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Abstract

A Faraday based current sensor is investigated for its feasibility of reaching a required 1 ppm error
and a bandwidth of ≥ 1 MHz for the wafer stage of ASML. A first proof of principle showed a
error of 3% at 1 MHz that can be reached with a single TGG crystal. However, the available
peripherals were not ideal for a first proof of principles. Repeatability turned out to be a signi-
ficant issue. The different contributions to the total error in the Faraday based current sensor
are investigated. It is calculated that the shot noise and temperature drift of the Verdet constant
limit the applicability of the Faraday based current sensor. However, only the temperature drift
was verified experimentally. Because the temperature drift significantly influences the accuracy
it is proposed to lower it by using a temperature bath. This leaves a remained of 2% theoretical
shot noise.

By using multiple TGG crystals to increase the path length of the light a linear increase in
the gain is achieved. It is deduced to give a minimal error of 0.2%. It was found experimentally
that the gain increased by a factor of ∼ 1.7 by allowing the light to travel through the crystal
twice. The non-ideal effect of the silver mirrors caused a reduction from the ideal factor 2. In a
theoretical extrapolation this effect is used to estimate the effect on multiple reflections. Three
designs are considered that overcome the incurred phase shift of the reflection. It is derived the-
oretically that a reflection interface with a small difference in refractive index can allow for 100
reflections. This reduces the error to 506 ppm. Because of non-linearity on the output of the
optical setup a compensation scheme is proposed. It may further lower the error to 280 ppm.
Further ample routes are sketched for further reducing the error to a theoretical 42 ppm. Using
ideal circumstances it is conjectured that the error level can be reduced to 9 ppm. Compared to
the presently used Fluxgate of ASML it performs worse at low bandwidths. A major advantage
is, however, that it has potentially a much higher bandwidth. Note that the temperature drift of
238 ppm is significantly larger than the ideal conjectured 9 ppm.

Instead of designing complex design to reduce the temperature drift it may be more beneficial
to invest in Photonic integrated circuits (PIC). Their accuracy is of the same order of magnitude
as dictated by the temperature drift. This makes them interesting in applications with required
accuracies of roughly 0.1%, and a high bandwidths (> 1 MHz) is needed.
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Chapter 1

Definitions

1.1 Definitions

This section contains some definitions and abbreviations used in this report.

1.1.1 Polarization

The definitions for polarizations directions used are s- and p-polarized as shown on the left in
figure 1.1. Where s-polarized light is perpendicular, and p-polarized light parallel to the plane of
incidence (light grey area). As an example a reflection from an interface is shown in the right.
They are also known as TE (s) and TM (p) modes.

Figure 1.1: The light composed of s- and p-polarization on the left. A schematic overview of a
reflection of this light from an interface on the right. The place of incidence is the light grey
area in both figures. In red the s-polarization perpendicular to the plane of incidence and in blue
p-polarization parallel to the plane of incidence.

1.1.2 Error and Noise

In this thesis total error is defined as the normalized sum of all stochastic and deterministic fluc-
tuations. These are added up according to their nature, e.g. stochastic is 68% and deterministic
is 100% uncertainty. Moreover, the deterministic fluctuations can have directions that may com-
pensate. The terms Linear Error (LE) is used to describe deterministic effect that do not scale
with the signal. The term Sum Square Noise (SSN) is used to describe all other effects that do
scale with the signal. Most of the SSN in stochastic. Noise is considered an error but error is not
considered a noise.
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CHAPTER 1. DEFINITIONS

1.1.3 Synonyms in literature

Gain = Sensitivity (of the current sensor)

1.1.4 abbreviations

BS = Beamsplitter (Setup)
CF = Crystal field
DM = Differtial Mode (Often called RF instead)
FOM = Figure of merit (ratio Verdet/linear absorption coefficient)
FR = Faraday Rotation
GMI = Giant magneto impedance
HR = High reflective
LCP = Left circular polarized (light)
LE = Linear Error (This does not scale with the gain and can have a direction. Generally 100%
uncertainty)
Measurement resolution = smallest rotation that is distinguishable from background fluctuations
MO = Magneto-Optic
Monitors = The + and − outputs of the balanced photodiode.
MS = Mirror (Setup)
NSD = Noise Spectral Density
P = Polarizer
PBS = Polarizing Beamsplitter
PIC = Photonic integrated circuit
PR = Phase retarder (Generally refers to a half-wave plate)
RCP = Right circular polarized (light)
RE = Rare earth (metal)
RIG = Rare earth Iron Garnet
SO = Spin-Orbit
SSN = Sum Square Noise (Noise that scales with the gain and generally has no direction. Addi-
tionally, it generally adds up as the root sum of the squares (68% uncertainty))
TAG = Terbium Aluminium Garnet
TE = Transverse electric
TGG = Terbium Gallium Garnet
TIR = Total internal reflection
TM = Transverse magnetic
TSAG = Terbium Scandium Aluminium Garnet
YIG = Yttrium Iron Garnet
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Chapter 2

Introduction

Chips are the brainpower of our computers, laptops and cell phones. There is a constant drive to
make these devices faster, cheaper, smaller and more efficient. Currently the smallest features of
these chips have reached the size of several dozens of atoms. Consequently, manufacturing becomes
increasingly complex. ASML is a company which takes a leading position in making the machines
that are used in manufacturing wafers with details at the nanometer scale. Their machines use
a process, called lithography, where features are imprinted on a wafer by exposing it to a light
source. A wafer is fully patterned by changing its position relative to the light source using a
wafer stage. To attain nanometer precision in the placement of all these patterns the movement
of the wafer stage also requires nanometer precision. The current sensor is a crucial component in
achieving the precision of the wafer stage.

Figure 2.1: A schematic view of the movement of a wafer stage.

In figure 2.1 the movement of a wafer stage on top of an array of magnets is schematically shown.
Attached to the wafer stage are coils (white belt) which are driven with precise currents, to

generate a Lorentz force; F = I~L × ~B. On the left the Lorentz force points towards the left
and a movement towards the left starts. After a time ∆t the situation at the right is reached.
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CHAPTER 2. INTRODUCTION

There the magnetic field is reversed causing the Lorentz force to become opposite to the movement
causing deceleration. To prevent deceleration the current has to be reversed when the magnetic
field changes sign. The speed at which this needs to take place depends on the speed of the wafer,
v, and the distance between the magnets, ∆x. Therefore, the current must be swapped within
a time span of ∆t = ∆x/v. This is one reason why a high bandwidth is required, valid for the
long stroke actuators that makes the large movements (> 1 µm). Corrections for instabilities in
the movement of the long stroke are performed by the short stroke. It has a single coil and no
significant movement w.r.t. the magnetic field, but high bandwidth is still required to counteract
high frequent disturbances, e.g. due to flapping cables and resonances in the stiff structures. The
challenge in positioning and moving the wafer stage at high precision, therefore, lies in applying
both a precise and high frequency current. Unfortunately, errors of various origins can tamper
accuracy. This requires constant adjustments to the current. For this, high temporal knowledge
of the current is required. These can be measured using a specialized current sensor. This current
sensor must be capable of measuring frequencies ≥ 1 MHz and with a noise spectral density (NSD)
of only 0.1 µA√

Hz
on a current range of ±100 A (see appendix A for a full specification list). The

error on the output of a current sensor is the NSD integrated over the bandwidth of the current
sensor. This means that the error normalized to the range of the current sensor (from now on
called total error) cannot exceed (0.1 µA√

Hz
∗
√

1MHz)/(100A) = 1 ppm. This requirement has not

been met by the commercially available current sensors yet. This work investigates the feasibility
of using Faraday based current sensing to reach this target.

Table 2.1: The performance of different current sensing techniques. Retrieved from [1].

In table 2.1 current sensors based on different technologies are compared. Currently, ASML
uses Fluxgates with 5 ppm total error and a bandwidth up to 800 kHz. However, these Fluxgates
are limited by the magnetization switching time of the magnetic core used. As a result, a band-
width of ≥ 1 MHz cannot be achieved. Only 4 of the current sensors in table 2.1 have bandwidths
that may reach the MHz; the shunt resistor, the current transformer, the Rogowski Coil and the
Fiber-Optic Current Sensor. Shunt resistors are undesirable as they are in direct contact with the
current wire. This is non ideal for safety and common mode voltage suppression (the currents
flow in high voltage circuits with fast transients). The current transformer and the Rogowski coil
require additional techniques for measuring DC currents, restricting their advantages. A method
that has gained attention is the Giant magneto impedance (GMI) method with a large theoretical
sensitivity and possible bandwidth up to tens of MHz [2]. Its NSD is expected to go below ∼ 1
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CHAPTER 2. INTRODUCTION

pT/
√

Hz which is sufficient to reach the 1 ppm total error [3]. However, the requirement for an
ultra low error and extremely high frequency (up to 100 MHz) carrier current limits the perform-
ance of the GMI and heavily increases the costs. Furthermore, GMI sensors having a bandwidth
of at least 1 MHz have yet to be proven [4]. The Faraday based fiber-optic current sensor may be
the technique with the highest potential to reach the target. It involves the Faraday effect where
a polarization change in light is caused by the magnetic field of the current. Most of the present
Faraday based current sensors are developed for the high power industry capable of measuring
currents of kA with accuracies of only 0.1% [5]. Unfortunately, these designs all perform poorly for
smaller currents [6]. The glass used in the fiber has a small sensitivity. Therefore, large lengths of
the fiber around the current wire are required for sufficient signal. These large path lengths and the
bend induced linear birefringence of the fiber limit the sensitivity at low currents [7]. An alternat-
ive to the fiber-optic current sensor is the Faraday based bulk-optic current sensor [8]. There the
bulk materials have a much larger sensitivity than the glass used in fibers. This reduces the neces-
sary path length and allows for higher sensitivity to smaller current. NSDs of 500 nA/

√
Hz with

bandwidth > 10 MHz have been proven for bulk Gallium doped Yttrium Iron Garnet (Ga:YIG)
based sensor but are still a factor 5 away from the desired 1 ppm [9, 10]. A theoretical analysis of
a bulk Rare earth Iron Garnet (RIG) based Faraday current sensors showed a possible total error
of only 4.9 ppm [11]. However, the ferromagnetic Ga:YIG and RIG have a non-linearity up to 1%
due to hysteresis effects. Also saturation limits the range of the sensor. Additionally, temperature
effects of the crystals on the gain of the sensor can be up to several 100 ppm/K [12, 13]. In a recent
study, Rietman et al. discussed the feasibility of using the paramagnetic material Terbium Gal-
lium Garnet (TGG) [14]. In particular, they argued that the possible bandwidth is in the GHz [14].

This thesis focusses on a bulk Faraday based current sensor. The Faraday based current sensor
is theoretically estimated to have a total error roughly twice that of the best available the Fluxg-
ate. However, the main benefit is that the Faraday based current sensor can reach bandwidth far
above the 1 MHz. One the possible applications is as a magnetic field sensor for spintronic devices
[15]. Electron microscopes can shorten the exposure time of a (organic) sample if short electron
pulses can be measured. High frequency pulsed lasers, currents or other application that require
current modulations of several MHz or above may want to use Faraday current sensor to monitor
the modulations [16]. In particular, the GMI may benefit from a Faraday current sensor in its
required modulation.

2.1 This thesis

Chapter 1 presents some definitions and abbreviations used in this thesis. In chapter 3 the Faraday
effect is explained. Also the concept of a Faraday based current sensor is presented. Materials that
can be used in the current sensor are discussed and TGG is argued to be one of the most realistic
material to use for a small current sensor. The measurement setup and methodology is discussed
in chapter 4. An optical bridge is employed to measure the Faraday effect due to its low error and
simplicity. In chapter 5 a proof of principle using a TGG based current sensor with a total error
of 3% is demonstrated, using simple peripheral equipment. This total error is reduced further
by increasing the path length that the light travels through the TGG. This is done in two ways:
Firstly, increasing the total crystal size and secondly, using reflections which benefits from the
non-reciprocity of the Faraday effect. A linear increase in the gain is measured by increasing the
path length through the crystal length. Furthermore, a simple increase in the gain of a factor ∼ 1.7
has been experimentally achieved using reflections. This is theoretically worked out for a large
amount of reflections. It is predicted to give a total error of 280 ppm if a compensation scheme is
used. Unfortunately, the total error is limited by a temperature drift of 240 ppm. Possible designs
for a compensation scheme are discussed in chapter 6. The effect of improving the total error at
large bandwidths is shortly discusses with further calculations. This is compared to a Fluxgate
showing that the Faraday current sensor perform worse at low frequencies, but the higher possible
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CHAPTER 2. INTRODUCTION

bandwidth makes it attractive nonetheless. Finally, the conclusion is given in chapter 7 with an
outlook for further research.
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Chapter 3

Faraday Effect

The principle of a Faraday based current sensor is to probe the magnetic field of the current by
measuring its effect on the polarization of light; the Faraday effect. It produces a rotation in the
polarization state of light by converting s- to p-polarization or vice versa. Its magnitude is directly
proportional to the magnetic field. In this chapter the underlying physics of the Faraday effect
and its consequences for a current sensor will be discussed.

3.1 Phenomenological Description

B B

LCP RCP

p p

s s

z z

Figure 3.1: The Faraday effect on polarized light entering a medium in a magnetic field, B, parallel
to the direction of propagating light (z-axis). On the left linear polarized (green) light experiences
a rotation converting s- into p-polarization. On the right, the behaviour of both left circular (LCP)
and right circular (RCP) polarized light is shown.

A more thorough derivation of Magneto-Optics can be found in the paper of Bennett [17].
For more information on magnetism see Magnetism and Magnetic Materials by Coey [18]. The
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CHAPTER 3. FARADAY EFFECT

Faraday effect is a Magneto-Optic effect (MO) where linear polarized light travelling through a
carrier material experiences a rotation when a magnetic field is applied. This is shown on the
left in figure 3.1. This rotation is caused by the different speeds at which left- and right-circular
polarized light move through a medium that is placed in a magnetic field. Linear polarized light
can be written as a superposition of both left and right circular polarized light. The rotation is
defined as the accumulated phase difference between LCP and RCP. Thus, the Faraday rotation
can be described as

θ =
ωL

2c
(nR − nL), (3.1)

where ω is the angular frequency of the light, c the speed of light in vacuum and L the path
length that the light travels through the material, nR and nL are the refractive indices of RCP
and LCP, respectively. The magnetic field influences the difference between the refractive indices
in equation 3.1. This is described by the dielectric tensor which is further explained in appendix
B.1. In a linear approximation equation 3.1 can be rewritten as

θ = V
∫
L

B · dl, (3.2)

where V is the material dependent Verdet constant and
∫
L
B · dl is the integrated magnetic

flux density along the path of the propagating light at a total path length L. A typical values
for the Verdet constant is −130 rad/(T.m) for Terbium Gallium Garnet (TGG) [19]. Commonly
used BK-7 glass, however, has a Verdet constant of only 4.30 rad/(T.m) [20]. This wide range
of possible values of the Verdet constant gives possibilities to design the response of the current
sensor. This difference is caused by the Spin-Orbit coupling that is higher for rare-earth metals
such as Terbium in the TGG. This will be discussed further in section 3.3.

An important property of equation 3.2 is its non-reciprocity. This means that when the light
reverses its direction through, e.g. a reflection, the light continues to rotate in the same sense.
This is because the magnetic field is also reversed allowing the rotation to accumulate through
e.g. reflections.

3.2 The Faraday Based Current sensor

In figure 3.2 the proposed concept of the Faraday current sensor is schematically shown. Its prop-
erties are shown in table 3.1 which will be discussed throughout this thesis. The current to be
measured, IP , generates a magnetic field BP . BP causes a Faraday rotation, θF , in an optical
setup, shown in red. In the optical setup light generated by a laser passes a polarizer. Next it
experiences the Faraday rotation in the sensor head. The latter contains a crystal that is exposed
to the magnetic field. The light passes a phase retarder and is split by a Wollaston prism. The
resulting two beams are converted into three currents by two photodiodes (±). Combined they
generate an output proportional to the Faraday rotation. This output is converted to a voltage
that is transformed to a digital signal using an analog-to-digital converter (not shown). This di-
gital signal is processed to obtain the measured current, IP . Its result can be used to create a
feedback current If generating a magnetic field Bf that is invoked on the crystal. The purpose
of this feedback is to keep the output in a linear regime where both the gain is high and the total
error is low. This is further discussed in section 6.1.

In short, the performance of the Faraday based current sensor is mainly influenced by four
items; the magnetic field generation, the induced Faraday rotation, the measurement resolution of
the Faraday rotation and temperature drift. The magnetic field generation involves the magnetic
field that is experienced by the crystal. It is described by a magnetic field gain of GB = B

I in units
T/A. In effect, the induced Faraday rotation is the coupling of this magnetic field with the crystals
properties, Verdet constant, and the length of the path that the light travels through this crystal.
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��
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Figure 3.2: A schematic overview of a Faraday based current sensor. The transformation of the
current IP to obtain its value. The Faraday rotation is obtained in the optical setup shown in
detail at the bottom.

The gain associated with the induced Faraday rotation using equation 3.2 is denoted by GFR =
θF
B = VL in units rad/T. The measurement resolution of the Faraday rotation determines the
minimal Faraday rotation, σθF , that can be separated from background fluctuations. Temperature
drift impacts the output by changing the gain. This includes effects such as thermal expansion
of the crystal increasing the path length and wavelength drifts of the laser. The normalized total
error of the current sensor is defined by

σIP
IP,max

=
σθF

θF,max
+ κ =

σθF
GBGFRIP,max

+ κ, (3.3)

where σIP is the minimal detectable current to be measured, IP,max is the maximum current to
be measured (e.g. 100 A), θF,max the maximum Faraday rotation associated with the maximum
current and κ the normalized temperature drift. By increasing GB and GFR and by decreasing σθF
the first term of the total error can be lowered, but the temperature drift is generally independent
on the gains GB and GFR. Because the temperature drift does not dependent on the gain it will
be treated separately. The largest temperature drift originates from the Verdet constant and is
discussed in section 3.3.2. Next, a first estimation of the Faraday effect is provided.

