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Abstract

Many mechanical systems suffer from disturbances. These disturbances are generally
undesirable because they influence the accuracy or performance of a process. To
achieve attenuation of disturbances this thesis considers an active vibration isola-
tion system. The goal of the thesis is to show that maximal energy dissipation can
be obtained, within the vibration isolation structure, by appropriate tuning of its
tuned-mass-damper parameters. Such a tuning is performed in an adaptive manner
using an energy criterion that needs to be maximized on the spot with the vibration
isolation system in the loop, and with disturbances exciting the system, the latter
being generally unknown. In order to assess the energy dissipation in the damper of
the system, the torque applied to the damper, and the velocity difference over the
the damper is needed. Without using a torque sensor in the setup, this torque can
be estimated indirectly by measuring the actuator current, i.e., use the actuator as
a sensor. A gradient-based optimization towards maximum energy dissipation will
be applied to the tuned-mass-damper (TMD) setup. The gradients will be obtained
from the perturbation method, thus rendering the optimization approach fully data-
based. Optimal stiffness and damping coefficients are found iteratively using the
Gaus-Newton method. In the thesis, it will be shown that maximal energy dissipation
renders optimal vibration isolation.
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LIST OF SYMBOLS

Symbol Unit Description
Ampl A/V Transconductance amplifier
Amp V/A Sensitivity shunt resistor
Dg m Ground vibrations displacement
d1 Nms/rad Damping coefficient Payload system
d2 Nms/rad Dampings coefficient TMD system
D1 Vs/rad Damping PD controller Payload
D2 Vs/rad Damping PD controller TMD
H - Hessian
I1 kg m2 Inertia payload
I2 kg m2 Inertia Tune Mass Damper
Ip A Current motor Payload system
It A Current motor TMD system
J Js Objective function
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Ke Nm/A Torque constant actuator
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Kr od Nm/rad Torsion stiffness Tune Mass Damper
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Tr - Transmissibility function
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ωr rad/s Resonance frequency
ωa rad/s Anti-resonance frequency
ξ % Relative damping
γ 1/Js Inverse input energy dissipation
∂ - Gradient
γd - damped newton parameter for damping perturbations
γk - damped newton parameter for stiffness perturbations
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CHAPTER 1

INTRODUCTION

1.1 CONTEXT ACTIVE VIBRATION ISOLATION

Vibration platforms are used to isolate machines from ground vibrations and other
disturbances. With the increasing precision of machines, the demands on vibration
isolation have also increased [1]. The standard method to accomplisch vibration
isolation is by mounting the Payload system on soft springs, which have a limited
amount of a mechanical damping. Acting on this payload are the direct disturbances
T and the indirect ground vibrations Dg . This is schematically depicted in Figure 1.1.
As a result of the model structure in Figure 1.1, a low pass like filter characteristic is

obtained with a cutoff frequency determined by ωr =
√

k1
M1

, such that disturbances
above the resonance frequency are naturally attenuated. Because the structural
damping represented by damping coefficient d1 is often very small, passive systems
are complemented with control systems as to provide active damping to the system
[2]. This however comes with a trade-off in the sense of isolation performance: while
improving the damping properties, the passive isolation characteristics are often
deteriorated. For this reason, we take a different approach in this thesis. Instead
of improving the damping properties of the isolation system by control, an active
tuned-mass-damper system is envisioned that depending on the disturbance level
present more or less absorbs energy from the system and in that sense improves the
vibration isolation performance of the system rather than enhancing its closed-loop
isolation characteristics. The idea for an additional TMD in the above context at least
dates back to measuring methods from the nineties, which were applied at Philips
Centre for Manufacturing Technology. They used a measuring more specifically
method that was able to discriminate noisy light ballasts from silent ones [3] [4] [5].
They measured the mechanical energy from the Device Under Test (DUT) by means
of a mechanical damper onto which the DUT was mounted. The mechanical energy
was measured with a so-called impedance head. Figure 1.2 depicts a schematic
representation of the test setup. The impedance head measured the force and the
acceleration of the vibration absorber at the same time. The energy dissipation in
the mechanical absorber was subsequently estimated by the product of force and
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Figure 1.1: Model of a vibration isolation system
.

velocity. Differences in estimated energy dissipation formed an indication between
silent and noisy light ballasts.
The idea for maximal energy dissipation forms the basis for this graduation project,
and is investigated by applying a TMD at a payload system [6] [7]. Figure 1.3 depicts
a schematic representation of a TMD system. Herein, m1, m2 represents the mass,
respectively of the first and the second mass. k1, k2 represents the stiffness, respec-
tively of the first mass to the fixed world and the stiffness between both masses, d1,
d2 represents the damping coefficient, respectively of the first mass to the fixed world
and the damping coefficient between both masses. T is the disturbance torque acting
on the first mass and u1 and u2 are the displacements of mass 1 and 2, respectively.
The limitations of a passive TMD have been recognized for example in [8] [9] [10],
because only one disturbance frequency is attenuated, while by applying an active
TMD and by tuning the stiffness k2 and damping coefficient d2 on the spot through
some adaptive data-based control mechanism potentially provides the means to deal
with arbitrary unknown frequencies [11]. So this thesis studies the principle of an
active tuned-mass-damper system mounted on a vibration isolation structure that
should be capable of dissipating energy from the vibration isolation structure by
appropriate tuning of its tuned-mass-damper parameters. Ideally, such a tuning is
done in an adaptive manner using an energy dissipation criterion that needs to be
maximized automatically with the vibration isolation system in the loop.
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Figure 1.2: Setup to measure the light ballasts.

1.2 PROBLEM STATEMENT AND RESEARCH OBJECTIVES

In the active TMD from Figure 1.3 the spring k2 and the damper d2 will be mimicked
by a PD controller in a feedback connection. The hypothesis that will be studied
in this thesis is the following. Will maximum energy dissipation in the tuned-mass-
damper system give rise to the best vibration isolation too? To verify this hypothesis
a simulink model and an experimental setup have been designed and built. The
following two research questions are posed.

Research Question 1:
To what extend do the stiffness and damping coefficients lead to maximal energy dis-
sipation in the damper of the TMD and how does this provide the means for maximal
attenuation of unknown disturbance frequencies?
Research Question 2:
How can the maximal energy dissipation be estimated in the absence of a direct force
or torque sensor and how can such an estimation be effectively used in a data-driven
optimization approach to modify the TMD parameters in an adaptive way depending
on the (unknown) disturbance spectrum at hand?

3



Figure 1.3: Model Tuned-Mass-Damper system.

1.3 ORGANIZATION OF THE THESIS

This thesis is further organized as follows. Chapter 2 gives a description of the design
and experimental modelling of an active vibration isolation system. The Payload
system and the TMD system will be designed in a way that it allows for vibration
isolation under active energy dissipation. Chapter 3 discusses the energy criterion
to-be maximized. Given this criterion, firstly the occurrence of maximal energy
dissipation will be studied for a passive system. Secondly, analytical and numerical
results will be presented. In the last part of Chapter 3 it is explained how to estimate
torque using measured actuator current. In Chapter 4, a gradient-based optimization
scheme will be presented towards maximum energy dissipation. The gradients will
be obtained from the perturbation method which is fully data-based. In Chapter 5 a
proof of concept will be demonstrated on a real-life TMD system. Finally, in Chapter
6 conclusions are drawn and recommendations are given for further research.
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CHAPTER 2

DESIGN AND EXPERIMENTAL

MODELLING OF AN ACTIVE

VIBRATION ISOLATION SYSTEM

In this chapter a description will be given of the design and experimental modelling
of an active vibration isolation system. In Section 2.1 a description of the so-called
PATO setup is given. PATO stands for ’Postacademisch Technisch Onderwijs’. The
PATO setup will be used as a representative example for control, design, testing, and
tuning. In Section 2.2, part of the PATO setup will be used to re-design the so-called
’payload’ system. In Section 2.3, the remaining part of the PATO setup is re-designed
into a TMD (tuned-mass-damper) system that allows for vibration isolation by active
energy dissipation in the remainder of this report. This chapter is concluded with an
outlook in Section 2.4.

2.1 PATO SETUP: PASSIVE FOURTH-ORDER SYSTEM

In this section a description will be given of the experimental fourth-order system
further referred to as PATO setup. In the context of this graduation project, the PATO
setup forms an excellent test system for self-tuning toward energy dissipation in
vibration isolation systems as will be demonstrated at various locations throughout
this report. It is simple of design but considered representative regarding its basic
isolation principles for a large class of (industrial) vibration isolation systems.
This section is further organized as follows. In Subsection 2.1.1 the PATO setup will
be introduced along with a description of its electronics, actuator, and encoder. In
Subsection 2.1.2, the derivation of equations of motion of the PATO setup is given.
In Subsection 2.1.3, a parametric identification will be done towards finding an
estimate for the stiffness of the rod connecting the two rotating masses of the setup. In
Subsection 2.1.4, a non-parametric identification will be performed and a comparison
will be made with the derived fourth-order model.

5



2.1.1 INTRODUCTION PATO SETUP

Figure 2.1: PATO system.

Figure 2.1 depicts the PATO setup. The actuator is a Maxon brushless DC motor
[12]. The motor is driven by a voltage-to-current amplifier. The PATO system consist
of two rotating masses, which are connected by a rod. Each mass is connected
with a quadrature encoder. These are used to measure the angle of rotation in an
incremental way with differential output (WEDS5541). The PATO setup is used in
combination with an Ebox system, see Figure 2.2. The Ebox system is a 24 bits real
time data acquisition system with two analog inputs and two analog outputs. Besides
the ADC and DAC ports, the Ebox also contains encoder ports to count the pulse
train from the quadrature encoder. The Ebox is connected via ethercat to a laptop to
enable the use of matlab while operating under Ubuntu.

6



Figure 2.2: Ebox system.

2.1.2 FOURTH-ORDER MODEL

The PATO dynamics can be modeled by a simple parametric fourth-order system.
Figure 2.3 depicts a schematic representation of such a fourth-order system. Herein,
I1, I2 represent the mass inertia, respectively of the first and the second rotating mass,
Kr od represents the rotation stiffness connecting both inertias, and d2 represents the
damping coefficient. T is the disturbance torque acting on the first inertia and θ1 and
θ2 are the angle of rotation of inertia 1 and 2, respectively.

