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Abstract— This paper presents a quasi-convex optimization
framework to compute the minimum-lap-time control strategies
of electric race cars, accurately accounting for the thermal lim-
itations of the Electric Motor (EM). To this end, we leverage a
previously developed thermally-unconstrained framework and
extend it as follows: First, we identify a thermal network model
of an interior permanent magnet EM comprising its shaft,
rotor, magnets, stator, windings, and end-windings, including
their individual loss-models. Second, we devise a convex battery
model capturing the impact of the state of energy on the
battery losses. Third, in order to cope with the nonlinearities
stemming from the transcription of the problem from time-
domain to a position-dependent representation, we leverage an
iterative algorithm based on second-order conic programming
to efficiently compute the solution. Fourth, we discuss the
optimality convergence properties and computational efficiency
of the proposed iterative algorithm by solving the problem
via nonlinear programming: we observe that the iterative
algorithm has a much longer computational time, but it always
converges in a predictable time, whilst the inital conditions
of the nonlinear solver strongly influence its performance, but
when it converges, is guaranteed a locally optimal solution.
Finally, we showcase our framework on the Le Mans racetrack.
A comparison with high-fidelity simulations in Motor-CAD
demonstrate that our proposed model can accurately capture
the temperature dynamics of the EM, revealing the end-
windings and the magnets to be the limiting components in
a cold-start and a long-run operation scenario, respectively.
Furthermore, our numerical results underline the considerable
impact of the EM thermal dynamics on lap-time, suggesting that
using a continuously variable transmission could significantly
improve lap-time with respect to a fixed-gear transmission.

I. INTRODUCTION

ELECTRIC racing has been receiving increasing attention
over the past decade, for instance, with the emergence

of the fully-electric Formula E racing championship and vari-
ous student electric racing competitions. As in any other class
of motorsport, the most important performance indicator is
the lap time: the time needed to complete one lap around
the race track. Whilst more conventional race cars rely on
thermally robust internal combustion engines as their prime
mover, electric race vehicles are solely propelled by electric
motors (EMs), which are more sensitive to the heating effects
during high power operation [1], [2]. Thus, when determining
the optimal control strategies of an electric race car, the
thermal behavior of the EM has to be accurately accounted

BT EM GB FD W
Pdc Pm Pgb Pfd

∆Eb ϑi

Paux

Ekin

Fig. 1. Schematic layout of the electric powertrain. It consists of a battery
pack (BT), an electric motor (EM), a transmission (GB) which is either
a fixed-gear transmission (FGT) or a continuously variable transmission
(CVT); and a final drive reduction gear (FD) connected to the wheels (W).
The arrows indicate the power flows between the components.

for in order to avoid detrimental damages compromising
its performance. To this end, this paper presents a quasi-
convex modeling and optimization framework to compute the
minimum-lap-time control strategies for the battery electric
race car shown in Fig. 1, accounting for the thermal strain
on the EM. Specifically, the proposed framework allows to
accurately characterize the impact of EM heating on the
achievable lap time of electric race cars, and to compare
the performance achievable with different transmission tech-
nologies.

Related literature: The problem studied in this paper
pertains to two main research areas. The first is devoted
to the time-optimal control of (hybrid) electric race cars. A
drawback of simultaneously optimizing the velocity profile
and the driving trajectory [2], [3] is that the problem becomes
highly nonlinear, hence an effective simplification consists
of condensing the vehicular dynamics and the expert driver’s
feeling into a maximum speed profile. This way, the resulting
time-optimal energy management problem can be solved
with a wide variety of methods, such as convex optimiza-
tion [4], [5], PMP [6], or a combination of approaches [7],
[8]. However, these methods lack accurate thermal models on
the component-level, or do not explicitly capture the impact
of the transmission on the achievable performance. The
second stream of research is devoted to the thermal modeling
of electric motors. Typically, this problem is addressed with
lumped-parameter thermal networks (LPTNs), computational
fluid dynamics (CFD), or finite-element analysis (FEA) [9].
While CFD and FEA can achieve very accurate results at
the expense of computational complexity [10], [11], LPTN-
based models are the most widely used, as they leverage
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equivalent thermal network representations to significantly
improve the overall computational tractability [12], [13].
Nonetheless, LPTN-based methods have not yet been applied
to racing. In conclusion, to the best of our knowledge,
there are no optimization methods to compute the time-
optimal control strategies for battery electric race cars, while
accurately capturing the temperature dynamics of the EM and
characterizing the impact of the transmission on the thermal
behavior and overall performance.

Statement of contributions: Against this backdrop, this
paper presents an extension of the quasi-convex optimization
framework presented in [14] to compute the time-optimal
control strategies of a battery electric race car, explicitly
accounting for the thermal constraints on the EM and the
impact of the transmission technology on the overall per-
formance. In particular, we first derive an almost-convex
model of the race car, including an LPTN capturing the
temperature dynamics of the EM and a state-of-energy-
dependent battery model. Second, we formulate the time-
optimal control problem and solve it using an iterative
algorithm based on convex programming. Third, we validate
our models with the high-fidelity EM simulation software
Motor-CAD [15]. Fourth, we showcase our framework with
case studies on the Le Mans track, whereby we compare
the performance of a fixed-gear transmission (FGT) and a
continuously variable transmission (CVT) in cold-start and
long-run racing scenarios. A preliminary version of this
work has been submitted to the European Control Confer-
ence [16]. In this extended version, we underline the time-
optimal-control policy regarding regeneration for abundant
or scarse battery eneragy availability. Moreover, we discuss
the efficiency and effectiveness of the proposed framework
by comparing solving time and optimality conditions with a
nonlinear solver.

Organization: The remainder of this paper is structured as
follows: Section II presents the almost-convex electric pow-
ertrain model including an LPTN capturing the EM thermal
dynamics, the time-optimal control problem and an iterative
algorithm to effectively solve it. We analyze the numerical
results stemming from different scenarios in Section III,
alongside a validation of the models and a discussion of the
optimality and convergence properties of the almost convex
iterative algorithm. We draw the conclusions and discuss
future research directions in Section IV.

II. METHODOLOGY

This section presents an almost-convex model of the
race car shown in Fig. 1, frames the time-optimal control
problem to be solved by an iterative solution algorithm and a
nonlinear solver. The mechanical modeling of the powertrain
and the iterative solution approach are inspired by the work
presented in [14]. In this paper, we identify and validate a
thermal network meticulously characterizing the temperature
dynamics of the EM’s components and an accurate state-of-
energy dependent battery model, which we include in the
minimum-lap-time control problem.

As shown in Fig. 1, the battery converts chemical energy
to electrical energy which is supplied to the EM. In turn,
the EM converts it into mechanical energy and heat losses.
The mechanical energy flows through the transmission and
the final drive before reaching the wheels, while the losses
heat up the EM. In this application, we consider an FGT
and a CVT for the transmission. The optimization of the
driving path is split from the powertrain control problem, and
the characteristics of the track and the vehicular dynamics
are condensed into the maximum speed profile vmax(s) as
a function of the position on the racetrack s, which can
be either measured or pre-computed [4], [5]. For the CVT-
equipped vehicle, the input variables are the motor force
Fm(s) and the transmission ratio γ(s), while we design
its maximum ratio γmax. For the FGT-equipped vehicle,
the transmission ratio γ1 is a design variable and Fm(s)
is the only input. The state variables of the problem are
the kinetic energy of the vehicle Ekin(s), the battery state-
of-energy Eb(s), and the temperatures of the nodes of
the thermal network, specifically—considering an interior
permanent magnet EM— of the shaft ϑsf(s), the permanent
magnets ϑpm(s), the rotor ϑrt(s), the windings ϑwd(s), the
stator ϑst(s), and the end-windings ϑew(s).

