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Abstract 

 

This Master thesis presents the design of a multi-echelon inventory control model for the 

European F-35 spare parts supply chain, using ADI of component failures. In addition, the use 

of lateral transshipments between the local warehouses is investigated. The aim of the thesis 

is to find optimal base-stock levels, for the central warehouse and local warehouses, that 

minimize the inventory investment costs while satisfying a 95% availability level. To achieve 

this, multi-echelon inventory models are designed, which are based on the METRIC model. In 

order to strengthen the findings of the multi-echelon models, simulation models are 

developed to validate the results. Based on the results of the designed models, it is 

investigated which model performs best and recommendations for the company are given.  

 

Keywords: Spare parts, Inventory control, Multi-echelon, METRIC model, Advance demand 

information (ADI), Lateral transshipments, Service logistics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 
 

Executive summary 

 

The Netherlands plays a crucial role in the spare parts logistics for the European F-35 fighter 

jets in the coming decades. The F-35 Joint Program Office (located at the United States) chose 

the Netherlands to store and manage spare parts for over 500 F-35s in the EMEA (Europe, 

Middle East & Africa) region. At the end of 2019, the first F-35s were stationed at various 

European air bases. A rapid build-up of logistics support for Europe is important for various air 

forces in the region.  

The thesis focuses on designing a multi-echelon inventory control model for the European F-

35 spare parts supply chain, using ADI of component failures. The goal of the project is to 

determine optimal base-stock levels, for the central warehouse and local warehouses, that 

minimize the inventory investment costs while satisfying a 95% availability level. In addition, 

it is investigated if using reactive lateral transshipments between the local warehouses yields 

even better results, i.e., lower inventory investment costs. To achieve this, multi-echelon 

inventory models are designed. The mathematical models determine at which locations, 

which parts and in what quantities must be stored in order to achieve the 95% availability 

requirement while at the same time minimizing inventory investment costs. In order to 

strengthen the findings of the multi-echelon models, simulation models are developed to 

validate the results. A continuous one-for-one, (𝑆 − 1, 𝑆), inventory replenishment policy is 

used and Poisson distributed demand. The problem faced in this paper is known in literature 

as the repairable inventory problem.   

The METRIC (Multi-Echelon Technique for Recoverable Item Control) model is selected from 

literature based on an extensive literature review, and it is used in this paper as the base 

model. The base model is the model without ADI of component failures and lateral 

transshipments. The base model determines optimal base-stock levels, for the central 

warehouse and local warehouses, that minimize the inventory investment costs while 

satisfying the 95% availability constraint. This model serves as the baseline.  

The model with ADI is the model that makes use of the predictions of component (LRC) 

failures. The goal of the predictions of component failures (ADI) is to enrich the logistics 

planning with flight and maintenance data in order to reduce the logistics costs and increase 

the availability of components. These predictions result in early warnings, which indicate that 

a component (LRC) is going to fail within a few days at a certain location with a certain 

probability. The warning time is the time from the moment a warning is received until the 

moment the component fails. Therefore, by using the early warnings, or ADI, it is known a few 

days in advance at which location a component (LRC) is needed with a certain probability. The 

warning time, resulting from the ADI of component failures, is included in the model as a 

reduction in the supply lead times. The inaccuracy, or imperfectness, of the ADI is included in 

the model as well. This is done by making a distinction between false negatives and false 

positives. False negatives are components (LRCs) that fail without receiving a warning in 

advance, and false positives are components that fail at a later moment than predicted. For 

the false negatives, the result is no reduction in the supply lead times, whereas for the false 
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positives a reduction in the supply lead times is applied, but the component is actually not 

needed yet. False negatives are very problematic because when a component fails 

unannounced at a local warehouse and there is no stock at that warehouse, it results in a 

backorder and therefore in downtime for the F-35s. 

In addition, the warnings also specify which smaller subcomponent (SRC) is going to fail that 

will cause the LRC failure. By knowing which SRC causes the LRC failure, inspection time at the 

repair shop is saved. Furthermore, the repair shop can order the SRCs needed for the repair 

in advance of the LRC failure, so there will be less waiting time for the subcomponents (SRCs). 

Zero inspection time and less waiting time on SRCs results in a shorter repair lead time for the 

LRCs. A shorter repair lead time, in turn, results in lower required base-stock levels. Therefore, 

the effect of warning time, resulting from the ADI of component failures, on the repair lead 

time is investigated and included in the model with ADI. 

Finally, the model with lateral transshipments (and ADI) is the model that makes use of 

reactive lateral transshipments. A reactive lateral transshipment is defined as a local 

warehouse which provides stocked items (LRCs) to another local warehouse which faces a 

stock out (or the risk of a stock out). Therefore, when using lateral transshipments, a demand 

of a local warehouse can be satisfied from the central warehouse, as well as from another 

local warehouse. The model allows for lateral transshipments only when a local warehouse 

faces demand while it has no inventory on hand, i.e., when it faces a stock out. This is the case 

when the central warehouse is not able to satisfy the demand of the local warehouse. Two 

different lateral transshipment rules are used, which are the minimum backorder rule and the 

maximum inventory on hand rule. 

The model results show that the base model requires a network stock of 17 LRCs and achieves 

an availability level of 95.9%. 9 LRCs are kept in stock at the central warehouse and every local 

warehouse keeps 1 LRC in stock, i.e., 𝑆𝑖,0 = 9 and 𝑆𝑖,𝑗 = 1. These results are the baseline 

results. The model results show that including ADI of component failures in the base METRIC 

model, results in a significant reduction of the network stock and therefore in a significant 

reduction of the inventory investment costs.  

When facing perfect ADI, i.e., 3 days warning time without false negatives, the model with ADI 

is the best model to use. This model results in a network stock of 10 LRCs, a 96.7% availability 

level, and an inventory investment reduction of 41.2% compared to the base model. All 10 

LRCs should be kept in stock at the central warehouse (centralized allocation), i.e., 𝑆𝑖,0 = 10 

and 𝑆𝑖,𝑗 = 0. Including lateral transshipments in this situation yields no further improvements.  

When facing imperfect ADI, i.e., 3 days warning time with 10% false negatives, the model with 

ADI and lateral transshipments is the best model to use. This model results in a network stock 

of 11 LRCs, a 95.9% availability level, and an inventory investment reduction of 35.3% 

compared to the base model. 3 LRCs should be kept in stock at the central warehouse and 

every local warehouse should keep 1 LRC in stock (decentralized allocation), i.e., 𝑆𝑖,0 = 3 

and 𝑆𝑖,𝑗 = 1. It can be concluded that using reactive lateral transshipments between the local 

warehouses almost neutralize the negative effect of the false negatives. Furthermore, no 

significant performance difference is observed between the two transshipment rules. 
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1. Introduction 

In this report, the Master thesis project of Operations Management and Logistics (OML) is 

described. The Master thesis project is executed at Gordian Logistic Experts B.V. The thesis 

focusses on designing a multi-echelon inventory control model for the European F-35 spare 

parts supply chain, using advance demand information (ADI) of component failures. First, a 

description of the company will be given in this section. Then, the project description will be 

provided in detail in section 2. The research questions will be described in section 3. Next, the 

methodology and the METRIC model to be used in the thesis are elaborated in section 4 and 

section 5, respectively. In section 6, the numerical results of the different models are 

described and explained. Finally, the conclusions and recommendations for the company are 

provided in section 7.  

 

1.1 Company description  

Gordian Logistic Experts B.V. is an international consultancy firm that is specialized in service 

logistics and spare parts management. Gordian delivers consultancy services to their 

customers, which include service and logistic strategy development, service business 

transformation, inventory optimization, supply chain optimization and supply chain 

collaboration. Furthermore, Gordian delivers concrete solutions to their customers in addition 

to the consultancy services. These solutions can be categorized into planning services, 

customer-specific tool development and business training. Planning services solutions focus 

on providing the correct forecasting models, inventory models and the parameters within 

these models. For customer-specific tool development, Gordian has a flexible and modular 

development platform with which they can make professional, cost-effective, and customer-

specific spare parts planning tools in an affordable way. Furthermore, Gordian is actively 

involved in innovation projects in service logistics and spare parts management in 

collaboration with the government, industry, universities, and scientific institutions. Gordian 

has delivered their consultancy services and concrete solutions to a wide range of customers 

within the service logistics and spare parts management. Examples of the customers of 

Gordian are BP, Enexis, Gasunie, GVB, KLM, Ministry of Defense, Port of Antwerp, Contiweb, 

Lely and many more.  

 

 

 

 

 

 

 



10 
 

2. Project description  

In this section, the project will be described. First, the background information is provided in 

section 2.1, which is followed by a detailed description of the project in section 2.2. 

2.1 Background information 

The Netherlands plays a crucial role in the spare parts logistics for the European F-35 fighter 

jets in the coming decades. The F-35 Joint Program Office (located at the United States) chose 

the Netherlands to store and manage spare parts for over 500 F-35s in the EMEA (Europe, 

Middle East & Africa) region. At the end of 2019, the first F-35s were stationed at various 

European air bases. A rapid build-up of logistics support for Europe is important for various air 

forces in the region and OneLogistics has been commissioned to facilitate this. OneLogistics 

has hired Gordian Logistic Experts to support them in this task. OneLogistics is a company that 

extends supply chains by including global transport solutions, warehousing, packaging 

solutions, customs and value-added tax (VAT) solutions, (ITAR) compliance, (European) 

transport solutions as well as the management of return shipments. A central warehouse is 

set up at the Logistics Center Woensdrecht (LCW). In this automated warehouse, spare parts 

for the F-35s, as well as the F135 engine, are stored and then shipped to the European air 

bases when they need spare parts. Maintenance activities for the F135 engines are performed 

at the central repair shop, which is the repair shop at the central warehouse. Furthermore, 

maintenance and repair of the F-35 spare parts are performed at various repair vendors in 

Europe, of which the central repair shop can be one of them. OneLogistics has the ambition 

to function as a regional control tower, which facilitates collaboration between service 

providers by connecting flows of goods and information. OneLogistics is a fourth-party 

logistics provider, or 4PL, because it acts as a supply chain director that searches for the best 

solution for its client’s supply chain.  

Figure 1 shows a graphical representation of the European F-35 spare parts supply chain. The 

black box indicates the scope of the project. New spare parts are supplied to the central 

warehouse in Woensdrecht (LCW) by external suppliers such as Lockheed Martin (LM) and 

Pratt & Whitney (P&W). However, this process is left out of scope because we deal with 

repairable items, which are called LRCs (line replaceable components), in a closed loop (it is 

assumed that no parts are scrapped). Therefore, new spare parts are only supplied to the 

central warehouse (LCW) in the initial phase. The spare parts are stored in the central 

warehouse until the parts are demanded by the local warehouses. Part failures constitute the 

demand of the local warehouses and the demand of the local warehouses constitutes the 

demand at the central warehouse. Part failures constitute a Poisson process with a constant 

rate. The central warehouse (LCW) is the supplier of spare parts within the scope of the project 

and the customers are the local warehouses. Each local warehouse serves a number of F-35s, 

which is indicated in parentheses in figure 1. Each F-35 consists of a set of repairable parts, 

which are called LRCs. If a part fails at a local warehouse, a spare part stocked at the local 

warehouse is used to replace the defective part, if the local warehouse has a spare part on 

stock. Otherwise, a backorder arises, until a spare part becomes available from the central 

warehouse and this results in downtime for the F-35s. Upon failure, a replenishment order is 
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immediately placed at the central warehouse. The replenishment order arrives after a 

deterministic lead time (supply lead time), if LRC stock is available at the central warehouse. 

Otherwise, the order is backordered until a spare part becomes available from a repair shop 

at the central warehouse. Replenishment orders from the local warehouses at the central 

warehouse are fulfilled according to first-come, first-served (FCFS) policy. The defective part 

at the local warehouse is immediately sent to a repair shop to be repaired there. It takes a 

certain random lead time (repair lead time) before the defective LRC is repaired and back in 

stock at the central warehouse. Repaired parts are considered as new parts. The repair lead 

time, which is the time needed to repair defective parts (LRCs) until they are ready to use 

again, is indicated with the thick black arrow.  

External suppliers

Repair shop

Central 
warehouse

(LCW)

Local warehouses

Demand

Defective parts Nor 
(52)

Den 
(30)Repaired 

parts

New parts

NL 
(37)

Italy 
(90)

UK 
(138)

BE 
(34)

Usafe 
(100)

Israel 
(19)

Scope

Repair lead 
time

Demand

New parts

Defective parts

Repair lead time

Legend:

Figure 1. European F-35 supply chain 

 

The service logistics can be innovated and improved by using predictions of component 

failures (ADI). The Royal Netherlands Aerospace Center (NLR) will provide the predictions of 

component failures (ADI) in this project. The Royal Netherlands Aerospace Center (NLR) is the 

central institute for aerospace research in the Netherlands. Since 1937, the NLR has been an 

independent foundation that provides technological support to the aerospace industry and 

government. That sector includes industries, users of military and civil aircraft, airport 

operators, air traffic control organizations, government agencies and international 

organizations. The goal of the predictions of component failures (ADI) is to enrich the logistics 

planning with flight and maintenance data in order to reduce the logistics costs and increase 
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the availability of components. NLR uses flight and maintenance data from F-16s to reliably 

predict the failure time, failure mode and confidence interval for three selected LRCs, which 

are the 13th stage valve and the main landing gears (features: very expensive and slow 

movers), that are critical to jet operation. NLR uses machine learning techniques to predict 

the failure time, failure mode and probability of failure of the LRCs. F-16 data is used because 

F-35 data is not yet available and because the selected parts of the F-16 are similar to those 

of the F-35. F-35 data is not yet available because the F-35s are not operational yet in the 

EMEA region, so there is no flight and maintenance data available. However, the United States 

has limited F-35 data available, but they are not willing to share this information.   

The predictions of component failures (ADI) result in early warnings. These early warnings 

indicate that a component (LRC) is going to fail within a few days at a certain location with a 

certain probability. The warning time is the time from the moment a warning is received until 

the moment the component fails. Therefore, by using the ADI of component failures, or early 

warnings, it is known a few days in advance at which location a component (LRC) is needed 

with a certain probability. In other words, the inventory planner will know a few days in 

advance which parts are possibly needed at which locations. Based on this, the decision is 

made to ship a part from the central warehouse. Besides, the early warnings also specify the 

failure mode, so it is also known in advance which SRC (shop replaceable component) will 

cause the LRC failure. The repair shop can use this information by ordering the SRCs that are 

needed for the repair earlier.  

 

2.2 The project 

The project is about designing a multi-echelon inventory control optimization model for the 

European F-35 spare parts supply chain, using ADI of component failures. The service logistics 

can be innovated and improved by using predictions of component failures (ADI), as stated in 

section 2.1. In order to investigate the effects of advance demand information (ADI) and to 

uncover the added value on the supply chain, two situations have to be modeled. First, the 

situation without ADI is needed, which is called the “as-is situation”, and this situation serves 

as the baseline. Then, the situation with ADI is needed, which is called the “to-be situation”, 

in order to uncover the effects and added value of ADI compared to the baseline. Both 

situations will now be described. 

2.2.1 As-is situation  

Without ADI of component failures, the supply chain sometimes has a relatively short planning 

horizon. Because it is not known in advance which parts (LRCs) are needed at which locations, 

extra spare parts are placed in warehouses at strategic locations to meet the needs of the 

customers. At least one item (LRC) per part number is kept in stock at each air base in order 

to achieve the availability requirement. However, this results in high local stocks and therefore 

a high network stock, as shown in figure 2. The network stock is defined as the sum of the 

stock at the local warehouses and the central warehouse. The stock levels are linked to 

investment costs in the project, i.e., for every item (LRC) put on stock investment costs have 
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to be paid. Therefore, keeping one item in stock at each air base results in additional inventory 

investment costs.  

 

Figure 2. As-is situation 

 

2.2.2 To-be situation  

By using the ADI of component failures, it is known a few days in advance which parts (LRCs) 

are needed at which locations with a certain probability, such that these parts can be shipped 

earlier. The expected effects of the ADI of component failures are that it leads to the 

centralization of the stock on LCW (higher central stock), lower local stocks and higher 

availability due to less waiting time for a component, as shown in figure 3. When the warning 

time is greater than or equal to the supply lead time, which is the time needed to ship parts 

from the central warehouse to the local warehouses, even no local stock is needed. In this 

way, a lower network stock can be realized. Besides, the ADI of component failures also has 

an effect on the repair lead time, which is the time needed to repair defective parts (LRCs) 

until they are ready to use again. The early warnings also specify the failure mode, so it is also 

known in advance which SRC will cause the LRC failure. This shortens the inspection time at 

the repair shop. Furthermore, the repair shop can order the parts (SRCs) needed for the repair 

earlier, because it is known which parts will be needed soon. Ordering earlier and a shorter 

inspection time result in a shorter repair lead time. A shorter repair lead time ensures a shorter 

resupply time of the components (LRCs) and therefore a lower network stock is required. 

 

Figure 3. To-be situation 
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2.2.3 Project goal 

The goal of the project is to optimize the inventory control for the European F-35 spare parts 

supply chain, using ADI of component failures, such that the inventory investment costs are 

minimized while satisfying a 95% availability level. In specific, the goal of the project is to 

determine optimal base-stock levels that minimize the inventory investment costs while 

satisfying a 95% availability level, for the situations with and without early warnings (ADI). The 

effects of the early warnings on the required stock levels have to be investigated. Besides, the 

effects of the early warnings on the repair lead time will also be investigated because the 

repair lead time has impact on the required stock levels. The expected effects of the early 

warnings (ADI), as described in section 2.2.2, are higher stock at the central warehouse, lower 

local stocks (zero if warning time ≥ supply lead time), shorter repair lead time, lower required 

network stock and higher availability, compared to the situation without early warnings. To 

achieve this, multi-echelon inventory models have to be designed, for the “as-is situation” and 

the “to-be situation”, that demonstrate and confirm the above-mentioned effects. The 

mathematical models will determine at which locations, which parts and in what quantities 

must be stored in order to achieve the 95% availability requirement while at the same time 

minimizing inventory investment costs. In order to strengthen the findings of the multi-

echelon models, simulation models will be developed to validate the results. When the results 

of the multi-echelon models and simulation models match, it can be stated that the results 

are valid.  

2.2.4 Model assumptions 

As stated in 2.2.3, multi-echelon models and simulation models have to be designed, for the 

“as-is situation” and “to-be situation”, that demonstrate the effects and added value of using 

ADI of component failures for the European F-35 spare parts supply chain. For designing the 

multi-echelon models and simulation models the following assumptions are made, which are 

justified in section 2.1. 

- Two-echelon spare parts distribution system for low demand, expensive items 

- Poisson distributed demand/failure process with constant rate 

- Demand rate is based on the part MTBF (mean time between failures) and the number 

of aircrafts at the local warehouses (stated between parentheses in figure 1) 

- Deterministic supply lead times (all between 0 and 2 days) 

- Stochastic repair lead time: normally distributed  

- (𝑆 − 1, 𝑆) inventory policy: one-for-one replenishment strategy 

- FCFS (first come first served) policy for replenishment orders at the central warehouse 

- Advance demand information (ADI) is used by means of predictions of component 

failures 

- No condemnation: all parts are repaired successfully 

- No batching: expensive, low demand items 

- No multiple demand classes: same service level (95% availability) for all customers 

- No criticality: if a LRC fails the system (aircraft) fails 

- No emergency shipments: supply lead times are already short 

- Lateral transhipments are allowed  
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3. Research questions 

In this section, the main goal and corresponding research questions are described. The main 

research question follows from the goal of the project. The goal of the project, as mentioned 

in section 2.2.3, is the following: 

 

 The goal of the project is to optimize the inventory control for the European F-35 spare 

parts supply chain, using ADI of component failures, such that the inventory investment 

costs are minimized while satisfying a 95% availability level.  

