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Abstract

Colloidal dispersions are extremely sensitive to coagulation and fouling. This limits industry to in-
crease the productivity of polymerization processes. Numerical simulations can provide more in-
sight into the parameters that affect coagulation. This study describes the development of a time-
driven model that can simulate colloidal behavior in non-equilibrium circumstances, in which an
ever-ongoing trade-off between efficiency and accuracy is present. The non-equilibrium circum-
stances are induced by phenomena at length scales different from the colloidal size, such as poly-
dispersity and shear flow. The basic understanding of the open-source program LAMMPS and its
application to the physical system has a significant role in this work.

High accuracy of the physical properties of colloidal particles, in particular their interactions, is an
essential requirement for the model. The hard sphere model is well developed and therefore used
as a reference system to tune the particle behavior. The Langevin thermostat is used to impose the
solvent dynamics. For diluted systems, the Langevin damping coefficient has to be sufficiently high
to make sure the colloidal particles resemble Brownian behavior.

Polydispersity can induce depletion forces in a system. It is not practical to model depletion forces by
explicitly modeling the depletant particles. The depletion potential is also not one of the implemen-
ted potentials in LAMMPS. Therefore, two methods are discussed that fit multiple Yukawa potentials
to the depletion potential. A 5-tails Yukawa potential has the best efficiency-resemblance ratio. The
standard deviation only decreases 5% by the addition of another Yukawa tail.

Coagulation is bound to occur more often in shear flow. However, implicit solvents do not take shear
forces into account. Several methods are discussed to obtain a simple shear flow of the colloidal
particles with implicit solvent dynamics. The effect of shear on colloidal particles has been modeled
by the addition of an external force. Additional friction on the particles is to be imposed by this force.
The colloid-wall interactions do not have a significant contribution to the velocity profile in the case
of diluted systems.
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Chapter 1

Introduction

Polymers are remarkably involved in human life. Not only natural polymers are responsible for life
itself, but also synthetic polymers are essential in our every day lives. The synthetic polymers are
involved in all kinds of applications such as medication, nutrition, transportation, clothing, and con-
struction (Namazi, 2017). The majority of the synthetic polymer production is performed with sus-
pension or emulsion polymerization. These techniques involve the dispersion of monomers, poly-
mers, or intermediate products in small particles (Kroupa et al., 2014), called colloids. In this study,
the focus lies on emulsion polymerization. Yearly, over 13 million tonnes of emulsion polymers are
produced and the market still has an annual growth of 6.9% (Distler et al., 2017, Cheng et al., 2018).
Dispersions bring the benefits of both rate control and heat control (Mayer, 1995). However, disper-
sions also bring along some difficulties. Colloidal systems are thermodynamically unstable, which
makes them very sensitive for coagulation and fouling. The particles are kinetically stabilized by sur-
factants to prevent cluster formation. In quiescent conditions, this is sufficient to prevent clustering of
the particles (Kroupa et al., 2014, Cheng et al., 2018). However, in industry, where mixing and plug flow
are essential for high production rates, the quiescent conditions are easily disturbed. Non-desired co-
agulation formation affects the product quality, causes loss of product, increases reactor downtime,
and reduces the efficiency of heat exchange (Cheng et al., 2018).

The polymer industry desires more insight into coagulation phenomena and the corresponding mit-
igation strategies to increase production efficiency. Currently, most polymerization processes take
place in batch or semi-batch reactors (González et al., 2007). With a better understanding of the foul-
ing processes, a step can be made towards continuous polymerization reactions in tubular reactors
(Pauer, 2017). This insight can be gained by performing numerical simulations. In numerical simula-
tions, parameters influencing coagulation phenomena can easily be tuned, allowing for relatively fast
and inexpensive research. However, it requires an accurate and efficient numerical model that can
predict the behavior of colloidal particles.

The development of a numerical model for colloidal systems is particularly challenging. The system
contains a wide range of particle sizes and interactions. More specific for coagulation, the clustering
occurs by both diffusive and convective forces. These take place at different length scales. Model-
ing many length scales and physical properties in the same system is computationally demanding.
Nevertheless, several numerical models are developed in recent years (Zinchenko and Davis, 1995,
Lattuada and Morbidelli, 2011, Elgebrandt et al., 2005). Simplifications have to be imposed on the
colloidal system to make the model computationally feasible. Therefore, most of these models focus
on just one aspect of the coagulation process.

The purpose of this work is to develop an efficient 3D numerical simulation model that can accur-
ately describe coagulation phenomena. Much attention is paid to the colloidal dynamics. This could
result in a model that can cope with both the diffusive and convective coagulation effects. To ensure
optimized algorithms, LAMMPS is used as a framework for the model. LAMMPS is an open-source
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CHAPTER 1. INTRODUCTION

molecular dynamics code. The program is known for its combination of versatility and excellent par-
allel performance. Furthermore, the code can easily be extended, which is done daily by the active
user community (Plimpton, 2014). If creators approve the extensions created by the users of LAM-
MPS, the code is integrated and updated for all users. Hence, the program keeps evolving rapidly.

The thesis is structured as follows. The theoretical background explains the emulsion polymerization
system and discusses the most likely causes of coagulation. Based on this theory, the first simplific-
ations for the model are introduced. The understanding of the basic principles of LAMMPS together
with the extension and validation of a new pair style takes up a large part of this study. The basic
structure and commands of the LAMMPS input script are explained in the technical background. The
solvent plays a crucial role in the dynamics of colloids. The theory of the colloid behavior in the di-
luted regime is well developed, especially for particles with hard sphere interactions (Fortini et al.,
2005, Dhont, 1996). In Chapter 4 the solvent dynamics are tuned to make sure the fundamental phys-
ical properties of a colloidal system resemble in the simulations. This is first done for hard sphere
colloidal particles and later extended to particles with a Yukawa interaction. In Chapters 5 and 6, the
model is extended to investigate possible causes of coagulation, respectively polydispersity and shear
forces. The focus in these Chapters remains on the development of an efficient modeling method.
The work is finalized with a discussion, conclusion, and elaborate outlook.
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Chapter 2

Theoretical background

In the development of numerical models there is always a trade-off between the number of details
that can be modeled and the computational time. The challenge is to make sure the simulations stay
an accurate representation of reality while making simplifications in the modeled system. To do well-
founded simplifications, it is of importance to have a thorough understanding of the system. As is
elaborated in the introduction, the reference system of this study is the process of emulsion polymer-
ization. In this section, a short description of the process is given. Furthermore, the possible causes
of coagulation and their corresponding significant length scales are discussed. Lastly, the theory of
colloidal diffusion is explained, since it is of importance that the simulations can accurately describe
the diffusive behavior of the colloidal particles.

2.1 Emulsion polymerization

Emulsion polymerization is a free radical polymerization proceeding in a heterogeneous system. The
main ingredients besides the continuous aqueous phase comprise monomer, initiator, and surfact-
ant (Iqbal and Ahmad, 2018, Yamak, 2013). The surfactants work as a stabilizing agent in the system.
In the initial configuration, a small fraction of monomer is solubilized by the micelles, an even smal-
ler fraction is dissolved by the aqueous phase, and the vast majority is located in monomer droplets.
The droplets act as a reservoir of monomers during the polymerization (Distler, 2001, Yamak, 2013).
The polymerization is initiated by the addition of an initiator. This happens at a temperature around
80 ◦C. The polymerization happens mainly in the monomer swollen micelles. As the polymerization
proceeds, the polymer-swollen micelles grow and the monomer droplets shrink. After the monomer
droplets have entirely disappeared, the final phase of the reaction commences. In this phase, poly-
merization continues within the polymer-swollen micelles until the monomer conversion is almost
100% (Distler et al., 2017, Yamak, 2013). Finally, the result is a dispersion of polymer particles stabil-
ized by surfactants, also called latex. The polymer particles obtain very high molecular weights on the
order of 1,000,000 monomer units or higher (Lewarchik, 2016).

2.2 Coagulation mechanisms

Two mechanisms for coagulation can be distinguished; perikinetic coagulation and orthokinetic co-
agulation. These can also co-occur. Brownian motion of particles facilitates perikinetic clustering.
The Brownian motion brings particles into intimate proximity of one another. Orthokinetic cluster-
ing results from the movement of the fluid. Velocity gradients in the flow field can increase the force
of collisions as well as the collision frequency (Cheng et al., 2018). When the colloidal particles ap-
proach each other multiple forces start to play a role. The van der Waals forces are attractive forces
arising from electric dipoles in the molecules. Furthermore, there are repulsive electrostatic forces
(also called double layer forces), which depend on the electric charge at the surface of the particles
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(Cheng et al., 2018, Lekkerkerker and Tuinier, 2011). A second repulsive force is a steric force. These
forces arise from hydrophilic tails bound to the surface of the particle (Cheng et al., 2018). These
chains occupy a certain space. Therefore, the entropy of the chains decreases in the close proxim-
ity of other chains (Pinter et al., 2012). Solvation forces can also contribute to the repulsive charac-
ter of a particle (Cheng et al., 2018). The solvated particles have interactions with the surrounding
solvent molecules. Hydrophilic chains that form hydrogen bridges with the water molecules are an
example. These interactions have to be (partially) broken before the particles can coagulate. The last
force, which is particularly interesting in this system, is the depletion force. Non-adsorbing particles/-
molecules have an effective depletion layer near the particle surface due to the loss of configurational
entropy in that region (Lekkerkerker and Tuinier, 2011). When the particles approach each other and
the depletion layers start to overlap, more volume is available for the non-adsorbing particles. Thus
the free energy of the system minimizes when the colloidal particles are close together (Lekkerkerker
and Tuinier, 2011). In the emulsion polymerization system, there is a large amount of non-adsorbing
particles and molecules that can induce depletion forces.

In the specific case of depletion polymerization, the opinions on the coagulating particle type are not
uniform. Ouzineb et al. (2004) claim that the problem is linked to the presence of monomer droplets
in the dispersion. Asua (2016) shares this opinion. He says that the large monomer droplets cream and
thereby form a layer at the surface of the reactor, which upon polymerization leads to clogging. How-
ever, the majority of the articles speak of coagulation of polymer particles in their research (Pokorný
et al., 2016, Yamak, 2013, Cheng et al., 2018).

2.3 Length scales

It is crucial to choose the right length scale to work with to increase the efficiency of the computations.
The right length scale is selected based on the sizes of the investigated particles and the dominating
forces. The length scale determines the simplifications that can be done while keeping an accurate
representation of reality.

Emulsion polymerization is especially a complex system due to the numerous time and length scales
that play a role in the system. On every length scale, complex dynamic processes take place; sev-
eral simultaneous and competitive colloidal (aggregation, coalescence), chemical (radical generation,
polymerization, termination, chain transfer), and physical (diffusion, nucleation, swelling) events oc-
cur (Hernandez and Tauer, 2008). An emulsion polymerization system contains monomers and sur-
factants in the size range of 1-50 Å, micelles in the size range 2-10 nm, polymer particles in the size
range 10-1000 nm, and monomer droplets in the size range 1-100 µm (El-hoshoudy, 2018).

To ease the computational demand, the focus of this research is shifted towards the colloidal particles
in the system, which include the monomer droplets and polymer particles. The corresponding length
scale is called the mesoscopic scale. In this scale, colloidal suspensions are frequently modeled as
atomic systems whose inter-particle interactions can be tuned (Laurati et al., 2009, Poon, 2016). The
colloidal particle, which consists of many molecules, is course-grained into one big particle, see Fig-
ure 2.1. The monomer droplets and polymer particles are approximated as perfect spheres in the
model. The spherical geometry is the favored configuration for these colloidal particles to minimize
the surface tension (El-hoshoudy, 2018). The impact of external forces on a colloidal particle increase
strongly with its size. For the large monomer droplets, these forces, like gravity, can play a role. How-
ever, for the more substantial part of the colloidal regime, external forces can be neglected (Dhont,
1996, Cheng et al., 2018). In this part of the regime, the dominating forces are the inter-particle forces.
The change of velocity will, therefore, only be determined by the interactions with other colloidal
particles and the forces induced by the solvent.
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Monomer

Emulsifier

Polymer

Radical

(a) A schematic overview of the emulsion polymerization
system.

(b) The emulsion polymerization system as it is modeled
with simplifications.

Figure 2.1: The course-graining simplification performed on the colloidal dispersion.

2.4 Colloidal diffusion

Diffusion describes how a particle displaces itself over time and is thus strongly dependent on the type
of motion the particle exhibits. Colloids typically show thermal motion, called Brownian motion. The
motion is caused by many random collisions with the fast-moving solvent molecules (Dhont, 1996).

