective function (5.8) should be interpreted as follows: given divisions D and D′, if
Qα,T (D) > Qα,T (D′), then D is preferred over D′ with respect to the trade-off given by α.
Hence, the objective function establishes an ordering among the divisions. This study aims
to provide a methodology that, given α and T, finds a division D with a (locally) optimal
Qα,T (D).

Optimization The quantification of Qα,T (D) in Equation (5.8) is computationally expensive.
Firstly, because it involves computing the number of infections at the end of the time horizon
and secondly, because the number of possible divisions D is enormous. For a set of size n,
A = [1, 2, .., n], the number of divisions (subsets) can be calculated via:

n

∑
i=1

i!
(

n
i

)
=

n

∑
i=1

i!
n!

i!(n− i)!
. (5.9)

For n = 380, the number of Dutch municipalities, the number of possible divisions is enormous
and therefore it becomes not feasible to find the global optimum. Therefore, we will resort to
heuristic optimization methods. We describe these methods in Appendix G.

The idea of our approach is to optimize existing divisions and new divisions (see next section).
For example, combining multiple provinces into larger regions might not strongly influence
the spread of the disease, while it could allow for a lot more mobility. This approach is much
faster because the number of regions in a division (12 provinces) is usually much smaller than
starting with all the individual municipalities (n = 380), which drastically reduces the number
of divisions, see Equation (5.9).

5.2.5 New divisions

We mentioned before that administrative divisions do not reflect the movement of people
throughout the country, nor do they take into account the current state of the epidemic. Here,
we present Mobility regions and Adaptive mobility regions.

Mobility regions. The mobility region method is based on the Louvain algorithm, a commu-
nity detection algorithm. This algorithm finds communities by optimizing a quantity called
modularity. It combines sub-population, which are densely connected into communities.

A single resolution parameter determines the granularity or sizes of these communities. This
method is described in more detail in Appendix G. An example outcome is shown in Figure
5.5. For example, the city of Almere is now in a similar region as the city of Amsterdam in the
same region. Also, we show two examples in Figure G.1.

Adaptive mobility regions. We use the Louvain algorithm, but instead of optimizing the
modularity, we optimize a modified function that takes into account the force of infection. This
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FIGURE 5.3: Ratio of infectious individuals distributions over population distri-
bution. The model is initialized with either evenly distributed, historical, or con-
centrated distributions of active infections. For the evenly distributed an concen-
trated initializations, a total of 1000 people are initially exposed and 10 days are
simulated. The infectious individuals distribution equals ρinf

x (t) = ix(t)Nx
∑x∈A ix(t)Nx

.

The population distribution equals ρ
pop
x = Nx

∑x∈A Nx
.

method is described in more detail in Appendix G. Also, we show two examples in Figure
G.2.

Our implementation results in large communities when the number of infectious individuals is
low in all sub-populations and small communities when the number of infectious individuals
is high. Again, a single resolution parameter controls the number of different communities the
method obtains. An example is shown in Figure 5.6, where you can clearly see the smaller
regions (communities) where the number of infections per capita is high.

5.2.6 Evaluation of mobility restrictions

Given values for the trade-off parameter α and the time horizon T, we can compute the value
Qα,T (D) to assess the quality of some newly obtained division D. However, by itself Qα,T (D)
has no clear interpretation. We can obtain insight by comparing the quality of D to the quality
of existing alternative divisions. These existing divisions are referred to as benchmark divi-
sions. There exist administrative choices to divide the country into regions, such as provinces
and security regions. We consider the following benchmark divisions for the situation of a
widespread outbreak:

• No restrictions (minimum restrictions);

• Disallow movement between provinces;

• Disallow movement between security regions;

• Disallow movement between municipalities (maximum restrictions).

Note that minimum restrictions maximize mobility and infections, while these are both mini-
mized by maximum restrictions. For a concentrated initialization in a single municipality, we
also consider the following alternative benchmark divisions:



56

2020-03 2020-04 2020-05 2020-06 2020-07 2020-08 2020-09 2020-10 2020-11
Date

0.0

0.2

0.4

0.6

0.8

1.0

Co
nc

en
tra

tio
n

Evenly distributed

Concentrated

Historical (RIVM)

March 10

April 21

FIGURE 5.4: The concentration values corresponding to distributions of infec-
tions according to the RIVM data over time, see Appendix F for calculation of
concentration values. The dotted lines show the concentration levels of concen-
trated and evenly distributed initializations, see Appendix F. Data obtained from

https://data.rivm.nl/covid-19/.

• Isolation of the municipality;

• Isolation of the security region of this municipality;

• Isolation of the province of this municipality.

Given a value for the trade-off parameter, we can assess whether the division that is obtained
by optimizing the objective for this trade-off value indeed outperforms the benchmark divi-
sions.

Finally, given a set of divisions D1, . . . ,Dk and a time horizon T, we can plot (5.6) and (5.3) for
each division, resulting in plots such as in Figures 5.10(a), 5.10(b), 5.11(a), and 5.11(b). Note
that we scale (5.3) with the total population size in our results.

In these plots, if a division is plotted to the right of a benchmark division, it is more favorable
in mobility, while a lower vertical position indicates fewer infections. if a division is such that
both are the case, we can say that a division dominates the benchmark division: for any value of
the trade-off parameter, it is favored over the benchmark division. Note that it is not possible to
dominate the minimum and maximum restrictions benchmarks since they achieve maximum
mobility and minimum infections, respectively.

https://data.rivm.nl/covid-19/
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FIGURE 5.5: Each municipality is colored based on the percentage of mobility to
destinations outside its region. Left: regions are provinces. Right: regions are
mobility regions found by modularity optimization with resolution parameter=

2, chosen such that both divisions consist of 12 regions.

Given a set of divisions D1, . . . ,Dk and a choice for the trade-off parameter and the time hori-
zon, we can select the division with the highest objective value. Obviously, the resulting divi-
sion is not guaranteed to be the global optimizer of the objective, as this would require com-
paring an enormous number of divisions. Therefore, the quality of such choice depends on the
quality of the candidates D1, . . . ,Dk.
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FIGURE 5.6: The mobility regions on the left versus the adaptive mobility regions
on the right. The colors denote the number of active infections per capita for the

concentrated initialization in the municipality of Uden.

5.3 Stochasticity and super spreaders

Before we evaluate mobility restrictions, we analyze the effects of stochasticity and, in particu-
lar, the effect of super spreaders. We expect stochastic effects to play a significant role when the
number of infections is low, and the system is small [11]. We see in stochastic simulations that
indeed, only for small numbers of infections, stochastic effects are significant. For larger sys-
tems, the stochastic results are very close to the deterministic mean-field results, see Appendix
H.

