
 Eindhoven University of Technology

MASTER

Condition-based maintenance policies using hidden Markov models

Klaasse, B.

Award date:
2020

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/685c81e3-437e-4d67-9a37-4515c9d5d9da

EINDHOVEN UNIVERSITY OF TECHNOLOGY

MASTER THESIS

Condition-based maintenance policies
using hidden Markov models

Author:
Bo KLAASSE

Supervisor:
Dr. S. KAPODISTRIA
Dr. J.W. PORTEGIES

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

in

Industrial and Applied Mathematics

July 20, 2020

mailto:bo.klaasse@live.nl

iii

Acknowledgements
First and foremost, I would like to thank my supervisors Stella Kapodistria and Jim
Portegies for giving me the opportunity to work on this project and their help along
the way. They have helped me in a great many ways and under their guidance I have
grown both as a mathematician and a communicator. In particular, I am grateful for
the many valuable and interesting discussions we have had throughout this project,
which often lasted for hours.

My sincere thanks goes to Marko Boon, who is not only part of my master thesis
committee but also gave me the amazing opportunity to write a paper about my
internship in 2019. I would also like to thank Rik Timmerman for travelling with
me to a conference in Milan to present this paper and his vital role in the writing
process.

I would like to express my sincere gratitude to Onno Boxma, who was the supervisor
of my bachelor thesis and sparked my interest in stochastic operations research.

Last but not least, I would like to thanks my family and friends for their support
through the years. My special thanks are extended to the friends who suffered
through reading earlier versions of this thesis and whose inputs have made it easier
to read.

v

EINDHOVEN UNIVERSITY OF TECHNOLOGY

Abstract

Department of Mathematics and Computer Science

Master of Science

Condition-based maintenance policies using hidden Markov models

by Bo KLAASSE

Objective: Motivated by the large financial burden of maintenance costs, we study
the use of multivariate Gaussian hidden Markov models for cost-sensitive condition-
based maintenance policies. We consider 5 simulated scenarios of deteriorating com-
ponent, where, at discrete epochs, one can either replace the component or do noth-
ing. Our goal is to determine a policy that minimizes the average cost per time unit.

Method: Our proposed method can be split into two parts: 1. estimating the pa-
rameters of the hidden Markov model (HMM) based on monitoring data; 2. for-
mulating and solving the partially observable Markov decision process (POMDP).
The parameters of the HMM are estimated using the Baum-Welch algorithm and the
POMDP is solved with approximate point-based value iteration (based on the ex-
pected total discounted cost). We test the resulting policy, as well as POMDP-based
heuristics such as the QMDP policy (which chooses action based on the state-action
value function of the MDP), in a statistically identical environment. In addition, we
address several well-known issues of HMMs in maintenance, such as choosing the
optimal number of states.

Results and insights: Our numerical experiments indicate that multivariate Gaus-
sian HMMs can produce policies that have an average cost that is between 1% and
15% higher than the average cost of the optimal threshold policy. Additionally, we
provide results that indicate that the performance of the POMDP policy is influenced
by the number of states of the HMM and that even a HMM with 3 component states
and 1 failure state can produce decent overall results (that is, at most 4% higher than
the average cost of the POMDP policy with the optimal number of states). We also
show that, in our setting, the performance of the POMDP policy is comparable with
the QMDP policy.

Committee members:
Dr. S. KAPODISTRIA

Dr. J.W. PORTEGIES

Dr. M.A.A. BOON

Keywords:
Condition-based maintenance, Hidden Markov models, Partially observable Markov
decision processes, Markov decision processes, Monitoring data, Maintenance poli-
cies, Degradation process simulation

vii

Contents

Nomenclature ix

1 Introduction 1
1.1 Motivation for the study . 1
1.2 Organization of the report . 3

2 Background 5
2.1 Related work . 5
2.2 Setting . 6
2.3 Simulations . 9

3 Hidden Markov Models 15
3.1 Hidden Markov models for component degradation 15
3.2 Literature overview of the EM algorithm and numerical optimization

techniques . 17
3.3 The Baum-Welch algorithm . 18

4 Markov Decision Processes with Partial Information 25
4.1 Markov Decision Processes . 25
4.2 Partially Observable Markov Decision Processes 27

5 Results 39
5.1 Results from the simulations . 39
5.2 Discussion . 46

6 Conclusions and outlook 49

A Additional proofs 51
A.1 The Banach Fixed-Point theorem . 51
A.2 Convexity of the ‘do maintenance’ region 53

Bibliography 55

ix

Nomenclature

K Number of features of the monitoring data - page 7
N Number of cycles in the monitoring data/training

data - page 7
nj Length of cycle j of the monitoring data/training

data - page 7
j Specific cycle of the monitoring data/training data

- page 7
t Sequence of sampling times of the monitoring

data/training data - page 7
o Sequence of observations of the monitoring

data/training data - page 7
o(j) Observations sequence of cycle j of the monitoring

data/training data - page 7
t(j) Sampling time sequence of cycle j of the monitor-

ing data/training data - page 7
SX State space of the degradation process - page 8
SO State space of the observation process - page 8
FO Observation that uniquely defines the failure state

- page 8
T Discrete set of decision epochs - page 8
A Discrete set of actions - page 8
cpm Cost of preventive maintenance - page 8
ccm Cost of corrective maintenance - page 8
π Condition-based maintenance policy - page 8
Xt Value of the degradation process at time t - page 8
Ot Value of the observation process at time t - page 8
Zt State of Markov chain that describes the degrada-

tion process of the component at time t - page 15
TZ Transition matrix of the Markov chain that de-

scribes the degradation process of the component
at time t - page 15

SZ State space of the Markov chain that describes the
degradation process of the component - page 15

ν Initial state distribution of the Markov chain that
describes the degradation process of the compo-
nent - page 15

θ Set of parameters of a HMM - page 15
ω Conditional distribution functions of the observa-

tions of a HMM - page 15
z Makov chain state sequence of the monitoring

data/training data - page 16

x

z(j) Markov chain state sequence of cycle j of the mon-
itoring data/training data - page 16

FZ State of the Markov chain that corresponds to
a failed component (failure state/state m + 1) -
page 16

m Number of non-failure states of the Markov chain
that describes the degradation process of the com-
ponent - page 16

TM Transition matrix of an MDP - page 26
RZ Immediate cost function - page 26
γ Discount rate - page 26
π∗M Optimal policy of an MDP - page 26
vπ

M Value function of an MDP with policy π - page 27
v∗M Optimal value function of an MDP - page 27
q∗M Optimal state-action function of an MDP - page 27
Ω Probabilistic observation model of a POMDP -

page 28
ŜO Discretized tate space of the observation process -

page 28
v Number of discretized observations per feature -

page 29
Ht History available at decision epoch t in a POMDP

framework - page 29
bt (z) Element of the belief state vector bt at time t -

page 29
B Belief space - page 29
TB (b, a, o) Belief state update: in belief b, we took action a

and saw observation o - page 30
vπ

n (b) Value function of an n-stage POMDP with policy
π and initial belief b - page 31

RB The immediate cost function for POMDPs -
page 31

D Dynamic programming operator of POMDPs -
page 31

Ωa
b (o) Probability observing o at time t, given we took

action a at time t− 1 in belief state b - page 31
v∗n Optimal value function of an n-stage POMDP -

page 31
αi

n i-th α-vector of an n-stage POMDP - page 32
α̂n Set of all α-vectors of an n-stage POMDP - page 32
ez Zero vector, of appropriate size, with only at index

z the element 1 - page 32
αn Parsimonious set of α-vectors of an n-stage

POMDP - page 33
v∗ Optimal value function of an infinite-horizon

POMDP - page 34
backup Backup operator - page 34
α̃n Set of α-vectors that describe the approximate op-

timal value function after n iterations - page 35
B̃ Proxy belief space - page 35

xi

D̃ Randomized dynamic programming operator for
POMDPs - page 35

πMLS Policy of the MLS heuristic - page 37
πQMDP Policy of the QMDP heuristic - page 37

xiii

Acronyms and abbreviations

AIC Akaike information criterion

AICc Corrected Akaike information criterion

CBM Condition-based maintenance

EM Expectation-maximization

HMM Hidden Markov model

MDP Markov decision process

MLS Most likely state

PMF Probability mass function

POMDP Partially observable Markov decision process

QMDP Q-values Markov decision process

RUL Remaining useful lifetime

Exp Exponential distribution

Unif Uniform distribution

1

Chapter 1

Introduction

Maintenance costs can be a significant cost burden, as these costs can range between
15 to 60 percent of the cost of goods produced [29]. Several different maintenance
programs exist, such as corrective maintenance, which is the most expensive [29].
This approach, where a component is replaced upon failure, was common before
the 1960s, but has been gradually complemented by an approach where mainte-
nance is performed before a failure occurs [19], known as preventive maintenance.
However, performing unnecessary and excessive preventive maintenance is costly
in its own right, as it is believed that one-third of the money spent on maintenance
in the United States was unnecessary/wasted [49]. Due to rapid technological de-
velopment, the cost of preventive maintenance has increased to the point that more
efficient solutions are required, such as condition-based maintenance (CBM), where
maintenance actions are recommended based on collected information [21]. In this
study, we propose a multivariate Gaussian hidden Markov model for condition-
based maintenance policies.

1.1 Motivation for the study

A hidden Markov model (HMM) is a bivariate discrete-time stochastic process, that
consists of an observable process and an unobservable Markov chain. This unob-
servable Markov chain can be seen as the latent component state process and could
serve as a basis for a health index, which makes HMMs quite suitable for industrial
applications [9]. In particular because, in practice, the latent component state is often
not continuous but jumps between different states [52].

Initially, HMMs were used in CBM due to their success in speech processing and
the parallel between speech processing problems and CBM [6]. Also their ease of
interpretation in comparison to black-box models (such as artificial neural networks)
[1], could have increased their attractiveness.

Another advantage is the existence of efficient algorithms, such as the Baum-Welch
algorithm, to estimate the parameters of a HMM (given some training data). In
particular, due to the flexibility of the Baum-Welch algorithm, which is an instance
of the more general Expectation-maximization (EM) algorithm, one can incorporate
specific characteristics of the degradation process. For example, the degradation of
a component is typically subject to certain constraints (such as monotone degrada-
tion), see e.g. [52], and the Baum-Welch algorithm can easily be adjusted to account
for such behaviour, which leads to more robust estimation.

Our choice of multivariate Gaussian HMMs comes from the fact that usually multi-
ple, strongly correlated, sensors are used to monitor a component’s condition, where

2 Chapter 1. Introduction

each sensor contains only partial information of component state [52]. In such a set-
ting, assuming the observations to be samples from a multivariate Gaussian distribu-
tion (whose parameters depend on the state of the component), could be reasonable.
In addition, the parameters of the multivariate Gaussian distributions can efficiently
be estimated using the Baum-Welch algorithm.

As a result, there have been numerous studies that use HMMs for diagnostics (such
as fault detection) and prognostics (such as predicting remaining useful lifetime, also
known as RUL), see e.g. [1], [17] and [52].

HMMs can also be used as a basis for cost-sensitive decision-making under uncer-
tainty, by including actions and costs. The resulting problem can be modelled as a
partially observable Markov decision process (POMDP), which could be solved to
obtain a cost-optimal policy.

Despite their strong mathematical foundation and suitability to solve decision-making
under uncertainty problems, the use of POMDPs for maintenance problems is, pos-
sibly due to the limitation that solving a POMDP to optimality is only possible for
small problems, not widely recognized [33]. However, so-called point-based value it-
eration algorithms (which can be used to approximate the solution of a POMDP),
have shown promising results in maintenance applications (see [34]).

Our goal is to investigate whether such a method can produce near-optimal mainte-
nance policies. To this end, we estimate the parameters of a HMM and formulate a
POMDP, based on a discretization of the observation space, which we solve, based
on the total expected discounted cost, with a randomized point-based value iteration
algorithm.

Instead of using field data, we rely on simulated degradation processes. The advan-
tage of this is threefold:

1) We have full control over the signal-to-noise ratio;

2) We bypass the often time consuming and non-trivial task of data processing (i.e.
data cleaning and data analysis);

3) We have access to a statistically identical environment in which we can test the
effectiveness of the method.

The latter point shows where our study complements existing research. Indeed,
since most papers study the use of POMDP maintenance models using field data,
it is difficult to properly assess the quality of the resulting policy. Because our data
is simulated, we can use the simulation to construct an environment in which the
resulting POMDP policy can be tested and compared to, for example, the optimal
threshold policy. This also allows us to investigate the performance of POMDP-
based heuristics and see whether the computational burden of (approximately) solv-
ing a POMDP leads to significantly better policies. Lastly, we address the well-
known issue of choosing the optimal number of states of the HMM (see e.g. [1]).

Our research questions read as follows:

Main question:
Can multivariate Gaussian HMM be used to construct a POMDP policy that is close

to the optimal threshold policy, in terms of average cost?

Sub-question 1:

1.2. Organization of the report 3

How do POMDP-based heuristics compare to the POMDP policy in terms of
average cost?

Sub-question 2:
How does the average cost of POMDP-based policies depend on the number of

states of the HMM?

1.2 Organization of the report

The remainder of this report is structured as follows. In Chapter 2 we provide some
background material; we discuss several related papers, mathematically describe
our setting/assumptions and introduce the five simulations that we consider. Sub-
sequently, we formally introduce HMMs in Chapter 3 and illustrate how we use the
Baum-Welch algorithm to estimate the parameters of the HMM, whilst accounting
for our assumptions. In Chapter 4, we introduce the POMDP and discuss the ap-
proximate value iteration algorithm that we use to solve the POMDP. We also intro-
duce two POMDP-based heuristics. In Chapter 5 we present and discuss the results
of our study. Lastly, in Chapter 6 we present our conclusions, state some limitations
of our study and suggest several directions for future research.

5

Chapter 2

Background

2.1 Related work

2.1.1 A collection of HMMs

In [1], HMMs are used both for diagnostics and prognostics. It is explained how
HMMs can be used to classify the state of a component by training a collection of
HMMs (one for every state – say, one for the ‘good’ state, one for the ‘minor defects’
state and one for the ‘maintenance required’ state). Subsequently, upon receiving
monitoring data from a component whose state is unknown, the log-likelihood of
each HMM can be calculated and the most likely state of the component can be
identified. However, this approach requires the training data to be labelled.

The issue of selecting a suitable number of component states is also discussed. The
authors present two options to solve this problem: (1) use domain-knowledge to de-
termine a reasonable number of component states; (2) use cross-validation methods
to derive the optimal number of component states.

The authors also provide a method for predicting the RUL using the estimated col-
lection of HMMs. Specifically, say we have monitoring data of N cycles in total and
the number of component states is m. This leads to a total of N vectors with each
m − 1 transition times. The fundamental idea is to assume that these vectors fol-
low some multivariate distribution (say a multivariate Gaussian distribution). By
subsequently estimating the parameters of this distribution, the transition times can
be estimated. In particular, using the conditional distribution one can construct es-
timates and confidence intervals for future transition times. For example, say we
know when the component transitioned from the ‘good’ state to the ‘minor defects’
state, using the conditional distribution we can estimate the time the component
enters the ‘maintenance required’ state.

2.1.2 Estimating the component state using unlabelled monitoring data

In [17], HMMs are used to estimate the current and future component state. To
this end, the authors use training data (i.e. monitoring data of multiple completed
cycles) to estimate the parameters of the HMM. Specifically, for each cycle in the
training data, each (continuous) feature is split into m categories, using uniform dis-
cretization. The component states are defined to be exactly these m categories.

The authors study a gradual degradation process and therefore assume that the com-
ponent can only transition to the right-neighbouring state (i.e. the component can
either remain in state i, or transition to state i + 1). The optimal number of states of

6 Chapter 2. Background

the HMM is determined by investigating the mean squared error of the component
states using cross-validation.

The monitoring data of a new, uncompleted, cycle is multidimensional, continuous
and unlabelled. The authors assume that this monitoring data is a sequence of mul-
tivariate Gaussian random variables, whose parameters depend on the component
state, and use the labelled training data to estimate these parameters. This allows for
estimating the state of the component, based on a new stream of monitoring data.
Using the temporal model (i.e. the estimated Markov chain) and a current estimate
of the component state, this method is extended to also predict the future component
state.

2.1.3 Adjusting the Baum-Welch algorithm

In [52], the use of HMMs for RUL prediction and cost-sensitive decision-making
(using a POMDP) is investigated. The authors assume a ‘left-to-right’ transition ma-
trix (i.e. an upper triangular transition matrix), where the failure state is the only
absorbing state in the system. The initial state and the failure state are assumed to
be directly observable. The monitoring data is assumed to be generated by a mul-
tivariate Gaussian distribution, whose parameters depend on the component state.
Furthermore, the monitoring data is assumed to be monotone.

