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Abstract

Metamaterials are gaining popularity due to their interesting properties and many potential applica-
tions. Locally resonant acoustic metamaterials is one of these materials. Locally resonant acoustic
metamaterials have frequency ranges where waves do not propagate, known as ‘band gaps’. Research
has been performed to accurately predict the properties of these materials. A computational homog-
enization framework is used to efficiently predict the properties. However, when non-linear material
models are used, discrepancies are found. These discrepancies are linked to the used implicit time
integration scheme.

In this work, the influence of the implicit time integration scheme is analysed. Also, different im-
plicit time integration schemes are considered. The properties of the implicit time integration schemes
are compared and analysed in a benchmark problem.

The time integration schemes are implemented in the computational homogenization framework. Some
time integration schemes consists of multiple sub steps within a time step. These schemes require
additional care in the homogenization framework. The framework is compared to direct numerical
simulations for three different constitutive models of the local resonator; linear elastic, cubic and Neo-
Hookean. In the case of linear locally resonant acoustic metamaterials, the time integration schemes
predict similar results for the displacement. For high homogenization levels, the influence of the spatial
discretization has the largest contribution to discrepancies shown in the results. The use of a different
time integration scheme does not translate in more accurate results.
In the case of non-linear locally resonant acoustic metamaterials, the same can be concluded; the use
of a different time integration scheme does not translate to an increase in accuracy.
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Nomenclature

Symbols

ȧ first time derivation

A amplitude [m]

a scalar

ä second time derivation

a vector

b integration constant for Bathe scheme [-]

A matrix

a·b inner product

B root mean square displacement [m]

A:B inner product

2A second-order tensor

c wave speed [m/s]

AT conjugation

3A third-order tensor

c1, c2, c3 integration constants [-]

∆ finite variation

4A fourth-order tensor

C10 Neo-Hookean material parameter [N/m2]

4C
〈1〉
M , 3C

〈2〉
M , 3C

〈3〉
M , 2C

〈4〉
M [N/m2], [N/m3], [N/m3], [N/m4]

∇ gradient operator

d diameter of lead core [m]

d0, d1, d2, d3, d4 integration constants [-]

e engineering strain [-]

E Young’s modulus [N/m2]
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NOMENCLATURE TU/e

fext external nodal forces [N ]

fint internal nodal forces [N ]

F deformation gradient tensor [-]

h amount of homogenization [-]

k wavenumber [1/m]

ke nodal stiffness [N/m]

K stiffness matrix [N/m]

K̂ iteration matrix [N/m]

l length [m]

M mass matrix [kg]

nT number of time steps [-]

N shape functions [-]

ṗ0 momentum rate [N/m3]

P first Piola-Kirchoff stress [N/m2]

r residual [N]

R external nodal forces [N]

R̂ external forces based iteration matrix [N]

S acceleration based iteration matrix [N/m]

t time [s]

tc thickness of rubber coating [m]

t tractions [N/m2]

∆ t time step [s]

u displacement [m]

u̇ velocity [m/s]

ü acceleration [m/s2]

V volume [m3]

x position [m]

X0 position with respect to undeformed configuration [m]

Xaom arbitrary microscopic position vector [m]

Xr0m reference microscopic position vector [m]

w integration constant for Wen scheme [-]

α degree of cubic non-linearity [-]
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NOMENCLATURE TU/e

β, γ time integration parameters [-]

Γ volume boundary [m2]

λ stretch [-]

Λ wavelength [m]

ν Poisson’s ratio [-]

τ time integration parameter [-]

ρ density [kg/m3]

ω frequency [1/s]

σ Cauchy stress [N/m2]

θ transmission ratio [-]

Sub or superscripts

* tied degree of freedom

0 undeformed or initial state

a arbitrary

f free degree of freedom

m microscopic quantity

M macroscopic quantity

n time step

p prescribed degree of freedom

Abbreviations

CH Computational Homogenization

DNS Direct Numerical Simulation

FEM Finite Element Method

LRAM Locally Resonant Acoustic Metamaterial

RMS Root Mean Square
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Chapter 1

Introduction

Metamaterials are becoming more popular due to their interesting mechanical properties and potential
applications. Metamaterials are artificially designed to gain these properties from e.g. their microstruc-
ture. These properties are for instance negative Poisson ratio [1], negative dynamic mass density [2],
tunable band gaps [3] etc.
An application of metamaterials can be, for instance, the damping of seismic waves [4]. Cubic arrays
of iron spheres are connected to a concrete bulk with iron or rubber ligaments such that each sphere
can move independently within a surrounding air cavity. This metamaterial can be used as a seismic
shield placed around (or underneath) foundations of large civil infrastructure.
Metamaterials gain their unique properties from the underlying microstructure. Therefore, it is desired
to accurately model the microstructure in detail. However, the accurate modelling of the microstruc-
ture is computationally expensive for large problems. Computational homogenization can be used in
these problems. The key feature of the computational homogenization framework is the generality and
accuracy compared with other frameworks, while still being computational efficient. In previous work
[5, 6], a general computational homogenization framework is developed for a numerical study of the
behavior of acoustic metamaterials with nonlinear locally resonant material behavior. A special type
of metamaterial is considered, the so-called Locally Resonant Acoustic Metamaterials (LRAMs). In
Figure 1.1, a general LRAM configuration is shown. In this work, a simplified 1D version of a locally
resonant acoustic metamaterial designed by Liu [7] is used. In these LRAMs, the heavy (red) inclusions
are free to move independently inside the matrix (green) due to the soft-coated layer (grey). When a
wave with a frequency corresponding to the eigenfrequency of the inclusions enters the material, the
heavy inclusions start to resonate. During this process the wave is attenuated. Frequency ranges where
this phenomenal occurs are called ‘stop bands’ or ‘band gaps’. In LRAMs these bands are typically in
the low-frequency zone.

Figure 1.1: An LRAM configuration consisting of a matrix (green) filled with soft-coated (grey) heavy
inclusions (red) [5].

In previous work [6], a dynamical computational homogenization framework is presented. This frame-
work is capable of predicting the properties of acoustic metamaterials with non-linear material be-
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CHAPTER 1. INTRODUCTION TU/e

haviour. The developed model has two positions where the time integration scheme is incorporated,
in the microscale and the macroscale. Currently, in both cases, the Newmark scheme [8] with the
same parameters (γ = 1

2 and β = 1
4) is used. These parameters are chosen such that it resembles the

trapezoidal rule. Furthermore, it is second order accurate and unconditionally stable.
The model, in combination with the trapezoidal rule, is inaccurate for large spatial discretizations and
for large simulation times. For large spatial discretizations, spurious oscillations start to occur. From
literature [9, 10], this behaviour is typical for the trapezoidal rule.

1.1 Project aim and goals

The goal of this graduation project is to investigate the influence of the time integration scheme on
the numerical accuracy of the computational homogenization framework for the behaviour of locally
resonant acoustic metamaterials.

1.2 Structure of this report

Chapter 2 gives insight in the time integration schemes and their implementation. A benchmark prob-
lem is solved to get familiar with the schemes and to investigate characteristics of the time integration
schemes with a focus on characteristics involving wave propagation in Chapter 3. Chapter 4 describes
the numerical model and the computational homogenization framework. The results for a fully spatial
resolved simulation are shown and discussed in Chapter 5. The computational homogenization results
are shown in Chapter 6. Finally, in Chapter 7, the conclusion and recommendations are given.
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Chapter 2

Time integration

Time integration schemes are used to discretize the problem in the time domain. Two types of time
integration schemes are often used; implicit and explicit time integration. Implicit schemes use the
state of the system at the current time and the new time (after a time step). Explicit schemes use only
the current state of the system, resulting in less computations. However, in explicit schemes, the time
step is very sensitive resulting in the need for small time steps to ensure stability. Implicit methods are
less sensitive for large time steps and can therefore be advantageous for large problems where accuracy
is of importance. In this project, only implicit time integration schemes are considered.
To investigate the effect of the time integration scheme, different time integration schemes are com-
pared. In literature, several implicit time integration schemes are available which are more accurate for
longer time frames and are more accurate for non-linear problems compared to the standard trapezoidal
rule. In this chapter, these time integration schemes are described and compared. Then, the most
optimal schemes are selected, which are implemented and evaluated during this project. At the end of
this chapter, the basic equation of time integration are discussed and the time integration equations
for the chosen schemes are shown.

2.1 Time integration schemes

A literature review of existing implicit time integration schemes is performed and the most suitable to
this project are shown in Table 2.1. The schemes can be categorized into ’standard’ and ’composite’
schemes. In the latter case, the time step ∆t is split into multiple sub time steps. In each sub time step,
a different implicit scheme can be used which has certain advantages (e.g. a sub step with dissipation
and one without dissipation). In Figure 2.1, a schematic representation of the sub steps is shown.

Figure 2.1: Schematic representation of the composite scheme with sub steps.

The time integration scheme used previously in [6]; is second order accurate and unconditionally stable.
Therefore, the new time integration scheme needs to possess at least the same properties.
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CHAPTER 2. TIME INTEGRATION TU/e

The time integration schemes can posses different properties to adapt to certain conditions (e.g. non-
linearity or wave propagation). In order to introduce these properties, some definitions applied to time
integration and specifically in wave propagation are discussed:

• Dispersion; Dispersion in wave propagation problems is the phenomena of waves of different
wavelengths that travel trough a material have different phase speeds. In this work there are
two types of dispersion. Numerical dispersion and material dispersion. Numerical dispersion
originates from the spatial approximation. Numerical dispersion is the difference in the analytical
wave speed versus the approximated (numerical) wave speed in the discretized model [11].

• Dissipation; Dissipation in wave propagation problems is the loss of energy from the wave to the
system. In the considered numerical model, no dissipating effects are modelled to keep the model
as simple as possible to better understand the influence of time integration schemes. Therefore,
dissipation is undesired. However, in the numerical model, high-frequency components that are
artifacts from the spatial discretization are present. These components are not representative of
the problem to be investigated and therefore it can be advantageous to introduce so-called algo-
rithmic numerical damping of high-frequency components [12]. Non-dissipative time integration
schemes do not have this numerical damping property, resulting in energy conservation (see e.g.
[12]).

The current time integration scheme, the trapezoidal rule, lacks the dissipation property which causes
high frequency spurious modes in the results. Some of the time integration scheme possess the so-called
‘L-stable’ property, which is a special case in the stability region. This property acts as a numerical
low-pass filter that suppresses high frequencies and leaves the low frequencies intact.
The implicit time integration schemes that are considered in this project are shown in Table 2.1.

Table 2.1: Standard and composite implicit time integration schemes.

