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Abstract

Autonomous vehicles are a current trend in research and development within the field of transportation. When
considering automated driving, environmental awareness of the automated vehicle is one of the most important
aspects. To sense the environment the vehicle needs to be equipped with sensors. These sensors are the key
components of self-driving vehicles and are required to control the vehicle. For the vehicle to be able to drive
automatically, it needs to be able to track objects over time.
The goal of this graduation project is to develop an object tracking algorithm that uses data generated by a
radar and a camera sensor. To be able to track an object over time, detection, prediction and data association
are required. Since the radar sensor can produce multiple detections for a single object, a clustering algorithm
has been designed that creates clusters based on the difference in position and velocity between all actors. To
predict the position and velocity of the object that is being tracked, an extended Kalman filter with a constant
velocity model is used. To be able to correlate observation data generated by the sensors in the current-time
step with already existing objects obtained from the estimations from the previous time steps a global nearest
neighbour(GNN) method is used.
Since it was not possible to use real measurement data from a radar and camera sensor, synthetic measurement
data has been used. To be able to test the developed object tracking algorithm four different test scenarios
have been designed. In those four test scenarios several situations which can occur when driving on urban and
provincial roads have been tested. The scenario consists of straight and curved roads with one or three actors,
representing a car, truck and a bicycle. The obtained tracking results from these four test scenarios have been
compared to a ground truth data set, which consists of the actual position and velocity of each actor and the
generated measurement data by the radar and camera sensors.
The results obtained from these four test scenarios show that the object tracking algorithm is able to track all
the different actors. For the actors driving in front of the ego vehicle the best tracking results are obtained, with
small errors between the track and the reference of the actor. For the actors that are driving next to the ego
vehicle (oncoming or overtaking vehicles) the errors between the track and the reference of the actor are slightly
larger compared to the vehicles driving in front of the ego car. This is due to the fact that radar clusters are
created at different locations on the actor, since the radar detects more of the side of these actors. This results
in more tracks, located at different parts of the actor. The developed clustering algorithm is able to generate
correct clusters, as long as the road users are not driving too close to each other.
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Chapter 1

Introduction

Autonomous vehicles are a current trend in research and development within the field of transportation. When
considering automated driving, environmental awareness of the automated vehicle is one of the most important
aspects. For the vehicle to be able to drive automatically, it needs to be able to detect and subsequently track
objects over time. This means the vehicle knows where objects are and can predict their evolution over time.
To be able to sense the environment the vehicle needs to be equipped with a number of perception systems
and sensors. These sensors are the key components of self-driving vehicles and are required to be able to
control the vehicle. Sensors present in a modern vehicle can be divided into a number of subgroups: internal
sensors measuring the motion of the vehicle, sensors that are communicating with other vehicles and with the
infrastructure and external sensors measuring the objects surrounding the vehicle [28].
Tracking an object is not the same as detecting an object. Detection is the process of locating an object of
interest in a single frame. Target tracking associates detections of objects across multiple frames. To be able
to track objects, detection, prediction and data association are required [36].

Detection is done by the sensors present on the vehicle. All the sensors used for (self-driving) vehicles have their
own strengths and weaknesses and create an image of the driving environment in their own way. This results in
a large set of different views of the same environment. However, to control the automated vehicle, this has to
be one coherent image. Therefore, measurement data from various sensors needs to be merged into one usable
data set. Merging different data sets is also called sensor fusion. By fusing data from different sensors, the
advantages of each sensor can be combined.
Prediction and estimation is done by a filter that will determine the state of the target under movement given
the observations or measurements. The state estimation phase is a common stage in data fusion algorithms
because the target’s observation could come from different sensors, because the final goal is to obtain a global
target state from the observations [5]. There are a lot of methods available for sensor fusion, but one of the
most popular algorithms in data fusion is the Kalman filter [9]. The objective of sensor fusion is to create a
more accurate and reliable state estimation compared to only using a single sensor.
Another crucial part of the tracking algorithm is data association. This part will correlate observation data
obtained in a current time-step with already existing objects, thanks to their estimation from the previous time
step. A data association algorithm serves to extract object measurements from the clutter and to separate
multiple objects [24]. By designing suitable algorithms for prediction and data association, an algorithm can be
created that is able to estimate the states of multiple targets over time. Such an algorithm is of importance for
several applications used in automated vehicles, such as forward collision warning (FCW) and path planning
[53].

Camera and radar based object tracking for self-driving vehicles 1



CHAPTER 1. INTRODUCTION

1.1 Research objective

The goal of the graduation project is to create an algorithm that is able to track multiple objects. The tracking
algorithm will receive measurements from a radar and a camera sensor. Both sensors will have different outputs,
due to their own sensor characteristics. The measurement data generated by these sensors is used to estimate
the state of the object and track the object over time. The tracking algorithm will be tested for different
scenarios. The graduation project has the following research objective:

Develop and test an algorithm that is able to track multiple objects by fusing onboard radar and camera sensor
data.

To be able to reach the goal of the graduation project, the project is divided in several tasks:

• Obtain measurement data and adapt the data in such a way that it can be used as an input for the
tracking algorithm1.

• Obtain an algorithm that is able to cluster data generated by the radar sensor.
• Determine which algorithm can be used to associate the measurement data.
• Determine which filter can be used to estimate the state of the objects.
• Model the object tracking algorithm and test and validate the tracking model by making use of a simulation

environment.

1.2 Outline

In Chapter 2 a literature review with respect to object tracking is given. In this chapter several methods that
can be used for radar clustering and object tracking are discussed. In Chapter 3 the radar and camera sensors
are discussed in more detail. Chapter 4 describes the object tracking algorithm and all the different parts of
the model such as clustering, state estimation and data association. In Chapter 5 several test scenarios are
described. Furthermore, it is described how the parameters that are part of the object tracking algorithm
are determined and tuned. In Chapter 6 the designed scenarios are used to test the obtained object tracking
algorithm. The results for each scenario are discussed with different sensor characteristics to be able to draw
a more detailed conclusion about the performance of the object tracking algorithm. Lastly, conclusions and
recommendations are given in Chapter 7.

1At first the plan was to use the radar and camera sensor that are mounted on a Renault Twizy and to perform measurements
with the Twizy to test the object tracking algorithm. These Renaults Twizy’s are part of the i-Cave project, a research program
of the TU/e that addresses current transportation challenges regarding throughput and safety with an integrated approach to
automated and cooperative driving. But during the project there suddenly was the COVID-19 pandemic, also known as the
Corona-virus pandemic, which started at the end of 2019. To control the spread of the virus, public buildings were closed among
which our university, which forced all the employees and students to work from home for the rest of the year. Since the progress
of the spread of the virus is very insecure and it was not clear when the university could reopened for students, it is decided to use
only synthetic measurement data and test the object tracking algorithm in a simulation environment only.

2 Camera and radar based object tracking for self-driving vehicles



Chapter 2

Literature review

In this chapter literature with respect to object tracking will be discussed. To be able to track objects over time,
detections, predictions and data association are required [36]. First, it will be discussed why a radar and camera
sensor are used and how these sensors obtain their measurements. Since radar measurements can consist of
multiple detections that can originate from the same object, a clustering method can be used to group together
the measurements that originate from the same object. In this chapter several methods are discussed that can
be used for clustering. Furthermore, several methods are discussed that can be used to fuse the obtained radar
and camera data and to predict the state of the objects over time. Finally, several data association methods
will be discussed that can be used to link the obtained state predictions to the correct track of each object.

2.1 Radar and camera sensors

A key part of self-driving vehicles are the sensors. Autonomous vehicles need sensors to collect data about the
vehicle and its environment. Sensors in modern vehicles can be divided into a number of subgroups: internal
sensors measuring the motion of the vehicle, external sensors measuring the objects surrounding the vehicle
and sensors which are able to communicate with other vehicles and with the infrastructure [28]. Examples of
external sensors are radar sensors, lidars and camera systems. Often a combination of radar and camera systems
are used to combine the advantages of both sensors. In [51] a systematic review of perception systems such a a
radar and camera sensors is given. An overview of the properties of these two sensors is given in Table 2.1 [28].

Radar Camera
Detects Other vehicles, pedestrians, cyclists Other vehicles, pedestrians/cyclists, lane markings

and stationary objects
Classifies object No Yes
Azimuth angle Medium accuracy High accuracy
Range Very high accuracy Low accuracy
Range rate Very high accuracy Not
Field of view narrow wide
Weather conditions Less sensitive Sensitive to bad weather conditions

Table 2.1: Radar and camera properties with respect to object detection [28]

In [43] the working of an automotive radar is discussed in detail. Radar stands for Radio Detection and Ranging
and consists of a transmitter and a receiver. Radar operates by transmitting radio frequency electromagnetic
waves and analyses the signals reflected from objects surrounding the vehicle. By measuring the time delay and
phase shift of received signals, the angle, radial distance and radial velocity of an object can be determined.
While other sensors measure the velocity by calculating the difference between two data points, radar uses the
Doppler effect to measure the velocity directly. The fact that the velocity is measured directly by the radar
sensor can be useful for sensor fusion. Some disadvantages of radar sensors are the lack of precision, its reduced
Field of View (FOV) and the production of false positives due to reflections compared to a camera sensor [51].

Camera and radar based object tracking for self-driving vehicles 3



CHAPTER 2. LITERATURE REVIEW

In [40] stereo vision systems are discussed. Humans acquire information about the location and other properties
of objects in the environment from their eyes. Humans are able to see depth due to the difference between
images formed by the left and right eye. Stereo vision systems are inspired by the biological process to extract
three-dimensional information from digital images, which can be used to perform 3D reconstructions, tracking,
and detection of objects [42]. A stereo camera consists of two cameras of the same type and with the same
specifications. The distance to an object can be measured when the object is within the overlapping field of view
of the two cameras. Two images from both cameras are merged to generate a disparity map. The disparity map
in stereo vision represents the depth of an object. The main disadvantage of vision systems is that a camera is
sensitive for variations in lighting and certain weather conditions. Therefore often a combination of radar and
camera sensors is used to increase its robustness [51].

2.2 Radar clustering

Data generated by a radar sensor can consist of multiple detections at different angles and ranges which originate
from the same target. Clustering methods are used to group together data according to some kind of similarities
in one or more variables [45]. A distance function between the data points is usually used as a measure of
similarity [14]. In [46] various clustering methods and algorithms are discussed and compared. Clustering
algorithms can be divided in four different categories: hierarchical based methods, partition based methods,
density-based methods and grid-based methods. Both hierarchical and partition-based methods are highly
efficient with normal shaped clusters. But for arbitrary shaped clusters and detecting outliers, density or grid-
based methods are more efficient.
A well-known clustering method is the K-Means algorithm [2]. This clustering algorithm is a distance-based
algorithm, where the distances between all the data points are calculated to assign a point to a cluster. The
biggest challenge for the K-Means method is to define the number of cluster ”K”, since the number of clusters is
often not known beforehand. Therefore in the field of radar signal processing the most common algorithm is the
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) [13]. The advantage of the DBSCAN
algorithm over the K-means algorithm, is that a fewer number of parameters is used for the algorithm and no
prior knowledge is necessary about the number of clusters. Furthermore, there is no limit for the dimensions
and size of the input data of the clustering algorithm. A disadvantage of the DBSCAN algorithm is that in some
cases it is difficult to determine an appropriate distance threshold value for the clusters to be met. Furthermore
the DBSCAN is not suited for situations where the densities of the clusters are varying a lot, since it is hard to
determine one parameter set to get the correct clusters for the complete data set.
In [45] and [13] an extension of the DBSCAN algorithm, the Grid-based DBSCAN (GB-DBSCAN) is discussed.
In [32], it is proven that the GB-DBSCAN algorithm will produce similar results compared to the DBSCAN
algorithm, but in theory the GB-DBSCAN algorithm should be faster than the DBSCAN algorithm. The main
challenge for the Grid-Based DBSCAN algorithm is to determine an appropriate size of the grid structure. If
the size of the grid is not the correct size, incorrect clusters will be generated.
In [19] an extended density-based clustering algorithm for radar applications is discussed. For this clustering
method, clusters will not be created based on position only, but also velocity is taken into account. Density-
based clustering alone is not always sufficient for radar applications, as a density-based clustering algorithm
only based on position, without velocity measurements, can give faulty results. From [19] it can be concluded
that including velocity-based clustering besides position-based clustering gives better clustering results than
only using a density-based clustering algorithm.

2.3 Sensor fusion

As described above radar and camera sensors both have their advantages and disadvantages. By combining
the observations from both sensors a more complete, robust and precise representation of the environment of
interest can be obtained. Sensor fusion is the process of using information from several (different) sensors to
compute an estimate of the state of a dynamic system [28]. According to [20] there are a several advantages of
using multiple sensors for data fusion instead of using a single sensor system:

• Increased reliability: by using multiple sensors the reliability can increase, since each sensor performance
different under different circumstances.

• Extended spatial coverage: Each sensor covers a different area. By using multiple sensors the coverage

4 Camera and radar based object tracking for self-driving vehicles



CHAPTER 2. LITERATURE REVIEW

area can increase.
• Extended temporal coverage: Each sensor may have a different update rate. By interpolating sensor

updates the temporal coverage can increase.
• Increased confidence: By combining sensor data, confidence will increase since it will be less sensitive

for uncertainties.
• Reduced uncertainty: By combining sensors the overall uncertainty of the system can be reduced since

each sensor has its own uncertainty.
• Increased resolution: By combining observations from multiple sensors the resolution of the measure-

ments can increase.

So by combining sensor data, the estimation of the states can be improved. Since the measurement data
from the sensors will contain random errors, that might come from e.g. hardware limitations, environment
noise or technical limitations and failures [7], an algorithm is needed that combines the available measurement
data. There are different algorithms available for different levels of fusion [17]. At low-level fusion, fusion
takes place at data-level and raw output data from the sensors is used. Fusion at this level can be used in
real-time applications. Sensor fusion at medium level is also called feature fusion. Data fusion at this level is
realized by concatenating the feature points obtained from multiple sources, to result in a feature with higher
discrimination [48]. High-level fusion takes place at the decision level and uses a symbolic representation of the
process parameters. For each level of fusion different algorithms for sensor fusion can be used. An overview of
several algorithms for the different levels can be seen in Table 2.2, which is based on [29].