 

 Therefore, the main research question is formulated as follows: 

 How to design an inventory control optimization model for the European F-35 spare 

parts supply chain, using ADI of component failures, such that the inventory investment 

costs are minimized while satisfying a 95% availability level? 

 

In order to answer the main research question, it is decomposed into a few sub research 

questions. The sub research questions are the following: 

 

 Which models can be used for inventory control optimization in a multi-echelon spare 

parts distribution system, subject to a service level constraint? 

This question will give insight into which models exist for optimizing the inventory control 

without the use of ADI of component failures. The different mathematical models are 

compared and reviewed, and this analysis forms the basis of the model to be designed. 

 

 How to design the inventory control optimization model such that ADI of component 

failures are optimally used? 

This question will give insight into ways for including the use of ADI of component failures 

into inventory control optimization models. The designed inventory control model with 

the use of ADI is applied. 

 

 What are the results of the designed model?  

The results of the designed model are analyzed and explained. The results of the model 

will be compared to the current situation and recommendations for the company can be 

given. 
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4. Methodology  

In this section, the methodology and solution approach for answering the main research 

question is described. The first step of the project is to collect all the information and data 

that is needed to execute the project. The information and data that is needed are for example 

the demand distribution with corresponding demand rate, what inventory policy is used, who 

are the suppliers, which warehouses to include, where is the repair shop, what are the (supply 

and repair) lead times, etc. This information has already been collected. 

Furthermore, an extensive literature study is needed before the project can be executed 

properly. This literature study has already been performed. The goal of the project is to 

optimize the inventory control for the European F-35 spare parts supply chain, using ADI of 

component failures, such that the inventory investment costs are minimized while satisfying 

a 95% availability level. Therefore, the literature study was focused on investigating and 

evaluating the methods and models that exist in literature for inventory control optimization 

in a multi-echelon spare parts distribution system, subject to a service level (availability) 

constraint. Furthermore, the literature study was focused on investigating and evaluating the 

methods that exist to include advance demand information (predictions of component 

failures) and lateral transshipments in these inventory control models found in the literature.  

According to the reviewed literature repairable inventory systems are common in the military 

and in a variety of commercial settings. The typical problem is concerned with the optimal 

stocking of the repairable parts at the bases and at the central depot. The central depot repairs 

failed units returned from the bases while providing some predetermined level of service. The 

objective of such a system is typically maximizing the availability of aircrafts, or conversely 

minimizing the backorders and hence the number of grounded aircrafts, subject to a budget 

constraint. The METRIC model (Multi-Echelon Technique for Recoverable Item Control) is 

extensively discussed in literature, since it represents a fundamental development in 

repairable inventory theory and because so many later models are METRIC based. Many 

repairable inventory theory models are based on Sherbrooke’s METRIC model for setting 

inventory levels and allocating these units to achieve some desired level of service, measured 

by the expected backorders at the base level (Sherbrooke, 1968). Later models such as MOD-

METRIC (multi-indenture structure) and VARI-METRIC (multi-indenture structure and variance 

of pipeline inventories) are extensions to the base METRIC model and many modifications, 

such as lateral transshipments, are based on the METRIC logic. METRIC takes a system view of 

the repairable inventory problem since it is concerned with setting the initial levels of 

inventory and the distribution of the inventory among the bases to support a system-wide 

objective of minimizing backorders. A continuous one-for-one, (𝑆 − 1, 𝑆), inventory 

replenishment policy is used. Multi-echelon, multi-indenture, METRIC-type models have been 

implemented in various software tools, in use at various organizations. Historically, military 

organizations, especially the US military forces, have been the first to adopt such models. Also, 

outside the military these models have been applied. The repairable inventory problem faced 

by the METRIC model is identical to the problem faced in the thesis. Also, the assumptions of 

the METRIC model, stated in section 5, match the assumptions made in the thesis, stated in 

section 2.2.4. Therefore, the METRIC model is the most suitable and promising model to be 
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used in the thesis and this model will serve as the base model. The METRIC model with the 

Greedy solution algorithm formulated by Basten & Van Houtum (2014), as described in section 

5, will be followed and used in the thesis.  

Furthermore, for including advance demand information (ADI) Hariharan & Zipkin (1995) 

found that demand lead times are, in a precise sense, the opposite of supply lead times. That 

is, the effect of a demand lead time on overall system performance is precisely the same as a 

corresponding reduction in the supply lead time. Therefore, the warning time in the thesis, 

resulting from the ADI of component failures, has to be included in the model as a reduction 

in the supply lead times. The inaccuracy, or imperfectness, of the ADI has to be included in the 

model as well. This will be done by making a distinction between false negatives and false 

positives. False negatives are components that fail without receiving a warning in advance, 

and false positives are components that fail at a later moment than predicted. For the false 

negatives, the result will be no reduction in the supply lead times, whereas for the false 

positives there will be a reduction in the supply lead times, but the component is actually not 

needed yet. Topan et al. (2018) revealed that using imperfect ADI yields substantial savings, 

but only when the demand lead time is larger than the supply lead time. In this case, the 

average PCR (percentage cost reduction) is found to be 30.06%, and the maximum PCR is 

found to be 89.96%. Furthermore, the amount of savings is sensitive to the levels of the 

imperfectness aspects. Having fewer false negatives is more desirable than having fewer false 

positives and returning excess inventory is quite effective in coping with the consequences of 

false ADI, particularly for slow-moving items. The one-for-one (𝑆 − 1, 𝑆) replenishment 

strategy, or base-stock policy, can still be used. However, when using real-time condition-

based sensor information, which is not the case in the thesis, the best way to incorporate that 

information is by adapting the base-stock policy to a condition-based inventory policy (Lin et 

al., 2017; Li & Ryan, 2011).  

Finally, for including lateral transshipments the METRIC model can still be used, but it has to 

be extended with a new variable, i.e., the fraction of demand satisfied by lateral 

transshipments. Alfredsson and Verrijdt (1999) compared their model with lateral 

transshipments to the VARI-METRIC model and they found a maximum cost reduction of 

43.9% and a minimum cost reduction of 13.2%. The results also show that in many cases the 

stock levels are lower, especially the central stock level showed a significant decrease. In 

addition, Kranenburg (2006) discussed a semi-conductor company ASML and showed that 

using reactive lateral transshipments can save the company up to 50% of annual inventory 

related costs for spare parts. These results indicate that using lateral transshipments in a 

distribution network for service parts can be very beneficial. Therefore, the use of lateral 

transshipments will be investigated for the European F-35 spare parts supply chain. This will 

be done by including lateral transshipments in the models and by analyzing if this yields better 

results compared to the models without lateral transshipments. 

After having selected the METRIC model from literature that will be used in the thesis, the 

design phase can be started. The multi-echelon models can now be designed based on the 

METRIC model that is selected from literature. First, the multi-echelon model without warning 

time (ADI) is designed. This model will determine the optimal base-stock levels for the 
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European F-35 spare parts supply chain when ADI of component failures is not used. This 

model will serve as the baseline, as earlier mentioned. Then, warning time will be included in 

the multi-echelon model. Based on the methods found in the literature, warning time has to 

be included in the model as a reduction in the supply lead times (Hariharan & Zipkin, 1995). 

The new multi-echelon model will determine the optimal base-stock levels for the European 

F-35 spare parts supply chain when ADI of component failures is used. Therefore, the effects 

of warning time on the required stock levels can now be determined. The warning time that 

is included in the multi-echelon model is based on a 100% reliability of the ADI of component 

failures. However, in practice the reliability will be lower, and this results in prediction errors. 

Prediction errors can be false negatives or false positives. False negatives are components that 

fail without receiving a warning in advance, and false positives are components that fail at a 

later moment than predicted. Therefore, the ADI (in)accuracy has to be included in the multi-

echelon model with warning time in order to obtain a model that is as close as possible to 

reality. The ADI (in)accuracy will be included in the model by applying no reduction in the 

supply lead times for the false negatives, whereas for the false positives a reduction in the 

supply lead times will be applied. When this is done, the real effect of warning time on the 

required stock levels can be determined. The multi-echelon models with and without warning 

time (ADI) are created by now and the required stock levels are determined in both situations. 

So far, the designed multi-echelon models did not make use of lateral transshipments. 

Therefore, new multi-echelon models that make use of lateral transshipments will be 

designed and this will be done by including a new variable in the model, i.e., the fraction of 

demand satisfied by lateral transshipments. The results of these models will be compared to 

the models without lateral transshipments in order to analyse if the use of lateral 

transshipments is beneficial for the European F-35 spare parts supply chain. All the multi-

echelon models are designed by now and the base-stock levels are determined in all 

situations. In order to strengthen the findings of the multi-echelon models, simulation models 

will be developed to compare and validate the results. When the results of the multi-echelon 

models and simulation models match, it can be stated that the results are valid. Finally, the 

results will be presented in a clear and complete overview. 

Until now, only the effect of warning time (ADI) on the required stock levels is investigated. 

The effect of warning time on the repair lead time will now be investigated. Simulation models 

will be developed for the situations with and without warning time in which the repair lead 

time is simulated. From these simulations, the average repair lead time can be determined in 

both situations. Now, the effect of warning time on the repair lead time is known. The average 

repair lead time with and without warning time is then used in the designed multi-echelon 

models as input variable. The multi-echelon models will give the required stock levels as 

output for both situations. Therefore, the effect of warning time (ADI) on the repair lead time 

and in turn on the required stock levels is determined. Finally, the results will be presented in 

a clear and complete overview. After having obtained all the results of the multi-echelon 

models and simulation models by following the described methodology, the main research 

question can be answered. 
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5. Problem analysis 

In this section, the METRIC model that will be used in the thesis as the base model will be 

described in detail. METRIC is a mathematical model, which is capable of determining optimal 

base and depot stock levels for a group of repairable items; its governing purpose is to 

optimize system performance for specified levels of system investment. First, the base METRIC 

model for a two-echelon network is described. The network consists of a number of local 

warehouses and a central warehouse. Next, the METRIC model assumptions are described. 

Then, exact analysis of the METRIC model, the optimization problem, and the Greedy solution 

algorithm are described in detail. Furthermore, some alternative service measures are 

addressed. At last, the METRIC model extensions that will be used in the thesis, i.e., lateral 

transshipments and advance demand information (ADI), are described. 

 

5.1 METRIC model 

5.1.1 Model description 

The Netherlands plays a crucial role in the spare parts logistics for the European F-35 fighter 

jets in the coming decades. The F-35 Joint Program Office (located at the United States) chose 

the Netherlands to store and manage spare parts for over 500 F-35s in the EMEA (Europe, 

Middle East & Africa) region. At the end of 2019, the first F-35s were stationed at various 

European air bases. A rapid build-up of logistics support for Europe is important for various air 

forces in the region. A central warehouse is set up at the Logistics Center Woensdrecht (LCW). 

In this automated warehouse, spare parts for the F-35s, as well as the F135 engine, are stored 

and then shipped to the European air bases when they need spare parts. Maintenance 

activities for the F135 engines are performed at the central repair shop, which is the repair 

shop at the central warehouse. Furthermore, maintenance and repair of the F-35 spare parts 

are performed at various repair vendors in Europe, of which the central repair shop can be 

one of them. New spare parts are supplied to the central warehouse in Woensdrecht (LCW) 

by external suppliers such as Lockheed Martin (LM) and Pratt & Whitney (P&W). However, 

this process is left out of scope because we deal with repairable items, which are called LRCs, 

in a closed loop (it is assumed that no parts are scrapped). Therefore, new spare parts are only 

supplied to the central warehouse in the initial phase. The spare parts are stored in the central 

warehouse until the parts are demanded by the local warehouses. Part failures constitute the 

demand of the local warehouses and the demand of the local warehouses constitutes the 

demand at the central warehouse. Part failures constitute a Poisson process with a constant 

rate. The central warehouse is the supplier of spare parts within the scope of the project and 

the customers are the local warehouses. Figure 4 shows a graphical representation of the 

European F-35 spare parts supply chain. The black box indicates the scope of the project and 

the repair lead time is indicated with the thick black arrow. The repair lead time is the time 

from the moment an item has failed until the moment the item is repaired by a repair shop 

and back in stock at the central warehouse, i.e., the time needed to repair failed parts (LRCs) 

until they are ready to use again. Therefore, the repair lead time consists of the shipment time 

from a local warehouse to a repair shop, the repair time at the repair shop, and the shipment 
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time from the repair shop to the central warehouse. Failed or defective parts are parts that 

cannot perform their functionalities anymore and this results in downtime for the F-35s. At 

the repair shop, the repair of failed parts (LRCs) consists of the following actions. First, 

inspecting which subcomponent, which is called a SRC (shop replaceable component), has 

failed that caused the LRC failure. Then, replacing the failed subcomponent (SRC) with a new 

one. At last, the repaired part (LRC) is tested for some period of time before it is put back in 

stock at the central warehouse.  

The goal of the project is to optimize the inventory control for the European F-35 spare parts 

supply chain, using ADI of component failures, such that the inventory investment costs are 

minimized while satisfying a 95% availability level. In specific, the goal of the project is to 

determine optimal base-stock levels that minimize the inventory investment costs, while 

satisfying a 95% availability level. In this section, the focus is on the determination of optimal 

base-stock levels for the base model, which is the situation without advance demand 

information (ADI) and lateral transshipments. The type of advance demand information (ADI) 

that will be used later on are predictions of components failures. These predictions result in 

early warnings, which indicate that a component (LRC) is going to fail within a few days at a 

certain location with a certain probability. Therefore, by using the predictions, or early 

warnings, it is known a few days in advance at which location a component (LRC) is needed 

with a certain probability. In other words, the inventory planner will know a few days in 

advance which parts are possibly needed at which locations. Based on this, the decision is 

made to ship a part from the central warehouse. Besides, the early warnings also specify the 

failure mode, so it is also known in advance which subcomponent (SRC) will cause the part 

(LRC) failure. The repair shop can use this information by ordering the subcomponents that 

are needed for the repair earlier. Furthermore, a lateral transshipment is defined as a local 

warehouse which provides stocked items (LRCs) to another local warehouse which is out of 

stock. Therefore, when using lateral transshipments, a demand of a local warehouse can be 

satisfied from the central warehouse, as well as from another local warehouse. But first the 

focus is on the model without ADI and lateral transshipments.   

There is a non-empty set 𝐽loc of local warehouses, numbered 𝑗 = 1, . . . , |𝐽loc|. Each local 

warehouse serves a number of F-35s, which is stated in parentheses in figure 4. Each F-35 

consists of a non-empty set of repairable items, which are called LRCs, numbered 𝑖 =

1, . . . , |𝐼|. The total stream of failures of item 𝑖 ∈ 𝐼 as observed by local warehouse 𝑗 ∈ 𝐽loc 

constitutes a Poisson process with a constant rate 𝜆𝑖,𝑗 ≥ 0, as indicated in figure 4. For at least 

one item 𝑖 and local warehouse 𝑗, it holds that 𝜆𝑖,𝑗 > 0. Apart from the local warehouses, 

there exists a central warehouse, denoted by index 0. Define 𝜆𝑖,0 = ∑ 𝜆𝑖,𝑗𝑗∈𝐽loc  as the total 

demand rate for item 𝑖 at the central warehouse. The demand at the central warehouse is also 

a Poisson process since it is the superposition of the Poisson demand processes at the local 

warehouses. Let 𝐽 denote the set of all stock points, i.e., 𝐽 = {0} ∪ 𝐽loc. If an item 𝑖 fails at a 

local warehouse 𝑗, a spare part stocked at the local warehouse 𝑗 is used to replace the 

defective item, if local warehouse 𝑗 has a part on stock. Otherwise, a backorder arises, until a 

spare part becomes available from the central warehouse and this results in downtime for the 

F-35s. Upon failure, also immediately a replenishment order is placed at the central 
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warehouse. The replenishment order arrives after a deterministic lead time 𝐿𝑖,𝑗  (supply lead 

time), if stock for item 𝑖 is available at the central warehouse. Otherwise, the order is 

backordered until a spare part becomes available from a repair shop. It is assumed that, for 

each item 𝑖 ∈ 𝐼, backordered replenishment orders from the local warehouses at the central 

warehouse are fulfilled according to first-come, first-served (FCFS) policy. The defective part 

at the local warehouse is immediately sent to the assigned repair shop to be repaired there. 

It takes a certain random lead time with mean 𝐿𝑖,0 (repair lead time) before the defective item 

is repaired and back in stock at the central warehouse. Repaired parts are considered as new 

parts. Equivalently, from a modeling point of view, the defective part can be scrapped and 

after a certain random lead time, a newly purchased part is back in stock at the central 

warehouse. Notice that each item 𝑖 at each stock point 𝑗 is controlled according to a base-

stock policy, with base-stock level 𝑆𝑖,𝑗. The policy in the total network is defined by the |𝐼| ×

|𝐽| matrix S, consisting of elements 𝑆𝑖,𝑗. Each column in this matrix, denoted by a vector S𝑗, 

consists of all base-stock levels at stock point 𝑗 ∈ 𝐽. 
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5.1.2 Assumptions 

- Demands for the different items occur according to a stationary Poisson process. 

- All items are repaired successfully and there is no scrapping of items. 

- There are no lateral transshipments in the distribution network. 

- Repair lead times for different items are independent and random. 

- For each item, the supply lead times are assumed to be deterministic. 

- A one-for-one replenishment policy, (𝑆 − 1, 𝑆), is applied for all items. 

- Replenishment orders at the central warehouse are fulfilled in FCFS order. 

- There are ample servers at the repair facility, so there is no waiting queue before 

repair is started. 

- The probability of failure of one item is independent of failures occurring for other 

items. 

- Each item failure is caused by a failure of at most one single subcomponent. 

 

5.1.3 Exact analysis 

For a given base-stock policy with matrix S, consisting of elements 𝑆𝑖,𝑗, evaluation of the 

steady-state behaviour can be done exactly, as described for the first time by Graves (1985). 

Because the different items have no interaction, the steady state behaviour can be evaluated 

per item 𝑖. This leads to a closed-form expression for the expected backorder position for item 

𝑖 at local warehouse 𝑗. A top-down approach is followed, which means that the central 

warehouse is analysed first and then the local warehouses. 

The state of the system at time instant 𝑡 can be described by (𝑋𝑖,0(𝑡), 𝐼𝑖,0(𝑡, 𝑆𝑖,0), 𝐵𝑖,0(𝑡, 𝑆𝑖,0)), 

where 𝑋𝑖,0(𝑡) denotes the total number of parts in repair at time 𝑡, 𝐼𝑖,0(𝑡, 𝑆𝑖,0) denotes the 

stock on hand of ready-for-use parts at the central warehouse at time 𝑡, and 𝐵𝑖,0(𝑡, 𝑆𝑖,0) 

denotes the number of backordered demands at the central warehouse at time 𝑡. Both 

𝐼𝑖,0(𝑡, 𝑆𝑖,0) and 𝐵𝑖,0(𝑡, 𝑆𝑖,0) depend on 𝑆𝑖,0. Notice that 𝑋𝑖,0(𝑡) does not depend on 𝑆𝑖,0 (𝑋𝑖,0(𝑡) 

depends only on the Poisson arrival process of defective parts). The amount 𝑋𝑖,0(𝑡) represents 

the number of parts in the repair pipeline and is therefore also called the pipeline stock. The 

possible values for the tuples (𝑋𝑖,0(𝑡), 𝐼𝑖,0(𝑡, 𝑆𝑖,0), 𝐵𝑖,0(𝑡, 𝑆𝑖,0)) are given by:  

(0, 𝑆𝑖,0, 0), (1, 𝑆𝑖,0 − 1, 0), . . . , (𝑆𝑖,0 − 1, 1, 0), (𝑆𝑖,0, 0, 0), (𝑆𝑖,0 + 1, 0, 1), (𝑆𝑖,0 + 2, 0, 2), . . .  