Standard schemes Composite schemes
Newmark [8] Bathe β1/β2 scheme [9]
trapezoidal scheme (special case of Newmark scheme) [13] Bathe ρ∞ scheme [14]
Euler backward scheme [15] TTBDF scheme (3-substep) [16, 17]
Generalized α-method (Hulbert) [18] Wen scheme [10]
Backward difference formula [19] Li scheme (2-substep) [20]
Three-points backward difference formula [21] Li scheme (3-substep) [22]
Houbolt method [23] Kim scheme [24]

The Newmark scheme is a well-known time integration scheme. This scheme is dissipative and first
order accurate when the parameter β 6= 0.5. In the special case of β = 0.5, the scheme becomes the
trapezoidal rule, which is second order accurate and non-dissipative [12]. Due to the lack of (numerical)
dissipation in the trapezoidal rule, the scheme becomes less accurate in nonlinear dynamics and for
long calculation times.
The other standard schemes are all dissipative implicit integration schemes. The disadvantage of
dissipative schemes is that they are sensitive for overshooting. In Table 2.2, the properties of the
standard schemes are shown.
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CHAPTER 2. TIME INTEGRATION TU/e

Table 2.2: Properties of standard implicit time integration schemes

Integration scheme Accuracy Stability
Newmark First order Conditionally stable

Trapezoidal rule Second order Unconditionally stable
Backward Euler First order L-stable

Generalized α-method Second order Unconditionally stable
Backward Difference Formula Second order [25] Conditionally stable

Three-point BDF Second order Conditionally stable
Houbolt Second order [26] Conditionally stable

The composite schemes are created from the idea of combining standard schemes such that dissipation
can be controlled and adapted to special cases, such as nonlinear dynamics or wave propagation.
The first composite schemes which uses this idea is the scheme developed by Bathe et al. [9]. This
scheme combines the non-dissipative trapezoidal rule with the dissipative backward Euler scheme to
control the dissipation and obtain an accurate result in the nonlinear domain. This scheme contains
two sub steps. The first sub step is the trapezoidal rule and the second sub step is the backward Euler
scheme. This scheme is superior to the trapezoidal rule as analyzed in [22]. Bathe and coworkers
expanded this scheme to the Bathe β1/β2 [27] scheme and the Bathe ρ∞ scheme [14]. The original
scheme and the Bathe β1/β2 scheme are a special case in the Bathe ρ∞ scheme. For wave propagation
problems, Kwon et al [11] recommends certain algorithmic parameters for the Bathe scheme (see Sec-
tion 2.2.2 for details) which results that the different Bathe schemes are equal. Therefore, the standard
Bathe scheme is considered since it is the most simple one with only one algorithmic parameter.

The TTBDF scheme, developed by Chandra et al. [17], is similar to the Bathe scheme since it is
also a composite scheme. In this scheme, 3-sub steps are taken. The first and second sub steps are the
trapezoidal rule, and the last sub step is the Backward Difference Formula, hence its name (TTBDF).
This method possesses numerical dissipation, while maintaining accuracy. The main advantage of this
scheme is noticeable in the large deformation, large displacements and large rotation regime. In this
regime, it proves more accurate than the Bathe scheme. However, in the other regimes, the schemes are
almost equivalent [16]. In these cases, a composite scheme with fewer time steps is preferred because
these are computationally more efficient.

Wen et al. [10] developed a composite time integration scheme with three sub steps. In the first
sub step, the trapezoidal scheme is considered. The Euler backward scheme is applied in the second
sub step and the Houbolt method is used for the last sub step. The advantage of this scheme is the
highly controllable numerical dissipation. In this scheme there is only one parameter that can be ad-
justed. The parameter w = 1

3 is suggested as desirable for optimal accuracy and numerical dissipation
for general non-linear problems [10].

Li et al. [20] proposed a time integration scheme with two sub steps. In the first sub step the
first-order backward differential formula is used and for the second sub step the similar three-points
backward differential formula with different coefficients is used. In this scheme one parameter can be
chosen. It is preferred to chose this parameter in such a way that the scheme is second order accurate.
This scheme is unconditionally stable and the accuracy is equal to the Bathe scheme. The advantage
over the Bathe scheme is that this scheme requires less matrix-vector operations and is therefore more
computational efficient. This scheme is expanded by Li and coworkers in [22] where a new parameter
is introduced which can specifically eliminate spurious modes. However, the spurious modes must be
known beforehand, which is not the case in this work.
Li and coworkers also proposed a three sub step composite scheme [28]. This scheme is very similar to
the previous scheme. However, in some cases, it has less period elongation errors and is more compu-
tational efficient.

11



CHAPTER 2. TIME INTEGRATION TU/e

Kim et al. [24] developed a two sub step time integration scheme where the acceleration from previous
time steps is not needed. This results in a higher computational efficiency since the factorization of
the mass matrix is unnecessary. The scheme is similar to the Bathe scheme in terms of accuracy and
stability. This scheme shows interesting properties since the initial acceleration calculation is currently
computationally very costly.

An in-depth comparison is performed in [16] between the Bathe, TTBDF and the Wen scheme. In
this paper, certain linear, non-linear and wave propagation benchmark problems are used to compare
the three schemes. In case of general linear dynamics, TTBDF>Bathe>Wen is recommended. For
wave propagations and cases where numerical dissipation is important, Wen>Bathe>TTBDF is rec-
ommended. For general non-linear problems, TTBDF>Wen>Bathe is recommended. However, the
Bathe scheme is widely used and implemented in certain software packages and can therefore be more
favorable.
In the table below, an overview of the properties of the discussed composite schemes are presented.

Table 2.3: Properties of composite implicit time integration schemes.

Integration scheme Sub steps Accuracy Stability
Bathe β1/β2 Trap. rule & Backward Euler Second order L-stable
Bathe ρ∞ Trap. rule & Combination1 Second order Unconditionally stable
TTBDF Trap. rule & Trap.rule & BDF Second order L-stable
Wen Trap. rule & Backward Euler & Houbolt Second order Unconditionally stable

Li (2-substep) BDF & Three-point BDF Second order Unconditionally stable
Li (3-substep) Backward Euler & BDF & BDF Second order L-stable

Kim Combination & Combination Second order L-stable

2.1.1 Integration scheme selection

In the previous section, several implicit time integration schemes are described. Based on the advan-
tages of these schemes and comparison studies, four schemes will be implemented in the developed
model. These are the following:

• Bathe standard scheme;

• Wen scheme;

• Li scheme (3 sub steps);

• Kim scheme.

The Bathe standard scheme is chosen because it is widely used, widely studied and implemented in
several software packages [16]. The scheme itself is more accurate for nonlinear dynamics and long
time frames than the trapezoidal rule.
The Wen scheme looks promising for wave propagation and it will therefore be used in this project.
The other advantage of this scheme is that the numerical dispersion and dissipation can be controlled
extensively.
The Li three sub step scheme is chosen because it is computationally efficient without losing accuracy.
However, the accuracy remains questionable in the LRAM specific case.
The Kim scheme is chosen because the acceleration from previous steps is not needed in the calculation.
In the current model, the prediction of the acceleration is computational costly and this scheme can
therefore be very efficient.

1Depending on parameter, one of the standard schemes can be found
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CHAPTER 2. TIME INTEGRATION TU/e

2.2 The basic equations of time integration

The governing equation that needs to be solved is:

Mü + F(u, t) = R(t). (2.1)

Here, M is the mass matrix, u is the vector of nodal displacements, F is the vector of nodal internal
point force, R is the external forces on the system and an overdot indicates the time derivative. Another
form of this equation is expressed as:

Mü + Ku = R(t), (2.2)

whereK is the (tangent) stiffness matrix. To solve this equation numerically, the equation is discretized
with time steps ∆t. In each time step the equation is solved. Table 2.4 and 2.5 show a step-by-step
solution for the trapezoidal rule and for the composite scheme (in the table, the Bathe scheme is used
as example), respectively. For non-linear problems, the same step-by-step solution can be used with an
iterative scheme (e.g. Newton-Rhapson) as addition. With the use of an iterative scheme, after each
time step and/or sub step, the new displacements are guessed by assuming the new accelerations as
zero. At the end of the time step and/or sub step, convergence is checked. When the convergence check
fails, the displacements are updated and the same steps are repeated until convergence. If convergence
is reached, the velocities and accelerations are updated, and the next time step and/or sub step is
started.

Table 2.4: Step-by-step solution for the trap integration scheme. Adapted from [29].

A. Initial calculations:
1. Initialize stiffness matrix K and mass matrix M.
2. Initialize u0, u̇0 and ü0.
3. Select time step ∆t.
4. Calculate effective stiffness matrix K̂:
K̂ = K + 4

∆t2
M;

B. For each time step:
1. Guess displacements at time t+ ∆t:
ut+∆t = ut + ∆tu̇t + (∆t)2

2 üt.
2. Calculate effective loads at time t+ ∆t:
R̂t+∆t = Rt+∆t + M( 4

∆t2
(ut+∆t − ut)− 4

∆t u̇
t − üt).

3. Solve for displacements:
K̂ut+∆t = R̂t+∆t.

4. Calculate velocities and accelerations at time t+ ∆t:
üt+∆t = 4

∆t2
(ut+∆t + ut)− 4

∆t u̇
t − üt;

u̇t+∆t = u̇t + ∆t
2 (üt + üt+∆t).

13



CHAPTER 2. TIME INTEGRATION TU/e

Table 2.5: Step-by-step solution for the Bathe integration scheme. Other composite scheme step-
by-step solutions have a similar solution strategy. Only the displacement, velocity and acceleration
calculations and the integration constant are different. Adapted from [29].

A. Initial calculations:
1. Initialize stiffness matrix K and mass matrix M.
2. Initialize u0, u̇0 and ü0.
3. Select time step ∆t and select integration constants (c1, c2, c3).
4. Calculate effective stiffness matrix K̂1 and K̂2:
K̂1 = K + 4

(b∆t)2
M; K̂2 = K + c2

3M.
B. For each time step:
First sub step:
1. Guess displacement at time step t+ b∆t:
ut+b∆t = ut + b∆t

2 u̇t + (b∆t)2

4 üt.
2. Calculate effective loads at time t+ b∆t:
R̂t+b∆t = Rt+b∆t + M

(
4

(b∆t)2
ut+b∆t + 4

b∆t u̇
t + üt

)
.

3. Solve for displacements:
K̂1u

t+b∆t = R̂t+b∆t.
4. Calculate velocities and accelerations at time t+ b∆t:
u̇t+b∆t = 2

b∆t(u
t+b∆t − ut)− u̇t;

üt+b∆t = 2
b∆t(u̇

t+b∆t − u̇t)− üt.
Second sub step:
1. Guess displacement at time t+ ∆t:
ut+∆t = − c1

c3u
t − c2

c3u
t+b∆t − c1

c32
u̇t − c2

c32
u̇t+b∆t.

1. Calculate effective loads at time t+ ∆t:
R̂t+∆t = Rt+b∆t + M(−c2c3u

t+b∆t − c1c3u
t − c2u̇

t+b∆t − c1u̇
t).

2. Solve for displacements:
K̂2u

t+∆t = R̂t+∆t.
3. Calculate velocities and accelerations at time t+ ∆t:
u̇t+∆t = c1u

t + c2u
t+b∆t + c3u

t+∆t;
üt+∆t = c1u̇

t + c2u̇
t+b∆t + c3u̇

t+∆t.