The parameters of the HMM are estimated using a modification of the commonly
used Baum-Welch algorithm. However, this modification largely happens after per-
forming an iteration of the traditional Baum-Welch algorithm; at each iteration the
parameters of the HMM are estimated and subsequently the left-to-right structure
of the transition matrix is enforced by a ‘projection-step’ (where the estimated tran-
sition matrix is mapped to an upper triangular transition matrix) and the states are
ordered based on the estimated means of the multivariate Gaussian distribution (us-
ing majority vote), referred to as the ‘sorting-step’.

The RUL prediction is performed using the expected absorption time for each state
of the Markov chain (i.e. each component state). The RUL prediction for an arbitrary
distribution of component states (e.g. at time t the component state is ‘good’ with
probability 0.7 and ‘minor defects’ with probability 0.3), is obtained by conditioning
on the component state.

It follows from [52] that HMMs can indeed be used to identify the system state,
specifically when the estimation procedure is made more robust by adjusting the
Baum-Welch algorithm based on (reasonable) assumption about the degradation
process. However, determining the optimal number of states is not trivial. The
authors note that including more states leads to a finer granularity of the compo-
nent state space. However, including more states may also cause different states to
overlap and become indistinguishable. For RUL prediction, the authors note that
including more states leads to better estimates.

2.2 Setting

2.2.1 Condition-based maintenance and monitoring data

In [21] condition-based maintenance is described as the following 3-step procedure:

(i) Collecting data;

2.2. Setting 7

(ii) Data processing;

(iii) Maintenance decision-making.

Collected data can be split into two categories; event data (which describes what
happened, e.g. ‘the oil was changed’) and monitoring data (which contains the ob-
tained measurements from the component). There are three different categories of
monitoring data; value data (e.g. temperature or pressure), waveform data (such as
a vibration signal) and multidimensional data (for example images). Once the data
is collected, data processing is used for cleaning of the data (to account for errors
in the data) and data analysis (e.g. feature extraction). The last step is maintenance
decision-making, in which a maintenance policy is optimized according to a certain
criteria (such as cost).

In this study, we collect data using a simulation of a degradation process. Event
data is not included, although it should be mentioned that, in practice, event data
is thought to be equally important as monitoring data for condition-based mainte-
nance [21]. Furthermore, we restrict ourselves to only analysing value data. As a
result, there is no need for feature extraction.

The (simulated) monitoring data contains noisy observations of K features that are
related to the condition of the component. This can be interpreted as monitoring data
gathered by K correlated imperfect sensors. The monitoring data contains a total of
N perfect-to-failure cycles, where the first sampling of a cycle occurred immediately
after the installation of the component (when the component is in a perfect condi-
tion) and the last sampling of a cycle occurred immediately after the component has
failed. Each cycle is statistically identical.

The monitoring data of cycle j ∈ {1, 2, ..., N}, can be seen as a multidimensional
time series of length nj , containing both the observations o(j) and the corresponding
sampling times t(j), where

o(j) :=
(

o(j)
0 , ..., o(j)

nj

)
t(j) :=

(
t(j)
0 , ..., t(j)

nj

)
.

(2.1)

We emphasize that 0 = t(j)
0 ≤ t(j)

1 ≤ ... ≤ t(j)
nj and that t(j)

nj corresponds to the exact
moment of failure.

The entire monitoring data can be described by the tuple (o, t), where o denotes
observation sequences and t denotes the sampling time sequences, i.e.

o :=
(

o(1), ..., o(N)
)

and t :=
(

t(1), ..., t(N)
)

. (2.2)

2.2.2 Problem statement and assumptions

The monitoring data (o, t) is generated by simulating N cycles of a scenario. Such a
cycle/scenario can be described by four elements:

1. The sampling regime: The sampling regime denotes the distribution of the
inter-sampling time, i.e. the time between samplings. We emphasize that re-
gardless of the sampling regime, the failures are ‘self-announcing’; consider
sampling times (t0, ..., tn), then t0 = 0 denotes the first sampling (when the

8 Chapter 2. Background

component is in a perfect condition) and tn denotes the sampling that occurs
at the exact moment of failure.

2. The degradation process: The degradation process {Xt ; t ≥ 0} is the mono-
tonically increasing stochastic process that describes the degradation of the
component and induces failures, where Xt ∈ SX and SX := R denotes the
degradation space.

3. The observation process: The observation process {Ot ; t = t0, ..., tn} is the
stochastic process that generates the monitoring data, based on the degrada-
tion process. That is, it corresponds to noisy and/or partial measurements of
the degradation process at sampling times. We emphasize that Ot ∈ SO for
t = t0, ..., tn, where SO denotes the observation space, and Otn := FO, where
FO denotes the observation that uniquely characterizes a failed component.

4. The failure mechanism: The failure mechanism is described as the first pas-
sage time of the degradation process to the failure threshold ξ ∈ SX.

These four elements of a cycle/simulation can be used to construct a statistically
identical environment in which a maintenance policy can be tested. This means that
we extend the simulation to include actions and costs. This leads to a discrete set of
decision epochs T , according to the sampling regime, where at each decision epoch
t ∈ T an action from the action space A can be chosen. We define this action space
A as follows:

A := {‘do nothing’,‘do maintenance’} , (2.3)

denoted by 0 and 1 respectively.

In case action 0 is chosen, the cycle continues and the component may fail before
the next decision epoch. If the component failed, it is immediately correctively re-
placed with a new, perfect, component, at cost ccm. In case action 1 is chosen, the
component is immediately preventively replaced with a perfect component, at cost
cpm. Performing maintenance (be it preventively or correctively) immediately ends
the current cycle. This implicitly assumes that the repair time is zero, or negligible
in comparison to the inter-sampling time.

The choice between doing nothing (action 0) and replacing the component (action 1)
is made by a policy π. This policy is map between a space B and the action space
A. This space B is the space on which the POMDP and the POMDP-based heuristics
operate.

For a policy π, the expected duration of a cycle is finite and can be written as

Eπ [CL] := Eπ
[
min

{
Tpm, Tfail

}]
, (2.4)

where Tpm denotes the time until preventive maintenance is performed and Tfail
denotes the time until the component fails.

The expected cost per cycle of a policy π can simply be written as

Eπ [CC] := cpmPπ
(
Tpm < Tfail

)
+ ccmPπ

(
Tpm ≥ Tfail

)
. (2.5)

The average cost (per time unit) of a policy π is given by Eπ [CL] /Eπ [CC].

2.3. Simulations 9

2.2.3 Assumptions

Our assumptions can be summarized as follows:

(i) We assume that the degradation process is monotonically increasing and that
the average duration of a cycle is finite;

(ii) We assume that the Markov chain of the component state has an upper-triangular
transition matrix;

(iii) We assume that the component is always in a perfect condition at the start of a
cycle;

(iv) We assume that the failures are obvious, i.e. the failure state is uniquely identi-
fied by a single observation;

(v) We assume that the failures are self-announcing, i.e. once the component fails,
the cycle immediately ends;

(vi) We assume that the repair time is zero, or negligible in comparison to the inter-
sampling time, i.e. once a cycle has ended, the next cycle immediately starts;

(vii) We assume that the error induced by the observation process is normally dis-
tributed with mean zero.

2.3 Simulations

We study a total of five scenarios with two different types of degradation: Markovian
and autoregressive. The Markovian degradation is simulated using a compound
Poisson process and the autoregressive degradation is simulated using the running
maximum of an autoregressive model with linear trend.

The compound Poisson process can be used to model damage to a component that
has accumulated over time due to random shocks (see e.g. [47]); the exponen-
tially distributed inter-arrival time of shocks, with mean 1/λ, represents the tem-
poral randomness of shocks and the stochastic size of each shock can be described
by an arbitrary distribution function F. The resulting compound Poisson process
{X (t) , t ≥ 0} can by described as the tuple CP (λ, F) and is given by

X (t) :=
A(t)

∑
i=1

Yi, (2.6)

where A(t) denotes the number of shocks on the interval [0, t] and Yi denotes the

shock sizes (with Yi
iid∼ F).

Since Markovian degradation is not always realistic (see e.g. [35]), we also include an
autoregressive part. To account for both the long-term behaviour and the short-term
fluctuations, we combine a deterministic linear trend model with an autoregressive
model (of order p). The resulting process {Qt ; t ∈ T } is defined as

Qti := ti + φ1Qti−1 + φ2Qti−2 + ... + φpQti−p + ε
φ
ti

, (2.7)

where ti ∈ T , φ :=
(
φ1, ..., φp

)
and ε

φ
ti
∼ N

(
0, σ2

φ

)
.

10 Chapter 2. Background

The corresponding degradation process {Xt ; t ≥ 0} is defined as the running max-
imum of Equation (2.7). Such a degradation process is referred to as AR

(
φ, σ2

φ

)
.

Furthermore, it is common that the degradation process of a component can be di-
vided into different ‘health stages’ (see e.g. [26]). For that reason, we also study
a so-called delay model, where instead of gradual degradation over time, the degra-
dation process can be split into two parts: a healthy stage and an unhealthy stage.
During the healthy stage, the components works perfectly, however, at one point,
the unhealthy stage is entered and the component begins to deteriorate. Essentially,
the degradation process is zero until time T, where T is a random variable described
by an arbitrary distribution function such that E [T] < ∞.

2.3.1 Simulation 1: Noisy Poisson process

1. The inter-sampling time is always 1, except in case of failure;

T := {0, 1, ..., btnc − 1, btnc, tn} , (2.8)

where tn denotes the arrival time of the shock that induces the failure.

2. The degradation process {Xt; t ≥ 0} is a Poisson process (i.e. a compound
Poisson process where each shock has size 1), with arrival rate 1.

3. The observation process {Ot; t ∈ T } corresponds to noisy measurements of the
degradation process, i.e.

Ot := Xt + εt ∀t ∈ T , (2.9)

where εt
iid∼N

(
0, σ2

ε = 0.2
)
.

4. The failure mechanism is the first passage time of the degradation process to
the failure threshold ξ = 10, i.e.

tn := inf
t≥0
{Xt ≥ 10} . (2.10)

2.3.2 Simulation 2: Autoregressive degradation

1. The inter-sampling time is always 1;

T := {0, 1, 2, ..., n− 1, n} . (2.11)

2. The degradation process {Xt; t ≥ 0} is described by

AR
(

φ = (0.35, 0.35, 0.125, 0.125) , σ2
φ = 1

)
. (2.12)

3. The observation process {Ot; t ∈ T } corresponds to noisy measurements of the
degradation process, i.e.

Ot := Xt + εt ∀t ∈ T , (2.13)

where εt
iid∼N

(
0, σ2

ε = 0.5
)
.

2.3. Simulations 11

4. The failure mechanism is the first passage time of the degradation process to
the failure threshold ξ = 10, i.e.

tn := inf
t≥0
{Xt ≥ 10} . (2.14)

2.3.3 Simulation setup 3: Memoryless sampling times

1. The inter-sampling time is exponentially distributed with mean 1 (except in
case of failure);

T := {t0, t1, ..., tn} , (2.15)

where ti − ti−1 ∼ exp (1) for i = 1, ..., n− 1 and tn denotes the exact moment
of failure.

2. The degradation process {Xt; t ≥ 0} is defined as

Xt := 0.3X(1)
t + 0.7X(2)

t , (2.16)

where X(1)
t ∼ AR

(
φ = (0.6, 0.2, 0.1) , σ2

φ = 1
)

and X(2)
t ∼ CP (λ = 1, F ∼ unif (0, 1)).

3. The observation process {Ot; t ∈ T } corresponds to noisy measurements of the
Markovian part of the degradation process, i.e.

Ot := X(2)
t + εt ∀t ∈ T , (2.17)

where εt
iid∼N

(
0, σ2

ε = 0.2
)
.

4. The failure mechanism is the first passage time of the degradation process to
the failure threshold ξ = 10, i.e.

tn := inf
t≥0
{Xt ≥ 10} . (2.18)

2.3.4 Simulation setup 4: Two health stages

1. The inter-sampling time is exponentially distributed with mean 1 (except in
case of failure);

T := {t0, t1, ..., tn} , (2.19)

where ti − ti−1 ∼ exp (1) for i = 1, ..., n− 1 and tn denotes the exact moment
of failure.

2. The degradation process {Xt; t ≥ 0} is defined as

Xt := 0.5X(1)
t + 0.25X(2)

t + 0.25X(3)
t , (2.20)

where X(1)
t ∼ AR

(
φ = (0.6, 0.2, 0.1) , σ2

φ = 1
)

,

X(2)
t ∼ CP (λ = 1, F ∼ exp (1)),

X(3)
t ∼ CP (λ = 2, F ∼ exp (2)) and

the deterioration start at time T ∼ exp (5).

12 Chapter 2. Background

3. The observation process {Ot; t ∈ T } corresponds to noisy measurements of the
autoregressive part of the degradation process, i.e.

Ot := X(1)
t + εt ∀t ∈ T , (2.21)

where εt
iid∼N

(
0, σ2

ε = 1
)
.

4. The failure mechanism is the first passage time of the degradation process to
the failure threshold ξ = 15, i.e.

tn := inf
t≥0
{Xt ≥ 15} . (2.22)

2.3.5 Simulation setup 5: Correlated sensors

1. The inter-sampling time is exponentially distributed with mean 1 (except in
case of failure);

T := {t0, t1, ..., tn} , (2.23)

where ti − ti−1 ∼ exp (1) for i = 1, ..., n− 1 and tn denotes the exact moment
of failure.

2. The degradation process {Xt; t ≥ 0} is defined as

Xt := 0.3X(2)
t + 0.7X(3)

t + 0.3X(4)
t + 0.7X(1)

t , (2.24)

where X(1)
t ∼ AR

(
φ = (0.4, 0.3, 0.2) , σ2

φ = 1
)

,

X(2)
2 ∼ AR

(
φ = (0.6, 0.2, 0.1) , σ2

φ = 1
)

,

X(3)
t ∼ CP (λ = 1, F ∼ exp (1)),

X(4)
t ∼ CP (λ = 2, F ∼ exp (2)) and

the deterioration start at time T ∼ N (5, 1).

3. The observation process {Ot; t ∈ T } corresponds to noisy measurements of 2
parts of the degradation process:

Ot :=
(

X(1)
t + ε

(1)
t , X(3)

t + ε
(3)
t

)
∀t ∈ T , (2.25)

where ε
(1)
t , ε

(3)
t

iid∼N
(
0, σ2

ε = 1
)
.

4. The failure mechanism is the first passage time of the degradation process to
the failure threshold ξ = 30, i.e.

tn := inf
t≥0
{Xt ≥ 30} . (2.26)

2.3. Simulations 13

0 4 8 12
samplings t

0

2

4

6

8

10

ob
se

rv
ed

 p
ro

ce
ss

 O
t

observed feature 1

(A)

0 3 6 9
samplings t

0

2

4

6

8

10

de
gr

ad
at

io
n

pr
oc

es
s X

t

degradation cycle 1

0 3 6 9
samplings t

0

2

4

6

8

10

ob
se

rv
ed

 p
ro

ce
ss

 O
t

feature 1 of cycle 1

(B)

FIGURE 2.1: (A) The monitoring data o used for Simulation 1; (B)
Sample path of the degradation process and the observation process

for the first cycle.

0 4 8 12
samplings t

0

2

4

6

8

10

12

14

ob
se

rv
ed

 p
ro

ce
ss

 O
t

observed feature 1

(A)

0 3 6 9
samplings t

0

2

4

6

8

10

de
gr

ad
at

io
n

pr
oc

es
s X

t

degradation cycle 1

0 3 6 9
samplings t

0

2

4

6

8

10

ob
se

rv
ed

 p
ro

ce
ss

 O
t

feature 1 of cycle 1

(B)

FIGURE 2.2: (A) The monitoring data o used for Simulation 2; (B)
Sample path of the degradation process and the observation process

for the first cycle.

0 7 14 21
samplings t

0

2

4

6

8

10

ob
se

rv
ed

 p
ro

ce
ss

 O
t

observed feature 1

(A)

0 7 14 21
samplings t

0

2

4

6

8

10

de
gr

ad
at

io
n

pr
oc

es
s X

t

degradation cycle 1

0 7 14 21
samplings t

0

2

4

6

8

ob
se

rv
ed

 p
ro

ce
ss

 O
t

feature 1 of cycle 1

(B)

FIGURE 2.3: (A) The monitoring data o used for Simulation 3; (B)
Sample path of the degradation process and the observation process

for the first cycle.