Figure 2.3: Fourth-order model representation.

In deriving the equations of motion for the fourth-order model, consider Newton’s
second law of motion, which for the load side gives:

M = I1θ̈1, (2.1)

7



M is the total torque defined by:

M = T −Mv −Md , (2.2)

with Mv =kr od (θ1 −θ2) and Md = d2(θ̇1 − θ̇2). Substitution of (2.2) in (2.1) gives:

I1θ̈1 +d2θ̇1 +kr odθ1 −kr odθ2 −d2θ̇2 = T. (2.3)

The equation of motion (2.3) can be transformed to frequency-domain giving

θ1(s)(I1s2 +d2s +kr od )−θ2(s)(d2s +kr od ) = T (s)

θ1(s) = (d2s +kr od )θ2(s)+T (s)

I1s2 +d2s +kr od
. (2.4)

with s the Laplace variable.

For the measure side it holds that∑
M = I2θ̈2, (2.5)

where M is the total torque defined by:

M = Mv +Md , (2.6)

and with Mv =kr od (θ1 −θ2) and Md = d2(θ̇1 − θ̇2). Substitution of (2.6) in (2.5) gives:

I2θ̈2 +d2(θ̇2 − θ̇1)+kr od (θ2 −θ1) = 0 (2.7)

Similary, (2.7) can be transformed to frequency-domain giving:

θ2(s)(I2s2 +d2s +kr od ) = θ1(s)(d2s +kr od )

θ2(s) = d2s +kr od

I2s2 +d2s +kr od
θ1(s), (2.8)

Substitution of (2.8) in (2.4) gives:

θ1(s)

T (s)
= I2s2 +d2s +kr od

I1I2s4 +d2(I1 + I2)s3 + (I1 + I2)kr od s2 . (2.9)

The disturbance torque T applied at the motor side is generated by the actuator.
The voltage (U) of the Ebox is transformed to a current, and the current (multiplied
by the torque constant of the motor) gives T . The transconductance amplifier, that
transforms U to current, is represented by the constant Ampl, while the torque
constant of the actuator is represented by Ke , giving:

T = U ∗ Ampl ∗Ke . (2.10)

The transfer from U to θ1 is thus given by:

8



θ1(s)

U (s)
= Ampl ∗Ke ∗ I2s2 +d2s +kr od

I1I2s4 +d2(I1 + I2)s3 + (I1 + I2)kr od s2 (2.11)

substitution of (2.4) in (2.8) gives the transfer from U to θ2.

θ2(s)

T (s)
= d2s +Kr od

I1I2s4 +d2(I1 + I2)s3 + (I1 + I2)Kr od s2 . (2.12)

Substitution of (2.10) in (2.12) gives:

θ2(s)

U (s)
= Ampl ∗Ke ∗ d2s +Kr od

I1I2s4 +d2(I1 + I2)s3 + (I1 + I2)Kr od s2 . (2.13)

In order to assess the vibration isolation properties of the PATO setup and its
corresponding fourth-order model, an often used measure is the so-called transmis-
sibility function. Transmissibility is defined as the ratio between θ2(s) and θ1(s). The
transmissibility function essentially is a transfer function that shows how much vibra-
tion is transmitted at a given frequency from θ1 to θ2. Therefore, the transmissibility
function generally peaks at the natural frequency of the system. From (2.11) and
(2.13), the transmissibility function is given by:

Tr (s) =
θ2(s)
U (s)
θ1(s)
U (s)

= d2s +kr od

I2s2 +d2s +kr od
. (2.14)

2.1.3 PARAMETRIC IDENTIFICATION

In this subsection, a parametric identification will be conducted. As shown in the
previous section, for vibration isolation performance the stiffness Kr od connecting
the two masses plays a crucial role and as such needs to be identified in order to have
an accurate parametric model. The torsion stiffness Kr od of the spring is determined
by measuring the angle of rotation θ1 and θ2 and the torque T at the same time. The
torque is generated by applying a force to inertia I1. This force is measured with a
force sensor. In the experiment, inertia I2 is mounted to the fixed world so θ2 = 0. As
a result, torque T equals the force multiplied by the radius. The test setup is depicted
in Figure 2.4. Figure 2.5 depicts the results of the measurement of the torsion stiffness
of the rod. The torsion stiffness is estimated at 0.1616

0.6311 = 0.26 N m
r ad .

The values of both inertia’s I1 and I2 are estimated too. First, the weight of
both masses m1 and m2 (corresponding to I1 and I2, respectively) is determined,
m1=m2=50 gram +/- 0.05 gram. The measured radii r1 and r2 (for inertias I1 and I2,
respectively) are given by r1=r2 = 0.012 +/- 0.12e−3 meter.

The inertia’s I1 and I2 are computed using : I1 =
r 2

1
m1

and I2 = r 2
2

m2
, giving I1 = I2

= 3.6e−6kg m2. In fact real-life the inertia I1 and inertia I2 are higher due to the
inertia of the encoder and motor. The effective inertia I1 is the sum of the inertia
of I1 (corresponding to m1), encoder and motor. The inertia motor is estimated at

9



Figure 2.4: Setup for estimating the stiffness Kr od .

Figure 2.5: Measured angle-torque curves used for estimating Kr od

1.06e−6 kg m2 [12] and the inertia of the encoder is 0.05e−6 kg m2. The effective
inertia I2 is the sum of the inertia of I2 (corresponding to m2) and the encoder. I1

= 4.71e−6 kg m2 and I2 =3.65e−6 kg m2. In the next section these values are used
for comparing the resulting parametric model with the result of a non-parametric
identification.

10



2.1.4 NON PARAMETRIC IDENTIFICATION

For a torque input on the first mass and a sensor measurement at the same mass,
hence the collocated control case, a non-parametric model, i.e., a frequency response
function, is identified. The measurement result is obtained from closed-loop identi-
fication using the two-point method where measurement of the process sensitivity
function as well as measurement of the sensitivity function together provide an esti-
mate of the plant characteristics. The frequency response measurements are carried
out with white noise as excitation signal. In the previous section a parametric identi-
fication has been conducted. In this section, both parametric and non-parametric
models are compared.

Figure 2.6 depicts the measured frequency response function θ1/U , which is
compared with the parametric model. The frequency response is the ratio of the angle
of rotation over the input voltage. The resonance (at 57.5 Hz) and anti-resonance
frequencies (at 42.5 Hz) coincide. For frequencies beyond 150 Hz there is a poor
signal-to-noise ratio. At 900 Hz an additional unmodeled resonance appears, which
is likely due to the decoupling of the encoder. The sampling frequency used is 2048
Hz, which will give an additional phase delay of 90 degrees at 1024 Hz. The measured
frequency response depicts more phase delay possibly due to the Ebox.

Figure 2.6: Measured frequency response function θ1 over U.

Figure 2.7 depicts the measured frequency response function θ2/U in comparison
with the parametic model. Up to 150 Hz the parametric model matches well with the
non-parametric model, but at higher frequencies sampling delay as well as a poor
signal-to-noise ratio cause deviation between both models.

Figure 2.8 depicts the transmissibility from θ1 to θ2. The angle of rotation θ2

highly exceeds the angle of rotation θ1 at the resonance frequency. A peak occurs at
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Figure 2.7: Measured frequency response function θ2 over U.

the anti-resonance frequency shown in Figure 2.6.
In both Figures 2.6 and 2.7, the anti-resonance frequency can be calculated by:

ωa =
√

Kr od

I2
(2.15)

fa = 1

2π

√
0.26

3.65e −6
= 42,5 Hz.

The resonance frequency follows from:

ωr =
√

Kr od (I1 + I2)

I1I2
(2.16)

fr = 1

2π

√
0.26(4.71e−6 +3.65e−6)

4.71e−6 ∗3.65e−6 = 56,6 Hz.

The calculated resonance frequency as well as the anti-resonance frequency
corresponds well to the indicated frequency peaks in Figures 2.6 and 2.7, thus partly
validating the parametric model from Subsection 2.1.2.
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Figure 2.8: Measured frequency response function θ2 over θ1.

2.2 SECOND-ORDER PAYLOAD SYSTEM

The PATO setup discussed in Section 2.1 forms the basis for the design of the so-
called payload system, i.e., a second-order vibration isolation system that will be
actively controlled toward maximum energy dissipation in Chapters 3 and 4. In
this section a description will be given on how the first mass is tuned at a selected
frequency and damping. This supported mass is further referred to as the payload
system. This section is further organized as follows. In Subsection 2.2.1 the payload
will be introduced including a description of the actuator, sensor and mass inertia.
In Subsection 2.2.2, a parametric identification will be conducted. In Subsection
2.2.3, a non-parametric identification of the payload system will be performed. In
Subsection 2.2.4 the tuning of the feedback controller will be explained.

2.2.1 INTRODUCTION PAYLOAD SETUP

Figure 2.9 shows the payload setup. The rotating mass with inertia I1 represents a
cylinder made of stainless steel with m1 = 99.2 +/- 0.05 gram and a radius r = 17
+/- 0.1 mm. The total inertia (as explained in the previous section) consists of the
sum of the inertia mass, inertia motor and the inertia of the encoder. For the design
of the payload setup a lightly damped system is preferred [13]. First, this matches
with the large class of industrial vibration isolation systems based on airmounts.
Second, the undamped resonance creates high sensitivity to disturbances which
sets the appropriate conditions for the energy dissipation strategy in Section 3. As
a basic setting of the payload system the following variables are chosen: resonance
frequency of about 10 Hz and relative (dimensionless) damping ratio of approximately
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Figure 2.9: picture payload.

10 percent (ξ = 0.1). The spring and the damper are mimicked by applying a PD
controller in a feedback control loop.