2.2.1 Trapezoidal rule

The trapezoidal rule determines the unknown displacements ut+∆t and velocities u̇t+∆t at the next
time step t+ ∆t as:

ut+∆t = ut + ∆tu̇t + (1
2 − β)∆t2üt + β∆t2üt+∆t, (2.3)

u̇t+∆t = u̇t + (1− γ)∆tüt + γ∆tüt+∆t. (2.4)

Here, ∆t is a fixed time step, β and γ are the Newmark constants controlling the integration scheme.
The new displacements and velocities depend on the known state of the system at the current time step
t and on the unknown acceleration üt+∆t at the next time step. The new displacements and velocities
are predicted by assuming üt+∆t = 0 and correcting for this assumption with the calculated predicted
new displacements and velocities.
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2.2.2 Bathe scheme

In the Bathe scheme b is the algorithmic parameter controlling the scheme. After the displacement is
guessed, calculate velocities and accelerations at time step t+ b∆t:

u̇t+b∆t =
2

b∆t
ut+b∆t − 2

b∆t
ut − u̇t, (2.5)

üt+b∆t =
2

b∆t
u̇t+b∆t − 2

b∆t
u̇t − üt. (2.6)

Second sub step, the velocities and accelerations at time step t+ ∆t are calculated via:

u̇t+∆t = c1u
t + c2u

t+b∆t + c3u
t+∆t, (2.7)

üt+∆t = c1u̇
t + c2u̇

t+b∆t + c3u̇
t+∆t, (2.8)

with

c1 =
1− b
b∆t

, c2 =
−1

(1− b)b∆t
, c3 =

2− b
(1− b)∆t

. (2.9)

In the initial implementation of the Bathe scheme, the parameter b is defined as 0.5. In general cases
for linear and nonlinear problems this value results in accurate solutions [27].

2.2.3 Wen scheme

In the first sub step, the new displacements and velocities at time step t+ w∆t are:

u̇t+w∆t = u̇t + 1
2w∆t(üt + üt+w∆t), (2.10)

ut+w∆t = ut + 1
2w∆t(u̇t + u̇t+b∆t), (2.11)

where w is the parameter controlling the integration scheme. The same procedure is followed where
the new accelerations are assumed to be zero and after the calculation of the new displacements and
velocities, the accelerations are updated. In the second sub step, t+ (1−w)∆t, the new displacements
and velocities are calculated via:

ut+(1−w)∆t =
c2

c3
ut+w∆t − c1

c3
ut +

c2∆t

c2
3

u̇t+w∆t − c1∆t

c2
3

u̇t +
∆t2

c2
3

üt+(1−w)∆t, (2.12)

u̇t+(1−w)∆t =
c2

c3
u̇1+w∆t − c1

c3
u̇t +

∆t

c3
üt+(1−w)∆t, (2.13)

where the parameters c1, c2 and c3 are defined as:

c1 =
2w − 1

w(w − 1)
, c2 =

1− w
w(2w − 1)

, c3 =
2− 3w

(w − 1)(2w − 1)
. (2.14)

The new displacements and velocities in the last sub step t+ ∆t are given as:

ut+∆t = −d1

d4
ut − d2

d4
ut+w∆t − d3

d4
ut+(1−w)∆t − ∆td1

d2
4

u̇t − ∆td2

d2
4

u̇t+w∆t

− ∆td3

d2
4

u̇t+(1−w)∆t +
∆t2

d2
4

üt+∆t, (2.15)

u̇t+∆t = −d1

d4
u̇t − d2

d4
u̇t+w∆t − d3

d4
u̇t+(1−w)∆t +

∆t

d4
üt+∆t. (2.16)

The parameters d1, d2, d3 and d4 are defined as:

d1 = −1, d2 =
1

(w − 1)(2w − 1)
, d3 =

1

w(2w − 1)
, d4 =

w2 − w − 1

w(w − 1)
. (2.17)

The parameter w is initially chosen as 1
3 since this results in a general accurate solution [10].
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2.2.4 Kim scheme

In the first sub step the displacements and velocities are given by:

ut+τ∆t = ut + τ∆tu̇t+τ∆t, (2.18)

u̇t+τ∆t = u̇t + τ∆tüt+τ∆t. (2.19)

In these equations, τ is the algorithmic parameter controlling the scheme. In the second time step the
displacements and velocities are determined via:

ut+∆t = ut + ∆t
(
(1− α)u̇t+τ∆t + αu̇t+∆t

)
, (2.20)

u̇t+∆t = u̇t + ∆t
(
(1− α)üt+τ∆t + αüt+∆t

)
, (2.21)

where α is the algorithmic parameter determining the amount of dissipation in the scheme. Finally,
the displacements and velocities at time step t + ∆t are updated with the calculated accelerations
üt+τ∆t and üt+∆t as:

u̇t+∆t = u̇t + ∆t
(
(1− β)üt+τ∆t + βüt+∆t

)
, (2.22)

ut+∆t = ut + ∆t
(
(1− β)u̇t+τ∆t + βu̇t+∆t

)
, (2.23)

where β is the algorithmic parameter. The Kim scheme is different from the other composite schemes
since the update of the final displacements and velocities (after the second sub step) can have a different
parameter (β) than the parameter (α) that is used to guess the initial displacements and velocities at
the start of the second sub step. Initially, the parameter τ = 1

4 is used and α and β are defined as:

α = τ, β =
2τ − 1

2(τ − 1)
. (2.24)

These values for the parameters results in a optimal scheme for general problems [24].

2.2.5 Li scheme

The Li schemes calculates the displacements and velocities in the first sub step as:

ut+τ∆t = ut + τ∆tu̇t+τ∆t, (2.25)

u̇t+τ∆t = u̇t + τ∆tüt+τ∆t. (2.26)

In these equations, τ indicates the algorithmic parameter. In the second sub step, the velocities and
accelerations are calculated via:

u̇t+∆t =
d0

∆t
u +

d1

∆t
ut+τ∆t +

d2

∆t
ut+∆t, (2.27)

üt+∆t =
d0

∆t
u̇ +

d1

∆t
u̇t+τ∆t +

d2

∆t
u̇t+∆t, (2.28)

where d0, d1 and d2 are:

d0 =
1− 2τ

τ2
, d1 =

τ − 1

τ2
, d2 =

1

τ
. (2.29)
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Chapter 3

Benchmark problem

A benchmark problem is conducted on the considered implicit time integration schemes in order to get
familiarized with the schemes and verify the implementation. The problem is a 1D mass-spring system
with linear springs. The papers where the integration schemes are introduced all have this benchmark
problem as a model problem. Hence, the implementation in this project can be easily verified against
the results in the papers.
The governing equations for the 3 degree-of-freedom spring system shown in Figure 3.1 are:m1 0 0

0 m2 0
0 0 m3

ü1

ü2

ü3

+

 k1 −k1 0
−k1 k1 + k2 −k2

0 −k2 k2

u1

u2

u3

 =

R1

0
0

 . (3.1)

In this problem, k1 = 107, k2 = 1, m1 = 0, m2 = m3 = 1 and the prescribed displacement on node 1 is
u1 = sin(ωpt) with ωp = 1.2. Since the displacement is prescribed, the system of equations is rewritten
to solve for the unknown displacements u2 and u3:[

m2 0
0 m3

] [
ü2

ü3

]
+

[
k1 + k2 −k2

−k2 k2

] [
u2

u3

]
=

[
k1u1

0

]
, (3.2)

with the reaction obtained as:

R1 = m1ü1 + k1u1 − k1u2 (3.3)

This benchmark problem is chosen because it represents stiff and flexible parts in a complex structural
system. The left spring has a high stiffness while the right spring has a low stiffness to represent a
flexible part. Secondly, this model problem is a very simplified version of the LRAM.

Figure 3.1: Schematic of 1D model problem of three degrees of freedom spring system, k1 = 107,
k2 = 1, m1 = 0, m2 = m3 = 1 and wp = 1.2. Inspired from [27].

The system is solved by using initial conditions for the displacements, velocities and acceleration as
0. The analytical solution is calculated via mode superposition. This method calculates the response
accurately and discards the dynamic response in the high frequency mode which is created due to
modelling. In the solution, the time integration schemes all have a normalized time step, meaning that
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a two sub step scheme has a time step that is twice that of a one sub step scheme and a three sub step
scheme thrice. This is done in order to accurately compare the schemes by using a similar time (sub)
step and now these schemes have a comparable computational cost.
The calculated solution for the displacements of the second node can be seen in Figure 3.2. Figures
3.3-3.6 show the solutions for the velocities, accelerations of node 2 and the displacements, velocities
and accelerations of node 3. All schemes expect the Li scheme have an accurate solution while the
Li scheme overshoots the analytical solution. The Li schemes does not perform well in the velocities
and accelerations of node 2. The solution has a very large overshoot (which is also slightly observed
in the displacements). However, in the solutions of node 3, this is not observed at all and the solu-
tion of node 3 is accurate with respect to the analytical solution and also with respect to the solution
provided in [20], where the scheme is first described. Unfortunately, the solution of node 2 is not shown.

A similar observation can be done for the Kim scheme. The solution is accurate and comparable
with the analytical solution of node 2 while the solution of node 3 is inaccurate. In [24], this scheme
is also applied to the same benchmark problem, however the solution of node 3 is not included.

The trapezoidal rule solution is accurate for the displacements of node 2 & 3 and for the veloci-
ties and accelerations of node 3. However, the velocities and accelerations of node 2 are not accurate
and high frequency spurious oscillations start to occur. This phenomena is occurring on the stiff node
(2) while on the flexible node (3) no spurious oscillations are observed. In Section 2.4, this is further
discussed.
Both the Bathe and the Wen scheme solutions are accurate for both nodes. These results show no
spurious oscillations or other errors. There is only an undershoot and overshoot for the Bathe en Wen
scheme, respectively, at the very first time step, which can be explained analytical [10, 27].

Figure 3.2: Displacements of node 2 for different implicit time integration schemes with corrected time
step.
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Figure 3.3: Displacements of node 3 for different implicit time integration schemes with corrected time
step.

(a) Velocities of node 2. (b) Velocities of node 2 without Li scheme.

Figure 3.4: Velocities of node 2 for different implicit time integration schemes with corrected time step.
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(a) Accelerations of node 2. (b) Accelerations of node 2 without
Li scheme.

(c) Accelerations of node 2 without
Trap and Li scheme.

Figure 3.5: Accelerations of node 2 for different implicit time integration schemes with corrected time
step.

(a) Velocities of node 3. (b) Accelerations of node 3.

Figure 3.6: Velocities and accelerations of node 3 for different implicit time integration schemes with
corrected time step.

3.1 Discussion

The Li and Kim scheme are not further considered in this project since the solution to the benchmark
problem are not accurate and the papers introducing the schemes do not cover the respective nodes
where the schemes are not accurate (while covering the node with an accurate response). This leaves
the current time integration scheme, the trapezoidal rule, and the new schemes, the Bathe and Wen
scheme to be considered in this project.

The solution of the trapezoidal rule in the benchmark problem shows high frequency spurious os-
cillations in the stiff node while the flexible node does not show spurious oscillations. In Section 2.1,
the non-dissipative property of the trapezoidal rule is discussed. The stiff node introduces high fre-
quency modes to the system and this non-dissipative property includes the high frequency modes in
the solution. Hence, the spurious oscillations in the solution. The benchmark problem is defined in
such a way that the importance of high frequency modes is amplified. In Figure 3.7, the velocities
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of the same benchmark problem is shown but with a varying stiffness of the stiff node (2) for the
trapezoidal rule and the Bathe scheme. For low stiffness, k1 = 1− 10, the trapezoidal rule is similar to
the Bathe scheme. For an intermediate stiffness, k1 = 100, the trapezoidal rule and the Bathe scheme
are accurate for low simulation times but in the high simulation times the trapezoidal rule starts to
diverge from the Bathe scheme. A stiffness of k1 = 1000 results in these spurious oscillations for the
trapezoidal rule while the Bathe scheme only shows this in the earlier time steps.

Figure 3.7: Velocity of node 2 with varying stiffness of spring k1 in benchmark problem (Figure 3.1)
for the trapezoidal rule and the Bathe scheme, both with ∆t = 0.1.