There are two types of diffusion processes to be distinguished: collective and self-diffusion. Collective
diffusion relates to the motion of many Brownian particles simultaneously, caused by density gradi-
ents (Russel et al., 1991). Self-diffusion takes place without concentration gradients. The movement
occurs because of the random motion of a Brownian particle excited by thermal fluctuations, under
the influence of interactions with surrounding Brownian particles (Dhont, 1996). The latter type of
diffusion is particularly interesting because it can indicate which type of particle interactions are in
play.

The mean square displacement (MSD) is a simple measurable quantity that characterizes the motion
of a single Brownian particle, defined as,

MSD(t ) = 〈|p (t )−p (t = 0)|2〉, (2.1)

where p (t ) is the position coordinate of the particle at time t (Dhont, 1996). The mean square dis-
placement for a Brownian particle consists of two regimes, indicated in Figure 2.2. For minimal times,
the particle did not yet change its velocity due to collisions with solvent molecules; this is called the
ballistic regime (Dhont, 1996). In this regime, the mean squared displacement is equal to,

M SD (t ) = v 2(t = 0)t 2. (2.2)

After the ballistic regime, the particle suffers many random collisions with the solvent molecules. This
leads to many random changes of its velocity and thus reducing its displacement with time as com-
pared to ballistic motion (Dhont, 1996), resulting in a linear relationship between the mean squared
displacement and time,

M SD (t ) = 6Ds t . (2.3)

In this equation, Ds is the self-diffusion coefficient. For a single hard sphere through a pure solvent
the self-diffusion coefficient can be calculated via the Stokes-Einstein equation. In this case, Ds is

Towards Simulations on the Dynamics of Colloidal Coagulation 5



CHAPTER 2. THEORETICAL BACKGROUND

equal to D0.

D0 =
kB T

6πµa
. (2.4)

The denominator represents the amount of friction factor, i.e. the drag experienced by the particle.
The friction of the particle depends on the viscosity of the fluid, µ, and the radius of the particle, a ,
only.

Figure 2.2: The mean square displacement of a Brownian particle as function of time (Dhont, 1996).

In the presence of other Brownian particles, the self-diffusion coefficient is no longer equal to D0.
Interactions of a particle with its surroundings affect the time dependence of the mean squared dis-
placement; the diffusion coefficient changes (Dhont, 1996). Colloidal systems provide a wide variety
of interparticle interactions, including the hard sphere system. The hard sphere interaction is extens-
ively used as a reference potential. A rigorous insight into the hard sphere behavior is imperative for
understanding all other interactions where excluded volume is of importance (Dullens, 2005).

The self-diffusion regime can now be split into two regimes: short-time self-diffusion and long-time
self-diffusion. In the short-time self-diffusion regime, the diffusion of the Brownian particles is altered
because of flow effects induced by other particles. Batchelor (1976) derived for this regime an expres-
sion for the short-time self-diffusion coefficient as a function of the interaction potential. For hard
sphere interactions, the expression for the self-diffusion coefficient is

D S
s =D0[1−1.832φ]. (2.5)

This equation predicts the hard sphere diffusion coefficient well for the low volume fraction of the
colloidal particles,φ < 0.05 (Dhont, 1996). At higher volume fractions, three-body interactions start to
play a role, which makes the expression for the diffusion coefficient much more complicated (Cichocki
et al., 1999). In the long-time self-diffusion regime, the Brownian particles start to collide with each
other. This regime is valid when MSD� a 2. The diffusion coefficient can now be expressed by

D L
s =D0[1−2.0972φ]. (2.6)
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For simulations where only the particle size is changed, the diffusion coefficient is inversely propor-
tional to the size of the particle. This enables us to validate the model by comparing the ratio between
the radii and diffusion coefficients.

Ds ∼
1

a
(2.7)

Particle interactions beyond the hard sphere limit the Brownian particles in their movement. For
both repulsive and attractive interactions, the mean square displacement decreases, and with that
also the self-diffusion coefficient. Baxter (Baxter, 1968) developed in 1968 the sticky hard sphere
model. In this model he introduced the stickiness parameter, τ, which can be linked to short-ranged
attractions. Subsequently, Cichoki (Cichocki and Felderhof, 1990) derived an expression for the self-
diffusion coefficient of hard spheres with a short-ranged attraction. The expressions for short-time
and long-time self diffusion are respectively:

D S
s =D0[1− (1.832+0.295/τ)φ], (2.8)

D L
s =D0[1− (2.0972+0.562/τ)φ]. (2.9)

The variable τ can be derived from the second virial coefficient, B2. Also B2 is a measure of the inter-
action between two particles. The value of this property can be calculated using Equation 2.10, which
is depending on the interaction potential. τ is directly related to B2 by Equation 2.11.

B2 = 2π

∫ ∞

0

r 2(1−exp[−U (r )/kB T ])dr. (2.10)

B2

vc
= 4−

1

τ
. (2.11)

The range of interaction is defined as a certain ratio of the particle diameter. As long as the relative
range of interaction is kept constant, τ does not vary with the size of the particles. This means that
when diffusion coefficients of hard sphere particles with a short-range attraction are compared, they
should still follow the inversely proportional relationship to the size of the particle.

Towards Simulations on the Dynamics of Colloidal Coagulation 7





Chapter 3

Technical background

The simulations in this study are performed using LAMMPS (Plimpton et al., 2020), which stands for
Large-scale Atomic/Molecular Massively Parallel Simulator. It is a classical molecular dynamics code
that models ensembles of particles in a liquid, solid, or gaseous phase (Sandia Corporation, 2020).
The code of LAMMPS is written in C++. The total program consists of over a hundred different files,
all connected. It is possible to use the program as a black box. However, the code is open-source
and hence it is also possible to quickly look into the code and extend the code (Sandia Corporation,
2020). In this study, the LAMMPS version of august 2019 is used. Furthermore, the simulations are
performed on a computer with an Intel Core CPU (i9-7940x) with 28 cores at 3.10GHz with 32 GB
random access memory (RAM). The simulations are performed with Lennard-Jones (LJ) units. This
means that all quantities are unitless. There are three fundamental quantities for distance, energy,
and mass, respectively σ, ε, and m. These quantities are set to 1. All other quantities are multiples
of those three. All quantities expressed in this work are expressed by the LJ units, indicated by the ∗.
Moreover the relation between LJ- and real units can be found in Appendix B.

An input script has to be created with the structure and commands recognized by LAMMPS. In this
chapter, the basic structure of a LAMMPS input file is described towards the simulation of colloidal
systems. Moreover, there is some extra attention paid to modeling concepts as cutoff distances and
time integration. Furthermore, the hard sphere model for time-driven simulations is discussed in
detail.

3.1 Input script structure

The LAMMPS program can be run from a terminal. In the terminal, the path to the input script can
be given using the ’-in’ flag. By default, the working directory is also the location where the output is
stored. The structure of the input script is of great importance, since the program does not read the
entire input script and then performs the simulation, but rather executes by reading the commands
one line at the time (Sandia Corporation, 2020). The input script typically consists of 4 parts: initializ-
ation, system definition, simulation settings, and run section. Below, these parts are explained more
extensively, including typical commands that have been used in the simulations. Putting all these
pieces of code together does not form the whole input script, but cover the basics. A complete input
script of a hard sphere colloidal system with implicit solvent dynamics is given in Appendix A.

3.1.1 Initialization

Every input script starts with defining the units, the particle type, and the dimension of the simulation
(Plimpton, 2014). In this research, Lennard-Jones units are used. The atom style indicates the particle
type. The choice of style affects what quantities are stored by each particle. These quantities are
communicated between the processors, and thereby used to compute forces (Sandia Corporation,
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2020). The atom style used for this project is sphere. The corresponding attributes coupled to this
atom style are diameter, mass, and angular velocity. These quantities are sufficient to describe the
colloidal particle behavior. It is possible to use more complicated atom styles. However, this is not
computationally efficient. In this work, always a three-dimensional model is used.

units lj
atom_style sphere
dimension 3

3.1.2 System definition

The simulation environment has to be created. The box shape, box size, number of particle types,
and type of boundaries have to be defined (Plimpton, 2014). The simulation box in the model is cu-
bic, and by exception rectangular. The diameters of the colloidal particles vary from 14 to 20 σ. To
have a fair comparison between the different simulations, the volume fraction is kept constant. The
box dimensions for the different particle sizes are listed in Appendix C. Figure 3.1 shows the mean
square displacement for systems containing 100 and 1000 colloidal particles. Systems containing
100 particles have limited statistics, which shows itself in the fluctuations of the mean square dis-
placement. The system with 1000 particles starts to look like the ideal mean square displacement
curve of Figure 2.2. Because of the better statistics, systems of 1000 particles will be the default in
this work. Only for the explicit solvent simulations a smaller number of particles is taken, this is fur-
ther elaborated in Chapter 4. In the same command that creates the simulation box, the number of
particle types has to be defined. For example, in a simulation where colloidal particles and solvent
particles are modeled, there are two particle types. The boundaries of the simulation box can be set
periodic(p ), non-periodic and fixed( f ), non-periodic and shrink-wrapped(s ), and non-periodic and
shrink-wrapped with a minimum value(m) (Sandia Corporation, 2020). Shrink-wrapping means that
the boundaries adjust themselves to the positions of the particles, no matter how far they move. The
defined boundary style is always applied to both faces of a dimension. For the diffusion simulations a
box with full periodic boundaries is used. For simulations with shear, non-periodic fixed boundaries
are applied in the y-dimension.

boundary p p p
region box block ${xmin} ${xmax} ${ymin} ${ymax} ${zmin} ${zmax}
create_box 2 box

Also part of the system definition is setting the initial particle positions and velocities. The particles
can be placed in the system using LAMMPS commands or by loading an external file, with positions
and velocities defined. In the developed model, both methods are combined. The colloidal particles
are inserted via an external file, the solvent particles are placed with LAMMPS commands, and the
velocity for both colloids and solvent particles is set using LAMMPS. When the LAMMPS commands
are used, the lattice command plays an important role. In this command, the type of packing can
be chosen (e.g. fcc, bcc, hpc) and the density of the particles is set. In the case of Lennard-Jones units
the density is the reduced mass density,ρ∗. With thecreate\_atoms command particles are created
on the lattice points in the simulation box. The placement of the lattice command in the input
script has to be done with caution. After the lattice command is used, the default for the distance
units is the lattice spacing in the x,y,z direction implied by the lattice. The external input file that
contains the particle positions has to follow strict guidelines for LAMMPS to be able to read the file. It
can occur that the colloid and solvent particles overlap in their initial positions. The delete\_atom
command allows deleting solvent particles that are overlapping with the colloidal particles. If the
program crashes in a simulation with the error ’lost atoms’, the initial positions of two particles were
most likely overlapping. If the overlap between particles becomes too big, the energy of the particles
rises tremendously and extremely high forces are computed. This high force causes the particles to
disappear from the system. The initial velocity is set by the velocity command. The velocities are
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generated based on a given temperature, as described in

∑

i

1

2
mi 〈v 2

i 〉=
3

2
N kB T . (3.1)

The default temperature in this work is 1.0T ∗. The velocity command is one of the commands
that makes use of a pseudo-random number generator (PRNG) that is initialized by a seed value. The
random seed is used to create a pseudo-random velocity distribution over the indicated particles.
Every time the same set of numbers is used, the same distribution is generated. This makes it easy to
reproduce simulations.

read_data c_inp.000.D14 add append
lattice sc 0.76
create_atoms 2 box
delete_atoms overlap 8 solvent colloid
velocity all create 1.0 3344588

0 500 1000 1500 2000 2500 3000

t [t*]

0

2

4

6

8

10

12

14

M
SD

 [
]

104

d=14, N=100
d=14, N=1000
d=16, N=100
d=16, N=1000
d=18, N=100
d=18, N=1000
d=20, N=100
d=20, N=1000

Figure 3.1: The mean square displacement for systems containing of 100 and 1000 colloidal particles.

3.1.3 Simulation settings

Once the particles and the system topology is defined, the force field and time-integration can be set.
This part of the input script is the heart of the simulations. Two types of forces can be distinguished;
external and multi-body forces. External forces act from outside the system on a single particle and
are therefore independent of the position of other particles in the system (Shen et al., 2018). External
forces can be implemented in the model by the fix addforce command. The command specifies
what the magnitude of the force is, on which particles the force works, and which timesteps the force
has to be executed. The external force plays a crucial role in Chapter 6 about shear. The multi-body
forces do depend on the positions of other particles. These forces can be derived from the potential
energy, U , which is a function of the distance between two particles, r .