The reproduction number tells us something about the average new cases caused by an in-
fectious individual, see Figure 2.8. However, the reproduction number of certain individuals
can be very different. We refer to these individuals with high reproduction numbers as super
spreaders, see Figure 5.7. For COVID-19, it appears that the reproduction number is on average
2.5 [46], but it varies a lot between individuals. Recent work found that over 80 percent of the
new cases are caused by approximately 10 percent of the current infectious individuals [30, 73],
see Figure 5.8.

We analyze the effects of super spreaders via an SEI2R model, where we distinguish two dif-
ferent types of infected individuals; non-contagious individuals and super spreaders. Non-
contagious individuals are most common but do not transmit the disease, we set their repro-
duction number equal to zero, Rnormal

e f f = 0. The probability of becoming a super spreader is set

to p = 0.1. Then, the infection reproduction number of the super spreaders, Rsuper
e f f , is 10 times

larger, such that the average reproduction number of the total population remains constant.
The average reproduction number can be calculated via
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FIGURE 5.7: Visualization of overdispersion in secondary cases. Blue persons
have a low level of contagiousness and transmit the disease to only a few other
people, while the red person transmits the disease to many people. We refer to

red persons as super spreaders. Anyone can become a super spreader.
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FIGURE 5.8: Percentage of new cases as a function of current cases. Our SEI2R
model follows the orange line. The SEI3R model is added as an example.

Re f f = pRsuper
e f f + (1− p)Rnormal

e f f , (5.10)

where Rnormal
e f f is the reproduction number of the other group, in our case, this is considered

equal to 0. We use similar parameters as described in Table 5.1. This means that for p =
0.1, Rsuper

e f f = 12.5, such that, on average, the reproduction number equals 1.25, like in Table
5.1.

In Figure 5.9, we show a comparison between an SEI2R model and an SEIR model when we ini-
tialize 10 individuals as exposed in a single municipality. All other individuals in The Nether-
lands are susceptible. The deterministic numerical result is colored red and equal for both mod-
els, as we expect. The blue lines represent individual stochastic simulations. We use stochastic
rounding, as explained in Section 2.3.

By distinguishing the contagiousness levels of different individuals, we can capture overdisper-
sion in secondary cases. Distinguishing between two levels of contagiousness already allows
to approximate COVID-19’s overdispersion. Distinguishing more levels allows to better model
observed overdispersion [73].
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We see that the effect of super spreaders has a large influence on the possible outcomes. The
variability has increased. While we only use two different infected compartments, this could
easily be extended to more classes; an SEIkR model. Here, each infected compartment has
its own level of contagiousness, and hence there own different reproduction numbers. This
method could better match observations [29]. We leave further analysis to future work.
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FIGURE 5.9: The effect of super spreaders (SEI2R model) versus a normal SEIR
model. Both models have equal R0 = 1.25, so the mean-field deterministic are
equal. For SEI2R model, the Rsuper

0 = 12.5 and Rnormal
0 = 0 and the probability

of becoming a super spreader equals p = 0.1. Initially, via our concentrated
initialization, we initialize 10 individuals in the municipality of Uden as exposed,

see Appendix F.

5.4 Evaluating mobility restrictions

For various initializations, we perform the optimization described in Section 5.2.5 and calculate
the allowed mobility and the number of new infections for each of the strategies. Then we
evaluate the results based on the objective function defined in Section 5.2.4. Throughout this
section, we consider a time horizon of T = 30 days.

For each initialization, we apply the optimization method to various initial divisions. The
initial divisions are the administrative divisions (provinces and security regions) and mobility-
based initial divisions (mobility regions and adaptive mobility regions for various resolution
parameters). Recall that we refrain from advising a specific value for the trade-off parameter
since it is a political choice. However, in this section, we consider some values for α, but these
are intended only to demonstrate the methodology.

We consider two values for α: the value α∗ for which maximum and minimum restrictions
have equal objective value (i.e., Qα∗(Dmin) = Qα∗(Dmax) where Dmax = Dmin are the divisions
corresponding to maximum, respectively, minimum restrictions) and twice this value. Note
that this value α∗ is uniquely defined since Qα,T(D) is a linear function in α.

We choose these values for the trade-off parameter rather than fixed constants, because con-
stant trade-off parameters may lead to minimum restrictions for one initialization and max-
imum restrictions for another. This choice of α∗ depends on the initialization and ensures a
non-trivial division that outperforms both maximum and minimum restrictions. We start with
the evenly distributed and concentrated initializations and draw a few observations. Then, we
show to what extent these observations generalize to the historical initializations.
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Results for evenly distributed and concentrated initializations. We consider an evenly dis-
tributed initialization where 1000 individuals are initially exposed, ex(t0) ≈ 6 · 10−5 for all
x ∈ A. The resulting mobility and infections from each of the divisions are shown in Fig-
ure 5.10(a). We observe a monotonically increasing relation between infections and mobility.
This may be explained by the fact that infections grow with increasing reproduction number,
which is linear in the contact rate that in our model in turn linear in mobility. This trend is
based on data points between 5000 and 30000 infections, which is less than an order of magni-
tude difference. The exponential-like trend is unlikely to hold for long time horizons. This will
depend on the speed with which local saturation in contacts starts to influence transmission
potential.

For the points shown in Figure 5.10(a), the division obtained by applying our optimization
method to our mobility regions with the finest granularity (resolution parameter = 16, see
Appendix G) resulted in the highest objective value for the trade-off parameter α∗. However,
this division only performs marginally better than other divisions on this part of the curve.
Furthermore, for a trade-off parameter of 2α∗, maximum restrictions performs best among the
divisions shown.

Compared to provinces and security regions, we can use our mobility region’s heuristics to tune
the divisions’ granularity. This allows us to find the optimal balance on this exponential-like
curve with respect to the objective function for given values of the trade-off parameter and time
horizon. We observe no divisions with significantly lower infection numbers in combination
with as much mobility as in benchmark divisions. From this, we conclude that the amount
of mobility that the division allows plays a larger role than the specific way this mobility is
chosen.
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FIGURE 5.10: Evaluation of different divisions for the evenly-distributed (left)
versus concentrated (right) initialization. The balance of infections and mobility
within a horizon of T = 30 days after imposing a division are shown. Blue crosses
represent benchmark divisions. Green squares represent mobility regions, red tri-
angles represent adaptive mobility regions; the resolution parameters are chosen
to obtain divisions that allow various levels of mobility. Arrows point from the
starting point of the heuristic optimization to its result. We only show a single
arrow for the evenly distributed initialization to avoid cluttering the figure. The

used values for α are shown in the legend.
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If infections are not evenly distributed, the performances of the different divisions shift drasti-
cally. Figure 5.10(b) shows the performances of divisions for the concentrated initialization. In
this initialization, 1000 people are initially exposed within the Dutch municipality of Uden (see
Figure 5.6). In this case, ex(t0) ≈ 0.025 only if x = Uden. The mobility regions do not depend
on the initialization of the model, so these divisions remain unchanged, see Appendix G. The
adaptive mobility regions do depend on this initialization. We see that the adaptive mobility
regions significantly outperform the mobility regions and the benchmark divisions: they result
in fewer infections while allowing for more mobility.