Figure 3.8 shows the absolute error of the displacement of node 2 for the trapezoidal rule, Bathe and
Wen scheme with their corrected time step. The trapezoidal rule has the least amount of error when the
time steps are corrected. However, the trapezoidal rule does have spurious high frequencies oscillations
in the velocity and acceleration. Since the relative computational cost is not relevant when the scheme
is not accurate (the trapezoidal rule solution for the velocities and acceleration), the same time step is
used for all three schemes. This is shown in Figure 3.9. Now, the trapezoidal rule is the least accurate.
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Figure 3.8: Absolute error of the displacement of node 2 w.r.t. the analytical solution. The integration
schemes have their corrected time steps.

The second order accuracy of the three schemes is studied. In Chapter 2.1, it is discussed that all
three schemes are second order accurate. To study this, time step is varied and the absolute error of
the displacement of node 2 versus the analytical error is calculated. In Figure 3.10 this is shown. The
figure shows that the error is smaller when a smaller time step is used and this relation has a slope of
2, proving the second order accuracy.

Figure 3.9: Absolute error of the displacement of node 2 w.r.t. the analytical solution. The integration
schemes have the same time steps.
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Figure 3.10: Convergence rates of the trapezoidal, Bathe and Wen scheme.
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Chapter 4

Numerical model

In Chapter 3, the benchmark problem is solved in a discrete manner. The characteristics of the time
integration schemes are discussed for this case. This chapter describes the simulation setup of the
locally resonant acoustic metamaterial, where time and space are discretized. The discretization of the
model in space and the consequential characteristics of the time integration schemes are described in
the following sections. It also describes the computational homogenization framework.

4.1 Direct numerical simulation

Direct Numerical Simulation (DNS) is a method to solve a system by fully describing the system in
the space and time domain. The DNS simulations consists of unit cells which are connected to each
other. Therefore, the DNS simulations are fully spatially resolved. Simulations are performed on a 1D
version of a locally resonant acoustic metamaterial designed by Liu [7]. Therefore, 2D and 3D wave
interactions are not taken into account.
Liu’s design of a locally resonant acoustic metamaterial can be seen in Figure 4.1. The LRAM consists
of three materials: an epoxy matrix (green), silicone rubber (gray) and a lead core (red). The rubber
ensures that the lead core can move independently from the matrix material, resulting in the source
of the locally resonant modes.

Figure 4.1: A general LRAM configuration consisting of a matrix (green) filled with soft-coated (grey)
heavy inclusions (red). Reprinted from [5].

The 1D simplified version of the LRAM considered in this work can be seen in Figure 4.2. The asso-
ciated geometrical and material properties are shown in Table 4.1.
In this work, the Finite Element Method (FEM) is used for the simulations. In appendix A, the main

Table 4.1: Geometric and material properties of the unit cell in Figure 4.2 [6].

Geometric properties Value [mm] Material properties Epoxy Rubber Lead
Length of RVE lm 25.2 Density ρ , kg/m3 1.18 × 103 1.30 × 103 1.16 × 104

Thickness of rubber coating tc 2.5 Young’s modulus E , N/m2 4.35 × 109 1.18 × 105 4.05 × 1010

Diameter of the lead core d 10.0

derivations can be found. The unit cell is discretized into 55 elements. The rubber material has the
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Figure 4.2: Numerical 1D model of Liu’s LRAM model with Finite Element discretization. Consists
of three materials: Epoxy matrix (green), silicone rubber coating (gray) and lead core (red) [6].

smallest element size since the largest strains are expected in this material.

The dispersion spectrum of the RVE is analysed in previous work [5]. The dispersion spectrum shows
the wavenumber for different frequencies. The wavenumber is expressed as k = ω/c where ω is the fre-
quency and c the velocity of the wave. Positive wavenumbers k denote propagating waves and negative
wavenumbers k indicate evanescent waves. Evanescent waves are reflected waves resulting from the
locally resonant material, which result in the overall attenuation of the wave. The dispersion spectrum
can be seen in Figure 4.3. The band gap of the metamaterial is approximately between 140 Hz and 310
Hz. The band gap is associated with the eigenfrequency of the rubber coated lead core, which is 142
Hz. In the figure, it can be observed that there are no propagative dispersion branches in this region
corresponding to other eigenmodes.

Figure 4.3: Dispersion spectrum and band gap (gray area) of the unit cell. Positive wavenumbers k
denote propagating waves. Negative wavenumvers k denote evanescent waves. Reprinted from [5].

Boundary conditions are necessary to solve the system. In this project, the boundary conditions are
applied by means of prescribed displacement. The simulations are performed in one dimension without
any numerical damping. In previous work [5, 6], numerical damping in the form of Rayleigh damping
was added to the system for numerical stability. The (numerical) damping in the current system results
purely from the time integration schemes (as discussed in Chapter 2).
The boundary condition are as follows: the end of the system (at the last unit cell) is fixed and at
the start of the system( the first unit cell), a periodic excitation is applied with an amplitude A and
frequency ω for the entire simulation duration as:

u(0) = A sin(2πωt), ulM = 0. (4.1)

The displacement of the two prescribed nodes is known at all times t, the velocity and acceleration of
the prescribed nodes can be derived as:

u̇(0) = 2πωA cos(2πωt), u̇lM = 0, (4.2)

ü(0) = −(2πω)2A sin(2πωt), ülM = 0. (4.3)
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The initial displacement, velocity and acceleration of all the nodes are required for the time integration
schemes. The system starts from rest, meaning that the initial displacement, velocity and acceleration
of the free nodes (denoted by f) are defined as:

u(f) = 0, (4.4)

u̇(f) = 0, (4.5)

ü(f) = 0. (4.6)

4.2 Computational homogenization simulations

In this section, the Computational Homogenization (CH) framework is discussed. The key feature of
the computational homogenization framework is the generality and accuracy compared to other ho-
mogenization schemes and the computational homogenization framework is efficient compared to DNS
as showed in previous work [6]. The full scale problem is decomposed into two scales: the macroscopic
scale and the microscopic scale. The macroscopic scale is the coarse scale and the microscopic scale is
the fine scale, which can contain complex structures and non-linearity. At the macroscopic scale, the
model consists of elements wherein each integration point a microscopic simulation is performed. The
macroscopic scales supplies the microscopic scale with the macroscopic displacements and the deforma-
tion gradient. These macroscopic values are required to determine the microscopic initial conditions
and boundary conditions. The microscopic scale supplies the macroscopic scale with the tangents,
stresses and momentum. This process is schematically shown in Figure 4.4.

Figure 4.4: Schematic representation of the dynamic homogenization scheme. Reprinted from [5].

4.2.1 Macroscopic problem

The macroscopic discretized system of equations that needs to be solved is expressed as:

rM (xM ) = fM,inertia(xM ) + fM,int(xM )− fM,ext = 0, (4.7)

where rM is the residual, fM,inertia are the nodal inertia forces, fM,int are the internal forces and fM,ext

are the external forces. The residual only vanishes if the balance of forces is satisfied. The inertia,
internal and external forces are expressed as:

fM,inertia(xM ) =

∫
VM
0

N0ṗ0M (x0M )dV0M , (4.8)
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fM,int(xM ) =

∫
VM
0

∇0MN0 ·PT
M (xM )dV0M , (4.9)

fM,ext =

∫
Γh
0M

N0t0M (X0M )dΓ0M . (4.10)

Here, V0m is the initial (undeformed) volume of the model, t0M is the traction on the initial boundary
layer Γ0M . These equations are evaluated using isoparametric transformation and numerical integration
via the Gauss quadrature, which is also done in Equations (8.3) - (8.8). The macroscopic stress PM and
macroscopic momentum rate ṗ0M are obtained from the microscopic scale. Therefore, these quantities
need to be evaluated at the integration points, and a microscopic simulation has to be performed.

4.2.2 Microscopic problem

A periodic 1D unit cell on the microscopic scale is chosen since the LRAM consists of a periodic
structure. Figure 4.5 shows schematically the representation of the 1D unit cell used in this project.
The geometrical and material properties are the same as for the DNS and can be found in Table 4.1.

Figure 4.5: Schematic representation of the 1D unit cell used for the computational homogenization
simulations. P 1 and P 2 indicate the prescribed boundary nodes.

The microscopic discretized system of equations that needs to be solved is expressed as:

rm = Mm · üm + fm,int(xm)− fm,ext = 0. (4.11)

The difference between the macro and microscale is that at the latter the constitutive relation is known.
The internal and external forces are determined in the same way as in the macroscopic scale with the
difference that the microscopic units are used instead of macroscopic units. This is also the case for
the mass matrix.
Equation 4.11 is first discretized in time, then solved via the same procedure as described in Table 2.4
and 2.5 for the standard scheme and composite scheme, respectively.
The boundary condition on the macroscale are equal to the boundary conditions for the DNS simula-
tions. Instead of prescribed displacement on the first and last unit cell in the DNS simulations, the
first and last node on macroscopic scale are prescribed.
The initial conditions are equal for both scales, which are equal to the DNS simulations: starting from
rest.
The microscopic boundary conditions are calculated from the macroscopic deformation and macro-
scopic displacement as [6]:

upm = uM + (Xp
0m −Xr

0m) · (FTM − I). (4.12)

Here, p denotes the prescribed nodes p1 and p2 from Figure 4.5 for the first and last node, respectively.
In previous work [5, 6], the boundary condition on the prescribed velocity and acceleration nodes are
determined by taking the time derivative of Equation 4.12, resulting in:

u̇pm = u̇M + (Xp
0m −Xr

0m) · ∇0M u̇M , (4.13)
üpm = üM + (Xp

0m −Xr
0m) · ∇0M üM . (4.14)
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4.2.3 Macroscopic stress, momentum and tangents

The macroscopic stress PM and momentum ṗ0M are used to determine the macroscopic internal forces
and inertia forces, respectively. Therefore, these parameters are calculated at each (macroscopic)
integration point after the microscopic simulation. The macroscopic stress and momentum rate are
determined via [6]:

PT
M =

1

V0m

∑
i=P 1,P 2

(Xi
0m −Xr

0m)f iext, (4.15)

ṗ0M =
1

V0m

∑
i=P 1,P 2

f iext, (4.16)

where Xi
0m are the initial coordinates belonging to the prescribed boundary nodes, Xr

0m is the geo-
metrical center of the RVE and f iext the external forces on these prescribed corner nodes.