14 Chapter 2. Background

0 12 24 36
samplings t

0

5

10

15

20

ob
se

rv
ed

 p
ro

ce
ss

 O
t

observed feature 1

(A)

0 10 20 30
samplings t

0

2

4

6

8

10

12

14

de
gr

ad
at

io
n

pr
oc

es
s X

t

degradation cycle 1

0 10 20 30
samplings t

2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

ob
se

rv
ed

 p
ro

ce
ss

 O
t

feature 1 of cycle 1

(B)

FIGURE 2.4: (A) The monitoring data o used for Simulation 4; (B)
Sample path of the degradation process and the observation process

for the first cycle.

0 10 20 30
samplings t

0

5

10

15

20

ob
se

rv
ed

 p
ro

ce
ss

 O
t

observed feature 1

0 10 20 30
samplings t

0

5

10

15

20

25

ob
se

rv
ed

 p
ro

ce
ss

 O
t

observed feature 2

(A)

0 9 18 27
samplings t

0
5

10
15
20
25
30

de
gr

ad
at

io
n

pr
oc

es
s X

t

degradation cycle 1

0 9 18 27
samplings t

0.0
2.5
5.0
7.5

10.0
12.5
15.0

ob
se

rv
ed

 p
ro

ce
ss

 O
t

feature 1 of cycle 1

0 9 18 27
samplings t

2
0
2
4
6
8

10
12
14

ob
se

rv
ed

 p
ro

ce
ss

 O
t

feature 2 of cycle 1

(B)

FIGURE 2.5: (A) The monitoring data o used for Simulation 5; (B)
Sample path of the degradation process and the observation process

for the first cycle.

15

Chapter 3

Hidden Markov Models

3.1 Hidden Markov models for component degradation

In this section we mathematically define hidden Markov models (HMMs). We assume that
the degradation process of the component can be described by a Markov chain and that the
monitoring data is generated by an observed process, governed by this Markov chain.

A hidden Markov model (HMM) is a bivariate discrete-time stochastic process that
consists of an observable process and an unobservable Markov chain. Although
the idea of a latent Markov chain was already present in the Gilbert-Elliott channel
model (see [18] and [16]), the general idea of a hidden Markov model was proposed
in [2] and subsequently further developed in a series of papers by Baum and various
co-authors. The core assumption is the existence of a latent (or hidden) Markov chain
which governs the distribution of the observations (or emissions). Conform [8], we
use the following intuitive definition of a hidden Markov model:

Definition 1 (Hidden Markov model). A hidden Markov model (HMM) is a bivari-
ate stochastic process {Ot, Zt ; t ∈ TH} where {Ot ; t ∈ TH} is an observed process and
{Zt ; t ∈ TH} an unobserved Markov chain, both defined on the discrete time domain TH :=
{0, 1, ...}.

The unobserved Markov chain is defined on the finite state space SZ and its transition matrix
is denoted by TZ, with elements TZ (z, z′) := P (Z1 = z| Z0 = z) for z, z′ ∈ SZ.

The initial state distribution of the unobserved Markov chain is denoted by ν, where ν (z) :=
P (Z0 = z) for z ∈ SZ.

The observed process is defined on the observation space SO and for the distribution function
of observation Ot, it holds that

FOt (ot|O0 = o0, ..., Ot−1 = ot−1, Z0 = z0, ..., Zt−1 = zt−1, Zt = zt)

= FOt (ot|Zt = zt) ∀ [o· ∈ SO ∧ z· ∈ SZ] .
(3.1)

We characterize the parameters of a HMM by the set θ := {TZ, ω, ν}, where ω
denotes the conditional distribution functions of the observations, as presented in
Equation (3.1), i.e. ω := {FOt (o|Zt = z) ; o ∈ SO, z ∈ SZ}.

Consider the monitoring data of the j-th cycle o(j). We assume that this time-series,
defined on the discrete time domain t(j), is a realization of the observed process of a
HMM with parameters θ. This means that we assume that the underlying Markov
chain describes the degradation process of the component.

16 Chapter 3. Hidden Markov Models

Specifically, for cycle j ∈ {1, 2, ..., N}, we have

o(j) =
(

o(j)
0 , ..., o(j)

nj

)
t(j) =

(
t(j)
0 , ..., t(j)

nj

)
≡
(
0, ..., nj

)
.

(3.2)

Whereas each observation before failure is a K-dimensional numerical value, the
observation at time nj, uniquely characterizes the ‘failure state’, i.e.

o(j)
t ∈ RK for t ∈

{
0, 1, ..., nj − 1

}
o(j)

nj := FO.
(3.3)

Correspondingly, the observation space SO is defined as SO := RK ∪ {FO}.

The Markov chain state space is given by SZ := {1, ..., m} ∪ {FZ}. This means that
we divide the degradation of the component into m + 1 states, where 1 corresponds
to a perfect condition and FZ (≡ m + 1) is the failure state. We restrict ourselves to a
setting where the number of states is an input parameter, i.e. m is given beforehand.

The Markov chain state sequence of cycle j is denoted by

z(j) :=
(

z(j)
0 , ..., z(j)

nj

)
, (3.4)

where z(j)
0 = 1, z(j)

nj := FZ and z(j)
t ∈ {1, ..., m} for t ∈ {0, 1, ..., nj − 1}. Note that the

initial state distribution is therefore known a-priori and given by ν (z) = 1 {z = 1}.

Additionally, since we assumed that the condition of the component does not im-
prove by itself, the state of the Markov chain is non-decreasing over time, i.e.

z(j)
t+1 ≥ z(j)

t for t ∈ {0, 1, ..., nj − 2}. (3.5)

The entire monitoring data and Markov chains state sequences are respectively given
by

o =
(

o(1), ..., o(N)
)

and z :=
(

z(1), ..., z(N)
)

. (3.6)

We assume that the observations before failure are samples from a multivariate
Gaussian distribution, whose parameters depend on the state of the Markov chain.
Specifically, an observation Ot ∈ SO, given the current state of the underlying Markov
chain (say Zt = z 6= FZ), has the following density function:

fOt|Zt (ot| Zt = z) =
exp

(
− 1

2 (ot − µz)
> Σ−1

z (ot − µz)
)

√
(2π)K |Σz|

, (3.7)

where µz ∈ RK and Σz ∈ R(K×K) denote the mean vector and covariance matrix
respectively, in other words Ot| (Zt = z) ∼ N (µz, Σz).

Since the multivariate Gaussian distribution is uniquely defined by the mean vector
and covariance matrix, we write

ω ≡ {µz, Σz}m
z=1 . (3.8)

3.2. Literature overview of the EM algorithm and numerical optimization
techniques

17

3.2 Literature overview of the EM algorithm and numerical
optimization techniques

In this section we motivate our choice for using the EM algorithm/Baum-Welch algorithm
for estimating the parameters of the HMM. We explain the advantages and disadvantages of
this approach and briefly elaborate on other algorithms.

Ideally, one would determine

arg max
θ∈Θ

log f N
O (o; θ) , (3.9)

i.e. the parameters that maximize the likelihood of observing monitoring data o.

However, due to the dependence of the observations on the states of the Markov
chain, no analytical solution to the optimization problem described by Equation (3.9)
is known [24]. In practice, iterative optimization techniques based on either the
Expectation-Maximization algorithm (EM) or numerical optimization techniques (such
as the gradient descent algorithm) are used to estimate the parameters of a HMM
[24]. In both cases, multiple iterations are performed to maximize a likelihood func-
tion.

In this work, we use EM to estimate the parameters of the HMM. The EM algorithm
is an iterative heuristic to find maximum-likelihood estimates for general incomplete-
data problems, proposed in [14]. Incomplete data refers to the implied existence of
two sample spaces (SO and SZ), such that an observation o ∈ SO could be generated
by multiple states z ∈ SZ. The main idea is to translate an incomplete-data problem
to a complete-data problem, whose likelihood has, for many statistical problems, a
nice form [28].

The EM algorithm consists of two steps: the Expectation step (E-step) and the Max-
imization step (M-step). During the E-step, the conditional expectation of the log-
likelihood of the complete-data problem, given the monitoring data and some ini-
tial/previous estimate of the model parameters, is constructed. Subsequently, this
quantity is maximized (M-step) with respect to the model parameters. This proce-
dure is repeated until convergence, resulting in a final estimate of the model param-
eters.

Estimating the parameters of a HMM based on the observations naturally fits the
framework of an incomplete-data problem, as HMMs belong to a subcategory of
incomplete data models (known as missing data models) [8]. In fact, several years
before the publication of [14], the Baum-Welch algorithm was proposed [3], which
is an instance of the more general EM algorithm, specifically for hidden Markov
models.

The main advantages of using the Baum-Welch algorithm (or, equivalently, the EM
algorithm) for estimating the parameters of the HMM are that

(1) the estimated transition matrix is always a stochastic matrix;

(2) it is numerically more robust against poor initialization values or when the model
has a large number of parameters, in comparison to gradient-based techniques
[24];

(3) the likelihood monotonically increases and that convergence to a stationary point
is guaranateed (see [50], where this is shown for the general EM algorithm).

18 Chapter 3. Hidden Markov Models

However, the Baum-Welch algorithm also has some weak points. For example, the
convergence guarantee stated above only implies convergence to the global maxi-
mum of the sample likelihood if the initial parameter estimates are sufficiently close
to the optimum. This means that the algorithm may end up in a local maximum
or get stuck at a saddle point. Though [50] provides some theorems with regards
to this, verifying the theorem’s conditions can be difficult. It is therefore suggested
to try different starting values. Additionally, convergence of the sample likelihood
does not imply convergence of the parameters. It may for example be possible that
the parameters oscillate between two local maxima with the same value.

Another downside of the EM algorithm is its slow convergence [28]. This is particu-
larly the case when the complete data is much more informative than the incomplete
data or when the algorithm is near a solution (in the latter case it converges linearly),
see [12]. Finally, there is no obvious way of assessing the variability of the parameter
estimates, since only point estimates are provided [45].

Standard numerical optimization techniques work with the objective function of the
optimization problem described in Equation (3.9) (i.e. the incomplete likelihood),
and its derivatives, directly [24]. However, obtaining the gradient (and possibly
the Hessian) of the likelihood function generally requires heavy analytical prepara-
tory work and the implementation of these methods may present numerical diffi-
culties, especially when the number of parameters to be estimated is high [12]. For
example, the Newton–Raphson method in practice breaks down because the Hes-
sian often eventually becomes singular [45]. In [8], two important advantages of
gradient-based methods are mentioned. First, they do not require an M-step, mak-
ing these methods desirable in case no simple closed-form solution for the M-step
can be found. Secondly, they converge faster, as they can reach quadratic conver-
gence.

Our choice for the EM-algorithm/Baum-Welch algorithm is motivated by the avail-
ability of exact formulas for performing the M-step in case of multivariate Gaussian
observations. Additionally, the convergence rate is not a major concern for us, as
the computational bottleneck of our approach is solving the POMDP (see Chapter 4)
and not estimating the parameters of the HMM.

3.3 The Baum-Welch algorithm

In this section we explain how, given monitoring data o, the parameters θ of a HMM can
be estimated using the Baum-Welch algorithm [3], which is an instance of the more general
Expectation Maximization algorithm [14]. For a more fundamental discussion of the EM
algorithm in the context of HMMs, the reader is referred to [32] and [8].

Consider the conditional log-likelihood of monitoring data o of an HMM with pa-
rameters θ and Markov chain state sequence z

log f N
O|Z(o| z; θ) =

N

∑
j=1

log f (j)
O|Z

(
o(j)
∣∣∣ z(j); θ

)
, (3.10)

where f (j)
O|Z

(
o(j)
∣∣∣ z(j); θ

)
denotes the conditional likelihood of the j-th cycle.

We introduce the set S∗Z 3 z, which denotes the set of all possible N sample paths
of the Markov chain, with length n1, ..., nj respectively. Based on Equations (3.4)

3.3. The Baum-Welch algorithm 19

and (3.5), we define this set as

S∗Z :=
{

z :
[
z(j)

0 = 1∧ z(j)
nj = FZ ∧

[
z(j)

t+1 ≥ z(j)
t ∀t ∈ {0, 1, ..., nj − 2}

]]
∀j ∈ {1, ..., N}

}
.

(3.11)

The PMF pN
Z (z) of z ∈ S∗Z can be written as

pN
Z (z) =

N

∏
j=1

p(j)
Z

(
z(j)
)

, (3.12)

where p(j)
Z

(
z(j)
)

denotes the PMF of the j-th cycle.

The log-likelihood of the complete-data problem is simply given by

f N
O,Z (o, z; θ) =

N

∏
j=1

[
f (j)
O|Z

(
o(j)
∣∣∣ z(j); θ

)] N

∏
j=1

[
p(j)

Z

(
z(j)
)]

. (3.13)

The incomplete log-likelihood can, using the law of total probability, be written in
terms of the complete log-likelihood. Additionally, by introducing a PMF p̃ : S∗Z →
(0, 1] and applying Jensen’s inequality [22], a lower bound of the incomplete log-
likelihood can be derived, specifically:

log f N
O (o; θ) = log

[
∑

z∈S∗Z

p̃ (z)
f N
O,Z (o, z; θ)

p̃ (z)

]

≥ ∑
z∈S∗Z

p̃ (z) log

[
f N
O,Z (o, z; θ)

p̃ (z)

]
=: LB (θ, p̃, o) .

(3.14)

Note that we can apply Jensen’s inequality since p̃ is positive for all z ∈ S∗Z and
x 7→ log (x) is concave on R+.

This lower bound LB is pivotal for the EM algorithm, as the EM algorithm basically
iteratively maximizes this lower bound (given some initial estimate of the model
parameters θ(0)).

The E-step maximizes LB with respect to p̃, given an initial/previous estimate of the
model parameters. It can be shown that, at the u-iteration, this is done by choosing

p̃(u) (z) := pN
Z|O

(
z
∣∣∣o; θ(u−1)

)
, (3.15)

where pN
Z|O denotes the conditional PMF of Markov chain state sequences (given

monitoring data o and model parameters θ(u−1)). See [32] for more details.

Subsequently, the M-step updates the model parameters, at the u-th iteration, by
maximizing EL with respect to θ, for fixed p̃ = p̃(u), i.e.

θ(u) = arg max
θ∈Θ

LB
(

θ, p̃(u), o
)

, (3.16)

where Θ denotes the set of possible model parameters.

This iterative procedure is illustrated in Figure 3.1.

20 Chapter 3. Hidden Markov Models

FIGURE 3.1: Illustration of the EM algorithm.

Essentially, this means that, at the u-iteration, one simply updates the model param-
eters by solving the following optimization problem:

θ(u) := arg max
θ∈Θ

W
(

θ, θ(u−1)
)

, (3.17)

where

W
(

θ, θ(u−1)
)

:= ∑
z∈S∗Z

f N
O,Z

(
o, z; θ(u−1)

)
log
[

f N
O,Z (o, z; θ)

]
. (3.18)

Indeed, by dropping terms/factors that are irrelevant for the optimization, we find
that

θ(u) = arg max
θ∈Θ

LB
(

θ, p̃(u), o
)

= arg max
θ∈Θ

∑
z∈S∗Z

p̃(u) (z) log

[
f N
O,Z (o, z; θ)

p̃(u) (z)

]
= arg max

θ∈Θ
∑

z∈S∗Z

pN
Z|O

(
z
∣∣∣o; θ(u−1)

)
log
[

f N
O,Z (o, z; θ)

]
= arg max

θ∈Θ
∑

z∈S∗Z

f N
O,Z

(
o, z; θ(u−1)

)
log
[

f N
O,Z (o, z; θ)

]
.

(3.19)

For multivariate Gaussian HMMs, Equation (3.13) can easily be expressed in terms
of the model parameters θ. Indeed, using the Markov property, it follows that

p(j)
Z

(
z(j); θ

)
=

nj−1

∏
i=0

TZ

(
z(j)

i , z(j)
i+1

)
, (3.20)

where TZ denotes the transition matrix of an HMM with parameters θ.

3.3. The Baum-Welch algorithm 21

Given the Markov chain state sequence, the joint density of the observations can
simply be expressed as a product of the various densities, i.e.

f (j)
O|Z

(
o(j)
∣∣∣ z(j); θ

)
=

nj−1

∏
i=0

h〈ω〉
(

o(j)
i , z(j)

i

)
, (3.21)

where

h〈ω〉 (o, z) :=
exp

(
− 1

2 (o− µz)
> Σ−1

z (o− µz)
)

√
(2π)K |Σz|

∀
[
o ∈ RK ∧ z ∈ {1, ..., m}

]
.