2.2.2 PARAMETRIC IDENTIFICATION

In this Subsection, a parametric identification of the second-order system will be
conducted. The value of inertia I1 is estimated using m1 = 99.2 +/- 0.05 gram. The
measured radius r1 (for inertia I1) is 17 +/- 01 mm. Part of the inertia I1 is calculated

using:
r 2

1
m1

= 14.3e−6 kg m2. The effective inertia I1 is the sum of the inertia of I1 (corre-

sponding to m1) encoder and actuator. The inertia of the motor is 1.06e−6 kg m2 [12]
and the inertia of the encoder is 0.05e−6 kg m2 giving effectively I1 = 15.41e−6 kg m2.
Figure 2.10 depicts a schematic model of the payload system. Herein, I1 represents
the mass inertia, k1 represents the rotation stiffness and d1 represents the damping
coefficient. T is the disturbance torque acting on the mass and θ1 is the angle of
rotation.

Figure 2.10: second-order model of the payload system.
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The parameters d1 and k1 will be estimated from the measured process sensitivity
function θ1

T (compliance) using the known frequency as well as damping coefficient.
In deriving the equations of motion for the payload system, consider Newton’s second
law of motion, which gives:

M = I1θ̈1. (2.17)

M is the total torque defined by:

M = T −Mv −Md , (2.18)

with Mv =k1θ1 and Md = d1θ̇1. Substitution of (2.18) in (2.17) gives:

I1θ̈1 +d1θ̇1 +k1θ1 = T . (2.19)

The equation of motion in (2.19) can be transformed to frequency-domain giving

T (s) = θ1(I1s2 +d1s +k1).
Θ1(s)

T (s)
= 1

I1s2 +d1s +k1
. (2.20)

Θ1(s)

T (s)
=

1
I1

s2 + d1
I1

s + k1
I1

. (2.21)

By evaluating (2.21) at s= jω with ω=ω0

k1

I1
=ω2

0 and
d1

I1
= 2ξω0 (2.22)

k1 =ω2
0 ∗ I1 = 0.057 N m/r ad

d1 = 2ξI1ω0 = 1.8 10−4 N m

r ad/s

2.2.3 NON PARAMETRIC IDENTIFICATION

Figure 2.11 shows the control schematics associated with Figure 2.10. Herein, U is
the input voltage to the amplifier, I is the motor current and T is the mechanical
torque acting on the mass. Block Ampl is the transconductance amplifier and Ke is
the torque constant of the motor. Figure 2.11 shows that the plant (H) consists of the
amplifier gain, the motor constant and the total mass inertia I1.

Figure 2.12 shows at a frequency of 10 Hz an amplitude ratio of -8.6 dB, which
corresponds with a factor of 0.37. With gain amplifier (ampl) = 0.5 A

V and Torque

constant(Ke ) = 0.0439 N m
A [12]. Substitution of these values in (2.23) gives.

H = ampl ∗Ke

I1s2

I1 = ampl ∗Ke

(2∗π∗ f )2 ∗H
= 15e−6 kg

m2 (2.23)

The measured value and the estimated value are not exactly the same. This could
be caused for example by the screw holes on the outside of the mass that are neglected
in the mass estimation. The measured inertia is assumed to present the correct value.
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Figure 2.11: control scheme payload.

Figure 2.12: measured frequency response function of the plant H

2.2.4 CONTROLLER DESIGN

In this section the controller C will be discussed. In fact, the main motivation will
be given as to why choosing a leadlag filter over a standard PD controller. The PD
controller is given by

C (s) = K1 +D1s. (2.24)

K1 = k1

ampl ∗Ke
. (2.25)

D1 = d1

ampl ∗Ke
. (2.26)

Substitution of (2.25) and (2.26) in (2.24) gives

C (s) = k1

ampl ∗Ke
+ d1

ampl ∗Ke
s

= 2.6+8,4e−3s. (2.27)
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Using f=10 in s = jω0 = yields the complex number

C ( j 2π f0) = 2,6+0,52 j

The phase lead by the controller at 10 Hz is equal to

ar ct an
0.52

2.6
= 11,47 deg r ees

The breakpoint of a PD controller is given by:

K1

D1
= 49,3 H z

When the PD controller is applied, the closed-loop payload will start amplifying
high-frequency noise. This is due to the fact that the gain of the controller is very
large at high frequencies. The gain of the PD controller can be limited by adding a
pole at higher frequencies, which results in a leadlag filter. Figure 2.13 shows the PD
controller with a gain of 2,6 and a cutoff frequency of 49,3 Hz. The lead lag filter is
calculated with the same phase lead and gain at 10 Hz but with limited gain at higher
frequencies by using

Cl eadl ag =
(
ωp

ωz

)
s +ωz

s +ωp
=

(
fp

fz

)
j f + fz

j f + fp
. (2.28)

Herein ωp is the pole of the leadlag and ωz its zero. f is chosen at f = f0 = 10 Hz. The

gain
fp

fz
is omitted because it does not affect the phase behavior. fz can be determined

after placing the pole of the leadlag at 100 Hz. 100 Hz is chosen somewhat arbitrarily,
giving.

Cleadl ag = 10 j + fz

10 j +100
. (2.29)

The leadlag filter contains a pole at 100 Hz, a zero at 32 Hz and a gain of 2.6. Figure
2.13 depicts the leadlag filter and the PD controller by means of a Bode diagram. At
10 Hz both frequency response functions contain the same magnitude and phase
lead. At high frequencies the gain of the lead lag filter falls (desirably) behind with
respect to the gain of the PD controller.
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Figure 2.13: PD controller versus Leadlag filter.

In a closed-loop setting the parametric proces sensitivity estimate is compared
with the proces sensitivity obtained from non-parametric identification. Notice that
the non-parametric identification is obtained by a two point measurement. The
parametric proces sensitivity function is already derived in (2.20).
but can be reformulated using

k1 = K1 ∗ampl ∗Ke . (2.30)

d1 = D1 ∗ampl ∗Ke . (2.31)

as

PS = ampl ∗Ke

I1s2 +d1s +k1
. (2.32)

The result of the identification is shown in Figure 2.14 by means of measured
frequency response functions. Notice that a reasonable correspondence is obtained
between both the parametric as well as the non-parametric identified models. At
higher frequencies, sample delay as well as a poor signal-to-noise ratio causes de-
viation between both models. Also, higher-order dynamics (a zero around 250 Hz)
become visible in the non-parametric model.
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Figure 2.14: Measured frequency response functions of the process sensitivity.

2.3 ACTIVE TUNED-MASS-DAMPER CONFIGURATION

As the main research objective of this thesis is to design an active tuned-mass-damper
system that maximizes energy dissipation of the payload system designed in Section
2.2, the remaining part of the PATO setup from Section 2.1 is redesigned to facilitate
this tuned-mass-damper functionality. In this section a description will be given on
how the second mass of the PATO setup is redesigned into an active tuned-mass-
damper (TMD) system. This section is further organized as follows. In Subsection
2.3.1 the TMD will be introduced. In Subsection 2.3.2 a model will be presented. In
Subsection 2.3.3 a parametric identification will be conducted, whereas in Subsection
2.3.4 a non-parametric identification will be performed.

2.3.1 DESIGN OF THE TMD SETUP

Figure 2.15 depicts the PATO setup but now in the context of an active tuned-mass-
damper system. The active TMD is a specifically designed structural/mechanical
element that can be incorporated into a new structure during the design phase or
added to an existing structure to reduce the vibrations of that structure. TMD’s
are often effective if vibrations of the structure are related to one or more resonant
modes, or if a disturbance occurs with its frequency content centered around a single
harmonic frequency [10] [9] [14]. In Figure 2.15 I2 is a cylinder made of aluminium
which is much lighter than the used stainless steel of the payload system. Between the
two inertia’s a torsion spring is connected with torsion stiffness Kr od and damping
d2. The used actuator for I2 is a Maxon brushless DC motor [12] which by means
of control can alter the overall stiffness and damping properties experienced in the
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Figure 2.15: PATO setup viewed as a TMD system.

interconnection between I1 and I2. Hence the ability to provide active tuned-mass-
damping.

2.3.2 FOURTH-ORDER MODEL OF THE TMD SYSTEM

Figure 2.16: Fourth-order representation of the TMD system.

Figure 2.16 depicts a schematic representation of the TMD configuration. Herein,
I1, I2 represents the mass inertia, respectively of the first and the second rotating
mass, k1, kr od represents the rotation stiffness, respectively of the payload system to
the fixed world and the rotation stiffness of the TMD, d1, d2 represents the damping
respectively of the payload system and the damping of the TMD mass. T is the
disturbance torque acting on the first mass and θ1 and θ2 are the angle of rotation
of the payload and the angle of rotation of the tuned-mass-damper system. The
stiffness k1 and damping d1 are already determined in Section 2.2.2. The initial
rotation stiffness of the rod and damping d2 are determined in Section 2.1.3. In
deriving the equations of motion for the TMD model, consider Newton’s second law,
which for the payload side gives

M = I1θ̈1, (2.33)
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with M the total torque defined by:

M = T −Mv1 −Md1 −Mv2 −Md2, (2.34)

and Mv1=k1θ1 , Md1 = d1θ̇1, Mv2=Kr od (θ1 −θ2) , Md2 = d2(θ̇1 − θ̇2). Substitution of
(2.34) in (2.33) gives:

I1θ̈1 + (d1 +d2)θ̇1 + (k1 +kr od )θ1 −kr odθ2 −d2θ̇2 = T (2.35)

The equation of motion in (2.35) can be transformed to frequency domain giving

θ1(s)(I1s2 + (d1 +d2)s + (k1 +kr od )−θ2(s)(d2s +kr od ) = T (s)

θ1(s) = (d2s +kr od )θ2(s)+T (s)

I1s2 + (d1 +d2)s + (k1 +kr od )
. (2.36)

Also, for the second mass it is found that∑
M = I2θ̈2, (2.37)

where M is the total torque defined by:

M = Mv2 +Md2, (2.38)

with Mv2=Kr od (θ1 −θ2) , Md2 = d2(θ̇1 − θ̇2). Substitution of (2.38) in (2.37) gives:

I2θ̈2 +d2(θ̇2 − θ̇1)+kr od (θ2 −θ1) = 0 (2.39)

In frequency-domain this gives

θ2(s) = d2s +kr od

I2s2 +d2s +kr od
θ1(s), (2.40)

Substitution of (2.40) in (2.36) gives

θ1(s)

T (s)
= I2s2 +d2s +kr od

I1I2s4 +ε1s3 +ε2s2 +ε3s +ε4
(2.41)

with ε1 = I1d2 + I2(d1 +d2), ε2 = I1kr od + I2(k1 + kr od )+d1d2, ε3 = d1kr od +d2k1,
ε4 = k1kr od .