If we apply our optimization method starting from a sufficiently fine-grained division, we ob-
tain a division that performs even better. For both choices of the trade-off parameter α∗ and 2α∗,
the division obtained from applying the optimization to the adaptive mobility regions with the
highest resolution (in other words, lowest percentage mobility allowed initially) outperforms
all the other divisions shown with respect to the objective function.

This suggests that the proposed approach can provide suitable strategies for containing super
spreading events, where the initial infections are highly concentrated. This holds even when
we change model parameters, see Appendix H, where we perform a sensitivity analysis.

Historical initializations. Next, we evaluate divisions for an initialization based on historical
data. We consider data from March 10, 2020, and April 21, 2020. Figure 5.4 shows that the
concentration values of historic initializations lie in between the concentration values of evenly
distributed and concentrated cases. Therefore, we expect their results to also be in between the
evenly distributed and concentrated results.

On March 10, 2020, the Dutch government advised all citizens of one of the twelve provinces to
stay at home. At this point, the number of reported infections was low, and their distribution
was far from even. April 21st was during the Dutch lock-down period, and further along in
the first wave of the outbreak, where the infections were more evenly distributed.

Figures 5.11(a) and 5.11(b) show the evaluation results of different divisions. Figure 5.11(a)
adds a local lock-down of the province containing Uden as a benchmark division. It performs
almost as well as one of the divisions from the adaptive mobility regions approach. However,
at that time, the Dutch government’s goal was to suppress the virus in order to prevent new
infections. From this perspective, only isolating this province is insufficient as it does not lead
to significantly fewer infections than taking no action (Min restrictions).

Based on these two figures, we see that the findings from homogeneous and concentrated ini-
tializations generalize to more realistic scenarios. If the infections are concentrated in a small
number of regions, our approach finds divisions that lead to relatively few infections, while
allowing for relatively large percentages of mobility. Consider the marker corresponding to
the security regions division in Figure 5.11(a): we can see that our mobility method has found
divisions with 1) significantly more mobility, but a comparable number of infections; 2) a com-
parable percentage of allowed mobility, but significantly fewer infections; and 3) increased
mobility and fewer infections. A similar conclusion can be made for the case of Figure 5.11(b),
though the improvements are smaller because the initialization has a lower level of concentra-
tion.
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FIGURE 5.11: Evaluation of divisions for initialization based on historical data
of March 10 (left) versus April 21 (right) 2020. A horizon of T = 30 days was
chosen. For our mobility regions and adaptive mobility regions, the resolution
parameters are chosen to obtain divisions that allow various levels of mobility.

The used values for α are shown in the legend.

5.5 Discussion

In a pandemic, restrictions on the mobility of individuals are one of the mitigation measures
available to local and national governments. Restrictions on mobility between regions will have
an effect on reducing non-local transmission opportunities. The downside, however, is that
restricted mobility also has potentially strong social and economic repercussions. Given this,
decision-makers have to reach a balance between wanted and unwanted effects if restricting
mobility. Rather than impose restrictions on a national level, which could maximize unwanted
effects, options need to be explored for regional measures. We have presented a method to
determine a balance between infection reduction and allowed mobility. We evaluate mobility
strategies that use any division of a country into regions, allowing movement within them
while disallowing movement between them. In the case of The Netherlands, we have shown
that existing (administrative) divisions such as provinces and ‘security regions’ do not reflect
the mobility patterns within the country well, and therefore are not a good basis for mobility
restrictions. We expect this conclusion to apply also to other countries.

We have quantified the trade-off between economy (equated here with mobility) and public
health (equated here by infections) by introducing an objective function that penalizes the
amount of allowed mobility by the resulting number of infections as given by Equation (5.8).
This trade-off introduces a parameter that can be interpreted as the number of movements that
we are willing to restrict in order to prevent the occurrence of a single further infection.

The objective function is non-linear, computationally heavy demanding, and hence infeasible
to optimize exactly. Therefore, we resorted to heuristic optimization methods that are shown
to produce divisions that perform well with respect to the presented objective.

As a proof of concept for the proposed methods, we have used scenarios with varying concen-
trations of infections. For each of these settings, we have compared how well the heuristics
perform and have compared the divisions obtained in this way to the benchmarks of existing
divisions. Figure 5.10(a) shows that when the infections are evenly distributed throughout the
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country, the performances of all of the divisions lie close to an exponential curve. Therefore,
the granularity of the division is the only relevant aspect in this case. On the other hand, Fig-
ure 5.10(b) shows that when the infections are highly concentrated around one municipality,
applying the optimization to adaptive mobility regions results in a division that significantly
outperforms the others and is able to prevent more infections while allowing for more mobil-
ity.

In practice, the spread of the infections will lie between these extremes. We have introduced a
formula to quantify the concentration of the infections and Figures 5.11(a) and 5.11(b) show that
indeed low concentration values lead to results comparable to the case of evenly distributed
infections, while higher values indeed behave similarly as the concentrated case. Traditional
epidemiological models do not incorporate geography and cannot adequately deal with situa-
tions where the infections are not evenly distributed across the country. In this work, we have
demonstrated how incorporating geometry leads to mobility-restriction strategies that are bet-
ter tailored to the situation at hand. Our main conclusion is that such strategies are highly
effective when the geometric spread of infections is low (so that the geometry is the main lim-
iting factor), but it is less effective when the distribution is rather even (so that geometry is
fairly irrelevant). Our main innovation is that we have proposed a method to quantify these
statements.
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Chapter 6

Conclusion and recommendations

In this work, we have analyzed the dynamics of different spatial epidemic models to under-
stand better what drives the spreading of epidemics. Motivated by the COVID-19 pandemic,
we focused on the SIR and the SEIR compartmental models. We have demonstrated that epi-
demic models of the remote-force-of-infections class are well suited to model epidemics for
mobility patterns of commuters. To our knowledge, analysis like ours of the SIR and the SEIR
within the class of remote-force-of-infections models has not been done before.