The first 𝑆𝑖,0 states in this sequence are with positive stock on hand, the state (𝑆𝑖,0, 0, 0) is the 

unique state in which both the stock on hand and the number of backordered demands is 

zero, and after that the states with a positive number of backordered demands are obtained. 

A transition is made from one state to the next state in this sequence when a demand occurs, 

while a completion of a repair leads to a transition from one state to a previous state in this 
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sequence. For clarification, the following numerical example for the tuple (𝑋𝑖,0(𝑡), 𝐼𝑖,0(𝑡, 𝑆𝑖,0), 

𝐵𝑖,0(𝑡, 𝑆𝑖,0)) is given: 

(0, 10, 0), (1, 9, 0), . . . , (9, 1, 0), (10, 0, 0), (11, 0, 1), (12, 0, 2), . . .  

Again, the first states in this sequence are with positive stock on hand, the state (10, 0, 0) is 

the unique state in which both the stock on hand and the number of backordered demands is 

zero, and after that the states with a positive number of backordered demands are obtained. 

From the sequence with all possible states and the numerical example, it is observed that the 

values of 𝐼𝑖,0(𝑡, 𝑆𝑖,0) and 𝐵𝑖,0(𝑡, 𝑆𝑖,0) follow directly from the values of 𝑋𝑖,0(𝑡) and 𝑆𝑖,0. It holds 

that:  

    𝐼𝑖,0(𝑡, 𝑆𝑖,0) = (𝑆𝑖,0 − 𝑋𝑖,0(𝑡))+,    (1) 

    𝐵𝑖,0(𝑡, 𝑆𝑖,0) = (𝑋𝑖,0(𝑡) − 𝑆𝑖,0)+,    (2) 

where 𝑥+ = max{0, 𝑥} for any 𝑥 ∈ R, where R denotes real numbers. These equations imply 

that: 

   𝐼𝑖,0(𝑡, 𝑆𝑖,0) − 𝐵𝑖,0(𝑡, 𝑆𝑖,0) = 𝑆𝑖,0 − 𝑋𝑖,0(𝑡),   (3) 

or, equivalently, that:  

   𝑋𝑖,0(𝑡) + 𝐼𝑖,0(𝑡, 𝑆𝑖,0) − 𝐵𝑖,0(𝑡, 𝑆𝑖,0) = 𝑆𝑖,0.    (4) 

The latter equation is known as the stock balance equation (see, e.g., Sherbrooke, 2004). Let 

𝑋𝑖,0, 𝐼𝑖,0(𝑆𝑖,0), and 𝐵𝑖,0(𝑆𝑖,0) be the steady-state variables corresponding to 𝑋𝑖,0(𝑡), 𝐼𝑖,0(𝑡, 𝑆𝑖,0), 

and 𝐵𝑖,0(𝑡, 𝑆𝑖,0), respectively. In other words, they are random variables denoting the number 

of parts in repair, the number of ready-for-use parts, and the number of backordered 

demands at the central warehouse in steady state. By (1) and (2):  

    𝐼𝑖,0(𝑆𝑖,0) = (𝑆𝑖,0 − 𝑋𝑖,0)+,     (5) 

    𝐵𝑖,0(𝑆𝑖,0) = (𝑋𝑖,0 − 𝑆𝑖,0)+.     (6) 

 

In the model, defective parts enter the repair pipeline according to a Poisson process and each 

defective part stays on average a time 𝐿𝑖,0 in the repair pipeline. The repair pipeline may be 

seen as a queueing system with infinitely many servers and service times 𝐿𝑖,0. In other words, 

the repair pipeline is an M/G/∞ queueing system, and we may thus apply Palm’s Theorem 

(Palm, 1938):  

Palm’s Theorem: If jobs arrive according to a Poisson process with rate λ at a service system 

and if the times that the jobs remain in the service system are independent and identically 

distributed according to a given general distribution with mean 𝐸𝑊, then the steady-state 

distribution for the total number of jobs in the service system is Poisson distributed with mean 

λ𝐸𝑊.  
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Application of this theorem to the repair pipeline leads to equation (7) of the following lemma. 

Equations (8) and (9) of this lemma follow from equation (7) and the equations (5) and (6). 

Lemma. Let 𝑖 ∈ 𝐼. 

Define 𝑋𝑖,0 as the total amount on order for item 𝑖 ∈ 𝐼 at the central warehouse in steady 

state, i.e., the total number of parts that is in repair, also called the pipeline. 𝑋𝑖,0 is Poisson 

distributed with mean 𝜆𝑖,0𝐿𝑖,0, i.e.: 

   P{𝑋𝑖,0 = 𝑥} =
(𝜆𝑖,0𝐿𝑖,0)

𝑥

𝑥!
𝑒−𝜆𝑖,0𝐿𝑖,0 ,      ∀𝑥 ∈ N0,  (7) 

where N0 denotes all positive integers starting from 0. 

 

Let 𝐼𝑖,0(𝑆𝑖,0) be the stock on hand for item 𝑖 ∈ 𝐼 at the central warehouse, as a function of the 

base-stock level 𝑆𝑖,0. Its distribution is given by: 

  P{𝐼𝑖,0(𝑆𝑖,0) = 𝑥} = {
∑ P{𝑋𝑖,0 = 𝑦}                if 𝑥 = 0;∞

𝑦=𝑆𝑖,0

P{𝑋𝑖,0 = 𝑆𝑖,0 − 𝑥}    if 𝑥 ∈ {1, . . . , 𝑆𝑖,0}.
  (8) 

This equation can be interpreted as follows. 𝐼𝑖,0(𝑆𝑖,0) = 0, if the total number of parts in repair 

is greater than or equal to the base-stock level, i.e., 𝑋𝑖,0 ≥ 𝑆𝑖,0. 𝐼𝑖,0(𝑆𝑖,0) > 0, if the total 

number of parts in repair is smaller than the base-stock level, i.e., 𝑋𝑖,0 < 𝑆𝑖,0.  

 

Next, define 𝐵𝑖,0(𝑆𝑖,0) as the number of backordered demands, for item 𝑖 ∈ 𝐼 at the central 

warehouse, as a function of the base-stock level 𝑆𝑖,0. It is distributed as follows: 

  P{𝐵𝑖,0(𝑆𝑖,0) = 𝑥} = {
∑ P{𝑋𝑖,0 = 𝑦}       if 𝑥 = 0;

𝑆𝑖,0

𝑦=0

P{𝑋𝑖,0 = 𝑆𝑖,0 + 𝑥}      if 𝑥 ∈ N,
    (9) 

where N denotes all positive integers starting from 1.  

This equation can be interpreted as follows. 𝐵𝑖,0(𝑆𝑖,0) = 0, if the total number of parts in 

repair is smaller than or equal to the base-stock level, i.e., 𝑋𝑖,0 ≤ 𝑆𝑖,0. 𝐵𝑖,0(𝑆𝑖,0) > 0, if the 

total number of parts in repair is greater than the base-stock level, i.e., 𝑋𝑖,0 > 𝑆𝑖,0. 

 

Now define 𝐵𝑖,0
(𝑗)

(𝑆𝑖,0) as the number of backorders of item 𝑖 ∈ 𝐼 of local warehouse 𝑗 ∈ 𝐽𝑙oc in 

the backorder queue at the central warehouse. It is assumed that the backorders at the central 

warehouse are filled on a first-come, first-serve (FCFS) basis. This implies that the 

disaggregation of 𝐵𝑖,0(𝑆𝑖,0) is equivalent to a random disaggregation across the local 

warehouses. That is, the probability that any backordered demand at the central warehouse 

stems from local warehouse 𝑗 is directly proportional to the failure rate of that local 

warehouse, i.e.,  𝜆𝑖,𝑗 𝜆𝑖,0⁄ . To determine the probability distribution of 𝐵𝑖,0
(𝑗)

(𝑆𝑖,0), we condition 
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on 𝐵𝑖,0(𝑆𝑖,0) and use the fact that the conditional distribution of 𝐵𝑖,0
(𝑗)

(𝑆𝑖,0) is a Binomial 

distribution with parameters 𝐵𝑖,0(𝑆𝑖,0) and 𝜆𝑖,𝑗 𝜆𝑖,0⁄ . Specifically, the probability distribution 

of 𝐵𝑖,0
(𝑗)

(𝑆𝑖,0) is obtained by: 

P {𝐵𝑖,0
(𝑗)

(𝑆𝑖,0) = 𝑥} = ∑ P{𝐵𝑖,0(𝑆𝑖,0) = 𝑦}P {𝐵𝑖,0
(𝑗)

(𝑆𝑖,0) = 𝑥|𝐵𝑖,0(𝑆𝑖,0) = 𝑦}
∞

𝑦=𝑥
 

  = ∑ (𝑦
𝑥

) (
𝜆𝑖,𝑗

𝜆𝑖,0
)

𝑥

(1 −
𝜆𝑖,𝑗

𝜆𝑖,0
)

𝑦−𝑥

P{𝐵𝑖,0(𝑆𝑖,0) = 𝑦}.∞
𝑦=𝑥            (10) 

 

Let, for each item 𝑖 ∈ 𝐼 and local warehouses 𝑗 ∈ 𝐽𝑙oc, 𝑌𝑖,𝑗  be defined as the total demand 

during the supply lead time 𝐿𝑖,𝑗, and 𝑋𝑖,𝑗(𝑆𝑖,0) be defined as the total amount on order given 

base-stock level 𝑆𝑖,0. It holds that 𝑋𝑖,𝑗(𝑆𝑖,0) = 𝐵𝑖,0
(𝑗)

(𝑆𝑖,0) + 𝑌𝑖,𝑗. This summation is allowed 

since the supply lead times are deterministic (see, e.g., Muckstadt, 2005). From the 

distribution of 𝑋𝑖,𝑗(𝑆𝑖,0), the distribution of 𝐼𝑖,𝑗(𝑆𝑖,0, 𝑆𝑖,𝑗) can be derived, the physical stock on 

hand for item 𝑖 at local warehouse 𝑗, and 𝐵𝑖,𝑗(𝑆𝑖,0, 𝑆𝑖,𝑗), the backorder position for item 𝑖 at 

local warehouse 𝑗, as a function of the base-stock levels 𝑆𝑖,0 and 𝑆𝑖,𝑗, analogous to the 

derivation for the central warehouse. Therefore, the distribution of 𝐼𝑖,𝑗(𝑆𝑖,0, 𝑆𝑖,𝑗), the physical 

stock on hand for item 𝑖 at local warehouse 𝑗, is given by: 

 P{𝐼𝑖,𝑗(𝑆𝑖,0, 𝑆𝑖,𝑗) = 𝑥} = {
∑ P{𝑋𝑖,𝑗(𝑆𝑖,0) = 𝑦}                  if 𝑥 = 0;∞

𝑦=𝑆𝑖,𝑗

P{𝑋𝑖,𝑗(𝑆𝑖,0) = 𝑆𝑖,𝑗 − 𝑥}    if 𝑥 ∈ {1, . . . , 𝑆𝑖,𝑗}
 (11) 

This equation can be interpreted as follows. 𝐼𝑖,𝑗(𝑆𝑖,0, 𝑆𝑖,𝑗) = 0, if the total amount on order for 

item 𝑖 for local warehouse 𝑗 is greater than or equal to the base-stock level, i.e., 𝑋𝑖,𝑗(𝑆𝑖,0) ≥

𝑆𝑖,𝑗. 𝐼𝑖,𝑗(𝑆𝑖,0, 𝑆𝑖,𝑗) > 0, if the total amount on order for item 𝑖 for local warehouse 𝑗 is smaller 

than the base-stock level, i.e., 𝑋𝑖,𝑗(𝑆𝑖,0) < 𝑆𝑖,𝑗 .  

Furthermore, the distribution of 𝐵𝑖,𝑗(𝑆𝑖,0, 𝑆𝑖,𝑗), the backorder position for item 𝑖 at local 

warehouse 𝑗, is given by: 

  P{𝐵𝑖,𝑗(𝑆𝑖,0, 𝑆𝑖,𝑗) = 𝑥} = {
∑ P{𝑋𝑖,𝑗(𝑆𝑖,0) = 𝑦}       if 𝑥 = 0;

𝑆𝑖,𝑗

𝑦=0

P{𝑋𝑖,𝑗(𝑆𝑖,0) = 𝑆𝑖,𝑗 + 𝑥}      if 𝑥 ∈ N,
  (12) 

where N denotes all positive integers starting from 1. This equation can be interpreted as 

follows. 𝐵𝑖,𝑗(𝑆𝑖,0, 𝑆𝑖,𝑗) = 0, if the total amount on order for item 𝑖 for local warehouse 𝑗 is 

smaller than or equal to the base-stock level, i.e., 𝑋𝑖,𝑗(𝑆𝑖,0) ≤ 𝑆𝑖,𝑗. 𝐵𝑖,𝑗(𝑆𝑖,0, 𝑆𝑖,𝑗) > 0, if the 

total amount on order for item 𝑖 for local warehouse 𝑗 is greater than the base-stock level, i.e., 

𝑋𝑖,𝑗(𝑆𝑖,0) > 𝑆𝑖,𝑗 . 

Finally, it is now easy to obtain the expected backorder position for item 𝑖 at local warehouse 

𝑗, which is defined as 𝐸𝐵𝑂𝑖,𝑗(𝑆𝑖,0, 𝑆𝑖,𝑗): 
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𝐸𝐵𝑂𝑖,𝑗(𝑆𝑖,0, 𝑆𝑖,𝑗) = E𝐵𝑖,𝑗(𝑆𝑖,0, 𝑆𝑖,𝑗) = ∑ (𝑥 − 𝑆𝑖,𝑗)P{𝑋𝑖,𝑗(𝑆𝑖,0) = 𝑥}

∞

𝑥=𝑆𝑖,𝑗+1

 

 = 𝜆𝑖,𝑗𝐿𝑖,𝑗 − 𝑆𝑖,𝑗 + ∑ (𝑆𝑖,𝑗 − 𝑥)P{𝑋𝑖,𝑗(𝑆𝑖,0) = 𝑥},
𝑆𝑖,𝑗

𝑥=0      ∀𝑆𝑖,𝑗 ∈ N0,    (13) 

where N0 denotes all positive integers starting from 0. 

 

Exact evaluation as explained above, leads to a computational issue, since the probabilities 

P{𝑋𝑖,𝑗 = 𝑥}, 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, should be calculated for all values 𝑥 ∈ N0. In practice, however, we 

limit ourselves to 𝑥 ∈ {0, . . . , 𝑥𝑖,𝑗
max}, with 𝑥𝑖,𝑗

max = min {𝑥 | P{𝑋𝑖,𝑗 ≤ 𝑥} ≥ 1 − 𝜖} and 𝜖 = 10−6,  

and allocate the remaining probability mass 1 − P{𝑋𝑖,𝑗 ≤ 𝑥𝑖,𝑗
max} to P{𝑋𝑖,𝑗 = 𝑥𝑖,𝑗

max}.  

For large systems with many items and local warehouses, the computational effort of the 

exact evaluations may become too high, and then approximate evaluation methods like 

METRIC or Graves’ approximation can be used. The METRIC approximation assumes that 

successive replenishment actions at the local warehouses are independent processes, all with 

the same mean (𝐿𝑖,𝑗 +
E𝐵𝑖,0(𝑆𝑖,0)

𝜆𝑖,0
)𝜆𝑖,𝑗, which leads to a simple Poisson distribution for the 

variables 𝑋𝑖,𝑗(𝑆𝑖,0) (this may be seen as a single-moment fit). Graves (1985) proposes a 

different approximate evaluation method based on two-moment fits of negative binomial 

distributions on the variables 𝑋𝑖,𝑗(𝑆𝑖,0). This two-moment procedure leads to accurate 

approximations in all cases, while the METRIC approximation is good in many cases, but it does 

lead to large deviations in several other cases (especially when E𝐵𝑖,0(𝑆𝑖,0) is large). Wong et 

al. (2007), for instance, present the results of experiments evaluating the accuracy of both 

approximate evaluation methods when used for executing the greedy procedure. 

 

5.1.4 Optimization problem 

Inventory investment cost 𝑐𝑖
inv is counted for every item 𝑖 put on stock, and the aggregate 

inventory investment costs are given by: 

    𝐶(S) =  ∑ ∑ 𝑐𝑖
inv

𝑗∈𝐽𝑖∈𝐼 𝑆𝑖,𝑗      (14) 

The expected number of backorders for an item 𝑖 ∈ 𝐼 at local warehouse 𝑗 ∈ 𝐽loc at an arbitrary 

point in time at the long run is given by 𝐸𝐵𝑂𝑖,𝑗(𝑆𝑖,0, 𝑆𝑖,𝑗), which is defined in equation (13) 

(notice that this number only depends on 𝑆𝑖,0 and 𝑆𝑖,𝑗). Therefore, the aggregate expected 

number of backorders is: 

   𝐸𝐵𝑂𝑗(S0, S𝑗) =  ∑ 𝐸𝐵𝑂𝑖,𝑗(𝑆𝑖,0, 𝑆𝑖,𝑗)𝑖∈𝐼     (15) 

At local warehouse 𝑗, there is a maximum level 𝐸𝐵𝑂𝑗
obj

 given for the aggregate expected 

number of backorders (a target for all warehouses together is also possible). The goal of the 

METRIC model is to determine optimal base-stock levels that minimize the total inventory 
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investment costs subject to a target for the expected number of backorders per local 

warehouse. The optimization problem is formulated as follows: 

Min 𝐶(S) 

Subject to 𝐸𝐵𝑂𝑗(S0, S𝑗) ≤  𝐸𝐵𝑂𝑗
obj

, ∀𝑗 ∈ 𝐽𝑙𝑜𝑐    

𝑆𝑖,𝑗 ∈  N0, ∀𝑖 ∈ 𝐼, ∀𝑗 ∈  𝐽, 

where N0 denotes all positive integers starting from 0. 

 

5.1.5 Greedy algorithm 

Feasible solutions can be obtained in an efficient way via a greedy procedure similar to the 

procedures described in Wong et al. (2007). The basic idea of the Greedy algorithm is the 

following. For each level of depot stock and each base the expected backorders must be 

computed as a function of the base stock. For each level of depot stock, the optimal allocation 

of the units of stock to the several bases must be determined to minimize the sum of expected 

backorders at all bases. This is accomplished by a marginal allocation. At each step, the next 

unit of stock is added to the base where it will cause the largest decrease in expected 

backorders. The expected backorders is a convex function which guarantees that the marginal 

allocation technique produces optimal solutions. For the multi-item problem, marginal 

analysis is again employed. This means that at each step the next unit of stock is added to the 

base where it will cause the largest decrease in expected backorders divided by the unit cost. 