A. Minimum-lap-time Objective

In line with [4], [14], we formulate the time-optimal
control problem in space domain, so that it becomes a finite-
horizon optimal control problem accommodating position-
dependent parameters such as the maximum speed profile.
This way, our framework needs to be defined in terms of
forces instead of power. The translation to power can be
performed in post-processing, using the relation between
force and power F = P/v to obtain the power from the
optimal solution P ?, using the force F ? and speed v?.

Our objective is to minimize the lap time T :

min T = min
∫ S

0

dt
ds

(s)ds, (1)

where S is the length of the track and dt
ds (s) is the lethargy,

i.e., the inverse of speed v(s). Since speed and lethargy are
both optimization variables, it is necessary to establish a
convex connection between the variables, defined as

dt
ds

(s) · v(s) ≥ 1, (2)

which can be written as a second-order conic constraint that
will hold with equality at the optimum [4].

B. Longitudinal Vehicle Dynamics

This section presents a convex model of the longitudinal
vehicle dynamics in space domain taken from [4], [14]. The
kinetic energy is related to speed in a relaxed convex form
as

Ekin(s) ≥ mtot · v(s)2/2, (3)

where mtot is the total mass of the vehicle. The kinetic
energy’s dynamics are given by

d
ds
Ekin(s) = Fp(s)− Fd(s), (4)
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where Fp(s) is the propulsion force and Fd(s) is the drag
force. The drag force is defined as

Fd(s) = cd ·Af · ρ · Ekin(s)/mtot

+mtot · g · (sin(α(s)) + cr · cos(α(s))), (5)

where cd is the drag coefficient, Af is the frontal area of
the vehicle, ρ is the air density, g is the Earth’s gravitational
constant, α(s) is the inclination of the track, and cr is the
rolling friction coefficient. The propulsive force is modeled
in a relaxed convex form as

Fp(s) ≤ min (ηfd · Fgb(s), Fgb(s)/ηfd) , (6)

where Fgb(s) is the force on the secondary axle of the
transmission. We condense the racetrack characteristics, the
vehicular dynamics and the expert driver’s feeling into a
maximum speed profile, which we enforce as a maximum
kinetic energy constraint:

Ekin(s) ≤ Ekin,max(s) = mtot · v2max(s)/2. (7)

Finally, considering a free-flow racing lap, we impose iden-
tical speed at the start/finish line as

Ekin(0) = Ekin(S). (8)

C. Transmission

In this section, we derive a model of the transmission. The
speed of the electric motor is expressed by

ωm(s) = γ(s) · γfd/rw · v(s), (9)

where γ(s) is the transmission ratio, γfd is the fixed final
drive transmission ratio, and rw is the radius of the wheels.
This constraint is convex if the speed v(s) is given, a property
we will leverage throughout this section to devise an iterative
convex solver. The transmission ratio is defined as

γ(s)

{
= γ1 if FGT
∈ [γmin, γmax] if CVT,

where γ1 > 0 is the ratio of the FGT, and γmin > 0 and
γmax > 0 are the lower and upper limit of the CVT ratio,
respectively. Considering γmax as a design variable with a
given constant ratio coverage cγ = γmax

γmin
> 1, we rewrite the

constraint above as

γ(s)

{
= γ1 if FGT

∈
[
γmax
cγ

, γmax

]
if CVT.

(10)

We assume the transmission efficiency ηgb to be constant,
and define the force on the secondary axle of the transmission
similar to (6):

Fgb(s) ≤ min (ηgb · Fm(s), Fm(s)/ηgb) . (11)

D. Electric Motor

In this section, we derive two models of the EM: a speed-
independent convex model and a speed-dependent model
including a thermal network describing the temperature
dynamics of its components. The former model will be
instrumental to compute an initial guess of the speed profile,
which will be iteratively optimized using the latter model,

as presented in more detail in Section II-F below. Further-
more, we solve the nonlinear speed-dependent problem using
nonlinear programming. In this case, the first model is used
to compute the initial guesses. The nonlinear data that is
used to identify and validate the EM model is obtained from
the high-fidelity EM simulation software Motor-CAD. We
choose a high-performance interior permanent magnet EM
among the templates offered by the software. For both speed-
independent and -dependent models, we enforce torque and
power limits in space-domain as

Fm(s) ∈
[
−γ(s) · Tmax

rw
,
γ(s) · Tmax

rw

]
, (12)

and

Fm(s) ∈ [−1, 1] ·
(
cm,1 · γ(s)

rw
+ cm,2 ·

dt
ds

(s)

)
, (13)

where Tmax, cm,1 and cm,2 are subject to identification,
Appendix A. The limit on the rotational speed of the motor
is expressed as

γ(s) ≤ ωm,max · rw ·
dt
ds

(s) · 1

γfd
, (14)

where ωm,max is the EM maximum speed.
The EM speed-independent model approximates the losses

with a quadratic function as
Pdc(s) = αm · Pm(s)2 + Pm(s),

where αm ≥ 0 is an efficiency parameter, subject to
identification, Appendix A. We relax the quadratic power
approximation and convert it to forces as

dt
ds

(s) (Fdc(s)− Fm(s)) ≥ αm · Fm(s)2.

This relation can be written as a second-order conic con-
straint which will hold with equality in the case where the
solver converges to a time-optimal solution with limited
battery energy [4].

dt
ds

(s) + Fdc(s)− Fm(s) ≥
∥∥∥∥ 2 · √αm · Fm(s)

dt
ds (s)− Fdc(s) + Fm(s)

∥∥∥∥
2

, (15)

In order to capture the behavior of the EM more accurately,
we model it in a speed-dependent fashion. Moreover, we
include the thermal dynamics as an LPTN, due to its com-
putational tractability and usability. In contrast to the state
of the art [17], where empirical models based on continuous
and peak torque operation are used, we explicitly model
the temperatures of the EM’s individual components. The
model is based on the following assumptions: The heat
flow in the circumferential direction is neglected, and it is
independent in the radial and axial directions. Moreover, we
lump the thermal properties of a component into one single
node. Fig. 2 shows the Motor-CAD model of the EM and
Fig. 3 depicts the thermal network. The EM components
under consideration are the shaft (sf), the rotor (rt), the
permanent magnets (pm), the stator (st), the windings (wd)
and the end-windings (ew), i.e., the overhanging copper
cables connecting the windings, which usually represent the
most critical component at high-performance operation [18].
Considering the thermal dynamics of the EM, the following
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Fig. 2. The Motor-CAD interior permanent magnet motor model with
the thermal network. We identify seven main components of the EM. A
schematic representation of the thermal network is shown in Fig. 3.
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Fig. 3. The thermal network of the motor presented in Fig. 2. Every
component of the EM is represented by a node in the thermal network.

energy balance equations describe the heat flows between the
components:

Psf = csf ϑ̇sf + ksf,rt(ϑsf − ϑrt)

Prt = crtϑ̇rt + ksf,rt(ϑrt − ϑsf) + krt,pm(ϑrt − ϑpm)

+ krt,st(ϑrt − ϑst)

Ppm = cpmϑ̇pm + krt,pm(ϑpm − ϑrt)

Pst = cstϑ̇st + krt,st(ϑst − ϑrt) + kst,wd(ϑst − ϑwd)

+ kst,∞(ϑst − ϑ∞)

Pwd = cwdϑ̇wd + kst,wd(ϑwd − ϑst) + kwd,ew(ϑwd − ϑew)

Pew = cewϑ̇ew + kwd,ew(ϑew − ϑwd),

where Pi is the power loss in node i—where the index
i indicates the EM component and is an element of the
set of strings {sf, rt,pm, st,wd, ew}—ϑi its temperature,
ϑ̇i its temperature’s rate of change in time domain, ci its
heat capacity, and ki,j represents the overall heat transfer

coefficient between two neighboring nodes i and j. Hereby,
the coefficients ki,j and ci are subject to identification.