Low-level fusion Medium level fusion High level fusion
Estimation methods Classification methods Inference methods
Recursive: Parametric templates Bayesian inference
Kalman filter Cluster analysis Particle filters
Extended Kalman filter K-means clustering Dempster-Shafer theory
Unscented Kalman filter Leaning vector quantization Expert system

Kohonen feature map Fuzzy logic
Non-recursive: Artificial neural network
Weighted average Support vector machines
Least squares

Covariance-based
Cross covariance
Covariance intersection
Covariance union

Table 2.2: Classification of fusion algorithms

From Table 2.2 it can be concluded low-level fusion algorithms make use of estimation methods like a Kalman
filter that uses raw measurement data. While higher level fusion methods are not using raw measurement data
directly. Therefore low-level sensor fusion has several advantages compared with higher-level fusion:

• It is possible to exploit information from one sensor while interpreting sensor data from another sensor.
In general this results in an improvement of the robustness of the algorithm [55].

• The information loss is minimized [6].
• It reduces the risk of adopting inconsistent modelling assumptions while processing data from different

sensors [10].

One of the disadvantages of low-level sensor fusion is that a lot of data needs to be transferred from the sensor
to the platform that runs the estimation algorithm. An advantage of higher-level sensor fusion compared to
low-level sensor fusion is that a limited amount of data needs be transferred [12]. But to accomplish this the
sensors must be able to process data on-board and deliver only data at tracked object level. The disadvantages
of higher-level sensor fusion are the opposite of the advantages of the low-level sensor data fusion. Since (raw)
sensor data is available from both the radar and camera sensors, sensor fusion can take place at the lowest level.
Therefore the linear Kalman filter, extended Kalman filter and the unscented Kalman filter will be discussed
and explained in more detail below.
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2.3.1 Kalman filter

The Kalman filter is one of the most widely used filters for tracking moving objects [9]. With the filter the
state of the detected objects can be estimated by making use of the measurements [8]. The state of the object
can consist of the position, velocity or acceleration of the object. The filter algorithm involves two stages: the
prediction stage and the measurement update [16]. It uses a model of how the states change over time and a
model of how the observations from the sensors are related.

Kalman filter
The linear Kalman filter can be used for linear dynamical systems. In linear form, the states of the detected
object can be described by the following model:

xk = Fkxk−1 + Bkuk + wk (2.1)

where xk is the state vector, Fk is the state transition matrix, Bk is the input matrix, uk the input vector and
wk the process noise vector. The process noise is assumed to have zero mean Gaussian noise with a covariance
given by the covariance matrix Qk. In general for vehicle applications several motion models are used such as
random, constant velocity, constant acceleration and Singer models [7].

Measurements generated by the sensors in linear form can be described by the following observation model:

zk = Hkxk + vk (2.2)

where zk contains the vector of measurements, Hk is the observation matrix and vk is the vector that con-
tains the measurement noise. The process noise wk and measurement noise vk are independent from each other.
It is also assumed that the measurement noise is zero mean Gaussian noise with a covariance matrix given by Rk.

The state estimate can be predicted using the following equation:

x̂k|k−1 = Fkx̂k−1|k−1 + Bkuk (2.3)

where x̂k|k−1 is the predicted state vector. The calculation of the predicted state estimate is based on the state
estimate and the input of the previous time step.

The second part of the prediction stage consists of predicting the covariance of the state. For calculating the
predicted state covariance, the predicted state covariance of the previous time step is used and can be calculated
by the following equation:

Pk|k−1 = FPk−1|k−1FTk + Qk (2.4)

where Pk|k−1 is the predicted state covariance, that contains information about the variances and covariances
of the states and Qk is the process noise covariance matrix. The diagonal terms of the matrix are the variances
associated with the corresponding terms in the state vector. The off-diagonal terms are the covariances between
the terms present in the state vector.

In the update stage of the algorithm the first step is to determine the innovation or measurement pre-fit residual
ỹk. This residual can be calculated by:

ỹk = zk −Hkx̂k|k−1. (2.5)

The next step in the update stage is to calculate the innovation covariance Sk by:
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Sk = HkPk|k−1HT
k + Rk. (2.6)

where Rk represents the measurement noise covariance matrix. The predication and update stage are combined
using the Kalman gain Kk, which is calculated to minimize the mean-square error of the state estimate. The
Kalman gain can be calculated by using the residual of the covariance calculated in (2.6) by:

Kk = Pk|k−1HT
k S−1

k . (2.7)

The calculated Kalman gain says something about how much the estimate of the system needs to be changed
by a given measurement.

Finally, the state and covariance estimates will be updated by:

x̂k|k = x̂k|k−1 + Kkỹk (2.8)

Pk|k = (I−KkHk)Pk|k−1 (2.9)

where x̂k|k is the updated state estimate, Pk|k is the updated covariance estimate and I is the identity matrix.

The Kalman filter works according to a cycle which starts with an estimate, generation of a prediction, obtain-
ment of an observation and then an update of the prediction to an estimate [11]. The filter uses the process
model to generate a prediction and the observation model generates an update. In Figure 2.1 an overview of
the operation of a Kalman filter is shown.

Prediction Stage

1. Predict the state estimate:
x̂k|k−1 = Fkx̂k−1|k−1 + Bkuk−1

2. Predict the covariance estimate:
Pk|k−1=FkPk−1|k−1FTk + Qk

Update Stage

1. Calculate the Kalman gain:
Kk = Pk|k−1HT

k S−1
k

2. Update the state estimate:
x̂k|k = x̂k|k−1 + Kkỹk

3. Update the covariance estimate:
Pk|k=(I−KkHk)Pk|k−1

Initial estimate of the
state and covariance

Figure 2.1: Overview of the operation of the Kalman Filter

An advantage of the Kalman filter is that it is suited for real-time problems, since it has a high computational
efficiency. This high computational efficiency is due to the fact that it only needs information about the previous
state [17]. The disadvantage of the linear Kalman filter is that it is restricted to linear system dynamics and
it assumes that the probability density function is Gaussian. In reality often observations are not linear since
the motion of the object often is non-linear, but there can also be non-linearties in the measurement model
[21]. Therefore the linear Kalman filter discussed above often cannot be used in tracking problems. If a linear
Kalman filter (KF) is not suitable other variants of the Kalman filter can be used such as the extended Kalman
filter (EKF) and unscented Kalman filter (UKF).

Extended Kalman filter
The extended Kalman Filter is the most popular non-linear estimation algorithm due to its computational
efficiency [3]. The extended Kalman filter is obtained by linearizing the signal model about the current state
estimate and using the linear Kalman filter to predict the state estimate of the next time step. Therefore, the
state and observation models do not need to be linear functions and can be of the form:
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xk = f(xk−1,uk) + wk (2.10)
zk = h(xk) + vk (2.11)

The non-linearities present in the system are approximated by a first-order linearized version of the nonlinear
model around the last state estimate [49]. Linearization of the system is done by calculating the following
Jacobians:

Fk = ∂f
∂x

∣∣∣∣
x̂k−1|k−1,uk

(2.12)

Hk = ∂h
∂x

∣∣∣∣
x̂k−1|k−1

(2.13)

The rest of the equations used for the prediction and update stages are similar to the linear Kalman filter
discussed earlier. As stated in [49], the Extended Kalman filter is not an optimal filter since it is implemented
based on a set of first-order approximations. Due to the fact that the extended Kalman filter is not optimal, it
is possible that the filter diverges if the linearization of the estimate of the state is not approximated precisely
enough compared to the exact model.

Unscented Kalman filter
The unscented Kalman filter is an improved version of the extended Kalman filter for highly non-linear systems
and addresses the problems of sub optimal performance and divergence of the filter [52]. The difference between
EKF and UKF is that in EKF only one point is used for linearization, while for the UKF several points, called
sigma points are used. By taking multiple points the approximation will be better. This set of sigma points is
a set of carefully chosen sample points, which captures the true mean and covariance of the Gaussian random
variables [52]. The UKF achieves higher accuracy than the first-order accuracy obtained for the EKF, while
the computational complexity of the UKF is of the same order as that of the EKF [52].

2.4 Data association

In multi-object tracking algorithms data association plays an important role for the success of the object tracking
algorithm [56]. If there is more than one object to track, the problem of associating measurements with the
correct object arises. The goal of data association is to establish the set of observations or measurements that
originate from the same object over time [5]. Data association is a key step in object tracking, because the object
tracking algorithm will behave incorrectly if the data association step does not work coherently [5]. There are
several algorithms that can be used for data association. In [37] several techniques and methods are discussed
that can be used to solve the data association problem.

The nearest neighbour (NN) method is the simplest data association algorithm available [30]. The nearest
neighbour method uses a measure of the distances between all objects and all the detections to assign each
measurement to its nearest object. The nearest neighbour algorithm is a single-target data association method,
since multiple detections can be assigned to a single target. The nearest neighbour method can be extended
to multiple targets by using the global nearest neighbour (GNN) method [4]. The nearest neighbour method is
only locally optimal. When using the global nearest neighbour method, distances between all measurements and
tracks are considered when calculating the association assignments [4]. The global nearest neighbour method
minimizes the total distance of all the possible associations between object and measurement. The distances
between all the objects and detections are determined and a cost matrix is constructed from these distances.
This cost matrix is used to assign each detection to a track if possible. The GNN approach works well if the
sensor data is not too noisy and the observations and known objects are sufficiently far apart from each other
[7].

The probabilistic data association method combines all the potential candidates for association to one track
into a single statistic model, taking into account the statistical distribution of the track errors and clutter
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[7]. The algorithm is able to associate different measurements to one specific target. The PDA algorithm will
provide a poor performance when the targets are too close to each other. The PDA algorithm is a single-target
data association method and behaves incorrectly when there are multiple targets. Another disadvantage of the
PDA algorithm is that it assumes that there is already a track established. Therefore other algorithms must
be provided that are able to initialize and delete tracks if needed. The probabilistic data association (PDA)
method can be extended for multiple objects to the joint probabilistic data association (JPDA) method. A
disadvantage of the JPDA method is, that also this method needs an algorithm that is able to initialize and
delete tracks. Another disadvantage of JPDA compared with PDA is that it is computationally more expensive
when it is applied for environments where multiple targets are present.

One of the most popular data association methods is the multiple hypothesis tracking method [12]. The multiple
hypothesis tracking algorithm stores all the hypothesis associations from several frames until the information
is considered enough to take an association decision [7]. The MHT method was developed to be able to track
multiple targets in a cluttered environment. The main disadvantage of the MHT method is that it has a
high computational cost, which grows exponentially with the number of tracks and measurements [5]. This
computational cost can be reduced by limiting the growth in track hypotheses. To limit this growth a pruning
strategy based on the likelihood can be implemented [11].

Both the GNN and JPDA method can have difficulties with data association in an environment where objects
are close to each other. In such a situation there are multiple objects and multiple detections, which result
in ambiguities. The GNN method gives an optimal solution is such a situation [25]. Furthermore, it can be
concluded that in terms of computation time the GNN method is the most efficient compared to the computation
time required for the JPDA and MHT method.

2.5 Summary

In this chapter a literature review is given with respect to all the key components of an object tracking algorithm.
First an overview is given of the advantages of using a radar and camera sensor. Since radar data can consist
of multiple detections originating from the same target, it can be useful to cluster the generated radar data.
Within this chapter several clustering algorithms have been discussed. From the literature it can be concluded
that a clustering algorithm that generates clusters based on position and velocity gives the best clustering result.
To be able to fuse the generated radar and camera measurements a Kalman filter can be used. An overview and
discussion of several Kalman filters have been given in this chapter. For non-linear systems the EKF or UKF can
be used for estimation. The EKF is the most popular estimation algorithm filter for non-linear systems, while
the UKF often is used for highly non-linear systems. Furthermore, several commonly used data association
techniques have been discussed. From the discussed data association methods it can be concluded that the
GNN method has the lowest computational load and it works well if the objects are not too close to each other.
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Chapter 3

Sensor data

To be able to track objects over time detections are necessary. For this graduation project a radar and camera
sensor are used to generate the required sensor data that will be used as an input for the object tracking
algorithm. First the radar and camera sensors that are used on the Twizy will be discussed. Since it was no
longer possible to generate real measurement data, synthetic radar and camera data has been used during the
project. In this chapter it is explained how this synthetic data has been obtained from a designed scenario and
a radar and camera sensor generator.

3.1 Radar and camera sensor

The Renault Twizy used in the i-Cave project is equipped with one single radar sensor mounted on the front
bumper of the vehicle and a camera which is mounted on top of the vehicle, as can be seen in Figure 3.1. In
the future the vehicle will be equipped with five radar sensors, such that 360° around the vehicle is covered.

Figure 3.1: Renault Twizy used in the i-Cave project

The radar that is used for the project is a NXP Cocoon radar [39]. A radar such as the Cocoon receives
reflections of objects. Data generated by such a sensor can consist of multiple detections originating from the
same target. The Cocoon radar offers different modes for short range and ultra short range configurations. For
each of these modes two non-overlapping frequency spectra are available to avoid interference [38]. In Table 3.1
the specifications for the ultra short and short range configurations can be found.
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Ultra short range configuration Short range configuration
Effective bandwidth 1500 MHz 275 MHz
Effective center frequency 79 GHz 78 GHz
Measurement distance 12.8 m 69.8 m
Minimum distance 0.1 m 0.75 m
Distance resolution 0.1 m 0.55 m
Maximum relative approaching velocity 250 km/h 250 km/h
Maximum relative receding velocity 150 km/h 150 km/h
Velocity resolution 1 km/h 1 km/h
Azimuth field of view (FOV) at 1 m ± 60° ± 60°
Elevation field of view (FOV) at 1 m ± 10° ± 10°
Angular resolution No No
System cycle 70 ms 70 ms

Table 3.1: Specifications for the NXP Cocoon radar sensor for two configurations [38]

The Cocoon radar sensor outputs are given in spherical coordinates. In Figure 3.2 an overview of what the
radar sensor measures can be seen.