However, before marginal analysis is used a preliminary convex extension of the functions 

must be performed because the item backorder functions are not necessarily convex. After 

each allocation, the system investment and system backorders are computed. Allocation 

terminates when the investment target is just exceeded or, alternatively, when the expected 

backorders are just less than a target value. The Greedy algorithm for solving the optimization 

problem is formulated as follows. 

Step 1 

𝑆𝑖,𝑗 ∶= 0 for all 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽;  

𝐶(S) ≔ 0 and 𝐸𝐵𝑂𝑗(S) ≔  ∑ 𝜆𝑖,𝑗(𝐿𝑖,0 + 𝐿𝑖,𝑗)

𝑖∈𝐼

 for all 𝑗 ∈ 𝐽loc 

Step 2 

𝜏𝑖,𝑗 ≔  
∆𝑖,𝑗𝐸𝐵𝑂

𝑐𝑖
inv  for all 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽; 

(𝑘, 𝑙) ≔ arg max 𝜏𝑖,𝑗; 

S ≔ S + 𝑒𝑘,𝑙  

Step 3 



28 
 

𝐶(S) ≔ 𝐶(S) + 𝑐𝑘
inv; 

Calculate 𝐸𝐵𝑂𝑗(S) for all 𝑗 ∈ 𝐽loc; 

If 𝐸𝐵𝑂𝑗(S) ≤ 𝐸𝐵𝑂𝑗
obj

 for all 𝑗 ∈ 𝐽loc, then stop, else go to step 2.  

 

Where   

  𝐸𝐵𝑂𝑗(S) = 𝐸𝐵𝑂𝑗(S0, S𝑗) =  ∑ 𝐸𝐵𝑂𝑖,𝑗(𝑆𝑖,0, 𝑆𝑖,𝑗)𝑖∈𝐼     (16) 

And 

∆𝑖,𝑗𝐸𝐵𝑂 = ∑ [(𝐸𝐵𝑂𝑙(S) − 𝐸𝐵𝑂𝑙
obj

)
+

− (𝐸𝐵𝑂𝑙(S + 𝑒𝑖,𝑗) − 𝐸𝐵𝑂𝑙
obj

)+]𝑙∈𝐽loc   (17) 

 

And let 𝑒𝑖,𝑗  be a matrix having the same structure as the base-stock matrix S, with a one at the 

position corresponding to item 𝑖 ∈ 𝐼 and stock point 𝑗 ∈ 𝐽, and with zeros at all other positions. 

 

5.1.6 Alternative service measures 

Instead of using the expected number of backorders as a service level constraint, the expected 

waiting time can also be used as an alternative service measure. It is straightforward to adapt 

the service level constraint based on the expected number of backorders to one that is based 

on the expected waiting time. The expected waiting time for getting a ready-for-use item 𝑖 ∈

𝐼 at local warehouse 𝑗 ∈ 𝐽loc when the base-stock level is 𝑆𝑖,0 at the central warehouse and 𝑆𝑖,𝑗 

at the local warehouse, 𝑊𝑖,𝑗(𝑆𝑖,0, 𝑆𝑖,𝑗), can be determined by Little’s formula (Little, 1961): 

𝑊𝑖,𝑗(𝑆𝑖,0, 𝑆𝑖,𝑗) = 𝐸𝐵𝑂𝑖,𝑗(𝑆𝑖,0, 𝑆𝑖,𝑗)/𝜆𝑖,𝑗. Taking all items together, the aggregate expected 

waiting time 𝑊𝑗(S0, S𝑗) at local warehouse 𝑗 ∈ 𝐽loc is: 

  𝑊𝑗(S0, S𝑗) = ∑
𝜆𝑖,𝑗

∑ 𝜆𝑘,𝑗𝑘∈𝐼
×

𝐸𝐵𝑂𝑖,𝑗(𝑆𝑖,0,𝑆𝑖,𝑗)

𝜆𝑖,𝑗
=𝑖∈𝐼 ∑

𝐸𝐵𝑂𝑖,𝑗(𝑆𝑖,0,𝑆𝑖,𝑗)

∑ 𝜆𝑘,𝑗𝑘∈𝐼
𝑖∈𝐼   (18) 

Which means that we get a problem that is equivalent to the original problem. 

 

Furthermore, instead of using a service level target per local warehouse, an aggregate service 

level target over all local warehouses can also be used:  

    ∑ 𝐸𝐵𝑂𝑗(𝑗∈𝐽loc S0, S𝑗) ≤ 𝐸𝐵𝑂obj    (19) 

Where 𝐸𝐵𝑂obj denotes the aggregate target. 
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5.2 METRIC model extensions 

5.2.1 Lateral transshipments 

Paterson et al. (2010) state that reactive lateral transshipments are suitable in an environment 

where the transshipment costs are relatively low compared to the costs associated with 

holding large amounts of stock and with failing to meet demand immediately. This is often the 

case in a spare parts environment. Alfredsson and Verrijdt (1999) compared their model with 

lateral transshipments to the VARI-METRIC model and they found a maximum cost reduction 

of 43.9% and a minimum cost reduction of 13.2%. The results also show that in many cases 

the stock levels are lower, especially the central stock level showed a significant decrease. In 

addition, Kranenburg (2006) discussed a semi-conductor company ASML and showed that 

using reactive lateral transshipments can save the company up to 50% of annual inventory 

related costs for spare parts. These results indicate that using lateral transshipments in a 

distribution network for spare parts can be very beneficial. Therefore, the use of lateral 

transshipments will be investigated for the European F-35 spare parts supply chain. 

The same two-echelon model is considered as before, but now the following alternative 

option is considered to satisfy a demand for an item 𝑖 ∈ 𝐼 at local warehouse 𝑗 ∈ 𝐽loc if local 

warehouse 𝑗 is out of stock; lateral transshipment from a local warehouse. The variables used 

are 𝐿𝑖,𝑗,𝑘
lat  for the lateral transshipment lead time, and 𝑐𝑖,𝑗,𝑘

lat  for the costs of the lateral 

transshipment. The procedure is as follows. First, the stock is checked at the central 

warehouse. If the central warehouse has a part on stock then the demand is satisfied by the 

central warehouse, as described before. If the central warehouse is out of stock, then the 

stocks are checked at one or more other local warehouses 𝑘 ∈ 𝐽loc, 𝑘 ≠ 𝑗, that have a part on 

stock. If one of these local warehouses has a part on stock, then the demand is immediately 

coupled to that part and the part is delivered at the required place. If two or more local 

warehouses have a part on stock, then the location with the lowest demand rate is chosen as 

the sending source because this location has the lowest backorder probability and the least 

impact on the aggregate availability level. If none of these local warehouses have a part on 

stock, then the demand is backordered, and this results in downtime for the F-35s. The 

demand is satisfied as soon as a part becomes available from a repair shop at the central 

warehouse. 

Axsäter (1990) provided a new approximation technique for modelling such lateral 

transshipments in a two-echelon system with repairable items. The characteristic feature is 

that the demand rate at a local warehouse depends on the inventory level. With positive 

inventory on hand, the normal demand is faced plus demand for lateral transshipments from 

other local warehouses. With no positive inventory on hand, the only real demand is the 

demand that has to be backordered. In addition to the fraction of demand satisfied from stock 

on hand and the fraction of demand that is backordered, a new variable is included in the 

model. This new variable is the fraction of demand satisfied by lateral transshipments and it 

is defined as alpha (𝛼). Because exponential lead times are assumed, a birth-death (Markov) 

queueing model is used to derive the equations of the steady state probabilities of the net 

inventory.  
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5.2.2 Advance demand information 

For including advance demand information (ADI), Hariharan & Zipkin (1995) found that 

demand lead times are, in a precise sense, the opposite of supply lead times. That is, the effect 

of a demand lead time on overall system performance is precisely the same as a corresponding 

reduction in the supply lead time. Therefore, the warning time in the thesis, resulting from 

the ADI of component failures, has to be included in the model as a reduction in the supply 

lead times. The variable that will be used for the warning time is 𝐿𝑖,𝑗
war. Therefore, the new 

supply lead times for satisfying a demand are, max{𝐿𝑖,𝑗 − 𝐿𝑖,𝑗
war, 0} and max{𝐿𝑖,𝑗,𝑘

lat − 𝐿𝑖,𝑗
war , 0}, 

for the central warehouse and local warehouses, respectively. The inaccuracy of the ADI has 

to be included in the model as well. This will be done by making a distinction between false 

negatives and false positives. False negatives are components (LRCs) that fail without receiving 

a warning in advance, and false positives are components (LRCs) that fail at a later moment 

than predicted. False negatives are very problematic because when a component fails 

unannounced at a local warehouse and there is no stock at that warehouse, it results in a 

backorder and therefore in downtime for the F-35s. False negatives therefore have a large 

impact on the availability level. When receiving a warning at the central warehouse that 

specifies that a component (LRC) will fail in 3 days at a certain local warehouse, an example of 

a false positive is that the component actually fails in 6 days, instead of 3 days. An example of 

a false negative is that the component failure is not predicted, and as a result no warning is 

received at the central warehouse. This means that it is not known in advance that the 

component will fail in a few days. Therefore, for the false negatives the result will be no 

reduction in the supply lead times, whereas for the false positives there will be a reduction in 

the supply lead times, but the component is actually not needed yet. If, for example, the false 

negative percentage is 10%, the supply lead time for the central warehouse becomes 

(0.9 × max{𝐿𝑖,𝑗 − 𝐿𝑖,𝑗
war, 0}) + (0.1 × 𝐿𝑖,𝑗). Topan et al. (2018) revealed that using imperfect 

ADI yields substantial savings, but only when the demand lead time is larger than the supply 

lead time. In this case, the average PCR (percentage cost reduction) is found to be 30.06%, 

and the maximum PCR is found to be 89.96%. Furthermore, the amount of savings is sensitive 

to the levels of the imperfectness aspects. Having fewer false negatives is more desirable than 

having fewer false positives. 

In addition, the warnings also specify which smaller subcomponent (SRC) is going to fail that 

will cause the LRC failure. By knowing which SRC causes the LRC failure, inspection time at the 

repair shop is saved. Furthermore, the repair shop can order the SRCs needed for the repair 

in advance of the LRC failure, so there will be less waiting time for the subcomponents (SRCs). 

Zero inspection time and less waiting time on SRCs results in a shorter repair lead time for the 

LRCs. A shorter repair lead time, in turn, results in lower required base-stock levels. Therefore, 

the effect of warning time, resulting from the ADI of component failures, on the repair lead 

time is investigated and included in the model with ADI. Simulation models will be developed 

for the situations with and without warning time in which the repair lead time is simulated. 

From these simulations, the average repair lead time can be determined in both situations. 

The effect of warning time on the repair lead time is known and can be included in the model 

with ADI. 
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6. Numerical results  

In this section, the numerical results of the different multi-echelon models will be described 

and explained. First, the results of the base model, which is the model without ADI and lateral 

transshipments, will be shown and explained. Next, the results of the model with ADI will be 

described and explained. Finally, the results of the model with lateral transshipments (and 

ADI) will be described. The numerical results have been obtained by implementing the 

optimization problem and corresponding Greedy solution algorithm, as described in section 

5.1.4 and 5.1.5, in Excel code. Furthermore, simulations have been developed to validate the 

results of the different multi-echelon models.  

6.1 Base model 

The base model is the model without ADI and lateral transshipments. The base model is 

constructed by implementing the optimization problem and corresponding Greedy solution 

algorithm from section 5.1.4 and 5.1.5. The model uses Equation (13) from problem analysis 

section 5.1.3 and Poisson distributed demand to calculate the expected backorders at the local 

warehouses. Based on these expected backorders at the local warehouses, optimal base-stock 

levels can be determined for all warehouses. This is accomplished by the Greedy algorithm. At 

each step of the algorithm, the next unit of stock is allocated to the local warehouse where it 

will cause the largest decrease in expected backorders. After each allocation, the system 

investment and system backorders are computed. Allocation terminates when the expected 

backorders are just less than a target value, i.e., when the 95% availability level is achieved. 

The base model determines optimal base-stock levels, for the central warehouse and local 

warehouses, that minimize the inventory investment costs while satisfying the 95% availability 

constraint. This is done for a local availability constraint, which means that every local 

warehouse has to satisfy the 95% availability constraint, and for an aggregate availability 

constraint, which means that over all local warehouses together the 95% availability has to be 

achieved. The results of the base model have been obtained for four different scenarios. This 

is done in order to show that the multi-echelon model and simulation provide (almost) the 

same values using different datasets. The four different scenarios used, are: 

 Scenario 1: MTBF=8000 days, 𝐿𝑖,0=100 days 

 Scenario 2: MTBF=6000 days, 𝐿𝑖,0=100 days 

 Scenario 3: MTBF=8000 days, 𝐿𝑖,0=50 days 

 Scenario 4: MTBF=6000 days, 𝐿𝑖,0=50 days 

It can be observed that scenario 1 and 2, and scenario 3 and 4, have the same repair lead 

time 𝐿𝑖,0, but a different MTBF. In this way a sensitivity analysis on the MTBF can be 

performed in order to uncover the effect of the MTBF on the stock levels. Furthermore, it 

can be observed that scenario 1 and 3, and scenario 2 and 4, have the same MTBF, but a 

different repair lead time 𝐿𝑖,0. In this way a sensitivity analysis on the repair lead time 𝐿𝑖,0 

can be performed in order to uncover the effect of the repair lead time on the stock levels. 

Scenario 1 and scenario 4 have a different MTBF as well as a different repair lead time 𝐿𝑖,0. 
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Before the results of the multi-echelon models and simulations will be shown, first a list of 

notations is given. The list shows the variables and their notations used for obtaining the 

results, followed by a description of the variables. Table 1 shows the list of notations. 

Table 1. List of notations  

Notations Description 

𝐽loc Set of local warehouses, numbered 𝑗 = 1, . . . , |𝐽loc| 

𝐽 Set of all warehouses (𝐽 = {0} ∪ 𝐽loc) 
𝜆𝑖,𝑗 Demand rate for item 𝑖 ∈ 𝐼 as observed by local warehouse 𝑗 ∈ 𝐽loc  

𝜆𝑖,0 Total demand rate for item 𝑖 ∈ 𝐼 at the central warehouse (𝜆𝑖,0 = ∑ 𝜆𝑖,𝑗𝑗∈𝐽loc ) 

𝐿𝑖,𝑗  Supply lead time for item 𝑖 ∈ 𝐼 from central warehouse to local warehouse 𝑗 ∈ 𝐽loc 

𝐿𝑖,0 Repair lead time for item 𝑖 ∈ 𝐼 

𝐿𝑖,𝑗
war Warning time for item 𝑖 ∈ 𝐼 at local warehouse 𝑗 ∈ 𝐽loc, observed at the central warehouse 

𝐿𝑖,𝑗,𝑘
lat  Lateral transshipment lead time for item 𝑖 ∈ 𝐼 from local warehouse 𝑘 ∈ 𝐽loc to 𝑗 ∈ 𝐽loc 

𝑆𝑖,𝑗  Base-stock level for item 𝑖 ∈ 𝐼 at stock point 𝑗 ∈ 𝐽 

S Matrix consisting of elements 𝑆𝑖,𝑗  

E𝐵𝑖,𝑗(𝑆𝑖,0, 𝑆𝑖,𝑗) Expected backorder position for item 𝑖 ∈ 𝐼 at local warehouse 𝑗 ∈ 𝐽loc 

E𝐵𝑖,0(𝑆𝑖,0) Expected backorder position for item 𝑖 ∈ 𝐼 at the central warehouse 

E𝐼𝑖,𝑗(𝑆𝑖,0, 𝑆𝑖,𝑗) Expected inventory position for item 𝑖 ∈ 𝐼 at local warehouse 𝑗 ∈ 𝐽loc 

E𝐼𝑖,0(𝑆𝑖,0) Expected inventory position for item 𝑖 ∈ 𝐼 at the central warehouse 

E𝑊𝑖,𝑗(𝑆𝑖,0, 𝑆𝑖,𝑗) Expected waiting time for item 𝑖 ∈ 𝐼 at local warehouse 𝑗 ∈ 𝐽loc 

E𝑊𝑖,0(𝑆𝑖,0) Expected waiting time for item 𝑖 ∈ 𝐼 at the central warehouse 

E𝐴𝑖,𝑗(𝑆𝑖,0, 𝑆𝑖,𝑗) Expected availability for item 𝑖 ∈ 𝐼 at local warehouse 𝑗 ∈ 𝐽loc  

E𝐴𝑖,𝑠(𝑆𝑖,0, 𝑆𝑖,𝑗) Expected availability of the system for item 𝑖 ∈ 𝐼  (E𝐴𝑖,𝑠(𝑆𝑖,0, 𝑆𝑖,𝑗) =

∑ (E𝐴𝑖,𝑗(𝑆𝑖,0, 𝑆𝑖,𝑗)𝑗∈𝐽𝑙𝑜𝑐  ×
𝜆𝑖,𝑗

𝜆𝑖,0
)) 

𝑐𝑖
inv Inventory investment cost for item 𝑖 ∈ 𝐼 

𝐶(S) Aggregate inventory investment cost (𝐶(S) =  ∑ ∑ 𝑐𝑖
inv

𝑗∈𝐽𝑖∈𝐼 𝑆𝑖,𝑗) 

 

6.1.1 Model results  

Table 2 shows the input variables used for the base model and scenario 1, i.e., MTBF=8000 

days and 𝐿𝑖,0=100 days. As can be observed, first the local warehouses are stated and there is 

ended with the central warehouse. The supply lead times of the local warehouses, 𝐿𝑖,𝑗, are 

deterministic and all between 0 to 2 days. The repair lead time of the central warehouse, 𝐿𝑖,0, 

is random with an average of 100 days. The expected lead time for a local warehouse is equal 

to the standard supply lead time plus the expected waiting time for components at the central 

warehouse, which follows from table 3. Furthermore, the average demand per day at a local 

warehouse depends on the component MTBF and the number of aircrafts operating from that 

local warehouse. Therefore, the average demand per day at the local warehouses, 𝜆𝑖,𝑗, is 

determined as follows: 𝜆𝑖,𝑗 = ((365 MTBF⁄ )/365) × Aircrafts. The average demand per day 

at the central warehouse, 𝜆𝑖,0, is the sum of the demand rates at the local warehouses, i.e., 

𝜆𝑖,0 = ∑ 𝜆𝑖,𝑗𝑗∈𝐽loc . The lead time demand then follows from the multiplication of the demand 

rate with the expected lead time, i.e., 𝜆𝑖,𝑗𝐿𝑖,𝑗  for the local warehouses and 𝜆𝑖,0𝐿𝑖,0 for the 

central warehouse. 
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Table 2. Base model input variables 

Stock point 𝐽 Lead time 
(days) 

Expected 
lead time  

Aircrafts MTBF 
(days) 

Average 
demand 

 

Lead time 
demand 

Norway 1.0 4.24 52 8000 0.0065 0.0276 

Denmark 0.50 3.74 30 8000 0.0038 0.0140 

NL 0.10 3.34 37 8000 0.0046 0.0155 

Italy 0.80 4.04 90 8000 0.0113 0.0455 

UK 0.60 3.84 138 8000 0.0173 0.0663 

Belgium 0.10 3.34 34 8000 0.0043 0.0142 

Usafe 0.30 3.54 100 8000 0.0125 0.0443 

Israel 1.50 4.74 19 8000 0.0024 0.0113 

Central 
warehouse 

100.0 100.0   0.0625 6.25 

 

Table 3 shows the output of the base model, using scenario 1 and a 95% aggregate availability 

constraint. A 95% aggregate availability constraint means that over all local warehouses 

together the 95% availability level has to be achieved. In other words, the expected availability 

of the system has to be 95%, however, some local warehouses can have an availability level 

lower than 95%. The expected availability of the system is determined as follows: 

E𝐴𝑖,𝑠(𝑆𝑖,0, 𝑆𝑖,𝑗) = ∑ (E𝐴𝑖,𝑗(𝑆𝑖,0, 𝑆𝑖,𝑗)𝑗∈𝐽loc  ×
𝜆𝑖,𝑗

𝜆𝑖,0
).  