Numerically, we have shown results on the spreading of epidemics for a one-dimensional net-
work and two-dimensional networks. In all variations, we observe similar behavior after a
localized outbreak of the disease. Depending on R0, there is diffusive growth which eventu-
ally transitions into a traveling wavefront of constant shape and velocity or diffusive decay,
which transitions into decaying traveling waves. We expect that this behavior also holds for
models with even more complex structures.

Analytically, we found asymptotic solutions that are valid shortly after a localized outbreak for
a one-dimensional network. This results in a modified diffusion equation for the SIR model
and a telegraph equation for the SEIR model. If the reproduction number is smaller than or
equal to unity, R0 ≤ 1, the telegraph equation describes the model behavior for larger values
of t. We derived wave velocities for our traveling waves as a function model parameters, for
R0 > 1. For the SIR model, the velocity is surprisingly similar to those found in reaction-
diffusion epidemic models with similar parameters.

For COVID-19, the phenomena of super-spreaders play a role in the spreading of the disease.
We proposed a method to include super-spreading effects into compartmental models, such as
the SEIR model. We show that these effects, similar to other stochastic effects, only play a role
when the number of individuals in the systems is small.

As an application of our SEIR model, we applied it to evaluate the impact of mobility restric-
tions in The Netherlands on the spread of COVID-19. For this, we investigated how to balance
the trade-off between mobility restrictions and transmissions of COVID-19. We quantified the
trade-off between blocking mobility and spreading the infection in terms of a single parameter.
Our epidemic model evaluates mobility restrictions’ effectiveness where the country is divided
into separate regions. We propose heuristic methods to approximate optimal choices for these
regions. The results show that our mobility restrictions are highly effective when the infections
are concentrated around a few municipalities.
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6.1 Future work

Understanding epidemic models help us understand the dynamics of epidemics. Asymptotic
solutions help this understanding. If models become more accurate, they can also be applied
to forecasting epidemics. We set out directions for future work.

Firstly, there is no work in the literature, to our knowledge, that directly compares compart-
mental models of the classes of reaction-diffusion epidemic models and remote-force-of-infection
epidemic models. While both classes of models are still relevant, future work aimed at un-
derstanding differences between the two classes helps our understanding of modeling epi-
demics.

Secondly, future work could focus on an analytical description of the infectious profile i(x, t) for
the traveling wave regime. In our analytical analysis, we approximated the fraction susceptibil-
ities by 1. This is valid for a short period after the initial outbreak and remains approximately
valid if R0 ≤ 1. For R0 > 0, we observe that the numerical solutions of our system transition
into traveling waves, which are not captured by our asymptotic solutions.

Thirdly, it remains unclear if and for how long individuals remain resistant to COVID-19 af-
ter recovering from the disease. If resistance is lost eventually, the SEIRS model is a potential
candidate for modeling COVID-19. We have left the analysis of the SEIRS and other compart-
mental models, such as SIS, SIRS, to future work. These models differ from the SIR and the
SEIR models as they allow an infectious disease to become endemic. This means that there is a
sustained fraction of individuals infectious, the epidemic does not die out.

Fourthly, we proposed a method that incorporated super-spreaders into compartmental mod-
els. The effect is only visible when the model is evaluated stochastically. Compartmental mod-
els are often used on applications at larger scales. For larger scales, stochastic effects become
less relevant. Future work could aim to measure the impact of stochastic effects caused by
super-spreaders. Models that include super-spreaders might be better at modeling or forecast-
ing the spread of COVID-19.

Finally, in applying our SEIR model, we have decided to mostly base parameter choices rele-
vant to the infection spread on previous studies. Alternatively, we could estimate these param-
eters by fitting the model to match historical data. By doing so, outcomes of the model may
have a better predictive value. Currently, the number of infections is only used to compare
with benchmark divisions. In particular, we cannot give estimates on how close these would
be to the true value. Especially with historical scenarios, the fraction of reported cases and un-
reported cases depend heavily on the testing policy and availability of tests. Comparing RIVM
estimates of active infections and reported infections hints that this fraction is indeed not at all
constant [74]. In our model, we assume this fraction to be constant in all scenarios. It would
be interesting to investigate the effect of heterogeneity, just like we now focus on the effect of
heterogeneity of infections.
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Appendix A

Model variations

In this chapter, we describe epidemic models from Table 2.1 that are not discussed in the main
text. We recommend reading Section 2.1.2 before reading this appendix. The models are briefly
discussed in Section 2.1.4. Here, we present the systems of equations that describe the SI, the
SIS, the SIRS, and the SEIRS model for a single population.

SI model. The Susceptible-Infectious model has two compartments, susceptible and infec-
tious. Once infected, you are immediately contagious and remain contagious.

ds
dt

= −βsi, (A.1)

di
dt

= βsi = −ds
dt

. (A.2)

From these equations, we can see similarities between this epidemic model and, for example,
a model for autocatalysis reactions [75]. In a simple case, we have two kinds of particles in
solution: particles of type A and B. They react via A + B → 2B with a reaction constant k. We
can write the ODE governing this reaction as:

d[A]

dt
= −k[A][B] (A.3)

where [·] indicates the concentration of a certain particle type. (A.3) is very similar to equation
A.1. From this field, we can use the exact solution for s(t), which equals [76]

i(t) =
i(t0)

i(t0) + s(t0) exp [−βt]
, (A.4)

where s(t0) and i(t0) are initial conditions and the conservation law equals 1 = s + i

SIS model. The Susceptible-Infectious-Susceptible model has two compartments, susceptible
and infectious. Once infected, you are immediately contagious. The infectious period has av-
erage an duration 1/γ. Instead of recovering after this period, individuals become susceptible
again. We can write the ODEs for this SIS model as follows:
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ds
dt

= −βsi + γi, (A.5)

di
dt

= βsi− γi = −ds
dt

. (A.6)

If we make time dimensionless, as we did in section 2.1.2, we find R0 = β/γ, similar to the
SIR model. To simplify our system of ODEs, we can use I = N − S, or in densities, i = 1− s to
reduces the system to a single equation:

di
dt

= (β− γ)i + βi2. (A.7)

From here we can easily calculate the two equilibrium points, at i(t) = 0 and ifR0 > 1 we also
have i(t) = β−γ

β .

SIRS model The Susceptible-Infectious-Recovered-Susceptible model has three compartments,
susceptible, infected and recovered. Once infected, individuals are immediately contagious.
After recovery, individuals lose their resistance to the disease with rate α and become suscepti-
ble again. We can write the ODEs for this SIRS model as follows:

ds
dt

= −βsi + αr, (A.8)

di
dt

= βsi− γi, (A.9)

di
dt

= γi− αr. (A.10)

If we make time dimensionless, as we did in section 2.1.2, we findR0 = β/γ, similar to the SIR
model. The conservation law equals 1 = s + i + r and the system has initial conditions s(t0),
i(t0), and r(t0).