The outputs that are generated by the radar sensor are the:

• Azimuth angle (φr): angle between the longitudinal axis (x-axis) and a detected object
• Elevation angle (θr): angle between the vertical axis (z-axis) and the detected object
• Radial distance (rr): distance between the radar and detected object
• Radial velocity (ṙr): velocity of the detected object in the direction of the radial distance.

The stereo-vision system that is mounted on the Renault Twizy consists of two Leopard imaging LI-AR0231-
GMSL-060H cameras. In Table 3.2 some specifications of the camera can be seen.

Camera specification
Maximum resolution 1928H x 1208V
Pixel size 3 µm x 3 µm
Full resolution 30 fps
Clock input 27 MHz
Base width of stereo camera (B) 30 cm
Azimuth field of view (FOV) ± 30°
Elevation field of view (FOV) ± 15°

Table 3.2: Specifications of the Leopard imaging LI-AR0231-GMSL-060H camera [27]

The camera outputs are given in spherical coordinates. In Figure 3.3 an overview of what the camera sensors
measure can be seen. The frame of the left camera is used as the reference frame.

The data generated by the camera is already partially pre-processed and filtered on a Nvidia DrivePX2 [22].
Due to some of this processing the vision system is able to detect six different object classes: cars, road signs,
bicycles, trucks, persons and traffic lights. After processing the following outputs can be obtained per object
from the camera sensor:

• Azimuth angle (φc): angle between the optical axis of the left camera and the object
• Elevation angle (θc): angle between the optical axis and the object
• Radial distance (rc): distance between the left camera and the object
• Object class ID; 0: Cars, 1: Road signs, 2: Bicycles, 3: Trucks, 4: Persons, 5: Traffic lights

These are the outputs of the camera that can be used for the object tracking algorithm. No information with
respect to the radial velocity is available.
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(a) Top view radar measurement

(b) Side view radar measurement

Figure 3.2: Overview of radar measurement

Camera and radar based object tracking for self-driving vehicles 13



CHAPTER 3. SENSOR DATA

(a) Top view camera measurement

(b) Side view camera measurement

Figure 3.3: Overview of camera measurement
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3.2 Driving scenario

Since no real measurement data can be generated, synthetic measurement data will be used instead. The radar
and camera sensor generator will generate virtual measurement data based on a driving scenario. Such a driving
scenario can be created with a driving scenario designer. Available actors for a driving scenario are cars, trucks,
cyclists, pedestrians and barriers. To be able to simulate the behavior of the actors, the trajectory of each actor
needs to be defined. The most important actor is called the ego vehicle. The ego vehicle will be the vehicle
that is equipped with the desired sensors and will be used to track the other actors and obstacles present in the
driving scenario. Based on the driving scenario, measurements will be generated that will be used as an input
for the object tracking model. The real position and velocity of each actor are generated by the driving scenario
reader and will be used as a ground truth data set. An overview of all the outputs generated by the driving
scenario reader can be found in Appendix A. All the actors are moving in the world coordinate frame, which is
a fixed frame given by (xw, yw). The generated positions and velocities of each actor are obtained with respect
to the vehicle coordinate system given by (xv, yv), which is a coordinate frame placed on the ground below the
midpoint of the rear axle. An overview of both coordinate systems can be seen in Figure 3.4.

Figure 3.4: Vehicle coordinate system and world coordinate system [34]

3.3 Sensors models

Based on the simulated poses and velocities of the actors, radar and camera measurements will be generated.
Radar and camera detections are generate by a radar and camera sensor generator which generate measurement
noise, true detections and false positives from a statistical model. The statistical model uses random numbers
created by a random number generator. Depending on the field of view of the sensors, the random numbers
and other parameter settings, radar and camera measurements will be generated. The measurements from the
sensors will be obtained with respect to the ISO coordinate system as can be seen in Figure 3.5.

Figure 3.5: Coordinate frame of the radar and camera sensor [34]

Since it is assumed that all the actors move in the 2D-plane and the motions in x and y-direction are assumed to
be uncorrelated from the motion in the z-direction, measurements and motions in the z-direction will be ignored
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during the rest of the report. For the radar and camera sensor generators some of the parameter settings will
be based on the known sensor characteristics of the radar and camera that are mounted on the Twizy, such as
the time interval between sensor updates and the update rates. A complete overview of the radar and camera
sensor settings that will be used is shown in Appendix D.

Radar measurements obtained from the radar sensor generator consist of:

• Azimuth angle (φr) in degrees: measured from the x-axis towards the y-axis.
• Radial distance (rr) in meters: measured in the direction of the detection.
• Radial velocity (ṙr) in meters per second: range rate is positive for a target moving away from the sensor

and negative for a target moving towards the sensor.

Each radar detection will be represented by a measurement noise covariance matrix. This matrix contains the
covariances in each direction. Based on the resolution settings of the radar and the position of the object, a
covariance matrix will be created. It is assumed that all the measured variables are uncorrelated and therefore
the output of the covariance matrix will be of the following form:

Rr =

σ2
φr 0 0
0 σ2

rr 0
0 0 σ2

ṙr

 (3.1)

where σ2
φr, σ2

rr and σ2
ṙr, are the variances of φr, rr and ṙr respectively.

Camera measurements from the vision generator are obtained in Cartesian coordinates [xc yc ẋc ẏc]T , since the
camera sensor generator is not able to output the measurements in spherical coordinates. To be able to fuse the
radar and camera detections by making use of the same Kalman filter, the camera detections are transformed
from Cartesian to spherical coordinates. This transformation is done by the following equations [41]:

φc = tan−1
( yc
xc

)
rc =

√
x2
c + y2

c

ṙc = xcẋc + ycẏc√
x2
c + y2

c

(3.2)

with

• xc and yc, the measured position of the detection in Cartesian coordinates.
• ẋc and ẏc, the measured velocities of the detection in Cartesian coordinates.
• Azimuth angle (φc) in degrees: measured from the x-axis towards the y-axis.
• Radial distance (rc) in meters: measured in the direction of the detection.
• Radial velocity (ṙc) in meters per second. The radial velocity is positive for a target moving away from

the sensor and negative for a target moving towards the camera. The radial velocity is determined from
the position and velocities in the x and y-direction.

Also for the camera a measurement noise covariance matrix for each detection is given by the sensor model.
Based on parameter settings of the camera, a measurement noise covariance matrix of the following form is
generated by the sensor model:

Rc,cart =


σ2
xc

σxcσyc 0 0
σyc

σxc
σ2
yc

0 0
0 0 σ2

ẋc
σẋc

σẏc

0 0 σẏcσẋc σ2
ẏc

 . (3.3)

Since pixel positions and velocities obtained from the camera are transformed into camera coordinates and
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velocities, the measurement noise covariance matrix is not diagonal. Since this output measurement covariance
matrix is given in Cartesian coordinates and the measurements are transformed from Cartesian to spherical
coordinates, also the measurement noise covariance matrix needs to be transformed to spherical coordinates. As
described in [18], the measurement noise covariance can be transformed from Cartesian to spherical coordinates
by:

Rc,sph = JRc,cartJ
T (3.4)

where the Jacobian J can be calculated by taking the derivatives of the equations given in (3.2). After the
transformation the measurement noise covariance matrix becomes a full matrix, which means that the camera
outputs φc, rc and ṙc are correlated.

Similar to the positions on the Twizy, the radar sensor used in the object tracking model will be placed in the
middle of the front bumper and the camera sensor on top of the roof. In Figure 3.6 an overview of how the
radar and camera measurements are generated, is shown. An overview of all the outputs that can be obtained
from the radar and camera detection generators can be found in Appendix A.

yr

xr

yc

xc

yego

xego

•

•

ṙc

ṙr

rc

rr

φc

φr

yworld

xworld

Figure 3.6: Measurement overview top view
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3.4 Summary

In this chapter the radar and camera sensors which are mounted on the Twizy have been discussed in more
detail. Furthermore, it is described how synthetic radar and camera data will be created based on a driving
scenario and sensor models. An overview of all the outputs of the radar and camera sensor that will be used
for the object tracking model has been given.
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Object tracking model

In Chapter 2 literature have been discussed with respect to several necessary parts of an object tracking al-
gorithm. The object tracking algorithm will consist of several parts such as radar clustering, data association
and a Kalman filter. The input for the clustering algorithm will consist of radar and camera measurements. In
Figure 4.1 an overview of the tracking model can be seen.

Radar clustering
Multi-object

tracker
Camera measurements
Radar measurements

Tracks

Figure 4.1: Object tracking model overview

In this chapter all the parts of the object tracking model will be discussed in more detail. First the working of
the clustering algorithm will be discussed. Second, it will be discussed how the clustered radar data and the
camera measurements are combined to a single input for the multi-object tracker. Finally, it will be discussed
how tracks are obtained with the multi-object tracker, which consists of a Kalman filter and a data association
algorithm.

4.1 Radar clustering

Data generated by a radar sensor can consist of multiple detections with a different range, range rate or angle,
which can be originating from the same target. To be able to group measurement data that is related to the same
object together, a radar clustering algorithm can be used. In Chapter 2 several clustering algorithms have been
described. One of the most widely used clustering algorithms is the DBSCAN algorithm [13]. This clustering
algorithm creates clusters based on position only. But clustering only based on position can give inaccurate
results, for example when multiple objects are too close to each other. Then these detections together will
form a cluster and information about the separate objects will be lost. Therefore, a clustering algorithm that
creates clusters based on position and velocity have been discussed in [19]. Since the radar both measures the
position and velocity described by φr, rr and ṙr in spherical coordinates, a position and velocity-based clustering
algorithm based on the algorithm discussed in [19] will be used in the object tracking model.

To create clusters based on the position of the radar measurements, the Euclidean distance between each
detection needs to be calculated. The Euclidean distance between point i and point j can be calculated as:

dij =
√

(xr,i − xr,j)2 + (yr,i − yr,j)2 (4.1)

with the x and y-position of each radar detection in Cartesian coordinates, xr and yr given by:
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xr = rr cos(φr) cos(θr)
yr = rr sin(φr) cos(θr).

(4.2)

By computing all the Euclidean distances between n detections, a Euclidean distance matrix can be created.
Since distance is symmetric, only the upper triangular matrix is filled with Euclidean distances. The diagonal
elements of the matrix are zero, representing distances from a detection to itself, therefore the Euclidean distance
matrix d looks as follows:

d =


0 d12 d13 . . . d1n
0 0 d23 . . . d2n
0 0 0 . . . d3n
...

...
... . . . ...

0 0 0 . . . 0

 . (4.3)

To determine which points will form a cluster based on position, all the elements of the distance matrix d are
compared to a distance threshold value dthreshold as follows:

Dij =
{

0 if dij > dthreshold

1 if dij ≤ dthreshold.
(4.4)

If a distance dij is below or equal to the threshold value dthreshold, then this point can be part of the first cluster
and Dij becomes 1. When points are not within a distance dthreshold from each other, then these points will
not form a cluster and Dij becomes 0. Based on the threshold value a new matrix can be generated consisting
of zeros and ones.

Assuming that the velocity difference between two objects is larger than the velocity difference between detec-
tions of the same object, position based clustering in combination with velocity based clustering can improve the
clustering algorithm. Therefore, as discussed in [19] also the measured velocity will be used to create clusters.
Since it is not possible to convert the radial velocity into linear velocity, because of missing measurement data
with respect to the change of the azimuth angle over time, the radial velocity ṙr will be used to calculate the
velocity difference. Therefore the velocity difference vr,ij between all detections i and detections j is calculated
by:

vr,ij = ṙr,i − ṙr,j (4.5)

Similar to the position, the velocity differences between all the n detections can be stored in a velocity matrix.
This velocity matrix v has the same structure as the distance matrix and looks as follows:

v =


0 vr,12 vr,13 . . . vr,1n
0 0 vr,23 . . . vr2n
0 0 0 . . . vr,3n
...

...
... . . . ...

0 0 0 . . . 0

 (4.6)

All the elements of the velocity matrix v are compared to a velocity threshold value vr,threshold as follows:

Vr,ij =
{

0 if vr,ij > vr,threshold

1 if vr,ij ≤ vr,threshold.
(4.7)
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Based on the threshold value a new Boolean matrix can be generated consisting of zeros and ones. To create
clusters based on position and velocity a combined cluster matrix C is obtained as follows:

C =


2 0 0 . . . 0
0 2 0 . . . 0
0 0 2 . . . 0
...

...
... . . . ...

0 0 0 . . . 2

+


0 D12 D13 . . . D1n
0 0 D23 . . . D2n
0 0 0 . . . D3n
...

...
... . . . ...

0 0 0 . . . 0

+


0 Vr,12 Vr,13 . . . Vr,1n
0 0 Vr,23 . . . V r2n
0 0 0 . . . Vr,3n
...

...
... . . . ...

0 0 0 . . . 0

 (4.8)

which consists of zeros, ones or twos. By looping over the rows and columns of the clustering matrix C it will
be determined which detections form a cluster together. A zero in the matrix means that the detection will
not be part of the cluster, since both the position and velocity threshold values are not met. A 1 in the matrix
means that the detection only meets one of the two conditions and therefore will not be part of the cluster, since
it is necessary that the detection satisfies both threshold values. The value two in the matrix means that the
detection meets both the position and velocity threshold values and will be part of the cluster. If a detection
is already assigned to a cluster, this detection cannot be part of another cluster. Single detections that are not
assigned to a clusters will form a separate ”cluster”, consisting of only one single detection.