(3.22)

Since the initial state distribution is always given by ν (z) = 1 {z = 1}, we only need
to estimate the transition matrix and the parameters of the multivariate Gaussian
distributions.

Consider previous/initial model parameters θ̃ :=
{

T̃Z, ω̃
}

, where ω̃ :=
{

µ̃z, Σ̃z
}m

z=1
and let ΘT and Θω denote the set of possible transition matrices and parameters
of the multivariate Gaussian distributions respectively. The optimization problem
from Equation (3.17) can then, due to Equation (3.13), be written as two explicit
optimization problems, that is

θ∗ := {T∗Z, ω∗} :=
{

arg maxTZ∈ΩT
ã
(
TZ, θ̃

)
, arg maxω∈Θω

b̃
(
ω, θ̃

)}
, (3.23)

where

ã
(
TZ, θ̃

)
:= ∑

z∈S∗Z

N

∑
j=1

nj−1

∑
i=1

[
log TZ

(
z(j)

i , z(j)
i+1

)]
f N
O,Z
(
o, z; θ̃

)
, (3.24)

and

b̃
(
ω, θ̃

)
:= ∑

z∈S∗Z

N

∑
j=1

nj−1

∑
i=0

[
log h〈ω〉

(
o(j)

i , z(j)
i

)]
f N
O,Z
(
o, z; θ̃

)
. (3.25)

Lemma 1 (Update equations M-step, [5]). The solution of the optimization problem de-
scribed by Equation (3.23) is θ∗ = {T∗Z, ω∗}, where ω∗ := {µ∗z , Σ∗z}

m
z=1, given by

T∗Z
(
z, z′

)
=

∑N
j=1

[
∑

nj−1
t=0 P

(
Z(j)

t = z, Z(j)
t+1 = z′

∣∣∣ o; θ̃
)]

∑N
j=1

[
∑

nj−1
t=0 P

(
Z(j)

t = z
∣∣∣ o; θ̃

)] (3.26)

µ∗z =
∑N

j=1

[
∑

nj−1
t=0 o(j)

t P
(

Z(j)
t = z

∣∣∣ o; θ̃
)]

∑N
j=1

[
∑

nj−1
t=0 P

(
Z(j)

t = z
∣∣∣ o; θ̃

)] (3.27)

Σ∗z =
∑N

j=1

[
∑

nj−1
t=0

(
o(j)

t − µ̃z

)> (
o(j)

t − µ̃z

)
P
(

Z(j)
t = z

∣∣∣ o; θ̃
)]

∑N
j=1

[
∑

nj−1
t=o P

(
Z(j)

t = z
∣∣∣ o; θ̃

)] , (3.28)

where z, z′ ∈ SZ.

Lemma 1 can be proven by rewriting Equations (3.24) and (3.25) and applying the
Karush-Kuhn-Tucker conditions to derive the maximizers. Nevertheless, we empha-
size the intuitive nature of Equations (3.26) - (3.28): the numerator of Equation (3.26)

22 Chapter 3. Hidden Markov Models

corresponds to the expected number of transitions from state z to z′ and the denom-
inator of Equations (3.26) - (3.28) corresponds to the expected number of visits to
state z.

Equations (3.26), (3.27) and (3.28) rely on two distributions that can be recursively
determined using the so-called forward-backward algorithm for HMMs. The core
idea is to divide the observation sequence in two subsequences, a ‘past sequence’
and a ‘future sequence’. This decomposition was first proposed by [44] and later
presented by [3]. Due to the latter being the more common reference and its more
general framework, we base our analysis on the approach outlined in [3].1

We first define the forward probabilities

α (t, z, j; θ) := f (j)
O0,...,Ot,Zt

(
o(j)

0 , ..., o(j)
t , z; θ

)
, (3.29)

which denotes the joint density of the observation sequence of the j-th cycle up to
sampling epoch t and the state of the Markov chain at time t.

Similarly, we define the backward probabilities

β (t, z, j; θ) = f (j)
Ot+1,...,Onj |Zt

(
o(j)

t+1, ..., o(j)
nj |Z

(j)
t = z; θ

)
, (3.30)

denoting the joint density of the observation sequence of the j-th cycle after time t,
given the state at time t.

The forward and backward probabilities can be calculated in a recursive manner,
which in our case leads to

α
(
t, z, j; θ̃

)
=

h〈ω̃〉
(

o(j)
0 , z

)
ν (z) if t = 0

1 {z 6= FZ} h〈ω̃〉
(

o(j)
t , z

) [
∑m

z′=1 α
(
t− 1, z′, j; θ̃

)
T̃Z (z′, z)

]
if t = 1, ..., nj − 1

1 {z = FZ}
[
∑m

z′=1 α
(
nj − 1, z′, j; θ̃

)
T̃Z (z′, z)

]
if t = nj

(3.31)

and

β
(
t, z, j; θ̃

)
=

1 {z = FZ} if t = nj

T̃Z (z,FZ)1 {z 6= FZ} if t = nj − 1

∑m
z′=0

[
T̃Z (z, z′) h〈ω̃〉

(
o(j)

t+1, z′
)

β
(
t + 1, z′, j; θ̃

)]
if t = nj − 2, ..., 1

1
[
{z = 1}∑m

z′=0 T̃Z (z, z′) h〈ω〉
(

o(j)
1 , z′

)
β
(
1, z′, j; θ̃

)]
if t = 0.

(3.32)

Note that, due to the Markovian structure, it holds that

α
(
t, z, j; θ̃

)
β
(
t, z, j; θ̃

)
= P

(
Z(j)

t = z
∣∣∣ o(j)

)
f (j)
O

(
o(j)
)

. (3.33)

1The Baum-Welch algorithm, which supposedly refers to a collaboration between Baum and Welch
entitled “A Statistical Estimation Procedure for Probabilisitc Functions of Finite Markov Processes”
seems to never have been published. Hence we reference the work of [3], which is the first published
description of the approach by Baum.

3.3. The Baum-Welch algorithm 23

As a consequence

P
(

Z(j)
t = z

∣∣∣ o(j); θ̃
)
=

α
(
t, z, j; θ̃

)
β
(
t, z, j; θ̃

)
∑z′∈SZ

[
α
(
t, z′, j; θ̃

)
β
(
t, z′, j; θ̃

)] . (3.34)

Let us now define

η
(
t, z, z′, j, θ̃

)
:= α

(
t, z, j; θ̃

)
T̃Z
(
z, z′

)
β
(
t, z′, j; θ̃

)
h〈ω〉

(
o(j)

t+1, z′
)

. (3.35)

Again, using the Markovian structure, we find that

P
(

Z(j)
t = z, Z(j)

t+1 = z′
∣∣∣ o(j); θ̃

)
=

η
(
t, z, z′, j, θ̃

)
∑ z1,z2∈SZ

[
η
(
t, z1, z2, j, θ̃

)] . (3.36)

The initial estimate θ(0) of the parameters of the HMM is determined based on our
assumptions. Specifically, the transition matrix is initialized as a ‘decreasing’ upper-
triangular transition matrix (meaning that transition to states that are far away, are
less likely) and the means of the Gaussian distributions are initialized using the k-
means algorithm. This completes the description of the Baum-Welch algorithm to
derive the parameters of the HMM, a global overview is presented in Algorithm 1.

Algorithm 1 The Baum-Welch algorithm

1: function BAUM-WELCH ALGORITHM(o, θ(0));
2: u = 0
3: while no convergence of log f N

O

(
o; θ(u)

)
do

4: Calculate Equations (3.31) and Equation (3.32)
5: Calculate Equations (3.34) and (3.36)
6: Update θ(u) using Equations (3.26), (3.27) and (3.28)
7: u += 1
8: return θ(u)

25

Chapter 4

Markov Decision Processes with
Partial Information

4.1 Markov Decision Processes

In this section, we introduce Markov decision processes (MDPs) and illustrate how the CBM
problem can be modelled by an MDP, if the component state is always known. Subsequently,
we show how this ‘full-information MDP’ can be solved to determine an optimal policy.

4.1.1 The CBM problem as a full-information MDP

Markov decision processes (MDPs) are a general framework for decision making
under uncertainty. MDPs can be seen as Markov chains extended with actions and
costs.

Consider an infinite horizon MDP, with initial state Z0 = z (note that in our case
Z0 = 1). At each decision epoch t ∈ {0, 1, 2, ...}, we observe the state Zt ∈ SZ of the
Markov chain and subsequently choose an action At from the action space A, based
on a policy π, which leads to an immediate cost RZ (Zt, At).1 Depending on the
chosen action and the current state, the state of the Markov chain changes according
to a probabilistic transition model, which is given by TM. This, given that the policy π
is Markovian with respect to the state of the Markov chain and stationary, induces
the bivariate discrete time Markov cost process {(Zt, RZ (Zt, π (Zt))) ; t = 0, 1, 2, ...},
which leads to the following definition of an MDP.

Definition 2 (Markov decision process (MDP), conform [48]). A Markov decision pro-
cess (MDP) is a tuple (SZ,A, TM, RZ), where

• SZ is the finite set of states of the Markov chain;

• A is the finite set of actions;

• TM is the probabilistic transition model;

• RZ is the immediate cost function.

The probabilistic transition model is defined as a function

TM : A× SZ × SZ → [0, 1], (4.1)

1The state space of the Markov chain corresponds exactly to the component state space, i.e. the state
space of the Markov chain from Chapter 3.

26 Chapter 4. Markov Decision Processes with Partial Information

where TM(a, z, z′) := P(Z1 = z′|Z0 = z, A0 = a).
The immediate cost function is defined as a function

RZ : SZ ×A → R, (4.2)

where RZ (z, a) = ‘immediate cost of action a in state z’.

A common optimization criteria for infinite-horizon MDPs is the expected total dis-
counted cost, with discount factor γ ∈ [0, 1).2 If we restrict ourselves to the space of
deterministic Markovian stationary policies, denoted by Π, the resulting optimiza-
tion problem is to find

π∗M := arg min
π∈Π

E

[
∞

∑
t=0

γtRZ (Zt, π (Zt))

]
. (4.3)

Such a policy π ∈ Π specifies the decision rule used at each decision epoch. This
decision rule, denoted by d, is a deterministic mapping from SZ toA such that At =
d (Zt). For stationary deterministic policies, the decision rule d defines the entire
policy, i.e. π = (d, d, ...)⇔ d.

Recall that in Chapter 3 we assumed that the degradation of the component can be
described by an absorbing Markov chain with transition matrix TZ and state space
SZ = {1, ..., m} ∪ {FZ}. As a result, the component state Zt ∈ SZ at decision epoch
t, can be seen as the unique characterization of all information that is important for
optimal decision-making. At each decision epoch, one of two actions can be chosen,
i.e.

A = {‘do nothing’, ‘do maintenance’}, (4.4)

which we denote by 0 and 1 respectively.

If the component is still operational at decision epoch t and At = 1, the component is
immediately replaced by a new, perfect, component (at cost cpm). If the component
is still operational and At = 0, the component continues to deteriorate according
to transition matrix TZ. If the component was no longer operational, it will be re-
placed correctly (at cost ccm > cpm), regardless of the chosen action. This leads to the
following probabilistic transition model and immediate cost function:

TM(a, z, z′) =


TZ (z, z′) if a = 0∧ z ∈ {1, ..., m}
TZ (1, z′) if a = 0∧ z = FZ

TZ (1, z′) if a = 1

(4.5)

and

RZ(a, z) =


0 if a = 0∧ z ∈ {1, ..., m}
cpm if a = 1∧ z ∈ {1, ..., m}
ccm if z = FZ.

(4.6)

The MDP, as defined in Definition 2, with a probabilistic transition model as given by
Equation (4.5) and an immediate cost function as given by Equation (4.6), is referred
to as the full-information MDP for the CBM problem, as it assumes that we always

2A discounted cost MDP behaves like an average cost MDP when the discount factor is close to 1,
see e.g. [25].

4.2. Partially Observable Markov Decision Processes 27

observe the state of the component. The dynamics of this full-information MDP are
summarized in Algorithm 2.

Algorithm 2 Dynamics of a full-information MDP

Input: policy π;
1: Initial state Z0 = 1
2: for t = 0, 1, ..., ∞ do
3: Choose action At = π (Zt)
4: Incur cost RZ (At, Zt)
5: State transition Zt → Zt+1 according to TM (At, Zt, ·)

4.1.2 Optimal policies for the full-information MDP

Given an initial state Z0 = z ∈ SZ, we evaluate policies by their value function; the
value function vπ

M (z) of policy π for the full-information MDP is the expected total
discounted cost, with discount factor γ, when starting in state z and executing policy
π, i.e.

vπ
M(z) := E

[
∑∞

t=0 γtRZ (Zt, π (Zt))
∣∣∣ Z0 = z

]
. (4.7)

The optimal value function v∗M is the unique solution of

v∗M (z) = min
a∈A

{
RZ (z, a) + γ ∑z′∈SZ

TM
(
a, z, z′

)
v∗M
(
z′
)}

∀z ∈ SZ, (4.8)

and the deterministic Markovian stationary defined as

π∗M (z) = arg min
a∈A

{q∗M (z, a)} ∀z ∈ SZ, (4.9)

where q∗M (z, a) := RZ (z, a) + γ ∑z′∈SZ
TM (a, z, z′) v∗M (z′), constitutes optimal be-

haviour in the sense of Equation (4.3), see e.g. [37].

Equation (4.8) can be explained intuitively by the principle of optimality (see [4]),
which roughly states that any optimal policy consists of optimal ‘sub-policies’. Fur-
thermore, in [37] is shown that for MDPs with a finite state space, finite action space
and bounded costs, there exists an optimal policy π∗ in the class of deterministic
Markovian stationary policies. This means that there is no policy in the class of
history-dependent randomized policies (i.e. the broadest class of policies) that out-
performs policy π∗, as defined in Equation (4.9).

4.2 Partially Observable Markov Decision Processes

In this section, we introduce partially observable Markov decision processes (POMDPs) as
an extension of MDPs and illustrate how POMDPs can be seen as continuous-state MDPs.
Subsequently, we elaborate on the structure of the optimal value function and explain how
the PERSEUS algorithm can be used to approximate the optimal value function. Lastly, we
present two simple POMDP-based heuristics.

The full-information MDP described in Section 4.1, assumes that we always observe
the current state of the Markov chain. A partially observable Markov decision pro-
cess (POMDP) (introduced in [15]) extends this model to incorporate uncertainty

28 Chapter 4. Markov Decision Processes with Partial Information

Markov chain

Observation process

HMM

Belief state process

observation

Action process belief state

action

state Discretize
observation

discrete
observation

FIGURE 4.1: Schematic overview of the POMDP framework.

regarding the state of the Markov chain. This gives rise to a probabilistic observation
model, which relates the observations to states of the Markov chain. As a result,
POMDPs can also be seen as an extension of HMMs with actions and costs.

4.2.1 Extending MDPs to partial information

We define POMDPs based on the corresponding full-information MDP by extending
Definition 2 with an observations space and a probabilistic observation model.

Definition 3 (Partially observable Markov decision process (POMDP), based on [48]).
A partially observable Markov decision process (POMDP) is a tuple

(
SZ,A, TM, RZ, ŜO, Ω

)
,

where

• SZ is the finite set of states of the Markov chain;

• A is the finite set of actions;

• TM is the probabilistic transition model;

• RZ is the immediate cost function;

• ŜO is the finite set of observations;

• Ω is the probabilistic observation model.

The probabilistic observation model is defined as a stochastic matrix, with elements

Ω (z, o) := P (O1 = o| Z1 = z) ∀
[
o ∈ ŜO ∧ z ∈ SZ

]
. (4.10)

In Figure 4.1, a schematic overview of the POMDP framework is presented. Instead
of directly observing the Markov chain, we only have access to an observation pro-
cess. This observation process depends on the state of Markov chain and combined
these stochastic processes form a HMM (see Chapter 3 and Definition 1).

Recall that in Chapter 3 we assumed that the observations are samples from a multi-
variate Gaussian distribution whose parameters depend on the state of the Markov
chain. However, since problems with a continuous observations space, or a very
large discrete observation space, cannot be properly solved using model-based al-
gorithms (see e.g. [20]), we restrict ourselves to POMDPs with a finite observation

4.2. Partially Observable Markov Decision Processes 29

space.3 As a result, a finite observation space needs to be constructed from the mon-
itoring data o. We employ an unsupervised clustering-based discretization method
using k-means (based on [13]), where the monitoring data is reduced to a total of
vK =

(
|ŜO| − 1

)
observations. Specifically, using the k-means algorithm, we discre-

tise the monitoring data for each feature to a total of v clusters. The finite obser-
vations space ŜO is then constructed by calculating the Cartesian product between
these K sets of clusters and adding the observation FO that uniquely defines the fail-
ure state. When executing the POMDP policy, new monitoring data is discretised
based on the Euclidean distance.