SEIRS model The Susceptible-Exposed-Infectious-Recovered-Susceptible model has four com-
partments, susceptible, exposed, infected, and recovered. Once infected, individuals become
exposed to the disease. With rate ν, individuals become contagious. The average time spent
in the exposed compartment is called the latent period, 1/ν. After recovery, individuals lose
their resistance to the disease with rate α and become susceptible again. The average period in
which individuals are resistant to the disease is of length 1/α. We can write the ODEs for this
SIRS model as follows:
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ds
dt

= −βsi + αr, (A.11)

de
dt

= βsi− νe, (A.12)

di
dt

= νe− γi, (A.13)

dr
dt

= γi− αr. (A.14)

If we make time dimensionless, as we did in section 2.1.2, we find R0 = β/γ, similar to the
SIR model. The conservation law equals 1 = s + e + i + r and the system has initial conditions
s(t0), e(t0), i(t0), and r(t0).
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Appendix B

Epidemic final-size derivation for SIR
model

Here, we derive the final-size Equation (2.22) as presented in Section 2.1.4. We use Equations
2.7 and 2.9. In Section 2.1.4, we argued that for t −→ ∞, the infectious concentration goes to
i(t) −→ 0.

Firstly, we divide Equation (2.7) by Equation (2.9). We find

ds
dr

= −R0s. (B.1)

We rewrite this into
1
s

ds = −R0dr. (B.2)

We integrate both sides from t = 0 to t = ∞ to find

ln
[

s∞

s(t = 0)

]
= −R0(r∞ − r(t = 0)). (B.3)

When we initialize the system as s(t = 0) = 1− i0, i(t = 0) = i0, and r(t = 0) = 0. For t −→ ∞,
we write s(t = ∞) = s∞ and r(t = ∞) = r∞. Using that i∞ = 0 and the conservation law, we
rewrite s∞ = 1− r∞. Then, we find

ln
[

1− r∞

1− i0

]
= −R0(r∞). (B.4)

We rewrite this as
r∞ = 1− (1− i0) exp [−R0(r∞)] . (B.5)

which is equal to Equation (2.22).
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Appendix C

Modified diffusion equation

Here, we solve (3.27) using Green’s functions [24]. We replace i(x, t) with u(x, t) to prevent
confusion with the imaginary number i, which we encounter in finding the solution.

∂u(x, t)
∂t

=
∂2u(x, t)

∂x2 + (1− b)u(x, t). (C.1)

We use the the wave propagation convention for the Fourier transform [64]:

u(k, t) =
1

2π

∫ ∞

−∞
u(x, t) exp [−ikx] dx, (C.2)

and its corresponding inverse Fourier transform:

u(x, t) =
∫ ∞

−∞
u(k, t) exp [ikx] dx. (C.3)

We substitute the inverse Fourier transform of u(x, t) in (C.1). We find:

∂u(k, t)
∂t

= (1− b− k2)u(k, t). (C.4)

We know that solution of this differential equation is of the shape:

u(k, t) = u(k, t = t′) exp
[
(1− b− k2)(t− t′)

]
. (C.5)

Now, we assume that we have a point source at t = t′ located at x = x′. For the point source,
we use a Dirac delta distribution δ(x). We find u(x, t = t′) = δ(x− x′). The Fourier transform
of u(x, t = t′) is equal to the Fourier transform of a Dirac delta distribution:

u(k, t = t′) =
1

2π

∫ ∞

−∞
δ(x− x′) exp [ikx] dx =

exp [−ikx′]
2π

. (C.6)

We find u(x,t) by substituting calculating the Fourier transform of u(k, t) in Equation (C.5). We
substitute the result for u(k, t = t′) in Equation (C.5). We calculate the Fourier transform. We
find

u(x, x′, t, t′) =
1

2π

∫ ∞

−∞
exp

[
ik(x− x′)

]
exp

[
(1− b− k2)(t− t′)

]
dk. (C.7)
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The solution to this equation is equal to Green’s function [24]. We can solve this integral by
completing the squares:

G(x, x′, t, t′) =
1

2π
exp

[
(1− b)(t− t′)

] ∫ ∞

−∞
exp

[
ik(x− x′)

]
exp

[
−k2(t− t′)

]
dk, (C.8)

G(x, x′, t, t′) =
1

2π
exp

[
(1− b)(t− t′)

]
exp

[
− (x− x′)2

4(t− t′)

] ∫ ∞

−∞
exp

[
−(t− t′)

(
k− x− x′

2(t− t′)

)2
]

dk,

(C.9)

G(x, x′, t, t′) =
1

2π
exp

[
(1− b)(t− t′)

]
exp

[
− (x− x′)2

4(t− t′)

] ∫ ∞

−∞
exp

[
−(t− t′) (z)2

]
dz, (C.10)

G(x, x′, t, t′) =
1

2π
exp

[
(1− b)(t− t′)

]
exp

[
− (x− x′)2

4(t− t′)

]√
π

t− t′
, (C.11)

G(x, x′, t, t′) =
1√

4π(t− t′)
exp

[
− (x− x′)2

4(t− t′)

]
exp

[
(1− b)(t− t′)

]
. (C.12)

Now, we can calculate u(x, t) if we use the initial condition u(x, 0) and Green’s function via:

u(x, t) =
∫ ∞

−∞
G(x, x′, t, t′)u(x′, t = 0)dx′. (C.13)

For u(x, t = 0) = δ(x− x0), we find the solution to (C.1):

u(x, t) =
1√
4πt

exp
[
− (x− x0)2

4t

]
exp [(1− b)t] . (C.14)
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Appendix D

Telegraph equation solution

Here, we solve (3.30). We replace i(x, t) with u(x, t) to prevent confusion with the imagi-
nary number i, which we encounter in finding the solution. The PDE from Equation (3.30)
reads

∂2u(x, t)
∂t2 +

(
1
R0

+ c
)

∂u(x, t)
∂t

− c
∂2u(x, t)

∂x2 = c
(

1− 1
R0

)
u(x, t). (D.1)

We consider the following initial and boundary conditions for the domain x = [0, L] and t =
[0, ∞):

i(x, 0) = i0δ(x− x0), (D.2)
∂i
∂t

= 0, (D.3)

i(0, t) = 0, (D.4)
i(L, t) = 0. (D.5)

We find the solution using the method of separation of variables [64]. This means that we write
u(x, t) = X(x)T(t). We define the parameter b = 1/R0. By substituting this in Equation (D.1),
we find

XT′′ + (b + c) xT′ + c(b− 1)XT = cTX′′. (D.6)