In Section 2.1.2 it is found that the torque is equal to: T=U*Ampl*Ke . The transfer
from U to θ1 is thus given by:

θ1(s)

U (s)
= Ampl ∗Ke ∗ I2s2 +d2s +kr od

I1I2s4 +ε1s3 +ε2s2 +ε3s ++ε4,
(2.42)

which, after substitution (2.40) gives

θ2(s)

T (s)
= d2s +kr od

I1I2s4 +ε1s3 +ε2s2 +ε3s +k1kr od
(2.43)

θ2(s)

U (s)
= Ampl ∗Ke ∗ d2s +kr od

I1I2s4 +ε1s3 +ε2s2 +ε3s +k1kr od
(2.44)
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2.3.3 PARAMETRIC IDENTIFICATION

In the designed TMD setup a deliberate choice is made for two different mass inertia’s,
where I1 is about 6 times the mass inertia of I2. The value of mass inertia I1 is already
determined in Section 2.2. This estimated value is 15e−6 kg m2. I2 is a cylinder of
aluminium with a mass m2 = 20+ /−0.05 gram and a radius r2 = 12+ /−0.1 mm.

The inertia I2 is calculated using:
r 2

2
m2

, giving I2=1.4 e−6 kg m2. The effective inertia
I2 is the sum of the inertia of I2 (corresponding to m2), encoder and motor giving
effectively I2 = 2.51e−6 kg m2.

2.3.4 NON PARAMETRIC IDENTIFICATION

For a torque input on the first mass and a sensor measurement at the same mass, a
frequency response function is identified. The measurement result is estimated from
closed-loop identification where a measurement of the process sensitivity function is
obtained. The frequency response measurents are carried out with white noise as
excitation signal. In the previous section a parametric identification θ1

U and θ2
U has

been conducted.

Figure 2.17: Compliances θ1 over U.

Figure 2.17 depicts the measured frequency response θ1
U in comparison with

the parametic model. The frequency response represents the ratio of the angle of
rotation over the input voltage. The first resonance (at 8.98 Hz) coincides, but is
somewhat lower than the original resonance of the payload system, which is due to
the higher mass inertia(I1 + I2). The resonance at 56.8 Hz and the anti-resonance
at 51.2 Hz coincide, whereby damping d2 is tuned at 5e−5 N ms

r ad so that the height
of the resonance in the parametric model corresponds to the measurement results.
For frequencies beyond 150 Hz there is a lot of uncertainty. The sample frequency
used is 2048 Hz, which will give an additional phase delay that can be seen in the
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non-parametric model, but which is not taken into account in the parametric model.
The anti resonance frequency can be estimated with:

ωa =
√

kr od

I2
(2.45)

Where I2 could be obtained from the measurement results as, I2 = kr od

ω2
a

= 0,26
(51,2∗2∗π)2 =

2,51e−6 kg m2. The mass inertia ratio of I2 and I1 is 2,5:15 kg m2. The resonance
frequency can be calculated with the following formula:

fr = 1

2π

√
kr od (I1 + I2)

I1I2
= 56,4 Hz. (2.46)

Figure 2.18 shows the frequency response θ2/U obtained from the measurement
results compared with the parametric model. The resonance peaks coincides and
the responses fairly match up until 150 Hz. Figure 2.19 shows the transmissibility

Figure 2.18: Frequency response θ2 over U.

function from θ2 to θ1. From the earlier parametric models, the transmissibility
function is given by

θ2(s)

θ1(s)
=

θ2
U
θ1
U

=
Ampl ∗Ke ∗ d2s+kr od

I1 I2s4+ε1s3+ε2s2+ε3s+k1kr od

Ampl ∗Ke ∗ I2s2+d2s+kr od
I1 I2s4+ε1s3+ε2s2+ε3s+k1kr od

= d2s +kr od

I2s2 +d2s +kr od
(2.47)
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Figure 2.19 shows that rotation of θ2 mainly occurs at the anti-resonance fre-
quency of 51,24 Hz as also shown in Figure 2.17. Beyond this frequency, mass I2

rotates much less than mass θ1. Below the resonance frequency, θ1 equals θ2.

Figure 2.19: Transmissibility from θ1 to θ2.

2.4 SUMMARY

In this Chapter, the PATO setup has been discussed as a test environment for test-
ing and demonstrating the objectives of this thesis. Both parametric as well as a
non-parameteric models have been identified and compared. These models serve
as a basis in the remaining chapters to further develop a method toward energy
dissipation in vibration isolation systems.
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CHAPTER 3

CONTROL TOWARD MAXIMUM

ENERGY DISSIPATION

In this chapter, a control approach toward maximum energy dissipation will be
proposed. The key idea is that an active tuned-mass-damper system mounted on a
vibration isolation structure in principle should be capable of dissipating energy from
the vibration isolation structure by appropriate tuning of its tuned-mass-damper
parameters [15] [16]. Ideally, such a tuning is done in an adaptive manner using an
energy criterion that needs to be maximized on the spot with the vibration isolation
system in the loop. The latter is important because, though the dynamics of the
vibration isolation system may be largely known, the disturbances exciting the system
under operating conditions are generally unknown.

This chapter is further organized as follows. In Section 3.1 the energy criterion
to-be-maximized will be discussed. Given this criterion, firstly the occurrence of
maximal energy dissipation will be studied for a passive tuned-mass-damper system
in Section 3.2. Secondly, the analytical results for a passive tuned-mass-damper
system will be validated with numerical simulation results in Section 3.3. And thirdly,
an active tuned-mass-damper system will be studied in Section 3.4. In Section 3.5 it
is explained how to estimate torque using (measured) actuator current. The latter
provides a crucial step in evaluating the energy criterion in the absence of a torque
sensor, thus using only actuator current measurements. This chapter is concluded
with an outlook in Section 3.6

3.1 DEFINITION ENERGY CRITERION

Consider a passive tuned-mass-damper (TMD) system with kr od and d2 its passive
stiffness and damping coefficient, respectively. Figure 3.1 depicts a schematic repre-
sentation of the model of the TMD system. With this model, simulations are carried
out primarily to validate the hypothesis that minimal rotation θ1 occurs at maximal
energy dissipation in the damper with coefficient d2 of the TMD system. Recall also
from Chapter 2 that, k1, kr od represents the rotational stiffness, respectively of the
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payload system to the fixed world and the rotational stiffness of the TMD, d1, d2

represent the damping respectively of the payload system and the damping of the
TMD mass. T is the disturbance torque acting on the vibration isolation system with
inertia I1 and θ1, θ2 are the angle of rotation of the vibration isolation system and of
the TMD respectively.

Figure 3.1: Fourth-order representation of the TMD system.

The energy dissipation in damper d2, which will serve as the criterion for maxi-
mization, is given by:

Pd2 = d2(θ̇1 − θ̇2)2. (3.1)

Note that (3.1) can be evaluated for example by using the estimated value for d2

together with the velocities θ̇1 and θ̇2 resulting from encoder measurements.

3.2 SEMI-ANALYTICAL RESULTS OF THE PASSIVE TMD
SYSTEM

In this section the following parameters are obtained, the optimal stiffness Kr od and
damping d2 for maximum energy dissipation of the TMD system. The hypothesis is
that these parameters lead to optimal vibration isolation performance of the payload
system. The maximum energy dissipation is performed for disturbance frequencies
of 5 Hz, 30 Hz and 70 Hz. Typically, 5 Hz is chosen below the resonance frequency
of the payload system. 30 Hz is between the resonance of the payload system and
the resonance of the TMD (51 Hz) and 70 Hz is chosen beyond the resonance of the
TMD. These choices will be shown to support the generality of the hypothesis and
hence the validity of the approach. The analytical results of the optimal stiffness and
damping are validated with simulation results in Section 3.3.

DERIVATIVE OF ENERGY DISSIPATION WITH RESPECT TO STIFFNESS

Consider the objective function (dissipated energy):

J = Pd2 (γ) = d2(θ̇1 − θ̇2)2γ (3.2)
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with γ= γ(Kr od ,d2) is the inverse input energy dissipation, which depends on Kr od

and d2, and which is used to normalize the dissipated energy in the damper with
respect to the input energy, or

γ−1 = Tθ1. (3.3)

T is the (often unknown) disturbance torque acting on the vibration isolation system
and θ1 is the angle of rotation of the vibration isolation system. The velocity difference
(e) is equal to θ̇1 − θ̇2 which is used to rewrite the objective function J = d2eT eγ. The
derivative of the objective function with respect to Kr od is given by:

∂J

∂Kr od
= d2

∂eT

∂Kr od
eγ+d2eT ∂e

∂Kr od
γ+d2eT e

∂γ

∂Kr od
.

= 2d2
∂eT

∂Kr od
eγ+d2eT e

∂γ

∂Kr od
. (3.4)

The gradients ∂e
∂Kr od

and ∂γ
∂Kr od

are estimated in simulink with the perturbation

method (stepsize = 1e−7 Nm/rad) using the following first-order approximations:

∂e

∂Kr od
≈ e(Kr od +δKr od )−e(Kr od )

δKr od
. (3.5)

∂γ

∂Kr od
≈ γ(Kr od +δKr od )−γ(Kr od )

δKr od
. (3.6)

Simulations are done by varying Kr od . Maximal dissipated energy occurs if the
derivative of the object function to Kr od in (3.4) equals zero. As can be seen in Figure
3.2 for a disturbance frequency of 5 Hz a clear maximum for the optimal value of Kr od

is found at Kr od = 0,002367 Nm/rad where the energy dissipation is equal to 0.7468 W.
For a disturbance frequency of 30 Hz, Figure 3.3 shows a clear optimal value of Kr od

at 0,08487 Nm/rad where the energy dissipation is equal to 0.7899 W. In the lower plot
of Figure 3.3 it is shown that the gradient ∂J

∂Kr od
equals zero at the same stiffness value

as found at the maximum energy dissipation, but there are also other zero crossings
that associate with local maxima; for example at Kr od is 0.074 Nm/rad and Kr od is
0.076 Nm/rad . As can be seen in Figure 3.4 for the disturbance frequency of 70 Hz, a
clear maximum is found at Kr od is 0,44 Nm/rad where the energy dissipation is equal
to 0.73 W. As such, different disturbances require different values for Kr od to obtain
maximum energy dissipation, hence the need for an adaptive mechanism.