Table 3. Base model output for scenario 1 and aggregate availability 

Stock point 𝐽 Stock levels 
𝑆𝑖,𝑗 , 𝑆𝑖,0 

Expected 
availability 

Expected 
inventory 

Expected 
backorders 

Expected 
waiting time 

Norway 1 97.3% 0.97 0.0004 0.0580 

Denmark 1 98.6% 0.99 0.0001 0.0262 

NL 1 98.5% 0.98 0.0001 0.0257 

Italy  1 95.6% 0.96 0.0010 0.0906 

UK 1 93.6% 0.94 0.0022 0.1247 

Belgium 1 98.6% 0.99 0.0001 0.0237 

Usafe 1 95.7% 0.96 0.0010 0.0774 

Israel 1 98.9% 0.99 0.0001 0.0266 

Central 
warehouse 

9 95.9% 2.95 0.2028 3.2442 

 

As can be observed, the optimal amount of network stock is 17 LRCs according to the model. 

The network stock was defined as the sum of the stock at the local warehouses and the central 

warehouse. At every local warehouse 1 LRC is kept in stock and 9 LRCs are kept in stock at the 

central warehouse, i.e., 𝑆𝑖,𝑗 = 1 and 𝑆𝑖,0 = 9. The 95% aggregate availability level is achieved 

(95.9%), while the inventory investment cost is minimized. Holding 16 LRCs on stock results in 

an aggregate availability level of 93.0% and holding 18 LRCs on stock results in an aggregate 

availability level of 97.7%. Thus, 17 LRCs is the minimum amount of stock required to achieve 

the 95% aggregate availability level and therefore this is the optimal amount. Furthermore, it 

can be observed from table 3 that despite of the fact that UK has an expected availability level 

of 93.6%, the aggregate availability level of 95% is still achieved.    
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Table 4 shows the output of the base model, using scenario 1 and a 95% local availability 

constraint. A 95% local availability constraint means that every local warehouse has to satisfy 

the 95% availability constraint. In other words, E𝐴𝑖,𝑗(𝑆𝑖,0, 𝑆𝑖,𝑗) ≥ 0.95 for all local warehouses. 

In contrast to the aggregate availability constraint, it is not allowed to have local warehouses 

with an availability level lower than 95%. 

Table 4. Base model output for scenario 1 and local availability 

Stock point 𝐽 Stock levels 
𝑆𝑖,𝑗 , 𝑆𝑖,0 

Expected 
availability 

Expected 
inventory 

Expected 
backorders 

Expected 
waiting time 

Norway 1 98.3% 0.98 0.0001 0.0220 

Denmark 1 99.2% 0.99 0.0000 0.0083 

NL 1 99.2% 0.99 0.0000 0.0067 

Italy  1 97.3% 0.97 0.0004 0.0323 

UK 1 96.3% 0.96 0.0007 0.0416 

Belgium 1 99.3% 0.99 0.0000 0.0062 

Usafe 1 97.6% 0.98 0.0003 0.0226 

Israel 1 99.3% 0.99 0.0000 0.0114 

Central 
warehouse 

10 97.7% 3.85 0.1006 1.6089 

 

The optimal amount of network stock is 18 LRCs according to the model. At every local 

warehouse 1 LRC is kept in stock and 10 LRCs are kept in stock at the central warehouse, i.e., 

𝑆𝑖,𝑗 = 1 and 𝑆𝑖,0 = 10. The 95% local availability level is achieved for all local warehouses, 

while the inventory investment cost is minimized. Holding 17 LRCs on stock results in a local 

availability level of 93.6% for the UK, as shown in table 3, and this is not allowed. Thus, 18 LRCs 

is the minimum amount of stock required to achieve the 95% local availability level and 

therefore this is the optimal amount. 

 

For scenario 2, a repair lead time, 𝐿𝑖,0, of 100 days is used, like in scenario 1. However, an 

MTBF of 6000 days is used instead of an MTBF of 8000 days. This results in different demand 

rates and lead time demands for all warehouses. Table 5 shows the output of the base model, 

using scenario 2 and a 95% aggregate availability constraint, i.e., over all local warehouses 

together the 95% availability level has to be achieved. 

Table 5. Base model output for scenario 2 and aggregate availability 

Stock point 𝐽 Stock levels 
𝑆𝑖,𝑗 , 𝑆𝑖,0 

Expected 
availability 

Expected 
inventory 

Expected 
backorders 

Expected 
waiting time 

Norway 1 97.4% 0.97 0.0003 0.0401 

Denmark 1 98.7% 0.99 0.0001 0.0163 

NL 1 98.7% 0.99 0.0001 0.0143 

Italy  1 95.8% 0.96 0.0009 0.0603 

UK 1 94.1% 0.94 0.0018 0.0795 

Belgium 1 98.8% 0.99 0.0001 0.0131 

Usafe 1 96.2% 0.96 0.0008 0.0456 

Israel 1 98.9% 0.99 0.0001 0.0199 

Central 
warehouse 

12 96.3% 3.84 0.1713 2.0557 
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The optimal amount of network stock is 20 LRCs according to the model. At every local 

warehouse 1 LRC is kept in stock and 12 LRCs are kept in stock at the central warehouse, i.e., 

𝑆𝑖,𝑗 = 1 and 𝑆𝑖,0 = 12. The 95% aggregate availability level is achieved (96.3%), while the 

inventory investment cost is minimized. Holding 19 LRCs on stock results in an aggregate 

availability level of 94.0% and holding 21 LRCs on stock results in an aggregate availability level 

of 97.6%. Thus, 20 LRCs is the minimum amount of stock required to achieve the 95% 

aggregate availability level and therefore this is the optimal amount. Furthermore, it can be 

observed from table 5 that despite of the fact that UK has an expected availability level of 

94.1%, the aggregate availability level of 95% is still achieved, which was also the case in table 

2.   

Table 6 shows the output of the base model, using scenario 2 and a 95% local availability 

constraint, i.e., every local warehouse has to satisfy the 95% availability constraint. 

Table 6. Base model output for scenario 2 and local availability 

Stock point 𝐽 Stock levels 
𝑆𝑖,𝑗 , 𝑆𝑖,0 

Expected 
availability 

Expected 
inventory 

Expected 
backorders 

Expected 
waiting time 

Norway 1 98.2% 0.98 0.0002 0.0187 

Denmark 1 99.2% 0.99 0.0000 0.0062 

NL 1 99.3% 0.99 0.0000 0.0043 

Italy  1 97.2% 0.97 0.0004 0.0263 

UK 1 96.2% 0.96 0.0007 0.0321 

Belgium 1 99.3% 0.99 0.0000 0.0039 

Usafe 1 97.7% 0.98 0.0003 0.0158 

Israel 1 99.2% 0.99 0.0000 0.0105 

Central 
warehouse 

13 97.6% 4.76 0.0901 1.0814 

 

The optimal amount of network stock is 21 LRCs according to the model. At every local 

warehouse 1 LRC is kept in stock and 13 LRCs are kept in stock at the central warehouse, i.e., 

𝑆𝑖,𝑗 = 1 and 𝑆𝑖,0 = 13. The 95% local availability level is achieved for all local warehouses, 

while the inventory investment cost is minimized. Holding 20 LRCs on stock results in a local 

availability level of 94.1% for the UK, as shown in table 5, and this is not allowed. Thus, 21 LRCs 

is the minimum amount of stock required to achieve the 95% local availability level and 

therefore this is the optimal amount. 

 

For scenario 3, an MTBF of 8000 days is used, like in scenario 1. However, a repair lead time, 

𝐿𝑖,0, of 50 days is used instead of 100 days. This results in different lead time demands for all 

warehouses. Table 7 shows the output of the base model, using scenario 3 and a 95% 

aggregate availability constraint, i.e., over all local warehouses together the 95% availability 

level has to be achieved. 
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Table 7. Base model output for scenario 3 and aggregate availability 

Stock point 𝐽 Stock levels 
𝑆𝑖,𝑗 , 𝑆𝑖,0 

Expected 
availability 

Expected 
inventory 

Expected 
backorders 

Expected 
waiting time 

Norway 1 97.7% 0.98 0.0003 0.0405 

Denmark 1 98.9% 0.99 0.0001 0.0173 

NL 1 98.8% 0.99 0.0001 0.0161 

Italy  1 96.3% 0.96 0.0007 0.0621 

UK 1 94.7% 0.95 0.0014 0.0838 
Belgium 1 98.9% 0.99 0.0001 0.0148 

Usafe 1 96.5% 0.97 0.0006 0.0500 

Israel 1 99.0% 0.99 0.0000 0.0194 

Central 
warehouse 

5 96.7% 2.03 0.1590 2.5447 

 

The optimal amount of network stock is 13 LRCs according to the model. At every local 

warehouse 1 LRC is kept in stock and 5 LRCs are kept in stock at the central warehouse, i.e., 

𝑆𝑖,𝑗 = 1 and 𝑆𝑖,0 = 5. The 95% aggregate availability level is achieved (96.7%), while the 

inventory investment cost is minimized. Holding 12 LRCs on stock results in an aggregate 

availability level of 93.3% and holding 14 LRCs on stock results in an aggregate availability level 

of 98.3%. Thus, 13 LRCs is the minimum amount of stock required to achieve the 95% 

aggregate availability level and therefore this is the optimal amount. Furthermore, it can be 

observed from table 7 that despite of the fact that UK has an expected availability level of 

94.7%, the aggregate availability level of 95% is still achieved, which was also the case in table 

3 and 5.   

Table 8 shows the output of the base model, using scenario 3 and a 95% local availability 

constraint, i.e., every local warehouse has to satisfy the 95% availability constraint. 

Table 8. Base model output for scenario 3 and local availability 

Stock point 𝐽 Stock levels 
𝑆𝑖,𝑗 , 𝑆𝑖,0 

Expected 
availability 

Expected 
inventory 

Expected 
backorders 

Expected 
waiting time 

Norway 1 98.7% 0.99 0.0001 0.0128 

Denmark 1 99.4% 0.99 0.0000 0.0042 

NL 1 99.5% 0.99 0.0000 0.0028 

Italy  1 98.0% 0.98 0.0002 0.0179 

UK 1 97.3% 0.97 0.0004 0.0217 
Belgium 1 99.5% 1.00 0.0000 0.0025 

Usafe 1 98.4% 0.98 0.0001 0.0104 

Israel 1 99.4% 0.99 0.0000 0.0074 

Central 
warehouse 

6 98.3% 2.94 0.0620 0.9920 

 

The optimal amount of network stock is 14 LRCs according to the model. At every local 

warehouse 1 LRC is kept in stock and 6 LRCs are kept in stock at the central warehouse, i.e., 

𝑆𝑖,𝑗 = 1 and 𝑆𝑖,0 = 6. The 95% local availability level is achieved for all local warehouses, while 

the inventory investment cost is minimized. Holding 13 LRCs on stock results in a local 

availability level of 94.7% for the UK, as shown in table 7, and this is not allowed. Thus, 14 LRCs 
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is the minimum amount of stock required to achieve the 95% local availability level and 

therefore this is the optimal amount. 

For scenario 4, an MTBF of 6000 days and a repair lead time, 𝐿𝑖,0, of 50 days is used. Table 9 

shows the output of the base model, using scenario 4 and a 95% aggregate availability 

constraint, i.e., over all local warehouses together the 95% availability level has to be 

achieved. 

Table 9. Base model output for scenario 4 and aggregate availability 

Stock point 𝐽 Stock levels 
𝑆𝑖,𝑗 , 𝑆𝑖,0 

Expected 
availability 

Expected 
inventory 

Expected 
backorders 

Expected 
waiting time 

Norway 1 96.8% 0.97 0.0005 0.0619 

Denmark 1 98.4% 0.98 0.0001 0.0271 

NL 1 98.2% 0.98 0.0002 0.0258 

Italy  1 94.7% 0.95 0.0014 0.0955 

UK 1 92.5% 0.92 0.0030 0.1296 

Belgium 1 98.4% 0.98 0.0001 0.0237 

Usafe 1 95.0% 0.95 0.0013 0.0788 

Israel 1 98.7% 0.99 0.0001 0.0292 

Central 
warehouse 

6 95.2% 2.07 0.2334 2.8013 

 

The optimal amount of network stock is 14 LRCs according to the model. At every local 

warehouse 1 LRC is kept in stock and 6 LRCs are kept in stock at the central warehouse, i.e., 

𝑆𝑖,𝑗 = 1 and 𝑆𝑖,0 = 6. The 95% aggregate availability level is achieved (95.2%), while the 

inventory investment cost is minimized. Holding 13 LRCs on stock results in an aggregate 

availability level of 91.4% and holding 15 LRCs on stock results in an aggregate availability level 

of 97.4%. Thus, 14 LRCs is the minimum amount of stock required to achieve the 95% 

aggregate availability level and therefore this is the optimal amount. Furthermore, it can be 

observed from table 9 that despite of the fact that UK and Italy have an expected availability 

level of 92.5% and 94.7% respectively, the aggregate availability level of 95% is still achieved.  

Table 10 shows the output of the base model, using scenario 4 and a 95% local availability 

constraint, i.e., every local warehouse has to satisfy the 95% availability constraint. 

Table 10. Base model output for scenario 4 and local availability 

Stock point 𝐽 Stock levels 
𝑆𝑖,𝑗 , 𝑆𝑖,0 

Expected 
availability 

Expected 
inventory 

Expected 
backorders 

Expected 
waiting time 

Norway 1 98.1% 0.98 0.0002 0.0219 

Denmark 1 99.1% 0.99 0.0000 0.0077 

NL 1 99.2% 0.99 0.0000 0.0057 

Italy  1 97.0% 0.97 0.0005 0.0314 

UK 1 95.8% 0.96 0.0009 0.0391 

Belgium 1 99.2% 0.99 0.0000 0.0052 

Usafe 1 97.4% 0.97 0.0003 0.0200 

Israel 1 99.1% 0.99 0.0000 0.0120 

Central 
warehouse 

7 97.4% 2.94 0.1047 1.2563 
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The optimal amount of network stock is 15 LRCs according to the model. At every local 

warehouse 1 LRC is kept in stock and 7 LRCs are kept in stock at the central warehouse, i.e., 

𝑆𝑖,𝑗 = 1 and 𝑆𝑖,0 = 7. The 95% local availability level is achieved for all local warehouses, while 

the inventory investment cost is minimized. Holding 14 LRCs on stock results in a local 

availability level of 92.5% for the UK and 94.7% for Italy, as shown in table 9, and this is not 

allowed. Thus, 15 LRCs is the minimum amount of stock required to achieve the 95% local 

availability level and therefore this is the optimal amount. 

The base model output for all four scenarios have been obtained and shown in tables 3 to 10. 

In addition, figure 5 and 6 show the base model output for the aggregate availability constraint 

and local availability constraint, respectively. In specific, the figures show the network stock, 

the expected inventory at the central warehouse, and the sum of the expected waiting times 

at the local warehouses (downtime), for all four scenarios. As can be observed from figure 5 

and 6, and tables 3 to 10, using a local availability constraint results in a slightly higher network 

stock compared to using an aggregate availability constraint, i.e., in all four scenarios the 

network stock is 1 LRC higher, because the base-stock level at the central warehouse (𝑆𝑖,0) is 

1 LRC higher. Therefore, using a local availability constraint also results in a higher expected 

inventory at the central warehouse and in less waiting time (downtime). Recall that scenario 

1 and 2, and scenario 3 and 4, have the same repair lead time 𝐿𝑖,0, but a different MTBF. When 

comparing the results of scenario 1 with scenario 2, and when comparing the results of 

scenario 3 with scenario 4, it can be concluded that a higher MTBF results in a lower network 

stock. Furthermore, recall that scenario 1 and 3, and scenario 2 and 4, have the same MTBF, 

but a different repair lead time 𝐿𝑖,0. When comparing the results of scenario 1 with scenario 

3, and when comparing the results of scenario 2 with scenario 4, it can be concluded that a 

shorter repair lead time (𝐿𝑖,0) results in a lower network stock. 

 

Figure 5. Base model output for aggregate availability constraint 

 

Figure 6. Base model output for local availability constraint  
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6.1.2 Validation of base model results 

The results of the base model, section 6.1.1, have been validated using simulation. This is done 

for the results using an aggregate availability level. Simulations have been developed for all 

four scenarios. The optimal network stock, and corresponding availability level, from 

simulation is compared to the optimal network stock and corresponding availability level of 

the multi-echelon model. For simulation, a period length of 5000, 10000, 15000, and even 

longer periods are used with 100 replications. Therefore, the availability level of the simulation 

is the average availability level over 100 replications. Furthermore, the run time of the 

simulation is just a few seconds, whereas the run time of the multi-echelon model is 

approximately a minute. The availability level of the simulation, reported in table 11 to table 

14, is the average availability level using 15000 periods and 100 replications. 15000 periods 

are used because this gives the most accurate results, as will be shown in table 15. Besides 

the availability level, also the expected inventory level at the central warehouse and the sum 

of the expected waiting times at the local warehouses (downtime) are reported in table 15. 

When using even longer periods, such as 20000 or 30000 periods, the operating characteristics 

remain unchanged. 

Table 11 shows the optimal network stock, and corresponding availability level, according to 

the multi-echelon model and the simulation, using scenario 1 and a 95% aggregate availability 

constraint. 

Table 11. Validation of results for scenario 1 and aggregate availability 

 Network stock = 16 Network stock = 17 Network stock = 18 

Availability Level (multi-
echelon model) 

93.0%  95.9% *  97.7%  

Availability Level 
(simulation)  

93.1%  95.9% *  97.6%  

* indicates optimal solution 

As can be observed, the optimal amount of network stock, which minimizes the inventory 

investment costs while satisfying the 95% availability constraint, is 17 LRCs according to both 

the multi-echelon model and simulation. Furthermore, it can be observed that the availability 

levels are (almost) the same. This means that the simulation validates the results of the multi-

echelon model, i.e., the results of the multi-echelon model are correct (and so are the 

equations used, like Equation (13) from problem analysis section 5.1.3). 

Table 12 shows the optimal network stock, and corresponding availability level, according to 

the multi-echelon model and the simulation, using scenario 2 and a 95% aggregate availability 

constraint. 

Table 12. Validation of results for scenario 2 and aggregate availability 

 Network stock = 19 Network stock = 20 Network stock = 21 

Availability Level (multi-
echelon) 

94.0% 96.3% * 97.6% 

Availability Level 
(simulation) 

94.0% 96.2% * 97.4% 

* indicates optimal solution 
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As can be observed, the optimal amount of network stock, which minimizes the inventory 

investment costs while satisfying the 95% availability constraint, is 20 LRCs according to both 

the multi-echelon model and simulation. Furthermore, it can be observed that the availability 

levels are (almost) the same. This means that the simulation validates the results of the multi-

echelon model, i.e., the results of the multi-echelon model are correct. 

