
 Eindhoven University of Technology

MASTER

Learning how to solve the Buzz-wire game with a robot arm

Dorussen, R.J.G.

Award date:
2021

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/6c48c101-710f-40bb-91ab-e6f43c154b96


Learning how to solve the Buzz-wire game
with a robot arm

Graduation report

R.J.G. Dorussen

0968849

Master: Systems & Control
Department: Mechanical Engineering
Research group: Control Systems Technology

Supervisors: dr.ir. B. Vet (DEMCOM)
dr.ir. S.H.J. Heijmans (DEMCON)
dr. D.J. Antunes
prof.dr.ir. W.P.M.H. Heemels

Reports ID: CST2021.003

Eindhoven, February 5, 2021









Summary of notation
Both capital letters and lower case letters are used for variables and scalar functions. Quantities that
are required to be real-valued vectors are in bold and lower case. Matrices are in bold capitals. Capitals
written in calligraphic, indicate a set.

Symbol Description
⊂ subset of, e.g. A ⊂ Rn≥0
∈ is an element of, e.g. ak ∈ A
| . . . | absolute value
# cardinality or number of elements of a set, e.g. #A is the number of possible actions
arg maxa g(a) value of a at which g(a) takes its maximal value
α learning rate, α ∈ R
αe rotation of the wire at episode e, αe ∈ [0, 2π]
γ discount factor, γ ∈ [0, 1]
ε probability of choosing a random action, ε ∈ [0, 1]
θ rotation of the loop, θ ∈ [0, 2π]
θstep step-size in the rotation of the loop, θstep ∈ [0, 2π]
θ feature describing the rotation of the loop, θ ∈ Nnθ≤1
π policy, matrix of |S| × |A| containing the probability of taking action a in state s, π(a|s) ∈

[0, 1]
φ feature describing the relative angle between the wire and the loop, φ ∈ Nnφ≤1
a action, a ∈ A
ae amplitude of the sine wave of the wire at episode e, ae ∈ R
ak action at time k, ak ∈ A
amax maximum amplitude of the sine wave of the buzz-wire, amax ∈ R≥0
D all data in the replay buffer, set of experiences, Dk = {e0, .., ek}
dA,k distance from point A to the wire at time-step k, dA,k ∈ R≥0
dAI2 feature describing the distance to crosspoint of the wire with interval AC, dAI2 ∈ Nnd≤1
dBI1 feature describing the distance to crosspoint of the wire with interval BD, dBI1 ∈ Nnd≤1
dgoal distance from starting position along the buzz-wire to the finish, dgoal ∈ R≥0
dloop diameter of the loop, dloop ∈ R≥0
droi distance between loop center and point on the wire used to calculate feature φ, dloop ∈ R≥0
e episode, e ∈ N
ek experience of the agent, ek = (ok, ak, rk, ok+1)
fe frequency of the sine wave at episode e, fe ∈ [ 1

dgoal
, nwaves

dgoal
]

hobs height of the camera image, hobs ∈ R≥0
hpx height of a pixel of the camera image, hpx ∈ N≥1
ik index of the point on the wire to which the loop is projected
Gk discounted cumulative reward
k discrete time step, k ∈ N
L loss, quantifies the distance between target and real value of a training example, L ∈ R≥0
nθ number of segments to in which the loop angle is discretized, nθ ∈ N≥1
nφ number of segments in which the relative angle between the wire and loop is discretized,

nφ ∈ N≥1
ncheck number of checkpoints along the wire, ncheck ∈ N≥1
nd number of segments in which line segments BD and AC are discretized, nd ∈ N≥1
neval number of episodes in the validation set, neval ∈ N≥1
nwall number of elements in the walls at the ends of the buzz-wire, nwall ∈ N≥1
nwaves maximum number of waves in the sine wire, nwaves ∈ N≥1
nwire number of episodes in the buzz-wire, nwire ∈ N≥1
o observation, o ∈ O
ok observation at time k, ok ∈ O
p(sk+1|sk, ak) probability of transition to state sk+1 given state sk and action ak
Qπ(s, a) value of taking action a in state s under policy π, Qπ(s, a) ∈ R
Q∗(s, a) value of taking action a in state s under the optimal policy, Q∗(s, a) ∈ R
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r reward, r ∈ R
rk reward at time k, rk ∈ R
rwire thickness of the wire, rwire ∈ R≥0
s state, s ∈ S
sk state at time t, sk ∈ S
tloop thickness of the loop, tloop ∈ R≥0
T time step at the terminal state, T ∈ N≥1
u local coordinate in the 2D environment, longitudinal direction of the loop
ustep step-size in the longitudinal direction of the loop, ustep ∈ R≥0
W matrix containing the weights with size m× n, where m is the number of output neurons

and n the number of input neurons
w local coordinate in the 2D environment, lateral direction of the loop
wobs width of the camera image, wobs ∈ R≥0
wpx width of a pixel of the camera image, wpx ∈ N≥1
wstep step-size in the lateral direction of the loop, wstep ∈ R≥0
x global coordinate of the 2D environment
y global coordinate of the 2D environment
y vector containing the calculated outputs of a layer of neurons
A set of all possible actions, a finite subset of R
O set of all possible observations, a finite subset of R2nd+nθ+nφ

R set of all possible rewards, a finite subset of R
S set of all possible states, a finite subset of R3+2nwire

Eπ[X] expectation of random variable X under a policy π
N set of positive integers [0, 1, 2, ..]
N≥1 set of positive integers larger than 0, [1, 2, ..]
N≤1 set of positive integers smaller than or equal to 1, [0, 1]
R set of real numbers
R≥0 set of real positive numbers
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Abstract
AI and Machine Learning (ML) are expected to play crucial roles in the future world. New applications
of AI and ML range from smart irrigation systems in the food industry to systems regulating the power
grid in the energy sector. DEMCON Advanced Mechatronics is interested in the solutions that AI can
provide. In particular, ML combined with computer vision and robotics can enable applications such as
autonomous fruit picking robots.

A ML technique that fits the fruit picking robot example particularly well is Reinforcement Learning
(RL). In RL the robot arm (the agent) needs to learn which moves (actions) it should take given a certain
situation (observation) to pick fruit (maximize reward). Beforehand, it is unknown to the agent which
action for a given observation results in reward. Therefore, random actions are explored. After some ex-
ploration, the gained knowledge can be exploited to obtain more reward. At each time step the agent can
decide to take actions leading to reward based on current knowledge, or to take different actions to check
if these can result in more reward. In RL there is always a trade-off between exploration and exploitation.

As the fruit picking robot example is very complex, DEMCON first wants to develop a demonstrator
on the buzz-wire game. This problem is significantly less complex, allowing for a better understanding
of how RL problems are solved and lowering the time needed to train the agent. However, the training
time on the actual hardware might still be too high and requires human supervision. By creating a
model and using transfer learning, these problems can be resolved This graduation project focusses on
implementing an RL algorithm on a 2D model of the buzz-wire problem, to gain the competence needed
to solve more complex problems. To this effect, the agent is setup such that the environment can easily
be adapted for future work.

The goal of the buzz-wire game is to actuate the loop along the wire, without hitting it. Each time the
wire is hit, negative reward is given to the agent. When the finish is reached, the agent receives positive
reward. So in other words, the agent should maximize the cumulative reward over an episode through
the proper selection of actions based on the observations it receives. The observations are 4 features
which can be extracted from images supplied by a camera, that is attached to the wrist of the robot arm.

The RL algorithm that is implemented is the Deep Q-learning algorithm (DQN). This uses Artificial
Neural Networks (ANNs) to approximate the so-called optimal Q-function. A Q-function is defined as
the expected future reward given an action, observation and policy. The optimal Q-function is defined
similarly for the optimal policy. This function is approximated based on data. At each time step the
agent receives an observation and selects an action. The method used for the agent to generate actions
is an ε-greedy policy. This means that the agent picks the most promising action so far with probability
1− ε and with probability ε it picks a random action. Then the agent performs the selected action in the
environment and receives a reward and a new observation. This is all stored in the replay buffer, from
which samples are taken to update the Q-function.

The 2D discrete model of the buzz-wire setup is represented as a Partially Observable Markov Decision
Process (POMDP), because the environment is only partially observable as the camera does not capture
the complete wire. In this framework the state consists of the location of both the loop and the wire
and its shape. The action consists of translation and rotation of the loop. Based on whether the action
results in hitting the wire, reaching the finish or neither, the agent gets reward. The observation consists
of: the distance between the wire and the loop at both the front and back of the loop, the orientation of
the loop and the relative angle between the loop and the wire.

Using the agent and the 2D model, several polices have been trained. From training the policies, it be-
came clear that the orientation of the loop is useless as it does not correlate to any of the actions. Next
to that, comparing several policies shows that implementing continuous reward has a negative influence
on the final policy, even though the policy converges faster during training. When the policy is trained
on continuous reward, the minimum reward of the validation set is negative. This means that the loop
has hit at least one wire and got stuck. The policy trained without continuous reward does not have
this negative minimum reward. Therefore, itdoes not hit any wire of the validation set. Moreover, when
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tested on a wire outside the training set, the policy is still able to reach the finish. This shows that the
policy has generalized well.