Fi =−∇i U (r1, ..., rN ) (3.2)

Multi-body forces are implemented with the pair_style command. This command allows for im-
plementation of various well known potentials, as the Lennard-Jones, Coulomb and Yukawa potential
(Sandia Corporation, 2020). The pair_style command is always followed by the pair_coeff com-
mand. In this latter command, the coefficients are set which are required for the specific pair style.
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The number of required coefficients differs per pair style. However, pair_coeff is always first fol-
lowed by the particle types on which the potential is applied. In the example code below, the pair
style colloid is used. The coefficients defined in the pair_coeff command are respectively type
1, type 2, energy prefactor, size of the solvent particle, diameter type 1, diameter type 2, and cut-off.
The program allows for the application of multiple pair styles in one simulation. With the hybrid
style different pairs of particle types can have different interactions. With the hybrid/overlay style
multiple pair styles can be assigned to the same pair of particle types. In this case, the potentials are
accumulated.

The time integration is set with a fix command. This command can be used to define the ensemble
that is applicable on the system. LAMMPS supports two numerical time-integration methods; Velocity-
Verlet and r-Respa, of which velocity-Verlet is the default setting. These integration methods work very
efficient and accurate, and above all, they are seamlessly integrated into the LAMMPS package. The
high accuracy of the velocity-Verlet method is only retained as long as the force at time t only depends
on the positions of the particles at time t, and not on the velocities at time t. For dissipative systems
(where the force does depend on the velocity), the accuracy is generally lower, i.e. smaller time steps
are needed to achieve a sufficient level of accuracy (Frenkel and Smit, 1996). The r-Respa method
is based on the velocity-Verlet method, however the force is decomposed into short and long range
forces. In the velocity-Verlet method the full force must be recomputed every time step. In the Respa
method the short range force is computed after each time step and the long range force is computed
every n time steps (Tuckerman et al., 1992). This makes it a multi-time scale integrator, which allows
for different hierarchies of system properties in the system. In the next sections of this chapter, im-
portant aspects of the simulation settings obtain further elaboration, which concerns the calculation
of forces, the used pair styles, and ensembles.

pair_style colloid

pair_coeff 1 1 39.5 1.0 14.0 14.0 35.0
pair_coeff 1 2 75.4 1.0 14.0 0.0 11.0
pair_coeff 2 2 144 1.0 0.0 0.0 2.5

fix 1 all nve

3.1.4 Run section

In this finalizing part of the input script, the desired output can be defined. LAMMPS offers four
kinds of output: Thermodynamic output, dump files, user-specified quantities, and restart files. For
this study, both the thermodynamic output and the dump files are extensively used. Dump files can
store per-atom values and therefore are used to store the particle positions and velocities. This data
is required for visualization tools (Ovito is used in this research). Thermodynamic data consists of
system values. This data consists of energies, pressures, and also the mean square displacement. In
this section also the timestep and run command are given. The timestep is of huge importance in
the fidelity of the simulations. However, the smaller the timestep, the longer the computation time. In
section 3.5, an analysis is done to determine the acceptable step size. The script closes with the run
command in which the number of simulation steps is defined.

3.2 Calculating the inter-particle forces

As stated above, the multi-body forces are depending on the distance between particles. Calcula-
tion of the potential energies and the corresponding forces, therefore, requires the distance between
a particle and all other particles in the system. For large systems with many particles, the calcula-
tion of the forces becomes very computationally expensive (Frenkel and Smit, 1996). The efficiency
of the models is increased tremendously by the introduction of the neighbourlist. Neigbourlists are
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based on the fact that particles have a certain interaction range beyond which the interactions are
zero or so small that they may be neglected (Leach, 2001). This range is called the cut-off distance,
Rcut. The neigbourlist contains only the particles that are close neigbours of each particle. The range
that determines which particles are added to the neigbourlist is the cut off distance plus a certain shell
thickness. This shell thickness is necessary to include already neigbours that may enter the cut-off ra-
dius. This way, the list does not have to be recreated every timestep (Leach, 2001). Figure 3.2 shows
a schematic overview. The cutoff distance is set as a parameter in the pair\_style command. This
cut-off distance should not be too large; otherwise particles that fall not within the interaction range
are still added to the neigbourlist. But, more importantly, the cut-off distance should not be too small.
The potential beyond the cut-off distance is set to zero. This means that if the original potential had
not reached the zero value yet, the wrong cut-off causes a jump in energy. The energy jump can cause
errors in the computation of the energy and forces. Below, in subsection 3.2.1, the trade-off between
the computation time and the energy computation is elaborated further for the Lennard-Jones poten-
tial. Sometimes it is necessary to have a sizeable cut-off range, as is the case in long-range interactions.
It is then important to allow the neigborlist to contain more particles than its default maximum. This
can be done with the neigh_modify command.

Figure 3.2: A schematic overview of the particles that lie within the range of the neigbourlist.

3.2.1 Lennard Jones cut-off

A general Lennard-Jones potential is shown in Figure 3.3. At considerable inter-particle distances the
potential approaches the zero; there is no longer any interaction between the particles. However,
when setting a cut-off, the transition between the energy before and after the cut-off is not always
smooth. Even at very high cut-off distances, there is a jump in energy (∆U ), although this difference
is minimal. The magnitude of the energy jump affects both the fluctuations and the average energy
in the system. As the cut-off distance increases, the average energy starts to converge to constant
energy of 0.962ε and the standard deviation approaches zero. In Figure 3.4, a line is fitted through the
data points that represent the average energy and the standard deviation as a function of the cut-off
distance. The corresponding expressions for the fitted lines are

favgE(x ) = 330.3x−2.573+0.962, (3.3)

fstd(x ) = 1.282 ·105 x−4.953. (3.4)

The magnitudes of the exponents in the equations indicate that converging to the average energy is
the limiting factor in determining the cutoff distance. With the converged energy value and the data
points, a rate of convergence can be computed, shown in Table 3.1. The rate of convergence starts to
decrease for cutoff distances larger than 100 σ. This, together with Table 3.2, helps to conclude that
150 is a reasonable cut-off, with minimal deviation of the converged value, minimal fluctuations, and
minimal computation time.

Towards Simulations on the Dynamics of Colloidal Coagulation 13



CHAPTER 3. TECHNICAL BACKGROUND

Cutoff interval Rate of convergence
25-50 2.562
50-100 2.821
100-200 2.127
200-400 0.773

Table 3.1: The rate of convergence towards final system energy. The rate is calculated between the
cutoffs indicated in the cutoff interval.

Deviation of convergence Minimal cutoff
1% 142
0.1% 347
0.01% 849

(a) Deviation of the convergence value.

Standard deviation Minimal cutoff
0.0001 74
0.00001 118
0.000001 188

(b) Standard deviation

Table 3.2: The minimal required cut-off depending on restrictions set for the final average energy and
fluctuations.

Figure 3.3: The Lennard-Jones potential with and without cutoff. ∆U indicates the energy jump that
arises of a too small cutoff. The indicatedσ and ε are essential quantities in the Lennard-Jones units.

(a) Average system energy. (b) Standard deviation.

Figure 3.4: The effect of the cut-off distance on the average system energy and energy fluctuations of
a Lennard-Jones system. The blue line is fitted through the orange data points.
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3.3 Pair styles

As explained, the pair styles in LAMMPS define which interaction potential exists between two particles.
This work focuses on hard sphere interactions and later expands to Yukawa interactions.

3.3.1 Hard sphere interactions

The hard sphere (HS) model is a relatively simple and widely used approach (González García and
Tuinier, 2016). Furthermore, the physical properties of a hard sphere colloidal dispersion are already
thoroughly investigated (Fortini et al., 2005). This makes the hard sphere model particularly interest-
ing to validate the model with. In a hard sphere interaction, two particles have infinite high repulsion
towards each other when the surfaces touch. The ideal hard sphere potential can be described as,

U (h ) =

¨

∞ h ≤ 0

0 h > 0
. (3.5)

Potentials can be described as a function of both h and r . h indicates the distance between the two
surfaces of the particles, where r indicates the distance between the centers of the particles. The per-
fect hard sphere potential is shown in Figure 3.5a.

Hard spheres can easily be modeled using event-driven simulations. The collisions in these simu-
lations are instantaneous. However, time-driven simulations are favorable when interactions beyond
the hard sphere regime are at play. Later in this study also this type of interaction will play a role.
Therefore, the simulations are time-driven. However, this makes modeling the hard sphere interac-
tion somewhat complicated. In the ideal hard sphere potential, the energies of the particles will go
from zero to infinitely in one timestep; the resulting force would be infinite as well. Therefore, hard
sphere interactions can only be approximated. The smaller the timestep of the simulation, the steeper
the slope of the potential can be. According to Plimpton (2009), one of the authors of LAMMPS, the
hard sphere potential can be approximated in two ways. With the right cut-off distance, rcut = 2

1
6σ,

and a shift of the potential with ε, the repulsive part of the Lennard-Jones potential can be used as the
inter-particle potential.
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Alternatively, the granular Hertz potential can be used with high stiffness. The stiffness can be created
by setting the elastic constant for normal contact (kn ) high (around 100 p ∗) and setting the viscoelastic
damping constants(γn and γt ) to zero.
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The suggested pair potentials are evaluated for two particles of size 14σ. The resulting pair potentials
are shown in Figure 3.5b and 3.5c. What can be seen quickly is that the granular Hertz potential is a
better approximation than the repulsive Lennard-Jones potential. The adjusted Lennard-Jones po-
tential is a sufficient hard sphere approximation for small particle sizes. However, as the particle size
increases, the potential becomes less steep. The granular Hertz potential shows a small decrease at
the origin, which is the artifact of the well that describes the soft sphere collision. Jover et al. (2012)
proposed to use the generalized cut-and-shifted Mie potential for the hard sphere approximation.
The equation that describes this potential is shown in equation 3.8.
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(3.8)

In their research Jover et al. (2012) show that especially the choice forλR contributes to the hard sphere
approximation. A compromise has to be made between the fidelity of the hard sphere representation
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(a) HS potential. (b) Cut-and-shifted LJ potential.

(c) Stiff granular Hertz potential. (d) MHS potential

Figure 3.5: The hard sphere potential approximations for particles of 14σ.

and the size of the time step in the simulation. The steeper the potential, the higher the fidelity. But
also, the steeper the potential, the smaller the required timesteps. The values that are most often used
for λr and λa are respectively 12 and 6. With these values, the cut-and-shifted Lennard-Jones poten-
tial is produced, which is the same potential as the first suggestion of Plimpton and depicted in Figure
3.5b.

In this work, the generalized cut-and-shifted Mie potential is further explored by changing the λr

and λa values. The effect on the hard sphere behavior of a two-particle collision is investigated. The
hard sphere behavior is measured in the maximal overlap at collision, furthermore, the computational
limitation is based on the energy difference before and after the collision. The hard sphere collision is
suppose to be fully elastic, which means that energy has to be conserved in the collision. The steeper
the potential gets, the bigger the computational error becomes.

The Mie potential is implemented as one of the pair styles in LAMMPS. However, this potential is
designed for monodisperse systems and is not automatically shifted. One of the advantages of the
program LAMMPS, is the possibility to extend the code. To fully experience the features that LAM-
MPS has to offer, it has been decided to create a new pair style. This pair style is designed explicitly
for colloidal hard sphere systems. The pair style is based on the generalized cut-and-shifted Mie po-
tential. Since the LAMMPS code has a complicated structure, an already existing part of the code is
taken as a reference. The reference pair style is the pair style colloid (Plimpton et al., 2020). This
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pair style allows for a polydisperse system. Furthermore, the colloid-solvent and solvent-solvent in-
teractions are defined in the same pair style. The Lennard-Jones potential defines the solvent-solvent
interactions. The colloid-solvent interactions are derived by Everaers and Ejtehadi (2003). He derived
the potential for finite-size particles by describing each colloidal particle as an integrated collection
of Lennard-Jones particles.

Ucs =
2a 3σ3Ac s

9(a 2− r 2)3

�

1−

�

5a 6+45a 4r 2+63a 2r 4+15r 6
�

σ6

15(a − r )6(a + r )6

�

, (3.9)

where Ac s is the Hamaker constant, a the radius of the colloidal particle, andσ the size of the solvent
particles. The new script has to be saved in the same directory as where the reference script is stored.
With the new script included, the LAMMPS package has to be compiled and built again. This pair
style is called the MHS (Mie Hard Sphere) pair style.

The exploration of the generalized Mie potential is performed with the MHS pair style. The timestep
of the simulations is set to 0.001. The effect of λR and λA on the overlap and energy error of a two-
particle collision8 is shown in Figure 3.6. Based on this figure the values for λR and λA are chosen to
be respectively 100 and 95. With these parameters both the overlap and energy difference are kept
minimal. Figure 3.5d shows the resulting potential. The steepness of this potential is slightly lower
than for the granular Hertz potential. The main difference between the two is the starting point of the
repulsion. For the MHS pair style, this already slightly starts before h = 0. Both the granular/hertz

(a) The overlap between two particles in a collision. (b) The energy difference, arising due to a numerical error.