Table 13 shows the optimal network stock, and corresponding availability level, according to 

the multi-echelon model and the simulation, using scenario 3 and a 95% aggregate availability 

constraint. 

Table 13. Validation of results for scenario 3 and aggregate availability 

 Network stock = 12 Network stock = 13 Network stock = 14 

Availability Level (multi-
echelon) 

93.3% 96.7% * 98.3% 

Availability Level 
(simulation) 

93.4% 96.8% * 98.2% 

* indicates optimal solution 

As can be observed, the optimal amount of network stock, which minimizes the inventory 

investment costs while satisfying the 95% availability constraint, is 13 LRCs according to both 

the multi-echelon model and simulation. Furthermore, it can be observed that the availability 

levels are (almost) the same. This means that the simulation validates the results of the multi-

echelon model, i.e., the results of the multi-echelon model are correct. 

Table 14 shows the optimal network stock, and corresponding availability level, according to 

the multi-echelon model and the simulation, using scenario 4 and a 95% aggregate availability 

constraint. 

Table 14. Validation of results for scenario 4 and aggregate availability 

 Network stock = 13 Network stock = 14 Network stock = 15 

Availability Level (multi-
echelon) 

91.4% 95.2% * 97.4% 

Availability Level 
(simulation) 

91.6% 95.2% * 97.3% 

* indicates optimal solution 

As can be observed, the optimal amount of network stock, which minimizes the inventory 

investment costs while satisfying the 95% availability constraint, is 14 LRCs according to both 

the multi-echelon model and simulation. Furthermore, it can be observed that the availability 

levels are (almost) the same. This means that the simulation validates the results of the multi-

echelon model, i.e., the results of the multi-echelon model are correct. 

 

Table 15 shows the comparison of the multi-echelon model results and simulation results for 

all four scenarios, using different period lengths for simulation. 𝑁𝑠 indicates the period length 

used for simulation. As can be observed, using a period length of 15000 periods gives the most 

accurate results for all four scenarios. This holds for the expected availability level (E𝐴𝑖,𝑠), as 

well as for the expected inventory level at the central warehouse (E𝐼𝑖,0) and the sum of the 
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expected waiting times at the local warehouses (∑ E𝑊𝑖,𝑗𝑗∈𝐽𝑙𝑜𝑐 ), or downtime. When using 

even longer period lengths, such as 20000 or 30000 periods, the operating characteristics 

remain unchanged. It can be concluded that the simulation validates the results of the multi-

echelon model, i.e., the results of the multi-echelon model are correct. 

Table 15. Comparison of model and simulation results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scenarios Model results Simulation results 

 𝑁𝑠 = 5000                       𝑁𝑠 = 10000                     𝑁𝑠 = 15000 

(E𝐴𝑖,𝑠 , E𝐼𝑖,0 , ∑ E𝑊𝑖,𝑗

𝑗∈𝐽𝑙𝑜𝑐

) (E𝐴𝑖,𝑠 , E𝐼𝑖,0 , ∑ E𝑊𝑖,𝑗

𝑗∈𝐽𝑙𝑜𝑐

) (E𝐴𝑖,𝑠 , E𝐼𝑖,0 , ∑ E𝑊𝑖,𝑗

𝑗∈𝐽𝑙𝑜𝑐

) (E𝐴𝑖,𝑠 , E𝐼𝑖,0 , ∑ E𝑊𝑖,𝑗

𝑗∈𝐽𝑙𝑜𝑐

) 

1 (95.9, 2.95, 0.45) (95.3, 2.96, 0.60) (95.5, 3.06, 0.52) (95.9, 2.97, 0.45) 

2 (96.3, 3.84, 0.29) (95.7, 3.95, 0.42) (96.0, 3.93, 0.33) (96.2, 3.86, 0.30) 

3 (96.7, 2.03, 0.30) (96.1, 2.15, 0.45) (96.6, 2.06, 0.26) (96.8, 2.03, 0.29) 

4 (95.2, 2.07, 0.47) (95.0, 2.27, 0.55) (95.3, 2.13, 0.50) (95.2, 2.06, 0.47) 
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6.2 Model with ADI 

The model with advance demand information (ADI) is the model that makes use of the 

predictions of component (LRC) failures. The predictions of component failures are obtained 

by the Royal Dutch Aerospace Centre using machine learning techniques to predict the failure 

time, failure mode, and probability of failure of the LRCs. These predictions result in early 

warnings, which indicate that a component (LRC) is going to fail within a few days at a certain 

location with a certain probability. The warning time (𝐿𝑖,𝑗
war) is the time from the moment a 

warning is received until the moment the component fails. Therefore, by using the predictions, 

or early warnings, it is known a few days in advance at which location a component (LRC) is 

needed with a certain probability. Besides, the early warnings also specify the failure mode, 

so it is also known in advance which subcomponent (SRC) will cause the part (LRC) failure. The 

repair shop can use this information by ordering the subcomponents that are needed for the 

repair earlier. For including advance demand information (ADI), Hariharan & Zipkin (1995) 

found that demand lead times are, in a precise sense, the opposite of supply lead times. That 

is, the effect of a demand lead time on overall system performance is precisely the same as a 

corresponding reduction in the supply lead time. Therefore, the warning time (𝐿𝑖,𝑗
war), resulting 

from the ADI of component failures, is included in the base model by applying a reduction in 

the supply lead times of the local warehouses, i.e., max{𝐿𝑖,𝑗 − 𝐿𝑖,𝑗
war, 0}. The model determines 

optimal base-stock levels using warning time (ADI), for the central warehouse and local 

warehouses, that minimize the inventory investment costs while satisfying the 95% availability 

constraint. This is done for a local availability constraint and for an aggregate availability 

constraint. The results of all four scenarios have been obtained, however, in this section, there 

is focused on the results of scenario 1, i.e., MTBF=8000 and 𝐿𝑖,0=100, for both the aggregate 

and local availability constraint. Scenario 1 is chosen because this scenario best corresponds 

to reality. 

6.2.1 Model results with warning time 

Table 16 shows the output of the model with warning time (ADI), using scenario 1 and a 95% 

aggregate availability constraint. 

Table 16. Output model with warning time for scenario 1 and aggregate availability 

Warning time 𝐿𝑖,𝑗
war (days) 

                             0                           1                          2                          3                          4                          5 

Norway 1 1 0 0 0 0 

Denmark 1 0 0 0 0 0 

NL 1 0 0 0 0 0 

Italy 1 0 0 0 0 0 

UK 1 0 0 0 0 0 

Belgium 1 0 0 0 0 0 

Usafe 1 0 0 0 0 0 

Israel 1 0 0 0 0 0 

Central 
warehouse 

9 13 11 10 10 9 

Network 
stock 

17 14 11 10 10 9 
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Table 17 shows the output of the model with warning time (ADI), using scenario 1 and a 95% 

local availability constraint. 

Table 17. Output model with warning time for scenario 1 and local availability 

Warning time 𝐿𝑖,𝑗
war (days) 

                             0                           1                          2                          3                          4                          5 

Norway 1 1 0 0 0 0 

Denmark 1 0 0 0 0 0 

NL 1 0 0 0 0 0 

Italy 1 0 0 0 0 0 

UK 1 0 0 0 0 0 

Belgium 1 0 0 0 0 0 

Usafe 1 0 0 0 0 0 

Israel 1 1 1 1 0 0 

Central 
warehouse 

10 13 11 10 10 9 

Network 
stock 

18 15 12 11 10 9 

 

Without warning time, it is not known in advance which parts (LRCs) are needed at which 

locations (only at the time of failure). At least 1 LRC is kept in stock at each local warehouse in 

order to achieve the 95% availability level, as can be observed from tables 16, 17 and 3 to 10. 

This results in a high local stock and therefore in a high network stock. With warning time, it 

is known a few days in advance which parts are needed at which locations. Warning time 

results in centralizing stock and reduced local stock (zero if warning time ≥ supply lead times), 

as can be observed from tables 16 and 17. This can be explained by the fact that when warning 

time is greater than or equal to the supply lead times, the central warehouse is always able to 

satisfy a demand of a local warehouse on time, if there is sufficient stock at the central 

warehouse, which means there is no need to keep stock locally. Therefore, warning time 

results in a lower required network stock. Figure 7 shows the results of tables 16 and 17, 

displayed in a graph. The situation with zero days warning time indicates the result of the base 

model for scenario 1, i.e., the result of the model without warning time (ADI), which is called 

the baseline. 
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Figure 7. Model results with warning time 

It can be concluded, from tables 16 and 17 and figure 7, that increasing warning time results 

in a lower required network stock, i.e., the network stock decreases when the warning time 

increases. Furthermore, it can be observed from figure 7 that the waiting time (downtime) 

also decreases when the warning time increases. However, from the situation without 

warning time to the situation with 1-day warning time, the waiting time first increases a little 

for the aggregate availability constraint. For example, the situation without warning time 

results in a network stock of 17 LRCs and a waiting time of 0.45 days for the aggregate 

availability constraint, and for the local availability constraint it results in a network stock of 

18 LRCs and a waiting time of 0.15 days. The situation with 3 days warning time results in a 

network stock of 10 LRCs and a waiting time of 0.11 days, and in a network stock of 11 LRCs 

and a waiting time of 0.00 days, for the aggregate and local availability constraint, respectively. 

The effect of 3 days warning time compared to no warning time, which is the baseline 

situation, is an inventory reduction of 41.2% and a waiting time reduction of 75.6% for the 

aggregate availability constraint, and for the local availability constraint the effect is an 

inventory reduction of 38.9% and a waiting time reduction of 100.0%. It can be concluded that 

the effect of warning time (ADI) on the network stock is very positive, i.e., warning time results 

in a significant reduction of the network stock, for both the aggregate and local availability 

constraint. Furthermore, it can be concluded that warning time results in less waiting time on 

components (downtime). 

These results are based on a 100% reliability of the early warnings, provided by the Royal 

Dutch Aerospace Centre (NLR). However, in practice the reliability will be lower, and this 

results in prediction errors. Prediction errors can be false negatives or false positives. False 

negatives are components that fail without receiving a warning in advance, and false positives 

are components that fail at a later moment than predicted. False negatives are very 

problematic because when a component fails unannounced at a local warehouse and there is 

no stock at that warehouse, it results in a backorder and therefore in downtime for the F-35s. 

False negatives therefore have a large impact on the availability level. The ADI (in)accuracy is 

included in the model by applying no reduction in the supply lead times for the false negatives, 
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whereas for the false positives a reduction in the supply lead times is applied. Therefore, the 

supply lead times of the local warehouses become ((1 − fn%) × max{𝐿𝑖,𝑗 − 𝐿𝑖,𝑗
war, 0}) +

(fn% × 𝐿𝑖,𝑗). Figure 8 shows the results of the model with warning time (ADI), including false 

negatives, for the 95% local and aggregate availability constraint. The situation with zero days 

warning time indicates the result of the base model for scenario 1, i.e., the result of the model 

without warning time (ADI), which is called the baseline. 

 

Figure 8. Model results with warning time including false negatives (95%) 

As can be observed from figure 8, the positive effect of warning time (ADI) is quickly lost when 

increasing the false negative percentage, especially for the local availability constraint. For 

example, the situation with 3 days warning time without false negatives resulted in a network 

stock of 10 LRCs and a waiting time of 0.11 days, and in a network stock of 11 LRCs and a 

waiting time of 0.00 days, for the aggregate and local availability constraint, respectively. The 

situation with 3 days warning time and 10% false negatives results in a network stock of 14 

LRCs and a waiting time of 0.62 days, and in a network stock of 17 LRCs and a waiting time of 

0.04 days, for the aggregate and local availability constraint, respectively. The effect of 3 days 

warning time with 10% false negatives compared to no warning time is an inventory reduction 

of 17.6% for the aggregate availability constraint, but it is accompanied with a waiting time 

increase of 37.8%, whereas the effect without false negatives was an inventory reduction of 

41.2% and a waiting time reduction of 75.6%. For the local availability constraint, the effect of 

3 days warning time with 10% false negatives compared to no warning time is an inventory 

reduction of 5.6% and a waiting time reduction of 73.3%, whereas the effect without false 

negatives was an inventory reduction of 38.9% and a waiting time reduction of 100.0%. It can 

be concluded that the false negatives reduce the positive effect of warning time significantly.  

Warning time without the false negatives, resulted in centralizing stock and (almost) no stock 

at the local warehouses. With 5% false negatives and no stock at the local warehouses, 5% of 

the demand is not satisfied on time and this results in a 95% availability level for all local 

warehouses. Therefore, until 5% false negatives it is not necessary to keep stock locally, when 

sufficient stock is kept at the central warehouse, in order to achieve the 95% availability level. 
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When the false negative percentage exceeds 5%, it is necessary to keep stock at the local 

warehouses again in order to achieve the 95% availability level. For the local availability 

constraint, at every local warehouse 1 LRC is kept in stock in order to achieve the 95% 

availability level at every local warehouse. Therefore, in figure 8, the large increase in network 

stock is observed when exceeding 5% false negatives. For the aggregate availability constraint, 

1 LRC is kept in stock at a few local warehouses in order the achieve the 95% availability level 

over all warehouses together. Therefore, in figure 8, an increase in the network stock is 

observed when exceeding 5% false negatives, but this increase is smaller compared to the 

local availability constraint. It can be concluded from figure 8 that warning time (ADI) results 

in a significant reduction of the network stock, only if the false negative percentage is low 

(≤5%). This is especially required when using the local availability constraint. Furthermore, it 

can be concluded that the aggregate availability constraint results in almost all situations in a 

lower network stock compared to the local availability constraint. 

Figure 9 shows the results of the model with warning time (ADI), including false negatives, for 

the 90% local and aggregate availability constraint. The situation with zero days warning time 

indicates the result of the base model for scenario 1, i.e., the result of the model without 

warning time (ADI), which is called the baseline. 

 

Figure 9. Model results with warning time including false negatives (90%) 

With 10% false negatives and no stock at the local warehouses, 10% of the demand is not 

satisfied on time and this results in a 90% availability level for all local warehouses. Therefore, 

until 10% false negatives it is not necessary to keep stock locally, when sufficient stock is kept 

at the central warehouse, in order to achieve the 90% availability level. When the false 

negative percentage exceeds 10%, it is necessary to keep stock at the local warehouses again 

in order to achieve the 90% availability level. Therefore, in figure 9, no large increases in the 

network stock are observed when increasing the false negative percentage until 10%, whereas 

in figure 8 large increases were observed when exceeding 5% false negatives. It can be 

concluded from figure 9 that warning time (ADI) results in a significant reduction of the 

network stock, despite of the false negative percentage (until 10%), when using a 90% 
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availability level. Furthermore, it can be observed that the aggregate availability constraint 

results in almost all situations in the same network stock as the local availability constraint. At 

last, it can be observed from figure 9 that using a 90% availability level results in a lower 

network stock in almost all situations, compared to using a 95% availability level in figure 8.  

Figure 10 shows the results of the model with warning time (ADI), including false negatives, 

for the 99% local and aggregate availability constraint. The situation with zero days warning 

time indicates the result of the base model for scenario 1, i.e., the result of the model without 

warning time (ADI), which is called the baseline. 

 

Figure 10. Model results with warning time including false negatives (99%) 

With 1% false negatives and no stock at the local warehouses, 1% of the demand is not 

satisfied on time and this results in a 99% availability level for all local warehouses. Therefore, 

until 1% false negatives it is not necessary to keep stock locally, when sufficient stock is kept 

at the central warehouse, in order to achieve the 99% availability level. When the false 

negative percentage exceeds 1%, it is necessary to keep stock at the local warehouses again 

in order to achieve the 99% availability level. For the local availability constraint, at every local 

warehouse 1 LRC is kept in stock in order to achieve the 99% availability level at every local 

warehouse. Therefore, in figure 10, the large increase in network stock is observed when 

exceeding 1% false negatives. For the aggregate availability constraint, 1 LRC is kept in stock 

at a few local warehouses in order the achieve the 99% availability level over all warehouses 

together. Therefore, in figure 10, an increase in the network stock is observed when exceeding 

1% false negatives, but this increase is smaller compared to the local availability constraint. It 

can be concluded from figure 10 that warning time (ADI) results in a significant reduction of 

the network stock, only if the false negative percentage is low (≤1%). This is especially 

required when using the local availability constraint. Furthermore, it can be concluded that 

the aggregate availability constraint results in almost all situations in a lower network stock 

compared to the local availability constraint. At last, it can be observed from figure 10 that 

using a 99% availability level results in a higher network stock in almost all situations, 

compared to using a 95% availability level in figure 8. 
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6.2.2 Validation of model results with warning time 

The results of the model with warning time (ADI) including false negatives, section 6.2.1, have 

been validated using simulation. This is done for the results using a 95% aggregate availability 

constraint. Simulations have been made for all four scenarios, however, as described in 

section 6.2, there is focused on the results of scenario 1, i.e., MTBF=8000 and 𝐿𝑖,0=100. The 

optimal network stock, and corresponding availability level, from simulation is compared to 

the optimal network stock and corresponding availability level of the multi-echelon model. 

For simulation, a period length of 15000 periods is used because 15000 periods yield the most 

accurate results, as was observed in section 6.1.2. Furthermore, 100 replications are used for 

simulation. Therefore, the availability level of the simulation is the average availability level 

over 100 replications. The run time of the simulation is just a few seconds, whereas the run 

time of the multi-echelon model is approximately a minute. Table 18 shows the optimal 

network stock, and corresponding availability level, according to the multi-echelon model and 

the simulation for the situation with 3 days warning time without false negatives, using a 95% 

aggregate availability constraint. Table 19 shows the optimal network stock, and 

corresponding availability level, according to the multi-echelon model and the simulation for 

the situation with 3 days warning time with 10% false negatives, using a 95% aggregate 

availability constraint. 