Since the policy trained without continuous reward performs well in the simulations, it was implemented
on an experimental setup comprised of the Niryo One robotic arm and an ad-hoc wire. Here several
problems were encountered. A shape of the wire is modelled for the observation because the features
from the camera images can not yet be obtained. As the actual wire is shaped differently from this
modelled wire, the observations are not always accurate. Next to that, the robot arm drifts in other
directions than in which it moves. This results in the wire being hit, when the agent does not expect it
to.
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1 Introduction
Over the past decades, many research fields and industries have been interested in Artificial Intelligence
(AI) to increase productivity. For instance in the food industry, it is expected that AI and computer
vision are part of the necessary improvements that will increase the food supply [1]. This increase is
needed to sustain the future world population, which is expected to reach around 9.1 billion by 2050
[2]. At the same time other industries can benefit from infusing their systems and products with AI
[3]. Examples include management systems in the energy sector which can handle variable loads on the
power grid created by renewable energy sources [4], controllers for welding robots in the manufacturing
industry that improve weld quality [5] or even AI models in the medical sector that can help physicians
in detecting infection regions for the coronavirus 2019 (COVID-19) [6].

As one of the players in many of these industries, DEMCON Advanced Mechatronics is interested in the
solutions provided by AI, especially in combination with computer vision and robotics. For example,
AI can be key for creating an autonomous fruit picking robot, see Figure 1.1. Controlling a robot arm
with AI comes with many challenges. First of all, the robot should be able to recognize the fruit and
determine whether it is ripe or not. Additionally, twigs, leaves, or other fruit can obstruct both the
view of the ripe fruit and the path towards it. To enable the robot arm to detect the fruit and move
towards it while avoiding obstructions, information about the surroundings is needed. The surroundings
can change as leaves, twigs, and fruit all move with the growth of the plants. Furthermore, external
forces, such as wind, might move the leaves and twigs. All in all, there is a large amount of uncertainty
in the environment due to the vast amount of variation, which requires a general and robust solution.
Fortunately, models created with Machine Learning (ML) have shown to generalize a variety of tasks
well [7], from pouring liquids into containers of various sizes [8] to pushing randomly shaped object [9].

Figure 1.1: Example of a fruit picking robot.

An ML technique that fits the fruit picking robot example particularly well is Reinforcement Learning
(RL). In RL the agent needs to learn what actions it should take to maximize its reward [10]. This fits
the fruit picking problem since the controller of the robot arm (agent) does not know which moves result
in hitting twigs or leaves (environment) or reaching the fruit and picking it. To find out which moves
lead to picking the fruit and getting a reward the agent needs to try several moves (explore). When the
agent has discovered a sequence of actions which result in fruit being picked, it can use this knowledge
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to get reward (exploit). It knows that for certain observations a specific set of actions results in reaching
the observed fruit. Alternatively, the agent can keep exploring to find a sequence of actions that possibly
results in a larger reward in the future. RL is the only ML technique that considers the trade-off between
exploration and exploitation [11]. Next to that, the impact of a given action is not immediately clear.
Thus rewards are delayed and RL can handle this in contrast to other ML techniques such as Supervised
Learning.

RL uses several complex high dimensional and nonlinear functions, for example the policy (which is the
mapping from observations to the actions). Estimating high dimensional complex functions is difficult.
However, Artificial Neural Networks (ANNs) can approximate arbitrary nonlinear functions, as proved
by the universal approximation theorem [12]. For this reason, ANNs are utilized during this project.

Even though RL fits the fruit picking example, extensive knowledge on solving RL problems is needed
for the development of an algorithm due to the complexity of the problem. To obtain the required
competence, a simplified problem is studied first. This problem still has to include essential aspects of
the fruit picking example (path planning and avoiding obstacles) while omitting some of the complexity
(extra task of recognizing the fruit and changing surroundings). As a result, DEMCON has decided to
develop a demonstrator on the buzz-wire game, see Figure 1.2. The setup of this demonstrator consists
of the Niryo One robotic arm [13] with a camera placed on its wrist, which holds a metal loop, and a
flexible wire. The loop and the wire are both connected to a power source and a buzzer. This is done in
such a way that when the loop touches the wire, a closed electrical circuit is formed and the buzzer will
sound. The controller of the robotic arm has camera images as input and the joint angles of the robot
as output. The objective is to guide the loop along the wire without touching it.

(a) Robot arm at the starting position. (b) Robot arm halfway along the wire.

Figure 1.2: Buzz-wire setup in the lab.

There are several other benefits to using the buzz-wire setup. First of all, by reducing the complexity
of the task, the needed observation space is reduced and the agent is able to find reward quicker. Both
phenomena lower the training time. Secondly, the demonstrator is suitable for exhibitions, which helps
DEMCON to showcase the technology and bring it to the market. Lastly, it is possible to set interme-
diate target positions inbetween the start and final position to decrease the sparsity of the reward and
therefore decrease training time. This might be needed if the reward is too sparse and the training time
takes several days.

Learning how to solve the Buzz-wire game with a robot arm (2021) 2



To develop an RL algorithm for the buzz-wire, it needs to train on accurate data. While training on the
real setup will result in the most accurate training data, someone will need to supervise the system during
the entire training. Next to that, the training time is longer than compared to training on a simulation
or model as the simulated data can be acquired faster. Therefore, creating a simulator, hereafter referred
to as a digital twin, for transfer learning will be very useful.

A 3D model is still quite complex and requires a long time to train. Therefore, this graduation project,
focusses on creating a 2D discrete model of the buzz-wire problem. This reduces complexity further and
gives more insight into the buzz-wire problem as a whole. Then the agent is trained on this simulated
environment. In the 2D model, the number of inputs is reduced by replacing the camera images with
several features such as the orientation of the loop with respect to the camera. These features are directly
calculated from the environment, but in future work a model that converts the images to features can
replace this step [14]. Furthermore, the code will be compartmentalized such that both the agent and
environment can easily be changed. This helps facilitating the switch to a 3D environment or real world
setup in the future and possible changes in learning algorithms.

On the 2D discrete model a Deep Q-learning algorithm (DQN) [15] is trained. This algorithm uses ANNs
to approximate the optimal Q-function. A Q-function returns the expected discounted future reward
when starting in a given state, taking a given action, and thereafter following a given policy. The given
policy in the the optimal Q-function is an optimal policy. The approximation of the optimal Q-function
is based on data. The agent receives an observation, selects an action using a given method (which
balances exploration and exploitation), performs this action in the environment and receives a reward
and a new observation. Together, this is stored in the replay buffer, from which samples are taken to
update the Q-function. By randomly sampling data from the replay buffer, correlations within sequences
of observations are removed and therefore the variance of the updates is reduced. This helps the policy
to converge [15].

To summarize, the overall goal of the buzz-wire project is to develop a demonstrator, which shows the
capability of combining computer vision, RL and robotics on a buzz-wire setup. To gain the competence
needed to apply RL on the demonstrator, a 2D discrete model of the buzz-wire setup is created. This
graduation project, a collaboration between the University of Technology Eindhoven (TU/e) and DEM-
CON, focusses on training an agent on this 2D model utilizing DQN. The policy of the trained agent is
evaluated to check if the policy generalizes to wires it has not seen during training.

This thesis documents the project phase of the graduation project Learning how to solve the Buzz-wire
game with a robot arm. The outline of the remainder of this thesis is as follows. In Chapter 2 the main
challenges of the buzz-wire problem are identified and the main research questions are posed. Chapter 3
describes the general form of the DQN algorithm used to solve the buzz-wire problem. After that, a 2D
model of the buzz-wire demonstrator is presented in Chapter 4. The results of training the agent on the
2D model are shown in Chapter 5. Lastly, conclusions are drawn in Chapter 6 and recommendations are
done for future research.
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2 Problem statement
As mentioned in Chapter 1, DEMCON is interested in the combination of RL, computer vision and
robotics. To gain competence within DEMCON on RL and computer vision, a buzz-wire demonstrator
is created. The setup is used for experimental research and consists of:

� a buzzer
� a camera
� a metal loop
� a plywood frame
� a power source
� a flexible conducting wire representing the buzz-wire
� a stiff conducting wire representing the target position
� LED lights
� the Niryo One robotic arm [13]

The metal loop is attached to the end effector of the robotic arm, which also has a camera fixed to its
wrist. The images of this camera are the input for the controller. The controller of the robotic arm
controls the position of the metal loop and should move such that the metal loop does not touch the
flexible wire which goes through it. Both the metal loop and the flexible wire are attached to a power
source via a buzzer and one of the LED lights, see the electrical scheme shown in Figure 2.1.

To input-port IO1A

+−

R1 = 0.5kΩ

R2 = 1kΩ

P1

R3 = 12Ω

Hit

Finish

P2

Buzzer

LED

LED

R3 = 12Ω

Switch
R2 = 1kΩ

To input-port IO1B

State of
the loop

Figure 2.1: Electrical scheme of the setup.