We estimate the power losses in the individual nodes
by fitting a set of experimental data produced by Motor-
CAD as a function of speed and mechanical power. We can
approximate the nonlinear model in a convex manner using
convex quadratic functions. In particular, the losses of the
nodes are set equal to Pi(s) = xi(s)

>Qixi(s), where Qi

is a symmetric and positive semi-definite matrix, and xi(s)
is defined for each component based on the dependence of
its losses on the EM speed and power, and the components’
temperature. In order to preserve convexity, the power loss
equations are relaxed in the set of constraints

Pi(s) ≥ xi(s)>Qixi(s). (16)

Given the racing application, we expect the motor to operate
at high power levels. Therefore, we build a reference EM
duty cycle to simulate the power losses in Motor-CAD which
we use as fitting data to identify the matrices Qi. This method
allows to minimize the error in the region where the motor
is expected to operate. The duty cycle is inspired by the
EM operations of the temperature unconstrained problem,
Appendix B.

As shown by the reference data in Fig. 4, the mechanical
losses are power-independent and only affect the shaft,
i.e., xsf =

[
1 ωm(s)

]>
. Conversely, windings and end-

windings are subject to copper losses, which are strongly
influenced by the temperature of the components, in ad-
dition to the EM speed and power. Therefore, we define
xi(s) =

[
1 ωm(s) Pm(s) ϑi(s)

]>
, for i ∈ {wd, ew}.

The permanent magnets and the iron paths of the rotor and
stator do not show a relevant thermal dependency and are
therefore identified with xi(s) =

[
1 ωm(s) Pm(s)

]>
, for

i ∈ {pm, rt, st}. Similarly, we identify a total loss model
dependent on speed and power [14], in order to evaluate
the thermally-unconstrained case and compare it with the
thermally-constrained scenario. The resulting models are
shown in Fig. 4. Appendix C presents the comparison
between the power loss data obtained with Motor-CAD and
the estimated power loss using the convex quadratic model.

As stated earlier, the coefficients ki,j and ci of the energy
balance equations are subject to identification. We derive
these constants using a genetic algorithm as a fitting scheme
for the node temperatures over the reference EM duty cycle.
Even though we have information about the power loss of
each component during the cycle, we use the speed, power,
and temperature of the windings and the end-windings to
estimate the power losses and identify the thermal network.
By doing this, we avoid propagating the error of the power
loss model. Overall, the temperature fitting can be observed
in Appendix C. The fit root mean square error is below 1 ◦C.

We convert the set of energy balance equations to space-
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Fig. 4. The power loss models of the different components of the EM.
Speed-dependent mechanical losses with RMSEsf = 1.3% (top left);
speed-, power- and temperature-dependent copper losses representing the
sum of the windings’ and end-windings’ losses with RMSEwd = 5.9%
and RMSEew = 7.6%, respectively; speed- and power-dependent magnet
losses with RMSEpm = 5.9% (center left); speed- and power-dependent
rotor losses RMSErt = 4.8% (center right); speed- and power-dependent
stator losses RMSEst = 3.7% (bottom left); and speed- and power-
dependent total losses RMSEst = 7.1% (bottom right).

domain, yielding the following almost-convex constraints:

csf ·
d
ds
ϑsf(s) · v(s) = Psf(s) + ksf,rt(ϑrt(s)− ϑsf(s))

crt ·
d
ds
ϑrt(s) · v(s) = Prt(s) + ksf,rt(ϑsf(s)− ϑrt(s))

+ ksf,rt(ϑpm(s)− ϑrt(s))

+ krt,st(ϑst(s)− ϑrt(s))

cpm ·
d
ds
ϑpm(s) · v(s) = Ppm(s) + krt,pm(ϑrt(s)− ϑpm(s))

cst ·
d
ds
ϑst(s) · v(s) = Pst(s) + krt,st(ϑrt(s)− ϑst(s))

+ kst,wd(ϑwd(s)− ϑst(s))

+ kst,∞(ϑ∞ − ϑst(s))

cwd ·
d
ds
ϑwd(s) · v(s) = Pwd(s) + kst,wd(ϑst(s)− ϑwd(s))

+ kwd,ew(ϑew(s)− ϑwd(s))

cew ·
d
ds
ϑew(s) · v(s) = Pew(s) + kwd,ew(ϑwd(s)− ϑew(s)),

(17)
where Pi(s) is the power loss given by (16). Again, this set
of equations is convex whenever speed is a given parameter.
Depending on the material’s characteristics, we constrain the
temperature of each node as

ϑi(s) ≤ ϑi,max, (18)

in order not to damage the EM. The thermal limits ϑi,max

are shown in Table I.

TABLE I
THERMAL LIMITS OF THE NODES OF THE THERMAL NETWORK

Component Max ϑi ◦C Component Max ϑi ◦C
Permanent Magnet 120 Shaft 170
Winding 200 Rotor 170
End winding 200 Stator 170

Finally, we consider two thermal scenarios: a cold-start
lap, in which the motor temperature starts at the temperature
of the coolant ϑ∞, and a lap representing a long-run op-
eration at steady-state. Mathematically, we characterize the
scenarios as {

ϑi(0) = ϑ∞ if cold start
ϑi(0) = ϑi(S) if long run.

(19)

E. Battery Pack

In this section, we derive an energy-independent and a
more accurate energy-dependent model of the battery dy-
namics. Even though the characterization and identification
of these models were not specifically part of my master thesis
project, they are presented for completeness as they are part
of our publication [16].

The power at the terminals is Pb(s) = Pdc(s) + Paux,
where Paux is a constant auxiliary power. Converting this
constraint to forces yields

Fb(s) = Fdc(s) + Paux ·
dt
ds

(s). (20)

The internal battery power Pi(s), which causes the actual
change in the battery state of energy Eb(s), is first approxi-
mated by Pi(s) = αb · Pb(s)2 +Pb(s), where the efficiency
parameter αb is determined by a quadratic regression of the
measurement data with a normalized RMSE of 0.96% [14].
This constraint can be translated into forces and relaxed as

(Fi(s)− Fb(s)) · dt
ds

(s) ≥ Fi(s)
2, (21)

which can be expressed as a second-order conic con-
straint [4].