From the analysis it is concluded that maximum dissipated energy occurs at
∂J

∂Kr od
= 0, but finding a value for Kr od where ∂J

∂Kr od
= 0 does not necessarily yield

maximum energy dissipation. Stated differently the optimization problem is non-
convex meaning that there is not necessarily a unique (global) optimum. Also, the
optimal values for Kr od vary with varying disturbance frequency therefore hampering
the effectiveness of a passive solution in which Krod is designed at a fixed value.
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Figure 3.2: Derivative energy dissipation damper to Kr od for a 5 Hz disturbance.

Figure 3.3: Derivative energy dissipation damper to Kr od for a 30 Hz disturbance.
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Figure 3.4: Derivative energy dissipation damper to Kr od for a 70 Hz disturbance.
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3.2.1 DERIVATIVE OF ENERGY DISSIPATION WITH RESPECT TO

DAMPING

The gradient of the objective function with respect to damper coefficient d2 is given
by:

∂J

∂d2
= eT eγ+d2

∂eT

∂d2
eγ+d2eT ∂e

∂d2
γ+d2eT e

∂γ

∂d2
.

= eT eγ+2d2
∂eT

∂d2
eγ+d2eT e

∂γ

∂d2
. (3.7)

∂e
∂d2

and ∂γ
∂d2

are estimated (stepsize = 1e−7 Nms/rad) in simulink with the perturbation
method given the approximations (3.8) and (3.9) respectively.

∂e

∂d2
≈ e(d2 +∂d2)−e(d2)

∂d2
. (3.8)

∂γ

∂d2
≈ γ(d2 +∂d2)−γ(d2)

∂d2
. (3.9)

Numerical simulations are done by varying d2, leading to the conclusion that maximal
dissipated energy occurs if the derivative of the object function with respect to d2

, or (3.7), equals zero. In the numerical simulations the stiffness coefficient values
for Kr od are the same as determined in the previous section. As can be seen in
Figure 3.5 for a disturbance frequency of 5 Hz a clear maximum is found at which
the system dissipates energy. For the optimal value of d2 = 1.62e−6 Nms/rad the
energy dissipation is equal to 0.75 W. In the lower plot of Figure 3.5 it is shown that
∂J
∂d2

indeed equals zero at this damping value thus potentially giving a good measure
for finding the maximum amount of energy dissipation. For a disturbance frequency
of 30 Hz, it can be seen in Figure 3.6 that the optimal value of d2 = 1.5e−5 Nms/rad
where the energy dissipation is equal to 0.79 W. For a disturbance frequency of 70 Hz
it can be seen in Figure 3.7 that also a clear maximum is found at which the system
dissipates energy. Similar to the conclusion from the previous section, maximum
dissipated energy can be found for those values where (3.7) becomes zero. Also note
that increasing the disturbance frequency yields an increase in optimal damping
values, that is , for frequencies [5, 30 70] Hz where values are found at [1.62e−6, 1.5e−5,
7.19e−5] Nms/rad.
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Figure 3.5: Energy dissipation as a function of damping coefficient d2 under a 5 Hz
disturbance."

Figure 3.6: Energy dissipation as a function of damping coefficient d2 under a 30 Hz
disturbance.
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Figure 3.7: Energy dissipation as a function of damping coefficient d2 under a 70 Hz
disturbance.

3.3 SIMULATION RESULTS OF THE PASSIVE TMD SYSTEM

In this section simulations results are discussed that couple maximum energy dissi-
pation to optimal vibration isolation performance. Simulation results are obtained at
the same disturbance frequencies as chosen in Section 3.2. Additionally, it will be ex-
amined if there exists a relation between the energy dissipation in d2 and the rotation
of the first mass θ1, the latter being a measure for vibration isolation performance.

3.3.1 GRID OF STIFFNESS AND DAMPING VALUES

In the simulations, the grid of both considered parameters Kr od and d2 is chosen
different for each disturbance frequency. For a disturbance frequency of 5 Hz the
considered stiffness coefficients kr od are logarithmically spaced in between 2e−3 to
3e−3 Nm/rad. Similarly, the grid of considered damping coefficients d2 is varied from
10−7 to 10−4 Nms/rad.

3.3.2 ANALYSIS OVER VARIOUS FREQUENCIES

In this section, the result of various simulation studies will be discussed. The sim-
ulation context is given in Figure 3.8, which shows the used Simulink scheme. In-
put to the scheme is the disturbance signal T, that is chosen as a harmonic signal
T = si n(2π f (t)) with f =5 Hz. Output to the scheme is the energy dissipation J ac-
cording to (3.2). The simulation results refer to continuous-time simulations where
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Figure 3.8: Applied simulink scheme for passive components.

the mean energy dissipation J in the damper is determined. Given the grid of stiffness
and damping coefficients, Figure 3.9 shows that a clear maximum is found at which
the system dissipates energy. That is, for the optimal values k2 = 0.002385 Nm/rad
and d2 = 2.134e−6 Nms/rad the energy dissipation equals Jmax = 0.7087 W. Com-
pared, for example, to the energy dissipation at the values d2 = 1e−6 Nms/rad and k2

= 0.002 Nm/rad with J = 0.005 W the optimal values lead to a factor of 140 regarding
improved dissipation, thereby indicating the relevance for an appropriate choice of
the parameter values k2 and d2. The estimated stiffness and damping coefficients
correspond with the values found earlier from with the semi-analytic calculations.

Figure 3.9: Maximal energy dissipation at disturbance of 5 Hz.
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Figure 3.10: Rms of θ1 at disturbance of 5 Hz.

Figure 3.10 depicts the influence of the disturbance at the payload system. In
this 3D plot, the rotational stiffness Kr od , damping value d2 and rms value of θ1 are
displayed. With an optimally tuned TMD, the rotation θ1 has a minimum of 0.0741
radians, whereas with no TMD applied, the rotation of θ1 is equal to 0,125 radial.
The improvement in terms of vibration isolation properties of the payload system in
terms of disturbance reduction is therefore 41%. This optimal value for the rotation of
θ1 occurs at the exact same optimal stiffness and damping values found for maximal
energy dissipation, which has been shown in Figure 3.9. As such, it is concluded that
in this case aiming for maximum energy dissipation translates well to the objective of
optimal vibration isolation performance in view of a harmonic disturbance torque at
5 Hz. To validate the hypothesis that aiming for maximum energy dissipation of the
TMD system leads to optimal vibration isolation performance of the payload system
at arbitrary harmonic disturbance torques, two other frequencies will be checked:
fdi s = 30 Hz and fdi s = 70 Hz. The stiffness of the rod is 0,26 Nm/rad, which will give
an eigen frequency of the TMD with inertia I2 of 52,4 Hz. In this case, the stiffness of
the rod must decrease (add negative stiffness) to suppress the disturbance of 30 Hz
[17]. Figure 3.11 depicts the optimal tuned TMD with kr od equal to 0,0846 Nm/rad
and d2 becoming 1,3e−5 Nms/rad. The estimated stiffness and damping coefficients
corresponds with the values found with the semi-analytic computations from Section
3.2. For completeness Figure 3.12 shows the influence of the disturbance at the
payload system at a disturbance frequency of 30 Hz. With an optimally tuned TMD,
the rotation of θ1 is 0,012 radial and if no TMD is applied, the rotation of θ1 is equal to
0,021 radial. The disturbance reduction is 43%. The stiffness when energy dissipation
is maximal corresponds with the stiffness leading to minimal rotation, but there is a
slight difference in the damping constant. The results at a disturbance of 70 Hz are
comparable to the previous cases and as such are shown in Appendix A
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Figure 3.11: Maximal energy dissipation at disturbance of 30 Hz.

Figure 3.12: Rms of θ1 at disturbance of 30 Hz

3.4 SIMULATION RESULTS WITH ACTIVE TMD

Different from the previous analysis with passive elements, in this section a similar
analysis is conducted but with active controller elements instead. Figure 3.13 depicts
the control schematics associated with Figure 3.1. Herein, U is the input voltage to
the amplifier of the payload system, respectively the amplifier of the TMD. Ip , It is
the current to the motor of the payload system, respectively the TMD and Tp , Tt is
the mechanical torque acting on the mass of the payload respectively the mass of the
TMD. In Figure 3.13 it is shown that the rotational stiffness and damping constant
between inertia I1 and I2 belong to an active and a passive part. The passive part (C
passive) consists of the rotational stiffness of the rod kr od and the damping constant
d2. The active part (C active) is represented by the PD controller parameters Kp2 and
D2. Its parameter values can easily be changed (on-line) in software and thus can
provide powerful knobs in online optimization of vibration isolation performance by
maximizing the energy dissipation to unknown disturbances.
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Figure 3.13: Control payload and adapted TMD system.

3.4.1 STIFFNESS AND DAMPING VARIATIONS

The rotational stiffness Kp2 and the D action D2 are varied while a harmonic dis-
turbance is applied at inertia 1. The simulations are done for the same disturbance
frequencies and the same reasons as already outlined in Section 3.3.2. Only the results
tested at a disturbance frequency of 30 Hz are given, because the other (tested) fre-
quencies give no additional information and correspond with the outcome of Section
3.3. The results tested at a disturbance frequency of 70 Hz are shown in Appendix
B. At the same time, the mean and rms value of the output of the controller (U) are
obtained and the rms value of the rotation of inertia I1 is measured. The mean of the
output of the controller is a ratio of the energy dissipated by the differential action
of the controller. The output of the controller has a linear relation with the applied
torque (see Section 3.5). Multiplying the torque with the angle velocity difference
between inertia I1 and inertia I2 will give an estimate of the dissipated energy in the
active damper D2.