3.2.1 Estimations of the Faraday effect

The magnetic field from a straight current carrying wire (See figure 3.3) is denoted by Ampère’s
law as

B =
µ0Ip
2πr

, (3.4)

where µ0 is the vacuum permeability, r is the radial distance from the wire carrying current IP .
The wire can also be placed in an U shape as shown on the right in figure 3.3. Positioning the
wire in a coil line configuration is not preferred as winding currents can interact with each other
through their parasitic capacitance. For IP = 100 assume the light travels through a 5 mm TGG
crystal with a gain of GFR = −0.65 rad/T. The crystals is placed at a distance of 3 mm from

Confidential 9



CHAPTER 3. FARADAY EFFECT

Table 3.1: Parameters of the Faraday based Current sensor

Parameter Value
Verdet constant −130 rad/(T.m)

Wavelength 633 nm
Crystal length 5 mm

Number of reflection 100
Laser Power 20 mW

Magnetic Gain (GB) 0.1 mT/A
Sensor Head Gain (GFR) −65 rad/T
Total gain (GB ∗GFR) −6.5 mrad/A

Range > 100 A

Noise Spectral Density 0.9 µA√
Hz

Temperature drift, κ (at ∆T = 0.05 K) 240 ppm
Bandwidth ≥ 1 MHz
Est. Cost ∼ 2000− 3000 e

Ideal total error 9 ppm
Total error with κ 249 ppm

the current, Ip, carrying wire centre. The magnetic field in the crystal is roughly ∼ 7 mT for the
straight wire and ∼ 10 mT for the U shape [21]. Then the Faraday rotation for a single pass is
roughly 4.55 mrad or 6.5 mrad, respectively. Because the magnetic field of the U shape is higher it
will be used in this thesis. This gives a magnetic field gain of GB = 0.1 mT/A. To obtain a total
error of 1 ppm rotations of 6.5mrad∗1ppm = 6.5 nrad need to be distinguished if temperature drift
is neglected. Measuring rotations down to several nrad is possible, but only when the bandwidth
of the setup is severely limited [22, 23].

Because the current wire cannot be wound up in a coil due to parasitic effects GB is limited.
The two other options to reach low total error at high bandwidth are increasing GFR and re-
duce the measurement resolution, σθF . Possibilities for increasing GFR is to increase the Verdet
constant or increase the path length. The measurement resolution can be lowered by optimizing
the measurement setup. This proves to be difficult due the particle effects of the light (photons)
and current (electrons). It invokes statistical fluctuations in the detection, called shot noise. This
limits the measurement resolution to roughly 10µrad at 1 MHz bandwidth [24]. This will be
further discussed in section 4.1.1. Ideas for enhancements are given in section 6.2. As a result,
it is assumed impractical to measure 6.5 nrad. On the other hand, increasing GFR through the
Verdet constant and the path length will be the best methods to reach the desired total error of
1 ppm. In the next section the possibilities of enhancing the Verdet constant are discussed. The
microscopic origin of the Faraday effect is examined. Furthermore, the effects of the wavelength
and temperature on the Verdet constant are shown.
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Figure 3.3: A magnetic field generated by a straight current carrying wire going through a crystal
of length L at a distance r. On the right a wire is positioned in a U shape with the crystal placed
inside the U shape.

3.3 Microscopic Origin

Up till now only a macroscopic description of the Faraday effect has been given. The microscopic
origin of the Faraday effect originates from the Spin-Orbit (SO) coupling. This SO coupling
induces a correlation between the orbital momentum L and spin momentum S of a electron in a
material. This coupling allows the projection of the orbital momentum of right- and left-circular
polarized light, L = +1 and L = −1, respectively, on a free electron to also probe the spin. Thus,
when the number of up-spins in a material is unequal to the number of down-spins RCP and LCP
will interact differently with the material. This gives rise to the Faraday effect. The higher this
difference between spins the larger the Faraday effect. In a crystal, however, the electrons interact
with neighbouring atoms and electrons reducing the orbital motion of the electrons through e.g.
crystal field effects. This reduces the chance of the projection of the orbital momenta of RCP
and LCP on the electrons. Therefore, materials with a well defined orbital momentum L are
preferred. Because of the screening of the crystal field by higher lying electronic shells, rare earth
(RE) metals have well defined orbital momenta for the optical transitions. Well defined orbital
momenta in addition to strong Spin-Orbit coupling make REs prime candidates for the Faraday
effect.

3.3.1 Spin Orbit Coupling

In figure 3.4 the relativistic origin of the SO coupling is shown. From the nucleus point of view
the electron is orbiting it. However, when considering the point of view of the electron, it is the
nucleus that orbits around the electron. This orbiting of the nucleus generates a magnetic field
that interacts with the spin of the electron. Hence, the orbital movement (L) and the spin (S) of
the electron are now coupled, i.e. SO coupling. The Hamiltonian of the SO coupling of a single
electron can be described by

HSO =
ΛSO
~2

L̂ · Ŝ, (3.5)

where ΛSO is the Spin-Orbit coupling constant. The coupling constant scales with the atomic
number Z as Λ ∝ Z4. This scaling is explained in appendix B.2. Heavier elements, therefore,
exhibit a strong coupling and lighter elements a weaker coupling. This is one of the reasons why
the Verdet constant is higher for a crystal containing the heavy RE metal Terbium (Z = 65)
compared to that of glass of which the heaviest element is Silicon (Z = 14).

In addition to the SO coupling the Coulomb interaction with nearby atoms, e.g. the crystal
field (CF), also influences the orbitals in which the electrons move. The CF can contribute addi-
tional effects that couple the spin and orbits or decouple them by quenching the orbital angular
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Figure 3.4: An electron orbits the nucleus (lef) when looking from the nucleus point of view with
orbital moment L and spin S. On the right the Nucleus orbits the electron when looking from the
electrons point of view.

momentum [25, 26]. In ferromagnetic 3d ions, such as Fe and Co, the crystal field causes the
orbital angular momentum to be quenched. This low orbital momentum means that the optical
coupling will be reduced significantly even though the highly localized density of states allows
for large spin splitting [27]. For rare earth (RE) metals, such as Terbium, only the 4f electrons
contribute to the magnetic effects and the 4f → 4f5d transition causes the Faraday effects. Those
electrons are located deep in the atom and are shielded from the surrounding electrons by the
outer 6s and 5p electrons [28]. This makes RE metals less susceptible to possible quenching effect
of the crystal field. Therefore, RE metals in crystalline form or applied as trace elements are
interesting materials for the Faraday based current sensor.

The effect of the SO coupling is schematically shown in figure 3.5, For simplicity the CF effects
are neglected. The ground state with orbital angular moment L = 1 and spin moment S = 1/2 is
split into a state of J = L+S and J = |L−S|. For this case no Faraday effect is observed as both
RCP and LCP can interact with the same degenerate energy level. The situation changes when a
magnetic field Bext is applied. This causes Zeeman splitting lifting the degeneracy. Assuming the
Zeeman effect to be weaker than SO and CF effects and orbital quenching is small then J is the
proper quantum number. In this case the Zeeman splitting can be described as

∆εZ = µBgJBextmJ , (3.6)

where µB is the Bohr magneton, mJ is the magnetic quantum number and gJ is the Landé g-
factor. This splitting is schematically shown on the right side in figure 3.5 for the different spins.
In the spin-up case the transition with LCP is lower in energy and for the spin-down case the RCP
has a lower energy. By tuning the difference in the number of up-spins N↑ and down-spins N↓
a selection between RCP dominated or LCP dominated induced transitions can be made. This
difference between the number of spins is not only affected by the Zeeman effect but also by the
exchange interaction between spins, denoted by −J Ŝ1 · Ŝ2. Furthermore, the superexchange in-
teraction with electrons of next to neighbour atoms can be used to enhance the difference between
spins. The exchange interaction is large for elements with high J . This is the case for most REs
except for Sm and Eu. The super exchange can occur in materials such as Garnets, in which
the RE embedded as trace elements, interact with each other through the p-orbitals of the oxides
[29–31].

Loosely speaking the Faraday effect can be enhanced by increasing the SO coupling, with the
aid of heavier atoms. The prime candidates are the RE metals. The increased SO coupling in
combination with a large difference in the spin occupation between up and down allows for the
Verdet constant to increase. In effect, this results in a larger sensitivity of the Faraday based
current sensor.

12 Confidential



CHAPTER 3. FARADAY EFFECT

Zeeman spli�ng:

�↑ �↓

�
2

SO spli�ng

−

Free Ion

� ,
2

Δ
Ground state

Excited State

Spin-down ↓Spin−up ↑

−

� ,
2

�
2

Δ
�

Figure 3.5: A simplified energy diagram of a ground state and excited state. On the far left a
free ion without SO coupling is shown. The proper quantum numbers are L and S. Next, the SO
splitting of energy ∆εSO is shown. The proper quantum number is now J . No splitting occurs
in the excited state due to L = 0. This is done for simplicity. To the right the Zeeman effect is
introduced causing a splitting, ∆εZ , between spin up (middle right) and spin down (far right).
The allowed transitions when considering the selection rules, ∆l = ±1,∆s = 0, are shown in RCP
(blue) and LCP (red) for both spins.

3.3.2 Wavelength and Temperature dependency

Choosing a material with a large amount of RE is not the only relevant parameter. As shortly
discussed in section 3.2 the temperature drift is also a relevant aspect of the total error. The effect
of a temperature drift is also present in the Verdet constant through its wavelength and the direct
temperature dependencies. For the full theoretical considerations on the effect of the temperature
and wavelength see [32]. The wavelength of the incident light λ influences the transition probability
between the ground and excited state of figure 3.5. A larger difference between the applied
wavelength with the transition wavelength λ0 will reduce the probability of the light interacting
with the electrons associated with this exact transition. This effect can be approximated for a
paramagnetic material dominated by a single transition. This is described by

V(λ) =
Fλ2

0

λ2 − λ2
0

+G, (3.7)

where λ0 is the transition wavelength, F is a material specific mixing constant and G is a constant
that accounts the influence of a finite fixed temperature. In figure 3.6 the wavelength depend-
ency of the Verdet constant of four different materials is shown. All materials had a transition
wavelength in the UV (∼ 200− 400 nm) coming from the 4f → 4f5d transition of the REs. This
causes the Verdet constant to continues lower when using high wavelengths. The material PrF3

has the overall largest Verdet constant in the ultra violet (UV, < 400nm) range. The Verdet
constant of TGG and Tb2O3 in visible range (VIS, 400 < λ < 1100nm) is roughly 1 order of
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magnitude smaller than the material applicable in the UV range. However, the steepness of the
wavelength dependency is much lower. Tb2O3 has a larger overall Verdet constant than TGG.
The final material is EuF2 which is transparent in the near infra-red (NIR, λ > 1100 nm). It has
the smallest Verdet constant but a much lower steepness. In short, the higher the Verdet constant
the higher the steepness, e.g. wavelength drift becomes larger.
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Figure 3.6: The Verdet constant dependence on the wavelength for different materials in their
transparent regions. In black TGG and in red Tb2O3 in the visible (VIS) range. In green PrF3 in
the ultra violet (UV) range and in blue EuF2 in the near infra red (NIR) range. Values derived
from equation 3.7 using parameters adapted from [32].

In order to compare the materials a normalized wavelength drift of the Verdet constant is
proposed as

κλ =
1

V(λ)

∂V
∂λ

= − 2Fλλ2
0

(λ2 − λ2
0)(Fλ2

0 +G(λ2 − λ2
0))

(3.8)

in ppm/nm. In table 3.2 the normalized wavelength drift, from now on called wavelength drift, of
the Verdet constant (κλ) for different materials and wavelengths is presented. It is adapted from
[32]. The wavelength drift is the largest for wavelengths in the UV range (λ < 400 nm) with a
minimum of 7100 ppm/nm. In the VIS range (400 < λ < 1100nm) this drift is roughly equivalent
for all materials. At 1064 nm it differs a factor 2 from 633 nm. It is roughly a factor 2− 4 lower
than UV. Looking at the NIR (λ > 1100 nm) the wavelength drifts are comparable. Similarly
to the difference between UV and VIS, they are lower than the VIS range by a factor of 2-4. To
limit the wavelength drift it seems obvious to use wavelengths in the NIR. However, the currently
investigated materials in the NIR are scarce. In addition, the Verdet constant is roughly 1/10 that
of materials in the VIS range. This makes them less desirable for a Faraday based current sensor.
The UV materials have an even larger Verdet constant. However, their wavelength drift posses
an additional challenge in the design of the current sensor. For instance, for a laser with a typical
wavelength drift of 0.25 nm/K (HL6319G) and a temperature bath with temperature stability of
0.05 K the Verdet constant can change by ∼ 10000ppm/nm ∗ 0.25nm/K ∗ 0.05K = 125 ppm. This
is 2 orders of magnitude higher than the desired 1 ppm. For this reason a compromise is made by
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Table 3.2: The normalized effect of a change in wavelength on the gain, κλ, in ppm/nm for different
wavelengths. Values adapted from [32] by using equation 3.8.

λ (nm) 238 308 633 1064 1550 1940
CeF3 100000 16000 3800 2000 1400 1100
PrF3 18000 10000 - - - -

LiHoF4 9200 7100 - - - -
LiYbF4 14000 9000 - - - -
TGG - - 3800 2300 - -
TSAG - - 3800 2000 - -
TCZ - - 4100 2000 - -

Tb2O3 - - 3900 2000 - -
EuF2 - - - - 1400 1100

selecting materials in the VIS. Also, as a further advantage is the extensive research on materials
in the VIS [32, 33].

As mentioned before the temperature also affects the Verdet constant. Varying temperatures
cause an difference between the number of up and down spins. For paramagnetic materials this is
described by the Curie-Weiss law:

V(T ) =
H

T − Tw
+ Iλ, (3.9)

where H is a material constant proportional to the Curie constant, Tw is the Curie-Weiss temper-
ature where a material loses its permanent magnetic properties becoming paramagnetic and Iλ is
a constant that contains the contribution of a fixed wavelength λ. In figure 3.7 the temperature
dependency of the Verdet constant at 633 nm for TGG is shown. At lower temperature the Verdet
constant increases but the steepness of the curve also increases with lower temperatures. Similar
to the wavelength the temperature drift of the Verdet constant can be described by

κT =
1

V(T )

∂V
∂T

=
H

(H + I(T − Tw))(T − Tw)
(3.10)

in ppm/K. TGG has a typical drift of ∼ 3000−4000 ppm/K at room temperature. This increases
up to 10000 ppm/K at T=100 K. For a typical temperature bath having a stability of 0.05 K
this gives a equivalent error of 150 ppm and 500 ppm for 300 K and 100 K, respectively. Both
are significantly higher than the desired 1 ppm. Thus, for a low temperature drift it is better to
use high temperatures. Room temperature will be adopted to avoid the need for sophisticated
temperature control. Typical temperature drifts for other materials adjacent to other relevant
parameters are discussed in the next section to explore materials that can be employed in the
Faraday based current sensor.
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Figure 3.7: The Verdet constant versus the temperature for paramagnetic TGG at a wavelength
λ of 633 nm. Room temperature, 300 K, is indicated by the vertical dashed line. Adapted from
[34, 35].

3.4 Material Considerations

For the Faraday current sensor a material has to be selected that exhibits a large Verdet constant,
a low wavelength drift and a low temperature drift. Equally important is a high transparency
needed to detect enough light. The material parameter that determines this transparency is the
linear absorption coefficient, µ. Actually, it limits the length of the path that the light can travel
through the material. Subsequently, the Verdet constant and the maximum path length, Lmax,
limit the maximum gain (GFR,max = VLmax) of the current sensor. In order to quantify the
applicability of a material the Figure of Merits (FOM) is introduced. It is defined as the ratio
between the Verdet constant and the linear absorption coefficienct, µ: FOM = V/µ ≈ GFR,max
in rad/T. A quick estimation can be made to find the FOM necessary to reach the 1 ppm error
of 10 mT (10 nT). Assuming the measurement resolution is 10 µrad with a bandwidth of 1 MHz
then the FOM necessary is 10000 rad/T [22].

In table 3.3 a summary of various materials and their relevant properties is given. The material
with the highest estimated FOM of 2200 rad/T is KT3F10 followed by Glasses with a FOM of 1500
rad/T. At the third place TGG comes with a FOM of 384 rad/T followed by CeF3 with a FOM
of 123 rad/T. Materials such as Dy2O3 and Tb2O3 show significantly larger Verdet constants.
Unfortunately, values for their absorption have not been found. The temperature drift at room
temperature of most materials is around 3000 ppm/K with the exception of YIG and glasses. They
have a temperature drift up to 2 orders of magnitude lower. The material used in this thesis is
TGG mainly due to its commercial availability and, more importantly, its high Verdet constant at
633 nm. Because at path lengths surpassing ∼ 1 m linear birefringence will become an significant
issue, KT3F10 and glasses were not chosen although they have a better FOM. This limit in the
path length will be discussed in section 5.2. This makes materials with a high Verdet constant
preferred. Tb2O3 shows the most potential as replacement of TGG due it Verdet constant being
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Table 3.3: Estimations of the absolute Verdet constant V, absorption coefficient µ, estimated
maximum FOM with the associated maximum path length in brackets and temperature drift
at room temperature κT , for different materials from literature. Values for the Verdet constant
and absorption coefficient are taken at 633 nm for comparison except for YIG which is for 1310
nm. The FOM is an estimated maximum obtained from literature which is not necessarily at a
wavelength of 633 nm.

Material V (rad/(T.m)) µ (cm−1) max. FOM (rad/T) (Lmax) κT (ppm/K) Reference
YIG 2200 4 5.5 (2.5 mm) 660 [12, 36]
TGG 130 0.01 384 (10 m) 3400 [19, 37, 38]
TSAG 165.8 - - - [39]
TAG 179.3 - - - [40]
EuF2 190 - - - [41]

KTb3F10 113 - 2200 (61 m) 3100 [42, 43]
CeF3 123 0.01 123 (1 m) - [44]

CeAlO3 270 - - 3300 [45]
Cd1−xMnxTe 2200 1 22 (1 cm) 5000 [46–48]

Dy2O3 347.5 - - 3100 [32, 49–51]
Tb2O3 422 - - 3100 [32, 49–51]
glasses 2-4 10−5 1500 (1 km) 70 [52, 53]

much larger although its absorption has not been found. The properties of the materials will be
discussed in more detail in the next sections.