Figure 3.6: The effect of λR and λA on the suitability for a hard sphere potential.

and MHS pair style are reasonable hard sphere approximations. To determine the best potential, a fi-
nal energy analysis is performed. The energy analysis as performed previously in Figure 3.6b focuses
on the energy of one collision. Meanwhile, the energy in this analysis is the total energy of a system
with 100 particles simulated over a longer period of time. Again a system is desired that conserves
energy. Looking at Figure 3.7, the MHS pair style shows a much more constant energy. In a closer look,
it appears that the MHS pair style is not entirely constant. However, the standard deviation is merely
of the order 10−6ε. The standard deviation for the granular/hertz pair style is of the order 10−4ε.
The MHS pair style will further be used as the hard sphere approximation.
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Figure 3.7: The total system energy during the simulation for granular/hertz particles and MHS
particles.

Figure 3.8: The hard sphere Yukawa potential. 1
κd = 0.1, κ= 0.714, and A/κ=−5kBT .

3.3.2 Yukawa interactions

In this research, the hard core Yukawa potential is used to investigate the effect of interactive particles.
In LAMMPS, a Yukawa potential is available for finite-size spheres, named as pair styleyukawa/colloid.
The equation describing the potential is stated as

UY(r ) =
A

κ
e −κ(r−(ai+a j )). (3.10)

A is a measure of the interaction energy. The Yukawa potential can be used both as a repulsive and
attractive potential. The sign of A indicates the type of interaction; negative values indicate attraction
and positive values indicate repulsion. The range of attraction is the screening length κ−1. A/κ is the
value of the potential at contact and is used to indicate the strength of the interaction. To create the
hard core Yukawa potential, the hard sphere potential has to be added to the potential in Equation
3.10. This is done with the pair style hybrid/overlay. The resulting hard-core potential is plotted
in Figure 3.8 for the attractive Yukawa potential.
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3.4 Ensembles

Classical molecular dynamics are energy conserving; potential energy is transferred to kinetic energy
and the other way around; the sum always stays the same (Gallavotti, 1999). This does not mean that
all particles in the system contain the same energy. The energy is distributed over the particles and
is interchanged. With the same total energy, different states of the system exist. All these states to-
gether form an ensemble. In the case of energy conservation, the total energy (E ) is constant. This
ensemble is called the NVE ensemble. Two other parameters of the system also stay constant, namely
the number of particles (N ) and the volume (V ). In experiments, it is hard to control energy; more of-
ten temperature and pressure are chosen as a constant. This results in a different collection of states
of the system, and therefore a different ensemble. The ensemble for a constant temperature (T ) is
called an NVT ensemble and for a constant temperature and pressure (P ) an NPT ensemble. Fixing
the temperature can be physically interpreted by putting the system in contact with a reservoir with
which it can exchange energy; this is called a thermostat (Frenkel and Smit, 1996). A barostat is based
on the same principle, except that the volume of the system can also vary. Figure 3.9 gives a schem-
atic representation of the NVT and NPT ensembles. In every ensemble, three parameters are varied
to keep the others constant; for NVT [µ,P ,E ], for NPT [µ,V ,E ], and for NVE [µ,P ,T ]. The chemical
potential (µ) is for all three ensembles constant. For large enough systems, all relative fluctuations
are insignificant and all ensembles yield the same result. This is called the thermodynamic equival-
ence (Gallavotti, 1999). In this work, the focus lies on NVE and NVT ensembles. A constant volume is
preferred to keep the volume fractions constant during the simulation.

There are several types of thermostats available in LAMMPS (Sandia Corporation, 2020). The Berend-
sen, Langevin en Nosé Hoover thermostat all control the temperature in their way. The Berendsen
thermostat has of those thermostats the most apparent approach; rescaling of the velocity. The velo-
cities are scaled at each step, such that the rate at which the temperature changes is proportional to
the difference in temperature (Gallavotti, 1999). This method gives an exponential decay of the system
towards the desired temperature (Frenkel and Smit, 1996). In the Langevin thermostat, all particles
are corrected each time step by a random force and friction to lower their velocities (Grest and Kre-
mer, 1986). The ratio between the force and the friction determines the temperature. The random
corrections obey the fluctuation-dissipation theorem, thereby guaranteeing NVT statistics. The Nosé
Hoover thermostat is the default thermostat of LAMMPS. It introduces a time stretch factor, which
implies that if the instantaneous T is too low, the particles are accelerated or the clock is slowed down
(Rühle, 2007).

(a) NVT ensemble. (b) NPT ensemble.

Figure 3.9: A schematical representation of the NVT and NPT ensemble.
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3.5 Timestep analysis

The size of the timestep is of great importance in the fidelity of the simulations. However, there is a
trade-off between this fidelity and the computation time when choosing the time step. The larger the
timestep, the worse the conservation of energy throughout the simulation, which can lead to compu-
tational errors. It is therefore important to do a timestep analysis in which the energies in the system
are evaluated. This analysis can best be done in the NVE ensemble. When the timestep dependency
marginalizes, the timestep is appropriate. In Figure 3.10, such an analysis is done for a system con-
taining 100 MHS particles. It becomes clear from Table 3.3 and Figure 3.10 that a step size of 0.01t ∗ is
too big to simulate the energy accurately. It is decided that the standard deviation of magnitude 10−6,
corresponding to the step size 0.001t ∗, is small enough to work with.

Step size [t ∗] 0.01 0.001 0.0001
Standard deviation [ε] 1.23e-04 1.18e-06 2.74e-08

Table 3.3: The influence of step size on the standard deviation of the total energy.
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Figure 3.10: The effect of the size of the timestep on the total energy in the system. This system con-
tains 100 MHS colloidal particles in a vacuum.
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Chapter 4

Modeling the solvent dynamics

Accurate modeling of solvent effects is of great importance to develop simulations with a high fidelity.
Solvent dynamics influence both mesoscopic phenomena (i.e. self-diffusion) and macroscopic phe-
nomena (i.e. shearing, vorticity) in the system. Generally, colloidal particles show Brownian motion,
which is caused by many random collisions with the solvent molecules. The colloidal particles are
course grained in this model, but typically exist of millions, or even billions, of atoms (Frenkel and
Smit, 1996). The amount of solvent particles around the particle is even more substantial, especially
for diluted systems. The dynamics of the solvent are essential for the investigated phenomena, but the
detailed properties are not of interest (Malevanets, 1999). There are two ways of modeling the solvent:
explicitly and implicitly. In explicit methods the solvent molecules are modeled as individual particles.
Not only the colloid-colloid pair interactions, but also the colloid-solvent and solvent-solvent interac-
tions have to be computed every timestep. Therefore, the computation of the forces increased drastic-
ally in time. For a simulation containing only 12 MHS colloidal particles with a total volume fraction
of 4 vol.%, a solvent volume density of 40%, and 1,000,00 timesteps, the number of explicit particles
and the computation time is shown in Table 4.1. These simulations are, due to their long computation
times, performed on a High Performance Cluster (HPC). This HPC has an Intel Xeon CPU (E5-2680 0)
with 2.70 GHz and 64 GB RAM. The computation times can be brought down by reducing the num-
ber of particles, enlarging the timesteps, and reducing the cut-off ranges. However, in Chapter 3, it
was shown that at least 1000 colloidal particles are required for useful statistics and that a step size of
0.001 is minimum for energy conservation. The cut-off range is already minimized in the performed
simulations and would only extend for interactive particles. Accordingly, modeling the system with
an explicit solvent is out of the scope of this project.

Particle sizeσ 14 16 18 20
Number of explicit particles 308,969 446,749 643,350 890,318
Computation time
[days:hours:minutes] 3:16:07 5:17:12 8:20:10 12:23:06

Table 4.1: The computation time for a system containing explicit solvent particles. The simulation
specifics are: 12 particles, 4 vol.% colloids, 40 vol.% solvent, 1,000,000 timesteps.

To reduce the computational demand, the solvent can be treated implicitly. This means that the
solvent will no longer be modeled as individual particles, but rather as a continuous medium. The
implicit model has to incorporate the essential dynamical properties of the solvent. The dynamics of
interest often occur on long time and length scales. Not only the main dynamical features have to be
reproduced, but also there has to be a microscopic coupling with the colloidal particles; e.g. when
two particles collide this also affects the surrounding fluid flow (Malevanets, 1999). While fulfilling
these requirements, the model has to be simple enough to run for long simulation times (Malevanets,
1999). The physical effects that are typically induced by the solvent can be modeled in several ways.
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In this work, this is done with Langevin dynamics. Using an implicit solvent in the model seems very
obvious. However, in coagulation, external forces play a crucial role. These forces are not straight-
forward to combine with the implicit method. Chapter 6 focuses on the effective modeling of shear
forces while using an implicit solvent.

4.1 Langevin dynamics

The Langevin thermostat is already briefly introduced in Chapter 2. The thermostat is based on Langevin
dynamics. These dynamics let the colloids act as Brownian particles, without explicitly taking the
solvent molecules into account. The dynamic equations include stochastic forces that mimic the
solvent effects (Ff en Fr ), in addition to the systematic conservative forces between the colloidal
particles (Fc )(Schlick, 2010).

FLangevin = Fc + Ff + Fr (4.1)

Ff represents the force caused by frictional drag, proportional to the particle velocity. Fr is a force
due to solvent atoms randomly bumping into the particle (Sandia Corporation, 2020). From classical
Brownian theories, it appears that while the molecular collisions are random, all solvent molecules
together produce a systematic effect (Schlick, 2010). The frictional force and the random force are
related by the fluctuation-dissipation theorem (Kubo, 1966). This theorem states that the dissipative
force is related to the variance of the random force (Schlick, 2010). This results in Equations 4.2 and
4.3:

Ff =−
m

γ
v (4.2)

Fr ∝
√

√kB T m

dt γ
(4.3)

It is important to scale the mass, m , with the size of the colloidal particles, since the mass influences
both the friction and random solvent forces. The damping constant, γ, is the critical parameter in the
equations. It determines the relative strength of the friction forces with respect to the random forces.
The damping constant determines how rapidly the temperature is relaxed in the Langevin thermostat
and therefore is specified in time units. An ample relaxation time time implies a low viscosity solvent
(Sandia Corporation, 2020).

The disadvantage of Langevin dynamics is that they do not take hydrodynamic forces into account.
Hydrodynamic forces arise when there are multiple colloidal particles in a system. The motion of one
particle induces a flow field in the fluid that alters the friction felt by other particles (Gompper et al.,
2009). The hydrodynamic interactions can be felt between particles, even if the particles are far apart
from each other; the flow fields decay very slowly over distance. Therefore, the volume fraction of col-
loids has to be very low to neglect the hydrodynamic interactions (Padding and Louis, 2006). Also at
very high colloid volume fractions, the direct particle interactions dominate the hydrodynamic inter-
actions, and therefore the hydrodynamic interactions can be neglected. The required volume fraction
for this to happen depends on the cut-off range of the pair potentials (Padding and Louis, 2006); the
larger the range, the lower the required volume fraction. This means that for hard sphere particles,
which have an interaction range equal to zero, the hydrodynamic forces always stay dominant. At
very high volume fractions, where particles almost reach their maximal packing, the hydrodynamic
forces become lubrication forces. Lubrication forces are associated with squeezing a fluid in and out
of a region between two particles. The implicit Langevin model is known for its simplicity and, there-
fore, favorable in use. Since it does not take the dynamics into account, the method is especially use-
ful for studying equilibrium properties (Wang et al., 2016). Although in this work a non-equilibrium
model is developed, the Langevin method is chosen to model the solvent dynamics. Other more ex-
tensive methods often take Langevin dynamics as the basis for the solvent dynamics and extend the
method to include the hydrodynamic properties (Wang et al., 2016). A thorough understanding of
the Langevin dynamics in equilibrium situations contributes to a good foundation of the coagulation
model. In a later stage, the model can further be developed to include hydrodynamic forces. This can
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be done with the SELM software package, which can be implemented in LAMMPS(Wang et al., 2016).
The limitations of the Langevin method are kept in mind during this study.

4.2 Tuning the solvent dynamics

The solvent dynamics of the model are validated based on the diffusive behavior of the colloids. In the
dilute regime, the colloidal particles undergo Brownian motion. As explained in Chapter 2, the self-
diffusion coefficient and the particle radius are inversely proportional when following the Brownian
behavior. The mean square displacement does not only provide the diffusion coefficient, its charac-
teristic shape is also an indication of Brownian motion. A specific solvent condition is simulated for
four particle sizes; 14, 16, 18, and 20σ. The mutual diffusion coefficient ratios are compared to the in-
verse size ratio. This gives a percentile deviation for every size pair. The average of all the percentages
can be calculated. This average indicates how close the particle behavior is to Brownian motion. Be-
neath a small example is given for diffusion coefficients D14 = 139D ∗, D16 = 127D ∗, and D18 = 113D ∗.
In further results, only the average deviation, in this case 3%, will be mentioned.