3.4.2 ANALYSIS OVER VARIOUS FREQUENCIES

In the 3D plots, the gain Kp2 , D-action D2 and energy dissipations Pd2 are displayed.
In Figure 3.14a, where the disturbance frequency is chosen between the resonance
frequencies of the payload system and TMD (30 Hz) it is shown that the rms energy
dissipation is maximal if the D action D2 is at its boundary value of 10−6 and Kp is
equal to -7.927. The effective stiffness between the two inertia’s can be estimated
from the passive and active part. The effective stiffness between the two inertias is
equal to Kr od +Kp ∗Ke ∗ampl = 0,086 Nm/rad. In this case Ke represents the torque
constant of the motor, and Ampl is the gain of the voltage to current amplifier. The
calculated effective stiffness corresponds to an antiresonance frequency of 30.12 Hz
which is calculated by Equation (3.10). This calculated effective stiffness corresponds
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with an antiresonance frequency of 30.12 Hz estimated with Equation (3.10). Figure
3.14b shows approximately the same stiffness at the maximal dissipated energy but,
the energy dissipation is much lower than the rms energy dissipation. The mean
energy dissipation is maximal at a damping constant D2 of 1.048 10−3 Vs/rad.

(a) (b)

Figure 3.14: (a) Rms dissipated energy of controller (b) mean dissipated energy of
controller.

fa = 1

2π

√
ke f f

I2
(3.10)

The effective damping between the two inertia’s is given by:

De f f = D2 ∗Ke ∗ampl (3.11)

= 2.3 10−5N ms/r ad

Figure 3.15: Rms rotation θ1 at disturbance of 30 Hz

Figure 3.15 depicts the influence of the disturbance at the payload system. In this
3D plot, the gain of the controller K p, D action D2 and rms value of θ1 are displayed.
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With an optimally tuned PD controller, the rotation θ1 has a minimum of 0.0125
radians and with no TMD applied, the rotation of θ1 is equal to 0.021 radial. The
improvement of vibration isolation properties of the payload system in terms of
disturbance reduction is therefore 41%. This optimal value for the rotation of θ1

occurs at the optimal PD controller values regarding maximal energy dissipation
shown in Figure 3.11. As such, it is concluded that also in the active case aiming for
maximum energy dissipation translates well to the objective of optimal vibration
isolation performance in view of a harmonic disturbance torque at 30 Hz.

3.5 ACTUATOR USED AS SENSOR FOR ENERGY

MEASUREMENT

In order to obtain the energy dissipation in damper d2, the torque applied to the
damper is needed. Without using a torque sensor, this torque can be estimated
indirectly by measuring the current of the actuator. In this section a description
will be given on how the actuator is used as sensor as well [18]. This will be done
in preparation for the next chapter. The used actuator is a Maxon brushless DC
actuator. The assumption is that in a DC actuator the current is a measure of the
torque provided. Two methods are applied and compared to measure the mechanical
torque. The first method is to measure the actuator current multiplied with the torque
constant, which should correspond to the mechanical torque. The second method is
to measure the force with a force sensor and to estimate the corresponding torque.
In Section 3.5.1 a static torque measurement is performed and the results of both
methods will be compared. In Section 3.5.2 a dynamic torque measurement will be
performed.

3.5.1 STATIC TORQUE IDENTIFICATION

Figure 3.16 depicts the setup for measuring the static torque. The static torque is
determined in two ways, by measuring the force with a force sensor and by measuring
the current through the actuator. The torque is increased by ramping up the voltage
to the input of the amplifier. The force sensor is placed at a certain distance (radius)
from the centre of the mass. The mechanical torque is estimated by multiplying the
force and radius. The current in the actuator is indirectly measured by measuring the
voltage over a shunt resistance. The value of the shunt resistor is 0,1Ω. The torque is
estimated by multiplying the current in the maxon actuator with the torque constant.
Figure 3.17 depicts the torque curves for both methods. Poor signal-to-noise ratio of
the force sensor causes deviation between both methods.
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Figure 3.16: Setup for estimating the static torque.

Figure 3.17: Estimated torque both with force sensor and by current in actuator.
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3.5.2 DYNAMIC TORQUE IDENTIFICATION

Figure 3.18: Setup to measure the torque dynamically.

Figure 3.18 depicts the setup for measuring the dynamical torque. The force
sensor is mounted on the groundplate of the base in such a way that compared to the
setup in the static measurements, the force sensor is more rigidly connected to the
fixed world. For the excitation signal a zero mean white noise signal is used with a
bandwidth of 500 Hz. The force is measured with a dynamic force sensor at a certain
distance (radius) from the centre of the mass. The applied force transducer is an
IEPE tensile and compressive sensor of Bruel&Kjaer, Type 8230 with a sensitivity of
44,52 N/V. The torque is calculated by multiplying the force and radius. The current
is measured in the same way as the static measurements in Section 3.5.1. Figure 3.19
depicts the frequency response with noise excitation up to 500 Hz of the ratio of the
torque of force sensor over the torque obtained by the current. The torque of the
force sensor is obtained by multiplying the output of the force sensor with the radius
and with the sensitivity of the force sensor. The torque determined with the current
is obtained by multiplying the voltage over the shunt with the sensitivity of the shunt
resistor and with the torque constant of the actuator. The required accuracy of the
torque measurement is estimated to be within 5 per cent, this equates to 0.5 dB. Up
to 150 Hz both torque measurement methods give equal results within a band of
0.5 dB. This leads to the conclusion that up to 150 Hz the torque can be estimated
with the actuator current, which offers a simple solution. This is sufficient for the
intended application. To investigate the higher harmonics the system is excited with
white noise up to 1000 Hz. Figure 3.20 shows the frequency response with white noise
excitation up to 1000 Hz. The measurement is less smooth due to the occurrence
of higher harmonics. The amplitude ratio behaviour below 1Hz is caused by the AC
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coupling of the force sensor. The frequency range of the force sensor is 1 Hz to 50 KHz.
The measurement with the force sensor is limited by the first resonance frequency at
500 Hz. This resonance is caused by the bearing rigidity of the Maxon actuator.

Figure 3.19: Dynamic torque measurement with white noise excitation up to 500 Hz.

The occurrence of the resonance frequencies around 900 Hz have been investi-
gated with additional measurements. These measurements were carried out in open
loop. Figure 3.21a shows the frequency response from the voltage over the shunt
divided by the input voltage to the amplifier. Up to 1000 Hz the current is following
the input voltage. The voltage-current amplifier is not the limiting factor. Figure 3.21b
shows the frequency response from the encoder output to the voltage over the shunt
resistor. For frequencies beyond 100 Hz, a poor signal-to-noise ratio gives a noisy
measurement result. The mass inertia is not able to follow the signal input beyond
100 Hz. At 900 Hz an additional resonance appears, which is due to the decoupling of
the encoder.
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Figure 3.20: Dynamic torque measurement with white noise excitation up to 1000 Hz.

(a) (b)

Figure 3.21: (a) Measured FRF amplifier (b) measured FRF encoder.
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3.6 SUMMARY

In this chapter the results lead to the following conclusions:
1. Maximal energy dissipation renders optimal vibration isolation, not only at a single
frequency but at arbitrary harmonic disturbance frequencies.
2. Maximal energy dissipation is found at gradient values of the relevant parameters
being equal to zero, hence the possibility to do (online) parameter optimization
3. In online parameter optimization, the energy criterion J does not need an explicit
torque measurement but can be estimated through measuring the actuator current,
i.e., use the actuator as a sensor.
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CHAPTER 4

GRADIENT-BASED OPTIMIZATION

APPROACH

In this chapter, a gradient-based optimization towards maximum energy dissipation
will be applied to the tuned-mass-damper (TMD) setup. The gradients will be ob-
tained from the perturbation method thus rendering the optimization approach fully
data-based [19] [20] [21]. The key idea is that optimal values for the stiffness Kr od

and damping coefficient d2 are found with the machine in the loop while using the
maximum energy criterion of Chapter 3. The spring and the damper are mimicked
by applying a PD controller in a feedback control configuration. The stiffness Kr od

is mimicked by Kp and the damper d2 by D2. This section is further organized as
follows. In Section 4.1 energy optimization with perturbations on the stiffness values
Kp and D2 will be discussed. Secondly, the iterative procedure to keep updating Kp

and D2 is explained in Section 4.2. In Section 4.3, simulations results will be discussed
and (to some extent) will be compared with the early simulations results obtained in
Chapter 3. This chapter is concluded with an outlook in Section 4.4.

4.1 FINDING GRADIENTS THROUGH PERTURBATIONS

WITH Kp

In a gradient-based optimization, gradients obtained from models, such as presented
in Chapter 3, generally require sufficient model knowledge and as such are sensitive
to model error. In a fully data-based manner, gradients can also be derived from data,
for example by using the perturbation method [22]. In this method, as part discussed
in Chapter 3, the perturbation is conducted on the active control elements thereby
obtaining data under operating conditions, hence avoiding the risk of using too
simple models. Essentially, the data are assumed to capture all relevant information
for the optimization procedure. In terms of data-based control and optimization we
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aim to find the optimal Kp that maximizes the cost criterion:

J(Kp ) = 1

N
d2eT

(Kp )e(Kp )
1

γ(Kp )
. (4.1)

with e(Kp ) = θ̇1(Kp )− θ̇2(Kp ), N >0 the number of timestamps, and γ(Kp ) is the input
energy. Jk corresponds with the energy dissipation in damper d2. Let Kp in Jk (Kp ) be
a set of controller parameters that maximizes the cost criterion Jk . With parameter
vector Kp =[K 1

p K 2
p ...K i

p ...K k
p ] collect sampled-data Jk (Kp ). γ(Kp ) is used to normalize

the dissipated energy in the damper with respect to the input energy.
Equation (4.1) gives rise to the following optimization problem:

K̃p = max
Kp

Jk . (4.2)

Under certain conditions, the stiffness K̃p can be found iteratively using the
Gaus-Newton method:

K i+1
p = K i

p −γk H−1
k ∂J T

k Jk . (4.3)

With γk the damped newton parameter with a value of 0 < γk ≤ 1, and Hk denotes
the Hessian matrix. The first-order approximation of the Hessian Hk = H (Kp ) is given
by:

Hk ≈ ∂J T
k ∂Jk . (4.4)

This approximation is often used for several reasons: (a) for many least squares
problems the approximation is exact, (b) close to the optimum the approximation
generally becomes very accurate, and (c) second-order derivatives are highly sensitive
to noise present in the data and therefore are generally avoided.