Since each cluster consists of a combination of detections the new centroid of the cluster needs to be determined,
which is the middle of the cluster. In [31] cluster centroids are calculated based on a weighted average. But
since it is difficult to give the points in a cluster different weightings, all the points in a cluster will have the
same weighting and the centroid of the cluster is determined by the sum of all the points within the cluster
dived by the number of points in the cluster. Therefore the new core point in Cartesian coordinates can be
calculated as:

x̄r =

n∑
xr

n

ȳr =

n∑
yr

n

(4.9)

where x̄r and ȳr represent the position of the core point in Cartesian coordinates. From the positions in Cartesian
coordinates also the position of each cluster in spherical coordinates can be calculated by the following equations:

φ̄r = tan−1
( ȳr
x̄r

)
r̄r =

√
x̄2
r + ȳ2

r + z̄2
r

(4.10)

where φ̄r and r̄r together represent the position of each cluster in spherical coordinates. Assuming that the
detections that form a cluster are originating from the same object, it can be assumed that the radial velocity
of these detections are almost of the same order of magnitude and in a similar direction. Therefore the radial
velocity of the cluster is calculated by:

¯̇rr =

n∑ ¯̇rr

n
(4.11)

where ¯̇rr represents the radial velocity of each cluster.
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Since the quality of the results obtained by the Kalman filter are depending on the accuracy of the measurement
noise covariance matrix it is important to obtain an accurate representation of the measurement noise covariance
of each cluster. Therefore, a combined variance will be calculated for each cluster in the developed clustering
algorithm, which takes into account the spread of the measurements within the cluster. The new variances of
each cluster σ̄2

φr, σ̄2
rr and σ̄2

ṙr can be calculated by the following equations [15]:

σ̄2
φr =

n∑
σ2
φr

+
n∑

(φr − φ̄r)2

n

σ̄2
rr =

n∑
σ2
rr +

n∑
(rr − r̄r)2

n

σ̄2
ṙr =

n∑
σ2
ṙr

+
n∑

(ṙr − ¯̇rr)2

n

(4.12)

By using this equation a new combined variance can be calculated as the mean of the cluster taking into account
the spread of all the points within that cluster. The combined variance consists of the original variance of each
detection and a part that depends on the spread of the points within the cluster with respect to the centroid of
the cluster. A large spread of the detections within a cluster will result in a higher variance. On the other hand
if the detections within a cluster are very close to each other, the combined variance will be almost equal to the
average of the original variance. It is not necessary that the variances and means of each group are equal. A
proof of (4.12) can be found in Appendix B.1. After calculating the new variances for each cluster the following
measurement noise covariance matrix can be obtained:

Rr,cluster =

σ̄2
φr 0 0
0 σ̄2

rr 0
0 0 σ̄2

ṙr

 (4.13)

The following outputs of each cluster are created by the clustering algorithm:

• Position and velocity of each radar cluster in spherical coordinates: φ̄r, r̄r and ¯̇rr
• Variances of each radar cluster in spherical coordinates: σ̄2

φr
, σ̄2

r and σ̄2
ṙr

These outputs will be used in the next part of the tracking algorithm which is detection concatenation. An
example of how the clustering algorithm works and how the variances of the clusters change can be found in
Appendix B.2.

4.2 Combining radar and camera data

Before data association and filtering can take place, all the radar and camera data and measurement noise
covariance matrices need to be combined into one output signal. To be able to combine the clustered radar
detections and camera detections, first an empty structure is created. This structure is similar to the structure
of the individual sensor outputs. All the radar outputs for each time step k are represented by zrcombined,k, which
consists of the clustered radar outputs φ̄r, r̄r and ¯̇rr and the measurement noise covariance matrix Rr,cluster.
The camera outputs for each time k are represented by zccombined,k, which consists of the radar outputs φc, rc
and ṙc and the measurement noise covariance matrix Rc,cart. Depending on the update rate of each sensor, the
combined output of the radar clusters and camera measurements looks as follows:
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zcombined,k =


zrcombined,k if there are only radar detections available at time step k

zccombined,k if there are only camera detections available at time step k[
zTrcombined,k

zTccombined,k

]
if there are radar and camera detections available at time step k

(4.14)

The output structure zcombined,k consists of all the relevant information of each sensor at time step k that is
necessary for the Kalman filter, such as the measurement and the measurement noise covariance matrix.

4.3 Multi-object tracker

The multi-object tracker consists of multiple elements [36]. Figure 4.2 gives a structural overview of all the
elements that are part of the multi-object tracker. In real world applications, the functions of these elements can
overlap considerably. However, this figure illustrates how the multi-object tracker can be divided in different
elements.

Observations:
radar clusters
& camera data

Assignment
Track Maintenance:

Initialization, confirmation,
deletion

Gating Filtering:
Correction & prediction

Multi-object tracker

Observation
input

Assigned
tracks

Output: Confirmed or tentative tracks

Predicted
tracks

Gated tracks

Figure 4.2: Elements of the multi-object tracker

The input of the multi-object tracker consists of the combined information generated by the radar clustering
algorithm and the camera. The output of the multi-object tracker block will consist of information about the
state of the track (confirmed or tentative) and other information such as the state covariance and the number
of obtained tracks. An overview of all the outputs of the multi-object tracker block is shown in Appendix A.
Within the multi-object tracker block assignment, track maintenance, filtering and gating will take place. Tracks
(confirmed or tentative) will be generated in the following way [36]:

1. A Kalman filter predicts the confirmed or tentative tracks from the previous time step to the current time
step (Kalman filter).

2. The multi-object tracker will use this predicted state estimate and predicted state covariance to form a
validation gate around the predicted track (gating).

3. The detections that are within the gate of a track are considered as candidates that can be assigned to a
track (assignment).

4. Based on the assignment the tracker will execute track maintenance: initialization, confirmation or deletion
(track maintenance).

5. The obtained confirmed and tentative tracks will be predicted to the next time step.

In this section all the elements of the multi-object tracker will be discussed in more detail.
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4.3.1 Kalman filter

As discussed in Chapter 2 the Kalman filter is the most widely used filter for tracking algorithms. The main goal
of the filtering algorithm is to predict tracks for the current time step. Also information about the predicted
state covariance is obtained from the Kalman filter. This information will be used for gating and data association
that are also part of the multi-object tracker. The Kalman filter is also used to correct the predicted states
by using the assigned detections. Within the object tracking algorithm non-linearities are occurring due to the
fact that the measurements are in spherical coordinates and the state vector is in Cartesian coordinates. Since
it is possible to convert spherical coordinates to Cartesian coordinates and vice versa and the Jacobian of this
state transition can be obtained, an extended Kalman filter will be used. As given in Figure 2.1 the Kalman
filter consists of a prediction and update stage and an initialization part. In this section the discrete extended
Kalman filter that will be used for tracking will be explained in more detail.

Motion model
There are a lot of different motion models available [50]. But the most common forms of target motion models
used for object tracking are the constant velocity model (CV) and constant acceleration (CA) model [44]. As
long as no maneuver is performed by the object, a simple filter such as the constant velocity model can be used
for tracking. If the objects are following a maneuvering trajectory, a constant acceleration model can be used
[47]. Since it is the goal to finally use the designed object tracking model for a cooperative driving project with
the Twizys, for now a constant velocity model will be used. Also the designed test scenarios that will be used
to test the object tracking model will not contain any difficult manoeuvres or abrupt changes in the situation.
By using a constant velocity model it is assumed that the velocity is constant over a time interval T , where
T is chosen to be 0.01 seconds. As long as this time interval is small enough and the car is not accelerating
too hard, it can be assumed that during this time interval the velocity is not varying that much and a nearly
constant velocity can be assumed. For the constant velocity model it is assumed that the motion in the x, y and
z direction are uncorrelated. Since a vehicle typically moves in the x-y-plane, the z-direction will be ignored
and a 2D Kalman filter will be used.

The motion of the vehicle can be described with a linear state space representation described as

x̂k−1 = Fkx̂k + Gwk (4.15)

where the state x̂k is described by:

x̂k =
[
x vx y vy

]T (4.16)

the state transition matrix Fk that describes how the motion of the object evolves over time is given by [33]:

Fk =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

 (4.17)

and the process noise prediction matrix G for a constant velocity model is given by [50]:

G =


1
2T

2 0
T 0
0 1

2T
2

0 T

 . (4.18)

The process noise wk represents the parts of the process that are not taken into account in the model. For the
constant velocity this will be the change in the velocity in each direction, since constant velocity is assumed.
The process noise is assumed to have zero mean Gaussian noise with the variances of wx and wy given by:
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q =
[
qx 0
0 qy

]
(4.19)

where qx and qy represent the variances of the possible changes in the velocities in the x and y-direction. This
matrix is diagonal, since it is assumed that the motion in the x and y-direction are uncorrelated. The process
noise covariance matrix Q can now be obtained by [50]:

Q = GqGT . (4.20)

Prediction and update stage
During the prediction stage of the Kalman filter both the state and state covariance are predicted from the time
step k − 1 to the current time step k. Since it is assumed that the process noise is white and zero-mean, the
predicted state x̂k|k−1 can be calculated by:

x̂k|k−1 = Fkx̂k−1|k−1. (4.21)

Besides predicting the state of an object the corresponding state covariance matrix also needs to be predicted.
The state covariance matrix for the discrete extended Kalman filter is predicted by:

Pk|k−1 = FkPk−1|k−1FTk + Q. (4.22)

The predicted state covariance matrix will be obtained based on the defined motion model, the state covariance
matrix generated in the update stage of the previous time step and the the process noise matrix Q that can be
calculated using (4.20).

Besides the predicting stage there is also an update stage, that will make use of the data that is generated by
the radar and camera sensor. The state estimation will be compared with the measurement data by calculating
the measurement residual by:

ỹk = zk − h(x̂k|k−1) (4.23)

where the measurement state zk is defined as

zk =
[
φ r ṙ

]T (4.24)

and consists of the radar and/or camera measurement. Since each column of zk consists of a detection, each
column will be passed to the Kalman filter. Since the measurement state is given in spherical coordinates
and the model state is in Cartesian coordinates a non-linear model will be used. The non-linear measurement
function h(x̂k) is defined as [23]:

h(x̂k) =


tan−1

(
y−yi

offset

x−xi
offset

)
√

(x− xioffset)2 + (y − yioffset)2

(x−xi
offset)ẋ+(y−yi

offset)ẏ√
(x−xi

offset
)2+(y−yi

offset
)2

 . (4.25)

To be able to calculate the measurement residual, first the observation model needs to be translated from
Cartesian coordinates in the ego car frame, to spherical coordinates in the sensor frames. This is done by applying
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a state transformation and correction of the states with the offsets xioffset and yioffset of the corresponding radar
or camera sensor i.

Besides the innovation measurement also the covariance of the states needs to be updated. The innovation
covariance matrix will be calculated by the predicted state covariance matrix and will be updated with the
current measurement as follows:

Sk = HkPk|k−1HT
k + Rk. (4.26)

where Hk is the Jacobian of the non-linear measurement model which can be calculated by:

Hk = ∂h(x)
∂x

∣∣∣
x̂k|k−1

=


∂φ
∂x

∂φ
∂vx

∂φ
∂y

∂φ
∂vy

∂r
∂x

∂r
∂vx

∂r
∂y

∂r
∂vy

∂ṙ
∂x

∂ṙ
∂vx

∂ṙ
∂y

∂ṙ
∂vy



∣∣∣∣∣∣∣∣∣∣∣∣
x̂k|k−1

(4.27)

and the measurement noise covariance matrix Rk is given by (3.4) or (4.13) depending from which sensor the
measurement is coming from.

The next step in the updating part of the Kalman filter is calculating the Kalman gain. This Kalman gain can be
calculated from the predicted state covariance, the innovated state covariance and the linearized measurement
model by the following equation:

Kk = Pk|k−1HT
k S−1

k . (4.28)

Depending on the how accurate the measurements are and how large the covariance is, a Kalman gain will
be obtained. This Kalman gain determines how much the state and state covariance are updated by the
measurement or predicted state. Accurate measurements and low covariances will result in a high Kalman gain.
In this situation the update of the state will depend more on the measurement compared to the predicted state.
The last step of the Kalman filter is to update the state and covariance based on the Kalman gain. The state
and covariance are updated as follows:

x̂k|k = x̂k|k−1 + Kkỹk (4.29)

Pk|k = (I−KkHk)Pk|k−1. (4.30)

As long as measurement data is generated by a sensor, the Kalman filter will keep predicting and updating
the state and covariance. But before the Kalman filter can start predicting and updating, first the states
and covariances need to be initialized. The initialization process of the state and covariance is described in
Appendix C. By using a Kalman filter, state estimations are obtained for each detection. To be able to generate
tracks of each object, each detection needs to be linked to a track. This association will be done by gating and
data association algorithms.
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4.3.2 Gating

The first step before data association can take place is gating. Gating is applied to determine which detections
are unlikely to be assigned to a certain track. Gating is not a necessary part of the multi-object tracker, but
when gating is applied the computational load can be reduced [26]. The gate will form a region, and if a
detection is outside this region, this detection will be ignored for the assignment part. As discussed in [26]
different gating shapes are available, such as a rectangular gate, a spherical gate and an ellipsoidal gate. In
[54] it is proven that an ellipsoidal gate is optimal in the sense of minimal volume and it has the highest
probability that a detection falls within the correct gate. Therefore an ellipsoidal gate will be used for the
gating algorithm. Such an ellipsoidal validation gate is formed around the center of the predicted measurement
by the residual covariance matrix S. From the eigenvectors and eigenvalues of the covariance matrix an ellipse
can be obtained, see Appendix B.2. To determine if a detection is part of a gate, the Mahalanobis distance
needs to be determined. This distance will be the distance between the predicted detection and the ellipsoidal
gate obtained from the residual covariance matrix. If this distance is less than or equal to a certain threshold
value, then this detection satisfies the gate. The Mahalanobis distance d2

M,ij between a detection j and a track
i can be calculated as follows:

d2
M,ij = ỹTijS−1

i ỹij (4.31)

where ỹij is the measurement residual and Si is the residual covariance matrix that are both calculated by the
Kalman filter. This Mahalanobis distance will be compared to a gating threshold value Gthreshold as follows:

ỹTijS−1
i ỹij ≤ Gthreshold (4.32)

If the gate size is increased, the probability that a detection falls within the gate is higher. But when the gate
size is too large, detections from other objects fall within the gate. This results in a large computational load
and the tracking performance can decrease because of a large probability that the detection is assigned to the
incorrect track. On the other hand, if the gate size becomes smaller, the number of detections within the gate
decreases which results in a reduced computational load. But if the gate is too small, tracking performance can
become poor since it can happen that detections are not within the gate and no assignment can take place.