We include state-of-energy-dependency in the model of
the battery by modeling the internal power to the terminal
power through the open-circuit voltage Uoc and the internal
resistance R as

Pi(s) = Pb(s) +
R

U2
oc

· Pi(s)
2,

which can be rewritten with the open-circuit power
Poc =

U2
oc

R as

(Pi(s)− Pb(s)) · Poc(s) = Pi(s)
2. (22)

Using a similar reasoning as in [19], the open-circuit power
can be expressed by the piecewise affine approximation

Poc(Eb) = akb · Eb + bkb · Eb,max

if Eb ∈ [Ek−1
b , Ekb ] ∀k ∈ [1, ...,K],

where akb ≥ ak+1
b ∀k ∈ [1, ...,K − 1] and bkb ≤ bk+1

b ∀k ∈
[1, ...,K − 1] are parameters subject to identification, and
K is the number of affine functions in the approximation.
The proposed open-circuit power model is fitted in Fig. 5
with three affine functions. To secure convexity, we relax
the open-circuit power to

Poc(Eb) ≤ akb · Eb + bkb · Eb,max ∀k ∈ [1, ...,K], (23)
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Fig. 5. A piecewise affine approximation of the battery open-circuit power
Poc as a function of the battery state-of-energy Eb.

Fig. 6. The battery efficiency model using a piecewise affine approximation
of the open-circuit power. The normalized RMSE is 0.08%.

Finally, relaxing (22) and converting it to forces yields

(Fi(s)− Fb(s)) · Poc(s)

v(s)
≥ Fi(s)

2,

which can be written as the second order conic constraint

Fi(s)− Fb(s) +
Poc(s)

v(s)
≥
∥∥∥∥ 2 · Fi(s)

Fi(s)− Fb(s)− Poc(s)
v(s)

∥∥∥∥
2

. (24)

The resulting energy-dependent battery model is shown in
Fig. 6 and can approximate the nonlinear model with a
normalized RMSE of 0.08%. The constraint (24) above is
not fully convex, considering the quotient in the optimiza-
tion variables Poc(s) and v(s). Yet again, we can recover
convexity if speed is a given parameter.

The change in battery energy Eb(s) during the lap is
defined as

d
ds
Eb(s) = −Fi(s), (25)

and is bounded as

Eb(0) = Eb,0, Eb(S) = 0, (26)

with Eb,0 as the energy available at the beginning of the lap.

Algorithm 1 Iterative Solving Procedure
v̄(s) ← Solve Problem 2
while norm(v − v̄) ≥ εv do

v̄(s) = v(s)
v(s) ← Solve Problem 3

F. Minimum-lap-time Optimization Problem

In this section, we present an iterative algorithm used to
solve the quasi-convex time-optimal control problem. The
state variables for both the FGT and the CVT race car
are x = (Ekin, Eb, ϑsf , ϑrt, ϑpm, ϑst, ϑwd, ϑew). The control
variables are u = (Fm, γ), where γ(s) is present for the
CVT only. The design variables for the FGT and CVT are
pFGT = γ1 and pCVT = γmax, respectively. We state the
time-optimal control problem as follows:

Problem 1 (Full Nonlinear Problem). The minimum-lap-time
control strategies are the solution of

min

∫ S

0

dt
ds

(s) ds

s.t. (2)− (21), (23)− (26).

Due to the speed-dependency of the EM model, the battery
model, and the thermal network, Problem 1 above is non-
convex. In order to circumvent these non-convexities, we
leverage the iterative Algorithm 1 based on the two following
problems:

Problem 2 (Simplified Convex Problem). The minimum-
lap-time control strategies for the thermally-unconstrained
and speed-independent EM model and energy-independent
battery model are the solution of the following second-order
conic program (SOCP):

min

∫ S

0

dt
ds

(s) ds

s.t. (2)− (8), (10)− (15), (20), (21), (25), (26).

Problem 3 (Thermal Speed-dependent Convex Problem).
Given a velocity profile v̄(s), the minimum-lap-time control
strategies are the solution of the following SOCP:

min

∫ S

0

dt
ds

(s) ds

s.t. (2)− (8), (10)− (14), (16), (18)− (20), (23)− (26),
and (9), (17), (24) with v(s) = v̄(s).

Algorithm 1 leverages the speed profile of the solution
of the speed-independent Problem 2 as an initial guess for
v̄(s) to solve the speed-dependent Problem 3, iterating on it
until two consecutive speed profiles coincide up to a certain
tolerance εv > 0.

G. Optimality Considerations

In this section, we reason on the convergence and op-
timality properties of Algorithm 1 and we introduce how
we can leverage standard non-linear programming to solve
Problem 1. A detailed initial mathematical analysis showing
injectivity properties for the mapping between v̄ and vCVX
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can be found in Appendix H. Such a property excludes the
possibility of an abrupt and exact convergence in a finite
numbers of iterations.

To prove convergence and optimality of Algorithm 1 as a
solution to Problem 1, one possibility is to show that the iter-
ation of Algorithm 1 is contractive and hence it has a unique
fixed point (Banach fixed-point theorem), and to show that
the fixed point—namely a KKT point (and global optimum)
of Problem 3 with v̄ = vCVX—corresponds to a KKT point
of Problem 1, possibly the global optimum. Such a proof
requires a careful study of both problems, and we leave
it for future research. Nonetheless, the numerical results
presented in Section III-F suggest that, while Algorithm 1
seems to be indeed contractive, it does not seem to precisely
converge to the KKT point (local optimum) found by solving
Problem 1 with standard nonlinear programming methods,
albeit providing a comparably time-optimal solution.

We proceed by partially evaluating the KKT conditions
of Problem 1 and Algorithm 1 to explore other properties.
We know that Algorithm 1 and Problem 1 have very symilar
formulations which are reflected in their KKT conditions.
The two Lagrangians are equivalent in all the constraints
which do not include v̄, hence we focused only on the con-
straints which result in different terms. We identify three sets
of constraints in which v̄ is present: transmission (9), power
loss models (16) and thermal network nodes (17). In the
convex iterations, these constraints are all speed-independent
because they only include v̄ which is constant per iteration.
Therefore, they do not contribute to the derivative of the
Lagrangian with respect to speed. However, the constraints
are speed-dependent in the nonlinear case resulting in non
zero terms in the Lagrangian derivative. This suggests that
since both sets of KKT conditions have to be satisfied
by the same solution, the non-zero terms of the nonlinear
Lagrangian speed derivative should amount to zero. This was
not verified, therefore x?CVX is not necessarily a KKT point
for Problem 1. We leave a more detailed analytical study of
the KKT conditions to further research.

We use standard nonlinear programming to solve Prob-
lem 1. We use such a solution for comparison and the
nonlinear structure to run other practical tests to discuss the
KKT conditions. The NLP solver solves the KKT conditions
of the problem. We can start by checking the feasibility
conditions of the NL constraints, because if the solution
of Algorithm 1 is not feasible, it is not a KKT point. It is
important to note that the nonlinear solver evaluates the KKT
conditions with a certain tolerance. Therefore, a particular set
of solutions may not seem a KKT point due to numerical
errors. We can also directly test the solution of Algorithm 1
on the KKT conditions of Problem 1 by using the solution
of Algorithm 1 as the initial guess for Problem 1. If the
solver moves from the initial guess, it implies that the initial
guess does not solve the KKT conditions of Problem 1 at
the first iterations. The results of these tests are presented in
Section III-F.