In the update law (4.3), while using the approximate Hessian (4.4), the gradient
∂Jk
∂kp

can be found by the perturbation method via

∂Jk

∂kp
≈ Jk (Kp +δKp )− Jk (Kp )

δKp
. (4.5)

That is, by obtaining (for example from measurement) the sampled data Jk (Kp +
δKp ) while giving Kp a perturbed value δKp and, subsequently, subtracting these
data with the sample data Jk (K p). The gradient ∂Jk/∂Kp can be approximated in
first order. From (4.5) it is clear that finding Kp in (4.2) with (4.3) requires both the

data based gradients ∂Jk
∂Kp

and the data Jk , which in this report are both fully based on

data.
The optimal D2 will be found similary by maximizing the cost criterion:

J(D2) = 1

N
d2eT

(D2)e(D2)
1

γ(D2)
. (4.6)
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D̃2 = max
D2

Jd . (4.7)

The stiffness D2 can be solved iteratively using the Gaus-Newton method:

D i+1
2 = D i

2 −γd H−1
d ∂J T

d Jd . (4.8)

With γd the damped Newton parameter for the damping perturbation with a
value of 0 < γk ≤ 1, and Hd denotes the Hessian matrix. And an approximation of the
Hessian Hd = H(D2) is given by:

Hd ≈ ∂J T
d ∂Jd . (4.9)

∂Jd

∂D2
= Jd (D2 +δD2)− Jd (D2)

δD2
. (4.10)

4.2 SIMULATION SCHEME FOR DETERMINING GRADIENTS

THROUGH PERTURBATIONS

Figure 4.1 depicts the simulation schematics associated with the gradient estimation.
Output to the scheme is the energy dissipation J according to (4.1) and (4.6). Results
are obtained through continuous-time simulation where the energy dissipation J
in the damper will be estimated continuously. The energy dissipation is estimated
through the mean of the product of the output of the PD controller and the velocity
difference of θ̇1 − θ̇2. Input to the scheme is the disturbance signal T, that is chosen

Figure 4.1: Simulation scheme used for online parameter optimization.
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as a harmonic signal T = si n(2π f (t )) with the same frequencies as considered earlier
in Section 3.2. The disturbance torque T is acting on the payload system. Figure
4.2 shows the sequence used to conduct the perturbations needed for the gradient
estimation. The iteration is started with an initial value for the gain Kp and damping
D2. A reference simulation with the initial settings is carried out and the input energy
and the dissipated energy (cost function) in D2 are estimated. Subsequently Kp is

Figure 4.2: Sequence for the online parameter optimization.

perturbated with δKp . The new dissipated energy is estimated, the gradient ∂Jk due
to the proportional control action (Kp ) and the Hessian Hk are estimated. With the
Gaus-Newton method an updated Kp is given according to the update law in (4.3).
The next step is to perturb D2 with δD2. The new dissipated energy is estimated with
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the corresponding gradient ∂Jd and Hessian Hd . With the Gaus-Newton method
a new D2 is estimated according to the update law in (4.8). For the next iteration,
the update Kp and D2 are used in the simulation model. The chosen perturbation
parameter is set at 1e-6 and 1e-7 for δKp and δD2, respectively. The chosen damped
Newton parameter is set at 0.015 and 0.025 for γk and γd , respectively.

4.3 SIMULATIONS RESULTS

In this section numerical simulations results are presented for the Gauss-Newton
optimization approach. These results are compared with the results of Section 3.2 and
Section 3.3, which serve for validation purposes of the gradient-based optimization
approach. As can be seen in Figure 4.3 for a disturbance frequency of 5 Hz the optimal
Kp respectively the optimal D value is found at -11.73 V/s and 7.82e−5 Vs/rad after
roughly 10 iterations. The effective stiffness is equal to Kr od +Kp ∗Ke ∗ampl =0.0025
N/rad and the real damping is D2∗Ke∗ampl = 1.72e−6 Nms/rad. Where Ke represents
the torque constant of the motor, and Ampl is the gain of the voltage to current
amplifier. The estimated stiffness and damping coefficient correspond to the values
found with the semi analytical approach in Section 3.2. Figure 4.4 depicts the time
data with and without applied TMD. With TMD the root mean square (RMS) of the
Payload system is 0.074 radians and without TMD the influence of the disturbance
at 5 Hz is 0.127 radians. The improvement in terms of vibration isolation properties
of the Payload system in terms of disturbance reduction corresponds to the earlier
found value of 41 %.

Figure 4.3: Perturbation of Kp and D2 at a 5 Hz disturbance.

As can be seen in Figure 4.5 for a disturbance frequency of 30 Hz optimal Kp
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Figure 4.4: Response Payload system with and without TMD at a 5 Hz disturbance.

and D2 values of the TMD controller are found at -8.013 V/rad and 0.001631 Vs/rad
respectively. These values correspond with an effective stiffness of 0.0841 Nm/rad
and damping coefficient of 3.58e-5 Nms/rad respectively. Figure 4.6 depicts the time
data with and without applied TMD. With TMD the root mean square (RMS) of the
Payload system is 0.0123 radial and without TMD the influence of the disturbance
of 30 Hz is 0.021 radians. These values also corresponds well with the simulation
results presented in Section 3.3. The improvement in terms of vibration isolation
properties of the Payload system in terms of disturbance reduction is similarly 43 %.
Figure 4.7 gives the optimal Kp (7.55 V/rad) and D action ( 0.003849 Vs/rad) of the
TMD controller. By multiplying these values by the motor constant and the gain of
the amplifier, the effective stiffness (0.426 Nm/rad) and damping (8.5e-5 Nms/rad)
is obtained. The stiffness corresponds with the simulation results in Section 3.3
but there is a slight difference in the damping coefficient (14%). Figure 4.8 gives
the time response with and without TMD. With applied TMD the root mean square
(RMS) of the Payload system is 0.0055 radians and without TMD the influence of the
disturbance frequency of 70 Hz is 0.0092 radians. These values corresponds with the
simulation results in Section 3.3. The improvement in terms of vibration isolation
properties of the Payload system in terms of disturbance reduction is similarly 42 %.
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Figure 4.5: Perturbation to Kp and D at a 30 Hz disturbance.

Figure 4.6: Response Payload system with and without TMD at a 30 Hz disturbance.
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Figure 4.7: Perturbation to Kp and D at a 70 Hz disturbance.

Figure 4.8: Response Payload system with and without TMD at a 70 Hz disturbance.

4.4 SUMMARY

In this chapter the results lead to the following conclusions:
1. Gradient-based optimization based on sole data leads to the same optimal stiffness
and damping values as obtained for the passive TMD system.
2. The model for online parameter optimization serves as a basis for measurement
results in the next chapter.
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CHAPTER 5

MEASUREMENT RESULTS

This chapter will demonstrate the use of a data-based optimization scheme in finding
the optimal parameters of an active TMD that maximize energy dissipation. In Sec-
tion 5.1 the real life setup is discussed with a short list of its key components. Prior to
finding the optimal parameters, we need to identify the dissipative elements already
present in the structure. The problem that otherwise occurs with such elements will
be explained in Section 5.2. In Section 5.3 solutions toward solving this problem are
discussed. In Section 5.4, the frequency responses θ1

U and θ2
U of the real life setup are

compared with those obtained from simulations in the earlier chapters. In Section
5.5, it is demonstrated that maximum energy dissipation associates with preferred
vibration isolation properties of the payload structure. This chapter is concluded
with an outlook in Section 5.6.

5.1 EXPERIMENTAL SETUP

Figure 5.1 depicts the real live setup. Key components are identified by a number.
Herein, number 1 en 2 represent the mass inertia, respectively of the payload and
the TMD. Number 3,4 and 5,6 represent the actuator and encoder, respectively of the
payload and the TMD. Number 7 and 8 represents the transconductance amplifier of
the payload respectectively of the TMD. Number 9 represents the data acquisition
system and number 10 is the shunt resistor.

5.2 DISSIPATIVE ELEMENTS ALREADY PRESENT IN THE

SYSTEM

In this section the influence of dissipative elements already present in the system
will be explained. Note that for the simulations in Chapter 3, the initial value of
the damping d2 was chosen at zero. The absence of damping is unlikely to occur
in practice, which is the case for the experimental setup where a damping value is
found of 5e-5 Nms/rad ; recall Section 2.3.4. This value must be taken into account
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Figure 5.1: Real-life TMD system.

when determining the total energy. Figure 5.2a depicts the simulation of the energy
dissipation of the controller and the damper (D2+d2), this is the so-called total energy
dissipation contrary to the energy dissipation of controller D2. The maximum energy
dissipation of the controller is reached after 5 iterations. The total energy increases
continuously until a maximum is reached. The optimal values for the gain K p2 and
damping D2 are found while using the total energy criterion, the optimal values are
given in Figure 5.2b. The internal energy dissipation in damper d2, however, cannot
be measured in the current experimental setup, where only the energy dissipation
derived from the output of the PD controller can be accessed. Figure 5.3a gives the
time response of θ1 and θ2 while being optimized for the total energy dissipation and
Figure 5.3b gives the time response while optimizing on only a part of the total energy
dissipation, i.e., the part associated with the PD controller. The latter disregards
the energy dissipation in the passive damper d2. With an optimally tuned TMD,
the rotation of θ1 reached a minimum of 0.012 radians RMS (shown in Figure 5.3a)
whereas optimized only on the dissipated energy of the controller, the rotation of
θ1 is equal to 0.018 radial RMS, as shown in Figure 5.3b,which is not optimal for the
system as a whole.

5.3 HOW TO ESTIMATE TOTAL ENERGY DISSIPATION IN

PRACTICE

The total energy dissipation can be determined in two ways. First by identification
of the dissipative elements already present in the structure and estimate the sum of
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(a) (b)

Figure 5.2: (a) estimated energy dissipation. (b) settings PD controller.