The probabilistic observation model of the POMDP is given by the following stochas-
tic matrix:

Ω (z, o) =


fOt |Zt (o|Zt=z)

∑o′∈ŜO\{FO} fOt |Zt (o′|Zt=z) if
[
z ∈ SZ \ {FZ} ∧ o ∈ ŜO \ {FO}

]
1 if z = FZ ∧ o = FO

0 else,

(4.11)

where fOt|Zt (o| Zt = z) denotes the conditional density of the observations (see Equa-
tion (3.7)).

When operating in a POMDP environment, our history at decision epoch t comprises
of the entire sequence of observations and chosen actions up to that point, i.e.

Ht := (a0, o1, a1, ..., ot) ≡ (Ht−1, at−1, ot) . (4.12)

Based on this history, we choose the next action. However, computing a policy based
on the entire history, is impractical. At the same time, directly mapping the observa-
tion ot to an action At is not suboptimal (see e.g. [39]). We therefore summarize the
entire history into a posterior probability distribution over the states of the Markov
chain. This distribution is commonly referred to as the belief state, or simply the belief,
defined as:

bt (z) := P (Zt = z| Ht) ∀z ∈ SZ. (4.13)

The belief is the basis for our decision-making (as displayed in Figure 4.1), which
means that we are effectively operating on a different state space, the so-called belief
space B, which is the m-simplex, i.e.

B :=
{

b ∈ Rm+1 :
[
∑z∈SZ

b (z) = 1
]
∧ [b (z) ≥ 0 ∀z ∈ SZ]

}
. (4.14)

Consequently, a policy π for the POMDP is now a map from the belief space B to
the action space (see Figure 4.1), which means that the POMDP can be interpreted
as continuous-state MDP (see e.g. [51]).

3Model-free approaches, on the other hand, tend to require extensive simulation or sufficient a
priori knowledge to restrict the policy search space (see [20]).

30 Chapter 4. Markov Decision Processes with Partial Information

At decision epoch t, the posterior belief is updated using Bayes’ theorem:

bt
(
z′
)
= P

(
Zt = z′

∣∣ Ht
)
= P

(
Zt = z′|Ht−1, At−1 = a, Ot = o

)
=

P (Ot = o|Zt = z′, At−1 = a, Ht−1)P (Zt = z′|At−1 = a, Ht−1)

P (Ot = o| Ht−1, At−1 = a)

=
Ω (z′, o)∑z∈SZ

P (Zt = z′|At−1 = a, Zt−1 = z)P (Zt−1 = z|Ht−1)

P (Ot = o| Ht−1, At−1 = a)

=
Ω (z′, o)∑z∈SZ

TM (a, z, z′) bt−1 (z)
P (Ot = o| Ht−1, At−1 = a)

.

(4.15)

Since the denominator of Equation (4.15) is a normalizing constant, it follows that
bt−1 summarizes the entire history Ht−1 and that the belief can simply be updated
using the previous belief bt−1, the chosen action a and the resulting observation o.
This shows that the belief is a sufficient statistic for the entire history, in the sense
that

bt
(
z′
)
= P

(
Zt = z′

∣∣ Ht−1, at−1, ot
)
= P

(
Zt = z′

∣∣ bt−1, at−1, ot
)

, (4.16)

as also shown in e.g. [40].

We now define the following diagonal matrix:

Ω̄o := diag (Ω (1, o) , ..., Ω (m, o) , Ω (FZ, o)) . (4.17)

This allows us to compactly describe the function TB, which updates the belief:

TB : B ×A× ŜO → B with TB (b, a, o) :=
Ω̄oT>M (a) b

1>
(m+1)Ω̄oT>M (a) b

, (4.18)

where TM (a) ≡ TM (a, ·, ·) denotes the probabilistic transition model of the full-
information MDP for action a ∈ A and 1(m+1) denotes an (m + 1)-dimensional vec-
tor with entries 1.

The dynamics of the POMDP are summarized in Algorithm 3.

Algorithm 3 Dynamics of a POMDP

Input: policy π;
1: Initial state Z0 = 1, i.e. b0 = e1
2: for t = 0, 1, ..., ∞ do
3: Choose action At = π (Bt)
4: Incur cost RB (At, Bt)
5: State transition Zt → Zt+1 based on TM (At, Zt, ·)
6: Register observation Ot+1 based on Ω (Zt+1, ·)
7: Update belief state Bt+1 = TB (Bt, At, Ot+1)

4.2. Partially Observable Markov Decision Processes 31

4.2.2 The optimal value function of POMDPs

The value function vπ
n (b) of an arbitrary policy π of an n-stage POMDP (i.e. a

POMDP with n + 1 decision epochs) with initial belief state b is given by

vπ
n (b) := E

[
n

∑
t=0

γtRB (Bt, π (Bt))
∣∣ B0 = b

]
∀b ∈ B, (4.19)

where RB (Bt, π (Bt)) := ∑z∈SZ
RM (z, π (Bt)) Bt (z).

Note that, since P (Z0 = 1) = 1, we have that B0 = e1.4

We now introduce the dynamic programming operator D : U → U for POMDPs,
where U denotes the set of bounded and real-valued functions on B (i.e. v ∈ U is a
bounded function from B to R), defined as:

Dv (b) := min
a∈A

{
RB (b, a) + γ ∑o∈ŜO

v (TB (b, a, o))Ωa
b (o)

}
, (4.20)

where b ∈ B and Ωa
b (o) := P (O1 = o| B0 = b, A0 = a).

Notice that

P (O1 = o| B0 = b, A0 = a) = ∑z,z′∈SZ
Ω
(
z′, o

)
TM
(
a, z, z′

)
b (z) . (4.21)

The optimal value function v∗n of an n-stage POMDP satisfies the following recursive
relation [40]:

v∗n (b) = Dv∗n−1 (b)
= min

a∈A
{q∗n (b, a)} , (4.22)

where q∗n (b, a) := RB (b, a) + γ ∑o∈ŜO
v∗n−1 (TB (b, a, o))Ωa

b (o).

One could use so-called policy trees to describe a policy of a finite-horizon POMDP
(see e.g. [23]). Let g ∈ Gn denote a policy tree of an n-stage POMDP, where Gn
denotes the set of all possible policy trees. We recursively define g as a tuple g :=
(a, ρn), where a ∈ A denotes the immediate action and ρn : ŜO → Gn denotes the
conditional plan. In case n = 0, we can only perform a single (final) action, hence
ρ1 : ŜO → A and G0 := {a : a ∈ A}.

An illustration of a policy tree is given in Figure 4.2. The policy tree g := (a, ρ3) ∈ G3
consist of the action a ∈ A (executed at time t) and the conditional plan ρ3. The
conditional plan specifies a subtree for each observation o ∈ ŜO.

4Where e1 denotes the (m + 1)-dimensional zero vector, with only at index 1 the element 1.

32 Chapter 4. Markov Decision Processes with Partial Information

FIGURE 4.2: Illustration of a policy tree for a 3-stage POMDP, with
decision epochs {t, t + 1, t + 2, t + 3}. The action space is A := {0, 1}

and the observation space is ŜO := {o1, o2}.

When the state of the Markov chain is z ∈ SZ, the expected total discounted cost of
executing policy tree g := (a, ρn) ∈ Gn at time t is given by

v〈g〉n (ez) := RZ (z, a) + γE [‘future cost’| At = a, Zt = z]

= RZ (z, a) + γ ∑o∈ŜO
∑z′∈SZ

[
E
[

‘future cost’|Ot+1 = o, Zt+1 = z′
]

·P
(

Ot+1 = o, Zt+1 = z′
∣∣ At = a, Zt = z

)]
= RZ (z, a) + γ ∑o∈ŜO

∑z′∈SZ
v〈ρn(o)〉

n−1 (ez′) TM
(
a, z, z′

)
Ω
(
z′, o

)
,

(4.23)

with v〈ρ1(o)〉
0 (ez) = RZ (z, ρ1 (o)).

For an arbitrary belief state b ∈ B, it naturally holds that

v〈g〉n (b) := ∑z∈SZ
b (z) v〈g〉n (ez) . (4.24)

The expected total discounted cost of executing a policy tree gi ∈ Gn is denoted by a
so-called α-vector.

Definition 4 (α-vector). Let gi ∈ Gn denote a policy tree of an n-stage POMDP. We call
αi

n ∈ R(m+1), defined as
αi

n (z) := v〈gi〉
n (ez) ∀z ∈ SZ, (4.25)

an α-vector of the corresponding POMDP. The set of all α-vectors is denoted by

α̂n :=
{

αi
n : gi ∈ Gn

}
. (4.26)

The optimal value function can now simply be written as

v∗n (b) = minαi
n∈α̂n ∑z∈SZ

b (z) αi
n (z) . (4.27)

Equation (4.27) illustrates the fact that the optimal value function of a finite-horizon
POMDP is piecewise linear and concave (PWLC), which was first shown in [40].
Figure 4.3 illustrates what this means. It can be seen that the optimal value function

4.2. Partially Observable Markov Decision Processes 33

FIGURE 4.3: Illustration of the optimal value function v∗n (b) of an n-
stage POMDP, with two states (i.e. SZ = {1, 2}), where b1 denotes the

probability that the Markov chain is in the first state.

consists of the value functions of three different policy trees. Which policy tree is
optimal, depends on the belief. However, there is no belief b ∈ B such that policy
tree g4 ∈ Gn := {g1, g2, g3, g4} is optimal.

Indeed, certain policy trees g ∈ Gn will be suboptimal for every belief b ∈ B. This
means that the corresponding α-vectors are not really part of the optimal value func-
tion. As a result, the set of α-vectors α̂n can be reduced to a parsimonious subset αn,
such that

v∗n (b) = minαi
n∈αn ∑z∈SZ

b (z) αi
n (z) . (4.28)

Computing the optimal value function of an (n + 1)-stage POMDP using the value
function of the corresponding n-stage POMDP, is known as exact value iteration.
However, this procedure is computationally quite expensive, since the number of
possible policy trees (and therefore the number of α-vectors) grows exponentially
with the number of stages, specifically

|Gn+1| = |A| · |Gn||ŜO| . (4.29)

Additionally, reducing this set to a parsimonious subset (using for example Lark’s
pruning algorithm, see e.g. [10]) is, especially in higher dimensions, computation-
ally expensive. As a result, the consensus is that exact value iteration is intractable
and that it is unlikely that efficient algorithms to find optimal policies for general
POMDPs exist (see e.g. [30]).

However, updating the value function for a single belief b ∈ B is of smaller com-
putational cost. In fact, given the optimal value function v∗n of the n-stage POMDP
(described by αn), one can efficiently calculate v∗n+1 (b), using the so-called backup op-
erator. We now illustrate how the formulas for this backup operator can be derived,
conform [48].

34 Chapter 4. Markov Decision Processes with Partial Information

First, recall the following relation:

v∗n+1 (b) = min
a∈A

{
RB (b, a) + γ ∑o∈ŜO

v∗n (TB (b, a, o))Ωa
b (o)

}
. (4.30)

Due to Equation (4.15), the updated belief state can be written as

(TB (b, a, o)) (z) =
Ω (z′, o)∑z∈SZ

TM (a, z, z′) b (z)
Ωa

b (o)
∀s ∈ SZ, (4.31)

where we used that P (Ot+1 = o| Ht, At = a) = Ωa
b (o) (note that b denotes the belief

calculated from the entire history Ht).

Using Equation (4.31), one can rewrite v∗n (TB (b, a, o)) as follows:

v∗n (TB (b, a, o)) = minαi
n∈αn

∑z′∈SZ

[(
Ω (z′, o)∑z∈SZ

TM (a, z, z′) b (z)
)

αi
n (s′)

]
Ωa

b (o)

= minαi
n∈αn

∑z∈SZ

[
b (z)∑z′∈SZ

Ω (z′, o) TM (a, z, z′) αi
n (z′)

]
Ωa

b (o)

=
minαi

n∈αn
b · gi

ao

Ωa
b (o)

,

(4.32)

with gi
ao (z) := ∑z′∈SZ

Ω (z′, o) TM (a, z, z′) αi
n (z′).

As a result, Equation (4.30) can be written as

v∗n+1 (b) = min
a∈A

{
RB (b, a) + γ ∑o∈ŜO

minαi
n∈αn

b · gi
ao

}
= min

a∈A

{
b · αa+1

0 + b · γ ∑o∈ŜO
arg min{gi

ao}i=1,...,|αn |
b · gi

ao

}
= min

a∈A
b · gb

a.

(4.33)

where gb
a := αa+1

0 + γ ∑o∈ŜO
arg min{gi

ao}i=1,...,|αn |
b · gi

ao.

This leads to the following definition of the backup operator:

backup (b) := arg min{gb
a}a∈A

b · gb
a, (4.34)

i.e. the backup operator calculates, using the optimal value function of the n-stage
POMDP (described by αn), the optimal α-vector for a given belief b ∈ B of the
(n + 1)-stage POMDP.

4.2.3 Approximate value iteration for infinite-horizon POMDPs

The optimal value function of an infinite-horizon POMDP, must satisfy the following
relation [41]:

v∗ (b) = Dv∗ (b)
= min

a∈A
{q∗ (b, a)} , (4.35)

where q∗ (b, a) := RB (b, a) + γ ∑o∈ŜO
v∗ (TB (b, a, o))Ωa

b (o).

4.2. Partially Observable Markov Decision Processes 35

Although the optimal value function of an infinite-horizon POMDP need not be
piecewise linear (but is still always concave), it can be approximated arbitrarily
closely by a function that is concave and piecewise linear [41].

In particular, from the Banach Fixed-Point theorem (see e.g. [37]), which can be
applied because function space U with the supremum norm forms a Banach space
and operator D is a contraction mapping (see Appendix A.1), it follows that

(i) there exists a unique function v∗ ∈ U such that v∗ = Dv∗;

(ii) for arbitrary v0 ∈ U, the sequence {vn}∞
n=0 , defined by Equation (4.22) con-

verges uniformly to v∗.

The optimal value function of an infinite-horizon POMDP can therefore be approx-
imated arbitrarily closely by successively solving the finite-horizon POMDPs, us-
ing Equation (4.22). Or, by starting from some initial value function and itera-
tively applying the dynamic programming operator for POMDP, as defined in Equa-
tion (4.20), until convergence.

However, since performing exact value iteration is intractable, we use approximate
point-based value iteration (PBVI) to solve the POMDP. This means that the POMDP
is solved approximately through value iteration over a proxy belief space B̃ ⊆ B.
PBVI algorithms exploit the intuition that for many problems the set of ‘reachable
beliefs’ (i.e. beliefs that can be reached by following an arbitrary policy starting from
the initial belief state b0 ∈ B) forms a low dimensional manifold in the belief space B,
and thus can be covered densely enough by a relatively small number of belief points
[42]. These algorithms are computationally desirable because the backup operator,
as defined in Equation (4.34), can be efficiently executed for a single belief b ∈ B (see
e.g. [38]).

In this study, we use the PERSEUS algorithm [42], which uses a randomized dy-
namic programming operator D̃. This leads to a sequence {α̃n}∞

n=0 , where α̃n :={
α̃0

n, α̃1
n, ...

}
denotes the α-vectors that describe the approximate value function ṽn

(after n iterations). A global overview of the method is presented in Algorithm 4.

Algorithm 4 PERSEUS

1: function PERSEUS(POMDP);
2: n = 0
3: Initialize α̃0 :=

{
α̃0

0
}

, with α̃0
0 (z) = (ccm/ (1− γ)) for z = 1, ..., m + 1

4: Construct proxy belief space B̃
5: while no convergence of ṽn (e1) do
6: n += 1
7: α̃n = D̃

(
B̃, α̃n−1

)
8: return α̃n

Algorithm 4 can be divided into three parts:

1) Initializing α̃0;

2) Constructing the proxy belief space B̃;

3) Executing the randomized dynamic programming operator D̃.

Whereas most PBVI algorithms alternate between updating the proxy belief space B̃
and updating the value function (see [38]), the PERSEUS algorithm does not update

36 Chapter 4. Markov Decision Processes with Partial Information

the proxy belief space. As a consequence, convergence to the optimal value function
v∗ is not guaranteed [46].