H. Discussion

A few comments are in order. First, we model both the
FGT and the CVT with a constant efficiency—a common
approach for high-level modeling purposes—since the focus
of this paper is not on the transmission modeling itself,
and we refer readers interested in this topic to [5]. Second,
we identify the EM power loss and thermal model by
pre-studying the system and gaining knowledge of likely
operational areas. Therefore, the accuracy of the results
might be worse for a different race track. This is due to
the convex approximations of the nonlinear power losses
and the error propagation on the temperatures. The rise
in temperature of each of the nodes is proportional to the
heat generated in the node and the heat transferred to the
neighboring nodes. Therefore, an error in the node’s power
loss influences the temperature’s slope of the node. If the
motor operates in areas where the power loss error has
always the same sign (either under- or over-estimation),
the temperature of the node diverges from the temperature
evaluated by the high fidelity software. Third, the thermal
network operates using the average temperatures and they
are constrained in the time-optimal control problem. We use
the average temperatures to maintain the physical meaning of
the thermal network, but the optimization should constrain
the maximum temperatures. The relation between average
and maximum temperatures of windings, end-windings and
permanent magnets will be investigated in future research.
Fourth, we assume the battery to be able to accommodate any
EM power request. This assumption is acceptable for high-
performance batteries designed for fast-charging applica-
tions. Fifth, we begin the study of optimality for Algorithm 1
with promising results. We uncovered multiple properties
which can be used for future research to conclusively state
the accuracy of the method. Finally, nonlinear solvers are
known to be highly dependent on the warm-start position. In
the chapter below, we will present the convenience of the NL
solver. The solver performs well only because it was given a
good set of initial conditions. However it does not converge
if all the scaled variables are initialized to one.

III. NUMERICAL RESULTS

This section studies the performance achievable by an
electric race car equipped with two identically operated EMs
connected to an FGT and a CVT in different operating
scenarios on the Le Mans race track. We first discuss the
results obtained for an FGT-equipped car in a cold-start
scenario and compare it with the thermally-unconstrained
solution. Thereby, we also validate our results with the high-
fidelity EM software Motor-CAD and a nonlinear battery
model. Moreover, we study the time-optimal strategies under
a long-run steady-state operation, comparing the FGT- and
CVT-equipped vehicles. Similarly, we analyse the time-
optimal strategies for a scarce battery energy case to identify
differences and similarities. Furthermore, we compare the
solutions of Algorithm 1 and Problem 1. Finally, we discuss
the optimality of Algorithm 1, with practical and theoretical
considerations.
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Fig. 7. The speed, the motor power and the EM components’ temperature
of an FGT-equipped vehicle in a cold-start scenario. The bottom graph
additionally shows the overheating temperature limits and a validation by
comparing it with a Motor-CAD simulation. The results are presented by the
solid lines and the Motor-CAD validation data is presented by the dashed
lines.

We set the weight of the FGT- and CVT-equipped vehicles
to 1342 kg and 1393 kg, respectively. Furthermore, we set the
EM-to-wheels efficiency of the FGT-equipped car to 98 %,
whilst assuming a lower average value of 96 % for the CVT-
equipped car [5], [14].

We discretize the model presented in Section II with a
step-size of 10 m using the trapezoidal method in order to
avoid numerical instabilities stemming from the LPTN. An
analytical and numerical comparison with the classical Euler
forward integration scheme is presented in Appendix D. We
compute the solution using two methods. First, we parse the
problem using YALMIP [20] and solve it with the second-
order conic solver ECOS [21]. Second, we parse and solve
the nonlinear problem using the nonlinear solver IPOPT [22]
in a CasADi [23] implementation. One iteration of Algo-
rithm 1 takes about 53 s to parse and 34 s to solve when using
a 2.3 GHz Quad-Core Intel Core i5 processor with 8 GB of
RAM. The solution converges typically within four to six
iterations, resulting in an average total computation time of
7-8 min, including overhead.

A. FGT Cold Start

Using Algorithm 1, we first optimize the FGT-equipped
powertrain for a cold-start scenario and we compare the
thermally-constrained and unconstrained solutions. Fig. 7
shows the results, whereby the lap time of the thermally-
constrained solution is 2.1 s slower than the lap time of the
thermally-unconstrained solution. From the motor power tra-
jectory, we observe that the thermal constraints do not hinder
the motor from operating at maximum power. However, the
optimal gear ratio γ1 decreases from 4.54 for the thermally-

Fig. 8. The validation of the battery energy consumption obtained by the
solution, represented in continuous lines, and in dashed lines the resulting
battery energy consumption using Motor-CAD loss model and a nonlinear
battery model. The relative drift in energy at the end of lap is equal to 1.1%.

unconstrained problem to 3.83 for the thermally-constrained
problem. This is a direct result of the EM losses generation.
As can be seen from Fig. 4 the speed attributes more than
torque at the heating of the EM. Therefore, a smaller gear
ratio invites the motor to operate at higher torques and lower
speeds.

It can also be observed that the EM is using regenerative
braking in both cases, although the thermally-constrained
operation shows a more gradual approach to the negative
power region. The thermal constraints attempt to limit the
absolute value of the output power because of its dependency
with the power losses. As a result, the low-power operations
of the EM are extended to reduce the temperature rise or to
briefly cool down the EM components.

The lower subfigure of Fig. 7 shows the temperature
evolution of the motor components. As can be seen, the
end-windings are the component limiting the operation of
the motor by reaching the thermal limit towards the end of
the lap. Fig. 7 also indicates the temperature trajectory of the
EM simulated in Motor-CAD while subjected to the EM duty
cycle of the thermally-constrained solution. We can observe
that our models can closely reproduce the results stemming
from a high-fidelity simulator, resulting into a cumulative
drift below 2 ◦C for all the EM components except the stator,
which achieves an error of 5 ◦C while staying well below its
limit of 170 ◦C.

We validate the power loss model and the battery model
in Fig. 8, showing the state-of-energy trajectory of our
model compared to the one resulting from Motor-CAD and a
nonlinear battery model. As can be seen, the small deviation
between the two solutions results in a total drift of 1.1 %.

B. FGT Long Run

The trends observed in the cold-start scenario are much
more clearly emphasized in a long-run operation where the
EM is at a higher temperature. Fig. 9 shows the performance
and the temperature trajectory obtained with Algorithm 1,
of the FGT-equipped car during the lap, whereby the lap
time is more than 10 s longer than in the unconstrained case,
highlighting the prominent impact of the thermal constraints
on the time-optimal strategies. Hereby, the more gradual
transition into regenerative braking is emphasized to the
extent that energy regeneration is almost never allowed in
order to reduce the EM losses and, in turn, the components’
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Fig. 9. The speed, the motor power, and the EM components’ temperature
of an FGT-equipped race car during a long-run operation.

overheating. Interestingly, and in contrast to the cold-start
scenario, in this case the EM power is limited by the
temperature of the permanent magnets, mildly oscillating in
the vicinity of their thermal boundary.

C. CVT Long Run

Finally, we showcase our models for a CVT-equipped race
car to study the impact of different transmission technologies
on achievable performance during a long-run operation,
solving Algorithm 1. Fig. 10 shows the numerical results
of this scenario, where it is possible to observe a similar
response as in the FGT-equipped car. Similar to the FGT, the
optimal maximum CVT gear ratio γmax is reduced from 6.5
in the thermally-unconstrained case to 5.5 for the thermally-
constrained lap. Moreover, when coupled with a CVT, the
EM shows intense regenerative braking in the thermally-
unconstrained case, and almost no regeneration when the
temperature constraints are active, whilst, also in this case,
the permanent magnets are the limiting factor.