3.4.1 Garnets

A group of materials often used in bulk Faraday current sensor are the garnets [9, 54]. The gar-
net structures are interesting due to the incorporation of magnetic sub-lattices. These allow for
tailoring of effects such as the superexchange interaction [31]. YIG stands out in the garnets due
to its large Verdet constant [36]. In YIG the iron sublattices dominate the magnetic properties
but contrary to normal ferromagnetic materials the coercivity is very small [13, 55]. This allows
for an almost linear response to an external magnetic field. Therefore, it is a popular material
for Faraday based current sensing. However, due to finite coercivity the linearity of such sensor
is heavily affected by hysteretic effects and magnetic saturation limits the range. Furthermore,
the absorption is high giving a FOM significantly lower than TGG. A positive property is its low
temperature drift being an order lower than TGG [12].

Because of the linearity issues paramagnetic garnets such as TGG are preferred although the
Verdet constant is an order of magnitude lower than YIG [19, 38]. By exchanging elements in
the garnet structure the Verdet constant can effectively be improved. An increase of 25% for
Terbium Scandium Aluminium Garnet (TSAG) and 30% for Terbium Aluminium Garnet (TAG)
with comparable absorption coefficient have been reported [39, 40, 56–58]. Further enhancement of
up to 30% of the magnetic properties can be obtained by doping the garnets with rare earth metals
[19, 29, 59]. Unfortunately, the temperature dependency for only a few paramagnetic garnet has
been investigated. It is, however, expected that they will have roughly equivalent temperature
drift of κT ≈ 3000 ppm [60]. The temperature dependency could be reduced by combining crystals
with opposite temperature dependencies as Zhao et al. have shown for YbBi:YIG lowering κT
from 660 to 420 ppm [12].
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3.4.2 Other Crystal Structures

Crystal structures that allow for rare earth metals to be incorporated in atomic sites are fluoride
based crystals. For example, EuF2 and KTb3F10 have Verdet constants comparable to that of
TGG [41, 43]. The properties enhance significantly near UV light [44]. However, in addition to
issues with wavelength drift in the UV, typical detectors in the UV range have a lower quantum
efficiency. This making UV based materials less interesting for high accuracy purposes such as the
Faraday based current sensor. The crystal KTb3F10 shows the most promise with a low absorption
of 10−4 cm−1 and estimated maximum FOM of 2200 rad/Tm at 1064 nm [42].

Another crystal structure with potential is the Perovskite-type rare earth aluminite (REAlO3).
This structure allows for high density of rare earth ions with CeAlO3 crystals have a Verdet con-
stant that is roughly twice that of TGG and CeF3 [45]. However, no estimations of the linear
absorption coefficient could be found. The FOM could, therefore, not be estimate.

Another candidate is Cd1−xMnxTe. Its Verdet constant is an order of magnitude higher thant
TGG [46–48]. However, the high absorption limits the path length to a centimeter. This can be
easily surpassed by an order of magnitude using reflections. There is, however, an engineering
advantage to this materials. By tuning the amount of the 3d metal Mn (x) the properties can be
changed. For instance optima can be found in temperature dependencies. For Cd1−xMnxTe this
optimum is, however, at 5000 ppm/K which is roughly twice as high as TGG.

RE based Oxides such as Dy2O3 and Tb2O3 have Verdet constant up to 3 times higher than that
for TGG [32, 49]. These materials contain a much larger RE content. Recently, the fabrications
of these types of crystals has become feasible [50]. The temperature dependence is equivalent to
TGG [51]. The absorption is, however, unknown but a higher FOM than that for TGG is expected.

Diamagnetic materials are interesting due the lower temperature dependencies. They are al-
most two order of magnitude lower than that for paramagnetic materials [52]. This makes them a
preferred choice for temperature independent current sensors. For diamagnetic materials equation
3.9 does not apply. It is typically temperature independent or it can be neglected. On the other
hand, the band-gap contains a slight temperature dependence that results in a relative wavelength
shift compared to the constant wavelength of the laser [52, 61]. Diamagnetic glasses, however,
have a Verdet constant that are almost 2 orders of magnitude lower than that for paramagnetic
materials [53]. This makes them less suitable for small signals. The significantly lower absorption
coefficient allows for extremely large path length of several 100 meters up to kilometers. Increas-
ing the Verdet constant has been attempted by doping the diamagnetic glasses with REs. This
has been proven, but at the cost of absorption [62]. Watekar et al. have even shown that using
quantum dots as doping is feasible [63]. They were able to enhance the Verdet constant by a factor
∼ 2.

Other materials with large MO effect are the Heusler compounds. The easy fine tuning allows
for engineering of their large Kerr rotations [64]. Likewise, nanostructures such as nanorods have
been theoretically estimated that they have a 3 orders of magnitude higher Verdet constant [65].
These may prove to be an interesting material to develop further. Solids are not the only option
to use in a Faraday current sensor as Zhao et al. have shown that a ferrofluid can also be used
[66]. A drawback is that they are severely bandwidth limited.

3.4.3 Material in this Thesis

In summary, TGG is used in this thesis due to the relatively high Verdet constant of −130
rad/(T.m), paramagnetic nature for linearity, path length limits up to 6 meters, temperature
drift of comparable magnitude to other paramagnetic materials and its commercial availability
[38, 59]. KTb3F10 and glass show the most promise to replace TGG if the path length is capable
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of reach up to 100 meters. The feasibility of this will discussed in section 5.2. A factor 3 increase
can be achieved using Tb2O3 if its absorption is low enough.

The typical improvements discussed previously, however, are not enough to reach the desired
FOM. It may, therefore, be more fruitful to lower the requirement on the FOM such as lowering
the measurement resolution. In the next chapter the method of measuring the Faraday effect is
discussed and the methodology for the experiments is given.
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Chapter 4

Measurement Techniques

To relieve the requirements on the Verdet constant and on the path length it is essential that
the optical detection is highly sensitive. In order to measure the Faraday effect there are two
main detection schemes applicable: Polarimetry (Amplitude) and Interferometry (Phase). Only
the former has been employed in this study. The latter is discussed briefly. Subsequently, the
experimental setup and techniques are discussed.

4.1 Measuring the Faraday Effect

As discussed in the previous chapter the Faraday effect is a rotation of linear polarized light or,
equivalently, is a phase shift between left- and right-circular polarized light. The rotation can
be measured by comparing the horizontal and vertical electric field of the light. The phase shift
measurement requires interfering two light beams and measuring changes in the fringe patterns.

4.1.1 Polarimetry

Measurement of the polarization rotation is carried out with polarimetry. A commonly used meas-
urement setup is the optical bridge [23]. This is employed for this report. The setup for measuring
the Faraday rotation is shown in figure 4.1. Laser light is sent through a polarizer (P). Next,
it enters the crystal where it undergoes a Faraday rotation when a magnetic field is generated
using a coil. The polarization rotated light is rotated further by 45 degrees using a phase retarder
(PR). The polarized light is then split using a polarizing beamsplitter (PBS) into horizontal and
vertical components. Afterwards, the intensity of the light is converted to currents ID± by means
of the responsivity R(λ) of two photodiodes. By connecting the output of the two photodiodes a
differential current, ID+−ID−, is generated. All of these currents are converted to a voltage using
transimpedance amplifiers. This gain is described by Gmon(ω) for the monitor (±) outputs and
GDM (ω) for the differential mode (DM) output. The output of the setup produces three different
voltages (V±, VDM ) which that are are proportional to the Faraday rotation.

The behaviour of this setup is characterized by looking at the evolution of the electric field of
the light. This is done by using Jones formalism which is explained in appendix C. The polarizer
is represented by the Jones matrix P (α) where α is the angle of transmission. For the Faraday
rotation θF the Jones matrix F (θF ) is used. The phase retarder with a retardance, η, and fast
axis, θf , is characterized by the Jones matrix, PR(η, θf ). The splitting by the PBS is obtained
by assuming the two outputs contain polarizers, P (0) and P (π/2), which rotation are π/2 apart.
The electric field of the light coming from the laser, E0, is transformed to an electric field, E+ and
E−, that is incident on the photodiodes using

E+ = P (π/2)PR(η, θf )F (θF )P (α)E0 (4.1)
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Figure 4.1: A schematic overview of the measurement setup. The evolution of the electric field
components, s and p, as it goes through the optical elements is shown beneath the setup.

E− = P (0)PR(η, θf )F (θF )P (α)E0. (4.2)

The intensity of the incident light falling on the photodiode is calculated using J± = E±E
∗
±. This

can be used to obtain the voltage at the monitor output: V± = R(λ)Gmon(ω)J± and the voltage
output at the DM output: VDM = R(λ)GDM (ω)(J+ − J−). It can be shown that normalizing
the intensity difference produces a relation between the three output voltages and the Faraday
rotation θF , i.e.

J+ − J−
J+ + J−

=
Gmon(ω)

GDM (ω)

VDM
V+ + V−

= − cos(
η

2
)2 cos(2α− 2θF )− sin(

η

2
)2 cos(2α− 4θf − 2θF ). (4.3)

This equation can be simplified significantly by using a half-wave plate with η = π at an angle of
θf = π/8 as phase retarder. Together with rotating the polarizer angle to zero, i.e. α = 0. This
reduces equation 4.3 to

sin(2θF ) =
J+ − J−
J+ + J−

=
Gmon(ω)

GDM (ω)

VDM
V+ + V−

. (4.4)

A major advantage of this relation is its independence of the laser power J0. In practice, the meas-
urement results are much less susceptible to the power fluctuations originating from the laser. In
addition, for lower signals the error in V+ and V− can be neglected. Furthermore, the leakage
current, i.e. dark current, of the photodiode is filtered out in the DM output if both photdiodes
are similar.

A polarimetry setup like discussed above can be used to measure polarization rotations down
to 10 µrad with 1 MHz bandwidth [24]. This is limited only by the shot noise on the current
of the photodiodes. In section 5.1 a 0.5 mm TGG crystal will be used. Using equation 3.3 for
a B-field of 10 mT this creates a maximum Faraday rotation θF,max of 0.65 mrad. Therefore, a

total error of roughly 10µrad
0.65mrad ≈ 1.5% is expected. However, this only holds in the regime where

equation 4.4 can be linearly approximated, e.g. sin(2θF ) ≈ 2θF . For rotation θF � 0 the error
will start to deviate from this linear behaviour. This effect is discussed in Appendix D. There is
is shown that when the maximum Faraday effect surpasses ∼ 0.4 rad these modified designs are
necessary to reach the 1 ppm. Also, rotation above π/4 rad are indistinguishable from rotation
below π/4 rad due to the sinusoidal behaviour of the output. A counting mechanism can be added
to in the signal processing in order to keep track of the integer of π/4. Non-linear regimes can be
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avoided using multiple outputs, feedback mechanisms or autobalancing of the electronic gains (e.g.
auto-balanced optical receivers). The multiple outputs and feedback mechanism are discussed in
section 6.1. In the previous estimation the maximum Faraday rotation is 0.65 mrad. For this
the assumption of linear scaling still holds. Increasing the maximum Faraday rotation by means
of increasing the gain has priority. In section 5.3.2 the consequences of the non-linearity will be
discussed further.

4.1.2 Interferometry

The phase difference between RCP and LCP is measured with an interferometer [67]. Bohnert
et al. have shown that with an interferometer an accuracy of 0.1% is possible for high currents
(� 1 A) [68]. They found a minimum detectable magneto-optic phase shift of 1.325 µrad/

√
Hz.

For a bandwidth of 1 MHz this results in a minimum detectable phase shift of 1.325 µrad/
√

Hz ∗√
1 MHz = 1.325 mrad [69]. Compared to the 10 µrad for polarimetry the interferometer performs

much worse. Specifically, the expected Faraday rotation of 0.65 mrad for a current of 100 A will
be impossible to distinguishable from the typical fluctuations of 1.325 mrad of the interferometer
design. This makes the interferometer not feasible for measuring currents at high precisions
below 1 kA. Besides, the high complexity, a high demands for stability of the optical source and
the required modulation make the interferometer an unattractive measurement technique in the
present study. Therefore, polarimetry is employed.

4.2 Experimental Equipment

The setup used in the experiments is depicted in figure 4.2. It is based on the schematic in figure
4.1. The laser diode, L658P040, is operated using a TLD001 driver at a wavelength of 658 nm
and positioned in a LDM21 mount. Linear p-polarized light is obtained with a LPVISC050-MP2
linear polarizer. PF10-03-P01 silver mirrors are used to redirect the laser beam. A WPH05M-633
half-wave plate is applied as phase retarder to obtain the 45 degree rotation. Unfortunately, this
half-wave plate is optimized for 633 nm which means that the retardance is not exactly π but
0.94π. This lowers the gain of the setup by roughly 0.9% compared to the ideal situation. In
addition, this mismatch required a slight modification of the fast axis of the half-wave plate in
order to remove asymmetrical behaviour. Such asymmetrical behaviour can introduce a difference
between negative and positive rotation of 0.002% at ±0.65 mrad increasing up to 0.2% at ±65
mrad rotations. A WP10 wollaston prism with a lens is used to produce the polarization depend-
ent splitting. A balanced photodiode (with bandwidth 1 MHz), PDB210A/M, is used to measure
the light intensity and to obtain the three output voltages of equation 4.4. Voltages are measured
with a NI PCI-6024E DAQ that is controlled using LabVIEW. The measurement points of the
three outputs were obtained sequentially. Each set of points is taken at intervals of roughly 100
ms, i.e. a sampling frequency of ∼ 10 Hz. The measurements results are average values of all the
data points obtained by the DAQ within this 100 ms. A major disadvantage of the sequential
measuring is that there is a small amount of time between obtaining the measurements between
the different outputs. This means that the laser drift within this small time will still be present
in the measurement. In appendix G.2 this effect is discussed shortly. An Agilent 34410A with
accuracy of 0.004% has been used to check the reliability of the DAQ. The total error of the DAQ
was found to be ∼ 0.15 mV while the total error of the balanced photodiode was found to be ∼ 2
μV. The calibrations of the setup can be found in appendix F. The laser power was roughly 5 mW.
The power that reaches the photodiodes, however, is reduced by the optical losses of the setup.
The power picked up by the photodiodes is 2 mW. The laser power was reduced when the monitor
voltages went above 8.5 V to avoid saturation occurring in one or more of the photodiodes. The
alignment of the optical setup is shortly discussed in appendix F.1. An rough estimation of the
cost shows that this setup would cost between 2000 and 3000 e when purchasing from commercial
suppliers such as Thorlabs.
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Figure 4.2: A photo of the experimental setup used in this thesis. A lens is placed in between the
phase retarder, PR, and the wollaston prism, W , to allow the wollaston prism to work properly.

4.2.1 Magnetic field

The magnetic field is generated using a coil with roughly 500 turns. The current is supplied using
a Keithley 2400 with a maximum(minimum) supplied current of 1A(-1A). The accuracy of the
Keithley 2400 at 1A is 0.27% and the error is 25 µA. The coil(s) are calibrated using a LakeShore
421 Gaussmeter with a LakeShore MMA-1808-VG axial probe with an accuracy of 0.2%. The
range of the magnetic field generated is ±25.75 mT. The magnetic field showed some dependency
on the position inside the coil. This poses an inaccuracy of the magnetic field of about 0.3% and
up to 3% for large deviations.

4.2.2 Samples

In the experiments TGG crystals from Chengu Dien Photoelectric Technology Co., LTD were
used. Their dimensions are 10x10x0.5 mm. The light is send perpendicular to the 10x10 mm area.
This means that the path length is only 0.5 mm. In literature both ceramic and single crystal
TGG is used and, therefore, slight differences can be found when comparing to literature values
[38]. Also in the literature a wavelength of 633 nm is generally used. However, the experimental
setup in this report used 658 nm. This will decrease the Verdet constant as discussed in section
3.3.2. To correct for this the Verdet constant found in this report much be increased by roughly
7% when assuming roughly 0.3% per nm [19].

The glass plates were standard glass plate with a thickness of 0.95 mm. They were cut to fit
a sample holder. The uncertainty of the measured thickness of the glass is 0.05 mm when using
a caliper. The TGG thickness was measured using a micrometer with an accuracy of 0.001 mm.
The values are presented in appendix F.2. The TGG samples where not marked making it difficult
to identify which sample was used in what measurement. Therefore, the mean and the standard
error of the mean of all TGG samples will be used when calculating the Verdet constant. The
mean thickness of the TGG crystal with standard error is 0.506± 0.003 mm.

Confidential 23



CHAPTER 4. MEASUREMENT TECHNIQUES

4.3 Experimental Methods

This section provides three methods used in this thesis to obtain relevant quantities, like the
Verdet constant, error and reproducibility.

4.3.1 Measurements

The Faraday rotation is measured using two methods: averaging and sweeping. The first method
is done by applying a constant current and measuring the output of the setup for about 10 s. The
Faraday rotation is determined using equation 4.4. The mean is taken using a Matlab script. The
measured rotation at 0 A is subtracted from each measurement point. A linear fit is subtracted
from each individual measurement to remove some of the laser drift and to remove the offset. The
residue is consider the error and the standard deviation is taken. In the second method a current
sweep from -1 A to 1 A is carried out while a measurement is running. This methods had some
issues. Firstly, the current applied could not be synchronized perfectly with the measurement
of the voltages. Secondly, in the sequential reading different magnetic fields are present. These
increase the uncertainty in the values for the magnetic field compared to the first methods. The
approach to determine the magnetic field in this sweeping method is discussed in appendix F.3.
The averaging method is found to have a non-linear residue after fit. This could be caused by
temperature effects increasing the error by roughly 1.5%. This is discussed in appendix F.3.1.
The sweep method does not have this issue. Thus, it is expected to give a better approximations.
The response was found to be roughly 6% higher than the averaging method.