Separating the variables, we find

X′′

X
=

1
c

(
T′′

T
+ (b + c)

T′

T
+ (b− 1)

)
= σ (D.7)

We use boundary conditions (D.4) and (D.5) to find an expressions for X(x):

X(x = 0) = 0, X(x = L) = 0, X(x) = c1 sin
(nπx

L

)
, σ = −

(nπ

L

)2

The ODE for T(t) equals
T′′ + (b + c)T′ + (b− 1− cσ)T = 0 (D.8)

This ODE has a general solution of the form

T(t) = c2 exp [λ1t] + c3 exp [λ2t] . (D.9)

In this general solution, λ1 and λ2 are roots of the equation

λ2 + (b + c)λ + (b− 1− cσ) = 0, (D.10)
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which are equal to

λ1,2 =
1
2
(−(b + c)±

√
(b + c)2 − 4(b− 1− cσ)). (D.11)

Let 4ω2
n be equal to 4(b− 1− cσ)− (b + c)2. Then we write

λ1,2 = −b + c
2
± iωn. (D.12)

We substitute this into Equation (D.9), so that we can write T(t) as

T(t) = An exp
[
−b + c

2
t
]

cos (ωnt− φn) , (D.13)

which has an amplitude equal to An and an arbitrary phase φn. This means that for all ampli-
tudes and phases, we have

u(x, t) =
∞

∑
n=1

An exp
[
−b + c

2
t
]

cos (ωnt− φn) sin
(nπx

L

)
. (D.14)

Equation (D.14) satisfies the Equation (D.1) and the two boundary conditions (D.4) and (D.5).
The initial conditions (D.2) and (D.3) determine the amplitude and the phase for different val-
ues of n.

For boundary condition (D.3), we need to use the derivative of u(x, t),

∂u(x, t)
∂t

=
∞

∑
n=1

An exp
[
−b + c

2
t
] (
−b + c

2
cos (ωnt− φn)−ωn sin (ωnt− φn)

)
sin
(nπx

L

)
.

(D.15)
Then, we use the boundary condition to find

∂u(x, 0)
∂t

=
∞

∑
n=1

An

(
−b + c

2
cos (φn) + ωn sin (φn)

)
sin
(nπx

L

)
= 0, (D.16)

= −b + c
2

cos (φn) + ωn sin (φn) = 0 (D.17)

The latter is the case when we chose φn = arctan
(

b+c
2ωn

)
. Lastly, we use boundary (D.2) to

find

u(x, 0) =
∞

∑
n=1

An cos (φn) sin
(nπx

L

)
= δ(x− x0), (D.18)

An cos (φn) =
2
L

∫ L

0
δ(x− x0) sin

(nπx
L

)
= sin

(nπx0

L

)
. (D.19)

This results in

i(x, t) =
1
2

∞

∑
n=1

An exp
[
−
(

c
2
+

1
2R0

)
t
] (

sin
(nπx

L
−ωnt + φn

)
+ sin

(nπx
L

+ ωnt− φn

))
,

(D.20)
where the constants are as follows:

ωn =

√
c
((nπ

L

)2
− 5

4
− 1

4cR0

)
, φn = arctan

(
c

2ωn
+

1
2ωnR0

)
, An =

2
L cos φn

sin
(nπx0

L

)
.
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Appendix E

Reaction diffusion model

Here we briefly show the differences between remote-force-of-infection models and reaction
diffusion epidemic models for a metapopulation network similar to Figure 3.1. For the SIR
remote-force-of-infection model, the one-dimensional equations are presented in Section 3.1.
We also put them here for convenience:

∂s(x, t)
∂t

= −s(x, t)i(x, t)− s(x, t)
∂2i(x, t)

∂x2 , (E.1)

∂i(x, t)
∂t

= s(x, t)i(x, t) + s(x, t)
∂2i(x, t)

∂x2 − 1
R0

i(x, t), (E.2)

∂r(x, t)
∂t

=
1
R0

i(x, t). (E.3)

Here, the basic reproduction number R0 is the only remaining parameter and R0 = βl+4mβm
γ .

Together with initial conditions ,s(x, t = 0), i(x, t = 0), and r(x, t = 0), and the conservation
law r(x, t) = 1− s(x, t) − i(x, t), the system of PDEs in eq. (3.4) and eq. (3.5) forms a well-
defined system.

Now, for Equations 2.25, 2.26, and 2.27 in combination with a network similar to Figure 3.1,
we obtain different equations. We assume that the mobility rates ωxy are all equal ωxy ≡ ω,
for simplicity. We transform time as t = 1

β t∗ and the spatial coordinate in our network as

x =
√

ω∆x2

β x∗. We can write down the dimensionless PDEs for an SIR reaction diffusion model
as follows:

∂s(x, t)
∂t

= −s(x, t)i(x, t) +
∂2s(x, t)

∂x2 , (E.4)

∂i(x, t)
∂t

= s(x, t)i(x, t)− 1
R0

i(x, t) +
∂2i(x, t)

∂x2 , (E.5)

∂r(x, t)
∂t

=
1
R0

i(x, t) +
∂2r(x, t)

∂x2 . (E.6)

Here, we have dropped the asterisks, and the basic reproduction number R0 is the only re-
maining parameter, and R0 = β

γ . The conservation law equals 1 = s(x, t) + i(x, t) + r(x, t).
Together with initial conditions, the system of PDEs forms a well-defined system.
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Appendix F

Model initialization and the
concentration measure

Here, we present details about the numerical work from Chapter 5. This includes model ini-
tialization and the calculation of the concentration measure.

F.1 Model initializations

In this section, we discuss the details of the different initializations as discussed in Chapter
5.

Evenly-distributed initialization. A fixed fraction e0 of people in all municipalities is set to
exposed, i.e.,

sx (t0) = (1− e0) , ex (t0) = e0, ix (t0) = 0, rx (t0) = 0.

Expressed in number of individuals, we have

Sx (t0) = (1− e0) Nx, Ex (t0) = e0Nx, Ix (t0) = 0, Rx (t0) = 0.

Note that the number of people who are susceptible does not need to be integer-valued in a
deterministic simulation. For stochastic simulation, we round all values to the closest integer.
After initializing, we simulate for 10 days to mimic that the virus has spread to other munici-
palities before it is found and people are tested. The resulting state at t = t0 + 10 can then be
used as an input for the adaptive mobility regions approach (see Appendix G) and also as a
starting point for evaluating the performance of different divisions.