(a) (b)

Figure 5.3: (a) optimized on total energy dissipation. (b) optimized on total energy
dissipation.

these dissipative elements with respect to the energy dissipation of the controller.
Second, by measuring the energy dissipation by using two data acquisitions systems.
The latter is advantageous from the data-based perspective, because it requires no
extra prior knowledge of the system. However, this method had not been applied in
this report for practical reasons, see appendix C for more discussion.
Figure 5.4 depicts the schematics associated with the estimation of the total energy
dissipation having additional disspative elements present in the system. Output to
the scheme is the partial and the total energy dissipation.
The partial energy Epar ti al is defined by

Epar ti al = mean
(
(θ̇1 − θ̇2)2U2.amp.Ke

)
, (5.1)

with U2 the voltage over the shunt resistor, amp is the sensitivity of the shunt resistor
and Ke is the torque constant of the actuator.
The Total energy Etot al is defined by

Etot al = mean
(
(θ̇1 − θ̇2)2(U2.amp.Ke +d2)

)
. (5.2)
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Figure 5.4: Simulation scheme used for determine total energy dissipation.

5.4 VALIDATION OF FRF MEASUREMENTS

In this section, measurement results are presented of the frequency response func-
tion θ1/U and θ2/U which are compared with the results obtained from numerical
simulations, and which serve the purpose of validation of the model of the setup. The
frequency response functions are determined with gain K p2 of the PD controller at
-5 V/rad. A more negative gain is not possible because otherwise the PATO amplifier
will saturate. Figure 5.5 depicts the measured frequency response function θ1/U ,
which is compared with the model with active controller elements (see Figure 3.13).
The frequency response measurements are carried out with white noise as excitation
signal with a frequency up to 250 Hz. The resonance (at 42.5 Hz) coincides, but the
anti-resonance occurs at lower frequencies than with the parametric model. Figure
5.6 depicts the measured frequency response function θ2/U in comparison with the
active controller elements. Up to 150 Hz the parametric model matches well with the
non-parametric model, but at higher frequencies sampling delay as well as a poor
signal-to-noise ratio causes deviation between both models.
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Figure 5.5: Measured frequency response function θ1 over U.

Figure 5.6: Measured frequency response function θ2 over U.
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5.5 MAXIMAL ENERGY DISSIPATION ON REAL-LIFE TMD
SYSTEM

In this section, a relation between the total energy dissipation and the rotation of
the first mass θ1 will be examined on the setup. All the simulations in the previous
chapters have been done with disturbance frequenies of 5, 30 and 70 Hz, but in the
experiments this is not possible because the voltage/current converter saturates.
The tested disturbance frequency in the real life setup is therefore chosen at 33 Hz.
The experimental results are obtained by means of continuous-time experiments
where the mean energy dissipation in all the dissipative elements is determined. Two
experiments are done, the first experiment is with a constant gain of K p2, which gives
the correct anti resonance frequency and by varying the D2 of the controller. The
second experiment is with a constant gain of D2 (found with the first experiment) and
by varying K p2 of the controller. Figure 5.7 depicts the energy dissipation and the
rotation in radians of the payload system while, varying the damping at a constant
gain K p2. The maximal energy dissipation is 0.0069 W, and the rotation of θ1 is 0.0055
radial. The damping coefficient found equals d2 = 3.32e−5 Nms/rad, which is in the
same order of magnitude as the dampings coefficient in the simulations at 30 Hz.
This experiment confirms the simulation results that maximum energy dissipation
leads to optimal vibration isolation performance.

Figure 5.7: Maximal energy dissipation and RMS value of θ1 while varying D2.

Figure 5.8 depicts the energy dissipation and the rotation in radians of the payload
system while varying the gain K p2 with the damping found in the first measurement.
The maximal energy dissipation is 0.0069 W, and the rotation of θ1 is 0.005 rad. The
gain of the controller at which maximum dissipation occurs, differs slightly from
the gain which gives minimal rotation of the payload. This most likely is caused by
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a mismatch in the identification of the damping values of the dissipative elements
present in the structure.

Figure 5.8: Maximal energy dissipation and Rms of θ1 while varying K p2.

5.6 SUMMARY

The results of the simulation are validated on the real setup and the results confirm the
conclusions. The experiments demonstrates that maximal energy dissipation implies
optimal vibration isolation. Due to practical limitations of the setup it appeared
impossible to conduct an automatic data-based optimization such as discussed in
Chapter 4. This remains work for future research.
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CHAPTER 6

CONCLUSIONS AND

RECOMMENDATIONS

This chapter presents the main conclusions of the graduation project and gives
recommendations for further research.

6.1 CONCLUSIONS

Maximal energy dissipation will occur at the optimal stiffness and optimal damping
values of the TMD. For this maximal energy dissipation level, the influence of the
disturbance on the payload is minimized. The simulations demonstrate that maximal
energy dissipation implies optimal vibration isolation, not only at a single frequency
but at arbitrary harmonic disturbance frequencies. Maximal energy dissipation is
found at gradient values of the relevant parameters being equal to zero, hence the
possibility to do (online) parameter optimization. It is possible to tune the TMD in
real-live to the optimal values of the stiffness and damping coefficient. In online
parameter optimization, the energy criterion J does not need an explicit torque
measurement but can be estimated through measuring the actuator current, i.e., use
the actuator as a sensor. An important finding is that all dissipative elements in the
system should be taken into account in the energy dissipation criterion. In this thesis,
an estimate is obtained for the damping coefficient of a single (lumped) dissipative
element.

6.2 RECOMMENDATIONS

The simulation results differ slightly from the experiments. The cause of these differ-
ences should be investigated by estimating the stiffness of the rod and the damping
coeeficient more accurately. The applicability of the concept considered in this thesis
should be investigated for a broader class of disturbances. Essentially, we envision an
adaptively tuned TMD system capable of dealing with any disturbance situation and

61



constantly driving the vibration isolation system to which it is mounted for optimal
isolation performance. In this regard, the use of two ebox is expected to give more
accurate results than the currently used method of identification. Such usage is highly
recommended for continued research on this topic. Lastly, the machine-in-the-loop
approach should be executed in experiment too. For this the current setup is not
suited, because of the large transition time in between iterations needed to transfer
new models/parameters to (and from) the ebox.
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APPENDIX A

SIMULATION RESULTS OF THE

PASSIVE TMD SYSTEM UNDER A

70 HZ DISTURBANCE

Figure A.1 depicts the influence of the disturbance at a frequency of 70 Hz. This
frequency is above the resonance frequency of the payload system and the TMD
system. In this case the stiffness of the rod should be increased (add positive stiff-
ness) to suppress the disturbance of 70 Hz. Figure A.1 depicts the maximal energy
dissipation at a disturbance frequency of 70Hz. Maximum energy dissipation at a
given disturbance occurs if kr od = 0,44 Nm/rad and d2 = 7,25e−5 Nms/rad.

Figure A.1: Maximal energy dissipation at disturbance of 70 Hz.

Figure A.2 shows the influence of the disturbance at the payload system at a
disturbance frequency of 70 Hz. With an optimally tuned TMD, the rotation of θ1 =
5,23e−3 radians whereas with no TMD is applied, the rotation of θ1 is equal to 9e−3

radial. The disturbance reduction is again 42%. The stiffness value maximum mean
energy dissipation corresponds with the stiffness value when rotation is minimal ,but
there is again a slight difference in damping. The estimated stiffness and damping

65



Figure A.2: Rms of θ1 at disturbance of 70 Hz.

coefficient correpond with the values found with the semi-analytic computations in
Section 3.2.

From the above analysis it is concluded that aiming for maximum energy dissipa-
tion of the TMD system generally leads to optimal vibration isolation performance of
the payload system at arbitrary harmonic disturbance torques.
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APPENDIX B

SIMULATION RESULTS OF THE

ACTIVE TMD SYSTEM UNDER A 70
HZ DISTURBANCE

In the 3D plots, the gain K p2 , D-action D2 and energy dissipations Pd2 are displayed.
In Figure B.1a, where the disturbance frequency is chosen beyond the resonance fre-
quencies of the payload system and TMD it is shown that the RMS energy dissipation
is maximal if the D action D2 is at its boundary value of 1 10−6 Vs/rad and K p2 is
equal to 9.167 V/rad. The effective stiffness between the two ineria’s can be estimated
from the passive and active part. The effective stiffness between the two inertias is
equal to Kr od +K p2 ∗Ke ∗ampl = 0.4612 Nm/rad

(a) (b)

Figure B.1: (a) rms dissipated energy controller (b) mean dissipated energy controller

This calculated effective stiffness corresponds with an antiresonance frequency
of 69.8 Hz estimated with Equation (3.10). Figure B.1b shows approximately the same
stiffness at the maximal dissipated energy but, the energy dissipation is much lower
than the RMS energy dissipation. The MEAN energy dissipation is maximal at a
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damping constant D2 of 1.265 10−3 Vs/rad.
The effective damping between the two ineria’s is given by:

De f f = D2 ∗Ke ∗ampl (B.1)

= 2.77 10−5N ms/r ad

Figure B.2: rms rotation θ1 at disturbance of 70 Hz

Figure B.2 depicts the influence of the disturbance at the payload system. In
this 3D plot, the gain of the controller K p2, D action D2 and rms value of θ1 are
displayed. With an optimally tuned PD controller, the rotation θ1 has a minimum
of 5.2e−3 radians and with no TMD applied, the rotation of θ1 is equal to 9−3 radial.
The improvement of vibration isolation properties of the payload system in terms
of disturbance reduction is therefore 42%. This optimal value for the rotation of θ1

occurs at the optimal PD controller values regarding maximal energy dissipation
shown in Figure A.1. As such, it is concluded that also in the active case aiming for
maximum energy dissipation translates well to the objective of optimal vibration
isolation performance in view of a harmonic disturbance torque at 30 Hz.
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APPENDIX C

DETERMINE ENERGY DISSIPATION

USING TWO DATA ACQUISITION

SYSTEMS

Figure C.1 depicts the simulation schematics associated with use for two data acqui-
sition systems for determining the total energy dissipation. Output to the scheme
is the total energy dissipation. The total energy dissipation is estimated indirectly
by measuring the voltage over the shunt resistor. The torque determined with the
current is obtained by multiplying the voltage over the shunt with the sensitivity of
the shuntresistor Amp and with the torque constant of the actuator Ke . The total
energy dissipation is estimated through the product of the torque and the velocity
difference of θ1 −θ2 , see figure C.1.
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Figure C.1: Simulation scheme used for estimate total energy dissipation.
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