Figure 2.2: Top view
of the buzz-wire setup
in the lab. The camera
is placed at the wrist
(green arrow).

When the metal loop touches the flexible wire, the (green) circuit is closed. As a result the buzzer
sounds, the LED is illuminated and the state of input port IOA1 changes (the voltage at P1 drops).
This indicates that the wire has been hit. Every time the robot sees this signal, a negative reward
is given to the agent. When the loop touches the stiff wire at the finish, the second (blue) circuit is
closed and the other LED is illuminated. As a result input port IOA2 state changes as the voltage at
P2 drops. This means that the loop has reached the finish and thus a positive reward is given to the
agent. The camera is attached to the wrist of the robot arm. A photo of the setup is shown in Figure 2.2.

The goal of the buzz-wire demonstrator is to actuate the loop along the buzz-wire to complete its track
based on the interactions with the environment, while avoiding to hit the wire. At each time step k ∈ N,
a camera image is given to the controller of the robot. Based on this observation, the robot needs to
decide which action (a translational/rotational step) to take. If an action results in the loop hitting the
buzz-wire, negative reward is given, and the robot moves to its previous position. If the loop completes
the buzz-wire, a positive reward is given and the game (episode) ends. If the loop does not hit or
complete the buzz-wire, the robot just moves to a new position and observes a new image. In Chapter 4
the observations, actions, rewards and their dynamics are explained in more detail. By maximizing the
reward gathered over an episode, the goal of the buzz-wire demonstrator is achieved. Therefore, the goal
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can be reformulated as:

Goal: Find a motion policy for the agent that maximizes the cumulative reward through the proper
selection of actions based on observations.

To achieve this goal, the agent needs to create a mapping from current observations o ∈ O to actions
a ∈ A, in other words a policy π. This policy should maximize the cumulative reward over each episode.
However, reward is not dependent on observations, but on the positions of the robot and the wire, which
are captured in the state s ∈ S. This state and its dynamics are described in Chapter 4. Using this
state, the optimal policy π∗ (the policy which maximizes the cumulative reward over each episode) can
be written as

π∗ = arg max
π′

∞∑
i=0

r(si, π[oi(si)]), for all s ∈ S, (2.1)

where si denotes the state at time i, oi the observation at time i (which depends on the state), r(si, ai)
the reward given the state si and the action ai at time i and π : O → A is the policy. We assume that
there is a terminal state sT , for which r(sT , ·) ≥ 0, making this a shortest path problem. When the goal
state is achieved, a transition to sT occurs. Because it is possible that the agent never reaches the finish,
the simulation environment is given an upper bound of 400 time steps.

2.1 Research questions
There are several challenges in finding such a policy. These challenges are summarized in terms of
research questions. First of all, a 2D discrete model of the buzz-wire problem is created to reduce the
complexity of the buzz-wire problem and gain a better understanding of the problem. This leads to the
first research question:

Research question 1: What are the interactions of the 2D model with the agent (what is the
action/ observation/ state of the environment/ dynamics of the environment/ reward)?

Knowing the inputs and outputs of the environment, the agent can be designed. However, there are
several known RL algorithms that can be implemented, such as Deep Q-learning [15] (DQN) or Soft
Actor Critic (SAC) [16]. Next to that, parameters such as the learning rate need to be set. The resulting
agent should be able to learn a policy that achieves the goal. Therefore, the learned policy should
converge. Thus, the second research question is:

Research question 2: How to define an RL architecture and choose its parameters such that the
policy converges?

Even if the policy of the agent converges, problems may still occur when the reward function is not
defined properly. First of all, when there are few rewards and the reward function is sparse, it may take
a long time before the policy converges. This can be solved by defining subtasks for which reward can
be received or by using a heuristic such as the distance to the finish. However, this might lead to a
bad policy that does not reach the finish, if the subtask or heuristic is not chosen adequately [17]. For
example, using the distance to the finish as a heuristic can be problematic when the path of the wire
moves away from the finish. Therefore, the third research question is as follows:

Research question 3: How to choose the reward function to speed up learning?
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3 The learning algorithm
As stated in Chapter 2, the overall goal of this graduation project is to implement an RL algorithm on
the 2D model described in Chapter 4, such that the cumulative reward of each episode is maximized for
any random wire. Next to that, the following requirements are set for the agent:

(i) The agent should be able to guide the loop to the finish within 60 seconds using the learned policy.
(ii) The path of the buzz-wire is unknown to the agent and changes between episodes, which means

the policy needs to be general enough that it can complete any path.
(iii) The loop is not allowed to hit the buzz-wire.
(iv) The agent has to make decisions based on camera images (or features derived from the images).
(v) The training time of a new policy in the simulation environment should be within the time frame

of a few days on a laptop.
(vi) The agent should be able to work with interchangeable environments such as 2D models, 3D

simulations, or the experimental setup.

Since one of the requirements is to guide the loop to the finish within 60 seconds, the optimal policy
should try to make moves that lead to the finish as quickly as possible. This is achieved by maximizing
the sum of the discounted future reward, for which we have to introduce the discount factor γ ∈ [0, 1].
The idea is that a reward received i time steps in the future is only worth γi times what it would be
worth if it was received immediately [10]. So, when the agent tries to maximize the discounted reward,
it is incentivized to take those actions that lead to the finish the quickest. The sum of the discounted
future reward Gk at time step k ∈ N is written as

Gk =

∞∑
i=0

γirk+i+1, (3.1)

where rk+i+1 is the reward returned by the environment i + 1 time steps after time step k. As long as
the discount factor is smaller than one, this sum will be bounded. When the discount factor is set to
zero, then only the immediate reward is important.

3.1 Deep Q-Learning (DQN)
The applied RL algorithm is a Deep Q-learning algorithm (DQN) [15]. This algorithm is an extension of
tabular Q-learning algorithms [11] and applies to systems described by (Partially Observable) Markov
Decision Processes. As mentioned in Chapter 3, the problem tackled here can be formulated as a POMDP.
The goal of the algorithm is to find the mapping from states to actions that maximizes Equation (3.1).
However, the problem is that many actions have no immediate reward, while they might be instrumental
in getting to the reward eventually. As a result, it is hard to quantify how good any given action in
a given state is. So instead, we consider the discounted future reward that can be expected by taking
an action in a given state and then following a certain policy π. This leads to a so-called action-value
function or Q-function, which is defined as [18]

Qπ(s, a) := Eπ
[∑∞

k=0 γ
krt+k+1

∣∣∣ st = s, at = a
]

for all s ∈ S, and for all a ∈ A. (3.2)

Using Equation (3.2) different policies can be compared. A policy π is better than a policy π′ if and
only if the action-value function for all states and actions is larger or equal. There is always at least one
policy better than or equal to all other policies. Optimal policies are denoted by π∗. There might be
more than one optimal policy, however they all have the same action-value function Q∗, which is defined
as [18]

Q∗(s, a) = max
π

Qπ(s, a) for all s ∈ S, and for all a ∈ A. (3.3)

This optimal action-value function follows an important identity known as the Bellman equation [19].
The reasoning is that if the Q-value at the next time step is known for all possible actions a′, then the
optimal strategy is to select the action that maximizes the expected value of r + γQ∗(s

′, a′).

Q∗(s, a) = Eπ
[
r + γ ·max

a′
Q∗(s

′, a′)
∣∣∣ s, a] . (3.4)

In Q-learning algorithms an iterative update based on Equation (3.4) is used [15]. This results in an
estimated action-value function that converges to the optimal action-value function under the assumption
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that the policy interacting with the environment has a nonzero probability of selecting all actions. The
estimated action-value function at iteration i is written as

Qi+1(sk, ak) = Qi(sk, ak) + α
(
rk+1 + γ ·max

a
Qi(sk+1, a)−Qi(sk, ak)

)
, (3.5)

where α ∈ R≥0 is the learning rate. When i goes to ∞, Qi converges to Q∗. The difference between
normal Q-learning and DQN is that in DQN an Artificial Neural Network, also called a Q-network, is
used to approximate the optimal action-value function Qi. This Q-network, Q(s, a;Wi) with Wi as the
weights of the network, is trained by adjusting the weights at each iteration i to such that the mean
squared error of the Bellman equation, Equation (3.5) with Qi replaced by Q(s, a;Wi), is reduced. This
results in the following loss function for the Q-network

Li(Wi) =
(
r + γmax

a′
Q(o′, a′;W−

i )−Q(o, a;Wi)
)2
, (3.6)

where W−
i are the weights of Q-network for some previous iteration. Using a Q-network can result in

the policy not converging. This can be caused by the correlations in the sequence of observations. Next
to that, changes in the action-value function effect the policy and therefore the data distribution can
shift drastically. This is resolved by implementing a replay buffer for experience replay [15]. Storing
sequences in a replay buffer and then sampling data randomly from this buffer, has three advantages.
First, experiences sampled from the sequences are potentially used in many updates, which allows for
greater data efficiency. Secondly, the correlation between consecutive samples is broken reducing the
variance of the updates. Third, the data of the next samples is gathered using the current policy. If the
maximizing action changes, the data distribution also switches. This can lead to feedback loops where
the parameters of the network Wi get stuck in a poor local minimum or even diverge [20]. By using
experience replay the policy changes slower resuling in a smoother change of the data distribution and
avoiding oscillations or divergence. As a result the policy converges.