4.3.3 Assignment of detections to tracks

After gates are formed data association can take place. Data association or also called assignment is an important
step in object tracking. It is essential to assign detections to tracks in a correct way, so these detections can be
used to update or create a new track. In Chapter 2 several data association algorithms are explained, such as
the (G)NN, (J)PDA and MHT method. Each method has their own advantages and disadvantages. Due to its
simplicity and the reduced computational load the GNN method will be used as an assignment method in the
tracking algorithm. Another advantage of the GNN method over the JPDA method is the ability to initialize
tracks, so no separate algorithm is needed.

GNN method
The GNN method takes the output of the gating algorithm and assigns the global nearest observations to
existing tracks or creates new track hypotheses for unassigned detections. As mentioned in Chapter 2 the GNN
approach works well if the detections are sufficiently far apart from each other. So if a single detection is gated
to a single track, the assignment can be immediately made. However when detections are too close to each
other, it can happen that there is more than one detection within a track’s gate or a detection is in the gates of
more than one track. In such a situation a conflict occurs. Such a conflict situation can be seen in Figure 4.3.

In Figure 4.3 it can be seen that there are multiple detections within the gates of the tracks T1, T2 and T3,
and that detections D3 and D4 are within the gates of multiple tracks. Since gating cannot solve this problem,
the data association will solve this problem using probabilistic methods [25]. The GNN method will assign
detections to tracks minimizing some distance criterion. To solve the problem assignment a cost matrix Cij
needs to be generated. This cost matrix will look as follows:
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Figure 4.3: GNN with association conflict

Cij =


c11 c12 c13 . . . c1m
c21 c22 c23 . . . c2m
...

...
... . . . ...

cn1 cn2 cn3 . . . cnm

 (4.33)

where each element of the cost matrix can be calculated as:

cij = dM,ij + ln(|Si|) (4.34)

where the Mahalanobis distance dM,ij can be calculated by (4.32). The desired solution of the assignment
problem is the one that minimizes the summed cost [25]. If a detection is not allowed to be assigned to a certain
track, then the element of the cost matrix becomes infinite which results in a large cost and therefore will be
ignored. Given the cost matrix element cij find and assignment Z = {zij} that minimizes [35]

J =
n∑
i=0

m∑
j=0

cijzij (4.35)

with the following two constraints:

m∑
i=0

zij = 1,∀j

n∑
j=0

zij = 1,∀i
(4.36)

where the first constraint means that each detection cannot be assigned to more than one track and the second
constraint means that each track cannot be assigned to more than one detection. Finally, the assignment
problem assigns one detection to each track. If there are detections that are left unassigned, then the tracker
will use this detection to initialize a new track.
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4.3.4 Track maintenance

To update, create or delete a track, track maintenance is necessary. The tracker consists of initialized and
confirmed tracks. Based on certain conditions, an initialized track can become a confirmed track. The three
following situations can occur:

• An initialized track becomes a confirmed track. If a detection cannot be assigned to an already existing
track, an initialized track is created. Such a track can become a confirmed track if an object has been
detected M times in N updates, with M ≤ N .

• If a track is coasted Pcoasted times, then this track will be deleted.
• A track is updated if the assignment algorithm keeps assigning new detections to that track.

The parameters M , N and Pcoasted need to be chosen based on the update rate of the sensors and the tracker
algorithm, to update, create or delete tracks correctly. The confirmed tracks will be the output of the object
tracking algorithm and will be compared with some ground truth information to draw conclusions about the
generated tracks.

4.4 Summary

In this chapter the object tracking model has been discussed which consists of several elements. First an extended
version of the DBSCAN algorithm has been discussed. With the developed clustering algorithm, clusters are
created based on position and velocity. Besides the new core points of the clusters, also the measurement
noise covariance matrix of each cluster has been calculated by an average of the variance of each individual
point within the cluster. Furthermore, all the important components that are part of the multi-object tracker
block have been discussed such as gating, assignment, track maintenance and filtering. For the filtering part an
extended Kalman filter has been used with a constant velocity motion model. The estimated states have to be
associated to existing tracks, which is done by gating, assignment and track maintenance algorithms. Finally,
the confirmed tracks generated by the object tracking algorithm will be compared with ground truth information
obtained from designed test scenarios. The test scenarios and corresponding results will be discussed in the
following chapters.
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Chapter 5

Test scenarios and parameter settings
of the object tracking algorithm

In this chapter several designed test scenarios and the settings and tuning of the parameters of the object
tracking algorithm will be discussed. First the four different test scenarios will be discussed and described in
more detail. Those test scenarios will be used to test the performance of the object tracking algorithm under
different circumstances. Finally, the settings and tuning of the parameters of the object tracking algorithm will
be discussed.

5.1 Test scenarios

To be able to test the object tracking algorithm, four different test scenarios are designed. The four different
test scenarios are designed to test the object tracking algorithm for common driving scenarios on urban and
provincial roads with different actors. Those different test scenarios will be used as an input for the object
tracking algorithm. The sample time of the scenarios is 0.01 seconds, which is equal to the sample time T of
the object tracking algorithm. Based on those scenarios, the radar and camera sensor generators will generate
measurements. The positions and velocities of all the actors in the test scenarios will be used as a ground truth
data set to be able to determine the performance of the object tracking algorithm. An overview of the four
designed test scenarios can be seen in Figure 5.1.

Scenario 1
Scenario 1 represents the most simple test scenario. In scenario 1 there is only one car in front of the ego
car. Both cars are driving in a straight line with a constant velocity of 13 m/s. This test scenario has been
chosen to test how the tracker performs in an easy situation, with constant velocity. In this scenario clustering
is necessary to cluster multiple detections on the vehicle and to distinguish the detections on the vehicle from
the false detections. An overview of test scenario 1 is given in Figure 5.1a.

Scenario 2
Scenario 2 represents a curved provincial road. In this scenario there is only one car in front of the ego car. Both
cars are following a part of a circle with a radius of 300 m. The car in front of the ego vehicle is accelerating
with 0.25 m/s2 from 22.2 m/s up to 24.2 m/s. This scenario will be used to determine if the object tracking
algorithm is able to track the accelerating vehicle, while it is driving on a curved road. Similar to scenario 1,
clustering is relevant to generate a single cluster from multiple detections on the vehicle. An overview of test
scenario 2 is given in Figure 5.1b.
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(a) Scenario 1 (b) Scenario 2 (c) Scenario 3 (d) Scenario 4

Figure 5.1: Illustration of the test scenarios

Scenario 3
Scenario 3 represents an urban road. This scenario is designed to test if the object tracking algorithm is able
to track multiple vehicles. There will be a moment in this scenario where all the three vehicles are almost on
a line. At that moment it is important that the clustering algorithm is working properly and is able to create
the correct clusters for each actor. This scenario consists of three vehicles where the first vehicle represents an
oncoming car, which has a constant velocity of 13.8 m/s. The second car is driving in a straight line on the left
lane in front of the ego car and is accelerating with 0.28 m/s2 from 13.8 m/s up to 16.6 m/s. The last actor
present in the scenario is a truck which is driving at the right lane. This truck is driving with a constant velocity
of 11.1 m/s. Due to the difference in velocity, both the ego car and car 2 will pass the truck. An overview of
test scenario 3 is given in Figure 5.1c.

Scenario 4
Similar to scenario 3 also scenario 4 represents an urban road. This scenario is designed to test if the object
tracking algorithm is able to track multiple vehicles and a bicycle that is riding close to a car. Since in this
scenario actors are also driving close to each other, clustering will be important. Scenario 4 consists of two cars
and a bicycle, where car 1 is an oncoming car, with a constant velocity of 8 m/s. The second car is driving
in front of the ego car and is acceleration with 0.1 m/s2 from 7 m/s up to 8 m/s. The third actor is a bicycle
that is driving very close to car 2 with a constant velocity of 5 m/s. Both the ego car and car 2 will pass the
bicycle over time, while car 1 is approaching. There will be a moment where all the three actors are almost in
a straight line. An overview of test scenario 4 is given in Figure 5.1d.
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5.2 Parameter settings of the object tracking model

To be able to test and improve the performance of the object tracking algorithm it is necessary to select the
correct parameters for the radar clustering and track maintenance algorithm. Furthermore, the process noise
covariance matrix of the Kalman filter needs to be tuned.

Radar clusters are created based on two parameters, a distance threshold value dthreshold and a velocity threshold
value vthreshold. To determine the value for vthreshold, the relative radial velocities generated by the radar
generator for all the four scenarios have been studied. In Figure 5.2 all the generated measurements are plotted.
As can be seen there are multiple detections per time step which need to be clustered. It can be seen that for
scenario 3 and 4 the spread in the generated velocities is larger compared to scenarios 1 and 2. A zoomed in
plot of the part with the largest spread of scenario 3 and 4 is shown in Figure 5.3. The value for vthreshold will
be based on the largest delta between two velocity measurements at the same time step, which is equal to 11.5
m/s.

0 5 10

-0.1

-0.05

0

0.05

0.1

0 5 10

0

0.5

1

1.5

2

2.5

3

0 5 10

-30

-25

-20

-15

-10

-5

0

0 5 10

-15

-10

-5

0

Figure 5.2: Generated relative radial velocity radar measurements for all the scenarios

Since scenario 3 and 4 consist of multiple vehicles, clustering is important for these two scenarios. Therefore a
value for the threshold dthreshold is obtained by looking to a crucial time step in scenario 3 and 4, where the
three actors are almost driving at the same x-position. Since very often the detections cover the whole rear or
front of a vehicle (especially when a vehicle is driving in front of the ego car), dthreshold is set to 2.5 m, which is
equal to the width of a truck. In this way the cluster algorithm is able to obtain one cluster if all the detections
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Figure 5.3: Zoomed in plot of the generated relative radial velocity radar measurements for scenario 3 and 4

are at the front or rear of a vehicle and even if there are some measurements at the side of the vehicle. To
determine if the clustering algorithm is able to obtain the correct clusters with the created parameter settings,
clustering is applied to a moment in time where clustering is crucial. The obtained results for scenario 3 and 4
can be seen in Figure 5.4 and 5.5.

As can be seen from Figure 5.4 and 5.5 the correct clusters are created in both scenarios with dthreshold = 2.5 m
and vthreshold = 11.5 m/s. By setting the distance threshold value equal to 2.5 m, the cluster algorithm is able
to create clusters that consist of some measurements at the front or rear of a vehicle including a part of the side
of the vehicle.

As discussed earlier there are several parameters necessary for gating and track performance. The gating
threshold value Gthreshold will determine if a detection will be assigned to a track or not. By increasing the
threshold value more detections are allowed to be in the gate. With a bird’s-eye scope it is possible to plot
the results of the tracking algorithm simulation in real time. The value for Gthreshold is determined by looking
at the real-time behaviour of the tracker with the bird’s-eye scope. By setting Gthreshold equal to 50, all the
relevant detections are assigned to a track and the noisy measurements far away from a vehicle are ignored.
For track performance the parameters are M , N and Pcoasted respectively. The values of these parameters are
depending on the update rate of the camera and radar sensor which are set equal to 0.1 second and 0.07 second
and the update rate of the tracker T which is equal to 0.01 seconds. For parameter N the number of times
the tracker needs to update before it confirms a track need to be considered. By setting N to 10 the tracker
is allowed to confirm a track each 0.1 seconds, if at least one radar or camera detection is received during that
time interval. Parameter M takes into account the probability of object detection for the sensors and is set to
2. When increasing M more false detections will be assigned to tracks, which is undesired. By decreasing N the
tracker will confirm a track very fast, which results in a lot of tracks. By increasing N it takes more time before
a track is confirmed, so it can happen that for a while no track is created and information gets lost. Parameter
Pcoasted determines how many times a track is allowed to be coasted before it is deleted. By setting Pcoasted
to 21, the tracker is allowed to coast a track for 0.21 seconds if no detection is received anymore. This means
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Figure 5.4: Obtained clusters for a crucial time step for scenario 3 with the selected parameters

Figure 5.5: Obtained clusters for a crucial time step for scenario 4 with the selected parameters

that if two times in a row no radar or camera detections are received, the tracker removes the track. To prevent
the tracker from creating a single track consisting of multiple actors or neglecting measurements located on at
the side of the vehicle, the tracker is allowed to create more than one track for each actor. Therefore is the
maximum number of tracks set to 6. An overview of all the parameters that are part of the multi-object tracker
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and their values are shown in Table 5.1.

Threshold for assigning detections to tracks Gthreshold 50
M and N for the M -out-of-N confirmation [2,10]
Number of times a confirmed track is coasted Pcoasted 21
Maximum number of tracks 6
Maximum number of sensors 2

Table 5.1: Multi-object tracker parameters

The last parameter that needs to determined is the process noise covariance matrix Q of the Kalman filter.
The process noise covariance matrix can be calculated by (4.20) by tuning the variances qx and qy that are part
of matrix q. To simplify the tuning process it is assumed that qx and qy are equal. The optimal values for qx
and qy are determined by calculating the root mean square error (RMSE) between the ground truth and the
obtained track for scenario 1. The results for different variances are shown in Table 5.2.

qx = qy [m/s2] RMSE x [m] RMSE y [m] RMSE vx [m/s] RMSE vy [m/s] Total RSME
0.01 0.0336 0.1209 0.0796 1.2851 1.5192
0.025 0.0116 0.0210 0.0051 0.0289 0.0666
0.05 0.0162 0.0109 0.0088 0.0267 0.0626
0.075 0.0198 0.0329 0.0094 0.0420 0.1041
0.1 0.0130 0.0338 0.0070 0.0531 0.1069
0.25 0.0175 0.0359 0.0102 0.0817 0.1453
0.5 0.0177 0.0228 0.0085 0.0737 0.1227
1 0.0166 0.0246 0.0104 0.0944 0.1460

Table 5.2: RSME results for different values of qx = qy

From Table 5.2 it can be seen that for qx = qy = 0.05 m/s2, the smallest total RMSE value is obtained. Therefore
the values of qx and qy are set to 0.05 m/s2, and Q is calculated by (4.19), with the sample time T equal to
0.01 s.