The value function ṽ0 is initialized as a single α-vector which is an upper bound
of the optimal value function v∗, conform [42]. Alternatively, one could initialize
the value function as close as possible to the optimal value function v∗. This would
minimize the number of required iterations, but requires some knowledge of the
optimal value function.

Many methods for constructing the proxy belief space exist, see e.g. [42] and [36].
In this study, we construct the proxy belief space based on the available monitoring
data o. That is, we calculate the belief state of each non-trivial sampling and subse-
quently extend this set by, for each belief, simulating the next belief. An overview of
this procedure can be found in Algorithm 5.

Algorithm 5 Proxy belief space construction

1: function Construct-proxy-belief-space(o);
2: B̃ = ∅
3: for j = 1, ..., N do
4: b = e1
5: for t = 1, ..., nj − 1 do
6: a = 0
7: b = TB

(
b, a, o(j)

t

)
8: Add b to B̃
9: B̂ := B̃

10: for b ∈ B̂ do
11: Sample random current state z ∈ SZ based on b
12: Sample random next state z′ ∈ SZ based on TM (0, z, ·)
13: Sample random next observation o ∈ ŜO based on Ω (z′, ·)
14: b′ = TB (b, 0, o)
15: Add b′ to B̃
16: Add e1 to B̃
17: Add em+1 to B̃
18: return B̃

The randomized dynamic programming operator D̃ is explained in Algorithm 6.

Algorithm 6 The randomized dynamic programming operator D̃
1: function D̃(B̃, α̃n);
2: α̃n+1 := ∅ and B̂ := B̃
3: while B̂ 6= ∅ do
4: b R←− B̂
5: Compute α̃b := backup (b, α̃n)
6: if b · α̃b ≤ ṽn (b) then
7: Add α̃b to α̃n+1
8: else
9: α̃′b := arg minα̃i

n∈α̃n
b · α̃i

n
10: Add α̃′b to α̃n+1

11: Compute B̂ :=
{

b ∈ B̃ : ṽn+1 (b) < ṽn (b)
}

return α̃n+1

4.2. Partially Observable Markov Decision Processes 37

Essentially, what happens is that at each iteration, a random belief b ∈ B̃ is chosen,
for which the backup operator, see Equation (4.34), is performed. This results into a
vector αb. Subsequently, we check whether this vector αb improves the value func-
tion at belief b (compared to α̃n). If this is the case, we add αb to the set α̃n+1. If this
is not the case, we get the best vector from the set α̃n and add this vector to the set
α̃n+1. This procedure is repeated until the set α̃n+1 leads to an improved (or equally
good) value function for the entire belief space. This also implies the convergence of
the PERSEUS algorithm to some set α̃∗ [46].

4.2.4 Other policies

Since solving a POMDP, even approximately, poses a significant computational bur-
den, multiple POMDP-based heuristics have been developed (see e.g. [11]). In this
study, we include two of these heuristics: the MLS heuristic and the QMDP heuris-
tic. Executing the resulting MLS policy and QMDP policy only requires solving the
underlying MDP and keeping track of the belief.

The MLS heuristic, which stand for ‘most likely state’, is an intuitive heuristic that
simply picks the optimal action associated with the most likely state (according to
the MDP). The resulting policy is simply given by

πMLS (b) := π∗M

(
arg max

z∈SZ

b (s)

)
. (4.36)

However, this policy essentially completely ignores the uncertainty.

The QMDP heuristic, which is slightly more sophisticated, does account for the un-
certainty and has shown promising results in some small-scale POMDP problems
[27]. The QMDP policy is defined as

πQMDP (b) := arg min
a∈A

∑
z∈SZ

b (s) q∗M (z, a) . (4.37)

39

Chapter 5

Results

In this section, we present the results of our study. In Section 5.1, an overview of the
most important results of the 5 scenarios (see Section 2.3) is presented, specifically:

(i) We present the relative average cost of the POMDP, QMDP and MLS policies
for an increasing number of states, i.e. the average cost per time unit of the
POMDP, QMDP and MLS policies (see Section 2.2.2) divided by the average
cost per time unit of the optimal threshold policy (with respect to the degrada-
tion space);

(ii) We present the discounted cost of the POMDP and MDP value functions, that
is

v∗M (1) = E

[
∞

∑
t=0

γtRZ (Zt, π∗M (Zt))

∣∣∣∣∣ Z0 = 1

]
(5.1)

v∗ (e1) = E

[
n

∑
t=0

γtRB (Bt, π∗ (Bt))

∣∣∣∣∣ B0 = e1

]
. (5.2)

(iii) We present the AIC and AICc of each HMM (see e.g. [7]);

(iv) We present the average cost of various threshold policies (with respect to the
degradation process) and the average cost of the best POMDP policy.

The first point answers both our main question and sub-question 1. The second and
third point, which relate to sub-question 2, assess whether it is possible to identify
the best model based on the discounted costs and the AIC/AICc respectively. This
is relevant because in practice one cannot always test different policies. The fourth
point provides more perspective on the performance of the best POMDP model rel-
ative to other threshold policies.

A more in-depth discussion of these results is presented in Section 5.2.

For each simulation, we chose N = 25, cpm = 25, ccm = 100 and γ = 0.99.

5.1 Results from the simulations

First, we investigate Simulation 1, which has a relatively simple structure. The re-
sults of this simulation are shown in Figure 5.1 and Table 5.1. Choosing a HMM
with m = 2 states, leads to an average cost that is more than 56% higher than the
optimal average cost. This average cost can be significantly reduced by increasing
the number of states to m = 3, in which case the average cost is only 2.7% above

40 Chapter 5. Results

the optimal average cost. However, including more states does not significantly im-
prove the policy. In fact, increasing the number of states to m = 10 leads to a slightly
worse policy (4.8% above the optimal average cost). This is interesting, because Sim-
ulation 1 is exactly a HMM with m = 10 states. We also observe that the MLS policy
is often the worst policy. This is to be expected, as this policy essentially does not
take into account the uncertainty. Perhaps more surprising is that the POMDP policy
does not consistently outperform the QMDP policy.

In Figure 5.1b, we see that the discounted cost of the POMDP model is consistently
higher than the discounted cost of the MDP model. This does not come as a sur-
prise, as the MDP model assumes that the states of the Markov chain are observed,
which is not the case in practice. The POMDP takes this uncertainty into account
and therefore shows a higher discounted cost. We also observe that Figure 5.1a and
Figure 5.1b are not in synch; Figure 5.1b suggests that m = 8 or m = 10 are the best
choices, whereas Figure 5.1a points to m = 3 or m = 4. Also the AIC and AICc
identify a different model as better (m = 8 and m = 6 respectively, see Figure 5.2a).

Let us now consider simulation 2, for which the results are presented in Figure 5.3
and Table 5.2. The best policy is achieved by choosing m = 10, in which case the
average cost per time unit is only 1.4% higher than the average cost of the optimal
threshold policy. Further increasing the number of states to m = 15, leads to a clearly
worse policy. Indeed, the POMDP policy for m = 15 has an excess cost (that is, the
additional average cost per time unit compared to the optimal threshold policy) that
is almost three times higher compared to m = 10. This pattern is not reflected in the
corresponding discounted costs however, shown in Figure 5.3b.

The results for Simulation 3 are presented in Figure 5.5 and Table 5.3. Interestingly
enough, increasing the number of states of the HMM beyond m = 3 seems to make
little or no difference. Also, the various policies yield more or less the seem aver-
age cost; the average cost is consistently around 14% above the average cost of the
optimal threshold. Note that this gap is significantly larger than the gap found for
Simulations 1 and 2. This is because a large part of the degradation process is en-
tirely unobserved in Simulation 3. Hence, a worse performance is to be unexpected.

For Simulation 4, see Figure 5.7 and Table 5.4, we find that the optimal number of
states is m = 10, with a gap of 11.4% compared to the optimal threshold policy
(keep in mind that, again, a large part of the degradation process is not observed).
Choosing m = 3 leads to a very similar performance (a gap of 11.7%).

Lastly, we consider Simulation 5, for which the monitoring data consists of 2 fea-
tures. The result are presented in Figure 5.9 and Table 5.5. We observe that choosing
m = 10 states leads to the best policy, which has an average cost that is 3.3% higher
than the average cost of the optimal threshold policy. Such a small gap is slightly
surprising, since again a major part of the degradation process is not observed. We
also note that the MLS policy generally performs the worst (aside from m = 6) and
that the there is no major or consistent difference between the POMDP policies and
the QMDP policies. Furthermore, we see that, in contrast to the results of the other
simulations, Figures 5.9b and 5.10a successfully identify the best choice.

5.1. Results from the simulations 41

1.55

1.60

1.65

1.70

1.75
POMDP
QMDP
MLS

2 3 4 6 8 10 15
number of states m

1.00

1.05

1.10

1.15

1.20

re
la

tiv
e

av
er

ag
e

co
st

(A)

600

620

640

660

680
POMDP
MDP

2 3 4 6 8 10 15
number of states m

290

310

330

350

370

di
sc

ou
nt

ed
 c

os
t

(B)

FIGURE 5.1: Results of Simulation 1 for an increasing number of
states of the HMM. (A) The relative average cost of the POMDP,
QMDP and MLS policies; (B) The discounted cost of the POMDP and

MDP value functions.

2 3 4 6 8 10 15
number of states m

900

1000

1100

1200

1300

1400

1500 AIC
AICc

(A)

2 3 4 5 6 7 8 9 10
threshold

4

5

6

7

8

9

10

av
er

ag
e

co
st

(B)

FIGURE 5.2: Results of Simulation 1 for an increasing number of
states of the HMM. (A) The AIC and AICc of the HMMs; (B) The
average cost of various threshold policies (with respect to the degra-
dation space) and the average cost of the best POMDP policy (dotted

line).

2 3 4 6 8 10 15
number of states m

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

re
la

tiv
e

av
er

ag
e

co
st

POMDP
QMDP
MLS

(A)

2 3 4 6 8 10 15
number of states m

300

350

400

450

500

550

di
sc

ou
nt

ed
 c

os
t

POMDP
MDP

(B)

FIGURE 5.3: Results of Simulation 2 for an increasing number of
states of the HMM. (A) The average cost of the POMDP, QMDP and
MLS policies; (B) The discounted cost of the POMDP and MDP value

functions.

42 Chapter 5. Results

2 3 4 6 8 10 15
number of states m

1000

1100

1200

1300

1400

1500
AIC
AICc

(A)

2 3 4 5 6 7 8 9 10
threshold

4

5

6

7

8

9

10

av
er

ag
e

co
st

(B)

FIGURE 5.4: Results of Simulation 2 for an increasing number of
states of the HMM. (A) The AIC and AICc of the HMMs; (B) The
average cost of various threshold policies (with respect to the degra-
dation space) and the average cost of the best POMDP policy (dotted

line).

1.50

1.55

1.60

1.65
POMDP
QMDP
MLS

2 3 4 6 8 10 15
number of states m

1.00

1.05

1.10

1.15

re
la

tiv
e

av
er

ag
e

co
st

(A)

350

370

390

POMDP
MDP

2 3 4 6 8 10 15
number of states m

200

220

240di
sc

ou
nt

ed
 c

os
t

(B)

FIGURE 5.5: Results of Simulation 3 for an increasing number of
states of the HMM. (A) The average cost of the POMDP, QMDP and
MLS policies; (B) The discounted cost of the POMDP and MDP value

functions.

2 3 4 6 8 10 15
number of states m

1150

1200

1250

1300

1350

1400

1450

1500

1550

AIC
AICc

(A)

2 3 4 5 6 7 8 9 10
threshold

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

av
er

ag
e

co
st

(B)

FIGURE 5.6: Results of Simulation 3 for an increasing number of
states of the HMM. (A) The AIC and AICc of the HMMs; (B) The
average cost of various threshold policies (with respect to the degra-
dation space) and the average cost of the best POMDP policy (dotted

line).

5.1. Results from the simulations 43

1.60
1.65
1.70
1.75
1.80
1.85
1.90
1.95 POMDP

QMDP
MLS

2 3 4 6 8 10 15
number of states m

1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35

re
la

tiv
e

av
er

ag
e

co
st

(A)

280

300

320

340 POMDP
MDP

2 3 4 6 8 10 15
number of states m

130

150

170

190

di
sc

ou
nt

ed
 c

os
t

(B)

FIGURE 5.7: Results of Simulation 4 for an increasing number of
states of the HMM. (A) The average cost of the POMDP, QMDP and
MLS policies; (B) The discounted cost of the POMDP and MDP value

functions.

2 3 4 6 8 10 15
number of states m

2100

2200

2300

2400

2500

2600

2700
AIC
AICc

(A)

2 4 6 8 10 12 14
threshold

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

av
er

ag
e

co
st

(B)

FIGURE 5.8: Results of Simulation 4 for an increasing number of
states of the HMM. (A) The AIC and AICc of the HMMs; (B) The
average cost of various threshold policies (with respect to the degra-
dation space) and the average cost of the best POMDP policy (dotted

line).

1.70

1.75

1.80

1.85

1.90
POMDP
QMDP
MLS

2 3 4 6 8 10 15
number of states m

1.00

1.05

1.10

1.15

1.20

re
la

tiv
e

av
er

ag
e

co
st

(A)

270

290

310

POMDP
MDP

2 3 4 6 8 10 15
number of states m

120

140

160di
sc

ou
nt

ed
 c

os
t

(B)

FIGURE 5.9: Results of Simulation 5 for an increasing number of
states of the HMM. (A) The average cost of the POMDP, QMDP and
MLS policies; (B) The discounted cost of the POMDP and MDP value

functions.

44 Chapter 5. Results

2 3 4 6 8 10 15
number of states m

4600

4800

5000

5200

5400
AIC
AICc

(A)

5 10 15 20 25 30
threshold

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

av
er

ag
e

co
st

(B)

FIGURE 5.10: Results of Simulation 5 for an increasing number of
states of the HMM. (A) The AIC and AICc of the HMMs; (B) The
average cost of various threshold policies (with respect to the degra-
dation space) and the average cost of the best POMDP policy (dotted

line).

TABLE 5.1: Results of Simulation 1 for an increasing number of states
of the HMM. The relative average cost of the POMDP, QMDP and

MLS policies.

POMDP QMDP MLS
m = 2 1.564 1.565 1.785
m = 3 1.027 1.025 1.025
m = 4 1.025 1.040 1.043
m = 6 1.037 1.053 1.175
m = 8 1.038 1.037 1.063
m = 10 1.048 1.048 1.079
m = 15 1.040 1.045 1.043

TABLE 5.2: Results of Simulation 2 for an increasing number of states
of the HMM. The relative average cost of the POMDP, QMDP and

MLS policies.

POMDP QMDP MLS
m = 2 1.232 1.231 1.329
m = 3 1.027 1.028 1.024
m = 4 1.025 1.024 1.020
m = 6 1.031 1.027 1.031
m = 8 1.016 1.015 1.012
m = 10 1.014 1.014 1.009
m = 15 1.039 1.043 1.199

5.1. Results from the simulations 45

TABLE 5.3: Results of Simulation 3 for an increasing number of states
of the HMM. The relative average cost of the POMDP, QMDP and

MLS policies.

POMDP QMDP MLS
m = 2 1.561 1.555 1.680
m = 3 1.137 1.136 1.134
m = 4 1.145 1.136 1.139
m = 6 1.139 1.137 1.134
m = 8 1.141 1.136 1.135
m = 10 1.139 1.139 1.135
m = 15 1.138 1.134 1.137

TABLE 5.4: Results of Simulation 4 for an increasing number of states
of the HMM. The relative average cost of the POMDP, QMDP and

MLS policies

POMDP QMDP MLS
m = 2 1.710 1.713 1.867
m = 3 1.117 1.118 1.121
m = 4 1.153 1.207 1.305
m = 6 1.167 1.230 1.354
m = 8 1.124 1.122 1.119
m = 10 1.114 1.123 1.116
m = 15 1.129 1.132 1.123

TABLE 5.5: Results of Simulation 5 for an increasing number of states
of the HMM. The relative average cost of the POMDP, QMDP and

MLS policies

POMDP QMDP MLS
m = 2 1.796 1.795 1.900
m = 3 1.066 1.067 1.071
m = 4 1.051 1.054 1.085
m = 6 1.068 1.060 1.060
m = 8 1.065 1.074 1.182
m = 10 1.033 1.031 1.034
m = 15 1.103 1.102 1.173

46 Chapter 5. Results

5.2 Discussion

In Section 5.1, we consistently observed that the simplest HMM (i.e. m = 2), is not a
good choice. Increasing the number of states (to e.g. m = 3), has shown to produce
significantly better policies. This result is to be expected, since the parameters of the
HMM are estimated solely based on the likelihood of the monitoring data/training
data, thus not taking into account the decision-making process. As a result, policies
with m = 2 might do preventive maintenance too often, resulting in a higher av-
erage cost. This argument could also explain why m = 3 leads to generally decent
performance; perhaps choosing m = 3 provides a sufficient granularity to isolate the
‘ideal maintenance region’.