3.2 Data collection
The replay buffer needs to be filled with experience tuples. An experience tuple consists of an observation,
an action, a reward and the next observation, ek = (ok, ak, rk, ok+1). To gather experiences, the agent
selects and executes actions in the environment. Various methods to select an action are possible. The
first option is to select the action that maximizes the Q-value. This action is called a greedy action and
is written as [10]

a = arg max
a′

Qπ(s, a′). (3.7)

By taking this greedy action each time, the current knowledge is exploited to maximize the immediate
reward. No time is spent sampling actions, which seem to be inferior, to see if they might be better. An
alternative option is to take a random action with a probability ε ∈ [0, 1] and otherwise behaves greedily.
This action selection method is called the ε-greedy method and results in

a =

argmax
a′

Qπ(a′) with probability 1− ε+ ε
#A

any other action a′ with probability ε
#A

(3.8)

where #A is the number of possible actions. Using the ε-greedy method, the agent will sometimes
take a random action and explore. However, it will also take greedy actions and exploit its knowledge,
which leads to reward. Having a good balance between exploration and exploitation is important for the
convergence rate of the learning algorithm. Especially at the start, the agent should explore more. As
a relatively good policy is found, exploration becomes less important. Therefore, the DQN algorithm
utilizes the ε-method where the ε is decaying.
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4 Modelling the 2D environment

As mentioned in Chapter 1, this graduation project focusses on training an RL algorithm for the 2 di-
mensional model of this buzz-wire setup. RL algorithms use the framework of Markov Decision Processes
(MDPs) to describe the relation between the agent and the environment [10]. However, the controller
of the robot arm receives camera images showing only a part of the wire. Thus, the environment is
only partially observable and for that reason the framework of a Partially Observable Markov Decision
Process (POMDP), see Figure 4.1, applies.

Agent

Environment

Action
ak

RewardObservation
rkok rk+1

ok+1

sk+1 State
sk

2D model

3D simulation

Experimental setup

Figure 4.1: The agent-environment interaction in a Partially Observable Markov Decision Process [10]. The
vertical line after the environment represents the end of the time step.

The general framework of a POMDP is as follows. At each time step k ∈ N the agent receives an
observation ok ∈ O of the environment. Based on this observation, the agent has to select an action
ak ∈ A. The action causes the environment to transition from the state sk ∈ S to a new state sk+1 with
probability p(sk+1|sk, ak) (in our case this will be a delta function). The new state results in a reward
rk ∈ R (based on whether the wire is hit/ end of the wire is reached) and a new observation ok+1. In the
next sections the state, action, transition, observation and reward of the 2D environment are explained.

4.1 State

In a 2D model the flexible buzz-wire needs to be contained within a single plane. The translation and
rotation of the loop are restricted to this plane as well. Therefore, the position and the orientation of
the loop at time step k ∈ N can be described with 2 coordinates and 1 angle

[
xloop,k, yloop,k, θloop,k

]>.
Knowing the position and rotation of the loop would be enough to determine if the loop hits the wire, if
the shape of the loop and the shape and position of the wire are given. However, the shape of the wire
is changed between games (episodes e ∈ N). Thus, the state should contain information about the wire
shape. Therefore, x and y coordinates of nwire points along the wire are included in the state resulting
in

sk =
[
xloop,k yloop,k θloop,k xwire,e ywire,e

]>, (4.1)

where xwire,e and ywire,e are the global coordinates of nwire points along the wire in the order in which
they are encountered. Thus, the points start from the starting position increase towards the target
position. The target position is defined as the first point on the wire that is at least a distance dgoal
removed from the start (during the training in Chapter 5 dgoal was set to 100). The state sk is chosen
for three reasons. First of all, the dynamics of this state are relatively simple. Secondly, this state
contains enough information to calculate the reward (and observation). Lastly, using this state the 2D
environment can be visualized, as shown in Figure 4.2.
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Figure 4.2: The state of the loop is described by the global coordinates (x and y) of the center of the loop (black
point) and the angle θ. The layout of the wire is given by the global coordinates of the points on the wire (red
points). A local coordinate system (u and w) is attached to the loop.

4.2 Action
The robot arm can move in three ways: translate along the longitudinal axis of the loop u, translate
along the lateral axis of the loop w or rotate the loop around its centre θ. The positive directions for
each move are shown in Figure 4.3. With the assumption that the speed is low, the moves are discretized
to +1, 0 or −1 times the step-size. The different moves can also be combined resulting in 27 possible
actions. The velocity is normalized, to prevent the combinations of translations from going faster than
any single translation.

6

-6

0

3

-3

6 -603 -3

D

Figure 4.3: The direction of the actions, given a orientation of the loop.

4.3 Transition
Given an action, the new state sk+1 can be calculated. The layout of the wire does not change during an
episode but is resampled from a subset of wires (see Appendix B) between episodes. Thus, the actions
only change the position and rotation of the loop. This is done by adding the move, after converting it
to the global coordinate system (x, y), to the previous state. This results in

xloop,k+1 = xloop,k + cos(θloop,k) ·∆uk − sin(θloop,k) ·∆wk
yloop,k+1 = yloop,k + sin(θloop,k) ·∆uk + cos(θloop,k) ·∆wk
θloop,k+1 = θloop,k + ∆θk

, (4.2)

where ∆uk is the longitudinal translation, ∆wk is the lateral translation and θstep,k is the rotation.
However, when the loop hits the wire in this new position, then the loop is returned to the position
before the action. How to calculate whether the loop hits the wire, is explained in the next section.
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4.4 Reward
In the buzz-wire setup the diameter and thickness of the loop, dloop and tloop, respectively, the thickness
of the wire rwire and the distance to the target position dgoal are fixed. Using these parameters and the
current state, it is determined whether the wire is hit or not. Given the position and orientation of the
loop the global coordinates of the inside corners of the loop A, B, C, D can be calculated. Then the
distances from these points to the discretized points on the wire are calculated. This can be expressed
as

dA,k =
√

(xloop,k + dloop/2− xwire,e)2 + (yloop,k − tloop/2− ywire,e)2
dB,k =

√
(xloop,k + dloop/2− xwire,e)2 + (yloop,k + tloop/2− ywire,e)2

dC,k =
√

(xloop,k − dloop/2− xwire,e)2 + (yloop,k + tloop/2− ywire,e)2
dD,k =

√
(xloop,k − dloop/2− xwire,e)2 + (yloop,k − tloop/2− ywire,e)2

, (4.3)

Then the minimum of these distances is taken to get the minimal distance between the wire and the loop
dwire,k. If this distance is smaller than the radius of the wire rwire, then the loop is hitting the wire and
negative reward is given to the agent. This is the red case in Equation (4.6).
To determine whether the loop has reached the finish, the point on the wire that is the closest to the
center of the loop is found. The index of this point at time step k is calculated as

ik = argmin
j∈N

(√
(xloop,k − xwire,e,j)2 + (yloop,k − ywire,e,j)2

)
. (4.4)

As mentioned in Section 4.1, the index of the points along the wire increase from the start towards the
finish. The finish is defined as the first point along the wire for which the distance to the start (at
coordinate 0, 0) is greater than or equal to dgoal. This results in

igoal,e :=

{
min (j)

∣∣∣ √(xwire,e,j)2 + (ywire,e,j)2 ≥ dgoal
}

(4.5)

If the index of the loop ik at time k is greater than or equal to the index of the finish igoal,e at the current
episode e, then the loop has reached the finish. This means a positive reward is given to the agent, as
shown by the green part in Equation (4.6), and the episode ends.

Next to the rewards for reaching the finish and hitting the wire, a small reward can be given for pro-
gressing along the wire. The progress is calculated by comparing the current and previous projection of
the loop on the wire. This is the blue part of Equation (4.6). Each reward (rprogress, rfinish or rhit) can
be turned off by setting its value to 0. The total reward function is written as

rk =
rprogress
nwire

(ik − ik−1) +


rhit if dwire,k ≤ rwire
rfinish if dwire,k > rwire and ik ≥ igoal,e
0, else

. (4.6)

4.5 Observation
As mentioned in Chapter 1, the controller in the real system observes images from the camera and the
joint angles. To lower the amount of inputs (every pixel is an input) and reduce computation time for
the 2D model, the observation is reduced to features, which can be extracted from the images. The 4
features included are shown in Figure 4.4 and consist of

(a) 2 features (dBD,dAC) that describe the distance between the intersection of the wire with the front
(in interval BD) I1 and back (in interval AC) I2 of the loop and the left side of the loop (points A
and B). These features are shown in Figure 4.4a.

(b) 1 feature which describes the orientation of the loop θ with respect to the global coordinate system,
see Figure 4.4b.