In the dynamic computational homogenization framework, four tangents are required to describe the
macroscopic material behaviour. The macroscopic tangent matrices 4C

〈1〉
M , 3C

〈2〉
M , 3C

〈3〉
M , 2C

〈4〉
M are de-

rived by condensation of the microscopic stiffness [6]. The tangents relate a virtual change in stress
δPT

M and momentum rate δṗ0M to deformation δFTM and rigid body displacement δuM by:

δPT
M =4 C

〈1〉
M : δFTM +3 C

〈2〉
M · δuM , (4.17)

δṗ0M =3 C
〈3〉
M : δFTM +2 C

〈4〉
M · δuM . (4.18)

The first macroscopic tangent stiffness, 4C
〈1〉
M , relates the variation of macroscopic stress to the macrostruc-

tural deformation. 4C
〈1〉
M is expressed as:

4C
〈1〉
M =

1

V0m

∑
i=P 1,P 2

∑
j=P 1,P 2

(Xi
0m −Xr

0m)S
∗(ij)
M (Xj

0m −Xr
0m), (4.19)

with

S∗M =
(
K̂(pp)
m

)∗
−
(
K̂(pf)
m

)∗ ((
K̂(ff)
m

)∗)−1 (
K̂(fp)
m

)∗
, such that S∗Mδu

(p)
m = δfext, (4.20)

where the indices p and f denote the prescribed and free nodes, respectively and K̂m is the microscopic
iteration matrix (definition can be found in Table 2.4 and 2.5).
The tangent 3C

〈2〉
M relates the macroscopic stress to the displacement variation. This tangent can be

determined via:
3C
〈2〉
M =

1

V0m

∑
i=P 1,P 2

∑
j=P 1,P 2

(Xi
0m −Xr

0m)S
∗(ij)
M . (4.21)

The next tangent, 3C
〈3〉
M , relates the variation of macroscopic momentum to the macrostructural de-

formation. 3C
〈3〉
M is given by:

3C
〈3〉
M =

1

V0m

∑
i=P 1,P 2

∑
j=P 1,P 2

S
∗(ij)
M (Xj

0m −Xr
0m). (4.22)

The last tangent relates the variation of macroscopic momentum to the displacement variation. 2C
〈4〉
M

is expressed as:
2C
〈4〉
M =

1

V0m

∑
i=P 1,P 2

∑
j=P 1,P 2

S
∗(ij)
M . (4.23)
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4.3 Constitutive relations

Nonlinear material behaviour is incorporated in the dynamical homogenization scheme by means of
constitutive relations. The epoxy and lead parts of the RVE have a linear elastic material model since
the deformation of these parts are relatively small. However, in the rubber parts, the deformation can
become large, especially for excitation frequencies inside the band gap. Therefore, the rubber parts
are modelled with three material models: linear elastic, cubic and Neo-Hookean.

4.3.1 Linear elastic

The linear elastic material model is applied to the epoxy and lead parts in the RVE, and, when
chosen, for the rubber parts. The latter is mainly used for comparison and validation purposes. The
small strain assumption is applied which holds that the first Piola-Kirchhoff stress P is equal to the
Cauchy stress tensor σ. In the 1D RVE, the stresses in transverse directions are assumed to be zero,
P22 = P33 = 0, resulting in:

P ≈ σ = Ee, (4.24)

where e is the linear strain, expressed as e = λ − 1, with λ the stretch. Figure 4.6 shows the linear
elastic constitutive behaviour (with the other constitutive models).

Figure 4.6: Stress-strain curves for the three considered material models describing the rubber consti-
tutive behaviour. Inspired from [5].

4.3.2 Cubic

The cubic material model is the first nonlinear model considered in this project. Previous work [30]
investigated the influence of the cubic material model in wave propagation in LRAMs, therefore it is
considered in this project. The cubic material model is obtained by adding a nonlinear term to the
linear material model:

P = Ee+ αEe3, (4.25)

where α is the parameter controlling the nonlinearity. In this project, α is fixed as 5 (the same value
as in previous work). For very small strains, the model is similar to the linear model which can be seen
in Figure 4.6. For larger strains, the cubic model is antisymmetric (also referred to as odd function)
and shows increase in stiffness for both compression and tension.
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4.3.3 Neo-Hookean

Rubber materials are generally described by a hyperelastic material model. Therefore, in this project,
the often used Neo-Hookean model is also considered. The 1D constitutive model for the incompressible
Neo-Hookean is expressed as:

P = 2C10

(
λ− 1

λ2

)
, (4.26)

where λ = e + 1. The stresses in transverse directions are assumed to be zero, P22 = 0 and P33 = 0.
The material parameter C10 is obtained by requiring that the Neo-Hookean model is equal to the linear
elastic model for small strains:

P = 6C10e = Ee. (4.27)

Thus, the material parameter C10 = 1
6E. In Figure 4.6, the Neo-Hookean constitutive model can be

seen. The figure shows that this model has a asymptotic behaviour for large compressive deformations
at e = −1, which causes infinite compressive stress and tangent stiffness.

4.4 Boundary conditions for composite time integration schemes

In Section 4.2.4 the microscopic boundary condition are given. For a standard time integration scheme,
these can be used. However, when a composite time integration scheme is used, the time derivative
can be different depending in which macroscopic sub step the simulation is in. For the trapezoidal
rule (or other standard schemes), there is no difference since the macroscopic scale has the same time
integration scheme as the microscopic scale. In the composite schemes, the time steps are not synced.
For example, if the Bathe scheme is used, the first sub step is the trapezoidal rule and the second
is the backward Euler. If the macroscopic scale is in the first sub step and the microscopic scale is
solved via the Bathe scheme, then in the second sub step at microscopic scale, backward Euler is used
while the macroscopic scale is solving the system with the trapezoidal rule. Therefore, the macroscopic
displacements cannot be used to determine the microscopic prescribed velocities and accelerations. This
can also be proven with the time integration equations and Equation 4.12. The prescribed velocity can
also be determined via time integration at the microscopic scale as:

vpm =
∂

∂t
(upm), (4.28)

where upm is the prescribed displacement from Equation 4.12 and vpm the microscopic time derivative
of upm. Note that the latter is chosen with a v such that it is visually different from the prescribed
microscopic velocity from Equation 4.13. For clarity, the times T0, T1 and T2 are introduced which
describe the macroscopic initial time t, the time at the first sub step t+∆t/2 and the time at the second
sub step t+ ∆t, respectively. The same is done for the times at the microscopic scale, t0 describes the
initial time, t1 the time at the first sub step and t2 the time at the second sub step.
At the macroscopic scale, in the first sub step, the microscopic simulation is run with the Bathe scheme.
In the first sub step in the microscopic scale, the prescribed velocity can be determined via Equation
4.13:

t1u̇pm = u̇T1M + (Xp
0m −X

r
0m) · ∇0M u̇T1M ,

=
4

∆t
uT1M −

4

∆t
uT0M − u̇T0M + (Xp

0m −X
r
0m) · ∇0M (

4

∆t
uT1M −

4

∆t
uT0M − u̇T0M ). (4.29)

The prescribed velocity can also be determined via the other method as:

t1vpm =
4

∆t
ut1m −

4

∆t
ut0m − u̇t0m. (4.30)
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When comparing Equation 4.29 to Equation 4.30, the same integration constants are used for the
different terms and therefore they are equivalent. Note that this is basically what happens with the
trapezoidal rule if instead of a sub step a full time step is taken. However, in the second sub step at
microscopic scale, the Bathe scheme uses the backward Euler method. At macroscopic scale nothing
changes and the microscopic velocity is calculated the same:

t2u̇pm = u̇T1M + (Xp
0m −X

r
0m) · ∇0M u̇T1M , (4.31)

=
4

∆t
uT1M −

4

∆t
uT0M − u̇T0M + (Xp

0m −X
r
0m) · ∇0M (

4

∆t
uT1M −

4

∆t
uT0M − u̇T0M ). (4.32)

The other methods calculates the prescribed velocities at microscopic scale via the second sub step,
using the backward Euler method as:

t2vpm =
1

∆t
ut0m +

−4

∆t
ut1m +

3

∆t
ut2m (4.33)

Now, when comparing these two equations, a difference is observed and these are not equivalent.
Therefore, the boundary conditions at microscopic scale for the velocities and accelerations need to be
applied in a different method when using a composite scheme.
One way of applying the prescribed velocities and accelerations to the system, is treating the prescribed
velocities and accelerations as ‘free’ nodes and updating the nodes depending on the prescribed dis-
placement. The prescribed displacement are used in this method as initial conditions instead of bound-
ary conditions where the change in prescribed displacement is determined at (for instance) the first
microscopic time step as:

∆up,t+∆t/2
m = (up,t+∆t/2

m /2− up,∗,t+∆t/2
m ), (4.34)

where up,t+∆t/2
m is the prescribed displacement calculated with Equation 4.12 and up,∗,t+∆t/2

m the guessed
displacement. The guessed displacement is the same as for the ‘free’ nodes (see Table 2.5) and depend
on the sub step. In this case, the guessed displacement are expressed as:

up,∗,t+∆t/2
m = ut +

∆t

4
u̇t +

(∆t)2

16
üt, (4.35)

Then, the prescribed velocities are determined via the guessed prescribed velocities u̇p,∗,t+∆t/2
m and the

correction in displacement as:

u̇p,t+∆t/2
m = u̇p,∗,t+∆t/2

m +
4

∆t
∆up,t+∆t/2

m . (4.36)

The same method is applied to the prescribed accelerations:

üp,t+∆t/2
m = üp,∗,t+∆t/2

m +
16

∆t2
∆up,t+∆t/2

m , (4.37)

where the guess üp,∗,t+∆t/2
m is zero.

4.5 Time integration scheme on the microscopic scale

Using a composite time integration scheme on the microscopic scale introduces new challenges. As
mentioned above, the boundary conditions are defined differently. In addition, the external forces
and therefore the acceleration are important since they are used to calculate the macroscopic stress
and momentum. Currently, no macroscopic convergence can be reached when using a composite time
integration scheme on the microscopic scale. There is microscopic convergence, however, the calculated
microscopic accelerations deviate from the microscopic accelerations calculated with the trapezoidal
rule, which does reach microscopic and macroscopic convergence. The cause of this problem could
not be found during this project. For the computational homogenization results, on the macroscopic
scale the three different time integration schemes are employed. On the microscopic scale only the
trapezoidal rule is used.
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4.6 Simulation approach

In the next two chapters, the DNS and computational homogenization results are shown, respectively.
Simulations are performed for multiple cases: one DNS and multiple homogenization simulations. In
the DNS simulation, 3360 unit cells are used. The simulation is simulating up to 0.1 s, with a time
step of ∆t = 0.0001 s. In Figure 4.7, a schematic representation of the simulations is shown. The
macroscopic scale in the computational homogenization has the same length lM as the DNS simulations.
In the homogenization simulations, the homogenization level h is varied by changing the number of
macroscopic integration points. The homogenization level h is defined as the ratio between the number
of DNS unit cells and the number of integration points at the macroscopic scale.

Figure 4.7: Schematic representation of the 1D simulations. The top picture indicates one DNS
simulation. The bottom two pictures indicate homogenization simulations with different amounts of
homogenization. From top to bottom: h = 0.33, h = 1. Here, at each integration point indicated by
the crosses, a microscopic simulation is performed. Reprinted from [6].
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Chapter 5

Direct numerical simulations

In this chapter, the time integration schemes are used to solve the Direct Numerical Simulations (DNS)
of the LRAM. First, the results for the linear material model are shown. Then, the cubic and Neo-
Hookean material model results are discussed. Finally, a comparison between linear elements and
quadratic elements is shown.

5.1 Linear constitutive model

In this section, the results of the DNS with the linear constitutive model are shown. In Figure 5.1, the
transmissibility is shown. The transmissibility θ is expressed as:

θ =
B(1

4 lM )

B(0)
, with B(x) =

√√√√√ 1
1
2nT

nT∑
n=

1
2nT

(uxn)2, (5.1)

where nT = T/∆t is the total number of time steps during the simulation and uxn is the displacement
of the epoxy at position x at time step n. Since nT /2 is used, only the displacement of the second half
of the simulation is taken into account. This compensates for the transient effects, which are present
in the first time steps. Note that B can be described as root mean square (RMS) of the displacement.
The transmissibility θ is determined for various input frequencies and visualized against each other
in a transmissiblity diagram shown in Figure 5.7. A transmissibility of 1 corresponds with a fully
propagating wave, while a transmissiblity of 0 corresponds with a wave that does not propagate. In
this figure, the region where the transmissiblity drops, is the band gap. The band gap is approximately
between 125 and 275 Hz. Comparing the obtained band gap from the simulations with the calculated
band gap of the RVE in Section 4.1 shows resemblance. For an input frequency above the band gap
(e.g. 350 Hz), the transmissibility returns to 1. The numerical damping in the Bathe and Wen scheme
are not noticeable in the displacements since the transmissibility are equal with the trapezoidal rule
where the damping effect is absent. However, comparison to the benchmark problem results in the
same observation, the displacement is comparable while the velocity and accelerations are different
between the schemes due to the numerical damping.
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Figure 5.1: Transmissibility of the system with a linear material model for the trapezoidal rule, Bathe
scheme and Wen scheme.