5.3 Summary

In this chapter four different test scenarios have been discussed. These four different test scenarios will be used
to test the performance of the object tracking algorithm. All the four test scenarios represent a different traffic
situation which include different actors consisting of cars, a truck and a bicycle. Based on these test scenarios
radar and camera data will be generated. Additionally, the position and velocity of the actors in the scenario
will be used as a ground truth data set. Furthermore, the settings and tuning of several parameters that are
part of the clustering algorithm and the multi-object tracker have been discussed.
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Chapter 6

Testing results of the object tracking
algorithm

In this chapter the measurement data generated by the radar and camera sensor generators and the obtained
tracking results for each scenario, will be compared to a ground truth data set. This ground truth data set is
generated from the scenario designer and consist of the actual position and velocity of each actor. Based on the
measurement data and generated tracks, conclusions will be drawn about the performance of the object tracker.

6.1 Scenario 1

Scenario 1 represents the most simple example and consists of one actor driving in front of the ego vehicle,
while both cars maintain the same speed. The generated measurement results for scenario 1 are shown in
Figure 6.1a. From this figure it is shown that camera and radar cluster measurements are generated during the
whole simulation. The radar cluster measurements are spread more in the y-direction compared to the camera
detections, while the radar gives better measurement results for the x-position and the relative radial velocity.
Since the radar does not measure linear velocities, the radial velocity is shown, to be able to compare the radar
and camera data with the reference velocity of the actor. Based on these detections, tracks are obtained.
In Figure 6.1b the tracks are compared with the actual position and velocity of the vehicle. As can be seen
from this figure, the multi-object tracking algorithm is able to track the position and velocity of the actor very
accurate. An overview of the RMSE values and the maximal deviation between track and the reference of the
actor is given in Table 6.1.

Error x y ṙ

RMSE 0.06 m 0.04 m 0.01 m/s
Maximum 0.11 m 0.11 m 0.04 m/s

Table 6.1: RMSE and maximal errors between track and actor for scenario 1 after initialization

As shown in Figure 6.1b the tracker has a relative large error during the first 0.1 seconds, which is due to the
initialization of the tracker, which is done as described in Appendix C. It can be seen that combining radar and
camera data results in a better performance than is obtained when only one of the two sensors is used instead.
Since the radar gives better measurements in x-direction and for the velocity, while the camera gives better
measurement results in the y-direction. So both advantages are combined to obtain more accurate results.
Despite the large spread in velocity measurements by the camera, the track is able to follow the reference very
closely with a small deviation from the reference. In Figure E.1 in Appendix, E a combination of the above
plots is shown. From the Figures E.2 and E.3 in Appendix E it can be concluded that for scenario 1 correct
clusters are created, since for each time step radar detections are generated and one cluster is generated around
the middle of the car y = 0. From the results for scenario 1, it can be concluded that the tracking algorithm
is able to track a vehicle in front of the ego vehicle, while both vehicles drive with the same speed with a very
small error with respect to the reference.
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(b) Tracker results for scenario 1 (car in front of ego car)

Figure 6.1: Results for scenario 1
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6.2 Scenario 2

To determine if the object tracking algorithm is also able to track a vehicle that is driving in front of the ego
vehicle while it is accelerating and not driving in a straight line, scenario 2 has been designed. In Figure 6.2a
the generated camera and radar cluster measurements are shown.

As shown in Figure 6.2a, radar and camera measurements are generated during the complete simulation. For
the x-position similar measurement results are generated by both the radar and the camera. For the y-position
it can be seen that there is some more variation in the measurement data generated by the radar and camera.
The camera detections are closer to the mid-rear of the car, while the radar detections are a bit more at the left
of the rear-side of the car. Furthermore it can be seen that the radar velocity measurements are more accurate
compared to the generated camera measurements. From the generated measurements, tracks are obtained as
can be seen in Figure 6.2b.

As can be seen from Figure 6.2b the tracker is able to follow the actual position and velocity of the vehicle with
a small error. In Figure E.4 in Appendix E a combination of the above plots is shown. An overview of the
RMSE values and the maximal errors are shown in Table 6.2.

Error x y ṙ

RMSE 0.20 m 0.12 m 0.12 m/s
Maximum 0.40m 0.37 m 0.31 m/s

Table 6.2: RMSE and maximal errors between track and actor for scenario 2

Despite some offset of the radar detections from the mid-rear of the vehicle and a less accurate camera meas-
urement result for velocity, the tracker is able to generate tracks at the mid-rear of the vehicle with a small
deviation in the velocity. From the Figures E.5 and E.6 in Appendix E it can be concluded that during the
first 7 seconds a single cluster is created. Later on in the scenario some more clusters are formed which is due
to the fact that the side of the vehicle becomes more visible, since the vehicle is accelerating away from the ego
vehicle and the vehicles are making a turn. Therefore, the radar generates more detections at the side of the
vehicle, which results in more than one cluster. From the results obtained from scenario 2, it can be concluded
that the tracking algorithm is able to track a vehicle in front of the ego vehicle, while it is driving on a curved
road and accelerating away from the ego vehicle with small errors.

Camera and radar based object tracking for self-driving vehicles 39



CHAPTER 6. TESTING RESULTS OF THE OBJECT TRACKING ALGORITHM

0 1 2 3 4 5 6 7 8
15

20

25

30
Actor (rear)

Radar

Camera

0 1 2 3 4 5 6 7 8

0

1

2

Actor (mid)

Actor (left/right)

Radar

Camera

0 1 2 3 4 5 6 7 8

0

2

4
Actor

Radar

Camera

(a) Measurement results for scenario 2 (car in front of ego car)

0 1 2 3 4 5 6 7 8

20

25

30

Actor (rear)

Tracker

0 1 2 3 4 5 6 7 8

0

1

2 Actor (mid)

Actor (left/right)

Tracker

0 1 2 3 4 5 6 7 8

1

1.5

2

2.5

Actor

Tracker

(b) Tracker results for scenario 2 (car in front of ego car)

Figure 6.2: Results for scenario 2
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6.3 Scenario 3

Test scenario 3 will be used to determine if the object tracking algorithm is able to track multiple vehicles,
consisting of two cars and a truck. Since the actors are driving close to each other it is important that the
clustering algorithm is able to create the correct cluster for each actor.

Actor 1
In scenario 3, actor 1 represents an oncoming car driving in a straight line with constant speed. The generated
measurements for actor 1 are shown in Figure 6.3a.

From Figure 6.3a it can be seen that actor 1 is only detected for several seconds. First the radar detects the
vehicle and later on from 1.7 seconds also the camera detects the vehicle. After several seconds the vehicle
has passed the ego car and no detections are generated any more. Furthermore, it can be seen that the radar
generated detections at the side of the vehicle, while the camera generates detections at the middle of the mid-
front of the vehicle. Similar to the previous results the camera velocity measurements have a large deviation
from the actual velocity compared to the velocity results generated by the radar. Based on these detections,
tracks are obtained as can be seen in Figure 6.3b.

From Figure 6.3b it can be seen that the tracker is able to track the vehicle as long as radar or camera
measurements are generated. The y-direction of the track is most of the time located at the side of the vehicle,
which is caused by the radar detections as can be seen in Figure 6.3a. In the x-direction the track is located
around 1.2 meters in front of the vehicle which is caused by the deviation from the reference of the radar
detections. During the last 0.5 seconds the velocities generated by the radar and camera sensor start to deviate
more from the reference, which also results in a larger deviation between track and reference during these last
0.5 seconds. An overview of the RMSE values and maximum errors is shown in Table 6.3.

Error x y ṙ

RMSE 1.19 m 0.62 m 0.29 m/s
Maximum 1.38 m 1.33 m 4.98 m/s

Table 6.3: RMSE and maximal errors between track and actor for scenario 3, actor 1

Actor 2
In scenario 3, actor 2 represents a car that is driving in front of the ego vehicle in a straight line, while it is
accelerating away from the ego car. The generated radar cluster and camera measurements are shown in Figure
6.4a.

As shown in Figure 6.4a radar clusters and camera measurements are generated during the complete simula-
tion. Between 1-3 seconds some radar measurements for the y-position are more located at the side compared
to the rest of the measurements. Similar to the rest of the scenarios the generated velocity measurements
generated by the camera are less accurate compared to the radar cluster measurements. Based on the generated
measurements, tracks are obtained as is shown in Figure 6.4b.

As shown in Figure 6.4b and Figure E.8 in Appendix E the tracker is able to follow the vehicle that is driving in
front of the ego vehicle during the complete simulation. During the first 1.5 seconds a track is generated which
starts to move from the mid-rear to the side of the rear of the vehicle. This is due to some radar measurements
which are located more at the side of the car. After 1.5 seconds the tracker is able to follow the reference with
a small error. An overview of the RMSE values and the maximum error is given in Table 6.4.

Error x y ṙ

RMSE 0.07 m 0.12 m 0.13 m/s
Maximum 0.17 m 0.98 m 0.96 m/s

Table 6.4: RMSE and maximal errors between track and actor for scenario 3, actor 2

Actor 3
In scenario 2, actor 3 represents a truck that is driving next to the ego car. The truck is driving in a straight line
with a constant speed, while it is overtaken by the ego car during the simulation. In Figure 6.5a the generated
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radar clusters and camera measurements are shown.

From Figure 6.5a it can be seen that the truck is driving in the field of view of the camera between 0-7 seconds
and between 0-3.5 seconds in the field of view of the camera. Furthermore, it can be seen that for the radar
most of the time two or more clusters are created. There are clusters which are close to the mid-rear of the
truck and clusters which are more located at the side of the truck. Since the truck is very long, more radar
detection are generated at the side of the truck compared to a car. Therefore a cluster distance threshold of
2.5 meter results in more than one cluster for the truck. In Figure 6.5b the obtained tracks for this actor are
shown.

From Figure 6.5b it can be concluded that multiple tracks are generated for the truck. In Figure E.9 in
Appendix E a combined plot of the measurements and tracks is shown. From that figure it can be concluded
that the multiple tracks are generated due to multiple radar clusters. From 5 seconds onward there is one track
which starts to deviate from the reference. At this moment the rear of the truck is moving out of the field of
view of the radar sensor and the measurements in the y-direction move from the middle of the truck to the side
of the truck. Since the tracks are tracking a different part of the truck, the maximum error from the reference
position (mid-rear) is much larger compared to the other actors. An overview of the average and maximum
errors between the reference and the tracks is given in Table 6.5.

Error x y ṙ

RMSE 1.19 m 0.58 m 0.47 m/s
Maximum 6.83 m 3.03 m 2.10 m/s

Table 6.5: RMSE and maximal errors between track and actor for scenario 3, actor 3

Conclusion scenario 3
From the obtained results for scenario 3 it can be concluded that the object-tracking algorithm is able to track
multiple vehicles consisting of two cars and a truck. For actor 1 and 3 larger RMSE values and maximum errors
are obtained compared to actor 2. This is due to some radar and camera detections which are more located at
the side of the car or truck compared to actor 2, where the detections are located at the mid-rear of the car.
This can also be seen in Figure E.10 in Appendix E, where the position of all the measurements and clusters
is shown. By looking at Figures 6.3a, 6.4a and 6.5a it can be concluded that for all the actors, radar clusters
are created as long as the actor is in the field of view of the sensor. In Figure E.11 in Appendix E the number
of created radar clusters is shown. From this figure it can be concluded that the maximum number of clusters
is equal to 6, while the maximum number of radar detections is equal to 30. Between 0-7 seconds multiple
clusters are created since multiple actors are detected during this time interval. After 7 seconds only actor 2 is
detected since the other actors are out of the field of view of the radar, which results in a single cluster for the
measurements for actor 2.
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Figure 6.3: Results for scenario 3, actor 1

Camera and radar based object tracking for self-driving vehicles 43



CHAPTER 6. TESTING RESULTS OF THE OBJECT TRACKING ALGORITHM

0 1 2 3 4 5 6 7 8 9 10
14

16

18

20

Actor (rear)

Camera

Radar

0 1 2 3 4 5 6 7 8 9 10
-1

0

1

Actor (mid)

Camera

Radar

0 1 2 3 4 5 6 7 8 9 10

-2

0

2 Actor

Camera

Radar

(a) Measurement results for scenario 3, actor 2 (car in front of ego vehicle)

0 1 2 3 4 5 6 7 8 9 10
14

16

18

Actor (rear)

Tracker

0 1 2 3 4 5 6 7 8 9 10
-1

0

1
Actor (mid)

Actor(left/right)

Tracker

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

Actor

Tracker

(b) Tracker results for scenario 3, actor 2 (car in front of ego vehicle)

Figure 6.4: Results for scenario 3, actor 2
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Figure 6.5: Results for scenario 3, actor 3
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6.4 Scenario 4

Test scenario 4 is the last test scenario that will be used to test if the object tracking algorithm is also able to
detect a bicycle besides cars and trucks as in the other test scenarios. Similar as for scenario 3, clustering will
be important since the three actors in this scenario are driving close to each other.

Actor 1
Similar as in scenario 3, actor 1 in this scenario represents an oncoming car driving in a straight line with
constant speed. The generated radar clusters and camera measurements for actor 1 are shown in Figure 6.6a.

From Figure 6.6a it can be seen that for actor 1 multiple radar clusters are created. By looking at the generated
radar clusters for the x and y-positions it can be seen that clusters are created at the side of front of the vehicle
but also more to the rear-side of the vehicle. First the radar detects the vehicle and later on also the camera is
able to detect the vehicle. After a few seconds the vehicle has moved out of the field of view of the sensor and
no detections are generated anymore. In Figure 6.6b the obtained tracks for actor 1 are shown.

As can be seen from Figure 6.6b and Figure E.12 from Appendix E multiple tracks are generated at a different
location. This is due to the radar clusters which are located at the side of the front and more at the rear-side
of the vehicle. At 1.7 seconds there is a large deviation in the y-position from the reference which is due to a
radar detection which is located at the other side of the vehicle. At 5.8 seconds the front of the vehicle is out of
the field of view of the radar and only a track located at the side of the vehicle is generated. The track located
more at the rear side of the vehicle results in a large average and maximum error between track and reference,
since the reference of the vehicle is located at the front of the vehicle. An overview of the RMSE values and
maximum errors is given in Table 6.6.