With respect to lap times, the thermally-unconstrained
solution shows that the EM coupled with an FGT would be
1.12 s faster than when coupled with a CVT, since the CVT
cannot compensate its higher weight and lower efficiency
with its ability to control the EM in a more efficient fashion.
However, under a thermally-constrained long-run scenario, a
more efficient EM operation not only improves the energy
consumption, but also reduces overheating, so that the CVT-
equipped car can significantly outperform the FGT-equipped
car with a 1.89 s faster lap time.
For completion, the “CVT Cold Start” results are presented
in Appendix E.

Fig. 10. The speed, the motor power and the EM components’ temperature
for a CVT-equipped race car during a long-run operation.

Fig. 11. The speed, the motor power and the EM components’ temperature
for a FGT-equipped race car during a long-run operation, considering
a scarce and an abundant battery energy scenarios. The bottom graph
represents the temperatures in the two cases: scarce as a straight line and
abundant as a dushed line.

D. Scarce Battery Energy, FGT Long Run

As mentioned in the previous sections, the battery energy
can be a limiting factor. Fig. 9 shows that for the given
battery energy, the vehicle should not recuperate the energy
during breaking. It is clear that this behavior is admissible
only if there is an abundance of battery energy. Therefore,
we study the effect of scarce battery energy scenarios by
reducing the battery energy for one lap from 50 MJ to 30 MJ.
The numerical results are presented in Fig. 11. As can be
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Fig. 12. The speed of the nonlinear solution and Algorithm 1 and difference
between the two solutions for a FGT-equipped race car during a long-run
operation.

seen, the lap time is considerably reduced. The time-optimal
control strategy is more energy-conservative and it includes
deep energy regeneration during braking. Moreover, the
temperature trajectories of the two cases reflect the energy
dependent strategy. A lower output power implies less power
loss and lower temperature but also lower speed and more
time to extract heat from the EM. However, deep regenerative
operations cause higher power losses. To conclude, it can
be observed that the energy conservative strategy suggests a
slower pace during straightaways to allow the EM to cool
down. This prepares the EM for the turns where the vehicle
recuperates energy in breaking and exits the turns more
aggressively than the energy-abundant scenario.

E. Comparison with NLP Solver

We parse the nonlinear Problem 1 using CasADi [23]
and solve it for the FGT-equipped powertrain during a
long-run operation, using the nonlinear solver IPOPT [22]
CasADi takes about 0.53 s to parse and IPOPT solves it in
45 s. However, these numbers strongly depend on the initial
conditions. In fact, Problem 1 could not be solved without a
warm start, highlighting the importance of leveraging convex
optimization methods in the solution process. In this case, the
initial conditions are assumed as the solution of the simplified
convex Problem 2 and as constants for the variables that are
not present in Problem 2.

The complete numerical solutions are presented in Ap-
pendix F. It can be observed that the solutions are very close.
The temperature behavior is almost unvaried with a perma-
nent magnet limited operation. There are minor differences
in the speed profile which can be seen in Fig. 12. The speed
generally match during the turns, reaching the physical lim-
itation of the system. After isolated turns between straights,
the nonlinear solution uses a more conservative approach by
accelerating less in the straight. However, it reaches higher
maximum speeds and it suggests a more aggressive strategy
when approaching a turn.

The iterative nature of Algorithm 1 is reflected in an
oscillating lap time converging to 254.855 s as shown in
Fig. 13. The nonlinear optimal solution is almost a tenth
of a second faster than Algorithm 1’s solution. Even though
this difference could be substantial in the real application,
we are comparing methods, not solutions. With this in

Fig. 13. Lap time value per iteration with a speed norm error of 1e-6. The
lap time of the last iteration is 254.855 s.

mind, the difference in lap time is small and could be
due to numerical error. The constraints formulations of the
nonlinear and convex problem are different. The former uses
geometric means, while the latter implements second order
conic constraints. This could lead to numerical diffrences.
Therefore, we re-write Algorithm 1 using CasADi and we
solve it with IPOPT. The method converges to a lap time of
254.838 s which differs from both the solutions presented in
Fig. 12. This implies that there are numerical errors but they
are not the only factors. We can see that also from the speed
discrepancy. While the lap times difference is about 0.04%
which could be attributed to numerical errors, the speeds’
difference is around 1%. This shows a concrete difference
between the two solutions, related to the methodologies. In
the following section, we present some numerical evaluations
to identify such differences. For completion, we present
the “FGT Cold Start” and the “CVT long run” results in
Appendix G.

F. Optimality Considerations, Results

Whilst we know that the nonlinear solver has converged
to a local minimum, we need to discuss the optimality of Al-
gorithm 1. This Section presents the numerical verifications
mentioned in Section II-G.

We mentioned how to leverage the contractive property of
Algorithm 1 by discussing the optimality of the solution.
Fig. 14 shows that the solution of the iterative method
becomes closer to a fixed point at each iteration. This
suggests to be contractive, hence to possess a unique fixed
point. However, Fig. 15 suggests that Algorithm 1 converges
to a solution which is not the optimal solution found by the
NLP. Therefore, it seems that its unique fixed point may not
correspond to a KKT point of Problem 1.

There are other practical ways to verify if the solution
of Algorithm 1 is a KKT point of Problem 1. For these
evaluations, we use the most precise convex solution we
have, x?CVX,14. The first is to check the feasibility conditions
of Problem 1 with x?CVX,i. We know that x?NL is a solution
of Problem 1 for a particular tolerance and we desire to
check if the x?CVX,14 can solve the feasibility conditions
with similar tolerance. Fig. 16 shows the permanent magnets
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Fig. 14. Algorithm 1 contractive property verification using v?14 as a fixed
point.

Fig. 15. Algorithm 1 contractive property verification using v?NL as a
fixed point.

nonlinear active constraint in FGT long run case: logarithmic
of Eq. 17 with all the terms on the same side equalling
zero. It becomes evident that the nonlinear problem satisfies
such a constraint with an almost 3 orders of magnitude
higher accuracy. Similar results could be seen by comparing
the permanent magnet material thermal limit constraint. The
nonlinear problem is again 2 orders of magnitude more
accurate. However, these absolute error values are very small,
i.e., 2.5e-7 . We can conclude that x?CVX,14 satisfies the
feasibility conditions of the limiting constraints with what
we can consider a neglectable tolerance.

Solving Problem 1 using x?CVX,14 as starting point yields
the same x?NL described in the previous section. This
could happen because of the feasibility tolerance or because
x?CVX,14 is not a KKT point for Problem 1.

We started the discussion of Algorithm 1’s properties
proving its injective structure and partially solving and com-
paring the KKT conditions. In order to study Algorithm 1
we researched the literature for similar known methods.
By considering v̄ as a variable, we can characterise Algo-
rithm 1 as an alternating coordinate method, subgroup of
block coordinate methods. These methods are usually defined
as Algorithm 2, [24]. The literature offers a large num-
ber of documentations regarding these methods, providing
extensive discussions on convergence rates and optimality
conditions. Algorithm 1 aims to satisfy the constraint v = v̄
with a certain tolerance without optimizing v̄, which makes
it different to a standard alternating coordinate method.
Therefore, we leave a more profound and formal analysis
of these methods to future research.