4.3.2 Error calculation

In previous sections the measurement resolution of the experimental setup was fixed to a value
of 10µrad. To find out how to reduce the measurement resolution it is necessary to derive the
contributions from different noise sources and error sources. Typical noise sources are the shot
noise, Johnson-Nyquist noise and vibrations. These are discussed in appendix E.1. Error sources
are the temperature drift discussed in section 3.3.2. Most error sources originate from different
physical processes and have different SI units. It is necessary to normalize all these effects towards
a common denominator. The effect of an absolute error term on the Faraday rotation is calculated
to achieve this. This gives the contributions of an absolute error in terms of Faraday rotation.
To normalize it is then divided by the maximum Faraday rotation θF,max as derived from the
specified range of the current sensor, e.g. 100 A. The upper limit for the current sensor is taken
to be the output at 10 mT, i.e. the U-turn of section 3.2.1. For example, the effect of shot noise
on the current at the + monitor is calculated with

σθF
θF,max

=
∂θF
∂I+

σI+,shot

θF,max
(4.5)

This equation has an analytic solution. However, some derivation could not be obtained analyt-
ically. In this case it will be calculated numerically in Mathematica. The error is considered the
maximum difference between the output with the changed parameter due to fluctuations and the
ideal output (or calibrated output) normalized to the range of the current sensor. The composition
of the total error from the different error sources are discussed in appendix E.2. This method will
be used to derive so-called Pareto graphs where the contribution from different error sources are
compared.
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Chapter 5

Results and Discussion

In this chapter a simple measurement to investigate the performance of Faraday based current is
shown Its error components are investigated. A strategy is adapted where the path length will
be improved. The crystal length is increase for both TGG and glass. Next, a simple measure-
ment using reflections will be discussed. Finally, theoretically designs for multiple reflections are
discussed. The results will be used in the next chapter when comparing to a Fluxgate.

5.1 Faraday based Current sensing using TGG

 Sweep
 Fit
 Averaging
 Fit
 Mean

Weighted Fit 
(1/ 2̂)

Gain (rad/T) Error Gain SE mean

Sweep -0.06624 4.97754E-5
Averaging -0.06291 1.04544E-4

Mean -0.06347 0.00176 7.891E-4

Figure 5.1: The measured Faraday rotation θF induced in 0.5 mm TGG for different values of the
magnetic field B using both the Sweeping method (Blue triangles) and Averaging method (Red
squares). The red solid line represents an unconstrained weighted linear fit while the blue line is
an unconstrained fit of equation 3.2. The mean of the response is shown in black. The vertical
dashed lines are the maximum and minimum fields when the wire is in a U-turn as discussed in
section 3.2.1.
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Table 5.1: The derived Verdet constants, the total error of the measurement and the expected
values.

Parameter Measured Expected
mean Verdet constant (rad/(T.m)) −125.5± 0.7 −130 down to −134 [19, 38]

corrected Verdet constant (rad/(T.m)) −134 -
Total error 3% 1.5%

The Faraday based current sensor concept discussed in 4.1.1 is constructed and a proof of
principle using TGG is presented in figure 5.1. The methods discussed in 4.3.1 have been applied.
In figure 5.1 it can be observed that the slope is negative. The measurement methods, in blue
and red, differ slightly showing a repeatability problem. This is discussed in appendix F.3.1
and is expected to influence the gain to be 6% different. The mean gain (in black) is found to
be (−6.35 ± 0.08) ∗ 10−2 rad/T. A summary of the derived values can be found in table 5.1.
The mean Verdet constant is evaluated using the mean thickness and is lower than literature
values. The wavelength of 658 nm is higher than those in literature, i.e. 633 nm. As shortly
discussed in section 4.2.2 the measured Verdet constant should be increased by roughly 7%. With
correction it is comparable to the Verdet constant found in literature. The average total error
in the experiment is roughly 3%, equivalent to a measurement resolution of ∼ 20 µrad, which is
twice the value discussed in section 4.1.1. Without any optimization this total error is already
comparable to that of some hall sensors, but with a much higher bandwidth. In order to further
improve this Faraday based current sensor different scenarios will be investigated. Fundamental
error contributions and its scaling will be discussed in the next section.

5.1.1 Error Investigations

µ1/G

Figure 5.2: The contributions of different types of error sources for a 0.5 mm TGG crystal. On
the right the open bar is for the ∆T = 5 K scenario and the dashed bars is for the ∆T = 0.05 K
scenario. The total error for the ∆T = 5 K is 66724 ppm and 20725 ppm for ∆T = 0.05 K.
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The results of the theoretical estimations of the errors are shown in figure 5.2. The evaluation
of the different error terms is presented in appendix E.1. For each error that originates from a tem-
perature drift two scenarios are considered. The first one is a fluctuation of ∆T = 5 K. The second
one is associated with a typical temperature bath with a temperature stability of ∆T = 0.05 K. In
both cases the wavelength drift is assumed to be the wavelength drift for a typical laser, HL6319G,
0.25 nm/K. The total error at ∆T = 5 K and ∆T = 0.05 K are roughly 6.7% and 2.1%, respect-
ively. Comparing to the measured total error of 3% in section 5.1 both scenarios show the same
order of magnitude total error. The large difference between the temperature scenarios originates
from the large temperature drift of the Verdet constant that has been discussed in section 3.3.2.
It is experimentally confirmed that κT ≈ 0.3%/K (see in appendix G.1). This is comparable to
literature values [34, 35, 37]. At ∆T = 5 K and ∆T = 0.05 K this means a contribution to the
total error of 5K ∗ 0.3%/K = 1.5% and 0.05 K ∗ 0.3%/K = 0.015%, respectively. Note that for the
∆T = 5 K this 100 times larger error with the other temperature drifts make up the difference
between the total error of both scenarios. Consequently, to achieve a low total error it is necessary
to use a low temperature stability, ∆T = 0.05 K, by e.g. using a temperature bath.

In both ∆T scenarios in figure 5.2 the shot noise at the DM output is one of the largest contrib-
utors. Specifically, the indirect DM shot noise, shown at the far left in dark grey, stemming from
fluctuations in the two diode currents. Remember that IDM = I+ − I− is a subtraction but indi-
vidual (stochastic) noise adds up. The largest Johnson-Nyquist noise, shown in cyan, comes from
the resistance at the DM output. The contribution from the monitors is lower than the target. The
vibrations in the fast axis of the phase retarder θ and polarizer angle α, shown in purple, introduce
noise that is only 1 order of magnitude higher than the target of 1 ppm. As mentioned before, the
Verdet constant has a significant temperature drift and a slightly smaller wavelength drift. Both
cases have a much lower error than the indirect DM shot noise when a temperature bath is applied.

Please note that the above error estimation is not complete since the employed fast Fourier
transform of measurement showed that low frequency error is dominated by 1/f noise (see in
appendix G.2). Because the laser was not properly filtered out some 1/f noise of the laser still
goes through [70]. Additionally the photodiode itself may contains some 1/f noise when active.
Using high frequency (>> 1 MHz) modulation may remove this effect. How exactly these errors
scale towards this 1 ppm is what will be treated in the next paragraph.

5.1.2 How to scale to 1 ppm error?

In section 3.2 it has been discussed that only portion of the error scales with the gain. The er-
ror sources in figure 5.2 are categorized by their scaling, i.e. those that diminish when the gain
G = θF /B (rad/T) increases (left area) or those that are remain the same (right greyish area).
The first type of error, termed sum square noise (SSN), can be scaled through to gain to eventu-
ally reach the target of 1 ppm. Their uncertainty is assumed to be 68% due to their stochastic
behaviour. The exception is the wavelength drift of the retardance, which is assumed to have a
100% uncertainty. The second type of error, linear error (LE) (e.g. temperature drift), requires
compensation schemes or selecting other materials with lower Verdet constant T-dependencies
(κT ) can help. This type of error is assumed to have 100% uncertainty as they have a direction.
As a result they can compensate each other. This can lead to a reduced total LE, e.g. the crys-
tal expands by a factor that is equal and opposite to the decrease in Verdet constant. A major
difference between SSN and LE is that only the SSN contains a bandwidth dependency. For high
bandwidths (� 1 MHz) it is, therefore, necessary to lower the SSN significantly. It can be seen
in figure 5.2 that only by using a temperature bath the LN to be much lower than the SSN.
Therefore, in the next sections it is assumed that such a temperature bath is used and the focus
will be to lower SSN by increasing the gain. A return is made when the SSN becomes comparable
to the LN in section 5.3.2. With the method of increasing the gain through the Verdet constant
being discussed in section 3.4, increasing the path length will be discussed in the next section.
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5.2 Possibilities in enhancing the path length

There are two distinct ways to increase the path length. The first is increasing the crystal length,
by means of a very long fiber. The second is to send the light through the crystal multiple times.
In this case advantage of the non-reciprocal nature of the Faraday rotation is taken.

5.2.1 Increasing Crystal dimensions

In section 5.1 the path length is only 0.5 mm. From equation 3.2 it is clear that by increasing
this path length the gain increases linearly. However, because the magnetic field scales with ∝ 1

r ,
discussed in section 3.2.1, the crystal length is limited to the proportions of the wire. That would
allow a linear increase of the gain by roughly a factor ∼ 10 up to ∼ 5 mm. In figure 5.3 the result
of increasing the path length by increasing the length of the crystal is shown for both TGG and
glass. The averaging method of section 4.3.1 is applied. When the path length increases the gain,
θF /B, increases linearly for both the TGG and glass. By comparing TGG and glass it can be seen
that TGG has a much larger gain. The linear fits of equation 3.2 are forced through the origin as
there is no Faraday effect present when the path length is zero. The Verdet constant is found to be
3.4± 0.5 rad/(T.m) for glass which is comparable with the literature values of roughly 4 rad/Tm
[20, 53]. A fit of the TGG gives a Verdet constant of 132 ± 2 rad/(T.m), which is roughly 6%
higher that the mean Verdet constant found in section 5.1. This may be explained by the meas-
urement point at large path lengths being larger than expected. This deviation from the fit could
indicate a non-linearity or other effects. Some of the possibilities for this non-linearity are specu-
lated on in Appendix H.1. In general, the gain shows the expected linear increase with path length.

0 1 2 3
-0.4

-0.3

-0.2

-0.1

0.0

F/B
 (r

ad
/T
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Path length (mm)

 TGG
 Glass
 Fit
 Fit

Fit: y = V*x V (rad/Tm)
TGG 132±2
Glass 3.4±0.5

Figure 5.3: The gain θF
B (rad/T) of the setup for different path lengths obtained by placing an

integer number of crystals against each other. The red crosses refer to 0.5 mm TGG crystals and
the blue circles are for 0.95 mm glass plates. The solid lines represent a linear fits of equation
3.2. The fit parameters are shown in the table in the figure. The fitting is shortly discussed in
Appendix H.

In this section it has been shown that increasing the path length is very effective to increase
the gain of the current sensor. Furthermore, current sensors based on TGG will have a gain that
is almost a factor 40 higher than that for to glass. A complication is that the magnetic field lines
of current wire follow a circular path. For a proper Faraday effect the wave vector of the light
must be parallel to the magnetic field. So, this vector must also follow this circular path. This
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makes an increase of the crystal length for lengths larger than the ∼ 3 mm thick current wire
impractical. Therefore, it will be limited to a factor increase of roughly 10. This means a crystal
length of 5 mm. Consequently, this results in a total error of roughly 0.2%. This is comparable
to the fiber-optics current sensor. To overcome the above restrictions a second method based on
reflections is introduced in the next section.

5.3 Reflections

Reflections allow for the light to pass the same crystal multiple times resulting in a accumulation
of the Faraday rotation. Because of the non-reciprocity it does not matter which direction the light
travels through the crystal as long as its collinear with the magnetic field. However, at an interface
not all light is reflected as parts are also transmitted or absorbed. Equally important is the induced
relative phase shift on the polarization state of the light. This relative phase shift causes inter-
ference between the two orthogonal polarizations, i.e. s- and p-polarization, of the light. when a
s- to p-polarization conversion occurs. Both these effect can reduce the potential gain significantly.

Next, the effects of reflections on the polarization state is discussed with the aid of the Fresnel
equations. As an example, the reduction in potential gain will be shown using a simple experiment
where the ideal gain of 2 will be reduced to ∼ 1.7 due to reflections at mirrors. The scaling of
the gain in combination with this reduction will be extrapolated to a design with multiple reflec-
tions. Different cases are considered where this imperfection of the reflection might be negligible.
Furthermore, the total error in each case is determined and compared. The lowest total error of
506 ppm is theorized. A further reduction to 280 ppm is conjectured when compensating for the
non-linearity of the output.

5.3.1 Effects of using reflections on the Faraday rotation
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Figure 5.4: The left shows a schematic view of a reflection at the interface with the complex
reflection coefficients. In the right graph the reflections coefficient, solid lines, and the phase shift,
dashed lines, against the angle of incidence for a air (ni = 1) to silver (nt = 0.049816 − 4.4764i
[71, 72]) interface calculated using equations 5.1 and 5.2 are shown. Red represents s-polarized
light and blue p-polarized light. The black dotted line is the relative phase shift between s- and
p-polarization.
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Because a reflection affects the polarization state of the light it can change the output of
the Faraday based current sensor. Therefore, it is necessary to determine its influences on the
polarization state and on its magnitude. Reflection at an interface is schematically shown for both
s- and p-polarizations on the left in figure 5.4. The impact of a reflection on the electric field
components, Es and Ep, is denoted by the complex reflection coefficients rs and rp. Snell’s law
is used to calculate the angle of transmittance. Adding this result in Fresnel’s equations for the
complex reflection coefficients gives:

rs =
Eout,s
Ein,s

=
ni cos θi − nt

√
1− n2

i sin2 θi
n2
t

ni cos θi + nt

√
1− n2

i sin2 θi
n2
t

(5.1)

rp =
Eout,p
Ein,p

=
nt cos θi − ni

√
1− n2

i sin2 θi
n2
t

nt cos θi + ni

√
1− n2

i sin2 θi
n2
t

(5.2)

where ni and nt are the refractive indices of the initial and transmitted medium, respectively, and
θi is the angle of incidence [73]. These complex reflection coefficients can be separated into two
quantities: the reflection coefficient, |rs,p| (modulus), and the phase, δs,p (argument). The relative
phase difference, (∆δ = δp − δs), between s- and p-polarization cause a change in the polarization
states in the reflected light, e.g. linear birefringence. In figure 5.4 the reflection coefficients and
phase changes for a typical silver mirror used in an experiment to redirect light are shown on the
right. The reflection coefficients are large over the entire range of θi meaning that the intensity of
the reflected light remains large. This is attributed to the large imaginary part of the refractive
index nt, i.e. the absorption, of silver. Then, in approximation equation 5.1 and 5.2 approach
unity. An ideal mirror would reflect the light backwards in a mirrored way. This occurs when the
relative phase shift is π. It can be observed in figure 5.4 that only at small angles of incidence this
ideal π-shift is reached. Deviations become significant when θi increases. These deviations can
cause destructive interference between the s- and p-polarization when conversion between s- and
p-polarized light occurs. Because the Faraday rotation causes such a conversion it will reduce the
accumulated Faraday rotation, resulting in a reduced gain.

To illustrate the above a measurement is performed where light is forced to pass the crystal
twice. Two different setups were made as shown in figures 5.5 and 5.6. Figure 5.5 shows the beam-
splitter (BS) setup where the light always enters the TGG crystal from the same direction. Figure
5.6 shows the mirror setup (MS) where the light enters the TGG crystal from opposite directions.
Both set-ups use multiple silver mirrors at roughly 45 degrees inducing a relative phase of roughly
0.3 rad as presented by the vertical gray line in figure 5.4.

Figure 5.7 shows the results of measurements using the sweep method as described in section
4.3. When the light entered the crystal twice (red and blue) the signal increased significantly
compared to when it passed only once (black). It has been proven that the two passes and the
non-reciprocal effect benefit the gain of the sensor. Because the MS setup had an odd number
of mirrors the resulting rotation is flipped compared to an even number of mirrors. This effect
is demonstrated by the obtained positive slope of the MS setup. As a reference, measurements
were carried out with a single in the BS setup. After comparison, the enhancement of the gain
of the BS setup and MS setup is found to be 1.669± 0.003 and 1.747± 0.003, respectively. Both
increases in gain deviate from the ideal factor of 2. This indicates that the reflections do indeed
cause a reduction in gain, this will be further investigated using Jones formalism.

The effect of the mirrors in the BS and MS-setup can be estimated by evaluating equations
5.1 and 5.2. Estimated values of the reflection coefficient and the relative phase shift are obtained
by assuming deviations from an ideal mirror. The parameters ∆r = |rs| − |rp| and ∆δ are shown
near their respective elements in figures 5.5 and 5.6. The BS setup is represented using Jones
Formalism by
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Figure 5.5: A photo of the setup (left) with a beamsplitter (BS) to transmit the light through
the TGG twice from the same direction. On the right a schematic view of the setup. The dashed
grey arrow indicates where the TGG with coil is placed to obtain a measurement of a single pass
through the TGG. The values of the ∆δ and ∆r are for a reflection of a typical silver mirror at
approximately 45 degrees (See figure 5.4).

Figure 5.6: A photo of the setup (left) with a mirror (MS) to reflect the light towards the TGG
in the opposite direction. On the right a schematic view of the setup. The values of the ∆δ and
∆r are for a reflection of a typical silver mirror at approximately 0 (bottom) and 45 degrees (top
x2) (See figure 5.4).

Eout = FR4R3R2R1FEin, (5.3)

where R2 ≈ R3 ≈ R4 represent the reflection matrices of the mirrors and R1 represents the
reflection matrix for the beamsplitter. Typically, the latter has a difference in reflectance between
s- and p-polarized light of 20%. The MS setup can be represented using

Eout = R3R2FR1,MFEin, (5.4)

where R1,M is the reflection matrix for the small angle mirror and R2 ≈ R3 represent the matrices
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Figure 5.7: The Faraday rotation θF versus the magnetic field B applied in a 0.5 mm TGG crystal.
In black the beamsplitter setup (BS) of figure 5.5 when the light passes the TGG only once. In
red the BS setup where the light passes the crystal twice from the same direction. In blue the
mirror setup (MS) of figure 5.6 where the light passes the crystal twice from opposite directions.
The open circles represent measurement data. The solid line are the linear fits used to determine
the Verdet constants as listed in the table as inset. In the table the ratio with the BS single pass
is also shown.

Table 5.2: The relative gain increases for the MS and BS setups.

BS MS
Measurement 1.669± 0.003 1.747± 0.003

Calculated 1.72 1.69

for the mirrors after the second Faraday rotation. By applying equations 5.3 and 5.4 the expected
increase in gain is calculated. Results are shown in table 5.2. The calculated value are close
to the experimental values. The differences can be explained by the mirrors not reflecting the
light at exactly 45 degrees. Consequently, the relative phase difference in figure 5.4 to changes by
roughly 0.02 rad per degree. This can change the factor for the BS setup from 1.72 to 1.66, i.e.
an uncertainty of 3%. The effects of the mirrors is discussed in appendix I.1.