Concentrated initialization. The idea behind a concentrated initialization is to create the sit-
uations caused by a superspreader. Where locally, in a single municipality, there are many
individuals exposed, but individuals from other all municipalities are still all susceptible to the
disease. The fraction that we initially expose in a single municipality equals e0. We initialize
this in municipality x0. We use the Kronecker delta δx,y notation, which is only equal to one
when x = y and zero else:

sx (t0) = (1− e0δx,x0) , ex (t0) = e0δx,x0, ix (t0) = 0, rx (t0) = 0.

Expressed in number of individuals, we have

Sx (t0) = (1− e0δx,x0) Nx, Ex (t0) = e0δx,x0Nx, Ix (t0) = 0, Rx (t0) = 0.
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Similarly, in the case of evenly-distributed initializations, we initialize by rounding all values
to the closest integer. After initializing, we simulate for 10 days to mimic that the virus has
spread to other municipalities before it is found and people are tested. The resulting state at
t = t0 + 10 is then used as input for our approach.

Initialization based on historic data. For an initialization based on historical situations, RIVM
data is used (RIVM is the Dutch institute of public health). RIVM reports the cumulative num-
ber of infections for each municipality. The number of currently active known infections at time
t0, is equal to the reported infections at time t0, IRIVM

i (t0), minus the reported infections one
infectious period ago IRIVM

i (t0 − 1/γ). We assume that only a fraction a of the total number
of currently infected individuals gets detected by the RIVM. A fraction (1− a) is not tested by
RIVM and unknown to RIVM. We initialize as follows:

Expressed in number of individuals, we have

Ix (t0) =
1
a

(
IRIVM
x (t0)− IRIVM

x (t0 − 1/γ)
)

, Rx (t0) =
1
a

IRIVM
x (t0 − 1/γ) .

Exposed people are people who become infectious after the latent period has ended. The
number of people exposed at time t0 is equal to the infections one latency period from now
1/aIx (t0 + 1/ν), minus the infections at time t0, 1/aIx (t0). In terms of reported cases by RIVM,
we can write

Ex (t0) =
1
a

(
IRIVM
x (t0 + 1/ν)− IRIVM

x (t0)
)

.

Then, lastly, by using the conservation law, we initialize Sx(t) as

Sx (t0) = Nx − Ex (t0)− Ix (t0)− Rx (t0) .

For concentration values, we divide by the subpopulation sizes:

sx (t0) =
Sx (t0)

Nx
, ex (t0) =

Ex (t0)

Nx
, ix (t0) =

Ix (t0)

Nx
, rx (t0) =

Rx (t0)

Nx
.

This initial state can be used as input for the adaptive mobility regions or as a starting point for
evaluating the performance of different divisions.

F.2 Concentration measure

To quantify the concentration of the infections, we compare the distribution of the infections
over the municipalities to the distribution of the population over the municipalities. For this,
we introduce an entropy-type measure. Let pinf

i denote the fraction of infectious individuals
that live in municipality i and let ppop

i denote the fraction of the population that lives in mu-
nicipality i. If the infections would be distributed evenly, then these two distributions would
be equal. We measure the concentration of the infections by 1− e−DKL , where DKL denotes the
Kullback-Leibler divergence from the infection distribution

(
pinf

i
)

i∈A to the population distri-
bution

(
ppop

i

)
i∈A.

Note that this measure does not depend on the total number of infections. When each munic-
ipality has the same percentage of infected individuals, the concentration will equal 0. On the
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other hand, when all infections are located in the same municipality, then it will be close to
1.

This allows us to quantify the concentration of the infections for our initializations on a scale
from 0 to 1. Synthetic initializations are close to 0 and 1, respectively, while historical initial-
izations have intermediate values. The concentration values of initializations based on the his-
torical data obtained from the Dutch National Institute for Public Health and the Environment
(RIVM) are shown in Figure 5.4. At the beginning of the epidemic, there were a few local out-
breaks, resulting in a high concentration. As the outbreak became more widespread, the con-
centration went down, reaching a minimum at the beginning of April. The period after April
is characterized by small local outbreaks, leading again to higher concentration values.
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Appendix G

Optimization Heuristics

In Section 5.2.4, we argued that finding the optimal division that optimizes Equation (5.8) be-
comes computational infeasible as the number of different divisions can be very large; see
Equation (5.9). To improve on this, we define coarser sub-divisions as starting points for the
optimization procedure. Instead of letting Louvain operate at the level of single municipali-
ties, we will start from an initial division of the municipalities into sub-regions that will not be
further divided by the algorithm. This way, Louvain is guaranteed to result in a division that
cannot be improved upon by merging two regions or by moving one sub-region to another
region [77].

There are multiple ways to choose such initial divisions. One can use existing administrative
divisions such as the twelve provinces of the Netherlands or its twenty-five security regions.
Such administrative divisions may already be known by the public, making it easier to enforce
restrictions based on them. A disadvantage can be that such regions have not been defined with
an outbreak of an infectious disease in mind and therefore do not pose natural boundaries to
transmission. Neither have they been defined on the basis of economic activity. We can also
use other criteria to find other initial divisions, for example based on behavior of individuals
that relates to transmission or to economic activity. Human mobility may be a good indicator
for both of these. We give two criteria for obtaining such initial divisions.

G.1 Mobility regions.

In network science, the objective of community detection is to partition the nodes of a network
into groups that are more highly connected internally than externally [78]. Community detec-
tion has been applied to mobility networks [79, 80], resulting in divisions into regions that are
coherent with respect to mobility.

Currently, the most popular community detection method is to optimize a quantity called mod-
ularity, which computes the weight inside the communities minus the expected weight for a
random network with the same weights. For mobility data of the kind that we rely on, the
modularity of a division D = {D1, . . . , D|D|} is given by

Modularityη (D) =
1

M (A,A) ∑
D∈D

[
M (D, D)− η

M (D,A) M (A, D)

M (A,A)

]
,

where M (A, B) = ∑x,y∈A Mxy is the mobility between the sub-populations in A ⊆ A and in
B ⊆ A, and η is the resolution parameter, which controls the granularity of the found commu-
nities [81]. Larger values of η result in divisions consisting of more regions.
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We iterate the Louvain algorithm [82] to optimize modularity. We will refer to regions obtained
by this optimization as mobility regions. We note that the number of mobility regions that result
from applying this method for a given resolution parameter is, in general, not known before-
hand. Therefore, we apply this method for a variety of resolution parameter values to obtain
divisions consisting of different numbers of mobility regions. For example, by trial and error,
it was found that the choice η = 2 resulted in a division into 12 mobility regions, so that this
division has comparable granularity as the division into the 12 provinces. Figure G.1 shows
examples of our mobility regions for two values of the resolution parameter.

(a) Resolution parameter η = 2 (b) Resolution parameter η = 4

FIGURE G.1: Two example outcomes of our mobility region heuristic for two
different resolution parameters.