Error x y ṙ

RMSE 2.83 m 0.74 m 2.54 m/s
Maximum 5.48 m 1.82 m 10.11 m/s

Table 6.6: RMSE and maximal errors between track and actor for scenario 4, actor 1

Actor 2
Actor 2 in scenario 4 represents a car that is driving in front of the ego vehicle while it is accelerating away
from the ego car. The generated radar clusters and camera measurements for actor 2 are shown in Figure 6.7a.

From Figure 6.7a it can be seen that the radar and camera are able to detect the vehicle during the whole
simulation. Around 5 seconds some radar cluster measurements are located more to the right of the vehicle.
Around this time step the bicycle (actor 3) is riding very close to actor 2 and the clustering algorithm has some
difficulties to generate correct clusters for actor 2. Since clusters are created which consist of measurements
located at actor 2 and located at actor 3, the new core point of the cluster is in the middle of the two actors.
In Figure 6.7b the obtained tracks for actor 2 are shown.

From Figure 6.7b it can be concluded that the tracker is able to track actor 2 very close to the reference. Since
the camera detections are located very close to the mid-rear of the vehicle, the tracker is able to follow the
ground truth very closely, despite some incorrect located clusters around 5 seconds. An overview of the average
and maximum errors between the track and ground truth data is given in Table 6.7.

Error x y ṙ

RMSE 0.08 m 0.12 m 0.13 m/s
Maximum 0.20 m 0.44 m 0.59 m/s

Table 6.7: RMSE and maximal errors between track and actor for scenario 4, actor 2

Actor 3
Actor 3 in scenario 4 represents a bicycle, which is the most challenging actor in all the scenarios because of the
size of the actor. The size of a bicycle is much smaller compared to a car or truck, which makes it difficult for
the sensors to detect this actor. Furthermore, the bicycle is driving close to actor 2, which makes it difficult for
the clustering algorithm to generate correct clusters for both actors. In Figure 6.8a the generated radar clusters
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and camera measurements are shown.

From Figure 6.8a it can be seen that the radar has some difficulties with detecting the bicycle, which results in
radar clusters located at the rear of the bicycle, but also around 5 meters in front of the bicycle as can be seen
when looking at the x-position. Since the bicycle is very small and driving very close to actor 2 the generated
radar clusters are located between those actors. The camera is better able to detect the bicycle at the correct
location compared to the radar, while the radar is better able to measure the correct velocity of the bicycle
compared to the camera. In Figure 6.8b the obtained tracks for actor 3 are shown.

As can be seen from Figure 6.8b the tracker is able to track the bicycle, but with a relative large error for the
y-position, which is due to the location of the radar measurements and clusters. The peaks in the track velocity
around 2.5 seconds and 6 seconds is due to some incorrect clusters. The velocity of actor 2 is positive since it is
driving away from the ego vehicle and the relative velocity of the bicycle is negative since it is overtaken by the
ego car. Incorrect radar clusters for the bicycle consist of some detections originating from actor 2, which results
in a higher relative velocity for the new core point of the cluster. An overview of the average and maximum
error between the tracks and the ground truth for actor 3 is given in Table 6.8.

Error x y ṙ

RMSE 0.27 m 0.26 m 0.31 m/s
Maximum 2.05 m 0.94 m 1.87 m/s

Table 6.8: RMSE and maximal errors between track and actor for scenario 4, actor 3

Conclusion scenario 4
From the results for scenario 4 it can be concluded that the object-tracking algorithm is able to track all the
actors in scenario 4, consisting of two cars and a bicycle. Similar as for scenario 3 larger RMSE values and
maximum errors are obtained for the actors 1 and 3. For actor 1 multiple tracks are generated, located at the
front of the vehicle and more to the rear of the vehicle. The tracker has some difficulties to estimate the the
correct y-position for the bicycle. This is due to some incorrect clusters, since the bicycle is driving very close
to actor 2. In Figure E.15 in Appendix E the clusters are shown. From this figure it can be concluded that the
radar measurements and clusters for actor 2 and 3 are very close to each other and clusters are created which
are located between the two actors. From Figure E.16 in Appendix E it can be concluded that multiple clusters
are created during the simulation. Between 1.5-6.5 seconds more clusters are generated since during that time
period all the three actors are detected by the radar. Between 0-1.5 seconds and 6.5-10 seconds only actors 2
and 3 are detected by the radar, which results in a reduced number of clusters.
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Figure 6.6: Results for scenario 4, actor 1
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Figure 6.7: Results for scenario 4, actor 2
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6.5 Summary

In this chapter the test results of the object tracking algorithm have been discussed. The object tracking
algorithm has been tested for four different test scenarios. From these four scenarios it can be concluded that
the object tracking algorithm is able to detect all the actors present in the scenarios. The best tracking results
with the smallest errors are obtained for the actors driving in front of the ego vehicle. Oncoming vehicles, the
truck and the bicycle are also detected, but since more detections are generated at the side of these actors
compared to the vehicles driving in front of the ego vehicle more tracks are generated located at different
positions, which results in a larger RMSE value. By looking at the clustering results it can be concluded that
most of the time correct clusters are created. Since in scenario 4 actor 2 and 3 are driving very close to each
other, the clustering algorithm has some difficulties in obtaining the correct clusters. But despite some incorrect
clusters, the tracker is still able to track those actors.
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Chapter 7

Conclusion and recommendations

In this final chapter the conclusion and recommendations of this thesis are given.

7.1 Conclusion

The goal of this graduation project was to develop and test an algorithm that is able to track multiple objects by
fusing radar and camera data. An object tracking model has been developed which consists of radar and camera
sensor generators, a radar clustering algorithm and a multi-object tracker. Since no real measurements could
be generated for testing the tracking algorithm, radar and camera detections have been generated based on a
designed driving scenario and specific sensor characteristics. Since the radar can produce multiple detections
representing one vehicle, a radar clustering algorithm has been developed. With this algorithm clusters are
created based on the difference in position and velocity for the generated measurement results. Based on
the clustered radar measurements and the camera measurements, state predictions have been obtained by an
extended Kalman filter. By assuming that no large accelerations will occur during a sample time period and
no highly dynamic manoeuvres will occur, a constant velocity model has been used to predict the position and
velocity for the next time step. To be able to associate the predicted state estimations from the current time
step to the already existing track obtained from the previous time steps, gating and the GNN method have been
used. Finally, tracks have been generated which consist of estimated positions and velocities of the detected
objects.

To be able to test the object tracking algorithm four different test scenarios have been designed. Each scenario
represents a situation that often occurs in urban or provincial areas. In the different scenarios one or three
actors are used. These actors represent cars, a truck and a bicycle to test if the object tracking algorithm is able
to track different and multiple vehicles at the same time. Furthermore, the parameters present in the model,
such as the threshold values for the clustering algorithm, parameters in the multi-object tracker block and the
Q matrix of the Kalman have been determined to obtain the best results possible.

To determine the performance of the multi-object tracking algorithm, the tracking results for each actor are
compared to the generated radar and camera measurements and a ground truth data set, which consists of the
actual position and velocity of the actor present in the test scenario.
From the first test scenario it can be concluded that the tracker is able to track the vehicle’s position and
velocity with a small error between the track and the reference of the actor. At the beginning of the scenario
some relative large errors occur, which is due to the initialization of the tracker.
For the seconds scenario, which consists of an accelerating vehicle driving on a curved road, it can be concluded
that the tracker is able to track the vehicle. The errors between track and reference for scenario 2 are larger
compared to the errors of scenario 1, but still the errors are small. The thirth and fourth scenario are designed
to test if the object tracking algorithm is able to detect multiple actors at the same time. From both scenarios
it can be concluded that similar tracking results are obtained. The best tracking result in both scenarios is
obtained for the car in front of the ego car. The tracking algorithm is able to track the vehicle during the
complete simulation time with small errors. For the actors 1 and 3 larger errors are obtained compared to actor
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2. This is due to the fact that there are radar clusters generated at different locations at the actor, since the
radar detects more of the side of these actors instead of only the rear as for actor 2. This results in more tracks,
located at different parts of the actor. By looking at the radar cluster results it can be concluded that most of
the time correct cluster are created. Since in scenario 4 actors 2 and 3 are driving very close to each other, the
radar clustering algorithm has some difficulties to create the correct tracks. But despite some incorrect clusters,
the tracker is still able to track both actors.
Overall it can be concluded that the object tracking algorithm is able to detect all the actors in the four
scenarios. The best results are obtained for the actors driving in front of the ego car. Since the final goal is to
use the object tracking algorithm for cooperative driving, that will be the most important actor that needs to
be tracked.

7.2 Recommendations

The tracking algorithm is able to detect multiple objects, but to improve the object tracking algorithm and for
further testing, several recommendations should be taken into account. At first it would be better if only one
single track per actor can be generated instead of multiple tracks that are now obtained in the scenarios 3 and 4.
Only for scenarios 1 and 2, one track is generated. But if the scenarios become more dynamic or more complex,
the object tracking algorithm is not able to obtain a single track. To solve this problem the clustering algorithm
needs to be improved. Better clustering results may be obtained by better tuning of the cluster parameters and
look for other possible clusters shapes or categories.
A second recommendation is to test more complex and dynamic situations to determine if the extended Kalman
filter is able to track those dynamic manoeuvres. For the designed test scenarios a constant velocity model was
good enough, but if situations and manoeuvres become more complex probably other models such as a constant
acceleration or maybe even an interacting multiple model (IMM model), which makes use of a combination
of multiple motion models depending on the situation, will improve the performance of the object tracking
algorithm.
During the project parts of the multi-object tracker block from MATLAB have been used. Since it is very
complex to understand all the code behind this block and to figure out where something is within the code, it
is very difficult to adapt things within the code. Therefore it is recommended to obtain all the algorithms used
for data association, gating, Kalman filtering and track maintenance separately. In that way it will be easier to
make changes to the model and to see what is happening in every part of the model. It will also become more
obvious how to tune the model properly, since it will be easier to see what is happening with all the outputs of
the different algorithms.
The last recommendation will be to test the tracking algorithm with real measurement data generated from
some tests with the Twizy and use this measurement data as an input for the model. In this way it can be
determined if the object tracking algorithm is also working properly with real measurement data instead of
the measurement data generated by the sensor generator blocks in the model. The final step then will be to
implement the object tracking algorithm on the Twizy and test the object tracking algorithm in real situations
and real-time.
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Appendix A

Outputs of the scenario reader, sensor
generators and multi-object tracker

Outputs of the scenario reader (scenario actor poses):

NumActors Number of actors (ego vehicle excluded)
Time Current simulation time [s]

Actors ActorID Scenario-definied actor ID
Position Position of the actor [x y z] in [m]
Velocity Velocity of the actor [vx vy vz] in [m/s]
Roll Roll angle of the actor in [°]
Pitch Pitch angle of the actor in [°]
Yaw Yaw angle of the actor in [°]
AngularVelocity Angular velocity of the actor [ωx ωy ωz] in [°/s]

Table A.1: Output of the scenario reader

Outputs of the vision and radar generators and detection concatenation:
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NumDetections Number of detections
IsValidTime True at times the sensor updates (Boolean)

Object detection Time Current simulation time [s]
Measurement Position and velocity of the measurement in

spherical or Cartesian coordinates
MeasurementNoise Measurement noise covariance matrix
SensorIndex Unique sensor index
ObjectClassID Object classification

Measurement parameters Frame Frame used to report measurements (spher-
ical or Cartesian)

OriginPosition Offset of the sensor origin from the ego
vehicle origin in [m]

Orientation Orientation of the sensor coordinate system
with respect to the ego vehicle coordinate
system, derived from the yaw angle, pitch
angle and roll angle of the sensor

HasVelocity Indicates whether measurement contain ve-
locity (boolean)

HasEveleration (only for radar) Indicates whether measurements contain el-
evation components (Boolean)

ObjectAttributes TargetIndex Identifier of the actor. For false alarms this
value is negative

SNR (only for radar) Signal-to-noise ratio of the detection in [dB]

Table A.2: Output of the camera and radar generators and detection concatenation

Outputs of the multi-object tracker:

NumTracks Number of tracks
Track TrackID Unique integer that identifies the track

Time Current simulation time [s]
Age Number of time the track survived updating
State Values of the state vector at the update time
StateCovariance Uncertainty covariance matrix
IsConfirmed True is the track is assumed to be of a real target (boolean)

ObjectAttributes TargetIndex Identifier of the track
SNR Signal-to-noise ratio of the track

Table A.3: Output of the multi-object tracker
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Appendix B

Clustering

B.1 Proof of the combined variances for a cluster

The equations described in (4.12) that can be used to calculate the combined variance for a cluster is coming
from the sum of squares of deviations. The proof of this equation is as follows [1]:

Theorem
Let a cluster consists of the points mean points x̄1, x̄2, ..., x̄n, that each consists of i = 1, ..., n1, j = 1, ..., n2
and k = 1, .., nn number of points. The standard deviations of each cluster are given by σx1, σx2, ..., σxn. The
mean (core point) of the cluster is described by x̄, see Figure B.1.

x̄

x̄1

x̄2

x̄n

x1,1

x1,2
x1,i

x2,1

x2,2

x2,j

xn,1

xn,2

xn,k

Figure B.1: Overview of a cluster

Then the combined standard deviation of the cluster can be calculated by:
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∑
i

(x1,i−x̄)2+
∑
j

(x2,j−x̄)2+...+
∑
k

(xn,k−x̄)2 = n1σ
2
x1+n1(x̄1−x̄)2+n2σ

2
x2+n1(x̄2−x̄)2+nnσ2

x2+nn(x̄n−x̄)2

(B.1)

Proof

n1∑
i

(x1,i − x̄)2 =
n1∑
i

(
(x1,i − x̄1) + (x̄1 − x̄)

)2

=
n1∑
i

(x1,i − x̄1)2 +
n1∑
i=1

(x̄1 − x̄)2 + 2
n1∑
i=1

(
(x1,i − x̄1)(x̄1 − x̄)

)
=

n1∑
j=1

(x1,i − x̄1)2 +
n1∑
i=1

(̄x1 − x̄)2 + 2(x̄1 − X̄)
n1∑
i=1

(x1,i − x̄1)

=
n1∑
i=1

(x1,i − x̄1)2 +
n1∑
i=1

(x̄1 − x̄)2 + 2(x̄1 − X̄)
( n1∑
i=1

x1,i −
n1∑
i=1

x̄1

)
=

n1∑
i

(x1,i − x̄1)2 +
n1∑
i=1

(x̄1 − x̄)2

=
n1∑
i

(x1,i − x̄1)2 + n1(x̄1 − x̄)2

= n1σ
2
x1 + n1(x̄1 − x̄)2

B.2 Example of the radar clustering algorithm

To illustrate how the clustering algorithm works, an example will be discussed in this Appendix. The situation
that will be used for this example is shown in Figure B.2.