It has been show that using two passes through the crystal increases the gain by a factor ∼ 1.7.
This number deviates from the ideal number 2 due to non-ideal reflections that influence the
polarization state. The next question is how the reducing factor propagates in the case of multiple
reflections. Li et al. have investigated this effect for up to 6 reflections [74]. A significant effect on
the output was found. They found that the decrease in intensity scales almost linearly with the
number of reflection. The decreasing reflection coefficients rs and rp lowered the sensitivity. Bush
et al. found an identical issue when investigating the effect of linear birefringence in the path itself
[75]. Ning et al. have used the critical angle to overcome the linear birefringence for more than
10 reflections when using glass [76]. However, deviation from this critical angle will introduce new
error sources [77]. Although the effect of the imperfect reflections has been investigated in the
past it is still unclear where the limits lie concerning the number of reflection and whether this
can be adapted for different materials.
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5.3.2 Multiple reflections to increase the gain
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Figure 5.8: On the left the design using multiple reflection is schematically shown. The light
enters the crystal of width d and length L. It experiences a Faraday rotation due to the magnetic
field, B, represented by the Jones matrix F1. Then the light reflects from a highly reflective mirror
represented by matrix R1. It experiences an addition Faraday rotation represented by matrix F2

before reflecting again represented by matrix R2. Finally it experiences the last Faraday rotation
represented by matrix F3. The number of reflections can be calculated by N ≈ d

∆d = d
L tan(θi)

. On

the right the output of the sensor versus the Faraday rotation per reflections for various numbers
of reflections is shown. In black no reflections are used. In red one reflection is used and in blue 10
reflections are present. The dotted lines represent the cases when each reflections adds a relative
phase shift ∆δ of 0.3 rad.

In figure 5.8 a simple design is shown where two reflections (N = 2) occur from two mirror. In
this way three times the path length is obtained within the same crystal. If the losses by coupling
in and out of the crystal are neglected the electric field exiting the crystal is given by

Eout = F3(θF,N )R2F2(−θF,N )R1F1(θF,N )Ein, (5.5)

where Fi is the Jones matrix for the ith Faraday rotation, θF,N is the Faraday rotation per
reflection (N) and Ri is the Jones matrix for the ith reflection. In this equation it can be seen
that subsequent Faraday rotation alter in sign. This means an accumulation only occurs if a
mirror reflects the light back with a flipped rotation, e.g. a relative phase shift of π is required. A
simplification of equation 5.5 is achieved by assuming the Faraday rotation to be always positive
for every reflection. The only disadvantage of this assumption is that after the light passes a phase
retarder the direction of the rotation will become either positive or negative depending on whether
N is odd or even. Then, equation 5.5 can be expanded for N reflection to

Eout = F (θF,N )(RF (θF,N ))NEin. (5.6)

Calculated results are shown in figure 5.9 for using different numbers of reflections. Ideally for
a single reflection (red solid line) the output is increased by a factor 2 at lower θF,N . For 10
reflections (blue solid line) the output increases by a factor up to 10. Also, note the sinusoidal
behaviour of the output. This becomes apparent at large number of reflections and already at
lower θF,N . This effect is caused by the accumulation of the Faraday rotation with each subsequent
reflection. The influence of a typical silver mirror with a relative phase difference of ∆δ = 0.3 rad
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at 45 degrees incidence is depicted by the dotted lines in figure 5.9. For this, a single reflection
reduces the output by roughly 3 to 5%. Furthermore, in the case of 10 reflections this effect brings
the output to nearly zero at small Faraday rotations per reflection.
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Figure 5.9: The design using multiple reflection as in figure 5.8 on the left. On the right the
normalized linear gain Grefl(N,∆δ)/Grefl(0,∆δ) against the relative phase shift ∆δ shown for
different number of reflections. The black line is attributed to the case of no reflections. The green
line represent 1 reflection and red is associated with 10. The blue line is for 100 reflections.

The effect of the relative phase shift on the gain of the sensor can be estimated by combining
equation 5.6 and equation 4.4 and evaluating a first order Taylor expansion with θF,N << 1.
Neglecting the influence of the reflection coefficients the gain can now be approximated as

Grefl(N,∆δ) ≈ 2
sin((N + 1)∆δ/2)

sin(∆δ/2)
cos(N∆δ/2) (5.7)

where ∆δ is the relative phase shift and N is the number of reflections. In figure 5.9 the effect
of small relative phase shift on the normalized linear gain can be observed for several number
of reflections. For a single reflection the relative phase shift has little to no effect on the gain.
However, for 10 reflections a decrease is noticeable when the relative phase shift increases. It
even reduces to zero at ∼ 0.28 rad. This also appears in figure 5.8 for small Faraday rotations.
Further increasing the number of reflections to N = 100 invokes a very rapid decrease for very
small relative phase shifts. An oscillatory behaviour appears with multiple point of zero gain.
Therefore, to keep a large gain it is therefore necessary to reduce the relative phase shift when the
applied number of reflections increases.

The maximum allowed relative phase shift to keep the gain at 95% of the ideal gain is shown in
table 5.3. It shows that each order of magnitude increase in the number of reflections also decreases
the required relative phase shift by an order of magnitude. To make 100 reflections feasible a
reflection interface must be found that has a relative phase shift below 5 mrad. Additionally, a
the reflection coefficient near unity is required to reduce optical losses. For a high reflective (HR)
coating such as silver this might be achieved for θi up to 4 degrees. This is discussed in appendix
I.3. For a total internal reflection (TIR) situation this is only feasible by using a refractive index
difference smaller than 0.3% in the case of TGG (n = 1.965 [78]) or by using the critical angle
where the relative phase shift is exactly zero. This is shown in appendix I.4. Therefore, it can
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Table 5.3: The relative phase shift ∆δ that causes a reduction of the gain to 95% of the ideal gain
for different number of reflections.

N ∆δ (rad)
1 0.45
10 0.054
100 0.0055
1000 0.00055

be possible to obtain a gain increase of factor ∼ 100 by using reflections with these types of
coatings. A case with 1000 reflections is not considered because the required relative phase shift
is practically impossible to reach, yet. For instance, the TIR case would require a ∆n = 0.05%
and angle of incidence above 89 degrees. It should be noted that equation 5.6 does not take into
account the drop in the magnetic field, and consequently in the Faraday rotation, when the light
moves further away from the current wire. This effect is briefly discussed in appendix I.2. It could
potentially reduce the gain by a factor 2. In the next section a full error investigation is executed
again, but now with the addition of errors from the refractive index and the angle of incidence in
case of these types of coatings. This is done to determine the cases that scale the best and can be
used in the current sensor.

Consequences for the Current Sensor

 Ideal

Figure 5.10: The total error for different number of reflections in a 5 mm TGG crystal. In red the
High reflectance case (HR) with θi � 1. In green the case of total internal reflection (TIR) case
when θi . π

2 . In blue the TIR case when θi is near the critical angle. In cyan the TIR case when
both layers have a refractive indices difference of 0.3% and θi . π

2 . In magenta the ideal case if no
additional error sources are introduced and no optical loss is present. The temperature variation
is 0.05 K. The top solid line in the graph represents the total error if no reflections N = 0 are
used. The bottom solid line is the target of 1 ppm.

In order to investigate the scaling effects of the number of reflections several designs are con-
sidered. Each case is shown on the right of figure 5.10. The first one has a high reflective (HR)
interface where the light reflects from a silver coating. Silver is chosen for its small real part and
high imaginary part of the refractive index. This causes a high reflectance and embodies a lower
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relative phase shift. This is discussed in appendix I.3. The second case is about total internal
reflection (TIR) at the TGG to Air interface. There when a large angle of incidence is used. The
third case is identical to the second one but now θi is close to the critical angle of TIR. This is
equivalent to the design used by Yi et al. [79]. Both cases exhibit relative small relative phase
shifts as shown in appendix I.4. The final case concerns an imaginary coating with a refractive
index that differs only by 0.3% from TGG. It is equivalent to optical fibers where the relative
phase shift are small (See appendix I.4).

In figure 5.10 the total error is presented for the different reflection cases. This consists of
error source previously taken into account augmented with fluctuation in the refractive indices
and the angle of incidence. For all these cases addition of a single reflection lowers the total error
by roughly 50%. Changing to 10 reflections the above cases differentiate. The HR case (red)
and the case with small ∆n (cyan) have the lowest total error of roughly 500 ppm. Going from
10 reflection to 100 reflections all cases show an increase in the total error. The large increase
for the case near critical angle (blue) is caused by the large first order derivative of the relative
phase shift near the critical angle [77]. The increase for TIR (θi / π

2 ) (green) originates from
the relative phase shift, ∆δ ≈ 0.12 rad. This is much larger than the required 5 mrad as shown
in table 5.3. This illustrates the issue with high relative phase shift. The increase in the HR
case (red) is attributed to the reflection coefficients of ∼ 0.992. For 100 reflections this gives a
further reduction of the transmission to 45% [74]. However, even the best case ∆n (cyan) is still
a factor 3 apart from the ideal (magenta). This is partially due to the absorption reducing the
intensity to ∼ 47% causing a factor 1/

√
0.47 ≈ 1.5 increase in the error. The main effect can be

explained by the maximum Faraday rotation surpassing 0.4 rad crossing over into the non-linear
regime of equation 4.4 which has been shortly discussed in section 4.1.1. The consequences of this
non-linearity will be discussed next.
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Figure 5.11: The total error versus the total accumulated Faraday rotation for different number
of reflections. The dashed dotted line refers to the output of the current sensor (described by
equation 4.4). The dashed lines represent the maximum Faraday rotation. The solid grey arrows
indicate the path traced when going from 0 to 100 reflections. The grey area below 200 ppm is
the LE dominated regime.

In figure 5.11 the total error versus the Faraday rotation is shown for different number of
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reflections. For all of the error increases significantly when the Faraday rotation of π/4 rad is
approached. This is caused by the output (dashed dotted line) for which the first order derivative
is nearly zero at π/4 rad. At a low number of reflections this is not an issue because the maximum
rotation (dashed vertical lines) does not reach this problematic region. The solid grey arrows
indicate the movement of the maximum Faraday rotation when the number of reflections is in-
creased, i.e. moving from N = 0→ N = 1→ N = 10→ N = 100. Changing from N = 10 to 100
the grey arrow is nearly horizontal as the total error does not change. For N = 100 the maximum
Faraday rotation is 0.6565 rad. This is too close to π/4 ≈ 0.79 rad. Therefore, the increase in
error deteriorate the enhancement due to the larger path length. By employing multiple outputs
or a feedback scheme large maximum Faraday rotation can compensated for. They can reduce
the effective maximum Faraday rotation (dashed grey arrow) towards a total error improved by a
factor ∼ 6.
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Figure 5.12: The error in ppm and percentage of the total in case of ∆n ≈ 0.3% and N=100. On
the left the uncompensated case with θF,max = 0.6565 rad. O the right and the compensated case
with θF,max = 0 rad. The exploded part on the left is linear error (LE) the rest is sum square
noise (SSN). On the right the SSN is exploded compared to the LE. Any effect below 1 ppm or
1% has been removed for clarity. The dashed slice in the ∆n ≈ 0.3% case has a negative direction
compared to the other LEs. The total error has been calculated and is placed at the top, the
linear error is linearly added while the SSN is added as the root sum of squares.

Consider setting the maximum Faraday rotation when using 100 reflections to be either 0.6565
rad or 0 rad. Figure 5.12 shows the comparison between these maximum Faraday rotations for
the case of small ∆n. On the left the maximum Faraday rotation is not compensated. i.e.
θF,max = 0.6565 rad. In this case the sum square noise (SSN) (non-exploded) is higher than the
linear error (LE) (exploded). On the other hand, when the maximum Faraday rotation is com-
pensated back to zero the SSN (exploded part) is now much lower than the LE (non-exploded).
Furthermore, the total error has decreased from 506 ppm to 280 ppm. Because the LE remains
equal (238 ppm) this lower error comes from the decrease in SSN of 268 ppm to 42 ppm when
changing from uncompensated to compensated, respectively. The error that lowers significantly
are the photon (blue) and electron (red) shot noise in the monitor outputs and the direct (red)
shot noise in the DM output. The indirect shot noise (dark grey) reduces by a factor 4 but does
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not disappear. Equivalently, the Johnson-Nyquist noise (cyan) of the DM output is reduces from
27 to 2 ppm. This effect, where the contribution of the monitors is reduce when the output is
reduced to zero, is typical of an optical bridge (see section 4.1.1). Thus, using a compensation
technique reduces the SSN by a factor of ∼ 6 and consequently reduces the total error by a factor
∼ 2.

As a note, the drift of the refractive index becomes significant at N = 100. It has an effect
on the relative phase shift, ∆δ(ni,R(T ) and ∆δ(ni,R(λ). The contribution of the drift in the re-
fractive index is 32 ppm. This can be reduced significantly by optimizing the angle of incidence
towards a regime where the first derivative of the relative phase shift is zero. Error contributions
from changes in the reflection coefficients caused by drift in the refractive index are found to be
negligible. Likewise, vibrations of the angle of incidence is not significant.

At the start of this chapter the error has been found to be ∼ 3% for a TGG based Faraday
current sensor. Two major contributions to the total error have been identified; errors that scale
with the gain (SSN) and errors that do not scale with the gain (LE). In methods with temperature
stability the LE can be reduced to 200 ppm. This made it a minor contribution to the total error.
The remaining SSN can be reduced by increasing the crystal size. This results in a a linear increase
of the gain of the current sensor and reduces the error to ∼ 0.2%. A further increase in the gain has
been observed by using reflections. A theoretical estimation showed that the error can potentially
go down to 280 ppm with 100 reflections. This can only be achieved if the output of the current
sensor is kept in its linear regime. A compensation scheme to achieve this will be presented in the
next chapter. In addition, considerations for higher bandwidths are presented.
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Chapter 6

Further Improvements

In the previous chapter it was found that the total error is constituted by 42 ppm SSN and 238
ppm LN. By maintaining the maximum Faraday rotation at zero allows for significant reduction
of the error. This chapter will discuss how to achieve this with a feedback system. It properties
and consequences for the current sensor are shortly discussed. This chapter will also elaborate on
theoretical possibilities that further lower the error at high bandwidths by tuning the wavelength
and the laser power. Finally, the Faraday based current sensor is compared to typical Fluxgates
for different bandwidth.

6.1 Compensation schemes

0° 45°

��

�� � ≈ −��

Feedback

Figure 6.1: Two possible designs used to measure polarization rotation much larger than π/4 rad.
On the left a setup uses two outputs that to are rotated 45 degrees relative to each other. On the
right the first crystal causes the Faraday rotation θF . The second crystal reverts the polarization
rotation to zero by means of a feedback mechanism.

Two concepts that can solve the issue with large Faraday rotations are shown in figure 6.1.
On the left a design by Gerber et al. where a beamsplitter is used to create two outputs that
are rotated by 45° relative to each other [11]. When an output reaches the rotation of 45 degrees
the other output is used. This allows one to avoid the peaking error (See appendix D.1.1). This
concept can help to reduce the SSN to roughly 90 ppm. The design on the right in figure 6.1 may
achieve an even further reduction of the SSN to 42 ppm. It is similar to the work of Beltran et al.
who used a second Faraday crystal driven by a coil to reduce the Faraday rotation back to zero
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using a feedback system [80]. The current used to generate the feedback rotation is proportional
to the current to be measured. Despite the reduction of the SSN to 42 ppm the LE of 238 ppm
remains.

A major advantage of the feedback mechanism of Beltran et al. is that it the two crystals can
be combined into one crystal. This gives the same temperature dependencies which reduces the
LE. A possible way of implementing this technique with one crystal is shown in figure 6.2. On
the left a design using HR at a small angle is shown and on the right a design using TIR at large
angle of incidence is shown. In both cases two loops are wound around the crystal. The primary
current, IP , generates an magnetic field BP while the feedback current, If , generates a opposite
magnetic field, Bf . Both fields interact with the light passing through the crystal resulting in a
Faraday rotation of

θtot = a(T )BP + b(T )Bf , (6.1)

where a(T ) = Vp(T )Lp(T ) and b(T ) = Vf (T )Lf (T ) are the temperature dependent gain given
by equation 3.2 concerning the primary and feedback loops. Because the interaction occurs in
the same crystal it can be assumed that a(T ) = b(T ). This reduces equation 6.1 to θtot =
a(T )(BP + Bf ). Now, tuning θout to zero by tuning the feedback current to give Bf = −BP
the gain a(T ) falls out of the equation. Hence, the temperature dependence of the gain becomes
irrelevant. This requires a fast feedback system with a bandwidth much higher than is required
of the current sensor. If such a system could be made the temperature effect could be entirely
eliminated. Some other effects that may aid in reducing the effect of the temperature drift are
discussed in the outlook.

In the rest of this chapter it is assumed that the above approach works perfectly and the
only relevant error is the SSN of 42 ppm. While not entire correct the following methods may
allow for an easier way to reach a low error instead of using complicated designs to implement a
large number of reflections. Besides, for a Faraday based current sensor with a desired bandwidth
beyond 1 MHz these methods can help significantly as the SSN eventually becomes larger than
the LE.

Figure 6.2: A schematic overview of using a feedback current wire to generate an opposite field in
the same crystal. On the left a HR design with small angle of incidence and on the right a TIR
design with large angle of incidence.
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Table 6.1: The Verdet Constant, V, and figure of merits, Vµ , of TGG and the Responsivity, R(λ),
of typical photodiodes for different wavelengths. The maximum path length, L, is calculated from
the linear absorption coefficient, µ, where the optimum is twice this length discussed in Appendix
E.3. The maximum Faraday Rotation, θF , is determined for 10 mT. Values taken from [38] and
Thorlabs [81].

λ (nm) V (rad/Tm) V
µ (rad/T) R(λ) (A/W) Max. L, 2

µ (m) Max. θF (rad)

532 190 47.5 0.34 0.5 0.475
633 130 86.7 0.42 1.34 0.867
1064 40 266.7 0.74 13.34 2.67

6.2 Wavelength and Power Considerations
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Figure 6.3: The ideal and non-ideal sum square noise (SSN) for different wavelengths when using a
5 mm TGG crystal. The black squares represents the sum of all effects. The red circles when only
the changing wavelength and responsivity is taken into account. The green triangle only considers
the change in wavelength and the blue diamond only considers the change in the figure of merits.
The magenta hexagon and navy pentagon is when the path length is limited to 10 reflection or
100 reflection in a 5 mm crystal, respectively.