(c) 1 feature describing the relative angle between the loop and the wire φ. This is parametrized by
the crossing point I4 of the wire with a half-circle in front of the loop as shown in Figure 4.4c.

The representation of the features are one-hot encoded, meaning the feature space is discretized. This
is done to avoid scaling problems (related to activation functions in the neural network of the agent) as
well as recurrence problems (for example -π is close to 0.99π).
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(a) The distance to the wire at the front
and back of the loop (dBD,dAC).

(b) Orientation of the loop with respect
to the camera θ.

(c) Orientation of the wire with respect
to the loop φ.

Figure 4.4: The features which form the observation of the 2D model.

To summarize, the agent (the robot arm) interacts with the environment (in this case the 2D model),
via a sequence of actions, observations and rewards. At each time step k ∈ N the agent selects an action
ak from the set of possible actions A = 0, ..., 26. The actions is performed in the 2D model, modifies its
internal state sk → sk+1. This change in the environment is observed via the features (dBD,dAC ,θ,φ)
in the observation ok+1. In addition the agent receives a reward rk. The goal of the agent is to select
the actions such that the future discounted return, which is calculated by Equation (3.1), is maximized.
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5 Performance and validation of the trained policies
Now that both the agent and the environment are defined, policies can be trained and their performance
can be evaluated. The first policies did not perform well on the environment, due to several bugs and
additional problems explained in Appendix E. These problems were mainly caused by how the actions
were defined. After this was solved, two policies were trained. Policy A was trained on an environment
with continuous rewards and policy B was trained on an environment without continuous reward. By
comparing the performance of these policies, the impact of the continuous reward has been analysed.
The performance and validation of both policy A and B can be found in Section 5.1 and Section 5.2
respectively. The generalization of both policies was also tested by applying them to a different wire, see
Section 5.3. Lastly, policy B was implemented on the buzz-wire setup. The results of this simulation are
shown in Section 5.4.

In the environment used to train both policy A and B, the loop moves in local coordinates, see Figure 4.2.
The environment sends the ground truth features as the observations. Training on the ground truth
features is useful because if the agent cannot find a policy based on the ground truth, it will not be
able to learn a policy on an estimation of these features. In that case, the features themselves should
be changed. More settings of the environment on which policy A and B were trained, can be found in
Appendix D. There is only one difference between the environment an that is the reward for making
progress rprogress. While training policy A, this reward was set to 2000. During the training of policy
B, it was set to 0.

5.1 Training policy A on an environment with continuous reward
In Figure 5.1 the performance of policy A during training is plotted. The performance of the policy
is evaluated with four categories: the average length of an episode (Figure 5.1.A), the average reward
per episode (Figure 5.1.B), the maximum reward achieved in one of the episodes (Figure 5.1.C) and the
minimum reward achieved in one of the episodes (Figure 5.1.D). The average length of an episode should
be minimized, since the policy should solve the wire as quickly as possible. On the other hand, the
average reward per episode, the maximum reward and the minimum reward should all be maximized.

Figure 5.1: The performance of policy A during training. In each plot two lines are shown: the training data
and the validation data. During training actions are chosen using the ε-greedy method and the wires are random.
During validation the greedy action is always taken and the set of wires is fixed.
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As shown by the maximum reward (Figure 5.1.C), the agent immediately learns to reach the finish for
a few validation wires (in orange). This is because going in the right direction is already rewarded. So,
if a wire has no corners and the agent knows it has to move forward for reward, it can already reach the
finish. Since the agent quickly learns the direction to move in, the average episode length (Figure 5.1.A)
of the validation data lowers quickly and seems to be near its minimum after 37000 training steps. In a
similar way, the average reward per episode (Figure 5.1.B) has increased to 2255.

The validation data shows that the agent learns quickly, but the average reward per episode (Figure 5.1.B)
during training lags behind. This is explained by the fact that the ε-greedy action selection method is
used instead of the greedy method that is used for the validation set. It also explains why the minimum
cumulative reward (Figure 5.1.D) of the validation data is much lower than the minimum reward of the
training data. After the wire is hit, the policy during the validation will repeat this move 400 time steps
as there is no exploration. The training policy on the other hand will explore other moves, due to the
ε-greedy method. These might not hit the wire and thus the minimum reward will not decrease as much.
However, the training policy will become greedier each epoch as the ε gets lowered. For this reason, the
lowest minimum reward is found at the end of the training session.

After 65000 training steps the average reward of the validation (shown in orange in Figure 5.1.B) is
still not stabilized at the maximum reward. Instead it fluctuates below it. This can be explained by
the projection of the loop on the wire near corners. To be able to make the corner, there needs to be
enough space between the loop and the wire at the outside of the corner to be able to turn around θ.
In Figure 5.2a there is not enough space to make the corner so in this case the loop should be moved in
the negative w direction. However, doing so leads to a negative continuous reward as the projection on
the wire P is moved backwards, see Figure 5.2b.

(a) Situation in which the loop is not
able to make the corner.

(b) Situation in which the loop can
make the corner.

Figure 5.2: The projection of the loop on the wire at a corner

To summarize, while the reward for making progress helps the agent to quickly figure out which direction
to move in, it is counterproductive in the long term as it prevents the agent from learning the sequence
of moves needed to turn through a 90 degree corner. This is caused by actions that, while necessary,
move the projection back along the wire. As a result the agent is receives immediate negative reward,
and learns to not do these moves anymore.

5.2 Training policy B on an environment without continuous reward
The performance of policy B during training is plotted in Figure 5.3. For the first 40000 training steps
the agent barely knows what moves to make. The reward collected during training is only negative, since
the maximum reward is negative (blue line in Figure 5.3.C). As a results the agent only learns how to
avoid the wire during these first 45000 training steps, but not how to reach the finish. This is shown
by the fact that both the maximum (orange line in Figure 5.3.C) and minimum return (orange line in
Figure 5.3.D) of the validation both go to 0. From the moment the loop has reached the finish once
in the training data, the agent quickly learns what moves it should take. The average episode length
(Figure 5.3.A) converges to around 150 and the average return (Figure 5.3.B) to 2000. This means that
the learned policy has maximized the average reward as the maximum reward (Figure 5.3.C) is also 2000.
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Figure 5.3: The performance of policy B during training. In each plot two lines are shown: the training data
and the validation data. During training actions are chosen using the ε-greedy method and the wires are random.
During validation the greedy action is always taken and the set of wires is fixed.

The policies learned in training session 1 and 2 are shown in Figure 5.4 and Figure 5.5 respectively. Both
figures show that there is no relation between the agent angle feature θ and the actions. This means that
this feature is obsolete as the policy does not rely on it. Furthermore, these figures show that the move
forward in the u direction and turning rely mostly on feature φ. The difference between the policies can
be found in how the lateral move w responds to φ. The policy trained on the continuous reward has a
clear preference for lateral movements. This can be explained by using Figure 5.2b again. Given this
situation the agent get positive continuous reward when moving in the positive w direction and negative
reward for the other direction. The policy of the second training session does not have this incentive and
therefore is not orientated as such.

0

0

0

+1

−1

+1

−1

+1

−1

θ

w

u

0 9 18 39
dBD dAC θ φ

Feature

A
c
t
io
n

Figure 5.4: Covariance between the features and ac-
tions under the policy A.

0

0

0

+1

−1

+1

−1

+1

−1

θ

w

u

0 9 18 39
dBD dAC θ φ

Feature

A
c
t
io
n

Figure 5.5: Covariance between the features and ac-
tions under the policy B.

Learning how to solve the Buzz-wire game with a robot arm (2021) 15



5.3 Performance on wire with four corners to the left
The performance of both policies has been evaluated on a wire with four consecutive 90 degree corners
to the left, to see whether the policies are able to generalize to a different wire as well. This wire with
four corners (C1, C2, C3, C4), shown in Figure 5.6, is not part of the training set. On the other hand, the
main parts of the wire, such as the 90 degree corners and the straight parts, are still there.

x

y
θ

C1 = (-35.2, -3.2)

C2 = (-32.0, -38.4)

C3 = (73.6, -28.7)

C4(64.0, 76.9)

start

finish

Figure 5.6: Wire with four 90 degree corners in the same direction.

The policy of training session 1 is not able to traverse this wire, hitting the wire at the first corner to
the left, as shown by Figure 5.7. The policy of the second training session performs much better. This
policy is able to make all corners (final corner is shown in Figure 5.8) and reach the finish. This indicates
that the policy of the second training session generalizes much better than the policy of the first training
session. This is most likely caused by the continuous reward discouraging actions needed to make the
corner, as was illustrated by Figure 5.2a and Figure 5.2b.

Figure 5.7: Policy A getting stuck at the first corner. Figure 5.8: Policy B turning through the final corner.
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To summarize, the results show that policy B performs better than the policy A. Policy B is able to
complete almost all the wires in the validation set as the average reward per episode (orange line in
Figure 5.3.B) is almost equal to the maximum reward gained in a episode. On top of that, the policy
is able to complete the wire with four corners. Based on these results, policy B seems to be able to
complete any wire that is smooth or has 90 degree corners.