14/16 14/18 16/18
Inverse ratio size 1.143 1.286 1.125
Ratio diffusion coefficient 1.092 1.237 1.133
Percentile deviation 4.5% 3.8% 0.7%
Average deviation 3.0%

Table 4.2: The calculation of the simulation accuracy. In the example, the system contains 4 vol.%
colloidal particles and the damping constant is set to be 1000t ∗.

The Langevin solvent dynamics can be tuned with the damping constant, γ. The first exploration of
γ is performed in simulations containing 1000 particles with a volume fraction of 0.04. The results
are listed in Table 4.3. As the damping coefficient increases, the diffusion of the colloids starts to be
comparable to the Brownian diffusion. What is also interesting to see is the trend of the mean square
displacement at the smaller timescales (Figure 4.1). Both systems show a ballistic regime in their mean
square displacement. However, the timescale at which this regime is located is very different. A low γ
means a high viscosity. High viscosity systems are dense systems; the particles experience the friction
by the solvent at a shorter time scale. This matches the behavior in Figure 4.1.

A first indication is obtained for the magnitude of γ. Next, the solvent dynamics can be further optim-
ized. Both the Brownian behavior as the Langevin dynamics work best in the diluted regime. There-
fore the optimization is done in a more diluted system of 1 vol.%. In the optimization, γ is further
increased. The results are listed in Table 4.4. For a smaller volume fraction of the particles, it appears
that the damping constant even has to be higher to resemble the Brownian dynamics. The optimal
behavior is found at γ = 7500t ∗ . Using this value for simulations of 4 and 7 vol.% gives average de-
viations of respectively 2.0 and 8.1%. The higher value for the 7 vol.% system is expected since the
deviation of an ideal system becomes bigger. A colloidal volume fraction of 4 vol.% is small enough to
let the particles behave as the desired Brownian particles. The relationship between diffusion coef-
ficients for systems of different colloidal volume fractions is also evaluated. It is expected that the
smallest volume fraction has the highest diffusion coefficient, as is stated in Equation 2.6. This rela-
tionship is valid for the obtained data. In Figure 4.2, the mean square displacements are shown for the
optimized system. In this graph, the standard deviation is indicated. The deviation shows the effect
of using different random seeds in the model. The further the mean square displacements proceed
in time, the higher standard deviation of the model. However, the average standard deviation of all
simulations is merely around 2%.
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Figure 4.1: The mean square displacement at
small timescales for a simulation with γ = 0.01t ∗

and γ = 1000t ∗. The results are for a 4 vol.% sys-
tem with particles of 14σ.

γ [t ∗]
Average deviation of
the Brownian behavior

0.001 52.0%
0.01 25.7%
1 47.7%
100 33.8%
1000 2.5%

Table 4.3: The deviation of the
typical Brownian particle behavior
based on the damping constant,
γ. The system contained 1000 col-
loidal particles with a density of 4
vol.%.

Figure 4.2: The mean square displacement for a
system with the best solvent dynamics at 1vol.%.

γ [t ∗]
Average deviation of
the Brownian behavior

1000 21.9%
2500 6.0%
5000 4.3%
7500 3.0%
10000 8.4%

Table 4.4: The deviation of the
ideal Brownian particle behavior
based on the damping constant, γ.
The system contained 1000 colloidal
particles with a density of 1 vol.%.

4.3 Beyond the hard sphere particle interactions

With the solvent dynamics that are defined in the previous section the diffusive behavior of the col-
loidal particles can be further explored. All previous simulations are performed with hard sphere
particle interactions. In this section, the interactions are extended beyond the hard sphere range.
This is done with the hard sphere Yukawa (HSY) potential, see section 3.3.2 for the implementation
in the model. The potential is characterized by two properties: the strength of the interaction at con-
tact (A/κ) and the range of interaction (1/κd ). Figure 4.3 shows the effect that interactions have on
the diffusive behavior. As expected, the diffusion coefficient decreases. With a repulsive interaction,
the excluded volume of the particles increases, thus the effective volume fraction increases. As was
shown previously, the mean square displacement decreases with a higher volume fraction. With an
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attractive interaction the particles are even more constrained in their motion. The probability that
two particles are closely together becomes larger due to the attractive potential. The chance on col-
lisions therefore increases, thus the diffusion decreases. Additionally, the proximity of other particles
induces additional hydrodynamic interactions, which increase the effective friction (Dhont, 1996).
A more sophisticated implicit method could, therefore, even give a lower diffusion of the attractive
particles.
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Figure 4.3: The effect of interactions on the mean square displacement. The simulations are per-
formed with γ= 7500t ∗,d = 14, and 1 vol.%. The repulsive and attractive potentials have a strength of
respectively 5 and −5kBT and a range of 0.05.

4.3.1 Size dependence

Comparing Equation 2.8 and 2.9 shows that the diffusion coefficient is now depending on the extra
property τ. This stickiness parameter can be calculated with the second virial coefficient. Which in
turn depends on the interaction potential, see Equation 2.10 and 2.11. The stickiness parameter is
calculated for the attractive HSY potentials. The particle size is varied, but the range and strength
of the interaction are kept constant, resulting in the same τ for every particle size. The constant τ
means that the ratio in diffusion coefficients is still only depending on the particle size, as described
in Equation 2.7. The deviation of the expected particle behavior is again measured by comparing the
actual ratio to the expected ratio. Table 4.5 shows that the deviation of the ideal behavior increases
with the increasing range of interaction. The increase is most significant for the attractive interactions,
which can be an indication that the lack of hydrodynamic interaction is the most important reason
for the bigger deviation.

4.3.2 Interaction range dependence

While changing the size does not affect the stickiness parameter, changing the interaction range does.
In the following results, the size of a particle is kept constant and the range of interaction is varied.
Since τ is no longer a constant value, the deviation can no longer be calculated by simply looking
at the ratio of diffusion coefficients and particle sizes. Equation 4.4 shows the proportional relation
between the diffusion coefficient and the stickiness parameter,

D L
s ∼

τ−2.0972φτ−0.562φ

τ
. (4.4)
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Attractive Repulsive
HS 3%
range 0.05 4.1% 4.7%
range 0.1 9.1% 6.4%
range 0.15 10.7% 8.8%
range 0.20 11.1% 6.8%

Table 4.5: The average percentile deviation of the Brownian behavior. The simulations are performed
for both attractive and repulsive interactions at different ranges of interaction. The system is defined
with γ is 1000 and the colloidal fraction is 1 vol.%.

The average deviation in Table 4.6 is calculated for six different ranges at every colloidal size; 1
κd = 0.02,

0.05, 0.07, 0.1, 0.15, and 0.2. Relation 4.4 is used to calculate the theoretical ratios. The theoretical ra-
tios are again compared to the ratios obtained from the simulation data. The average deviation of
the expected behavior is above 40%, which means that the model would not be able at all to take the
interaction range into account. However, taking a closer look clarifies the behavior. The relationship
for τ is derived by Baxter (1968) for sticky spheres. In his model, the attractive well is infinitely small.
Regnaut and Ravey (1989) investigated the possibilities to extend the sticky sphere model to larger
ranges of attraction. He found that beyond a range of 0.1 the model is no longer capable of accurate
predictions. In the third column of Table 4.6, the average is calculated with ranges higher than 0.1
excluded, which resulted in much better results. The magnitude of the deviation is now of the same
magnitude as it was in Table 4.5. A possible cause of these deviations are the hydrodynamic forces
that are not taken into account.

Particle size Average deviation
Average deviation
for 1

κd < 0.1
14 40% 13%
16 41% 11%
18 51% 17%
20 41% 13%

Table 4.6: The average percentile deviation of the Brownian behavior. The simulations are performed
for both attractive interactions at different particle sizes. The system is defined with γ is 1000 and the
colloidal fraction is 1 vol.%.

The effect of attraction on the behavior of the particles can also be quantified with the radial distribu-
tion function g (r ). Figure 4.4 shows the radial distribution function for a system containing particles
with a diameter of 14σ, 1 vol.%, and γ= 7500t ∗. Two things are notable in the figure. First of all, there
is no second peak at r /d=2, which means only pairs of atoms are sticking together. This can be ex-
plained by the low volume fraction. The chance that two particles encounter each other is small, let
alone that three particles do. Secondly, the height of the peaks at r /d=1 does not scale with the range
of attraction. The peak height increases until the range of 0.07 and after that it starts decreasing again.
The radial distribution function of the simulations is calculated in histogram form by binning pairwise
distances into N b i n bins from 0.0 to a defined cut-off distance (Sandia Corporation, 2020). In Figures
4.4a and 4.4b the cutoff distance is varied, while the number of bins is kept constant, N b i n = 150. The
difference between the two figures shows the significant effect that binning has on the radial distri-
bution function.
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Figure 4.4: The simulated radial distribution function.
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Figure 4.5: The effect of the interaction range on the theoretical radial distribution function and the
interaction potential for a system containing hard sphere Yukawa particles.

The theoretical radial distribution function in the diluted regime can be described by

g (r ) = exp (−U (r )) . (4.5)

Figure 4.5 shows respectively the HSY potentials and the corresponding theoretical radial distribu-
tion functions. Binning of the theoretical radial distribution function slightly lowers the peak height,
however, the overall shape and peak order stays the same. Appendix D shows the binned graph and
also shows a graph in which the data of the simulated and theoretical radial distribution function are
plotted simultaneously. With this in mind, a fair comparison can be made between the theoretical
and simulated radial distribution function. The peak heights for interaction ranges below 0.1 are ap-
proximately the same. It appears that for interaction ranges 1

κd ≥ 0.1 the system shows a divergence
from the expected behavior.

A colloidal system of at least 1000 particles is required for useful statistics. The use of the implicit
Langevin solvent contributes to the development of a model that can efficiently model these large
colloidal systems. A damping constant of 7500t ∗ is required to accurately simulate the behavior of
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colloidal particles in dilute systems. For interactions beyond the hard sphere regime, the deviations
of the model slightly increase, by lack of hydrodynamic forces. These solvent settings are maintained
during the further proceeding of this work.
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Chapter 5

Polydispersity

In previous chapters, simplifications are applied to the emulsion polymerization system to create an
efficient model. Only the components of the colloidal scale are explicitly modeled. In Chapter 2, the
crucial mechanics and interactions for coagulation are discussed. Contradictory, the small compon-
ents that had to be neglected for computational efficiency (micelles, polymer chains, and monomers),
can play a role in coagulation. Because of the size difference, an effective attractive force can be
induced by the small particles, the depletion force. The particles inducing the force are called de-
pletants. In this chapter, it is discussed how to incorporate the depletion forces in the model while
keeping the efficiency high.

In this study, the depletants are seen as hard spheres, which is an accurate representation in case
the depletion forces are induced by other colloidal particles; the monomer droplets and the polymer
particles. If the polymers in the solution cause the depletion interaction, penetrable hard spheres
would be a better representation of the depletants (Lekkerkerker and Tuinier, 2011). The depletion
potential between two colloidal spheres due to smaller hard spheres is described as

Udepl =



























− a
dd
[3φdλ

2− φ
2
d

5 (12−45λ−60λ2] 0≤ h < dd

aφ2
d

5dd
[12−45λ+60λ2−30λ3+3λ5] dd ≤ h < 2dd

0 h ≥ 2dd

(5.1)

In this equation, φd is the volume fraction of the depletants, a is the colloidal radius, and dd is the
depletant diameter. A measure of the inter-particle distance is λ, which is equal to (h −dd )/dd . The
strength and range of the interaction can be tuned with the depletant concentration and with the
depletant-to-colloid ratio (González García and Tuinier, 2016). The depletant-to-colloid ratio is defined
as q = dd /2a . The effect of these parameters is shown in Figure 5.1. To prevent overlap of multiple
depletion zones the diameter of the colloidal particles needs to be at least seven times bigger than the
diameter of the depletant particle, which means that q < 0.15. For small q ’s the potential is pairwise
additive (González García and Tuinier, 2016). Dijkstra (Dijkstra et al., 2006) showed that for size ratios
of q = 0.1 the number of overlapping of depletion layers is no larger than 2. For q = 0.6, the number
of overlapping layers can go up to 7, depending on the colloid packing fraction.
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Figure 5.1: The depletion potential can be tuned by varying the depletant-to-colloid ratio and the
depletant volume fraction.