In chapter 5.1.2 it was discussed that a material with large FOM is desired. On the other hand,
in chapter 5.2 it was found that large path lengths are difficult to achieve or even limited. This
means that the path length in case of significant absorption can not always be reached. Therefore,
higher Verdet constant might be preferred. One of the parameter that has a prominent influence
on this selection is the wavelength as discussed in section 3.3.2. Additionally, the wavelength has
an effect on the selection of the photodiode and the measurement resolution.

In figure 6.3 the theoretical effect of both the ideal and non-ideal effect of changing the
wavelength on different parameters is shown for TGG. The values of the parameters are found in
table 6.1 for wavelengths for which TGG is transparent and literature value are available. The
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combined effect (black) of changing the wavelength, responsivity and figure of merits (FOM) can
decrease the SSN by almost an entire order of magnitude when using large wavelengths. The
variation of the FOM (blue) contributes the most to the decrease in the SSN. The wavelength
(green triangles) slightly lowers the SSN. This is caused by the larger number of photons per
energy unit at higher wavelengths which decreases the shot noise. However, if the responsivity is
not changed the quantum efficiency of the conversion of photons to electrons reduces with increas-
ing wavelength. When taking into account a change in responsivity for typical Si (FD11A) and
InGaAs (FGA10) photodiodes from Thorlabs [81] the effect of changing the wavelength (red) has
a slightly higher effect.

Remarkably when the path length is limited 10 reflections (magenta hexagons) the SSN in-
creases with the wavelength. For this case, the decrease of the Verdet Constant dominates and this
reduces the signal. The 100 reflections case (navy pentagon) is slightly different as it has a min-
imum SSN at 633 nm. The path length is long enough for the decrease in absorption to overcome
the decrease in Verdet constant. For the 1064 nm case, however, the path length is not long enough.

In summary the choice of the wavelength depends on the path length of the final design. If it
is much smaller than the maximum path length the Verdet constant is the most important para-
meter. When it is close to the maximum path length the FOM becomes the dominant parameter.
In case of 100 reflections the optimum for TGG is at a wavelength of 633 nm. This means that
the SSN will remain at 42 ppm.

Similarly to arguments such as absorption and transmission it is possible to also increase the
total power of the laser. The relative shot noise decreases when the laser power increase due to
larger number of photons and electrons. This is briefly discussed is appendix E.1.1. The relative
Johnson-Nyquist noise also reduces at higher powers. This is discussed in appendix E.2.1. So the
SSN scales with ∝ 1√

P
. But increasing the laser power is limited. Typical photodiodes saturate at

20 mW. At higher power the photodiode will respond non-linearly [82]. Detecting higher powers
is possible but the responsivity of these photodiodes drop drastically [83]. Additionally, heat can
build up quicker. This increases the temperature instability of the current sensor. For powers > 1
W instabilities such as depolarization occur [84]. Melting may take place at, e.g. the silver coating
of the HR design due to its high absorption. Concluding, a reductiong of the SSN can be achieved

by moving from 1 mW to 20 mW. This gives an new SSN of
√

1 mW√
20 mW

∗ 42 ppm ≈ 9 ppm. It is

close to the value of 5 ppm found by Gerber et al [11]. This SSN is only an order of magnitude
apart from the desired 1 ppm. How this compares to the presently used current sensor, i.e. the
Fluxgate, will be discussed next.

6.3 Faraday based current sensor versus Fluxgates

The total error of typical Fluxgates can go down to 0.1 ppm [1, 85]. Fluxgates, however, have a
limited bandwidth. For instance, one of the best commercially available Fluxgates, XPCS series
from Prodrive, has a bandwidth limit of 800 kHz [86]. Similarly the Fluxgate from LEM, the
IT 200-S ULTRASTAB, has a bandwidth limit of 500 kHz [87]. The effect of the bandwidth on
the total error of the Fluxgate and the Faraday current sensor is compared in figure 6.4. The
black curve represents the ideally compensated Faraday current sensor. It has total error that is
roughly twice that of the XPCS series (blue) but is roughly an order of magnitude lower than
the IT 200S ULTRASTAB (red). However, when the LE is not perfectly filtered out (green)
the total error is 2 orders of magnitude higher than the Fluxgates at low bandwidths. Only at
bandwidths above 1 GHz is the contribution of the LE minor. Concluding, The Faraday based
current sensor, therefore, performs worse than the Fluxgates at low bandwidths (< 1 MHz) but
works where Fluxgates cannot be applied at roughly twice the total error of the best Fluxgate at
high bandwidth (∼ 1 GHz).
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Figure 6.4: The total error in ppm against the bandwidth of the sensor. In black the case of a
ideally compensated Faraday current sensor, e.g. SSN. In green a Faraday current sensor where
the LE (Temperature drift) is still present. In red the total error of the Fluxgate IT 200-S
ULTRASTAB from LEM and in blue the total error of XPCS series Fluxgate of Prodrive. The
total errors are assumed to be white, e.g. the slope is a 1/2.
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Chapter 7

Conclusions and Outlook

7.1 Conclusion

In chapter 3.2 the concept of a Faraday based current sensor has been introduced. The magnetic
field gain, Verdet constant and path length were determined to be the main factors to reduce the
total error. In chapter 3 different materials with varying Verdet constants were discussed. TGG
has been found to be one of the optimal materials for measuring small currents. In chapter 4 the
measurement technique has been discussed. The total error was estimated to be 1.5%. This was
verified in chapter 5.1 to be twice the expected value, e.g. 3%. However, an issue with repeatability
in the experimental methods was found. The main error contributions were estimated to be the
shot noise and the temperature drift of the Verdet constant. In section 5.1.2 it has been argued
that a temperature bath is required to lower the total error. This led to a theoretical shot noise
limit of 2%. The gain is enhanced by increasing the crystal length up to a factor of ∼ 10. This
gave a total error of 0.2%. Further increases were obtained by using reflections. In experiments
a verified gain increase of factor ∼ 1.7 was obtained. Theoretically it has been derived that with
100 reflection the total error can be lowered to 280 ppm. This total error is mainly limited by
the presence of a temperature drift of 238 ppm. In chapter 6 a compensation loop is proposed
which avoids the non-linearity and can remove the temperature drift. Furthermore, the optimal
wavelength to be used for TGG was determined to be 633 nm. The above combined with an
increase in the laser power gives a total error to 9 ppm under ideal circumstances. This is only
1 order of magnitude away from the desired 1 ppm. In section 6.3 a comparison with Fluxgates
showed that the Faraday based current sensor performs worse at low bandwidths (< 1 MHz). A
big difference is that it works at at bandwidths where Fluxgates cannot be applied (> 1 MHz)
and potentially up to several GHz.

7.2 Outlook

In section 6.1 a compensation scheme was discussed that could remove the temperature drift.
However, this may be limited to only a factor ∼ 10 or less and should be tested. Additionally, it is
uncertain if 100 reflection within the bulk TGG is feasible. Equally important is the repeatability
issue. For this the peripheral equipment should be changed to allow for both the current and the
multiple outputs of the current sensor to be measured at the same time. This could be achieved
by allowing accumulation and extracting the data at an equal time.

For the low and intermediary frequencies a GMI based current sensor shows promise [2, 4, 88].
With a error of ∼ 10 pT/

√
Hz the 1 ppm is reachable [3]. Additionally, the issue with the required

ultra low error and high frequency carrier current may be solved by using the proposed FR current
sensor to monitor this carrier current.
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CHAPTER 7. CONCLUSIONS AND OUTLOOK

Table 7.1: Methods that might enhance the performance of the Faraday current sensor.

Method Effective on: factor enhancement reference
Magnetic field modulation temperature drift ∼ 10 [89]

Thermal expansion in B-field temperature drift ∼ 10 [90]
High Circular Birefringence gain > 10 [75]

Cavity gain 0-100 [22, 91, 92]
Flux Concentrator gain ∼ 40 [54, 79]

Calibration methods systematic error 0-100 [93]
PICs cost << 2000 [94]

A main disadvantage of the Faraday based current sensor is its cost. This originates from
their large size and general high complexity. By transforming the Faraday based current sensor
to a photonic integrated circuit (PIC) it may be possible to significantly reduce costs and sizes
(< 1 mm). The TU/e research group Photonic Integration is presently capable of measuring
polarization extinction of 30 dB. This means that the smallest measureable Faraday rotation is
roughly 1 mrad giving a possible error of 1 mrad

10 µrad ∗ 9 ppm ≈ 0.1%. This accuracy of the PICs
is almost equivalent to the temperature drift of the Verdet constant of TGG. This makes them
interesting replacements for current sensors in the 0.1% accuracy regime but with a significantly
higher bandwidth. PICs also show potential to reach the 1 ppm required by ASML. Due to pos-
sibilities in geometries of PICs it might also allow for easier control of the relative phase shift
incurred in reflections. This allows for greater possibilities in the designs for 100 reflections or
even more. Furthermore, the error could be lowered by using averaging methods with a large
number of the small sized PICs. To achieve this it is recommended to investigate materials with
high Verdet constants in the NIR wavelength range as most PICs use InP which is transparent for
NIR wavelengths. Alternatively PICs could be developed in the visible wavelength range. Their
size is also an advantage in temperature control.

Some further possible improvements on the Faraday current sensor are summarized in table
7.1. They are shortly discussed in the Appendix J.
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tassium terbium fluoride crystal as a function of wavelength and temperature. Optics Letters,
45(7):1683, 2020. ISSN 0146-9592. doi: 10.1364/ol.387911. 17, 18

[44] Valentyn Vasyliev, Encarnacion G. Villora, Masaru Nakamura, Yoshiyuki Sugahara, and
Kiyoshi Shimamura. UV-visible faraday rotators based on rare-earth fluoride single crystals:
LiREF4 (RE=Tb, Dy, Ho, Er and Yb), PrF3 and CeF 3. Key Engineering Materials, 582
(13):194–197, 2014. ISSN 16629795. doi: 10.4028/www.scientific.net/KEM.582.194. 17, 18

[45] Feiyun Guo, Qiyuan Li, Huaimin Zhang, Xiongsheng Yang, Zhen Tao, Xin Chen, and Jian-
zhong Chen. Czochralski growth, magnetic properties and faraday characteristics of CeAlO3
crystals. Crystals, 9(5), 2019. ISSN 20734352. doi: 10.3390/cryst9050245. 17, 18

[46] Younghun Hwang, Soo Seong Chung, and Youngho Um. Giant Faraday rotation in Cd1-
xMnxTe (0 <; x < 0.82) crystals. Physica Status Solidi (C) Current Topics in Solid State
Physics, 4(12):4453–4456, 2007. ISSN 18626351. doi: 10.1002/pssc.200777156. 17, 18

[47] Noboru Mikami, Chie Nagao, Takao Sawada, Hisamitsu Takahashi, Yoshinari Furukawa, and
Eiya Aikawa. Temperature dependence of magnetic field sensors using (Cd 1-xMnx)Te and
a light-emitting-diode light source. Journal of Applied Physics, 69(1):433–438, 1991. ISSN
00218979. doi: 10.1063/1.347680.

[48] Nils Kullendorff and Bertil Hök. Temperature independent Faraday rotation near the band
gap in Cd1-xMnxTe. Applied Physics Letters, 46(11):1016–1018, 1985. ISSN 00036951. doi:
10.1063/1.95795. 17, 18
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Appendix A

Sensor Requirements ASML

In table A.1 the desired specification of a current sensor are given. The range is the minimum and
maximum current that a sensor should be able to measure. The non-linearity is the maximum
deviation of the output signal from its calibrated value. It is desired that the output is as linear
as possible. The bandwidth is the maximum frequency of a signal that a sensor can measure ac-
curately. The noise spectral density (NSD) refers to the random jitter on top of the output signal.
The NSD is converted into a ppm values by multiplying it with the bandwidth and dividing it by
the range of the current sensor, e.g. (0.1 µA√

Hz
∗
√

1MHz)/(100A) = 1 ppm. The gain, or sensitivity,

is the slope between the output and the applied current, G = output/input. This gain can change
in time and due to temperature fluctuations moving away from calibrated values. These give the
requirements Gain time drift and Gain temperature drift. Equivalently the offset in the output can
change in time and with temperature causing wrong interpretations of the output. The offset time
drift and offset temperature drift must, therefore, also be small. The supply voltage of the current
sensor will also contain fluctuations. To prevent these from influencing the output the current
sensor has to be build to suppress these fluctuation. The ammount of suppression is defined using
the Power Supply Rejection Ratio (PSRR). Random peaks in the frequency domain are called
spurious signals. The final requirement that is not listed here is the shielding from surroundings.
Conductors closeby may generate stray field and influence the output of the current sensor making
differentiation between surroundings and the actual current difficult.

Table A.1: The requirements for a current sensor used in the wafer stage. Values are normalized
to the range of the sensor. Adapted from [88].

Specification Present Desired
Range 0− 100 A 0− 100 A

Non-linearity < 100 ppm < 10 ppm
Bandwidth 200 kHz ≥ 1 MHz

Noise spectral density < 0.5 µA√
Hz

< 0.1 µA√
Hz

Gain time drift < 100 ppm/month < 10 ppm/month
Gain temperature drift < 2 ppm/K < 0.5 ppm/K

Offset time drift ? < 100 ppm/month
Offset temperature drift ? < 2 ppm/K

PSRR ? < −100 dBA/V
Spurious signal ? 1 single ray < 2µArms and > 2 kHz
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Appendix B

Theory

B.1 Dielectric Tensor

When an electromagnetic field interacts with a materials a polarization is induced. Neglecting
nonlinear and nonlocal effect the response can be defined by the dielectric tensor, ε. For a cubic
material the dielectric tensor is given by

ε =

 εxx εxy εxz
−εxy εyy εyz
−εxz −εyz εzz

 (B.1)

The dependency of the matrix elements on the magnetic field occurs through the induced
magnetization, M = χH, where χ is the magnetic susceptibility. Additionally, the Onsager
theorem adds a symmetry condition, e.g. εij(M) = εji(−M). The consequence is that the
diagonal elements are even and the off-diagonal are odd in magnetization. The diagonal elements
are equal and independent on the magnetization if only first order effects in magnetization are
considered, i.e. εxx = εyy = εzz. Therefore, by probing the off-diagonal elements can information
on the magnetization be obtained. This probing can be obtained by diagonalizing equation B.1
by transforming to the cylindrical coordinates using

e± =
1√
2

(x̂± iŷ) (B.2)

ez = ẑ (B.3)

where the + and − represent the right and left circular sense, respectively. This gives the
adapted dielectric tensor when assuming the magnetic field and light are parallel to the z-axis
(e.g. εxz, εyz = 0) as:

ε′ =

εxx − iεxy 0 0
0 εxx + iεxy 0
0 0 εxx

 (B.4)

The dielectric constants for left- and right-circular polarized light are now given by

ε± =
1√
2

(εxx ± iεxy) (B.5)

Assuming the relative permeability to be small the relation between the dielectric constant
and the refractive index is

nR =
√
ε+ (B.6)

nL =
√
ε− (B.7)
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APPENDIX B. THEORY

With this a connection has been made to equation 3.1. The difference between the dielectric
constants, ε+ − ε− ≡ ε+− = iεxy, for left- and right-circular polarized light determines how large
the Verdet constant will be.

B.1.1 Microscopic Dielectric Tensor

The macroscopic dielectric tensor and the microscopic electronic structure within the independent
electron approximation are related through [95]:

εij(ω) = δij +
4e2

π~m2ω2

∑
gn

∫
BZ

dk3
ωgn,k[fg,k(1− fn,k)](|P+

gn|2 ±ij |P−ng|2)

ω2
gn,k − ω2 − 2iωΓgn,k

. (B.8)

Where ij equals xx or +−, the operator ±ij denotes +(−) for ij = xx(+−), and indexes g and
n label Bloch states, which are indicated by their wave vector k and occupied by a fraction fn,k,
(Equal to the Fermi-Dirac distribution). The integral is across the complete Brillouin zone, and
the summations is over all bands. The energy ~ωgn,k corresponds to the difference between bands
g and n at k, and Γgn,k denoted the lifetime broadening of this transition. Only ∆k = 0 (’vertical’)
transitions have been taken into account, as consequence of the electric dipole approximation. The
matrix element P is given by

P±gn = 〈ψg,k|p±|ψn,k〉 (B.9)

that couples states via the momentum operator p± = −i~(∇x±i∇y). It determines the probability
of a transition between states to occur. If there is spin splitting in the energy bands the quantity P+

↑
will be different from P−↑ . This effect is proportional the Spin-Orbit coupling, e.g. |P+

↑ | − |P
−
↑ | ∝

λSO.

B.2 Spin-Orbit Coupling

See Coey [18] page 67, 91 and 104 for more information. The equivalent current loop of the motion
of the nucleus in figure 3.4 is In = Zev/2πr, which creates a magnetic field Bso = µ0Zev/4πr

2

at the center that the electron experiences. The interaction energy, ε = −µBBso, can be written
approximately in terms of the Bohr magneton and the Bohr radius since r ≈ a0/Z for an inner
electron and r = na0 for an outer electron, and mevr ≈ ~. In the former case,

εso = −µ0µ
2
BZ

4

2πa3
0

. (B.10)

Here the high dependence on the atomic number Z can be seen. This equation can be rewritten in
a Hamiltionian for multiple electrons atoms in section 3.3, where the parameters above are hidden
in the Spin-Orbit coupling constant Λ.
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Appendix C

Jones Formalism

Jones Formalism or Jones Calculus is a mathematical method that grants a simple method of
determining the influence of optical elements on the polarization of incident light [96]. It works
by looking at the evolution of the amplitudes and the phase shifts of the electric field of the
incident light. However, if the incident light is randomly, partially polarized or incoherent then
Jones formalism fails to describe this properly and the more generalistic Mueller Calculus (Stokes
parameters) must be used.

C.1 Jones Formalism

If an electromagnetic wave moves in the z-direction its electric field can be described by(
Ex(t)
Ey(t)

)
=

(
E0xe

i(kz−ωt+φx)

E0ye
i(kz−ωt+φy)

)
=

(
E0xe

iφx

E0ye
iφy

)
ei(kz−ωt), (C.1)

where ω is the angular frequency of the light, k is the wavenumber, t is the time, E0,x and E0,y are
the electric field amplitudes and φx and φy are the phase shifts. Jones formalism works by only
evolving the amplitude and phase of the light, i.e. ei(kz−ωt) can be neglected. The transformation
occurs through the so-called Jones matrices. For istance, the Jones matrix for a arbitrary Faraday
rotation, θ, without linear birefringence is given by

F ≡ JRot =

(
cos θ − sin θ
sin θ cos θ

)
. (C.2)

The intensity of the light can be calculated from the electric field as follows

J = EE∗ (C.3)

where the ∗ indicates the conjugate transpose.