5.4 Performance on the real setup
Since policy B performed well on the 2D model, it is tested on the real setup as well. The policy requires
features as inputs. However, there was no model to obtain the features from camera images. Instead,
a wire is hard-coded into the agent, which also measures the position of the end effector of the robot.
Using these measurements and the wire, the features are calculated, see Figure 5.9.

Figure 5.9: The hard coded wire and the dimensions of the loop used to calculate the observation.

Using the calculated features, the policy decides which action to takes. Then, the robot takes this action
and moves to a new position. This new position is send back to the agent to calculate new features and
decide on the next action. The robot keeps doing this cycle until it has done 100 steps, hit the wire or
reached the finish.

With policy B the loop was actuated through the first corner, along the straight part and hit the wire at
the second corner, as shown Figure 5.10. This is partly due to the calculation of the observation, which
assumes the wire is shaped according to Figure 5.9. However, the real shape of the wire does not match
the hard-coded wire exactly, see Figure 5.11, leading to the observations being slightly off. As a result
the agent thinks there is room to move in x-direction, while in reality there is not.

Figure 5.10: The loop hitting the wire at
the second corner.

Figure 5.11: The shape of the hard coded wire (drawn in green)
versus the actual wire.
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Another reason for hitting the wire is the drift of the robot. During the movement of the robot, the
end effector drifts in several directions (such as the yaw and z direction, see Figure 5.13 and Figure 5.12
respectively). This is even worse when the robot is operating near the limits, which is the case during
the second turn. Due to these drifts, the loop hits the wire before the robot expects it.

Figure 5.12: The loop has drifted in z direction,
resulting in hitting the wire.

Figure 5.13: The loop has rotated around the y di-
rection due to drift, leading to hitting the wire.

To test how much the arm would drift, hysteresis experiments have been performed. In Figure 5.14 the
position and orientation of the loop are plotted. At each time step the robot arm receives the command
to change the x position according to the reference signal shown in Figure 5.14a and keep the other
dimensions equal to their previously measured values. During the experiment the x and y positions both
drift, see Figure 5.14a. The height y slowly decreases over time and the x position lags when going in
the negative direction. As a result the position of the loop is slightly different then expected. However,
the biggest difference can be seen in the rotations. According to page 18 the yaw after 20 steps is almost
0.4 radians higher. This drift matches the drift seen in Figure 5.13.

(a) The position of the loop. (b) The orientation of the loop.

Figure 5.14: The position of the loop while taking 20 steps in the positive x direction, followed by 40 steps in
the negative x direction and then another 20 steps in the positive x direction. The dotted lines are the reference
signals.

After the hysteresis experiment, policy B was tested again. To prevent the end effector from drifting in
the z position, pitch and yaw, they were all fixed to their initial value. By controlling the drift in this
way, policy B was able to successfully complete the buzz-wire, see Figure 5.15.
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(a) Starting position (b) Intermediate position (c) Final position

Figure 5.15: The robot arm in different positions during a successful run of policy B on the real-life setup.
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6 Conclusions and recommendations
6.1 Conclusions
The objective of this project was to implement an RL algorithm on the 2D model described in Chap-
ter 4, such that a motion policy is generated which reaches the finish without having the loop hit the
wire. Policy B, which is trained on an environment without continuous reward, is able to do this since
it reaches the maximum reward of 2000 for nearly every validation episode. In only one case the finish
is not reached, but the wire is not hit either. The policy also works on a wire with four consecutive
left corners, indicating the policy is generally applicable and not restricted to the specific wires it has
trained on. Next to that, policy B has been tested on the actual setup and was able to complete it once.
This shows that policy B is robust enough to handle the noise coming from the sensors in the real-life
setup. Given these results, the objective of this project has been achieved for the 2D model. Policy B
is able to maximize the cumulative reward through the proper selection of actions based on the obser-
vations. The features in the observation only give local information, while the reward (of reaching the
finish) is global. Notably, the learned policy is still able to use the local features to find the global reward.

In contrast to policy B, policy A only achieves the objective for wires that are shaped similarly to the wires
it has trained on. The average cumulative reward of this policy is significantly lower than the maximum
reward that can be achieved in a single episode. Moreover, for some wires the agent is repeatedly hitting
the wire resulting in the minimum cumulative reward of around -35000 for some episodes. Since the only
difference between the training of policy A and B is the presence or absence of the continuous reward, it
can be concluded that the continuous reward is hindering the long term learning process. As a result, the
average cumulative reward likely never reaches its maximum, even after training on 100000 mini-batches.

The analysis between of policy A and B leads to several insights. First of all, the loop angle feature seems
to be obsolete. After training the agent, the actions are not correlated with this feature at all. This
makes sense as the actual movement in u and w direction already rotates with the loop. Furthermore,
the actions are mostly dependent on the relative angle φ between the wire and the loop. In both policies
the plane of the loop is rotated in such a way that it is perpendicular to the wire. In addition, both
policies almost exclusively want to move forward in the u direction. The difference between the policies
can be found in the lateral movement w. While the lateral movement of policy A is orientated to one side
due to the continuous reward, policy B wants to move in either direction. In specific situations moving
to the other side is needed to turn around a corner. As a result, policy A does not reach the finish for
every wire.

6.2 Future work
While the goal of this project is reached with the development of the RL agent, there are many improve-
ments to be made before the agent can be implemented on the real-life buzz-wire setup and deal with
actual 3D wires. Therefore, the following recommendations are made:

1. An observer should be created that extracts the necessary features from images received from the
2D environment. Then this observer should be coupled with the policy and tested. The coupled
observer and policy should be validated to check whether the coupling is done correctly and the
extracted features match the ground truth features. If there are problems with the coupled system,
some retraining might be required. By implementing this observer, vision in the loop will be
achieved on the 2D model.

2. While the policy found in this graduation project is able to complete the objective with the given
numerically computed features, they might be restrictive on the performance. Thus, a better policy
might be found if the inputs to the policy are images of the 2D environment instead of the four
chosen features. In this case, the agent needs to learn the mapping from the images to the action
directly, instead of taking two separate steps (first to features, then to actions) and then coupling
them. The performance of this agent should be validated and compared to the performance of the
agent that uses the coupled networks.

3. To get the controller working on wires that are not constrained to a 2D plane, the 2D environment
should be replaced with a 3D environment. This 3D simulation environment can be used to develop
a policy, which can also work on the real buzz-wire setup. Even though observations in the 3D
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simulation will contain less noise than the observations supplied by real-world sensors, the trained
policy will be a relatively good initial policy.

4. Continuing from the previous recommendation, the learned policy should be implemented on the
setup using transfer. This might require some retraining again to deal with the noise introduced
by the sensors and camera. However, generating a policy using transfer learning will be quicker
than starting from scratch. Using wires the agent has not seen during training, the policy should
be evaluated.

5. The next recommendation is to look at some other learning algorithms than DQN. Algorithms, such
as Double Deep Q-learning (DDQN) [21], Proximal Policy Optimization (PPO) [22] or Soft Actor
Critic (SAC) [16], might be preferred in the 3D simulations or on the real setup. The performance
of the different learning algorithms should be compared, to see which learning algorithm actually
performs the best.

6. The final recommendation is to change the action from fixed translation/rotation steps in any
direction to variable translation/rotations. This complicates the policy the agent has to learn as
there are more actions possible. However, the new policy might perform much better as moving via
states that were not reachable before might allow the robot to complete certain wires. Going even
further, the output of the policy could be changed to the joints angles, speed of the joint angles,
the forces at the joints, or even the voltages given to each motor. While this might complicate
the policy even further, it could also improve the policy as its output can be directly send to the
motors of the robot arm. This allows for more control since not only the position, but the speed
and acceleration of each part of the robot are controlled as well.
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Appendix A Implemented agent
Just like the environment, the agent is set up in Python using the same libraries of Table C.1. Several
training parameters can be set, which determine the number of times interactions between the agent,
environment and replay buffer take place. These parameters effect the simulation time as well. They are
shown in Table A.1.

Name Setting Type
EPOCHS number of epochs integer
COLLECT STEPS PER EPOCH number of experiences gathered per epoch integer
TRAIN STEPS PER EPOCH number of mini-batches on which the agent is trained per epoch integer
BATCH SIZE size of the mini-batch integer

Table A.1: Training settings

The implemented agent is shown in Figure A.1. A training loop of the agent, also called an epoch, goes
as follows. First, the agent uses its initial policy to take a number of steps in the environment. The
amount of steps is set by the parameter COLLECT STEPS PER EPOCH. The data of each step is stored in
the replay buffer. Then a mini-batch of experiences is sampled from the replay buffer. The size of the
mini-batch is set with BATCH SIZE. Then the action-value function is updated and a new mini-batch is
sampled. The amount of times this repeated is set with TRAIN STEPS PER EPOCH. After this, the target
action-value function is updated. This completes the epoch. The number of epochs is set with EPOCHS.

2D env.

3D env.