A comparison of these two divisions based on mobility is shown in Figure 5.5. We see that
these mobility regions are indeed more coherent in terms of mobility. In particular, the city of
Almere is in the same mobility region as the city of Amsterdam, but in a different province.
Mobility regions may reflect the economic and non-local transmission activity of the citizens in
a better way. However, they cannot be tailored to the status of the epidemic.

G.2 Adaptive mobility regions.

The running time of our optimization algorithm depends heavily on the number of sub-regions
in our starting division. Note that for the mobility regions, the resolution parameter controls
the resolution of the division globally. However, high resolution is mostly needed around loca-
tions where a lot of infections occur. We next introduce a modification to the modularity func-
tion of the previous section to obtain initial divisions that have a higher resolution near such
critical locations. Infections are due to meetings between infectious and susceptible individu-
als. Therefore, a good heuristic would aim for a division that separates infectious individuals
from susceptible ones as much as possible. For a region D ⊂ A, let I (D) , S (D) denote the
number of infectious and susceptible individuals living in D, respectively. We maximize the
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function

AdaptiveModularityζ (D) = ∑
D∈D

[
M (D, D)− ζ

I (D) S (D)

N

]
,

where ζ is a resolution parameter that, similarly to the η parameter of modularity, determines
the granularity of the obtained division. In particular, by varying ζ, the method results in di-
visions with different numbers of regions. Despite the fact that ζ has a similar role to the η
of the mobility regions, it does have a different dimension and differs an order of magnitude.
Again, the Louvain algorithm is iterated for optimization. We call the resulting regions adaptive
mobility regions because the resolution is locally adapted to the state of the epidemic. Figure 5.6
compares a division into mobility regions to a division into adaptive mobility regions for the
concentrated initialization. We see that the adaptive mobility regions indeed have a higher res-
olution around the critical area of the superspreader event in Uden. Figure G.2 shows examples
of our adaptive mobility regions for two values of the resolution parameter.

(a) Resolution parameter ζ = 8000 (b) Resolution parameter ζ = 30000

FIGURE G.2: Two example outcomes of our adaptive mobility region heuristic
for two different resolution parameters. The model is initialized following a con-
centrated initialization of 1000 individuals in the municipality of Uden, see Ap-

pendix F. Uden colored yellow in the left figure.
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Appendix H

Robustness of Chapter 5 results

Here we discuss stochastic effects on our SEIR model. In Section H.2 we present a sensitivity
analysis for the results of Section 5.4.

H.1 Stochastic effects

In Chapter 5, we work with a deterministic SEIR model. In this model, the spread of the infection
is modeled using a discrete-time evolution model. This makes that numbers are no longer
integers. As a result, one obtains the well-known anomaly that when there would be 10−6,
say, ‘people’ still infected, the infection would not die out and could grow exponentially again
whenReff > 1.

Simulations show that stochastic rounding has a minor effect when the numbers of infections
are large, see Figure H.2. However, in the case where an initialization is highly concentrated,
the spread to neighboring regions will be strongly affected by stochastic rounding, as we might
expect. In an extreme case where only 1 person is initially exposed, stochastic rounding can
deviate far from the deterministic outcome, and also different simulations can deviate substan-
tially from each other. Figure H.3 and Figure H.4 show results for different simulations with a
time horizon of 30 days and 100 days, respectively, with one initial infected individual. There is
a positive probability of the infection dying out, while if the infection does not die out, it grows
due toReff > 1.

As expected, the influence of stochastic effects is relatively large for small numbers of infec-
tions. In Section5.4, we initialize at least 1000, comparable to Figure H.2, where the effect of
stochastic simulation is relatively small.
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FIGURE H.1: 2000 individuals are initially exposed in the municipality of Uden.
The total number of people in the Netherlands who are susceptible, infectious,
and recovered are presented for a period of 30 days. Model parameters can be
found in Table 5.1 Deterministic outcome is in red, stochastic rounding simula-

tions are in blue.

FIGURE H.2: 2000 individuals are initially exposed in the municipality of Uden.
The total number of people in the Netherlands who are susceptible, infectious,
and recovered are presented for a period of 100 days. Model parameters can be
found in Table 5.1 Deterministic outcome is in red, stochastic rounding simula-

tions are in blue.

FIGURE H.3: One individual is initially exposed in the municipality of Uden. The
total number of people in the Netherlands who are susceptible, infectious, and
recovered are presented for a period of 30 days. Model parameters can be found
in Table 5.1 Deterministic outcome is in red, stochastic rounding simulations are

in blue.



89

FIGURE H.4: One individual is initially exposed in the municipality of Uden. The
total number of people in the Netherlands who are susceptible, infectious, and
recovered are presented for a period of 100 days. Model parameters can be found
in Table 5.1 Deterministic outcome is in red, stochastic rounding simulations are

in blue



90

H.2 Sensitivity Analysis

In this section, we briefly show the sensitivity of our results with respect to the different input
parameters. We analyze the sensitivity of the results to the model parameters by varying pa-
rameters one-at-a-time, using the values from Table H.1. The results in Figures 5.10(a), 5.10(b),
5.11(a), 5.11(b) are recalculated with different parameters of the model and are shown in Fig-
ures H.5, H.6, H.7, H.7, H.8(b), and H.9.

Differences are most noticeable for simulations where the locations of the infectious people are
concentrated. But even then, our conclusions are fairly robust against changing parameters.
Infection counts on the y-axis do differ a lot, but the shape of the curves stay roughly the same,
and thus, our conclusions also remain unchanged. This effect is clearly visible when we change
the effective reproduction number to 1 and to 2.5. Then, infections after 30 days are at 9000 or
50,000, but the relative performance of different divisions is similar.
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FIGURE H.5: Analyzing robustness of Figure 5.10(b) with respect to the fraction
of tested people.

Name Variable Base value Lower value Upper value
Fraction tested a 1/15 0.01 1
Fraction local contacts p 0.5 0.1 0.9
Effective reproduction number Reff 1.25 1 2.5
Infectious period 1/γ 5 3 7.5
Latent period 1/ν 5 3 7.5

TABLE H.1: Ranges of parameters for our sensitivity analysis
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FIGURE H.6: Analyzing robustness of Figure 5.10(b) with respect to the fraction
of local contacts.
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FIGURE H.7: Analyzing robustness of Figure 5.10(b) with respect to the effective
reproduction number.
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(a) ω = 3 days
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FIGURE H.8: Analyzing robustness of Figure 5.10(b) with respect to the infectious
period.
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FIGURE H.9: Analyzing robustness of Figure 5.10(b) with respect to the latent
period.
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