Table 18. Validation of results using 3 days warning time without false negatives 

 Network stock = 10 Network stock = 11 Network stock = 12 

Availability Level (multi-
echelon) 

96.2% * (0% Israel)  100% 100% 

Availability Level 
(simulation)   

93.8% 96.1% * 97.4% 

* indicates optimal solution 

Table 19. Validation of results using 3 days warning time with 10% false negatives 

 Network stock = 13 Network stock = 14 Network stock = 15 

Availability Level (multi-
echelon) 

94.6% 95.6% * 97.6% 

Availability Level 
(simulation)  

92.3% 94.8% 95.9% * 
 

* indicates optimal solution 

As can be observed from tables 18 and 19, there is a difference of 1 LRC between the optimal 

network stock according to the multi-echelon model and simulation. In both situations, the 

multi-echelon model recommends 1 LRC less on stock than is actually required. The cause of 

this is that METRIC models sometimes tend to understate the expected backorders and 

therefore overstate the expected availability of repairable items (Sherbrooke, 1986). This can 

be explained by the fact that the multi-echelon model uses the expected lead time, which is 

an average lead time, for the calculation of the availability level. When the expected lead time 

is smaller than or equal to the warning time (𝐿𝑖,𝑗 ≤ 𝐿𝑖,𝑗
war), the model returns an availability 

level of 100% for the situation without false negatives (and 90% for the situation with 10% 

false negatives). This is the case for all locations in table 18 using a network stock of 11 LRCs 

or more. The model assumes that all LRCs will always be delivered on time to all locations, 
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based on the expected lead time. However, this is an average lead time, so in reality the lead 

time can in some cases be higher than the warning time and therefore it should result in an 

availability level less than 100%. Therefore, the multi-echelon model overstates the 

availability level. Furthermore, when the expected lead time is greater than the warning time 

(𝐿𝑖,𝑗 > 𝐿𝑖,𝑗
war), the model returns an availability level of 0%. This is the case for Israel in table 18 

using a network stock of 10 LRCs. The model assumes that all LRCs will always be delivered 

late to Israel, based on the expected lead time. Again, this is an average lead time, so in reality 

the lead time can in some cases be lower than the warning time and therefore it should result 

in an availability level greater than 0%. In this case, the multi-echelon model understates the 

availability level. However, it happens far more often that the model overstates the availability 

level and therefore it can be concluded that the multi-echelon model overstates the expected 

availability level. The observations made in table 18 and 19 are not unique. The same results 

hold for all four scenarios, i.e., in all four scenarios the multi-echelon model recommends 1 

LRC less on stock than is actually required. As a result, when using 3 days warning time without 

false negatives the required network stock is thus 11 LRCs. Therefore, the added value is an 

inventory reduction of 35.3%, instead of 41.2% as stated in section 6.2.1. When using 3 days 

warning time and 10% false negatives the required network stock is thus 15 LRCs. Therefore, 

the added value is an inventory reduction of 11.8%, instead of 17.6% as stated in section 6.2.1.  
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6.2.3 Effect of warning time on the repair lead time 

The repairable components (LRCs) consist of smaller subcomponents, which are called SRCs. 

Recall that the repair lead time, 𝐿𝑖,0, is the time from the moment a LRC has failed until the 

moment the LRC is repaired by a repair shop and back in stock at the central warehouse, i.e., 

the time needed to repair failed LRCs until they are ready to use again. Therefore, the repair 

lead time (𝐿𝑖,0) consists of the shipment time from a local warehouse to a repair shop, the 

repair time at the repair shop, and the shipment time from the repair shop to the central 

warehouse. At the repair shop, the repair of failed components (LRCs) consists of the following 

actions. First, inspecting which SRC has failed that caused the LRC failure. Then, replacing the 

failed SRC with a new one. At last, the repaired LRC is tested for some period of time before it 

is put back in stock at the central warehouse. The SRCs are consumables and new 

subcomponents are ordered from external suppliers according to the (𝑆 − 1, 𝑆) policy. In the 

situation without early warnings, it is not known in advance which SRC caused the LRC failure, 

only after inspection by the repair shop it will be known. So, the SRCs are ordered after the 

inspection and this results in waiting time for the subcomponents (when they are not in stock 

at the moment they are needed). The early warnings, provided by the Royal Dutch Aerospace 

Centre, specify which repairable component (LRC) is going to fail in the near future. The 

warnings also specify which smaller subcomponent (SRC) is going to fail that will cause the LRC 

failure, so this saves inspection time at the repair shop. By knowing which SRC causes the LRC 

failure, the repair shop can order the SRCs needed for the repair from the external suppliers 

in advance of the LRC failure, so there will be less waiting time for the subcomponents (SRCs). 

Zero inspection time and less waiting time on SRCs results in a shorter repair lead time (𝐿𝑖,0). 

A shorter repair lead time, in turn, results in a lower required network stock. Simulation 

models are developed to demonstrate the effect of warning time (ADI) on the repair lead time 

(𝐿𝑖,0). Table 20 shows the input variables used for the repair lead time simulation. 

Furthermore, a MTBF of 8000 days is used to construct the repair demand rate for LRCs at the 

repair shop. This LRC demand rate is then split up between four different SRCs, and these SRC 

demand rates are used in the repair lead time simulation.  

Table 20. Input variables used for repair lead time simulation 

Variables Without warning time With y days warning time 

Shipment local warehouse  repair shop 10 days 10 days 

Inspection time 10 days 0 days 

Ordering SRC at day t=20 t=-y 

Replacement time 10 days 10 days 

Testing time 30 days 30 days 

Supplier lead time 100 days 100 days 

Shipment repair shop  central warehouse 3 days 3 days 

 

Table 21 shows the output of the repair lead time simulation, using the input variables from 

table 20, a base-stock level of 0 for the SRCs, and a 95% aggregate availability constraint. Table 

22 shows the output of the repair lead time simulation, using the input variables from table 

20, a base-stock level of 1 for the SRCs, and a 95% aggregate availability constraint. For the 

repair lead time simulation, a period length of 15000 periods is used and 100 replications. 
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Therefore, the repair lead time (𝐿𝑖,0), in both tables, is the average repair lead time over 100 

replications of the simulation. Furthermore, the run time of the simulation is just a few 

seconds. 

Table 21. Output repair lead time simulation using base-stock level 0 

Situation Repair lead 
time (𝐿𝑖,0) 

Reduction (%) Network stock 

0 days warning time 164.7 0% 17 (𝐿𝑖,0=100) 

1-day warning time, 0% fn 143.4 12.9% 13 (𝐿𝑖,0=87) instead of 14 (𝐿𝑖,0=100) 

1-day warning time, 10% fn 144.8 12.1% 15 (𝐿𝑖,0=88) instead of 16 (𝐿𝑖,0=100) 

3 days warning time, 0% fn 141.0 14.4% 9 (𝐿𝑖,0=86) instead of 10 (𝐿𝑖,0=100) 

3 days warning time, 10% fn 142.9 13.2% 12 (𝐿𝑖,0=87) instead of 14 (𝐿𝑖,0=100) 

5 days warning time, 0% fn 139.1 15.5% 8 (𝐿𝑖,0=84) instead of 9 (𝐿𝑖,0=100) 

5 days warning time, 10% fn 141.4 14.1% 11 (𝐿𝑖,0=86) instead of 12 (𝐿𝑖,0=100) 

 

Table 22. Output repair lead time simulation using base-stock level 1 

Situation Repair lead 
time (𝐿𝑖,0) 

Reduction (%) Network stock 

0 days warning time 112.6   0% 17 (𝐿𝑖,0=100) 

1-day warning time, 0% fn 93.2  17.2%  13 (𝐿𝑖,0=83) instead of 14 (𝐿𝑖,0=100) 

1-day warning time, 10% fn 95.4  15.3%  15 (𝐿𝑖,0=85) instead of 16 (𝐿𝑖,0=100) 

3 days warning time, 0% fn 91.7  18.6%  9 (𝐿𝑖,0=81) instead of 10 (𝐿𝑖,0=100) 

3 days warning time, 10% fn 93.8  16.7%  12 (𝐿𝑖,0=83) instead of 14 (𝐿𝑖,0=100) 

5 days warning time, 0% fn 90.4  19.7%  8 (𝐿𝑖,0=81) instead of 9 (𝐿𝑖,0=100) 

5 days warning time, 10% fn 92.0  18.3%  11 (𝐿𝑖,0=82) instead of 12 (𝐿𝑖,0=100) 

 

The results of the repair lead time simulation, table 21 and 22, show that warning time (ADI) 

indeed results in a shorter repair lead time (𝐿𝑖,0). For example, using 3 days warning time with 

10% false negatives and a base-stock level of 0 for the SRCs, results in a 13.2% reduction of 

the repair lead time. Using a base-stock level of 1 for the SRCs results in a 16.7% reduction of 

the repair lead time. In section 6.2.1, a repair lead time (𝐿𝑖,0) of 100 days was used to calculate 

the optimal network stocks. In this section, the optimal network stocks from figure 8, i.e., the 

results of the model with warning time (ADI) including false negatives, are recalculated based 

on the reduced repair lead times. The recalculated network stocks, for a few situations using 

the 95% aggregate availability constraint, can be found in the last column of table 21 and 22. 

As can be observed, the recalculated optimal network stocks in table 21 are equal to table 22. 

Figure 11 shows the results of the recalculated optimal network stocks using a 95% aggregate 

availability constraint, i.e., the results of the model with warning time (ADI), including false 

negatives and reduced repair lead times, using a 95% aggregate availability constraint. Figure 

12 shows the results of the model with warning time (ADI), including false negatives and 

reduced repair lead times, using a 95% local availability constraint. The situation with zero 

days warning time indicates the result of the base model for scenario 1, i.e., the result of the 

model without warning time (ADI), which is called the baseline. 
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Figure 11. Model results with warning time, including false negatives and reduced repair lead times, 

using aggregate availability constraint 

 

Figure 12. Model results with warning time, including false negatives and reduced repair lead times, 

using local availability constraint 

As can be concluded from figure 11 and 12, incorporating the reduced repair lead time in the 

multi-echelon model with warning time (ADI) and false negatives, results in an extra network 

stock reduction of 1 or 2 LRCs for both the 95% local and aggregate availability constraint. For 

example, the situation with 3 days warning time without false negatives resulted in a network 

stock of 10 LRCs and a waiting time of 0.11 days for the aggregate availability constraint. 

Incorporating the reduced repair lead time results in a network stock of 9 LRCs and a waiting 

time of 0.00 days, as can be observed in figure 11. For the local availability constraint, the 

situation with 3 days warning time without false negatives resulted in a network stock of 11 

LRCs and a waiting time of 0.00 days. Incorporating the reduced repair lead time results in a 
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network stock of 9 LRCs and a waiting time of 0.00 days, as can be observed in figure 12. 

Furthermore, the situation with 3 days warning time and 10% false negatives resulted in a 

network stock of 14 LRCs and a waiting time of 0.62 days for the aggregate availability 

constraint. Incorporating the reduced repair lead time results in a network stock of 12 LRCs 

and a waiting time of 0.88 days, as can be observed in figure 11. For the local availability 

constraint, the situation with 3 days warning time and 10% false negatives resulted in a 

network stock of 17 LRCs and a waiting time of 0.04 days. Incorporating the reduced repair 

lead time results in a network stock of 16 LRCs and a waiting time of 0.01 days, as can be 

observed in figure 12. Therefore, it can be concluded from figure 11 and 12, and table 21 and 

22, that warning time (ADI) reduces the repair lead time (𝐿𝑖,0), which in turn reduces the 

required network stock. 

In figure 11 and 12, the situation with zero days warning time indicates the result of the base 

model for scenario 1, i.e., the result of the model without warning time (ADI), which is called 

the baseline. Furthermore, the results of the model with warning time (ADI), including false 

negatives and reduced repair lead times, are shown in figure 11 and 12. These results are the 

final results of the model with ADI. By comparing the results of the base model with the final 

results of the model with ADI, the added value of using early warnings for the failure of 

components (LRCs) can be uncovered. The situation without warning time (ADI) results in a 

network stock of 17 LRCs and a waiting time of 0.45 days for the 95% aggregate availability 

constraint, and for the 95% local availability constraint it results in a network stock of 18 LRCs 

and a waiting time of 0.15 days. The final result of the model with ADI, for the situation with 

3 days warning time without false negatives, is a network stock of 9 LRCs and a waiting time 

of 0.00 days for both the aggregate and local availability constraint. The final result of the 

model with ADI, for the situation with 3 days warning time and 10% false negatives, is a  

network stock of 12 LRCs and a waiting time of 0.88 days for the aggregate availability 

constraint, and a network stock of 16 LRCs and a waiting time of 0.01 days for the local 

availability constraint. The added value of using ADI for the failure of components is as follows. 

When using 3 days warning time without false negatives, the added value is an inventory 

reduction of 47.1% and a waiting time reduction of 100.0% for the aggregate availability 

constraint, and for the local availability constraint the added value is an inventory reduction 

of 50.0% and a waiting time reduction of 100.0%. When using 3 days warning time and 10% 

false negatives, the added value is an inventory reduction of 29.4% for the aggregate 

availability constraint, but it is accompanied with a waiting time increase of 95.6%, and for the 

local availability constraint the added value is an inventory reduction of 11.1% and a waiting 

time reduction of 93.3%. For the aggregate availability constraint, it seems a high increase in 

waiting time, however, in absolute terms the waiting time increases by less than half a day. 

Based on these results, it can be concluded that the model with ADI results in a significant 

reduction of the network stock, especially when the false negative percentage is low, 

compared to the base model. In other words, the model with ADI requires (much) less network 

stock, and therefore inventory investment costs, for achieving the 95% availability level 

compared to the base model. Therefore, the model with ADI yields better results.   
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6.2.4 Validation of model results with reduced repair lead time 

The results of the model with warning time (ADI) including false negatives and reduced repair 

lead times, i.e., the final results of the model with ADI, section 6.2.3, have been validated using 

simulation. This is done for the results using a 95% aggregate availability constraint. 

Simulations have been developed using a MTBF of 8000 days, as described in section 6.2.3. 

The optimal network stock, and corresponding availability level, from simulation is compared 

to the optimal network stock and corresponding availability level of the multi-echelon model. 

For simulation, a period length of 15000 periods is used and 100 replications. Therefore, the 

availability level of the simulation is the average availability level over 100 replications. 

Furthermore, the run time of the simulation is just a few seconds, whereas the run time of the 

multi-echelon model is approximately a minute. Table 23 shows the optimal network stock, 

and corresponding availability level, according to the multi-echelon model and the simulation 

for the situation with 3 days warning time without false negatives and 𝐿𝑖,0=83. Table 24 shows 

the optimal network stock, and corresponding availability level, according to the multi-

echelon model and the simulation for the situation with 3 days warning time with 10% false 

negatives and 𝐿𝑖,0=85. 

Table 23. Validation of results using 3 days warning time without false negatives and 𝐿𝑖,0=83 

 Network stock = 8 Network stock = 9 Network stock = 10 

Availability Level (multi-
echelon) 

67.8% (0% Norway, 
Italy, Israel) 

100% * 100% 

Availability Level 
(simulation)  

91.7% 94.5% 96.7% * 

* indicates optimal solution 

Table 24. Validation of results using 3 days warning time with 10% false negatives and 𝐿𝑖,0=85 

 Network stock = 11 Network stock = 12 Network stock = 13 

Availability Level (multi-
echelon) 

94.6% 95.6% * 97.6% 

Availability Level 
(simulation) 

91.6% 94.5% 95.7% * 

* indicates optimal solution 

As can be observed from table 23 and 24, there is a difference of 1 LRC between the optimal 

network stock according to the multi-echelon model and simulation. In both situations, the 

multi-echelon model recommends 1 LRC less on stock than is actually required, which was also 

the case in section 6.2.2. The cause of this is that METRIC models sometimes tend to 

understate the expected backorders and therefore overstate the expected availability of 

repairable items (Sherbrooke, 1986). This can be explained by the fact that the multi-echelon 

model uses the expected lead time, which is an average lead time, for the calculation of the 

availability level. When the expected lead time is smaller than or equal to the warning time 

(𝐿𝑖,𝑗 ≤ 𝐿𝑖,𝑗
war), the model returns an availability level of 100% for the situation without false 

negatives (and 90% for the situation with 10% false negatives). This is the case for all locations 

in table 23 using a network stock of 9 LRCs or more. The model assumes that all LRCs will 

always be delivered on time to all locations, based on the expected lead time. However, this 

is an average lead time, so in reality the lead time can in some cases be higher than the 
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warning time and therefore it should result in an availability level less than 100%. Therefore, 

the multi-echelon model overstates the availability level. Furthermore, when the expected 

lead time is greater than the warning time (𝐿𝑖,𝑗 > 𝐿𝑖,𝑗
war), the model returns an availability level 

of 0%. This is the case for Norway, Italy, and Israel in table 23 using a network stock of 8 LRCs. 

The model assumes that all LRCs will always be delivered late to these locations, based on the 

expected lead time. Again, this is an average lead time, so in reality the lead time can in some 

cases be lower than the warning time and therefore it should result in an availability level 

greater than 0%. In this case, the multi-echelon model understates the availability level. 

However, it happens far more often that the model overstates the availability level and 

therefore it can be concluded that the multi-echelon model overstates the expected 

availability level. The observations made in table 23 and 24 are not unique. The same results 

hold for all four scenarios, i.e., in all four scenarios the multi-echelon model recommends 1 

LRC less on stock than is actually required. As a result, when using 3 days warning time without 

false negatives the required network stock is thus 10 LRCs. Therefore, the added value is an 

inventory reduction of 41.2%, instead of 47.1% as stated in section 6.2.3. When using 3 days 

warning time and 10% false negatives the required network stock is thus 13 LRCs. Therefore, 

the added value is an inventory reduction of 23.5%, instead of 29.4% as stated in section 6.2.3. 
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6.3 Model with lateral transshipments 

The final results of the model with ADI yield the best results so far. In this section, it is 

investigated if incorporating reactive lateral transshipments in the lowest echelon of the F-35 

spare parts supply chain yields even better results. A reactive lateral transshipment is defined 

as a local warehouse which provides stocked items (LRCs) to another local warehouse which 

faces a stock out (or the risk of a stock out). Therefore, when using lateral transshipments, a 

demand of a local warehouse can be satisfied from the central warehouse, as well as from 

another local warehouse. Paterson et al. (2010) state that reactive lateral transshipments are 

suitable in an environment where the transshipment costs are relatively low compared to the 

costs associated with holding large amounts of stock and with failing to meet demand 

immediately. This is often the case in a spare parts environment. Alfredsson and Verrijdt 

(1999) compared their model with lateral transshipments to the VARI-METRIC model and they 

found a maximum cost reduction of 43.9% and a minimum cost reduction of 13.2%. The results 

also show that in many cases the stock levels are lower, especially the central stock level 

showed a significant decrease. Furthermore, Kranenburg (2006) discussed a semi-conductor 

company ASML and showed that using reactive lateral transshipments can save the company 

up to 50% of annual inventory related costs for spare parts. These results indicate that using 

lateral transshipments in a distribution network for spare parts can be very beneficial.  

The model with lateral transshipments allows for lateral transshipments only when a local 

warehouse faces demand while it has no inventory on hand, i.e., when it faces a stock out. 

This is the case when the central warehouse is not able to satisfy the demand of the local 

warehouse. Therefore, the procedure is as follows. When the central warehouse receives a 

warning that a demand will arise at a local warehouse within a few days, the central 

warehouse satisfies this demand as described before. Only when the central warehouse is not 

able to satisfy this demand, i.e., when it has no inventory on hand, a lateral transshipment is 

considered from another local warehouse in order to satisfy the demand. Axsäter (1990) 

provided a new approximation technique for modelling lateral transshipments in a two-

echelon inventory system with repairable items, one-for-one replenishments, and Poisson 

demand. The characteristic feature is that the demand rate at a local warehouse depends on 

the inventory level. With positive inventory on hand, the normal demand is faced plus demand 

for lateral transshipments from other local warehouses. With no positive inventory on hand, 

the only real demand is the demand that has to be backordered. In addition to the fraction of 

demand satisfied from stock on hand and the fraction of demand that is backordered, a new 

variable is included in the model. This new variable is the fraction of demand satisfied by 

lateral transshipments and it is defined as alpha (𝛼). Axsäter (1990) divided the local 

warehouses into a number of groups and allowed lateral transshipments within such a group, 

but not between the groups. Because exponential lead times are assumed, a birth-death 

(Markov) queueing model is used to derive the equations of the steady state probabilities of 

the net inventory. Alfredsson and Verrijdt (1999), Kukreja et al. (2001), Grahovac & 

Chakravarty (2001) also considered lateral transshipments in their inventory models. All 

articles followed the approach of Axsäter (1990) and used a Markov queueing model as 

solution methodology. However, Basten & Van Houtum (2014) investigated solving the 

METRIC model with lateral transshipments using the Greedy heuristic, instead of a Markov 
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model. Basten & Van Houtum (2014) state that the Greedy heuristic should lead to good 

feasible solutions. In order to obtain a sufficiently fast procedure for problems of real-life size, 

such a Greedy heuristic should be based on an efficient and still accurate approximate 

evaluation method. However, so far, such a method is not available. Therefore, it is not 

possible to solve the METRIC model with lateral transshipments using the Greedy heuristic as 

solution methodology. As a result, only simulations are developed in this section in order to 

demonstrate the effect of using reactive lateral transshipments for the F-35 spare parts supply 

chain. 