5.1 Explicit depletant particles

The simplest method to introduce depletion forces is simply adding depletant particles to the system.
To have a fair comparison between the different depletion potentials the interaction strength at con-
tact is set on a constant value of −5kBT . The same interaction strength was set for the hard sphere
Yukawa potentials in Chapter 4; this makes the results easy to compare. For a known depletant-to-
colloid ratio, the required depletant volume fraction can be calculated by

Udepl,(h=0) =−3
a

dd

�

φd +
1

5
φ2

d

�

. (5.2)

In Table 5.1, the depletant properties are listed for different colloid-to-depletant size ratios. The smal-
ler the depletant particles, the smaller the volume fraction that is required for the same interaction
strength. While the volume fraction is decreasing, the number of depletant particles increases drastic-
ally. Even for depletant particles that are only ten times smaller in size, already 31 million depletant
particles are required. Unfortunately, modeling such a large number of particles requires enormous
amounts of computational power, which is beyond the scope of this work.

depletant-to-colloid ratio (q) 0.1 0.02 0.01
Depletant volume fraction 0.314 0.066 0.033
Maximum value of the potential [kBT ] 1.75 0.33 0.15
Number of depletant particles
(for a system with 1000
colloidal particles and 1 vol.%)

31,365,717 822,508,997 3,311,402,560

Table 5.1: An overview of the depletant properties corresponding to a depletion potential with a con-
tact strength of −5kBT .

5.2 Reproducing the depletion potential

It is not practical to induce the depletion potential explicitly. The same limitations are experienced
as for modeling the solvent dynamics. The solvent dynamics are now incorporated by inducing the
average solvent force on the colloidal particles. A similar approach can be taken to induce depletion
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forces. However, the depletion forces are depending on the inter-particle distance, thus have to be
modeled as an additional pair potential. Unfortunately, LAMMPS does not contain a pair style that
directly represents the depletion potential. However, several Yukawa potentials can be combined to
reproduce other potentials. The number of Yukawa potentials that are summed is referred to as the
number of Yukawa tails. The values for the A’s and κ’s determine the shape of the n-tails Yukawa
potential.

UYn−tails
=

A1

κ1
exp(−κ1h ) +

A2

κ2
exp(−κ2h ) + · · ·+

An

κn
exp(−κn h ). (5.3)

In this work, two methods are provided to fit the n-tails Yukawa potential (Equation 5.3) to the effective
depletion interaction (Equation 5.1). These methods differ in their fitting procedure. The root finding
method requires a number of equations equal to the number of variables that have to be solved and
searches for a numerical solution to the simultaneous equations. The least-squares minimization
method subtracts the depletion potential and n-tails Yukawa potential and searches for the minimum
difference. The fitting takes place in Mathematica.

5.2.1 Root finding method

The root finding method makes use of four equations that describe a particular aspect of the deple-
tion potential, listed below. The four equations can be used to fit an equal amount of parameters.
Since every Yukawa potential contains two variables (the reciprocal screening length κ and the force
strength A), a 2-tails Yukawa potential can be used in the fitting. The inter-particle distance is given
in a reduced unit, r̃ = r /2a .

• The second virial coefficient (González García, 2019)

B2

vc
= 4+12

∫ r̃=∞

r̃=1

2πr̃ 2 (1−exp [−U (r̃ )])d r̃ . (5.4)

• The area under the graph

A =

∫ r̃=∞

r̃=1

4πr̃ 2U (r̃ )d r̃ . (5.5)

• The potential at contact

• The maximum value

These four aspects should be exactly equal for the depletion potential and the two tail Yukawa po-
tential (González García, 2019). The initial values of the Yukawa parameters have a significant impact
on the final result. These can be guessed by first fitting a 1-tail Yukawa potential, which indicates
the magnitude of the variables. Moreover, it is important that the pre-factors, A

κ , of the two Yukawa
potentials together are approximately equal to the contact potential of the depletion potential. The
limitation of this method is the number of Yukawa tails that can be fitted. On the other hand, the
computing time is fast. Furthermore, for depletion potentials with low volume fractions, thus with a
low repulsive barrier, a good fit can be achieved. Figure 5.2a shows a fit for a very low depletant dens-
ity. For the potentials with a low repulsive barrier, the use of the second virial coefficients as one of
the fitting constraints is also an advantage. Noro and Frenkel (Noro and Frenkel, 2000) found that the
potentials with the same reduced virial coefficient have the same effective range of attraction. This is
called the extended law of corresponding states. This law is particularly applicable to entirely attract-
ive potentials. For potentials that contain a repulsive barrier, they found deviations from the extended
corresponding states behavior.
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Figure 5.2: The n-tails Yukawa potential fitted by the root finding and least-squares minimization
method.

5.2.2 Least-squares minimization method

The least-squares minimization method only requires the equations that describe the depletion and
n-tails Yukawa potential. The difference between the potentials is minimized by varying the Yukawa
parameters. The standard deviation expresses the final accuracy of the fit. The lower this value, the
better the fit. The minimization can be performed via different procedures. These procedures are
shortly explained in Appendix E. In this appendix a table is appended that lists the standard devi-
ation and computation time for different number Yukawa tails. While the computation times are the
longest, the standard deviations of the RandomSearch method are by far the smallest. The method
performs better since it prevents to get trapped in a local minimum. The standard deviation for an
increasing number of Yukawa tails is shown in Table 5.2. A lower number of tails is preferred for mod-
eling efficiency. The improvement that can be gained on the standard deviation decreases with an
increasing number of tails; the standard deviation decreases with 22% going from 4 to 5 tails, while
it decreases less than 5% going from 5 to 6 tails. Therefore, the 5-tails Yukawa potentials are chosen
to reproduce the depletion potential. Also, Table 5.2 and Figure 5.3 combined, show that it becomes
harder to fit the potential, when the repulsive barrier is more prominent. The obtained 5-tails Yukawa
parameters are listed in Appendix F. In the same appendix, the 5-tails Yukawa potentials are plotted
together with the corresponding depletion potential.

Depletant-to-colloid ratio (q) 2-tails 3-tails 4-tails 5-tails 6-tails
0.1 0.140 0.078 0.054 0.042 0.040
0.02 0.078 0.039 0.026 0.020 0.019
0.01 0.055 0.032 0.020 0.016 0.014

Table 5.2: The standard deviation in ε depending on the number of Yukawa tails.
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Figure 5.3: The depletion potential for an interaction strength of −5kB T .

5.3 Simulating the Yukawa depletion potential

LAMMPS allows for the summation of multiple potentials with the pair style hybrid/overlay. This
pair style is been used to plot the HS potential and 5 Yukawa potentials for the pair interaction between
the colloids. However, running the model gives an error after a certain amount of time steps; Lost
atoms. This error often occurs when particles have a substantial overlap, which causes a high particle
energy and infinitely high forces. This makes the particle ’shoot’ through the system. To test whether
the particle collisions are indeed the cause of the error, the initial position of the particles is altered.
Indeed, the system crashed after far more timesteps when the particles are placed further apart. Fur-
thermore, the step size is decreased to see whether the steepness of the potential plays a role. However,
around the same simulation time, the program stops. This means that when LAMMPS tries to stack
the potentials something goes wrong. It can be that LAMMPS has a limit in the amount of Yukawa
potentials that can be stacked. This has to be further investigated.

Fitting the depletion potential with the n-tails Yukawa potential is one method to produce the de-
pletion potential in LAMMPS. Another possibility is to create a new pair style, as is done for the hard
sphere approximation. The advantage of an implemented pair style is that there is no additional soft-
ware required for the fitting, furthermore, the potential is exact and not an approximation. However,
using already existing LAMMPS pair styles is often preferred. The already implemented pair styles are
approved by the authors of LAMMPS, which means that they are fully complementary with the rest of
the code. Newly created pair styles require much validation, as is done for the MHS pair style.

Like the depletants induce depletion forces, there are more phenomena of smaller length scales that
can induce effective potentials between the colloidal particles. For example, repulsive solvation forces
are induced by the interaction of lyophilic particles with the solvent. For an implicit solvent, these
forces are not implemented. Moreover, steric repulsion is induced by polymer chains attached to
the particles. It is computationally expensive to simulate these chains and their behavior explicitly.
Hence, the methods discussed above have a more comprehensive application than just depletion in-
teraction.
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Shear

Shear stresses are developed due to particles in the fluid moving with different velocities. Especially
in tubular reactors, shear forces play an essential role since the surface-to-volume ratio is relatively
high. Shear often arises at walls. The solvent particles have an interaction with the wall and therefore
adopt the same velocity, which induces the velocity differences causing the shear stresses. It is clear
that shear forces are transferred via the solvent particles. This imposes a challenge. An implicit solvent
does not contain explicit solvent particles that can transfer the shear stress over the system. The inter-
actions between the solvent and the colloidal particles are induced by stochastic forces. The methods
that are implemented in LAMMPS do not take shear into account in these forces. This chapter starts
with an introduction to the relevant theory on the effect of shear on colloidal systems. Subsequently,
several methods are discussed to apply shear on the system.

When a stationary shear flow is applied, the system is no longer in equilibrium. There arises a compet-
ition between diffusion and shear effects, which together result in a new anisotropic microstructure.
When diffusion is very fast, the microstructure is little affected. However, the equilibrium is disturbed
in case the shear flow velocity is large(Dhont, 1996). The ratio between shear and diffusion in one
dimension can be described with the Peclet number and is an estimate for the amount of distortion
(Cheng et al., 2018).

Pe=
3πµG ri r j (ri + r j )

2kB T
. (6.1)

In this equation, G is the shear rate. The shear rate is equal to the velocity gradient that is induced by
the shear stresses. When Pe� 1, the particles are driven by their diffusion. When Pe� 1, the particles
are driven by flow.

The shear that is desired in the simulations is a simple shear flow, which means that the fluid velocity
gradient is linear, as depicted in Figure 6.1. Only the upper wall moves, with a velocity V at height L .
No-slip boundary conditions are assumed. Which means that the solvent layer at the wall adopts the
velocity of the wall. The values for V and L in the model are respectively 2v ∗ and 524σ.

In the implementation of shear forces in LAMMPS, recalculation of the temperature is essential. The
Langevin thermostat computes the temperature based on the velocities of the particles. Due to the im-
posed shear forces, the particles have high velocity in the x -direction. However, this velocity has noth-
ing to do with the temperature of the system. With the compute temp/ramp command, a ramped
velocity profile is subtracted of the velocities in the x-direction before computing the kinetic energy.
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Figure 6.1: The linear velocity profile induced by a moving wall.

6.1 Moving rough wall

The first method that is suggested, is based on the conventional way of imposing shear. Walls are
defined in the y -dimension and the upper wall moves with a velocity V in the x -direction, the other
dimensions still contain periodic boundaries. Two wall types can be implemented in LAMMPS; rough
and ideal walls. Rough walls consist of explicit wall particles. These particles are generated like any
other particle. They can be constrained to a specific region, and by packing them closely, they act
as a solid wall. The interactions between the mobile particles and the wall are set the same way as
other particle interactions are set, with pair styles. To decrease computation power, the interactions
between the wall particles are turned off. This can be done with the neigh_modify exclude com-
mand. Ideal walls are smooth walls placed on the surface of the indicated dimension. The inter-
action with the ideal walls is set in the fix wall command. In this command, also the wall inter-
action is defined. Because of the explicit character of the rough walls, a uniform movement can be
assigned to the wall particles. This is done by first setting all forces on the wall particles equal to
zero with the fix setforce command. Subsequently, the desired velocity can be defined with the
velocity set command. For moving walls, it essential that the packing of the wall fits precisely
within the box boundaries. This prevents an ’atoms lost’ error. The disadvantage of rough walls is the
number of particles in the simulations. A system containing 1000 colloidal particles of size 14σ at 1
vol.% already requires 549152 particles at one wall side. Despite the turned-off wall-wall interactions,
the computation time increases drastically for rough walls.

Figure 6.5a shows the rough moving wall method. The interaction between the moving wall and the
mobile particles has to be attractive to induce a shear force. Therefore, the hard sphere Yukawa poten-
tial is used to describe the interaction in these simulations. The range is set on 0.1 and the attraction
strength on −5kBT . Figure 6.2 shows the velocity profile of the colloidal particles in the x -direction
for different simulation times. The particles have a random velocity around zero. Even at height L
there is no increased velocity. This means that there is full slip behavior at the wall. This is the result
as expected. The moving wall is only for short moments within the interaction range of the particles.
After the collision, the effects of the wall collision quickly fade away. Furthermore, the density of the
particles is not high enough to pass across the momentum that is induced by the wall.
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Figure 6.2: The velocity profile in the x -direction for the rough moving wall method.