C.1.1 Optical Elements

The Jones matrices for the different optical components that are used in this report are given here.
A polarizer that has its major axis at an angle α:

P ≡ JPol =

(
cos2 α cos θ sinα

cosα sinα sin2 α

)
. (C.4)

The output of a polarizing beamsplitter can be modelled as a polarizer having its major axis either
at 0 degrees or 90 degrees. A linear phase retarder with retardance η and fast axis at an angle of
θf is described by

PR(η, θf ) ≡ JPR = e
iη
2

(
cos2 θf + eiη sin2 θf (1− eiη) cos θf sin θf
(1− eiη) cos θf sin θf sin2 θf + eiη cos2 θf

)
. (C.5)
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APPENDIX C. JONES FORMALISM

A reflection from a surface with reflection coefficients |rp| and |rs| and phase shifts δp and δs for
p- and s-polarizations is denoted by

R ≡ JR =

(
|rp|eiδp 0

0 |rs|eiδs

)
. (C.6)

For a more general approach such as multilayer sytems the reader is referred to Zak et al [97].
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Appendix D

Error scaling

D.1 Scaling Error

The Error scaling is calculated using equation 4.4 as follows

σθF
θF,max

=
∂θF
∂x σx

θF,max
=

1
2
∂ arcsin(x)

∂x σx

θF,max
=

σx

2
√

1− x2

1

θF,max
, (D.1)

where x = Gmon(ω)
GDM (ω)

VDM
V++V−

(or x = sin(2θF )) is the output obtained with equation 4.4, σθF is the

measurement resolution in Faraday rotation, σx ≈ sin(2 ∗ 10µrad) ≈ 2 ∗ 10−5 is the measurement
resolution in terms of output, and θF,max is the maximum Faraday rotation of the current sensor
at maximum current. The error as a function of the maximum Faraday rotations, θF,max, is shown
in figure D.1. When focussing on the real scaling (black line) increasing the maximum Faraday
rotation from 0 rad lowers the error significantly until the maximum Faraday rotation is roughly
0.4. After this the error starts increasing exponentially until blowing up to infinity at π/4 rad.
Increasing the maximum Faraday rotation further lowers the error again until an optimum and it
start increasing until blowing up at 3π/4 rad. This pattern keeps repeating. Every (2n + 1)π/4
rad, where n is an integer, the error goes to infinity. For a maximum Faraday rotation of roughly
11 rad the target of 1 ppm is reached, while ideally (blue dashed dotted line) this occurs at roughly
10 rad. For the current sensor the behaviour of the error in figure D.1 has one major consequences;
for Faraday rotation close to an integer of π/4 rad the measured current would be highly inaccur-
ate. In section 6.1 two concepts are discussed that can avoid this regime entirely.

D.1.1 Effect of multiple outputs

In figure 6.1 two concepts are shown that can aid in avoiding non-linear regimes. On the left large
rotation are measured by moving from the output at 0 degrees to the output at 45 degrees when
the Faraday rotation becomes larger than ∼ 22.5 degrees. This effect of this rotated output is
shown in figure D.1 by the red dotted line between 2 and 3 rad in the grey area. In the grey area
where the error of the 0 degree output goes to infinity the 45 degree rotated output instead has
an almost ideal error figure. Consequently by swapping from the 0 degree output to the 45 degree
output one avoids the near infinite error. In this grey area the maximum error is roughly two
times higher than the ideal error. Similarly, on the right in figure 6.1 the Faraday rotation, θF , is
reduced back to zero using a second crystal that rotated the polarization by, −θF , using a feedback
scheme. This effectively forces the output to remain in a linear regime, e.g. sin(2θF ) ≈ 2θF , and
the ideal case of figure D.1 is followed.

60 Confidential



APPENDIX D. ERROR SCALING

0 2 4 6 8 10 12

0 2 4 6 8 10 12

100

101

102

103

104

105

 Non-Ideal
 Ideal
 Rotated 45°

Target

qF (rad)

To
ta

l E
rro

r (
pp

m
)

qF,max (rad)

Figure D.1: The total error against the maximum Faraday rotation, θF,max. The blue dashed
dotted line is the ideal error scaling while the red solid line is the error scaling of equation D.1.
The dashed vertical lines are the places where the maximum rotation is (2n + 1)π/4 , where
n = 0, 1, 2. The target of 1 ppm is shown by the horizontal black line which crosses the error
scaling at 10 rad and 11 rad for ideal and non-ideal, respectively. The red dotted line between 2
and 3 rad is if the output is rotated by 45 degrees. In the grey area the output used for readout
is swapped from 0 degrees (non-ideal) to 45 degrees.
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Appendix E

Error

E.1 Noise Terms

E.1.1 Shot Noise

Shot noise originates from the discrete nature of the electrons and photons. Measuring discreteness
inherently involves uncertainty. It is a type of noise that can be modelled as a Poisson process. Its
behaviour is equivalent to the experiment of tossing a coin, e.g. the larger the number of throws
the smaller the relative noise. The electronic shot noise is given by

ishot =
√

2eIdc∆f (E.1)

where e is the elementary electron charge, Idc the DC current and ∆f the bandwidth of the
signal. For optical devices the photons also contribute with their discreteness:

Pshot =

√
2hcPdc∆f

λ
(E.2)

where c is the speed of light in vacuum, h the plank constant, λ the wavelength of the light and
Pdc the DC power. The effect on total error can be determined by dividing the noise, Pshot, by the
signal, Pdc. It can immediately be seen that the relative noise scales as ∝ 1√

Pdc
, e.g. decreasing

for higher power. In analogy to the coin tossing experiment, the absolute number of photons
that fluctuate increases but the relative noise decreases as the number of photons increases. So
by increasing the wavelength the number of photons per energy unit increases lowering the noise.
Shot noise can be seen as a White noise, which means it is a constant value in the frequency
domain.

E.1.2 Johnson-Nyquist Noise

Johnson-Nyquist noise, also known as Thermal noise, is a type of noise that is present inside
electronic conductors, e.g. resistors. The finite temperature of the resistor causes the electrons to
move around with an thermal energy of 〈H〉 = kBT . This movement causes finite changes in the
measured voltage over a resistor. The root mean square of this voltage fluctuation is given by

vrms =
√

4kBTR∆f. (E.3)

This noise is a major component of the noise of an opamp. The relative noise can be described
as ∝ vrms/Vsignal. So by increasing the signal in voltage, e.g. increasing the laser power, one can
lower the relative Johnson-Nyquist noise. For the photodiode electronic circuit with resistance R
the higher this resistance the higher the gain: Vsignal ∝ G(ω) = R. The effect of the resistance
on the relative noise, therefore, scales as ∝ 1√

R
. Johnson-Nyquist noise in the frequency domain

is described as white noise.
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E.1.3 Mechanical Vibrations

Because the Faraday rotation is defined as a relative value to a polarizer angle it is important to
keep the optical elements from moving relative to each other. In reality, however, vibration from
the surrounding influence the position and rotations a little as shown in figure E.1.

����

Reorientation

due to internal

stresses
Shift due to

perturbation at

base (assuming

slow response)
Δ�

�

Figure E.1: A optical element, top circle, on top of a optical post, blue, of length L that experiences
a perturbation at its base, orange. The perturbation causes the optical post to rotate with an
angle ∆θ (center figure) from its rest position (left figure). When the perturbation goes to zero
or goes opposite the optical post relaxes back to its resting position again (right figure).

The influence of these vibrations is determined by assuming that the response can be described
by a driven damped oscillator [98]. The maximum amplitude is then given by

Amax ≈
f0

2βω0
(E.4)

where ω0 is the natural frequency of the undamped oscillator that is given by

ω0 =

√
k

m
(E.5)

where k is the spring constant and m the mass of the optical post. β = b/2m is the viscous
damping coefficient (or damping constant) where the damping coefficient is

b = 2ζ
√
mk (E.6)

and ζ is the damping ratio. The amplitude of the driving force f0 = F0/m can be approximated
using typical vibrations of a lab as

f0 = vlabflab (E.7)

where vlab is the velocity amplitude in m/s and flab is the frequency of the vibrations in Hz. The
spring constant of the optical post is approximated using

k = E
A

L
(E.8)

where E is the Young’s modulus, A the cross section and L the length of the optical post. Using
equations E.4, E.5, E.6, E.7 and E.8 the maximum rotation, assuming small rotations ∆θ ≈
Amax/L, due to vibrations is given by

∆θ =
vlabflabm

2AEζ
(E.9)
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Practical values are:
vlab ∼ 10−4 m/s, flab ∼ 100 Hz, taken from:
https://www.thorlabs.com/tutorials/tables2.cfm

Young’s modulus steel: 200 GPa https://en.wikipedia.org/wiki/Young’s_modulus.
Optical posts used A = 0.01272 ∗ π and mass m = ρ ∗ A ∗ L = 8050 ∗ 0.01272 ∗ π ∗ 75mm∼ 60 g,
taken from:
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=1266

https://en.wikipedia.org/wiki/Steel.
Damping ratio of ∼0.01, taken from:
https://www.crystalinstruments.com/multi-resolution-spectrum-analysis

Using above values the approximate rotation due to vibrations is of the order of 1-10 nrad.

E.2 Total Error Calculation

For the calculation of the total error it is necessary to distinguish between the different types
of errors and whether they can be compensated. The 68% confidence interval is used for errors
that are stochastic in nature, such as shot noise and thermal noise. They are called sum square
noise (SSN), e.g. σshot, σJohnson−Nyquist, σvib. Deterministic error terms can have a sign, e.g. a
lower gain can be associated with a decrease of a parameter and vice versa. The terms that can
compensate each other are called linear errors (LE), e.g. σT,direct, σλ,direct . While terms that
do not have a direction are put under the SSN, e.g. |σT,undirectional|, |σλ,undirectional|. Both are
considered 100% uncertainty. The total error can then be called using:

σtot = σT,direct+σλ,direct+ |σT,undirectional|+ |σλ,undirectional|+
√
σ2
shot + σ2

Johnson−Nyquist + σ2
vib

(E.10)
Due to the nature of most SSN they scale with the gain of the current sensor while LE impacts
the gain directly and does not scale with it.

E.2.1 Parameters

The outputs of a balanced photodiode use a fixed resistance with an accompanying saturation.
However, in the calculation of the total error and signal this cannot remain fixed as the maximum
signal can surpass the saturation limit of the balanced photodiode. To compensate for this the
resistance at the outputs are scaled to always have an equal maximum voltage. For the DM output
the maximum voltage of 10V is set equal to the range of the current sensor using

GDM = RDM =
10

R(λ)Pinc sin(2θF,max)
, (E.11)

where θF,max is maximum Faraday rotation of the current sensor and Pinc is the maximum in-
cident power on the photodiode after transmission losses. For the monitor resistance the value
mainly depends on Pinc as Rmon = Rmon,0 ∗ Pinc,0/Pinc where Rmon,0 is the resistance when the
incident power is Pinc,0. This values is set to be equivalent to the specification of the balanced
photodiode when the incident power on a single photodiode is 1 mW.

E.2.2 Further mathematical tricks

The total laser power is reduced by the transmission and absorption (Beer-Lambert law) through
multiplication. Gain losses are taken into account by artificially lowering the Verdet constant.
This is mainly relevant for the derivation of the theoretical error in section 5.3.2. The effect of a
change in parameters is calculated numerically when no analytic solution were found. The error is
considered tobe the maximum difference between the new output and the ideal output normalized
to the range of the current sensor.
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E.3 Optimum path length

The scaling of the total error with path length is linear. The scaling with the absorption is directly
related to the incident power. The incident power scales the total error by decreasing the relative
shot noise. Its effect is given by the

σIP
IP,max

∝ L
√

exp(−µL), (E.12)

which has a peak at L = 2/µ.
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Appendix F

Calibrations

In figure F.1 the calibrations of the setup of figure 4.2 is shown. Instead of the coil a second
polarizer is used to simulate the effect of the Faraday rotation. This comparison is allowed up
until the rotation surpasses 0.1 rad where the intensity starts dropping enough a non-linearity
becomes visible. However, this is never reached as the RF output is saturated over a range of
23 mrad. This range can be expanded by lowering the intensity but the Faraday rotation in the
experiments never reach this 23 mrad and it is therefore not necessary. The linear coefficient of
the fit is −1.8618± 0.0004 per rad. By multiplying the equation 4.4 with this value the Faraday
rotation can be obtained.
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Equation y = a + b*x

Plot Difference over Sum
Weight Instrumental (=1/ei^2)
Intercept 0,02527 ± 5,91114E-6
Slope -1,8618 ± 3,86596E-4
Residual Sum of Squares 147,39121
Pearson's r -1
R-Square (COD) 0,99999
Adj. R-Square 0,99999

Figure F.1: The Difference over sum of equation 4.4 versus the angle of the polarizer starting from
an arbitrary angle that is situated somewhere near 0 deg. The black squares are the experimental
data and the red line is the linear fit in the non-saturation regime.
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F.1 Aligning the Optical Setup

When placing the optical elements care is taken with reflections to not enter the laser again
and are controlled for safety reasons. This is achieved by rotating the optical elements slightly.
This effects, however, changes the polarization in a minor way due to the polarization dependent
reflections at non zero angles. This effect is most important after the Faraday rotation has been
picked up. Because the polarization is p-polarized any of such changes generally decrease the gain
of the setup. For instance the TGG→Air interface at 3 degrees causes the contrast to drop by
roughly 0.2% as more s-polarized light is reflected in comparison to p-polarization. When the
main beam is the reflection of an interface, however, the contrast is instead increased. In section
5.3 the effect of reflections is discussed more thoroughly.

F.2 Thickness TGG

The thickness of the TGG measured was 0.506, 0.517, 0.505, 0.500 and 0.503 with an uncertainty
of 1 µm. It is possible that the large difference of the second measurement was caused by some
dirt or inhomogeneous surface of the TGG. The mean with standard error is 0.506 ± 0.003 mm
which will be used when determining the Verdet constants through fitting.

F.3 Magnetic field determination Sweep

The approach is shown in figure F.2. The magnetic field is estimated by finding the starting point
where the signal changes significantly due to the current applied going from 0 A to -1 A and the
ending point where the signal changes significantly due to the current applied falling from 1 A to
0 A. By assuming linear time dependency the magnetic field is determined. The offset determined
from a fit is subtracted to set the output to zero at zero magnetic field. Inaccurate positions taken
at -1 A and 1 A lead to roughly 0.2% inaccuracy of the slope per measurement point away from
the accurate position. This effect is generally an underestimation because the signal is lower at
the highest magnetic field.

F.3.1 Averaging vs. Sweep

In figure F.3 multiple measurement results for the two different methods are shown. The averaging
method is used in measurements 1,2,3 and 4 while the sweep method is used in Sweep. It can be
seen that all the results are relatively close to each other. However, when performing a linear fit it
can be seen that the slope of all the measurement results differ more than the standard deviation
allows. The measurements using the averaging method show a smaller deviation from each other
than the sweep methods which deviation is significantly higher with a maximum of 6%.

In figure F.4 the residue after the linear fit has been subtracted from the experimental data
is shown for both measurement methods. For the sweep method (black) no distinct behaviour
is visible and the noise can be considered Gaussian. For the averaging method (red, blue and
green), however, a slight non linear effect is visible with the residue showing a recurring parabolic
behaviour. These effects are the largest when the magnetic field is > 10 mT with a difference of
roughly 10 µrad. This is for the 0.5 mm TGG sample an effect of roughly 1.5%. This would be
equivalent to a temperature increase of ∼ 5 K assuming the temperature dependence of 0.3%/K
of TGG. The currents of ∼ ±1 A that flow through the coil(s) start heating the coil. This heating
causes the resistance of the coil to increase and might momentarily decrease the magnetic field due
to the reduced current. Additionally the TGG sample heats up due to the indirect contact with
the coil lowering the signal even more. This might explain why the slopes found in the averaging
method in figure F.3 are slightly lower compared to the sweep. This means that the sweep method
may be better to use. This could be checked more thoroughly by measuring the current during a
sweep measurement and comparing with the averaging effect.
To obtain some information about the Verdet constant the mean and the standard error of the
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Figure F.2: The method used to obtain the Faraday rotation against the magnetic field for a
sweeping current. The offset at t = 0 is subtracted (red) from the experimental data (black). The
time is then converted to a magnetic field (Blue) by choosing a point of large change near 2 s and
80s to be equal to -1 A and 1 A, respectively.

mean is calculated. The result gives a mean gain of (−6.35±0.08)∗10−2 rad/T. The mean Verdet
constant is then V = 125.5 ± 0.7 rad/Tm, where the error of the Verdet constant is determined
using

σV =

√
(
gain

L2
)2 ∗ σ2

L + (
1

L
)2 ∗ σ2

gain. (F.1)
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 Sweep
 1
 2
 3
 4

Weighted Fit 
(1/ 2̂)

Slope (rad/T) Error Slope

Sweep -6.6238E-5 4.97754E-8
1 -6.40597E-5 1.06173E-7
2 -6.23875E-5 1.98976E-7
3 -6.29079E-5 1.04544E-7
4 -6.17506E-5 1.86369E-7

Figure F.3: The method used to obtain the Faraday rotation against the magnetic field for a
sweeping current.

 Method: Sweep

Figure F.4: The residue after the linear fit has been subtracted from the experimental data. In
the red, green and blue dots the Averaging method is used. In the grey line the Sweep methods
is used.
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Appendix G

TGG Error Measurements

G.1 Temperature Dependence

The setup in figure G.1 is used to measure the effect of temperature on the TGG crystal. The
fohn, Steinel HL1800 E, is switched on to reach a stable temperature. Then measurement starts
while the föhn remains on. The temperature is measured using a Type K thermocouple placed
near the TGG. It is manually checked at regular intervals using a Voltcraft 500. The temperature

Figure G.1: The measurement setup used to measure the effect of temperature. A föhn is hold in
place and aimed at the sample holder with TGG that is placed in a coil. A thermocouple (yellow
wire) is placed near the TGG crystal and manually read-out.

dependence of the TGG sample can be seen in figure G.2. The solid line is the scaled 1/T
dependence of the Verdet constant based on the findings in [35, 37]. It can be seen that the
temperature dependence is roughly 0.3%/K and comparable to the value found in literature of
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0.347%/K. The large errorbars in the temperature is caused by the drift in temperature during
the measurement as the setup was not very stable and showed drift.
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Figure G.2: The Verdet constant for different temperatures. The points are experimental values
and the line is the theoretical approximation based on [35, 37].