The following inputs are used for this clustering algorithm example:

• φr = [21.9 18 14 3.1 -0.1 -3 -13 -14.7 -18] in °
rr = [11 10.8 10.5 11 10.8 10.9 11 10.2 10.7] in m
ṙr = [13.5 13.49 13.51 0 0.01 -0.01 3 3.01 2.99 ] in m/s

• Rr =

σ2
φr 0 0
0 σ2

rr 0
0 0 σ2

ṙr

 =

0.01752 0 0
0 0.552 0
0 0 0.27782


• dthreshold = 1.8
vr,threshold = 0.5

First the Euclidean distances are calculated by (4.1), which results in the following distance matrix:
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Figure B.2: Overview of the situation in the xy-plane

D =



0 0.7683 1.5628 3.5932 4.1643 4.7224 6.5972 6.6998 7.4094
0 0 0.8015 2.8336 3.39557 3.9557 5.8290 5.9336 6.6445
0 0 0 2.1018 2.6312 3.1878 5.0426 5.1386 5.8467
0 0 0 0 0.6407 1.1695 3.0808 3.3737 3.9841
0 0 0 0 0 0.5581 2.4570 2.7339 3.3463
0 0 0 0 0 0 1.9113 2.2605 2.863
0 0 0 0 0 0 0 0.8595 0.9929
0 0 0 0 0 0 0 0 0.7823
0 0 0 0 0 0 0 0 0


≤ 1.8

Then the velocity differences between the detections are calculated by (4.5), which results in the following ve-
locity matrix:

Vr =



0 0.01 0.01 13.5 13.49 13.51 10.5 10.49 10.51
0 0 0.02 13.49 13.48 13.5 10.49 10.48 10.5
0 0 0 13.51 13.5 13.52 10.51 10.5 10.52
0 0 0 0 0.01 00.01 3 3.01 2.98
0 0 0 0 0 0.02 2.99 3 2.98
0 0 0 0 0 0 3.01 3.02 3
0 0 0 0 0 0 0 0.01 0.01
0 0 0 0 0 0 0 0 0.02
0 0 0 0 0 0 0 0 0


≤ 0.5

In Table B.1 it can be seen which cluster are obtained by each method:
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Distance based Velocity based Distance and velocity based
Cluster 1: 1,2,3 1,2,3 1,2,3
Cluster 2: 4,5,6 4,5,6 4,5,6
Cluster 3: 7,8,9 7,8,9 7,8,9

Table B.1: Obtained clusters

So, based on position and velocity three clusters are obtained. Where cluster 1 consists of the points: 1,2,3,
cluster 2 of points 4,5,6 and cluster 3 of points 7,8,9.

Now for each cluster the new core point in Cartesian and spherical coordinates is determined by (4.9) and
(4.10). The resulting coordinates can be seen in Table B.2.

Cartesian coordinates [x̄r, ȳr] Spherical coordinates [φ̄r, r̄r, ¯̇rr]
Cluster 1: [10.2219, 3,3268] [0.3146, 10.7497 13.5]
Cluster 2: [10.8896, 0.0019] [1.75005e-4, 10.8896, 0]
Cluster 3: [10.2535, -2.7898] [-0.2656, 10.6262, 3]

Table B.2: Obtained coordinates of each cluster in Cartesian and spherical coordinates

In Figure B.3 the obtained clusters for this example can be seen:

Figure B.3: Top view of obtained clusters

The last step is to calculate the measurement noise covariance matrix for each cluster, which can be done by
(4.12). In Table B.3 the results of the new variances of each cluster are shown.
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σ̄2
φr σ̄2

rr σ̄2
ṙr

Original: 0.0003 0.3025 0.0772
Cluster 1: 0.0035 0.3450 0.0772
Cluster 2: 0.0022 0.3093 0.0772
Cluster 3: 0.0016 0.4114 0.0772

Table B.3: Obtained variances for each cluster

Plotting of the measurement noise covariance matrix
To show how the measurement noise covariance matrices of the clusters are changed compared to the original
measurement data, first the measurement noise covariance matrices needs to be transformed from the spherical
to the Cartesian coordinate system. This can be done by the following matrix transformation:

Rcart = JRsphJ
T (B.2)

where Rcart is the measurement noise covariance matrix in Cartesian coordinates, J the Jacobian of the trans-
formation matrix obtained from (4.2) and Rsph the measurement noise covariance matrix in spherical coordin-
ates.
By eigendecompostion of a matrix its eigenvalues and eigenvector can be determined. The eigenvalues and
eigenvector of the measurement noise covariance matrix can be obtained by the following equation:

Rcart = V ΛV −1 (B.3)

where V is the matrix whose columns consists of the eigenvectors of Rcart and Λ is a diagonal matrix whose non-
zero elements are the corresponding eigenvalues. In the 3D situation, three eigenvalues and three eigenvectors
will be obtained. The eigenvectors of the covariance matrix will represent the directions of the largest variance
of the data, while the eigenvalues represent the magnitude of this variances in those directions, see Figure B.4.
So this means matrix V represents a rotation matrix and Λ represent a scaling matrix.

Figure B.4: 2D ellipse of a covariance matrix

By applying this transformation to a unit sphere, the measurement noise error ellipse represented by xellipse
and yellipse can be obtained by the following equation:

[
xellipse
yellipse

]
=
[
v1 v2

] [√λ1 cos(φ)√
λ2 cos(φ)

]
−π/2 ≤ φ ≤ π/2 (B.4)

where v1 and v2 are the eigenvectors and λ1 and λ2 are the eigenvalues.
By applying this transformation to the measurement noise covariance matrix of the original measurement data
and the measurement noise covariance matrix of the clusters, it can be illustrated how the measurement noise
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is changed for each cluster as can be seen in Figure B.5. From these figures it can be concluded that the size
and the direction of each ellipse is different depending on how the detections in that cluster are spaced.

Figure B.5: Overview of the clustering algorithm in the xy-plane
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Initialization of the Kalman filter

Before the Kalman filter can start predicting and updating, first the states and state covariances need to be
initialized. This is done by using the measurement and measurement noise. Since the measurements are in spher-
ical coordinates and the states are in Cartesian coordinates, the measurements that will be used initialization
first needs to be translated from spherical to Cartesian coordinates.

The initial positions x0 and y0 are obtained by applying the transformation from spherical to Cartesian co-
ordinates and correcting it with the sensor offset by the following the equation:

[
x0
y0

]
=
[
r cos(φ)
r sin(φ)

]
+
[
xioffset
yioffset

]
(C.1)

The initial linear velocities vx,0 and vy,0 are obtained by taking the derivative of (C.1) by the following equation:

[
vx,0
vy,0

]
=
[
ẋ0
ẏ0

]
=

 x0√
x2

0+y2
0
· ṙ

y0√
x2

0+y2
0
· ṙ

 (C.2)

For the initial velocities it is assumed that φ̇0 is equal to zero for the initialization, since these rate of change
of both angles is not measured and

Besides the positions and velocities also the state covariance needs to be initialized. This is done as follows:


σ2
x,0 0 0 0
0 σ2

vx,0
0 0

0 0 σ2
y,0 0

0 0 0 σ2
vy,0

 =


1 0
0 0
0 1
0 0

[σ2
x,0 0
0 σ2

y,0

][
1 0 0 0
0 0 1 0

]
+


0 0
1 0
0 0
0 1

[σ2
vx,0

0
0 σ2

vy,0

][
0 1 0 0
0 0 0 1

]
(C.3)

The position covariance is calculated as follows:

[
σ2
x,0 0
0 σ2

y,0

]
= J

[
σ2
φ 0
0 σ2

r

]
JT (C.4)

where the Jacobian J can be calculated by:
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J =
[
∂x
∂φ

∂x
∂r

∂y
∂φ

∂y
∂r

]
(C.5)

The velocity covariance can be obtained as follows:

[
σ2
vx,0

0
0 σ2

vy,0

]
= Rrot

[
σ2
ṙ 0

0 σ2
L

]
Rrot

T (C.6)

where Rrot is a rotation matrix that is used to rotate the variances to frame of the sensor and is given by:

Rrot =
[
cos(φ) − sin(φ)
sin(φ) cos(φ)

]
(C.7)

The obtained initial states and covariances will be used as a starting point for the Kalman filter.
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Sensor parameter settings

Unique identifier of the sensor 1
Required time interval between sensor updates 0.07 s
Sensor’s (x,y) position (3.7,0) m
Sensor’s height 0.5 m
Yaw angle of sensor mounted on ego vehicle 0°
Pitch angle of sensor mounted on ego vehicle 0°
Roll angle of sensor mounted on ego vehicle 0°
Maximum number of reported detections 30

(a) Radar parameters

Azimuthal resolution of radar 6°
Elevation resolution of radar 10°
Range resolution of radar 3 m
Range rate resolution of radar 0.5 m/s
Fraction azimuthal bias component of radar 0.1
Fractional elevation bias component or radar 0.1
Fractional range bias component of radar 0.05
Fractional range rate bias component of radar 0.05
Total angular field of view for radar (120°, 20°)
Maximum detection range 70 m
Minimum and maximum range rates that can be reported (-100,100) m/s
Detection probability 0.9
Rate at which false alarms are reported 1·10−6

Range where detection probability is achieved 100 m
Radar cross section at which detection probability is achieved 0 dBsm
Enable elevation angle measurements true
Enable range rate measurements true
Add noise to measurements true
Enable false detections true
Enable occlusion true

(b) Radar measurements

Table D.1: Parameters radar sensor generator
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Unique identifier of sensor 2
Types of detections generated by sensor Object only
Required interval between sensor updates 0.1 s
Sensor’s (x,y) position (1.9,0) m
Sensor’s height 1.3 m
Yaw angle of sensor mounted on ego vehicle 0°
Pitch angle of sensor mounted on ego vehicle 0°
Roll angle of sensor mounted on ego vehicle 0°
Maximum number of reported detections 15

(a) Camera parameters

Maximum detection range 100 m
Bounding box accuracy 5 pixels
Smoothing filter noise intensity 5 m/s2

Maximum detectable object speed 50 m/s
Maximum allowed occlusion for detector 0.5
Minimum detectable image size of an object (15,15) pixels
Probability of detecting a target 0.9
Number of false positives per image 0.1
Add noise to measurement true

(b) Camera measurements

Focal length (800,800) pixels
Optical center of the camera (320,240) pixels
Image size produced by the camera (480,640) pixels
Radial distortion coefficients (0,0)
Tangential distortion coefficients (0,0)
Skew of the camera axes 0

(c) Camera intrinsics

Table D.2: Parameters camera sensor generator
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Test results

E.1 Scenario 1
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Figure E.1: Measurement and tracker results for scenario 1
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Figure E.2: Obtained clusters for scenario 1
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Figure E.3: Number of obtained clusters per time step for scenario 1
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E.2 Scenario 2
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Figure E.4: Measurement and tracker results for scenario 2
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Figure E.5: Obtained clusters for scenario 2
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Figure E.6: Number of obtained clusters per time step for scenario 2
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E.3 Scenario 3
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Figure E.7: Measurement and tracker results for scenario 3, actor 1
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Figure E.8: Measurement and tracker results for scenario 3, actor 2

76 Camera and radar based object tracking for self-driving vehicles



APPENDIX E. TEST RESULTS

0 1 2 3 4 5 6 7

5

10

15

20

Actor (rear)

Tracker

Radar

Camera

0 1 2 3 4 5 6 7

-4

-2

0
Actor (mid)

Actor(left/right)

Tracker

Radar

Camera

0 1 2 3 4 5 6 7

-4

-2

0

Actor

Tracker

Radar

Camera

Figure E.9: Measurement and tracker results for scenario 3, actor 3
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Figure E.10: Obtained clusters for scenario 3
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Figure E.11: Number of obtained clusters per time step for scenario 3
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E.4 Scenario 4
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Figure E.12: Measurement and tracker results for scenario 4, actor 1
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Figure E.13: Measurement and tracker results for scenario 4, actor 2
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Figure E.14: Measurement and tracker results for scenario 4, actor 3
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Figure E.15: Obtained clusters for scenario 4
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Figure E.16: Number of obtained clusters per time step for scenario 4

82 Camera and radar based object tracking for self-driving vehicles


	Contents
	Introduction
	Research objective
	Outline

	Literature review
	Radar and camera sensors
	Radar clustering
	Sensor fusion
	Kalman filter

	Data association
	Summary

	Sensor data
	Radar and camera sensor
	Driving scenario
	Sensors models
	Summary

	Object tracking model
	Radar clustering
	Combining radar and camera data
	Multi-object tracker
	Kalman filter
	Gating
	Assignment of detections to tracks
	Track maintenance

	Summary

	Test scenarios and parameter settings of the object tracking algorithm
	Test scenarios
	Parameter settings of the object tracking model
	Summary

	Testing results of the object tracking algorithm
	Scenario 1
	Scenario 2
	Scenario 3
	Scenario 4
	Summary

	Conclusion and recommendations
	Conclusion
	Recommendations

	Bibliography
	Appendix
	Outputs of the scenario reader, sensor generators and multi-object tracker
	Clustering
	Proof of the combined variances for a cluster
	Example of the radar clustering algorithm

	Initialization of the Kalman filter
	Sensor parameter settings
	Test results
	Scenario 1
	Scenario 2
	Scenario 3
	Scenario 4