Also, we have seen that making the model more complex could produce subopti-
mal policies, as increasing the number of states led to an increase of the average
cost on multiple occasions. It may be that estimating a large number of parameters
(say m = 15), leads to an overfitted model, which causes the policy to generalize
poorly. Another reason why increasing the number of states of the HMM sometimes
increased the average cost, may be that the EM algorithm converged to a subopti-
mal stationary point. Indeed, the search space of the EM algorithm depends on the
number of states of the HMM; due to the structure of the likelihood, it could be that
the EM algorithm for, say, m = 6 states converges to a stationary point that is worse
(in terms of the average cost of the resulting policies) than the stationary point it
converges to for m = 3 states.

Naturally, the MLS policy, in general, led to the highest average cost. Only a few
times, the MLS policy outperformed the QMDP policy and never by a large margin.
However, no major or consistent difference was observed between the POMDP and
the QMDP policy. This is interesting and a bit surprising, since in [34] the POMDP
policy clearly outperforms the QMDP policy in a maintenance setting.1 The key
observation to understanding the strong performance of the QMDP policy in our
setting is that it is a heuristic which assumes that the uncertainty will disappear after
executing the next action (see e.g. [11]). As a result, it will not choose informative
actions (such as ‘inspect the component’). Since these actions are absent from our
model, this might explain why the QMDP heuristic performs so well.

It could also be that the POMDP was not always solved to optimality. For example,
it might be that the proxy belief space was not a sufficient representation of the be-
lief space one would encounter when executing the policy in practice, or it could be
that the PERSEUS algorithm had not yet converged. To check whether the algorithm
has converged, one could monitor the discounted cost and the number of α-vectors
(see Figure 5.11). In Figure 5.11a, we see that the discounted cost decreased rapidly
at first and then slowly converged. Also, the number of α-vectors is rather low in
the beginning (see Figure 5.11b). This is because during the first iterations a single
backup usually improves the value function for many, if not all, beliefs in the proxy
belief space. As more iterations are performed, the number of α-vectors gently in-
creases, indicating that the value function is gradually improving.

Let us now consider the POMDP policy for Simulation 5 with m = 3. In this case, the
component, while operational, can be in one of three states. As a result, the belief
space B can be presented in a 2-dimensional way (see e.g. [25]), as shown in Fig-
ure 5.12. We see that the policy chooses ‘do maintenance’ in state 3 and ‘do nothing’

1The model studied in [34] is slightly different though. For example, it accounts for a total of three
preventive maintenance actions: ‘minor repair’, ‘major repair’ and ‘preventive replacement’.

5.2. Discussion 47

0 200 400 600 800 1000
interation

0

2000

4000

6000

8000

10000
di

sc
ou

nt
ed

 c
os

t

(A)

0 200 400 600 800 1000
interation

0

2

5

8

10

12

15

18

20

nu
m

be
r o

f
-v

ec
to

rs

(B)

FIGURE 5.11: The discounted cost (A) and the number of α-vectors
(B) for each iteration of the PERSEUS algorithm when solving the

POMDP for Simulation 5 with m = 10.

FIGURE 5.12: The belief space when the component is operational (i.e.
b ∈ B such that b (m + 1) = 0) for the POMDP policy of Simulation 5

with m = 3.

in state 1 and 2. Additionally, we note that both the ‘do maintenance’ and the ‘do
nothing’ region, restricted to this subset of the belief space, seem convex. In general,
one can easily prove that the ‘do maintenance’ region is convex (see Appendix A.2).
However, the ‘do nothing’ region need not be convex. Nevertheless, in our experi-
ence the obtained POMDP policies are generally quite simple in structure; in some
cases the policy is a hyperplane (as is the case in Figure 5.12) and often the policy
can be described by a small set of α-vectors (even the POMDP policy of Simulation 5
with m = 10 contains only 17 relevant α-vectors, see Figure 5.11b).

We have studied four different criteria that could possibly identify the optimal num-
ber of states of the HMM, specifically: the discounted cost of the POMDP/MDP
and the AIC/AICc. Figures 5.2a, 5.4a, 5.6a and 5.8a show a very similar shape; the
AIC and AICc both consistently point to m = 6 or m = 8 as the optimal number of
states. On the hand, the discounted costs (see Figures 5.1b, 5.3b, 5.5b and 5.7b), do
not show a consistent pattern. Nevertheless, the simulation results show that none
of these criteria identified the best number of states. Only for Simulation 5 have the
AIC, AICc and the discounted cost of the POMDP identified the optimal choice.

Lastly, we note that the POMDP policies have shown to produce results that, for
m ≥ 3, were consistently less than 5% higher than the optimal threshold policy
in case all parts of the degradation process were observed (that is Simulations 1
and 2). This is not trivial, as can be seen by studying Figures 5.2b and 5.4b. In case

48 Chapter 5. Results

only a part of the degradation process was observed, the resulting average cost was
still less 15% higher than the average cost of the optimal threshold policy. Keep
in mind that since we do not observe a major part of the degradation process, the
optimal threshold policy (as depicted in Figures 5.6b and 5.8b) is likely not attainable
in practice. Finally, for Simulation 5, which has both a more complex structure and
unobserved parts, the average cost of the POMDP policy was at most 10% higher.
The non-triviality of this performance can be understood by studying Figure 5.10b.
In addition, we notice that choosing m = 3, despite the simplicity of the resulting
model, seems to produce decent results for each simulation.

49

Chapter 6

Conclusions and outlook

In this study, we investigated the use of multivariate Gaussian HMMs for CBM poli-
cies. We used various simulated degradation processes (e.g. Markovian degrada-
tion, non-Markovian degradation and unobserved features) to generate monitoring
data. We described the degradation process of the component by a latent Markov
chain that governs the monitoring data, i.e. the monitoring data contains observa-
tions generated by a multivariate Gaussian distribution, whose parameters depend
on the state of the underlying Markov chain. The parameters of this HMM were es-
timated using the well-known Baum-Welch algorithm. Subsequently, a maintenance
policy was obtained by formulating and solving the corresponding POMDP, using
approximate point-based value iteration. The performance of the resulting policy, as
well as several POMDP-based heuristics, was tested in a statistically identical envi-
ronment and compared with the optimal threshold policy.

We have found that, despite their simplistic nature, HMMs can be used to derive
policies that perform reasonable compared to the optimal threshold policy in both a
Markovian and non-Markovian setting, despite the noisy measurements and unob-
served features. However, the chosen number of states of the Markov chain does af-
fect the average cost of the resulting policy. We presented two ways to determine the
number of states; using the discounted cost of the POMDP (or the MDP) and using
the AICc (or the AIC). However, in most cases, both metrics pointed to a suboptimal
number of states. Nevertheless, we observed that the simplest model (m = 2) leads
to suboptimal policies and that in most cases choosing a small model (say m = 3)
produces decent results.

Furthermore, we observed no major or consistent difference between the POMDP
policy and the QMDP policy. We argued that this may be due to the simplicity of the
model under consideration. This would mean that in this setting one could simply
solve the corresponding MDP and subsequently execute the QMDP policy, without
a loss of performance. However, in more advanced settings (in particular when
the action space is extended with exploration actions), the QMDP policy will likely
perform significantly worse than the POMDP policy.

Our study also has some limitations. For example, we have only studied value data.
Whereas, in practice, the monitoring data may also include waveform data and mul-
tidimensional data. We also did not include event data and simulated only perfect-
to-failure cycles (whereas including left-truncated and/or right-censored data might
be more realistic). Additionally, we recognize that the construction of the POMDP
can be improved. For example, the current formulation requires a discretization of
the observation space, which imposes a trade-off between accuracy and speed. In
our simulations this is likely not problematic, but for high-dimensional monitoring

50 Chapter 6. Conclusions and outlook

data, this issue could be more apparent. As an alternative, one could explore the pos-
sibility of allowing a continuous multidimensional observation space (see e.g. [20]).
Also, we note that our current solution method lacks a way to verify whether the
POMDP has converged to optimality. Since point-based value iteration algorithms
might suddenly improve after seemingly having reached a plateau for some time
(see e.g. [33]), implementing an upper bound to the optimal value function might
be beneficial. Lastly, we emphasize that we solved the POMDP based on the dis-
counted reward, whereas our end goal was to minimize the average cost per time
unit. This choice was motivated by the technical difficulty associated with solving
an average cost POMDP (see e.g. [25]) and compensated for by choosing a discount
factor of 0.99.

There are several interesting extensions and topics for future research. For example,
in this work we studied a HMM with an upper triangular transition matrix, how-
ever, many different types of HMMs exists (see e.g. [31]). Seeing whether similar,
or better, performance can be obtained using different types of HMMs, might make
HMMs a more versatile tool. Additionally, one may want to explore different tech-
niques to estimate the parameters of the HMM. In particular, techniques that allow
for online learning of the parameters may be interesting, as this allows the model to
adapt to newly-acquired training data.

Another interesting extension might be in the direction of semi-Markov models.
That is, instead of a latent Markov chain, the degradation process is described by
a stochastic process that is only Markovian at transition times (the time between
transitions is random). This could lead to much more realistic models, as it is well-
known that the Markovian assumptions is not always accurate. However, a partially
observable semi-Markov decision process (see e.g. [43]), leads to complex solution
procedures. Nevertheless, since the QMDP heuristic showed such promising results
in our study, the extension to semi-Markov models might be less troublesome in a
similar setting to ours.

51

Appendix A

Additional proofs

A.1 The Banach Fixed-Point theorem

Consider the supremum norm ‖·‖∞, defined as:

‖·‖∞ := sup
b∈B
|v (b)− ṽ (b)| . (A.1)

Lemma 2. The normed space (U, ‖·‖∞) is a Banach space

Proof. Let {vn} be a Cauchy sequence in U, i.e.

∀ε>0∃N>0 : ‖vn − vm‖∞ < ε ∀n,m>N . (A.2)

We show that the Cauchy sequence {vn}∞
n=0 =: {vn} contains a limit point v ∈ U.

(i) First, we show that {vn} converges uniformly to v on B. Let b ∈ B and consider

|vn (b)− v (b)| = |vn (b)− limm→∞ vm (b)|
= limm→∞ |vn (b)− vm (b)| < ε.

(A.3)

The last statement follows from the observation that

|vn (b)− vm (b)| ≤ ‖vn − vm‖∞ < ε ∀b∈B , (A.4)

which is an immediate consequence of {vn} being a Cauchy sequence.

From Equation (A.3) it follows that

‖vn − v‖∞ < ε, (A.5)

which implies that {vn} converges uniformly to v on B.

(ii) Next, we show that the resulting limit point v is a real-valued function. To this
end, we note that for all b ∈ B, the sequence {vn (b)} is a Cauchy sequence
in R. Since v (b) = limn→∞ vn (b) and R is complete, it follows that v (b) is a
real-valued function for all b ∈ B.

52 Appendix A. Additional proofs

(iii) Lastly, we show that v is bounded. Using the triangle inequality and the defi-
nition of the supremum norm, we find that for all b ∈ B

|v (b)| = |v (b)− vN+1 (b) + vN+1 (b)|
≤ |v (b)− vN+1 (b)|+ |vN+1 (b)|
≤ ‖v− vN+1‖∞ + ‖vN+1‖∞ .

(A.6)

Since {vn} is Cauchy sequence, ‖vN+1‖∞ < c (for some c ∈ R). Furthermore,

‖v− vN+1‖∞ = sup
b∈B
|v (b)− vN+1 (b)|

= sup
b∈B

∣∣∣ lim
n→∞

vn (b)− vN+1 (b)
∣∣∣

= sup
b∈B

lim
n→∞
|vn (b)− vN+1 (b)| < ε.

(A.7)

The last statement is a consequence of Equation (A.4).

From Equation (A.6) we now conclude that for all b ∈ B, it follows that |v (b)| ≤
c + ε. Which shows that v is bounded.

We conclude that {vn} converges uniformly to a limit point v, which is a bounded
real-valued function.

Lemma 3 ([37]). The dynamic programming operator D, as defined in Equation (4.20) is a
contraction mapping, i.e.

∃λ∈[0,1) : ‖Dv− Dṽ‖∞ ≤ λ ‖v− ṽ‖∞ ∀v,ṽ∈U . (A.8)

Proof. Fix b ∈ B and suppose that Dv (b) ≥ Dṽ (b). We define

a∗ := arg min
a∈A

RB (b, a) + γ ∑
o∈ŜO

v (TB (b, a, o))Ωa
b (o)

 . (A.9)

It follows that

0 ≤ Dv (b)− Dṽ (b)

≤ RB (b, a) + γ ∑o∈ŜO
v (TB (b, a, o))Ωa

b (o)

− RB (b, a) + γ ∑o∈ŜO
ṽ (TB (b, a, o))Ωa

b (o)

= γ ∑o∈ŜO
(v (TB (b, a, o))− ṽ (TB (b, a, o)))Ωa

b (o)

≤ γ ∑o∈ŜO
‖v− ṽ‖∞ Ωa

b (o)

= γ ‖v− ṽ‖∞ .

(A.10)

Similarly, it can be shown that if Dv (b) ≤ Dṽ (b), it holds that

0 ≤ Dṽ (b)− Dv (b) ≤ γ ‖v− ṽ‖∞ . (A.11)

Hence,
|Dv (b)− Dṽ (b)| ≤ γ ‖v− ṽ‖∞ ∀b∈B , (A.12)

which implies that
‖Dv− Dṽ‖∞ ≤ γ ‖v− ṽ‖∞ . (A.13)

A.2. Convexity of the ‘do maintenance’ region 53

A.2 Convexity of the ‘do maintenance’ region

Lemma 4 (Convexity of the ‘do maintenance’ region restricted to B̃). The maintenance
region, restricted to B̃, defined as B̃ := {b ∈ B : b (m + 1) ∈ {0, 1}}, is a convex set.

Proof. Let ei denote the belief state where we are in state i with probability 1.

Ω1
b (o) = ∑z,z′∈SZ

Ω
(
z′, o

)
TM
(
1, z, z′

)
b (z)

= ∑s,s′∈SZ
Ω
(
z′, o

)
TM
(
0, 1, z′

)
b (z)

= ∑z′∈SZ
Ω
(
z′, o

)
TM
(
0, 1, z′

)
= P (Ot+1 = o|Bt+1 = 1, At = 0)

= Ω0
e1
(o) .

(A.14)

Consider b′ := TB (b, 1, o), then

b′ (z) =
Ω (z′, o)
Ωa

b (o)
∑z∈SZ

TM
(
1, z, z′

)
b (z)

=
Ω (z′, o)
Ω0

e1
(o) ∑z∈SZ

TM
(
0, 1, z′

)
b (z)

=
Ω (z′, o)
Ω0

e1
(o)

TM
(
0, ·, z′

)
· e1

(A.15)

We conclude that TB (b, 1, o) = TB (e1, 0, o).

Hence for b 6= FZ

q∗ (b, 1) = cpm + γ ∑o∈ŜO
v∗ (TB (b, 1, o))Ωa

b (o)

= cpm + γ ∑o∈ŜO
v∗ (TB (e1, 0, o))Ωa

b (o)

= cpm + q∗ (e1, 0) .

(A.16)

and
q∗ (FZ, 1) = ccm + q∗ (e1, 0) . (A.17)

Let us denote the ‘do maintenance’ region as A1 ⊆ B and consider b1, b2 ∈ A1, we
show that for λ ∈ [0, 1] it holds that λb1 + (1− λ) b2 ∈ A1:

v∗ (λb1 + (1− λ) b2) ≥ λv∗ (b1) + (1− λ) v∗ (b2)

= λq∗ (b1, 1) + (1− λ) q∗ (b2, 1)
= λ

(
cpm + q∗ (e1, 0)

)
+ (1− λ)

(
cpm + q∗ (e1, 0)

)
= cpm + q∗ (e1, 0)

(A.18)

The first statement is true because of the concavity of v∗ (see e.g. [25]). The second
statement holds because b1, b2 ∈ A1. The third statement follows from the derivation
above. Now since v∗ (b) > cpm + q∗ (e1, 0) is impossible, it follows that v∗ (b) =
cpm + q∗ (e1, 0), which means that λb1 + (1− λ) b2 ∈ A1.