6.2 External force

As is shortly explained in Chapter 3, external forces can be added to the system. This can be done
on individual particles or a group. It is possible to exercise the force every timestep or with an inter-
val. These additional forces can be used to replace the forces that arise from the flow of solvent. The
Brownian particles immersed in the solvent do no longer feel the friction force, as described in Equa-
tion 4.2. Instead of the absolute velocity of the particle, the velocity is now defined as the difference
of the local fluid and particle velocity (Dhont, 1996). The new friction force becomes,

Ff =−
m

γ
(v − v f ). (6.2)

The friction force, as implemented in the Langevin dynamics, only involves the particle velocity v . The
additional force, therefore, has to exercise a force, Fadd =

m
γ v f . To create the linear velocity profile, the

fluid velocity, v f , is equal to

v f =
y

L
V . (6.3)

In this equation is y the position of the particle in the y -dimension. The additional force is imposed
on all colloidal particles at every time step.

The first simulation with the additional force is performed in a simulation box containing periodic
boundary conditions in all directions. Figure 6.3a shows the velocity profile for this simulation. The
force clearly accelerates the particles in the x -direction. However, due to the boundary conditions
the average x -velocity stays constant over the height of the box. To prevent the transfer of particles
with a high x -velocity to the low-velocity regions, walls have to be implemented. The second simula-
tion contains an ideal wall both at the upper and lower edge of the y -dimension, see Figure 6.5b. The
ideal wall is computationally much more efficient, but does not have the ability to move. The wall
can be implemented with the fix wall command. In total there are eight different fix wall com-
mands. Each command specifies another interaction potential between the particles and the wall
(Sandia Corporation, 2020). Non-interacting walls can be used since the walls do not have the shear
inducing function. The command fix wall/reflect flips the sign of the corresponding velocity
component, when a particle moves outside the wall. Figure 6.3b shows the corresponding velocity
profile. The gradient of the profile becomes more apparent over time. After a time of 200, 000t ∗, the
profile has reached its steady shape. The profile shows a simple shear flow. However, the gradient is
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not as high as desired. The maximum velocity reaches the velocity of 2v ∗, even slightly exceeds it. The
minimum velocity, however, is supposed to stay around a velocity of 0v ∗. To slow down the particles
at the lower regions, an attractive wall is placed at the lower y -edge. The interaction is defined as the
9,3-Lennard-Jones potential. This is one of the predefined ideal walls of LAMMPS. The profile in Fig-
ure 6.3c shows that the attractive wall does not slow down the particles at the lower regions compared
to Figure 6.3b. The same as for the rough walls, the colloid particle wall interactions appear to have
no significant effect. The low volume fraction of the colloids is the most probable cause of this. The
effect of the particle wall interaction is likely to increase for higher densities and stronger interaction
strengths. The shear method in Figure 6.5c, combines the two discussed methods. This method be-
comes of interest when the colloid-wall interactions become of more significance. Even though the
computation times become longer, the method is most similar to real shear systems.

A possible explanation for the weak gradient in the velocity profiles of Figures 6.3b and 6.3c can be
the effect of the random forces in Langevin dynamics. The random forces are also affected by the
presence of shear. This can be neglected at low shear rates, however, at higher shear rates, the effect
of the random forces becomes more significant (Dhont, 1996). Kroupa et al. (2014) developed a 2D
discrete element model (DEM), specifically designed to investigate the effect of shear on coagulation.
In the model, he assumed that the shear forces dominate the thermal motion of the colloids; only the
drag force induced by the fluid is taken into account. Therefore, the interactions between the colloidal
particles and the solvent are described with Stokes law to impose a simple shear flow.

Ff ,Kroupa = 6πµa (v f − v ). (6.4)

The friction force imposed by Kroupa is of a higher magnitude than the friction force in the Langevin
dynamics. High friction solvents experience more effects of the imposed shear. In Figure 6.3d the
additional force is set to be v f − v . In a concise time the desired velocity profile is achieved. When
choosing the external force, it is important to keep the Peclet number in mind. In case the Pe� 1, it
is valid to only take the friction of the fluid into account and neglect diffusion. However, for Pe ∼ 1,
having an additional force complementary to the Langevin friction force is more accurate; diffusion
still has a significant contribution.

Figure 6.4 shows the radial distribution function for different imposed shear forces. The function
fluctuates for both additional forces around one, the same as when no external force is added. The
simulations are performed with the MHS pair style. The effect of shear is particularly interesting for
attractive particle interactions with a repulsive barrier. Different from hard sphere interactions, the
higher collision force and frequency induced by shear can trap attractive particles in a lower energy
level, which can cause cluster forming. Hence, the radial distribution functions of Figure 6.4 can be ex-
plained by the hard sphere interactions between the particles. Unfortunately, due to time constraints,
no further analysis is done on the obtained simulation data. The data can provide more insight into
the effect of shear forces by counting the number of collisions in the simulation. This number is ex-
pected to go up with a higher velocity gradient.

The forces that are induced on the particles, currently cause a simple shear flow. Other laminar ve-
locities profiles can be generated by adjusting the formula that describes the fluid velocity, Equation
6.3. However, at higher velocities, often turbulent flows appear. A turbulent flow contains vortexes,
which are not constant over the flow direction. An approximation of the turbulent flow could be cre-
ated by adding another external force in the y -direction, z -direction, or both. This force can have
a sinusoidal shape, and thereby inducing an alternating up and down force on the particles. How-
ever, adding too many forces limits the freedom of the particles and thereby can reduce the fidelity
of the particle behavior. Soos et al. (2008) showed that the collision efficiency (α) decreases at higher
shear rates for turbulent flows, α∝G −0.18. On the other hand, Krutzer (1993) found that the number
of particle collisions was the same for both Laminar and isotropic turbulent flow. However, due to a
lower stability ratio in turbulent flows, the coagulation rate was higher in an isotropic turbulent flow.
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(a) Simulation box with only periodic boundaries. Fadd =
m
γ v f .
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(b) Simulation box with ideal reflecting walls in the y -
dimension. Fadd =

m
γ v f .
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(c) Simulation box with an ideal reflecting wall at the upper
edge and a 9,3-Lennard-Jones wall at the lower edge of the
y -dimension. Fadd =

m
γ v f .
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Figure 6.3: The velocity profile for different simulation conditions.
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(a) A simulation box containing rough walls. The upper wall is moving.

(b) A simulation box containing ideal walls.

(c) A simulation box containing a rough moving wall at the top and a ideal wall at the bottom.

Figure 6.5: The different wall options to impose shear.



Chapter 7

Discussion

The new model is developed, making use of the LAMMPS code. This choice is made to save time in
writing a whole new code. The code of LAMMPS is known for its computational efficiency and broad
applicability. However, an already existing code confines the modeling options. Especially in the im-
plementation of a stochastic depletion force, this is experienced as a limitation. Moreover, using an
already existing program requires much exploratory work on the possibilities of the program. For that
reason, a significant part of the work consists of simply understanding the technicalities of LAMMPS.
This does not result in new findings, but is essential in the development of a feasible model.

Colloidal particles show Brownian behavior in the diluted regime. For this reason, the simulations
are performed for low volume fractions ranging from 1 vol.% to 7 vol.%. However, polymerization
systems often contain a high solid content (40vol.%∼60vol.%). The recent trend is even to increase
the solid content towards 75 vol.% to improve economic productivity (Cheng et al., 2018). More im-
portantly, systems that undergo coagulation have many local regions with a high volume fraction.
The potentials that are described in this work are pair-wise potentials, which corresponds to the as-
sumption that only binary collisions take place (Zaccone et al., 2010). For higher volume fraction, this
assumption becomes less valid. Furthermore, the Langevin dynamics are less fitted to describe the
fluid dynamics at high colloidal volume densities. The hydrodynamic forces become more signific-
ant, as is already elaborately discussed in section 4.1. However, at very high volume fractions and long
interaction ranges, the hydrodynamic forces again can be neglected (Padding and Louis, 2006), which
can be the case in the final stages of coagulation. The modeling methods discussed in chapters 5 and
6 are not worth less because of the used Langevin solvent dynamics. Other implicit solvent modeling
methods experience the same obstacles in modeling polydispersity and shear effects.

This work focuses on depletion and shear forces as the leading causes of coagulation. However, as
already mentioned in the theoretical background, many forces play a role in colloidal dispersions.
For instance, electrostatic, steric, and solvation forces play a role in the stability of the system. It is
important to have insight into the significance of these forces because the particles inducing these
forces affect the quality of the final product. The addition of charged particles to a colloidal disper-
sion can also contribute to the destabilization of the system. The addition of salt can weaken the
particle-particle repulsive electrostatic forces. The salt concentration where coagulation starts to oc-
cur is the critical coagulation concentration (ccc). In the end, the effective interaction potential is
the most important gauge to predict if the system is sensible to coagulation. Shear forces can give an
extra push towards lower energy states, but will not induce coagulation if no a part of the potential is
negative.
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Chapter 8

Conclusions

The first steps are made towards a time-driven model that can simulate colloidal behavior in non-
equilibrium situations. The model is geared towards emulsion polymerization systems, but can easily
be extended to every colloidal dispersion.

The open-source code of LAMMPS is used as an interface for the model, to make use of the efficient
parallel programming of the program. It is found that a minimum of 1000 particles is required to ob-
tain accurate statistics. The effect of the cutoff range is explained by an analysis on the Lennard-Jones
potential. A cut-off of 150σ is necessary to describe the potential accurately. The program capabilit-
ies are fully explored by the implementation of a new pair style for hard spheres in the code. The pair
style can be used to resemble the hard sphere behavior of particles while maintaining a minimum
energy error.

Furthermore, the effect of solvent dynamics is extensively investigated. The number of solvent particles
relative to the number of colloids is too high to model all solvent particles explicitly. Therefore, Langevin
dynamics are used to resemble the solvent effect with stochastic forces. A damping constant of 7500
is required to resemble the typical Brownian behavior of hard sphere colloidal particles in the diluted
regime. For interactions beyond the hard sphere, the behavior of the particles start to deviate slightly
more from theory. This is probably due to the lack of hydrodynamic forces in Langevin dynamics.
At higher (local) volume fractions, hydrodynamics are required to simulate the colloidal behavior ac-
curately. The overall trend for the Yukawa interactions is as expected; attractive interactions have the
lowest diffusion coefficient and hard sphere interactions the highest.

With the tuned solvent dynamics, it is explored how to model forces that are induced by phenomena
of different length scales. Polydispersity and shear are possible causes of coagulation phenomena in
colloidal dispersions. Small particles in the dispersion can induce depletion forces. At least 22 million
depletant particles are required to model an interaction strength of −5kB T . Modeling these particles
explicitly, is not feasible. Therefore, the depletion potential for hard sphere depletants is reproduced
with a sum of multiple Yukawa potentials. Two fitting methods are discussed, of which the minimiz-
ation method allowed for the best fit. Five Yukawa tails are required.

Moreover, shear is a macroscopic phenomenon, which has its effect on the mesoscopic colloidal
particles. It induces a fluid flow, which increases the frequency and speed of the collisions. Several
methods are discussed to obtain a simple shear flow. Rough moving walls are most realistic, however,
are computationally very expensive. The addition of an external force to increase the experienced
friction force creates a simple shear flow. The gradient of the shear flow increases as the friction force
increases. The colloid-wall interactions do not affect the velocity profile of the particles.

Summarizing, the model is capable of accurately predicting colloidal dynamics in the diluted regime.
Several methods have been suggested to model coagulation effects induced by phenomena of differ-
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ent length scales. However, the model needs further development to model coagulation effects with
high fidelity.
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Chapter 9

Outlook

This work being a first step in the development of a model allows for an elaborate outlook. The model
is developed to obtain more insight in coagulation phenomena of colloidal dispersions. To investigate
the effect of certain parameters on the behavior of the colloidal particles, the fidelity of the physical
properties is essential.

A considerable improvement can be made in the solvent dynamics. The dynamics are currently modeled
by a Langevin thermostat. However, this thermostat does not have the hydrodynamic forces incor-
porated. These forces become more critical as the colloidal density of the dispersion increases. Wang
(Wang et al., 2016) introduced a software package for fluctuation hydrodynamics simulations of fluid-
structure interactions subject to thermal fluctuations. This software is integrated with LAMMPS. A
stochastic Eulerian Lagrangian method SELM is used to couple coarse-grained microstructure de-
grees of freedom to continuum stochastic fields. It would be interesting to compare the SELM and
Langevin solvent dynamics for both low and high density systems.

The depletion potential that is used to describe the effect of polydispersity in this work is specified
for hard sphere colloids and hard sphere depletants. In colloidal dispersions, often free polymers are
dissolved in the bulk phase. These polymers can also induce a depletion interaction between the
colloidal particles. The depletion potential induced by free polymers can be described by the poten-
tial for hard sphere colloids and penetrable hard spheres (Lekkerkerker and Tuinier, 2011). The two
depletion potentials can be compared to investigate which depletant particles have the highest con-
tribution to the clustering of the particles. Moreover, the depletion potential is currently represented
by an n-tails Yukawa potential. However, it is also possible to implement a new pair style in LAMMPS
that induces the depletion potential on the colloidal particles. This can be done with the colloid
pair style as a reference pair style. The depletion potential would require three input arguments; the
colloid size, the depletant size, and the depletant volume fraction. Pair style colloid has sufficient
arguments for this.