Three different frequencies are considered: one below the band gap, one inside the band gap and one
above the band gap; 50, 200 and 350 Hz, respectively. For each frequency, the results are shown for
the three different materials (see Figure 5.2 for considered node positions); the middle node of the lead
part (C), the middle node of the left rubber part (B) and the middle node of the upper layer epoxy
part (A).

Figure 5.2: The considered unit cell with the considered nodes for the DNS results. Node ‘A’ is the
upper epoxy node, node ‘B’ is the rubber node and node ‘C’ is the considered lead node.

The following graphs show the results in the space domain at time t = 0.074 s, t = 0.064 s and
t = 0.054 s for below the band gap, inside the band gap and above the band gap, respectively. At these
specific times, the wave is not yet reflected. However, the transient effects are still present. The tran-
sient effects are coming from two phenomenons present in the system. First, the initial and boundary
conditions for the velocities do not match. The velocity jumps to the prescribed value after the initial
condition. According to (4.5) the initial condition for the velocity is zero, while the boundary condition
describes a velocity of B cos(Ct), which does not equal 0 at t = 0. Since this mismatch is relatively
large, the integration schemes have trouble describing this. Secondly, these transient effects have a
high velocity and small amplitude. The error between the numerical and analytical wave velocity is
a function of the wavenumber [31, 32]. Since the wavenumber is different in the transient effect, the
error is higher, resulting in these high frequency spurious modes. The Bathe and Wen scheme have
numerical damping incorporated. However, the numerical damping has the largest influence for very
large errors and these transient effect do not fall into this category.
The normalized displacement of the upper epoxy part can be seen in Figure 5.3. The displacement
is normalized by diving the displacement with the imposed amplitude of the wave. All three schemes
scheme show no high frequency spurious modes in all three frequencies. The trapezoidal rule shows
different displacements in the transient region (in the figure, this region is at the right) for a frequency
inside and above the band gap.
Figure 5.4 shows the normalized velocity of the upper epoxy part. The velocity is normalized by diving
the velocity with the imposed amplitude of the wave times the imposed frequency. In these figures,
the differences between the schemes are more easily observed, especially with a frequency inside the
band gap. Here, the same phenomena is observed as in the benchmark problem where the trapezoidal
rule shows high frequency spurious oscillations. In the other frequencies, this effect is mostly observed
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in the transient region, where all three schemes show these high frequency spurious modes.
The displacement of the rubber part can be seen in Figure 5.5. The same can be observed as for
the displacement of the epoxy. The Bathe and the Wen scheme show no spurious oscillations and
the trapezoidal rule shows some spurious oscillations in the transient region. Figure 5.6 shows the
velocity of the rubber parts. The high frequency spurious modes phenomena is more present. Now,
in the peaks, where the amplitude is the largest, the trapezoidal rule overshoots the other schemes.
This can be explained by the numerical damping present in the Bathe and Wen scheme. Noh et al
[32] describes that for unconditionally stable implicit time integration schemes, the amplitude of the
numerical calculated wave decreases due to numerical damping. The exception is the trapezoidal rule,
where the numerical damping is not present.

(a) Frequency below the band gap. (b) Frequency inside the band gap. (c) Frequency above the band gap.

Figure 5.3: Comparison between the displacement of the upper epoxy part for frequencies below the
band gap, above the band gap and above the band gap. The displacement is taken at (a) t = 0.074 s,
(b) t = 0.064 s and (c) t = 0.054 s, before the wave reached the end of the system.

(a) Frequency below the band gap. (b) Frequency inside the band gap. (c) Frequency above the band gap.

Figure 5.4: Comparison between the velocity of the upper epoxy part for frequencies below the band
gap, inside the band gap and above the band gap. The velocity is taken at (a) t = 0.074 s, (b) t = 0.064
s and (c) t = 0.054 s, before the wave reached the end of the system.
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(a) Frequency below the band gap. (b) Frequency inside the band gap. (c) Frequency above the band gap.

Figure 5.5: Comparison between the displacement of the rubber part for frequencies below the band
gap, inside the band gap and above the band gap. The displacement is taken at (a) t = 0.074 s, (b)
t = 0.064 s and (c) t = 0.054 s, before the wave reached the end of the system.

(a) Frequency below the band gap. (b) Frequency inside the band gap. (c) Frequency above the band gap.

Figure 5.6: Comparison between the velocity of the rubber part for frequencies below the band gap,
inside the band gap and above the band gap. The velocity is taken at (a) t = 0.074 s, (b) t = 0.064 s
and (c) t = 0.054 s, before the wave reached the end of the system.

5.2 Cubic constitutive model

This section discusses the results of the DNS with the cubic material model. Figure 5.7 shows the
transmissibility plot where the band gap can be seen. When this figure is compared to the linear elastic
material model two differences are observed. First, the band gap is shifted to higher frequencies, and
secondly, at the top of the band gap, the transition is much smoother. There is not a sudden jump
to a transmissibility of 1 which is the case for the linear elastic one. The shift of the band gap for
non-linear material models is a known phenomena in literature (see e.g. [33]). Since the band gap is
shifted, the ’above’ band gap result has a higher frequency as well, now this result is shown with a
frequency of 550 Hz.
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Figure 5.7: Transmissibility of the system with a cubic material model for the trapezoidal rule, Bathe
scheme and Wen scheme.

Figure 5.8 shows the displacement of the rubber node (B in Figure 5.2) in the three considered fre-
quencies. In the frequency below the band gap, all three schemes are capable of solving the problem
without any spurious oscillations. Inside the frequency however, especially at the first few unit cells, all
three schemes show high frequency spurious oscillations. At this position, the stresses are the largest
in the rubber, resulting in this behaviour. Figure 5.10 shows the stress-displacement curve of the first
node. It can be seen that the stresses in the trapezoidal rule are considerably larger than for the
other schemes. The stresses are used in the model to evaluate the residual (Equation (4.11)) with the
momentum term. The momentum term contains the accelerations. Since the accelerations show these
high spurious oscillations they compensate for the high stresses in the model, therefore convergence is
reached.
The velocity of the rubber node can be seen in Figure 5.9. The same is observed for the velocity of
the rubber node in case of a linear elastic model; the trapezoidal shows spurious oscillations in the
transient regime. If the frequency is inside the band gap, all three schemes show additional spurious
oscillations at the first few unit cells.

(a) Frequency below the band gap. (b) Frequency inside the band gap. (c) Frequency above the band gap.

Figure 5.8: Comparison between the displacement of the rubber part for frequencies below the band
gap, inside the band gap and above the band gap. The displacement is taken at (a) t = 0.074 s, (b)
t = 0.064 s and (c) t = 0.054 s, before the wave reached the end of the system.
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(a) Frequency below the band gap. (b) Frequency inside the band gap. (c) Frequency above the band gap.

Figure 5.9: Comparison between the velocity of the rubber part for frequencies below the band gap,
inside the band gap and above the band gap. The velocity is taken at (a) t = 0.074 s, (b) t = 0.064 s
and (c) t = 0.054 s, before the wave reached the end of the system.

Figure 5.10: Stress-deformation curve for the first node for the three considered schemes.

5.3 Neo-Hookean constitutive model

This section discusses the results obtained with the non-linear Neo-Hookean material model. The
simulations with the Neo-Hookean model showed a lot of instabilities. A very small time step of 1e-7
s must be chosen to reach convergence when the input frequency is inside the band gap. Even when
this time step is used, the rubber displacements are unrealistic. Frequencies below the band gap, i.e.
50 or 100 Hz, do not show these instabilities and can be solved with the same time step as with the
linear elastic model.
Since the considered unit cell is (semi) 1D, the upper epoxy parts are not influenced by the rubber
displacements and therefore the transmissibility can be made. Figure 5.11 shows the transmissibility for
the Neo-Hookean material model for the three considered schemes. The same phenomena is observed
as with the cubic material model where the band gap is shifted to higher frequencies. Since the
results for an input frequency inside the band gap are questionable, the only meaningful part is the
transmissibility for an input frequency of 50 and 100 Hz. Here, all three schemes show the same
transmissiblity.
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Figure 5.11: Transmissibility of the system with a Neo-Hookean material model for the trapezoidal
rule, Bathe scheme and Wen scheme.

Figure 5.12 shows the rubber displacements for the three considered frequencies, below, inside and
above the band gap. Below the band gap, the three schemes are similar and the results are comparable
with the obtained results for the linear and cubic material model. For an input frequency inside the
band gap, the displacement with the Bathe scheme shows a high spurious oscillation. The other two
schemes do not show these spurious oscillations. However, when a different frequency is considered,
the other schemes also show these spurious oscillations. The spurious oscillations are increasing for
an increasing frequency. When the frequency is at 550 Hz, the rubber displacements are unrealistic,
as can be seen in Figure 5.12(c). The displacement of the lead part also shows unrealistic values and
spurious oscillations. In the linear and cubic material model this is not the case.
Figure 5.13 shows the velocity of the rubber node. As expected, the same is observed for the velocity as
for the displacement. Below the band gap, the velocity is comparable to the linear and cubic material
model and all three schemes are similar. In side and above the band gap, high frequency spurious
modes are observed.

(a) Frequency below the band gap. (b) Frequency inside the band gap. (c) Frequency above the band gap.

Figure 5.12: Comparison between the displacement of the rubber part for frequencies below the band
gap, inside the band gap and above the band gap. The displacement is taken at (a) t = 0.074 s, (b)
t = 0.064 s and (c) t = 0.054 s, before the wave reached the end of the system. Note the difference in
the axis for plot (c).
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(a) Frequency below the band gap. (b) Frequency inside the band gap. (c) Frequency above the band gap.

Figure 5.13: Comparison between the velocity of the rubber part for frequencies below the band gap,
inside the band gap and above the band gap. The velocity is taken at (a) t = 0.074 s, (b) t = 0.064 s
and (c) t = 0.054 s, before the wave reached the end of the system. Note the difference in the axis for
plot (c).

5.4 Discussion

In the simulations with the linear material model, no difference is observed in the displacement be-
tween the three considered schemes. In the velocity however, there are high frequency spurious modes
for the trapezoidal rule, especially for an input frequency inside the band gap. In the acceleration,
these spurious oscillations are even more profound, matching the obtained results in the benchmark
problem where the acceleration with the trapezoidal also show these spurious modes. However, this
does not translates back to the displacement. In literature, multiple model problems are applied to the
trapezoidal rule, Bathe and Wen scheme where the same results are observed. The trapezoidal rule
shows high frequency spurious modes in the velocity and acceleration but these do not translate to the
obtained displacements.
The simulations with the cubic material model shows a shift in the band gap. Also, the transmissibility
plot shows a different value for the trapezoidal rule compared to the Bathe and Wen scheme at an
input frequency of 200 to 350 Hz. This is caused by a few higher predictions for the displacement of
the epoxy part. In general the Bathe and Wen scheme show no spurious oscillations. However, in some
time steps, the Bathe and Wen scheme overestimate the displacement compared to the trapezoidal
rule. Since the displacement is large in these time steps, the transmissibility is larger.