Real setup

deep

Actor-critic

PPO

Q-learning

(ok, rk)ak

policy

Replay buffer

Environment

Learning algorithm

πi

Agent

batch of experience

ek = (ok, ak, rk, ok+1)

sk

Action
selection

Figure A.1: The interaction of the implemented agent and environment.
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The full algorithm of the agent is shown in Algorithm 1. This algorithm is implemented in TF-Agents
[23], because this allows the agent to switch between different learning algorithms such as DQN [15] and
DDQN [21].

Algorithm 1: deep Q-learning with experience replay.
Initialize replay memory D to capacity RB CAPACITY
Initialize action-value function Q with random weights W
Initialize target action-value function Q̂ with weights W− = W
For epoch = 1,EPOCHS do

Initialize the environment and obtain the initial observation o1
For t = 1,COLLECT STEPS PER EPOCH do

With probability ε select a random action at, otherwise select at = argmaxa Q(ot, a;W )
Execute action at in the environment and observe reward rt and observation ot+1

Store transition (ot, at, rt, ot+1) in the replay buffer D
End For
For t = 1,TRAIN STEPS PER EPOCH do

Create a minibatch of size BATCH SIZE by sampling transitions (oj , aj , rj , oj+1) from D

Set yi =

{
rj if episode terminates at step j + 1

rj + γmax
a′

Q̂ (oj+1, a
′;W−) otherwise

Perform a gradient descent step on (yi −Q(oj , aj ;W ))
2

with respect to network parameters W
End For
Set Q̂ = Q
Update the learning rate α and ε.

End For
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Appendix B Sets of 2D wires
Two different subsets of wires are explored. One subset of wires consists of sinusoids, while in the other
subset each wire has two perpendicular corners in opposite direction. Both wires are discretized in nwire
points, which are equidistantly taken along the x axis. The x and y coordinates of these points on the
sine wires are

xwire,e,0 =
[
0, . . . , dgoal

]
(B.1)

ywire,e,0 = ae · sin (xwire,e,sine · 2π · fe) (B.2)

where ae is the amplitude of the sine wave sampled from the range [−amax, amax] (with amax being
the maximum amplitude of the sine), fe is the frequency of the sine wave sampled from the range
[ 1
dgoal

, nwaves

dgoal
] (with nwaves being the maximum number of waves allowed in the wire) and dgoal is the

distance between the target position and the start.

The second wire set consist of two perpendicular corners and is defined as

xwire,e,0 =
[
0, . . . , dgoal

]
(B.3)

ywire,e,0 = be · g(xwire,e,corner). (B.4)

where be is either +1 or −1 and determines the order of the corners (first left then right or reversed) and
the function g is given by

g(x) =


−x for x ≤ 1

4dgoal

x− 1
2dgoal for 1

4dgoal ≤ x ≤
3
4dgoal

dgoal − x for x ≥ 3
4dgoal

. (B.5)

Both sets of the wire are rotated by a random angle αe. This results in the final x and y coordinates of
the wire being [

xwire,e
ywire,e

]
=

[
cos(αe) sin(αe)
− sin(αe) cos(αe)

] [
xwire,e,0
ywire,e,0

]
. (B.6)

Examples of both wires are shown in Figure B.1, where the blue wire is part of the first subset and the
red wire is part of the second subset.

Figure B.1: Examples of both wires. The blue wire is part of the sine wire subset and the red wire is part of the
corner subset.
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Appendix C Implementation of the 2D model
The 2D model of the buzz-wire is setup in Python (version 3.7.9). The required libraries and their
corresponding versions are shown in Table C.1. Next to that, the ’Robot Environment’ folder, should be
put in the working directory as well. This folder contains the script files of several environments.

Library Version
numpy 1.18.5
gym 0.17.2
opencv-python 4.4.0.44
matplotlib 3.3.1
imageio 2.9.0
tensorflow 2.3.0
tensorflow-probability 0.11.0
TF-agents 0.6.0

Table C.1: overview of used existing libraries.

To interact with the environment, an instance of the environment has to be created using the command
gym.make(...) [24], where the name of the environment is filled in on the dots. Names of several 2D
buzz-wire environments can be found in Table C.2.

Name Coordinates Observations
'RobotWireEnvDefault=v0' global camera image and end effector position
'RobotWireEnvDefault=v1' global the features discussed in Section 4.5
'RobotWireEnvDefault=v2' local camera image and end effector position
'RobotWireEnvDefault=v3' local the features discussed in Section 4.5

Table C.2: Implemented 2D buzz-wire environments, with the moves in local or global coordinates and the obser-
vations being features or camera image and end effector position.

The first two environments move the loop with respect to the global coordinate system (x, y), while the
last two environments move in the local coordinate system that is attached to the loop (u,w). Taking ac-
tion 16 results in different moves for these environments, as shown in Figure C.1. Next to the coordinate
systems, the observation space differs between the environments. The observation space can either be
the RGB values of the camera and the end effector position or the features (dBD,dAC ,θ,φ) mentioned
in Section 4.5.

(a) Situation before action is taken. (b) Situation after action in (x, y). (c) Situation after action in (u,w).

Figure C.1: Result of taking action 16 in the different environments.

Besides choosing the coordinate system and the observations space, other parameters of the environment
can be set. For example, the thickness of the wire rwire can be set to 2 as follows

1 env = gym.make( ' RobotWireEnvDefault=v3 ',thickness=2)
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Table C.3 shows the parameters of the environment that can be set via gym.make(...). For each parameter
the default value is given as well.

Name Symbol Input Type
Default
value

amp max amax maximum amplitude of the sine wire float 10
diameter dloop diameter of the loop float 10

distance roi droi
distance between center of the loop and point
to calculate wire angle

float 5

eval episodes neval
optional to fix the validation set, given
number is the size of the validation set

integer None

goal dgoal distance from start to target float 100
length tloop thickness of the loop float 1
n checkpoints ncheck optional, number of checkpoints on the wire integer 1

n ele wall nwall
total number of elements in the wall on both
ends on the wire

integer 1000

n ele wire nwire total number of elements in the wire integer 1000

n enc angle nφ
number of segments in which the angle
between the wire and the loop is discretized

integer 11

n enc circle nθ

number of segments in which the angle
between the loop and the camera is
discretized

integer 21

n enc line nd
number of segments in which the line
segments BD and AC are split

integer 9

n waves max nwaves maximum number of waves in the sine wire integer 2
obs ele h hobs height of the camera image integer 32
obs ele w wobs width of the camera image integer 32
obs pixel size h hpx height of a single camera pixel integer 1
obs pixel size w wpx width of a single camera pixel integer 1

percent sine
fraction of the wire set being sine wires when
switching between corner and sine wires

float 0.5

reset mode

what kind of reset happens after the wire is
hit (back to start, from checkpoint or
previous position)

string 'prev pos'

reward checkpoint rcheck reward given when a checkpoint is reached float 0

reward finish rfinish reward given when the finish is reached float 1000

reward hit rhit
reward given when the wire is hit (should be
negative)

float -100

reward progress rprogress reward earned for progressing along the wire float 0
seed optional to fix the environment to a single

wire
integer None

thickness rwire thickness of the wire float 1
theta step θstep step-size of the rotation float π

36

wire set
the chosen (sub)set(s) of wire(s), such as the
sine and corner wire

string 'switched'

x step ustep step-size of the longitudinal translation float 1
y step wstep step-size of the lateral translation float 1

Table C.3: Variables of the 2D buzz-wire environment
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With the instance of the environment created, it can be interact with it. This is done via the five
functions

� env.reset(x init,y init,theta init), which resets the environment and starts a new episode. The
inputs are optional, and define the starting position and orientation. Otherwise the default values
are 0 for the position and the angle is the derivative of the wire at the position (0, 0). The reset
function returns the loop position to this starting position and orientation. It also resets the
collected reward and time step to 0 and resamples the wire. The output of this function is the first
observation o0.

� env.step(action), which takes a step in the environment. The action ak that is fed to the function
is converted to a translation and rotation via Table C.4 (if the environments take actions in global
coordinates, then x is replaced by u and y by w). Then a check is done to see if the loop can
perform this move without hitting the wire. Is this possible, then the loop is moved to its new
position. Has the wire been hit, then the loop either stays at its current position ('prev pos'),
is returned to the last checkpoint ('checkpoint') or is returned to the starting position ('start')
based on the reset mode. After the loop has moved (or not), the reward rk can be calculated
using Equation (4.4) and Equation (4.6). From the new state sk+1, the new observation ok+1 is
calculated. The new observation ok+1, reward rk are returned by the function as well as a boolean
indicating if the episode has ended (which is only the case if the finish is reached).