G.2 FFT

The Fast Fourier Transform (FFT) of the error of the RF output voltage is shown in figure
G.3. The logarithmic fit shows that the error goes roughly with −13 dB/decade which is almost
equivalent to a 1/f noise which goes as −10 dB/decade. The slight difference can be caused by
the FFT not taking into account the irregular sample acquisition causing the sampling frequency
to vary. This pink noise is only present when the laser is turned on and disappears when the
photodiodes are blocked. It is therefore most likely related to the laser [70]. Using modulation
techniques at high frequencies >> 1 MHz this 1/f noise might be removed entirely.
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Figure G.3: The FFT of the error of the RF output voltage as measured with an Agilent 34410A.
The black squares are the measurement point and the red line is a logarithmic fit.
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Appendix H

Crystal Path length

The conversion of the uncertainty in the path length to the gain applicable to a linear fit of
equation 3.2 is performed using:

σy,new = σy,measurement + V σL (H.1)

where σy,measurement is the uncertainty of the gain in the measurement and σL is the error in the
path length. When using σL = 10%L for the TGG crystals the last term of the equation becomes
10%V L which is simply 10% of the Gain. This error is used in the weighted fitting and therefore
calculated into the error shown in the table of figure 5.3. An identical method is used for the
Glass.

H.1 Non-Linear behavior

Both Glass and TGG deviate from a linear behavior since they have larger gains at larger path
lengths. This effect can be seen in figure H.1 where the mean of the first measurement point is
linearly extrapolated with the path length. It can be seen that the gain at higher path lengths start
deviating more and more indicating a possible non-linearity. The deviation might originate from
the inhomogeneous magnetic field inside the coil, where magnetic field increases as the sample gets
deeper in the coil. Additionally due to the stacking multiple crystals on top of each other multiple
interfaces are present that might have a non-zero reflection, e.g. ghosting. The effect of this is
shown in figure H.2. The transmitted beam might contain multiple beams that have bounced
multiple times inside the crystals. These additional beams will have a significantly lower intensity.
However, due to the non-reciprocability of the Faraday effect these additional beams will have
an enhanced Faraday rotation. For a TGG to Air interface the Reflectance, |r|2, is roughly 10%.
This means that about 1% of the output beam will have an enhanced Faraday rotation. The gain
increase factor with would be roughly 1% ∗ 3 = 0.03 for a single of such an internal reflections.
Additional air gaps in between the crystals could create more internal reflections that further
increase the gain in the same manner. Using an AR coating on the TGG crystals would diminish
this effect. It could be tested by comparing it with a single TGG crystal with corresponding
lengths. Also, the effect of alignment might be an issue as discussed in appendix F.1.
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Figure H.1: The gain of the setup, given in θF
B (rad/T), for different path lengths obtained by

placing an integer number of crystals against each other. The red crosses are for 0.5 mm TGG
crystals and the blue circles are for 0.95 mm glass plates. The solid lines are the theoretical result
of equation 3.2 when only the result of first measurement point is used.
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Figure H.2: A schematic view of internal reflection occurring at interfaces of different crystals of
thickness d and air gaps. The first beam, 1, contains most intensity and has only a single Faraday
rotation. The second beam, 2, is reflected due to an air-gap between the crystals, having attained
additional Faraday rotation of 2 ∗ 4/5 ∗ θF . The third beam, 3, reflects at the crystal Air interface
and contains the most Faraday rotation, 3θF .
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Reflections

I.1 Influence Mirrors experiment

In the BS setup the three mirrors (∆δ = 3 ∗ 0.3 = 0.9 rad) only reduce the first Faraday rotation
while the second one is unaffected which allows the gain to still to be large. In MS setup, however,
the entire Faraday rotation, 2θF , is reduced by two mirrors (∆δ = 2 ∗ 0.3 = 0.6 rad) lowering the
signal to almost the same as in the BS setup even though the relative phase shift of the BS is
higher. This shows that it is relevant where the Faraday rotation occurs in the path of the light,
i.e. destructive interference occurs only when there is conversion of s- to p-polarization (or vice
versa).

In figure I.1 the effect of placing the TGG with coil at different position in the beamsplitter
setup of figure 5.5 is shown. It can be seen that as the number of mirrors after the Faraday
rotation is higher the gain of the output lowers. The gain is maximum when no mirrors are placed
after the Faraday rotation and minimum when 3 mirrors are placed after the Faraday rotation.
The experimental values show a relatively good agreement with the theoretical predictions.
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Ratio w/ A Theoretical Ratio
Top 0.927 0.993
Right 0.865 0.858
Bottom 0.7 0.646
Afterwards 1

Figure I.1: The Faraday rotation against the magnetic field when the Faraday rotation occurs at
different positions in the BS setup of figure 5.5. In the bottom position three mirror are used to
reflect the beam back to the laser after the Faraday rotation has been picked. In the right position
only two mirrors are in between the detector and the coil. In the top side there is only one mirror
after the coil. The afterwards position is identical to the single pass result of 5.7 where there are
no mirror after picking up the Faraday rotation. In the inset table the ratio to the afterwards
position is shown. The last column is the theoretical ratio using Jones formalism.

I.2 Magnetic field drop

Assuming the magnetic field is constant along the length of the crystal but not the width the effect
is roughly: ∫

B(r) · dl∫
B(r0) · dl

=

∫ r1
r0

B(r)
tan(θi)

dr∫ r1
r0

B(r0)
tan(θi)

dr
=
r0 ln( r1r0 )

r1 − r0
, (I.1)

where r1 = d + r0 and r0 ≈ 3 mm is the distance from the center of the current wire to the
beginning of the crystal. For a crystal with a width of 5 mm equation I.1 gives a factor of roughly
0.59 lower signal due to the reduced magnetic field at larger distances.

I.3 High Reflectance

In figure I.2 the high reflectance (HR) case of a TGG to Silver interface is shown. At low angles
of incidence the relative phase shift lowers. The large difference between the real part and the
imaginary part of the refractive index of silver, (nt = 0.049816−4.4764i [71, 72]), allows for a near
unity reflection coefficient which is necessary for high transmission. However, this large difference
does increase the non-ideal relative phase shift at θi > 0 slightly but at a much slower rate than
the drop in reflection coefficient.
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Figure I.2: The top left shows schematically the path of the light in the case of high reflectance.
Bottom left shows a schematic view of a reflection at the interface. In the graph on the right
the reflections coefficient, solid lines, and the phase shift, dashed lines, are shown as functions of
the angle of incidence for a TGG to Silver interface. Red represents s-polarized light and blue
p-polarized light. The black dotted line is the relative phase shift between s- and p-polarization.

I.4 Total Internal Reflection

In figure I.3 the reflection coeffients and phase shift of a TGG to Air interface is shown. In the
inset the phase shift and relative phase shift is shown for an interface where the difference in
refractive index is small: ∆n ≈ 0.3%. The relative phase shift near 1.5 rad is ∼ 0.12 rad and ∼ 5
mrad for the TGG to Air and ∆n case, respectively. Near 0.53 rad the critical angle is reached
for the TGG to Air interface showing negligible relative phase shift.
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Figure I.3: The top left shows schematically the path of the light in the case of total internal
reflection (TIR). The best configuration is when the magnetic field is along the width of the
crystal. Bottom left shows a schematic view of a reflection at the interface. In the graph on the
right the reflections coefficient, solid lines, and the phase shift, dashed lines, are shown as functions
of the angle of incidence for a TGG to Air interface. Red represents s-polarized light and blue
p-polarized light. The black dotted line is the relative phase shift between s- and p-polarization.
In the inset of the graph the phase shift and relative phase shift are shown when a transmission
material with a similar refractive index of TGG is used, with a difference of only ∆n ≈ 0.3%. In
the inset the value of the relative phase shift is shown on the right y-axis. The critical angle(s)
θC are shown using a vertical line.
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Appendix J

Indepth Outlook

Temperature compensation techniques

The feedback system proposed in section 6.1 may aid in reducing temperature effects significantly
but the required bandwidth could be a bottleneck in realizing the design. This means that the LE
of 240 ppm remains an issue. One of the methods to lower the LE is to monitor the temperature
of the setup and adapt according to calibration data. Perdante et al. have shown that by using
a temperature dependent birefringent plate a compensation scheme can be incorporated into the
analysis [89]. This requires a modulation on the Faraday rotation. This can be achieved with
an externally applied magnetic field or modulating the primary current. They showed that the
temperature error lowers by roughly an order of magnitude.

The thermal dependency can also be compensated by moving the crystal from or closer to
positions of higher magnetic fields by applying a material with high thermal expansion. Mironov
et al. have shown such a concept for a Faraday isolator [90]. They showed an improvement of
roughly an order of magnitude. This can be applied to the Faraday current sensor with a highly
thermally expansing material which moves the laser beam relative to the position of the current
carrying wire. Then, the temperature dependence of equation 3.2 can be expanded as

∂θF
∂T

=
∂V
∂T

BL+
∂B

∂T
VL+

∂L

∂T
BV. (J.1)

Assume the effect of temperature on the path length to be negligible, i.e. ∂L
∂T ≈ 0,. To arrive at

∂θF
∂T ≈ 0, using equation 3.4, requires

1

r

∂r

∂T
= −(

1

V
∂V
∂T

). (J.2)

This means that a movement of the laser beam of 3000 ppm/K suffices to compensate the explicit
temperature drift of the Verdet constant. This can be achieved by moving the current wire or
have the thermal expansion of a mirror cause a slight change in an angle of incidence. This results
in the beam deviating towards the current wire. This last effect can also be used to increase the
number of reflections to offset the gain loss due to temperature effects of the Verdet constant. In
general, it is not necessary to use a Faraday rotation as feedback. A polarization rotation can
also be obtained using a photoelastic material driven by a voltage. An example is the electro-
optic modulator which has a typical bandwidth of 1 GHz. As long as its temperature coefficient
is equivalent to that of the Faraday crystal the temperature effect can be diminished. Another
possible solution is to use interferometers made with glass fibers. Muller et al. have shown that
interferometers are less sensitive to temperature drift than their polarimetric counterparts [99].
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Insensitivity to the linear birefringence

Optical fibers have as major advantages that it can easily be bend around a current wire. The
path length of the light in such a fiber to go up to several meters. However, the bending itself
adds linear birefringence that increase the phase shift [7]. Bush et al. found that a highly circular
birefringent fiber can solve this issue [75]. A similar argument can be used for the reflections
discussed in section 5.3.2. In figure 5.8 the output for 10 reflections with a relative phase shift is
significantly reduced at low Faraday rotations per reflection. On the other hand, looking at high
Faraday rotations per reflection the difference between the ideal output and the actual output
becomes smaller. Consequently, applying a magnetic field offset to increase the Faraday rotation
per reflection would remove the effect of the relative phase shift on the gain and a higher number
of reflections becomes possible.

The effect on the gain is shown in figure J.1. As the Faraday rotation per reflection increases
the maximum gain increases also, i.e. from small values of ∼ 1/rad at θF = 0 to 20/rad at 1.5
rad. The grey area is the preferred position for maximum gain. The Biasing the magnetic field is
a possibility but circular birefringent materials (optical activity) could also be used [100, 101].

The temperature dependency of the spontaneous magnetization (M) of a permanent magnet
such as Cobalt (TC = 1400 K) described by Bloch’s law ( MM0

= (1− ( T
TC

)3/2)) can be of the order
of 500 ppm/K. Assuming the bias Faraday rotation to be 45 deg the temperature drift then is
0.02 deg/K as an offset drift. Therefore Faraday rotations due to the magnetic field of the current
wire must be much larger than 0.02 deg otherwise compensation is necessary. It may, therefore,
be easier to use a intrinsic circular birefringence such a a chiral material.

A similar tool is the Faraday mirror for reducing the linear birefringence along the entire path
length [102]. Furthermore, one can use periodic paddings to block the magnetic field to compensate
for linear birefringence [103]. Adapting to thin films may also be a solution in lowering the linear
birefringence [104].

Cavity

When the angle of incidence is exactly zero a cavity can be created [91]. Sun et al. have numerically
shown that a cavity used at room temperature results in a sensitivity of 25.6 fT/

√
Hz [92]. For a

bandwidth of 1 MHz this gives a sensitivity of 25.6 pT. This is almost 3 orders of magnitude below
the required 10 nT. Chang et al. have shown experimentally that a single path can be enhancement
up to 85 times inside a cavity [22]. They also discussed the possibility for a TGG based cavity that
might achieve a magnetic sensitivity of ∼ 10 pT/

√
Hz. This gives exactly the required 10 nT at 1

MHz. However, cavities suffer from background reflections, wavelength filtering effects, stability
requirements for resonance and significant effects from temperature drifts. Equally important are
the spurious signals that are caused by the resonance.

Reflection Coatings

The air to TGG interface has a significant loss of roughly 10% due to the large difference in
refractive index. This is especially relevant for cavities such as the one proposed by [22]. This
high loss can be resolved partially by using an AR coating with the optimal refractive index given
by

nAR =
√
ni ∗ nt. (J.3)

For the air to TGG interface a material with refractive index of nAR ≈ 1.4 would reduce the loss
by roughly a factor 2.

The effect of phase shifts by a reflection may be overcome with multi layered structures, e.g.
Bragg reflectors. By tuning the thickness and refractive indices of the layers one can design a
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Figure J.1: The gain against the Faraday rotation per reflections for a relative phase shift of
∆δ = 0.3 rad and N = 10. Derived from equation 5.6.

reflection to have a specific phase shift [105].

Modulation

The main disadvantage of modulation is the limit it superimposes on the bandwidth of the device
it is used in. The Faraday current sensor can, however, operate at a very high bandwidth and
modulation may be interesting to use. By modulating at e.g. 10 MHz one still can retain a
bandwidth of 1 MHz around the 10 MHz. Optical modulation can then help remove the 1/f noise
that was found in section 5.1.1 but it cannot help remove shot noise as this is white noise. This
type of modulation can be achieved by using photoelastic modulations or by modulating the laser
current itself. Subkhangulov et al. have even shown possible modulation frequencies of up 1.1
THz [106].

Photonic Integrated Circuit

Most of the materials discussed in section 3.3.2 show significantly lower Verdet constants in the
NIR wavelength range. Because the 4f → 4f5d transition of REs has a transition wavelength
in the UV it may be less feasible to use REs, instead materials with transition wavelength much
higher, (VIS or NIR), should be investigated.

Due to the large path lengths required the Faraday crystal may not be easily integrated in a
PIC directly. Though garnets have been proven to be growable on the substrates for PICs [107].
However, if integrated in a PIC the number of reflections and the relative phase shift picked up
at each reflection could be easier to control. The best targets for the PIC are the surrounding
components which can be attached to the crystal, as shown in figure J.2. The polarized light
could be obtained by directly attaching a waveguide to a laser and letting it pass a polarization
filter. These polarization filter have a suppression up to -17 dB. A PIC that is equivalent to the
phase retarder is a polarizing controller [108]. The polarizing beam splitter could be replaced by
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a polarization splitter with a splitting ratio up to 20 dB [94]. Moreover, because the entire sensor
is on a chip the output can also be analyzed on-chip. This would allow multiple outputs of PICs
to be analyzed at the same place. Replacing the bulk materials with fibers may allow for easier
attachment to PICs.

Output ∝ ��
� → ��

�

Multiple outputs

Figure J.2: A PICs equivalent design of a polarimetry measurement setup. The green square is
the crystal (TGG) where the Faraday rotation occurs. Adapted from [94].

Stray field insensitivity

Insensitivity to a stray field can be achieved by enclosing the entire current wire with the light
path, e.g. the entire magnetic field line is followed. Fibers can easily be bent, but bulk materials
have to be cut. Geometries have been investigated, e.g. simply placing multiple elements around
the wire or using internal reflection that send the light around the wire [9, 109]. By optimizing
the geometry between different Faraday based current sensors crosstalk and influence of stray
fields may be minimized. This may be especially relevant for the HR design in figure 6.2 and the
multiple PICs discussed above [110, 111]. Furthermore, by using bulk materials, large number of
reflections and PICs it is possible to keep the current sensor small. This makes enclosing with a
mu-metal easily feasible.

Other possibilities

A flux concentrator can be used to enhance the magnetic field gain by a factor of up to ∼ 40
[54]. The crystal can also be placed in the gap of a magnetic core and subsequently the light is
aligned parallel inside the gap using reflections [79]. Magnetic core do, however, introduce new
temperature drift and possible linearity issue.

One of the problems of a polarimetric measurement setup is the determination of systems
parameters in addition to possible long term drift of these parameters. Rietmans et al. recently
have proposed a calibration method for pulses measurements that may accurately determine the
systems parameters and reduce possible systematic errors [93].

The Faraday effect may also be used to create different optical devices. Kharratian et al.
discuss such a photonic device called Magnetooptical spatial light modulator [112].
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Reflection Designs

Next, some possible reflection design are shown and briefly discussed. Figure J.3 shows a design
that may be easily implemented when built on a chip. The main requirement is that the relative
phase shift is exactly π at each segment away from the wire. A advantage is that this can be done
away from the current wire.

�

�

Δ� �

��

Figure J.3: A possible 2D design that may be more easily created on a chip. The relative phase
shift ∆δ = π at the horizontal segments.

In figure J.4 the HR case is adapted to work along the circular path of the magnetic field.

Figure J.4: A design that allows the light to pass multiple crystals using HR along the circular
magnetic field.

In figure J.5 a design is show that uses a hollow cylinder to allow for for the light to make multiple
trips around the current wire. A adaptation is to use a sphere instead and allow the plane of
incidence to rotate in ways that may negate the linear birefringence.
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��
� − ����

Side view:

Figure J.5: A hollow cylinder similar to 6.2 but where the light can go along the cylinder axis
(Side view) along the light to make multiple circular path. The number of reflections in a circle
is only dependent on the angle θr; N = 2π

π−2θr
. For the small ∆n case (θr = 1.5 rad, the 100

reflections are already reached after 2 full circles.
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