Fig. 16. Permanent magnets thermal network equality constraint in FGT-
equipped race car during a long-run operation, solving Algorithm 1 and
Problem 1.

Algorithm 2 General form of block coordinate method [24]
while [condition] do

k=k+1;
Pick bk ∈ {1, 2, ..., s}; deterministic or random
fix blocks {{1, 2, ..., s} − {bk}}
Solve

IV. CONCLUSION

In this paper, we studied the impact of thermal limits
in electric car racing. To this end, we devised a quasi-
convex and a nonlinear optimization framework, accurately
capturing the temperature dynamics of an interior perma-
nent magnet electric motor (EM) using a thermal network
including the stator, the rotor, the permanent magnets, the
windings and the end-windings. We validated our models
with the high-fidelity EM simulation software Motor-CAD
and a nonlinear battery model, showing a cumulative drift
of about 1% for both the temperatures and the battery
energy. When showcasing our framework on the Le Mans
racetrack for a car equipped with a fixed-gear transmission
and different operating scenarios, we concluded that the
main components limiting the EM performance are the end-
windings in a cold-start scenario and the permanent mag-
nets during a long-run operation. We observed that thermal
limitations can result in a significant lap time loss which
can, however, be partially salvaged by equipping the race
car with a continuously variable transmission. Furthermore,
we showed how the availability of battery energy influences
the regeneration operation. Finally, we began investigating
the properties of the proposed iterative algorithm based on
second-order conic programming with respect to standard
nonlinear programming. Our iterative algorithm is much
slower and it converges to a presumably locally optimal
solution. However, the nonlinear problem time and success
is highly dependent on the initial conditions. The nonlinear
framework convergency rate is very fragile (i.e., the CVT
cold-start scenario did not converge). All in all, we can
combine the convergence of the iterative algorithm with
the optimality of the nonlinear solver. If we concatenate
the nonlinear solver to the last iteration such that it uses
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the iterative solution as a starting point, we are very likely
to converge to a provably locally optimal solution in a
predictable time span.

This work opens the field for several extentions. First,
our promising preliminary results prompt a more detailed
analysis based on high-fidelity models. Second, we are
interested in exploring the application of multi-speed gearbox
transmissions, as they combine a low mass and high effi-
ciency with the ability to operate at multiple transmission
ratios. Third, we suggest modifying the proposed iterative
algorithm to a general block-coordinate method form. This
method allows to perform theoretical analyses to exam-
ine whether the almost-convex problem structure could be
leveraged in order to guarantee optimality of the solutions.
Fourth, we have seen how the battery energy availability
influences the EM control strategy, and we would like to
extend the investigation of this behavior in the context of
a battery thermal model. Finally, we would like to leverage
the proposed offline frameworks to devise temperature-aware
minimum-lap-time control algorithms in the context of a full
race. This scenario may include strategical decisions such as
pitstops and takeovers which are isolated events that imply
brief cooling and overheating.
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APPENDIX

A. Indentification EM

Fig. 17 shows the identification of Tmax, cm,1 and cm,2
while Fig. 18 presents the identification of αm.

Fig. 17. Identification of Tmax, cm,1 and cm,2 from Motor-CAD data.

Fig. 18. Identification of αm from Motor-CAD data.

B. EM Duty Cycle

We define a EM duty cycle to evaluate the electric motor
power loss data which is used to identify our models.
The duty cycle is inspired by the EM operations of the
temperature-unconstrained problem, such that we minimize
the fitting error in the regions where the motor is expected
to operate, Fig. 19. We also consider a negative fraction of
the EM operations to impose a good fit in the regeneration
half plain.

Fig. 19. EM Duty cycle used to fit the power loss model and the thermal
network.

We choose this fraction to be 0.5 for multiple reasons.
First, the EM operations derive from thermally unconstrained
simulations. Since the simulation in Motor-CAD is a “cold
start”, the temperatures gradually increase, allowing the
fit over a wide range of temperatures. In any case, we
expect at least one node to reach a temperature close to
or higher than its thermal limit by the end of the cycle. If
we add a second cycle to obtain a better fit we cannot use
additional high power operation because they would gen-
erate temperatures outside our range of interest. Therefore,
additional operations have to be such that the power loss is
low enough for the temperature to decrease. Second, deep
regeneration operations imply higher losses, as well as high
power operations. The former is beneficial for energy-saving
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reasons, while the latter reduces the lap time. Since lap
time is the objective function, high power operations will
be preferred for abundant battery energy. The importance of
regenerative operations increases for scarce battery energy
scenarios. Therefore, we expect the available energy to have
a relevant impact on the EM control strategy. We investigate
the difference in control strategy between abundant and
scarce battery energy and we use the same regeneration
power model. The value of the negative fraction influences
where the model is more representative of reality. Therefore,
we choose 0.5 as a compromise to obtain an averagely
accurate regeneration model instead of sacrificing some areas
in favor of others.

C. Power and Temperature Fit Result

Fig. 20 presents the comparison between the power loss
data obtained with Motor-CAD and the estimated power loss
using the convex quadratic model.

Fig. 20. Comparison between the power loss models with data ob-
tained by Motor-CAD, for the different components of the EM. Speed-
dependent mechanical losses with RMSEsf = 1.3% (top left); speed-
, power- and temperature-dependent copper losses representing the sum
of the windings’ and end-windings’ losses with RMSEwd = 5.9% and
RMSEew = 7.6%, respectively; speed- and power-dependent magnet
losses with RMSEpm = 5.9% (center left); speed- and power-dependent
rotor losses RMSErt = 4.8% (center right); speed- and power-dependent
stator losses RMSEst = 3.7% (bottom left); and speed- and power-
dependent total losses RMSEst = 7.1% (bottom right).

Fig. 20 presents the comparison between the power loss
data obtained with Motor-CAD and the estimated power loss
using the convex quadratic model.

D. Trapezoidal Method

Fig. 22 presents the instability of the thermal network
when using Euler forward integration. The figure is a suf-
ficient proof of the presence of instabilities. The discreet
time problem is written in state space model ẋ = Ax
where x contains the temperature of the nodes. We study
the eigenvalues of matrix A in case of Euler forward or

Fig. 21. Nodes temperature results of the thermal network parameter
identification. The collective root mean square error is 0.82 ◦C.

trapezoidal integration. The sets of eigenvalues for cpm = 9
are

λEulFor =


−1.7373
0.9630
0.9882
0.9912
1.0001
0.9969

 λTrap =


−0.1556
0.9637
0.9883
0.9912
1.0001
0.9969


For discrete time operations the eigenvalues must be within
the unit disk to ensure stability. As can be seen, the eigen-
values reveal that the instability is related to the integration
method. Therefore, we use trapezoidal integration.

Fig. 22. Instability of the thermal network when using Euler forward
integration for different values of cpm.
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E. CVT Cold Start

Fig. 23 shows the numerical results of the CVT cold
start scenario. The results are consistent with the discussions
presented for the previous cases. It is possible to observe that
the temperature divergence is bigger than FGT cold start. The
reason is related to the convex approximation of the losses
and it is presented in the EM section while introducing the
power loss model and the duty cycle fit Fig. 19. We approxi-
mate the nonlinear power loss with a convex approximation.
The errors in the power loss estimation influences the slope
of the temperature through the thermal network Eq. 17.
In other words, the persistency of a particular sign in the
error results in an increasing divergence between estimated
and real temperatures. In order to avoid this phenomenon,
we have built a duty cycle of likely operational points.
To achieve better thermal representation it is suggested to
incorporate some characteristic of the CVT-equipped EM
behavior in the duty cycle used to identify the power loss
and thermal network models.