The simulations are developed as follows. The local warehouses are divided into a number of 

groups (2 groups) and lateral transshipments are allowed within such a group, but not 

between the groups. This is also done by Axsäter (1990). Group 1 consist of the local 

warehouses in the UK, Norway, Denmark, and the Netherlands. Group 2 consist of the local 

warehouses in Italy, Usafe, Israel, and Belgium. The 2 groups are composed in such a way that 

each group faces (almost) the same demand rate. Furthermore, two different lateral 

transshipment rules are used for the choice of the sending source, which are the minimum 

backorder (min BO) rule and the maximum inventory on hand (max Ioh) rule. These 

transshipment rules are also used by, for example, Lee (1987) and Seidscher & Minner (2013). 

With the minimum backorder (min BO) rule, the location with the lowest demand rate is 

chosen as the sending source, because this location has the lowest backorder probability and 

the least impact on the aggregate availability level. When the location with the lowest demand 

rate has no stock available for lateral transshipment, the location with the second lowest 

demand rate is chosen as the sending source, and so on. With the maximum inventory on 

hand (max Ioh) rule, the location with the highest inventory on hand is chosen as the sending 

source. When it occurs that the inventory on hand is equal among possible sending sources, 

the location is chosen with the lowest demand rate because this location has the lowest 

backorder probability and the least impact on the aggregate availability level. 

The simulation results in section 6.2.4, which are the final results of the model with ADI 

(without lateral transshipments), are compared to the simulation results while using ADI and 

reactive lateral transshipments. In this way, it can be uncovered if using reactive lateral 

transshipments is beneficial for the F-35 spare parts supply chain. Table 25 and table 26 

show the optimal network stock and corresponding availability level according to the 

simulations with and without lateral transshipments (LT), for the situation with 3 days 

warning time without false negatives and 𝐿𝑖,0=83. In table 25 the minimum backorder (min 

BO) transshipment rule is used and in table 26 the maximum inventory on hand (max Ioh) 

transshipment rule is used.  

Table 25. Simulation results using min BO, 3 days warning time without false negatives, and 𝐿𝑖,0=83  

 Network stock = 8 Network stock = 9 Network stock = 10 

Availability Level simulation 
(without LT) 

91.7% 94.5% 96.7% * 

Availability Level simulation 
(with LT) 

91.7% 94.5% 96.7% * 

* indicates optimal solution 
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Table 26. Simulation results using max Ioh, 3 days warning time without false negatives, and 𝐿𝑖,0=83 

 Network stock = 8 Network stock = 9 Network stock = 10 

Availability Level simulation 
(without LT) 

91.7% 94.5% 96.7% * 

Availability Level simulation 
(with LT) 

91.7% 94.5% 96.7% * 

* indicates optimal solution 

In the situation with 3 days warning time without false negatives and without lateral 

transshipments, all LRCs are kept in stock at the central warehouse. Since no stock is kept at 

the local warehouses, no improvements are realized when including lateral transshipments, 

as can be observed in table 25 and table 26. The simulations with and without lateral 

transshipments show the exact same results. Furthermore, a decentralized allocation of the 

stock is also considered. In this way, (almost) all the stock is put at the local warehouses and 

lateral transshipments are made possible. However, a decentralized allocation yields worse 

results. Therefore, no improvement is realized using lateral transshipments for the situation 

with 3 days warning time without false negatives. This means that for this situation the final 

result is a network stock of 10 LRCs, which are all allocated to the central warehouse. 

Therefore, when facing zero false negatives, the model with ADI in combination with a 

centralized allocation yields the best results for the F-35 supply chain. The inventory reduction 

realized compared to the baseline is 41.2%, as already stated in section 6.2.4. 

Table 27 and table 28 show the optimal network stock and corresponding availability level 

according to the simulations with and without lateral transshipments (LT), for the situation 

with 3 days warning time, 10% false negatives, and 𝐿𝑖,0=85. In table 27 the minimum 

backorder (min BO) transshipment rule is used and in table 28 the maximum inventory on 

hand (max Ioh) transshipment rule is used.  

Table 27. Simulation results using min BO, 3 days warning time with 10% false negatives, and 𝐿𝑖,0=85 

 Network stock = 11 Network stock = 12 Network stock = 13 

Availability Level simulation 
(without LT) 

91.6% 94.5% 95.7% * 

Availability Level simulation 
(with LT) 

93.5% 95.5% * 96.9% 

* indicates optimal solution 

Table 28. Simulation results using max Ioh, 3 days warning time with 10% false negatives, and 𝐿𝑖,0=85 

 Network stock = 11 Network stock = 12 Network stock = 13 

Availability Level simulation 
(without LT) 

91.6% 94.5% 95.7% * 

Availability Level simulation 
(with LT) 

93.6% 95.7% * 96.9% 

* indicates optimal solution 

In the situation with 3 days warning time, 10% false negatives, and without lateral 

transshipments, 9 LRCs are kept in stock at the central warehouse and there are 4 local 

warehouses that keep 1 LRC on stock in order to satisfy the 95% aggregate availability. So, 

without lateral transshipments the required network stock is 13 LRCs. Since stock is kept at 
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the local warehouses, lateral transshipments are possible. As can be observed from table 27 

and table 28, the optimal network stock is 12 LRCs when lateral transshipments are used. 

Therefore, using lateral transshipments results in an additional network stock reduction of 1 

LRC. Furthermore, no significant performance difference is observed between the two 

transshipment rules, which was also found by Lee (1987) and Seidscher & Minner (2013).  

Next, it is investigated if the allocation of the network stock can be improved in the case of 

10% false negatives and lateral transshipments. It is investigated if allocating most of the LRCs 

locally and some LRCs centrally yields better results than allocating most of the LRCs centrally 

and some locally, i.e., decentralized versus centralized allocation. Table 29 and table 30 show 

the optimal network stock and corresponding availability level according to the simulations 

with and without lateral transshipments (LT), for the situation with 3 days warning time, 10% 

false negatives, 𝐿𝑖,0=85, and a decentralized allocation. In table 29 the minimum backorder 

(min BO) transshipment rule is used and in table 30 the maximum inventory on hand (max 

Ioh) transshipment rule is used.  

Table 29. Simulation results using min BO, 3 days warning time with 10% false negatives, and 𝐿𝑖,0=85 

 Network stock = 11 Network stock = 12 Network stock = 13 

Availability Level simulation 
(without LT) 

91.6% 94.5% 95.7% * 

Availability Level simulation 
(with LT) 

95.8% * 97.8% 98.5% 

* indicates optimal solution 

Table 30. Simulation results using max Ioh, 3 days warning time with 10% false negatives, and 𝐿𝑖,0=85 

 Network stock = 11 Network stock = 12 Network stock = 13 

Availability Level simulation 
(without LT) 

91.6% 94.5% 95.7% * 

Availability Level simulation 
(with LT) 

95.9% * 98.0% 98.7% 

* indicates optimal solution 

As can be observed from table 29 and table 30, the optimal network stock when using lateral 

transshipments and a decentralized allocation is 11 LRCs. Furthermore, no significant 

performance difference is observed between the two transshipment rules. The optimal 

network stock, in table 27 and 28, when using lateral transshipments and a centralized 

allocation is 12 LRCs. Therefore, a decentralized allocation yields better results than a 

centralized allocation, but this only holds in the case of false negatives and when lateral 

transshipments are used. As a result, the required network stock is thus 11 LRCs for the 

situation with 3 days warning time, 10% false negatives, and lateral transshipments. Without 

lateral transshipments the required network stock is 13 LRCs, therefore, using lateral 

transshipments results in an additional network stock reduction of 2 LRCs. The inventory 

reduction realized of the model with ADI compared to the baseline is 23.5%, as stated in 

section 6.2.4. However, the inventory reduction realized of the model with ADI and lateral 

transshipments is 35.3% compared to the baseline. Therefore, when facing false negatives, 

incorporating reactive lateral transshipments in the model with ADI, in combination with a 

decentralized allocation, yields the best results for the F-35 spare parts supply chain. 
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7. Conclusion and recommendations 

In this paper a multi-echelon inventory system for the F-35 spare parts supply chain is 

developed, using ADI of component failures. The goal of the designed inventory system is to 

determine optimal base-stock levels, for the central warehouse and local warehouses, that 

minimize the inventory investment costs while satisfying a 95% availability level. In addition, 

it is investigated if using reactive lateral transshipments between the local warehouses yields 

even better results, i.e., lower inventory investment costs. A continuous one-for-one, 

(𝑆 − 1, 𝑆), inventory replenishment policy is used and Poisson distributed demand. The 

problem faced in this paper is known in literature as the repairable inventory problem.  

The METRIC model (Multi-Echelon Technique for Recoverable Item Control) is extensively 

discussed in literature, since it represents a fundamental development in repairable inventory 

theory and because so many later models are METRIC based. METRIC-type models have been 

implemented in various software tools, in use at various organizations. Historically, military 

organizations, especially the US military forces, have been the first to adopt such models. Also, 

outside the military these models have been applied. The repairable inventory problem faced 

by the METRIC model is identical to the problem faced in the thesis. Therefore, the METRIC 

model with the Greedy solution algorithm formulated by Basten & Van Houtum (2014), as 

described in section 5, is followed and used in this paper as the base model. The base model 

is the model without ADI of component failures and lateral transshipments. The base model 

determines optimal base-stock levels, for the central warehouse and local warehouses, that 

minimize the inventory investment costs while satisfying the 95% availability constraint. This 

model serves as the baseline. 

The model with ADI is the model that makes use of the predictions of component (LRC) 

failures. The predictions of component failures are obtained by the Royal Dutch Aerospace 

Centre using machine learning techniques to predict the failure time, failure mode, and 

probability of failure. These predictions result in early warnings, which indicate that a 

component (LRC) is going to fail within a few days at a certain location with a certain 

probability. The warning time is the time from the moment a warning is received until the 

moment the component fails. Therefore, by using the early warnings, or ADI, it is known a few 

days in advance at which location a component (LRC) is needed with a certain probability. For 

including ADI of component failures in the model, Hariharan & Zipkin (1995) found that 

demand lead times are, in a precise sense, the opposite of supply lead times. That is, the effect 

of a demand lead time on overall system performance is precisely the same as a corresponding 

reduction in the supply lead time. Therefore, the warning time in this paper, resulting from 

the ADI of component failures, is included in the model as a reduction in the supply lead times. 

The inaccuracy, or imperfectness, of the ADI is included in the model as well. This is done by 

making a distinction between false negatives and false positives. False negatives are 

components (LRCs) that fail without receiving a warning in advance, and false positives are 

components that fail at a later moment than predicted. For the false negatives, the result is 

no reduction in the supply lead times, whereas for the false positives a reduction in the supply 

lead times is applied, but the component is actually not needed yet. False negatives are very 
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problematic because when a component fails unannounced at a local warehouse and there is 

no stock at that warehouse, it results in a backorder and therefore in downtime for the F-35s. 

In addition, the warnings also specify which smaller subcomponent (SRC) is going to fail that 

will cause the LRC failure, which saves inspection time at the repair shop. By knowing which 

SRC causes the LRC failure, the repair shop can order the SRCs needed for the repair in advance 

of the LRC failure, so there will be less waiting time for the subcomponents (SRCs). Zero 

inspection time and less waiting time on SRCs results in a shorter repair lead time for the LRCs. 

A shorter repair lead time, in turn, results in lower required stock levels. Therefore, the effect 

of warning time, resulting from the ADI of component failures, on the repair lead time is 

investigated and included in the model with ADI. 

Finally, the model with lateral transshipments (and ADI) is the model that makes use of 

reactive lateral transshipments. A reactive lateral transshipment is defined as a local 

warehouse which provides stocked items (LRCs) to another local warehouse which faces a 

stock out (or the risk of a stock out). Therefore, when using lateral transshipments, a demand 

of a local warehouse can be satisfied from the central warehouse, as well as from another 

local warehouse. Paterson et al. (2010) state that reactive lateral transshipments are suitable 

in an environment where the transshipment costs are relatively low compared to the costs 

associated with holding large amounts of stock and with failing to meet demand immediately. 

This is often the case in a spare parts environment. The model with lateral transshipments 

allows for lateral transshipments only when a local warehouse faces demand while it has no 

inventory on hand, i.e., when it faces a stock out. This is the case when the central warehouse 

is not able to satisfy the demand of the local warehouse. Therefore, the procedure is as 

follows. When the central warehouse receives a warning that a demand will arise at a local 

warehouse within a few days, the central warehouse satisfies this demand as described 

before. Only when the central warehouse is not able to satisfy this demand, i.e., when it has 

no inventory on hand, a lateral transshipment is considered from another local warehouse in 

order to satisfy the demand.  

Basten & Van Houtum (2014) investigated solving the METRIC model with lateral 

transshipments using the Greedy heuristic. Basten & Van Houtum (2014) state that the Greedy 

heuristic should lead to good feasible solutions. In order to obtain a sufficiently fast procedure 

for problems of real-life size, such a Greedy heuristic should be based on an efficient and still 

accurate approximate evaluation method. However, so far, such a method is not available. 

Therefore, it is not possible to solve the METRIC model with lateral transshipments using the 

Greedy heuristic as solution methodology. As a result, only simulations are developed in order 

to demonstrate the effect of using reactive lateral transshipments for the F-35 spare parts 

supply chain. Two different lateral transshipment rules are used for the choice of the sending 

source, which are the minimum backorder rule and the maximum inventory on hand rule. 

However, no significant performance difference is observed between the two lateral 

transshipment rules, which was also found by Lee (1987) and Seidscher & Minner (2013). 
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Table 31 shows an overview of the different model results obtained in section 6, using a MTBF 

of 8000 days and a 95% aggregate availability constraint. 3 days warning time is used for the 

models with ADI. The table shows the required network stock, availability level, percentage 

inventory reduction, and the allocation of the stock of the different models developed. The 

percentage inventory reduction is the reduction in inventory investment costs compared to 

the base model.  

Table 31. Overview of the results, using MTBF=8000 days and a 95% aggregate availability level 

Model Network 
stock (LRCs) 

Availability 
level (%) 

Reduction 
(%) 

Allocation 

Base model 17 95.9% 0% 9 LRCs central, 8 local 

     

Model with ADI (0% fn) 10 96.7% 41.2% 10 LRCs central, 0 local 

Model with ADI and LT (0% fn) 10 96.7% 41.2% 10 LRCs central, 0 local 

     

Model with ADI (10% fn) 13 95.7% 23.5% 9 LRCs central, 4 local 

Model with ADI and LT (10% fn) 11 95.9% 35.3% 3 LRCs central, 8 local 

 

As can be observed from table 31, the base model requires a network stock of 17 LRCs and 

achieves an availability level of 95.9%. 9 LRCs are kept in stock at the central warehouse and 

every local warehouse keeps 1 LRC in stock. These results are the baseline results. When facing 

0% false negatives (fn), the ADI of component failures is always 100% accurate, i.e., perfect 

ADI. When facing 10% false negatives (fn), 10% of the components fail without receiving a 

warning in advance, i.e., imperfect ADI.  

The model with perfect ADI requires a network stock of 10 LRCs, which are all allocated to the 

central warehouse (centralized allocation), and achieves an availability level of 96.7%. The 

model with perfect ADI achieves an inventory investment reduction of 41.2% and a higher 

availability level, compared to the base model. The model with perfect ADI and lateral 

transshipments (LT) obtains the same results. Since no stock is kept at the local warehouses, 

no improvements are realized when including lateral transshipments. Furthermore, a 

decentralized allocation of the stock is also considered. In this way, (almost) all the stock is 

put at the local warehouses and lateral transshipments are made possible. However, a 

decentralized allocation yields worse results. Therefore, no improvement is realized using 

lateral transshipments for the situation with perfect ADI. 

The model with imperfect ADI requires a network stock of 13 LRCs, of which 9 are allocated to 

the central warehouse and 4 to the local warehouses, and achieves an availability level of 

95.7%. The model with imperfect ADI achieves an inventory investment reduction of 23.5% 

and almost the same availability level, compared to the base model. The model with imperfect 

ADI and lateral transshipments (LT) requires a network stock of 11 LRCs, of which 3 are 

allocated to the central warehouse and 8 to the local warehouses (decentralized allocation), 

and achieves an availability level of 95.9%. A decentralized allocation yields better results than 

a centralized allocation, but this only holds in the case of imperfect ADI and when lateral 

transshipments are used. The model with imperfect ADI and lateral transshipments (LT) 
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achieves an inventory investment reduction of 35.3% and the same availability level, 

compared to the base model.  

Based on these results, recommendations for the company can be given. It can be concluded 

that including (im)perfect ADI of component failures in the base METRIC model, results in a 

significant reduction of the network stock and therefore in a significant reduction of the 

inventory investment costs.  

When facing perfect ADI, i.e., 3 days warning time without false negatives, the model with ADI 

is the best model to use. This model results in a network stock of 10 LRCs, a 96.7% availability 

level, and an inventory investment reduction of 41.2% compared to the base model. All 10 

LRCs should be kept in stock at the central warehouse (centralized allocation), i.e., 𝑆𝑖,0 = 10 

and 𝑆𝑖,𝑗 = 0. Including lateral transshipments in this situation yields no further improvements.  

When facing imperfect ADI, i.e., 3 days warning time with 10% false negatives, the model with 

ADI and lateral transshipments (LT) is the best model to use. This model results in a network 

stock of 11 LRCs, a 95.9% availability level, and an inventory investment reduction of 35.3% 

compared to the base model. 3 LRCs should be kept in stock at the central warehouse and 

every local warehouse should keep 1 LRC in stock (decentralized allocation), i.e., 𝑆𝑖,0 = 3 

and 𝑆𝑖,𝑗 = 1. It can be concluded that using lateral transshipments between the local 

warehouses almost neutralize the negative effect of the false negatives.  

Furthermore, it can be concluded from this paper that increasing warning time results in a 

lower required network stock, i.e., the network stock decreases when the warning time 

increases. Also, it can be concluded that increasing the MTBF results in a lower required 

network stock. At last, it can be concluded that reducing the repair lead time results in a lower 

required network stock. Therefore, it could be interesting for the company to investigate the 

options for increasing the reliability of the components, i.e., increasing the MTBF, and to 

investigate the options for reducing the repair lead time, in order to further reduce the 

network stock and therefore the inventory investment costs.   

For further research it could be interesting to investigate and develop a Greedy heuristic that 

is able to solve the METRIC model with lateral transshipments. The Greedy heuristic should 

be based on an efficient and still accurate approximate evaluation method and so far such a 

method is not available. Furthermore, it could be interesting for further research to include 

stochastic supply lead times in the models. In this paper it is assumed that the supply lead 

times are deterministic. At last, for further research it could be interesting to apply the 

developed models in this paper on an inventory problem with more than two echelons, and 

to investigate the performance differences subsequently. 
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