Discrete action a Longitudinal
movement ∆u

Lateral movement
∆w

Rotation ∆θ

0 − 1√
2
ustep − 1√

2
wstep −θstep

1 − 1√
2
ustep − 1√

2
wstep 0

2 − 1√
2
ustep − 1√

2
wstep θstep

3 0 −wstep −θstep
4 0 −wstep 0
5 0 −wstep θstep
6 1√

2
ustep − 1√

2
wstep −θstep

7 1√
2
ustep − 1√

2
wstep 0

8 1√
2
ustep − 1√

2
wstep θstep

9 −ustep 0 −θstep
10 −ustep 0 0
11 −ustep 0 θstep
12 0 0 −θstep
13 0 0 0
14 0 0 θstep
15 ustep 0 −θstep
16 ustep 0 0
17 ustep 0 θstep
18 − 1√

2
ustep

1√
2
wstep −θstep

19 − 1√
2
ustep

1√
2
wstep 0

20 − 1√
2
ustep

1√
2
wstep θstep

21 0 wstep −θstep
22 0 wstep 0
23 0 wstep θstep
24 1√

2
ustep

1√
2
wstep −θstep

25 1√
2
ustep

1√
2
wstep 0

26 1√
2
ustep

1√
2
wstep θstep

Table C.4: Possible discrete actions and their translation in longitudinal and lateral direction and rotation.

� env.seed(seed), which seeds the random number generator. With this function, wires can be
reproduced. The input and output of this function is the seed.
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� env.render(mode), which visualizes the current state sk. There are three possible visualizations:
'human', 'rgb array' and 'full view'. They are shown in Figure C.2a, Figure C.2b and Figure C.2c
respectively. If the function receives no input, the 'human' mode is used. This mode plots a camera
image with an overlay of the exact outline of the wire and the loop. At the top of the plot the
position of the loop (xk, yk, θk), the previous action (∆uk−1,∆wk−1,∆θk−1) and the total reward
of that episode are shown. In this mode the total reward is returned. Changing the mode to the
'rgb array' representation removes the outline of the loop and wire in the plot. Moreover, the
output of the function is changed to the rgb-values of the plot instead of the total reward. The
final representation, 'full view' plots the whole wire, the loop and the features. In this mode the
output of the function is reverted back to the total reward of the episode.

� env.close(), which closes the visualization. This function is simply used to stop the visualization
of the current state.

(a) Camera view with overlay of exact
situation.

(b) The camera view without an over-
lay.

(c) Zoomed view of the environment
with the features.

Figure C.2: Visualizations of the environment.

To enable interaction with the learning algorithm in TF-agents, the gym environment is wrapped to
conform to the standard method used in TF-agents. While TF-agents can interact with the wrapped
environment, operations can not be parallelized resulting in a relatively slow algorithm. To speed up
the algorithm, the environment is wrapped again to a Tensorflow environment, which allows parallel
operations. Wrapping the environment is done as follows

1 env suited = suite gym.wrap env(env, discount=GAMMA) \\
2 env train = tf py environment.TFPyEnvironment(env suited)

where GAMMA is the discount factor γ. The first wrapper conforms the environment to the standard
TF-agents environments and the second wrapper creates the Tensorflow environment.
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Appendix D Settings of the training sessions
The settings of the training environment during training sessions can be found in the table below.

Environment settings
Training session of Training sessions with bugs
policy A policy B policy C policy D

amp max 20 20 40 20
diameter 10 10 10 10
distance roi 5 5 5 5
eval episodes 100 100 50 100
goal 100 100 100 100
length 1 1 1 1
n checkpoints 1 1 1 1
n ele wall 1000 1000 100000 1000
n ele wire 1000 1000 10000 1000
n enc angle 11 11 11 11
n enc circle 21 21 21 21
n enc line 9 9 9 9
n waves max 2 2 2 2
obs ele h 256 256 256 256
obs ele w 256 256 256 256
obs pixel size h 1

8
1
8

1
8

1
8

obs pixel size w 1
8

1
8

1
8

1
8

percent sine 0.75 0.75 .60 0.75
reset mode 'prev pos' 'prev pos' 'prev pos' 'prev pos'

reward checkpoint 0 0 0 0
reward finish 2000 2000 0 2000
reward hit -100 -100 -100 -100
reward progress 2000 0 2000 0
seed None None None None

thickness 1 1 1 1
theta step π

18
π
18

π
18

π
18

wire set 'switched' 'switched' 'switched' 'switched'

x step 1 1 1 1
y step 1 1 1 1

Table D.1: Environment parameters during the training sessions.

The training settings of the sessions are shown in the table below.

Environment settings
Training session of Training sessions with bugs
policy A policy B policy C policy D

ALPHA START 0.01 0.01 0.01 0.01
ALPHA END 0.0001 0.0001 0.0001 0.0001
EPSILON START 1.0 1.0 1.0 1.0
EPSILON END 0.05 0.05 0.05 0.05
GAMMA 0.2 0.2 0.2 0.2
EPOCHS 1000 1000 20 1000
COLLECT STEPS PER EPOCH 2000 2000 2000 2000
TRAIN STEPS PER EPOCH 100 100 100 100
BATCH SIZE 1000 1000 1000 1000
RB CAPACITY 1000000 1000000 1000000 1000000

Table D.2: Environment parameters during the training sessions.
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Network architecture
The neural network used during the training sessions of policy A, policy B and policy D to approximate
the action-value function consist of an input layer, an output layer and 5 times a fully connected layer
followed by a dropout layer. The dropout rate of the dropout layers is set to 0.1. The fully connected
layers all have 50 neurons. Only during training of policy C a different network was used. This other
network consisted of 2 fully connected layers with 50 neurons in them and no dropout layers. The input
and output layer of the network is unchanged as the features and number of actions were not altered.
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Appendix E Problems during training
At first, policies were trained on the environment that moves in the global coordinate system and has
a continuous reward. However, this complicated the reward function and made the policy hard to
understand, due to the reward function being defined along the longitudinal axis. Looking at the buzz-
wire, the loop will always make progress along the wire, when moving longitudinally (in the u direction).
This leads to a clear policy of trying to move forward whenever there is no large turn (φ very large or
small), compare policy D in Figure E.2 to policy C in Figure E.1. Thus the choice was made to switch
to the environment in which the moves are made in the local coordinate system instead of the global
coordinate system.
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Figure E.1: Covariance between the features and ac-
tions under the policy learned in an environment which
moves in the global coordinate system (policy C in Ap-
pendix D).
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Figure E.2: Covariance between the features and actions
under the policy learned in an environment which moves
in the local coordinate system (policy D in Appendix D).

The second bug that was encountered is related to the step size. The actions were defined as −1, 0 or
+1 times the step size in any directions. Steps in multiple directions were allowed as well. This resulted
in a policy that tried to rotate the move 45 degrees from the heading of the wire and then translate in
both the u and w direction, see Figure E.3.

Figure E.3: The agent getting stuck due to the large steps in wants to take in the forward and lateral direction.
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As a result the loop can take larger steps and reach the finish faster, compare Figure E.4a to Figure E.4b.
However, the larger step size and the orientation make the policy less robust and can lead to the agent
getting stuck as shown in Figure E.3. This second problem is solved by normalizing the step translation
such that the speed in any direction would be equal.

(a) Stepping in both u- and w-direction. (b) Stepping in the u-direction only.

Figure E.4: The travelled distance of two different moves when the step-size is not normalized.

After fixing both these problems, new policies were trained. These policies performed much better, as
shown by the results in Chapter 5.
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Appendix F Results of the hysteresis experiments on the Niryo
One robot arm

The hysteresis of the Niryo One robot arm was tested by moving the arm in a given dimension nsteps
in the positive direction, then moving it 2nsteps in the negative direction and finally moving it nsteps in
the positive direction again. If there is no hysteresis the robot arm should end in the same position as
it started in. The dotted lines show the positions and orientations the arm should move to.

Figure F.1a shows that the y position is not followed well in the positive direction. Moving in the positive
y direction, means the robot arm has to overcome gravity. This might explain why loop does not reach
the y position it should. As a result, the final y coordinate is lower than the starting y coordinate.
Looking at Figure F.1b, the pitch also has a large drift compared to the roll and yaw.

(a) The position of the loop. (b) The orientation of the loop.

Figure F.1: The position of the loop while taking 5 steps in the positive y direction, followed by 10 steps in the
negative y direction and then another 5 steps in the positive y direction.

Figure F.2a shows that there is no drift in the position when only changing the roll. This is because
the roll is changed by turning the final joint of the robot arm. Therefore, other joints that can influence
the position are not changed and thus there is no drift. As seen in Figure F.2b, the other rotations also
hardly drift because of this. Only the roll itself is not following the command signal well. This might be
caused by friction in the motor.

(a) The position of the loop. (b) The orientation of the loop.

Figure F.2: The position of the loop while taking 5 steps in the positive θ direction, followed by 10 steps in the
negative xθ direction and then another 5 steps in the positive θ direction.

Learning how to solve the Buzz-wire game with a robot arm (2021) 37


	0968849-Learning how to solve the Buzz-wire game with a robot arm
	0968849-Learning how to solve the Buzz-wire game with a robot arm
	CCF18022021
	0968849-Learning how to solve the Buzz-wire game with a robot arm
	0968849-Learning how to solve the Buzz-wire game with a robot arm
	0968849-Learning how to solve the Buzz-wire game with a robot arm
	0968849-Learning how to solve the Buzz-wire game with a robot arm
	Blank Page