As mentioned before, the simulations with the Neo-Hookean material model show a lot of instabil-
ities for an input frequency inside and above the band gap. These instabilities are caused by the
transient effects present in the model. In previous work numerical damping is added to suppress these
transient effects. In this work, the numerical damping was removed and the two composite schemes
were added which have integrated numerical damping. However, the numerical damping in the com-
posite scheme is unable to fully suppress these transient effects. In literature (see e.g. [11, 32]) model
problems are shown where the use of the Bathe scheme is compared to the trapezoidal rule. The
Bathe scheme does suppress high spurious modes, which can also be seen in the obtained results in
this work. However, the literature also shows that the damping is linked to the relative wave speed
error, spatial discretization and temporal discretization. Since the spatial and temporal discretization
is not optimized for the transient effects, the transient effect are only slightly damped.
In future work, it is recommended to try a smaller amplitude to the prescribed wave. A smaller am-
plitude should reduce the stresses and therefore the model should be more stable.

Simulations are also performed with quadratic elements. However, no difference is observed with
the use of quadratic elements. The spatial discretization in the unit cell is relatively small. The
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increasing in spatial discretization can also be disadvantageous for the total accuracy on the results
[32].
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Chapter 6

Computational homogenization
simulations

In this chapter, the time integration schemes are used to solve the Computational homogenization
simulations of the LRAM. The DNS results are used as reference. First, the results for the linear
material model are shown. Then, the cubic and Neo-Hookean material model results are discussed.
Finally, the results with quadratic elements are shown.

6.1 Linear Elastic

The computational homogenization results are validated by comparing the macroscopic displacement
of the homogenization simulation with h = 1 to the displacement of the corresponding direct numerical
simulation. An equal number of unit cells is considered, which should result in equivalent results.
Simulations have been performed with the linear elastic material model describing the rubber be-
haviour. The resulting displacement are shown for each integration scheme separately. Figure 6.1(a)
shows the results with an frequency below the band gap, ω = 50 Hz. The results are normalized with
respect to the input amplitude (u/A). The CH results are shown for one in every 8 nodes to increase
the clarity. Figures 6.1(b) and 6.1(c) show the comparison for an input frequency of 200 Hz and 350 Hz,
inside and above the band gap, respectively. All three considered frequencies show matching results
between the DNS and the CH simulations. Similar results have been obtained for other frequencies in
the range of interest.

(a) Frequency below the band gap. (b) Frequency inside the band gap. (c) Frequency above the band gap.

Figure 6.1: Comparison between the displacement via the trapezoidal rule for frequencies below the
band gap, above the band gap and above the band gap. The displacement is taken at t = 0.054 s,
before the wave reached the end of the system.

In Figure 6.2, the comparison between the DNS and computational homogenization results with a
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homogenization level h = 1 is shown with the Bathe scheme for three input frequencies: 50, 200
and 350 Hz, below, inside and above the band gap, respectively. The results match in the steady-
state region but in the transient region, discrepancies are seen. Note that previous chapter described
problems with the composite schemes at microscale and therefore the trapezoidal rule is used in the
microscale simulations. Hence, the discrepancies in these results.

(a) Frequency below the band gap. (b) Frequency inside the band gap. (c) Frequency above the band gap.

Figure 6.2: Comparison between the displacement via the Bathe scheme for frequencies below the band
gap, above the band gap and above the band gap. The displacement is taken at t = 0.054 s, before
the wave reached the end of the system.

Figure 6.3 shows the displacement of the DNS and the computational homogenization with a homog-
enization level h = 1 for the three considered frequencies with the Wen scheme. The same is observed
for these results as for the results with the Bathe scheme; the steady-state response match but dis-
crepancies are visible in the transient region. Again, this is caused by the use of the trapezoidal rule
in the microscale simulations.

(a) Frequency below the band gap. (b) Frequency inside the band gap. (c) Frequency above the band gap.

Figure 6.3: Comparison between the displacement via the Wen scheme for frequencies below the band
gap, above the band gap and above the band gap. The displacement is taken at t = 0.054 s, before
the wave reached the end of the system.

Figure 6.4 shows a comparison of the transmissibilty for DNS and CH simulations with different
homogenization levels h. Here, the black line indicates the DNS results and the colored dots the
various homogenization results. Comparing the results of the three schemes shows matching results.
The transmissibilty is the same for all homogenization levels for the three schemes. Comparing this
with the DNS and CH results substantiate the matching between the schemes. In the DNS and CH
results no difference in the steady state regime is seen, therefore the transmissibility is also similar.
There is however, a discrepancy between higher homogenization levels and the DNS results for a input
frequency of 100 Hz. This is also seen in previous work [5] at exactly the same frequency, however,
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direct comparison cannot be made since previous work included damping in each node, which is not
the case here. Although direct comparison cannot be made, the cause of the discrepancy is the same;
numerical dispersion. Figure 6.5 shows a comparison between the DNS and the CH results with a
homogenization level of 20 and an input frequency of 100 Hz at time t = 0.074 s. A growing shift is
observed between the DNS and CH results. The wavelength calculated by the homogenization results
deviates from the DNS results, which causes a phase shift. A consequence of this phase shift is a
difference in amplitude, resulting in a different transmissibility. This phase shift is found in all three
schemes. Section 6.5 discusses this in more detail.

(a) Trapezoidal rule. (b) Bathe scheme. (c) Wen scheme.

Figure 6.4: Transmissiblity for the three considered time integration schemes. For each scheme, a
comparison between the DNS and CH simulation with different homogenization levels is made for a
variety of frequencies.

(a) Space domain (b) Time domain

Figure 6.5: Comparison between the DNS and homogenization results for h = 20, with an input
frequency of ω=100 Hz in the (a) space domain at t = 0.074 s and (b) time domain at x = 1

4 lM for
the Bathe scheme.

6.2 Cubic

The computational homogenization simulations are validated by comparison to the DNS simulations.
Figure 6.6 shows a comparison between the DNS simulation and the computational homogenization
simulation with a homogenization level of h = 1 for an input frequency of 50 Hz for the three considered
schemes. It can be observed that for all three schemes the computational homogenization simulations
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are accurately predicting the response for this frequency. For higher frequencies, discrepancies between
the homogenization levels are visible. Higher homogenization levels show spurious oscillations. In the
case with a linear material model, the discrepancies are created due to numerical dispersion. A clear
phase shift is noticeable. In this case, with the cubic material model, a phase shift is not visible.
In Figure 6.7, a comparison between the DNS and computational homogenization simulation with an
homogenization level of h = 1 with the Bathe scheme is shown. At the first few unit cells, the homog-
enization simulation is not accurate. The homogenization simulation over predicts the displacements
in these first few unit cells by an enormous amount. Halfway the system, the fluctuations in the CH
simulations are disappearing and the two simulations match. The same results are obtained with the
trapezoidal rule and the Wen scheme. The integration scheme does not have any influence on this
behaviour. However, the fluctuations are likely caused by the microscale simulations where in all three
cases the trapezoidal rule is used.
Figure 6.8 shows a comparison between the displacement of the upper epoxy part for a homogenization
level of h = 12 and h = 20 with the Bathe scheme. From the figure it can be concluded that no clear
phase shift can be seen and that the response is chaotic. In the figure only the Bathe scheme is given.
However, all three schemes show the same discrepancies between the homogenization levels. Since the
trapezoidal rule is used on the microscopic scale, the exact influence of the composite time integration
schemes are hard to predict. However, in the DNS results similar fluctuations for the first few unit
cells is seen for all three schemes. In the DNS results, the influence of the time integration scheme is
minimal, and the expactation is that this will also be the case for the computational homogenization
results with a composite time integration scheme at the microscale.
In previous work [5], the cause of these fluctuations are linked to the mismatch in initial and bound-
ary condition. This effect, may introduce a perturbation to the system which the homogenization
inaccurately predicts.

(a) Trapezoidal rule. (b) Bathe scheme. (c) Wen scheme.

Figure 6.6: Comparison between the displacement for a frequency below the band gap for (a) the
trapezoidal rule, (b) the Bathe scheme and (c) the Wen scheme. The displacement is taken at t = 0.074
s before the wave reached the end of the system.
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Figure 6.7: Comparison of the displacement of the epoxy node at an input frequency of ω = 200 Hz
between the DNS and computational homogenization simulation with an homogenization level of h = 1
at t = 0.054 s with the Bathe scheme. The top and bottom part is cut-off to increase clarity. The
displacement of the CH simulation reaches at the highest point a normalized displacement of 3000.

Figure 6.8: Comparison between the displacement of the epoxy part for a homogenization level of
h = 12 and h = 20 at x = 1

4 lM with the Bathe scheme for an input frequency of 200 Hz.

6.3 Neo-Hookean

Since the DNS simulations with the Neo-Hookean material model showed unrealistic values for input
frequency inside and above the band gap, only a validation is shown for an input frequency below the
band gap. Figure 6.9 shows this validation for an input frequency of ω = 50 Hz for the three considered
schemes between the DNS and the computational homogenization simulation with an homogenization
level h = 1. For this frequency, the simulations are equal and no difference between the schemes is
observed. Furthermore, a simulation with a higher homogenization level is capable of predicting the
same displacement as the DNS simulations.
Comparisons for an input frequency inside or above the band gap can be made when the model is more
stable, for instance, by decreasing the applied amplitude of the wave or add numerical damping to the
system.
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(a) Trapezoidal rule. (b) Bathe scheme. (c) Wen scheme.

Figure 6.9: Comparison between the displacement for a frequency below the band gap for (a) the
trapezoidal rule, (b) the Bathe scheme and (c) the Wen scheme. The displacement is taken at t = 0.054
s before the wave reached the end of the system.

6.4 Quadratic elements

Quadratic elements on the microscopic scale showed no influence, as described in the previous chapter.
Quadratic elements on the macroscopic scale is expected to to have a large influence, especially for high
homogenization levels h. In literature (see e.g. [11, 32]), the spatial discretization is heavily discussed
for wave propagations, resulting in the importance of higher order elements to increase the accuracy of
the model and decrease the numerical dispersion. In the simulations with linear elements, numerical
dispersion is found to be the cause of discrepancies between the results with different homogenization
levels.
Figures 6.10, 6.11 and 6.12 show the displacement for the DNS and several homogenization simulations
for the three considered frequencies for the trapezoidal rule, Bathe scheme and Wen scheme, respec-
tively. These figures show that no difference in the steady state between the different homogenization
levels can be seen. Also the schemes are similar and no difference is noticeable in the steady-state
region. Where the results with linear elements showed numerical dispersion for higher frequencies, the
quadratic elements do not show this. In Figure 6.13, the same plot is show as in Figure 6.5 but now
with quadratic elements. The figures shows that the numerical dispersion is gone and the results are
equal. This is the case for all considered frequencies.

(a) Frequency below the band gap. (b) Frequency inside the band gap. (c) Frequency above the band gap.

Figure 6.10: Comparison between the displacement via the trapezoidal rule for frequencies below the
band gap, above the band gap and above the band gap. The displacement is taken at (a) t = 0.074 s,
(b) t = 0.064 s and (c) t = 0.054 s, before the wave reached the end of the system.
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(a) Frequency below the band gap. (b) Frequency inside the band gap. (c) Frequency above the band gap.