Fig. 23. The speed, the motor power and the EM components’ temperature
of a CVT-equipped vehicle in a cold start scenario. The bottom graph
additionally shows the overheating temperature limits and a validation by
comparing it with a Motor-CAD simulation. The results are presented by the
solid lines and the Motor-CAD validation data is presented by the dashed
lines.

F. NLP SR Long Run

Fig. 24 shows the numerical results on the same format
as the other cases. As can be seen, the results are almost
identical.

G. NLP Other Simulations

For completion, we present the results of CVT-equipped
long run Fig. 25 and FGT-equipped cold start Fig. 25. The
latter presents also the validation data. It can be noted that
the nonlinear (solid lines) and almost convex solutions (thin
dashed lines) are almost identical.

Fig. 24. The speed, the motor power and the EM components’ temperature
for a FGT-equipped race car during a long-run operation, computed by
nonlinear IPOPT and Algorithm 1

Fig. 25. The speed, the motor power and the EM components’ temperature
for a FGT-equipped race car during a long-run operation, computed by
nonlinear solver IPopt and Algorithm 1.

H. Initial Analysis of Algorithm 1

In this section we discuss the optimality of Algorithm 1.
First, we prove that the convex Problem 3 has a injective
structure in speed. Second, we discuss what type of
convergence we could expect from Algorithm 1. Finally,
we discuss further analyses to study convergence. As
mentioned previously, we analyse the convex transformation
of Problem 3 from the design space and a constant speed
v̄ to the optimal solution x?CVX, Algorithm 1 which is
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Fig. 26. nonlinear optimal solution. The speed, the motor power and
the EM components’ temperature of an FGT-equipped vehicle in a cold
start scenario, computed by nonlinear solver IPopt and Algorithm 1. The
bottom graph additionally shows the overheating temperature limits and
a validation by comparing it with a Motor-CAD simulation. The optimal
results are presented by the solid lines, the almost convex problem results
are presented by the thin dashed lines and the Motor-CAD validation data
is presented by the thick dashed lines. The nonlinear and almost convex
solutions are almost indistinguishable.

the iteration of Problem 3, and it yields x?CVX,i at the
ith iteration, and Problem 1 which reaches an optimal
solution x?NL. We remind that Algorithm 1 is defined as
Problem 1 where the speed is divided in [v, v̄] and the
convex Problem 3 is solved iteratively for the additional
external constraint v = v̄ satisfied with a defined tolerance.

We note as x?CVX(v̄1) the solution of Problem 3 when
v̄ = v1 and unique solution for battery-limited scenarios.
We can prove Problem 3 is injective by showing that

if v1 = v2 ⇒ v?1 = v?2

if v1 6= v2 ⇒ v?1 6= v?2 .

The first condition is satisfied by the strictly convex property
of the problem, so we focus on the second condition. If it is
not injective, we can reach the same solution for two different
v̄. We assume that for v̄ = {v1 ∨ v2} we reach the set of
solutions x?CVX(v̄1) = x?CVX(v̄2).

Now we consider an active thermal constraint of Problem 3
that is of the form

d
ds
ϑi(s) · ci · v̄(s) = Pi(s) +

∑
i,j

ki,j ∗∆ϑi,j

where

Pi(s) = xi(s)
>Qixi(s),

xi(s) =
[
1 ωm(s) Pm(s)

]>
,

Pm(s) = Fm(s) · v̄(s)

d
ds
Ekin(s) = Fm(s)− Fdrag(s) approx.

We note that in the thermal constraint the left hand side is
proportional to v̄. The power is also proportional to v̄ but it
also increases with v(s) through the kinetic energy and the
drag force.

Since we supposed x?CVX(v̄1) = x?CVX(v̄2), the speeds
v?(s) are the same, the drag forces and kinetic energies
are the same and also the motor forces. xi(s) is linearly
dependent on v̄ and we can rewrite it as

yi(s) =
xi(s)

v̄
=
[

d̄t
ds (s) γ(s) · γfd/rw Fm(s)

]>
. (27)

We rewrite the thermal constraint using the optimal trajecto-
ries and it becomes

d
ds
ϑ?i (s) · ci · v̄(s) = v̄2(s) · y?>i Qiy

?
i +

∑
i,j

ki,j ∗∆ϑ?i,j

b · v̄ = v̄2 · a+ c

(28)

where a, b, c are all constants. Now we hypothesize v1 6= v2.
The constraint has to be satisfied for v̄ = {v1 ∨ v2} with
v1 6= v2. With ∆v = v2 − v1 we write

b · (v1) = (v1)2 · a+ c

b · (v1 +∆v) = (v1 +∆v)2 · a+ c

We expand the second equation and use the first equation to
cancel some addends. After some algebraic steps we arrive
at a second order polynomial with the following solutions.

∆v = 0 and ∆v =
b

a
− 2v1

We substitute ∆v and obtain

v2 = v1 and v2 =
b

a
− v1.

In the second solution, a represents the power loss which
is always positive, v1 is the constant speed which is also
always positive, and b is the energy absorbed by the node
in space domain d

dsϑi(s) · ci ∈ RNt . ϑi(s) is generally not
monotonically increasing, therefore

∃ τ ∈ {[1, Nt] ∩ N} | d
ds
ϑi(τ) ≤ 0⇒ ∃ v2 ≤ 0⇒ @.

We can conclude that

v?2 = v?1 ⇐⇒ v̄ = {v1 ∨ v2} | v1 = v2

This proves that if v1 6= v2 ⇒ v?1 6= v?2 , therefore
Problem 3 is injective in the speed.

Now we study how this property effects the convergence
of Algorithm 1. We suppose that the nonlinear solution x?NL

is known and Algorithm 1 reached at the ith

x?CVX,i(v̄
?
CVX,(i−1)) = x?NL

where v?CVX,(i−1) is part of the optimal solution at the i− 1
iteration. We know that x?CVX is uniquely identified by a v̄
because Problem 3 is injective.

Since x?NL = x?CVX,i we know that they both satisfy the
thermal constraints. In doing so, the difference is that for
NL v̄ is the optimization variable v and it assumes the value
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of v?NL, while for CVX v̄ = v?CVX,(i−1). We can prove that
v?CVX,(i−1) = v?NL using the same proof starting from Eq.
[28]. Finally, we wish to recall that Problem 3 has a unique
solution and it is injective. Therefore,

x?CVX,(i−1)(v̄
?
CVX,(i−2)) = x?NL,

since v?CVX,(i−1) = v?NL and v?CVX,(i−1) is part of the set of
unique solutions x?CVX,(i−1).

To conclude, Algorithm 1 reaches the nonlinear solution
only by starting from the nonlinear solution. This could
be possible with an infinite number of iterations. This
also proves that instead of abruptly reaching a fixed point,
Algorithm 1 gradually converges to it, which is in line with
our results.

To theoretically study the convergency of this method
in more detail we suggest to investigate block coordinate
methods. It should be noted that the lack of the constraint
v = v̄ hides some of the problem dynamics to the convex
approach. If a block coordinate method is used, we suggest
treating the speed as a unique optimization variable. The
literature of these methods provides extensive documentation
of convergence rates and optimality discussions.
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