55

Bibliography

[1] P. Baruah and R. B. Chinnam. “HMMs for diagnostics and prognostics in ma-
chining processes”. In: International Journal of Production Research 43.6 (2005),
pp. 1275–1293. DOI: 10.1080/00207540412331327727.

[2] L.E. Baum and T. Petrie. “Statistical Inference for Probabilistic Functions of Fi-
nite State Markov Chains”. In: The Annals of Mathematical Statistics 37.6 (1966),
pp. 1554–1563. DOI: 10.1214/aoms/1177699147.

[3] Leonard E. Baum et al. “A Maximization Technique Occurring in the Statis-
tical Analysis of Probabilistic Functions of Markov Chains”. In: Institute of
Mathematical Statistics Stable 41.1 (1970), pp. 164–171. DOI: 10 . 1214 / aoms /
1177697196.

[4] Richard Bellman. Dynamic Programming. Princeton, New Jersey: Princeton Uni-
versity Press, 1957.

[5] Jeff A. Bilmes. “A Gentle Tutorial of the EM Algorithm and its Application to
Parameter Estimation for Gaussian Mixture and Hidden Markov Models”. In:
(1998).

[6] Carey Bunks, Dan McCarthy, and Tarik Al-Ani. “Condition-based maintenance
of machines using hidden Markov models”. In: Mechanical Systems and Signal
Processing 14.4 (2000), pp. 597–612. DOI: 10.1006/mssp.2000.1309.

[7] Kenneth P. Burnham and David R. Anderson. Model Selection and Inference: A
Practical Information-Theoretic Approach. Springer-Verlag New York, 1998. DOI:
10.1007/978-1-4757-2917-7.

[8] Olivier Cappe, Eric Moulines, and Tobias Ryden. Inference in Hidden Markov
Models. 1st ed. Springer-Verlag New York, 2005. DOI: 10.1007/0-387-28982-
8.

[9] Francesco Cartella et al. “Hidden Semi-Markov Models for Predictive Main-
tenance”. In: Mathematical Problems in Engineering (2015). DOI: 10.1155/2015/
278120.

[10] Anthony Cassandra, Michael L. Littman, and Nevin L. Zhang. “Incremental
Pruning: A Simple, Fast, Exact Method for Partially Observable Markov De-
cision Processes”. In: Proceedings of the Thirteenth Conference on Uncertainty in
Artificial Intelligence (1997), pp. 54–61.

[11] Anthony R. Cassandra. “Exact and approximate algorithms for partially ob-
servable markov decision processes”. Doctoral thesis. Brown University, 1998.

[12] Christophe Couvreur. “The EM Algorithm: A Guided Tour”. In: Computer In-
tensive Methods in Control and Signal Processing: The Curse of Dimensionality.
Ed. by K. Warwick and M. Kárný. Birkhäuser Boston, 1997, pp. 209–222. DOI:
10.1007/978-1-4612-1996-5_12.

[13] Rajashree Dash, Rajib Lochan Paramguru, and Rasmita Dash. “Comparative
analysis of supervised and unsupervised discretization techniques”. In: (2011).

https://doi.org/10.1080/00207540412331327727
https://doi.org/10.1214/aoms/1177699147
https://doi.org/10.1214/aoms/1177697196
https://doi.org/10.1214/aoms/1177697196
https://doi.org/10.1006/mssp.2000.1309
https://doi.org/10.1007/978-1-4757-2917-7
https://doi.org/10.1007/0-387-28982-8
https://doi.org/10.1007/0-387-28982-8
https://doi.org/10.1155/2015/278120
https://doi.org/10.1155/2015/278120
https://doi.org/10.1007/978-1-4612-1996-5_12

56 Bibliography

[14] A. P. Dempster, N. M. Laird, and D. B. Rubin. “Maximum Likelihood from
Incomplete Data via the EM Algorithm”. In: Journal of the Royal Statistical So-
ciety: Series B (Methodological) 39.1 (1977), pp. 1–22. DOI: 10.1111/j.2517-
6161.1977.tb01600.x.

[15] A. Drake. “Observation of a Markov Process Through a Noisy Channel”. PhD
thesis. Massachusetts Institute of Technology, 1962.

[16] E. O. Elliott. “Estimates of Error Rates for Codes on Burst-Noise Channels”.
In: Bell System Technical Journal 42.5 (1963), pp. 1977–1997. ISSN: 15387305. DOI:
10.1002/j.1538-7305.1963.tb00955.x.

[17] Omid Geramifard et al. “A Physically Segmented Hidden Markov Model Ap-
proach for Continuous Tool Condition Monitoring: Diagnostics and Prognos-
tics”. In: IEEE Transactions on Industrial Informatics 8.4 (2012), pp. 964–973. DOI:
10.1109/TII.2012.2205583.

[18] E. N. Gilbert. “Capacity of a Burst-Noise Channel”. In: Bell System Technical
Journal 39.5 (1960), pp. 1253–1265. DOI: 10.1002/j.1538-7305.1960.tb03959.
x.

[19] Rafael Gouriveau, Kamal Medjaher, and Noureddine Zerhouni. From Prognos-
tics and Health Systems Management to Predictive Maintenance 1: Monitoring and
Prognostics. John Wiley and Sons, 2016. DOI: 10.1002/9781119371052.

[20] Jesse Hoey and Pascal Poupart. “Solving POMDPs with continuous or large
discrete observation spaces”. In: Proceedings of the 19th International Joint Con-
ference on Artificial Intelligence. 2005, pp. 1332–1338.

[21] Andrew K.S. Jardine, Daming Lin, and Dragan Banjevic. “A review on ma-
chinery diagnostics and prognostics implementing condition-based mainte-
nance”. In: Mechanical Systems and Signal Processing 20.7 (2006), pp. 1483–1510.
ISSN: 08883270. DOI: 10.1016/j.ymssp.2005.09.012.

[22] J. L. W. V. Jensen. “Sur les fonctions convexes et les inégualités entre les valeurs
Moyennes”. In: Acta Mathematica 30.1 (1906), pp. 175–193. DOI: 10.1007/BF02418571.

[23] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. “Plan-
ning and acting in partially observable stochastic domains”. In: Artificial In-
telligence 101.1-2 (1998), pp. 99–134. ISSN: 00043702. DOI: 10 . 1016 / s0004 -
3702(98)00023-x.

[24] Wael Khreich et al. “A survey of techniques for incremental learning of HMM
parameters”. In: Information Sciences 197 (2012), pp. 105–130. ISSN: 00200255.
DOI: 10.1016/j.ins.2012.02.017. URL: http://dx.doi.org/10.1016/j.
ins.2012.02.017.

[25] Vikram Krishnamurthy. Partially Observed Markov Decision Processes: From Fil-
tering to Controlled Sensing. Cambridge University Press, 2016. DOI: 10.1017/
cbo9781316471104.

[26] Yaguo Lei et al. “Machinery health prognostics: A systematic review from data
acquisition to RUL prediction”. In: Mechanical Systems and Signal Processing 104
(2018), pp. 799–834. ISSN: 10961216. DOI: 10.1016/j.ymssp.2017.11.016.

[27] Michael L. Littman, Anthony R. Cassandra, and Leslie Pack Kaelbling. “Learn-
ing policies for partially observable environments: Scaling up”. In: Machine
Learning Proceedings 1995. Elsevier, 1995, pp. 362–370. DOI: 10.1016/b978-1-
55860-377-6.50052-9.

[28] Geoffrey J. McLachlan and Thriyambakam Krishnan. The EM Algorithm and
Extensions. 2nd. John Wiley & Sons, 2008. ISBN: 9780471201700. DOI: 10.2307/
1271189.

[29] R. Keith Mobley. An Introduction to Preventive Maintenance. 2nd. Elsevier, 2002.
ISBN: 9780750675314.

https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://doi.org/10.1002/j.1538-7305.1963.tb00955.x
https://doi.org/10.1109/TII.2012.2205583
https://doi.org/10.1002/j.1538-7305.1960.tb03959.x
https://doi.org/10.1002/j.1538-7305.1960.tb03959.x
https://doi.org/10.1002/9781119371052
https://doi.org/10.1016/j.ymssp.2005.09.012
https://doi.org/10.1007/BF02418571
https://doi.org/10.1016/s0004-3702(98)00023-x
https://doi.org/10.1016/s0004-3702(98)00023-x
https://doi.org/10.1016/j.ins.2012.02.017
http://dx.doi.org/10.1016/j.ins.2012.02.017
http://dx.doi.org/10.1016/j.ins.2012.02.017
https://doi.org/10.1017/cbo9781316471104
https://doi.org/10.1017/cbo9781316471104
https://doi.org/10.1016/j.ymssp.2017.11.016
https://doi.org/10.1016/b978-1-55860-377-6.50052-9
https://doi.org/10.1016/b978-1-55860-377-6.50052-9
https://doi.org/10.2307/1271189
https://doi.org/10.2307/1271189

Bibliography 57

[30] Martin Mundhenk et al. “Complexity of Finite-Horizon Markov Decision Pro-
cess Problems”. In: Journal of the ACM 47.4 (2000), pp. 681–720. DOI: 10.1145/
347476.347480.

[31] Kevin Murphy. “Dynamic Bayesian Networks: Representation, Inference and
Learning”. PhD Thesis. University of California, Berkeley, 2002.

[32] R.M. Neal and G.E. Hinton. “A View of the Em Algorithm that Justifies In-
cremental, Sparse, and other Variants”. In: Learning in Graphical Models. Ed. by
M.I. Jordan. Dordrecht: Springer, 1998, pp. 355–368. DOI: 10.1007/978-94-
011-5014-9_12.

[33] K. G. Papakonstantinou and M. Shinozuka. “Planning structural inspection
and maintenance policies via dynamic programming and Markov processes.
Part I: Theory”. In: Reliability Engineering and System Safety 130 (2014), pp. 202–
213. DOI: 10.1016/j.ress.2014.04.005.

[34] K. G. Papakonstantinou and M. Shinozuka. “Planning structural inspection
and maintenance policies via dynamic programming and Markov processes.
Part II: POMDP implementation”. In: Reliability Engineering and System Safety
130 (2014), pp. 214–224. DOI: 10.1016/j.ress.2014.04.006.

[35] Ying Peng, Ming Dong, and Ming Jian Zuo. “Current status of machine prog-
nostics in condition-based maintenance: A review”. In: International Journal of
Advanced Manufacturing Technology 50.1-4 (2010), pp. 297–313. ISSN: 02683768.
DOI: 10.1007/s00170-009-2482-0.

[36] J. Pineau, G. Gordon, and S. Thrun. “Anytime Point-Based Approximations for
Large POMDPs”. In: Journal of Artificial Intelligence Research 27 (2006), pp. 335–
380. DOI: 10.1613/jair.2078.

[37] M.L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. New York: John Wiley & Sons, 1994.

[38] Guy Shani, Joelle Pineau, and Robert Kaplow. “A survey of point-based POMDP
solvers”. In: Autonomous Agents and Multi-Agent Systems 27.1 (2012), pp. 1–51.
DOI: 10.1007/s10458-012-9200-2.

[39] Satinder Singh, Tommi Jaakkola, and Michael Jordan. “Learning Without State-
Estimation in Partially Observable Markovian Decision Processes”. In: Ma-
chine Learning Proceedings 1994. Elsevier, 1994, pp. 284–292. DOI: 10 . 1016 /
b978-1-55860-335-6.50042-8.

[40] Richard D. Smallwood and Edward J. Sondik. “The Optimal Control of Par-
tially Observable Markov Processes over a Finite Horizon”. In: Operations Re-
search 21.5 (1973), pp. 1071–1088. ISSN: 0030364X. DOI: 10.1287/opre.21.5.
1071.

[41] Edward J. Sondik. “The Optimal Control of Partially Observable Markov Pro-
cesses over the Infinite Horizon: Discounted Costs”. In: Operations Research
26.2 (1978), pp. 282–304. DOI: 10.1287/opre.26.2.282.

[42] Matthijs T.J. Spaan and Nikos Vlassis. “Perseus: Randomized point-based value
iteration for POMDPs”. In: Journal of Artificial Intelligence Research 24 (2005),
pp. 195–220. ISSN: 10769757. DOI: 10.1613/jair.1659.

[43] Rengarajan Srinivasan and Ajith Kumar Parlikad. “Semi-Markov Decision Pro-
cess With Partial Information for Maintenance Decisions”. In: IEEE Transac-
tions on Reliability 63.4 (2014), pp. 891–898. ISSN: 00189529. DOI: 10.1109/TR.
2014.2338811.

[44] R.L. Stratonovich. “Conditional Markov Processes”. In: Theory of Probability
and Its Applications 5.2 (2015), pp. 172–195. DOI: 10.1137/1105015.

https://doi.org/10.1145/347476.347480
https://doi.org/10.1145/347476.347480
https://doi.org/10.1007/978-94-011-5014-9_12
https://doi.org/10.1007/978-94-011-5014-9_12
https://doi.org/10.1016/j.ress.2014.04.005
https://doi.org/10.1016/j.ress.2014.04.006
https://doi.org/10.1007/s00170-009-2482-0
https://doi.org/10.1613/jair.2078
https://doi.org/10.1007/s10458-012-9200-2
https://doi.org/10.1016/b978-1-55860-335-6.50042-8
https://doi.org/10.1016/b978-1-55860-335-6.50042-8
https://doi.org/10.1287/opre.21.5.1071
https://doi.org/10.1287/opre.21.5.1071
https://doi.org/10.1287/opre.26.2.282
https://doi.org/10.1613/jair.1659
https://doi.org/10.1109/TR.2014.2338811
https://doi.org/10.1109/TR.2014.2338811
https://doi.org/10.1137/1105015

58 Bibliography

[45] Rolf Turner. “Direct maximization of the likelihood of a hidden Markov model”.
In: Computational Statistics and Data Analysis 52.9 (2008), pp. 4147–4160. DOI:
10.1016/j.csda.2008.01.029.

[46] Nikos Vlassis and MTJ Spaan. “A fast point-based algorithm for POMDPs”. In:
Benelearn 2004: Proceedings of the Annual Machine Learning Conference of Belgium
and the Netherlands. (2004), pp. 170–176.

[47] Qi Wang et al. “Failure Modeling and Maintenance Decision for GIS Equip-
ment Subject to Degradation and Shocks”. In: IEEE Institute of Electrical and
Electronics Engineers 32.2 (2017), pp. 1079–1088. DOI: 10.1109/TPWRD.2017.
2655010.

[48] Marco Wiering and Martijn Van Otterlo, eds. Reinforcement Learning. Springer
Berlin Heidelberg, 2012. DOI: 10.1007/978-3-642-27645-3.

[49] Wireman T. Benchmarking Best Practices for Maintenance, Reliability and Asset
Management. 3rd. Industrial Press, 2014.

[50] C. F. Jeff Wu. “On the Convergence Properties of the EM Algorithm”. In: The
Annals of Statistics 11.1 (1983), pp. 95–103. DOI: 10.1214/aos/1176346060.

[51] A. A. Yushkevich. “Blackwell optimal policies in a Markov decision process
with a Borel state space”. In: ZOR Zeitschrift für Operations Research Mathemati-
cal Methods of Operations Research 40.3 (1994), pp. 253–288. ISSN: 03409422. DOI:
10.1007/BF01432969.

[52] Xinyu Zhao et al. “Semi-supervised constrained hidden markov model using
multiple sensors for remaining useful life prediction and optimal predictive
maintenance”. In: Annual Conference of the PHM Society. Vol. 11. 1. 2019. DOI:
10.36001/phmconf.2019.v11i1.851.

https://doi.org/10.1016/j.csda.2008.01.029
https://doi.org/10.1109/TPWRD.2017.2655010
https://doi.org/10.1109/TPWRD.2017.2655010
https://doi.org/10.1007/978-3-642-27645-3
https://doi.org/10.1214/aos/1176346060
https://doi.org/10.1007/BF01432969
https://doi.org/10.36001/phmconf.2019.v11i1.851

	Nomenclature
	Introduction
	Motivation for the study
	Organization of the report

	Background
	Related work
	Setting
	Simulations

	Hidden Markov Models
	Hidden Markov models for component degradation
	Literature overview of the EM algorithm and numerical optimization techniques
	The Baum-Welch algorithm

	Markov Decision Processes with Partial Information
	Markov Decision Processes
	Partially Observable Markov Decision Processes

	Results
	Results from the simulations
	Discussion

	Conclusions and outlook
	Additional proofs
	The Banach Fixed-Point theorem
	Convexity of the `do maintenance' region

	Bibliography