Figure 6.11: Comparison between the displacement via the Bathe scheme for frequencies below the
band gap, above the band gap and above the band gap. The displacement is taken at (a) t = 0.074 s,
(b) t = 0.064 s and (c) t = 0.054 s, before the wave reached the end of the system.

(a) Frequency below the band gap. (b) Frequency inside the band gap. (c) Frequency above the band gap.

Figure 6.12: Comparison between the displacement via the Wen scheme for frequencies below the band
gap, above the band gap and above the band gap. The displacement is taken at (a) t = 0.074 s, (b)
t = 0.064 s and (c) t = 0.054 s, before the wave reached the end of the system.

Figure 6.13: Comparison between the DNS and homogenization results with quadratic elements for
h = 20, with an input frequency of ω=100 Hz in the (a) space domain at t = 0.074 s for the Bathe
scheme.
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6.5 Discussion

A phase shift is observed for high homogenization levels in CH simulation with the linear elastic
material model and linear elements. This phase shift (or more general; numerical dispersion) is widely
studied in literature for wave propagations. Noh et al. [32] analysed the dispersion due to spatial
and temporal discretization for the trapezoidal rule and the Bathe scheme. Noh et al. found that
the numerical dispersion is influenced by both discretizations. The discretizations are linked via a
CFL (Courant-Friedrichs-Lewy [34]) number which relates the spatial discretization to the temporal
discretization as:

CFL =
c∆t

∆x
, (6.1)

where c is the (numerical) wave velocity and ∆x is the element length. Noh et al. describes that the
trapezoidal rule shows non-dispersive solutions when the wave modes with k∆x < 2 are considered,
where k is the wave number (k = 2π/Λ). However, wave modes with k∆x > 2 are dispersive since
they are not damped out. Since the wave velocity is changing in the LRAM, all three scheme show a
non-dispersive part and a dispersive part in the LRAM solution.
Noh et al. also describes the same property for the Bathe scheme, however, in the Bathe scheme, wave
modes with ∆t/T , where T is the wave period, are discarded in the numerical solution due to numerical
damping [27, 32]. In particular, for a CFL number of 1, the Bathe scheme solves accurately and the
solution is almost non-dispersive for the discussed model problems. A lower CFL number results in less
discarded wave modes and a higher positive relative wave speed error due to the dispersion. Therefore
the numerical wave speed is higher. When a lower CFL number is used, the relative wave speed error
is negative resulting in a lower numerical wave speed since more wave modes are discarded.
The Wen scheme shows similar results to the Bathe scheme - where high frequency modes are essentially
discarded and the solution is almost non-dispersive - when the CFL equals 1.5 [10].
In the LRAMmodel, the numerical wave speed in the band gap is a function of the frequency. Therefore,
the CFL cannot be determined a priori since it is not known how much the wave propagates. Optimising
the CFL number by changing the time step to only include non-dispersive solutions is therefore a hard
task. The increase in polynomial order of the shape functions used in the finite element method is a
much simpler task. The change from linear to quadratic elements showed that for the linear case the
solution becomes non-dispersive and equal to the DNS results for all considered homogenization levels.
Note that by increasing the order of the elements, the ∆x does not change.
The effect of the time integration schemes are minimal when an input frequency inside the band gap is
used, since throughout the model different wave speeds are present. All three schemes show a dispersive
part in the solution since the CFL number varies throughout the model. To gain non-dispersive solution
with the composite schemes, the time discretization or spatial discretization should also be variable
depending on how much the wave is propagating in each unit cell. This is not feasbile in the current
implementation of the model.
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Conclusions and recommendations

In this work the effect of implicit time integration on the Direct Numerical Simulations (DNS) and com-
putational homogenization framework of locally resonant acoustic metamaterials is analysed. Standard
and so-called composite implicit time integration schemes are discussed and the different properties of
these schemes are compared. Composite schemes contain sub steps where different standard schemes
are used to gain unique properties. An example is using a dissipative and non-dissipative scheme
such that the dissipation can be controlled. Three schemes are selected; the trapezoidal rule, the
Bathe scheme and the Wen scheme. The three considered schemes are used to solve a model problem
to familiarize with the schemes, their implementation and to highlight the different properties. The
model problem showed that the trapezoidal rule shows high frequency spurious modes in the velocity
and acceleration due to the non-dissipative property. Both the Bathe and Wen scheme do not show
spurious oscillations since these schemes have numerical damping incorporated. However, in the first
step for the accelerations, the Bathe and the Wen scheme show inaccuracies.

The three considered time integration schemes are used on the DNS and computational homoge-
nization framework. The computational homogenization framework proposed in previous work is used.
In this framework, dynamical effects such as micro-intertia are included which are necessary to model
the local resonator present in acoustic metamaterials. The computational homogenization framework
uses two scales; the macroscale and the microscale. At each macroscopic point, the required quantities
are obtained from the microscale simulations. The microscales is described in detail by means of a unit
cell. Both scales are discretized by finite elements. The balance of momentum is used to construct the
system of equations for which the time integration schemes are used to solve them.
In this work, a one dimensional system is considered. The unit cells consists of a rubber coated lead
core, embedded in an epoxy matrix. Three materials models describing the rubber material behaviour
are considered; linear elastic, cubic and Neo-Hookean. The results obtained with the computational
homogenization framework are compared to the DNS results. The DNS simulation consist of a fully
spatial resolved dynamic finite element method. The validation is performed for a computational ho-
mogenization model containing an equal amount of integration points as the number of unit cells used
in the DNS simulation. The simulations are performed for all constitutive models for three frequencies;
below, inside and above the band gap. It is expected that these results are equal. By coarsening of
the macroscopic scale, less integration points are used resulting in less microscopic simulation.
The use of composite time integration schemes in the computational homogenization framework intro-
duces challenges. Since the time step in the macroscale and microscale can be desynced, the application
of the boundary condition is defined differently. In this project, the correct application of boundary
condition when using a composite time integration scheme, has not been found. Therefore, in the
computational homogenization simulations, the trapezoidal rule is used in the microscale. In the
macroscale, the three considered time integration scheme are used.

In the case of linear elastic locally resonant acoustic metamaterial (LRAM), the wave response predicted
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via the three schemes are similar in both the DNS and computational homogenization simulations. The
velocity and acceleration show high frequency spurious oscillations with the use of the trapezoidal rule.
However, these spurious oscillations do not translate to the displacements. Also, the three scheme show
the same amount of numerical dispersion when a high homogenization level is used. The numerical
damping present in the Bathe and Wen scheme do not result in more accurate results. Since the com-
posite schemes are only used at the macroscopic scale, the exact influence on the microscale is unclear.
However, when comparing the obtained results with the DNS simulations where the composite schemes
are used, no difference in displacement is seen. The composite scheme predict the wave as accurate as
the trapezoidal rule. The numerical dispersion can be decreased by increasing the polynomial order
of the finite element interpolation. The use of quadratic elements decreases the numerical dispersion
significantly for all three schemes. However, to gain a non-dispersive solution with the composite
schemes, the temporal or spatial discretization should be adjustable depending on how much the wave
is propagating through the unit cell, which is not feasible with the current implementation.

In future work it is recommended to implement the composite time integration at the microscopic
scale. Since the macroscopic quantities are depended on the microscopic accelerations, the use of com-
posite schemes, where the accelerations show less high frequency spurious modes, can be advantageous.
Furthermore, the use of using higher-order polynomials is recommended. The numerical dispersion is
codependent on the spatial discretization. Spectral elements make use of higher order polynomials
with non-uniformly spaced nodes. This method is known to increase the accuracy in wave propaga-
tion problems [35]. Another method is the use of an enriched finite element method where nodes are
overlapping. This method combines the key aspect of the spectral method with the standard finite
element method to increase the accuracy of wave propagation [36].

In the case of non-linear LRAMs (by using the cubic or Neo-Hookean material model), the use of
the composite time integration schemes show differences compared to the trapezoidal rule. When the
cubic material model is used, large fluctuations are observed in the first few time steps. These fluctua-
tions are caused by the mismatch in initial and boundary conditions. The time integration schemes are
unable to accurately describe these fluctuations resulting in different wave predictions. The composite
schemes overestimate the response in the first few unit cells which causes a higher transmissibility.
The lack of numerical damping in the Neo-Hookean material model, results in instabilities. The time
step must be chosen very small to reach convergence. However, even when convergence is reached, the
model shows unrealistic displacements at frequencies inside the band gap for all three schemes. By
increasing the homogenization level, numerical dispersion is introduced which causes discrepancies in
the results. For the simulations where the results are realistic, all three schemes are similar. Since the
effect of the composite time integration schemes for the linear and cubic material model are limited,
the expectations is that this is also the case for the Neo-Hookean material model.

In future work it is recommended to decrease the applied amplitude of the input wave to increase
the numerical stability for non-linear material models or add numerical damping to the system.
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Chapter 8

Appendix A: Finite element method

The Finite Element Method (FEM) also makes use of a discrete system (of elements). The difference
between the discrete system described in Chapter 3 and FEM is that the latter uses shape functions to
interpolate between nodes where the solution is computed such that the solution is determined over the
entire domain. The other method only calculates the solution at specific points without interpolation.
In this work, two element types are adopted, linear and quadratic. The linear shape functions Ne are
expressed as:

Ne(ξ) =

[
1
2(1− ξ)
1
2(1 + ξ)

]
, ∇ξ =

[
−1

2
1
2

]
, (8.1)

where ∇ξ is the derivative of the shape functions with respect to the local coordinate ξ. Quadratic
shape functions require an extra node in each element. Therefore, the solution is more accurate but it
requires more computational cost when the same number of elements are used. The quadratic shape
functions and their derivatives are expressed as:

Ne(ξ) =

−1
2(1− ξ)ξ
1− ξ2

1
2(1 + ξ)ξ

 , ∇ξ =

ξ − 1
2

−2ξ
ξ + 1

2

 . (8.2)

The shape functions are used to construct the elemental stiffness matrix Ke, elemental mass matrix
Me, and the elemental internal forces fint,e as:

Ke =

q∑
p=1

wp∇0Neke(∇0Ne)
TJ0, (8.3)

Me =

q∑
p=1

wpNeρeN
T
e J0, (8.4)

fint,e =

q∑
p=1

wp∇0NePeJ0, (8.5)

were wp are the weights of integration point p and J0 is the Jacobian with respect to the initial
configuration, which is expressed as:

J0(ξ) = ∇ξNT
e X0,e, (8.6)

and with,

∇0Ne = J−1
0 ∇ξNe. (8.7)

In these equations, the subscript 0 refers to the initial configuration (also commonly referred to as
total Lagrange), subscript e is for element e and the summation is for each integration point p to all
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integration points q. The stiffness contribution ke, density ρe and stress Pe depend on the constitutive
relation.
Now that the elemental contributions Ke, Me and fint,e for each element e are computed, the global
system can be assembled:

K =
m

A
e=1

Ke, M =
m

A
e=1

Me, fint =
m

A
e=1

fint,e, (8.8)

where m is the total number of elements. Now that the stiffness matrix, mass matrix and the internal
forces are constructed, the time integration can be performed. To solve the governing Equation 2.2, the
procedure is exactly the same as described in Table 2.4 and 2.5 for the standard scheme and composite
scheme, respectively.
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