Regarding the implementation of shear at implicit solvent systems, the addition of an external force
has a significant effect. However, the colloid-wall interactions do not contribute to the simple shear
velocity profile. With a more advanced implicit solvent method, the effect of the volume density on
the significance of colloid-wall interactions can be investigated. Furthermore, the attraction strength
of the walls can be increased to enhance the energy favor that the particles experience near the wall.
The currently used ideal walls, reflect and lj93, are both smooth walls. One of the implemented ideal
walls in LAMMPS, fix wall/gran, creates frictional walls. This wall can be used for the lower edge to
slow down the particles.

Validation of the model is required to test the accuracy of the simulations. The behavior of the colloidal
particles can be studied experimentally by techniques such as light scattering and optical microscopy.
The properties of colloidal can be tuned by, for instance, grafting the surface of the particles with poly-
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mers (Dullens, 2005). These tailor-made particles allow for extensive validation. The hard sphere sim-
ulations, which have been predominantly discussed in this work, can be experimentally be validated
with sterically stabilized polymethyl methacrylate (PMMA) colloids or silica spheres (Dullens, 2005).

In a later stage of the model development, more advanced improvements can be made. It would be
interesting to investigate the effect of different flow types. It may well be that turbulent flow causes
less coagulation than laminar flow, due to the higher velocities. Moreover, the particle shape and de-
formation can play an important role in cluster formation. The particle potentials vary for different
geometries (Cheng et al., 2018). Lastly, multiple phenomena can be combined. The depletion forces
can be induced at the same time as the shear forces. However, the depletion forces alter in the pres-
ence of shear (July et al., 2012), this has to be taken into account.

46 Towards Simulations on the Dynamics of Colloidal Coagulation



Chapter 10

Acknowledgment

Firstly, I would like to thank Remco Tuinier and Ivo Roghair for providing me the opportunity to per-
form this project. I always enjoyed our two-weekly meetings. It was very inspiring for me to see your
enthusiasm for the project, especially for new topics not within your own expertise area. Besides the
two-weekly meetings, you always made room for me in your schedule if I had a question, I appreciate
this very much, knowing how busy you are.

In addition, the return of Mark Vis from Lyon has been very valuable for me. Since he came back,
he has been a great help in the proceeding of my project. He even became a permanent member of
the meetings with Remco and Ivo. I have enjoyed our discussion on data interpretation and learned
a lot from your experience with LAMMPS.

Furthermore, I have always felt very welcome in the SPC group. In the group is a right balance between
fun and work, which is a nice environment to work in. The critical questions asked in theory group
meetings and Friday afternoon meetings have always been very much appreciated. Especially, I would
like to thank SPC members Álvaro González García and Mark Vis, who helped to develop the Mathem-
atica scripts that has been used to fit the n-tails Yukawa potential. Another valued (ex)-SPC member
is my colleague from the ’Bollenbak’, Max Schelling. We have always had a pleasant atmosphere in
our office, it was unfortunate that it ended so abruptly with introduction of COVID-19.

Lastly, I would like to thank my family and friends. The daily tea-breaks with Nikolaj, Luuk, and
Thomas were the moments that I could charge up for the rest of the day and I am happy that we
proceeded the breaks even in an online setting. Edith, Stefan, Lotte, and Lennard are closest to me.
They always gave me confidence by telling me that they are proud of me, no matter what the final
result is.

Towards Simulations on the Dynamics of Colloidal Coagulation 47





CHAPTER 10. ACKNOWLEDGMENT

Towards Simulations on the Dynamics of Colloidal Coagulation 49



List of Symbols

Abbreviations

HS Hard sphere

LJ Lennard-Jones

MHS Mie hard sphere

MSD Mean square displacement

RAM Random access memory

Greek symbols

α Collision efficiency

δ Width of the attractive well m

ε Minimum energy of a LJ potential J

γ Damping constant s

κ−1 Screening length m

µ Fluid viscosity kg m−1 s−1

φ Colloid volume fraction

σ Diameter solvent particle m

τ Stickiness parameter

Latin symbols

A Hamaker constant J

a Particle radius m

B2 Second virial coefficient m3 mol−1

d Particle diameter m

D0 Ideal diffusion coefficient m2 s−1

Ds Self-diffusion coefficient m2 s−1

F Force N

h Interparticle surface distance m

kB Boltzmann constant m2 kg s−2 K−1
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m Particle mass kg

N Number of particles

p Position coordinate

r Interparticle centre distance m

T Temperature K

t Time s

U Potential energy J

V Wall velocity m s−1

v Particle velocity m s−1

vc Volume of a colloid m3

v f Fluid velocity m s−1
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Appendix A

Example input script

In this appendix one of the input scripts is given as an example. This input script is used to perform a
simulation for hard sphere colloidal particles of size 14σ with implicit solvent dynamics.

# Sets respectively the units, the quantities coupled to the particles,
# and the number of dimension of the simulation.
units lj
atom_style sphere
dimension 3

# Creates the simulation box and indicates the number of particle
# types in the system.
region box block 0 524 0 524 0 524
create_box 1 box

# Input of colloidal particles
read_data c_inp.000.d14 add append

# Set the initial velocity
velocity all create 1.0 3344508

# Sets the properties of the colloids and puts all particles of type 1
# in one group.
set type 1 mass 9
set type 1 diameter 14
group colloid type 1

# Determines how and when the neigbourlist is built and how it is
# communicated between the processors.
neighbor 1 multi
neigh_modify delay 0
neigh_modify one 10000
comm_modify mode multi

###------------------ Potentials and time integration ---------------
# Set the pair interaction
pair style MHS 15
pair_coeff 1 1 1.0 1.0 14.0 14.0

# Set the time integration, by choosing the ensemble and thermostat
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APPENDIX A. EXAMPLE INPUT SCRIPT

fix 1 all nve
fix 2 all langevin 1.0 1.0 7500.0 9234987

###----------------------------- Output -----------------------------
dump 1 all atom 1000 dump.OvitoT1D14
dump dmp2 colloid custom 1000 dump*.Matlab id x y z vx vy vz
dump dmp2 pad 9
thermo_style custom step time etotal epair e kin press vol
thermo 1000

###------------------------------ run ------------------------------
timestep 0.001
run 30000000
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Appendix B

Lennard-Jones units

In the Lennard-Jones units, all quantities are unitless. There are three fundamental quantities; σ, ε,
and m . These quantities are set to 1. All other quantities are multiples of those three. By chosing
specific values forσ, ε, and m , all units can be converted to real units. The LJ units as they are defined
in LAMMPS are shown below (Sandia Corporation, 2020).

Quantity Real unit LJ unit Simplified LJ unit
Mass kg m
Distance m σ
Energy J ε

Time s
p

mσ2/ε t ∗

Velocity m/s
p

ε/m v ∗

Force N ε/σ f ∗

Temperature K ε/kB T ∗

Pressure Pa·s ε/σ3 p ∗

Dynamic viscosity µ ετ/σ3 µ∗

Density ρ m/σ−3 ρ∗

Diffusion coefficient m2/s
p

σ2ε/m D ∗
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Appendix C

Box Length for a square simulation box

In this appendix the box lengths are listed for a cubic simulation box. Furthermore, the mass density
as function of the volume fraction is given.

Number of particles
Colloid diameter [σ] 12 100 1000
14 76 153 330
16 86 175 330
18 97 197 424
20 108 219 471

Table C.1: The box length inσ for a cubic box. The density is kept constant at 4 %vol. The number of
particles is varied.

Volume fraction colloids
Colloid diameter [σ] 1 % 2 % 3% 4% 5% 6% 7%
14 524 416 363 330 306 288 274
16 599 475 415 377 350 329 313
18 673 534 467 424 394 371 391
20 748 594 519 471 438 412 391

Table C.2: The box length inσ for a cubic box. The box contains 1000 particles and the volume density
of those particles is varied.

Volume fraction colloids 1% 2% 3% 4% 5% 6% 7%
Mass density 6.26e-5 1.24e-4 1.88e-4 2.51e-4 3.13e-4 3.76e-4 4.38e-4

Table C.3: The colloidal mass density of the system as a function of the colloid volume fraction.
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Appendix D

The radial distribution function of the
attractive hard sphere Yukawa
potential
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(a) The binned version of the theoretical radial distribution
function.
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Figure D.1: The binned radial distribution functions depending on the range of attraction. Bin-
size=0.011.
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Appendix E

Minimization methods for the Yukawa
fitting

The Yukawa fitting is performed with four different minimization tools. These tools are all incorpor-
ated in Mathematica (Wolfram, 2020). In this appendix these tools are shortly explained. Futhermore,
in the tables the computation times and minimized errors are listed for the different tools. These fit-
tings are performed to recreate the depletion potential for a colloid-to-depletant ratio of 100.

RandomSearch
This algorithm generates a population of random starting points and performs a local optimization
from each starting point to converge to a minimum.

DifferentialEvolution
This algorithm is a simple stochastic function minimizer. During each iteration a population of points
is generated. The new points are compared to the points of the old iteration. If the function value is
lower with the new point value, the old one is replaced. In case the function values in the old and new
populations, as well as the distance between the new best point and the old best point are below a set
tolerance, the process is converged.

SimulatedAnnealing
Like RandomSearch, this algorithm uses multiple starting points. Every iteration a new point is gen-
erated. This point is in the neighborhood of the previous point. If the new point is lower than the
current best point, the best point is replaced. In case it is not smaller the old point is replaced with a
probability e b . In which b is the boltzmann exponent.

NelderMead
This algorithm is a direct search method. For a function with n variables, a set of n+1 points forming
vertices of a polytope is created. The points are ordered based on magnitude of the function value.
The point with the highest function value is replaced. This continues in the further iterations. When
the best function values in the new and old polytope and the distance between the new and best point
are below the tolerance, the process is converged.
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APPENDIX E. MINIMIZATION METHODS FOR THE YUKAWA FITTING

Fitting method RandomSearch DifferentialEvolution SimulatedAnnealing NelderMead
2 tails standard deviation 0.055 0.094 0.094 0.032

computation time 0:39 0:05 0:04 0:07
3 tails standard deviation 0.032 0.067 0.094 0.032

computation time 3:20 0:13 0:06 0:07
4 tails standard deviation 0.020 0.067 0.094 0.055

computation time 10:41 0:18 0:08 0:15
5 tails standard deviation 0.016 0.027 0.067 0.494

computation time 27:54 0:40 0:16 0:12
6 tails standard deviation 0.014 0.067 0.032 0.170

computation time 55:17 0:33 0:36 0:12

Table E.1: The minimized error and computation time for four minimization methods. The fitting is
performed on a depletion potential with q=0.01.
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Appendix F

Fitted Yukawa parameters

tail 1 tail 2 tail 3 tail 4 tail 5
depletant-to-colloid
ratio (q)

A κ A κ A κ A κ A κ

0.1 1145.03 21.07 -4337.26 30.13 -143.68 15.18 -1731.21 53,80 4955.80 39.27
0.02 967.11 21.75 -950.08 13.35 497.55 9.48 -120.97 7.54 -444.89 31.54
0.01 -223.78 7.55 504.17 5.65 -528.02 3.79 -62.37 2.34 295.22 2.91

Table F.1: The Yukawa parameters fitted to the depletion potential for a 5 summed Yukawa potentials.
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Figure F.1: The fitted 5-tails Yukawa potentials with the corresponding depletion potential.

64 Towards Simulations on the Dynamics of Colloidal Coagulation


	Contents
	Introduction
	Theoretical background
	Emulsion polymerization
	Coagulation mechanisms
	Length scales
	Colloidal diffusion

	Technical background
	Input script structure
	Calculating the inter-particle forces
	Pair styles
	Ensembles
	Timestep analysis

	Modeling the solvent dynamics
	Langevin dynamics
	Tuning the solvent dynamics
	Beyond the hard sphere particle interactions

	Polydispersity
	Explicit depletant particles
	Reproducing the depletion potential
	Simulating the Yukawa depletion potential

	Shear
	Moving rough wall
	External force

	Discussion
	Conclusions
	Outlook
	Acknowledgment
	Bibliography
	Appendix
	Example input script
	Lennard-Jones units
	Box Length for a square simulation box
	The radial distribution function of the attractive hard sphere Yukawa potential
	Minimization methods for the Yukawa fitting
	Fitted Yukawa parameters

