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Abstract

In recent years autonomous driving is becoming a hot topic with the continuous development
of deep learning, computer vision and sensor technology. It comes with robustness and quality
of control issues when an Image-Based Control system is targeted to edge devices with limited
energy, memory and computing resources. Using end-to-end CNN-based approaches can improve
robustness, however, will increase runtime and result in a low frame per second. On the other
hand, the traditional hardware-efficient approaches are lack of situation-awareness. Different en-
vironmental factors (e.g. road layouts, types of lane markers and weather) have a great impact
on lane detection accuracy, and thus influence the quality of control. As a result, traditional
approaches can not ensure robustness in the real world.

In this work, we propose a hardware- and situation-aware sensing method to a lane-keeping
assist system with the traditional lane detection algorithm to make the system both hardware-
efficient and robust. We define situations based on different features and identify them using
light-weight CNN-based situation classifiers. Depending on the current situation, we dynamically
configure the system knobs based on hardware- and situation-aware characterization. To show the
effectiveness of our approach, we consider a hardware-in-the-loop framework on NVIDIA AGX
Xavier platform. Besides, Webots is used as the simulation environment on the server.

Our results show that the robustness is highly improved comparing to traditional approaches.
Moreover, the quality of control is also 32% better due to the approximated image processing
signal pipeline and predefined invocation scheme.
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Chapter 1

Introduction

1.1 Introduction

Autonomous driving has gradually become a hot topic since human error caused most traffic ac-
cidents [36]. The earliest research on autonomous driving can be traced back to the 1980s such as
ALV project funded by the United States’ Defense Advanced Research Projects Agency(DRAPA)
[16] and Eureka Project PROMETHEUS carried out by Mercedes-Benz and Bundeswehr Univer-
sity Munich [34]. With the continuous development of deep learning [21], computer vision and
sensor technology, autonomous driving technology has achieved breakthrough progress in recent
years. Various systems, such as advanced driving assistance systems (ADAS) and lane departure
warning systems (LDWS) [4], have been equipped in the current automatic vehicles.

Image-Based Control (IBC) system plays an important role in autonomous driving. More
cameras are predicted to be used in automated vehicles over the next decade, with a 20% increase
in cameras per vehicle by 2023 [33]since they need to send reliable images to IBC systems. A
typical IBC system, which is shown in Figure 1.1, consists of a sensing task(Ts) including an
image signal processing (ISP) pipeline and perception(PR), a computation task(Tc) executing the
control algorithm and an actuation task(Ta) executing instructions issued by the controller. The
quality of control performance is highly determined by the sensing time (Ts) for image processing.
In practice, such a sensing task is commonly mapped to an edge device which has relatively
restricted resource. Thus (Ts) becomes the bottleneck of the IBC system.

Figure 1.1: Tasks in an IBC system

A lane-keep assist system (LKAS) is considered in this work which is adapted from [9] [26].
Figure 1.2 shows the framework of this closed-loop system. The camera on the car will capture a
RAW image every sampling period and send it to the image signal processing (ISP) pipeline. The
ISP pipeline will then transform the RAW image to an RGB image. Five stages are considered:
demosaicing, denoising, color transform, gamut mapping and tone mapping [5], which will be
illustrated in Chapter 3.2. The processed image will be sent to perception (PR), where the lateral
deviation of the vehicle from the middle of the lane is calculated. PR will be illustrated in
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CHAPTER 1. INTRODUCTION

Chapter 3.3. The lateral deviation is used in the controller to get a steering angle. The controller
is designed based on the sampling period and sensor-to-actuation delay, and this will be discussed
in Chapter 3.4. Finally, the vehicle will use the steering angle to keep itself in the middle of lane.

Figure 1.2: Framework of the Considered LKAS

1.2 Motivation

To ensure the safety of the autonomous vehicle, the robustness should be given priority when an
LKAS is designed. Recently convolutional neural network (CNN) based lane detection technologies
such as LaneNet [30] and VPGNet [22] address the robustness. These approaches perform end-to-
end learning for different situations, so they can keep the vehicle stable while situation changes.
However, it costs too much time for a CNN-based algorithm on a resource-constraint edge device
to process an image since they are compute-heavy. This results in a low FPS when we implement
them on the NVIDIA AGX Xavier [1] platform used in our closed-loop LKAS, which makes them
unsuitable for our work.

On the other hand, traditional lane detection algorithms [26], [9], [6] are relatively light-weight
and can achieve a high FPS on an edge device. Moreover, an approximated ISP pipeline can further
improve Ts since it skips some stages. But unlike CNN-based algorithms, they are sensitive to the
changing between different situation. For example, different road layouts or types of lane markers
can easily result in a misidentified line. The approximated ISP pipeline also introduces more
sensing noise due to the trade-off between image quality and workload. As a result, a traditional
lane detection algorithm is not robust enough to ensure vehicle safety for considered closed-loop
LKAS. Figure 1.3 shows the accuracy and FPS comparison of traditional and CNN-based lane
detection algorithms.

We find out that if we can configure the LKAS based on different situations, the lane detection
algorithm can achieve higher accuracy. Thus, situations should be classified first, which can be
realized by light-weight CNN-based classifiers. Moreover, approximated ISP pipelines can be
utilized to reduce the time penalty brought by these classifiers. This approach skips stages in an
ISP pipeline and reduce the runtime at the cost of image quality, and thus reduces the sampling
period and increases QoC. This new strategy of LKAS design called hardware- and situation-aware
sensing should achieve both hardware-efficient and situation-robustness,
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Figure 1.3: Accuracy and FPS comparison between different lane detection techniques

1.3 Problem Statement

The possible performance gains from hardware- and situation-aware sensing in an image-based
control (IBC) system can have a significant impact on robustness and quality of control (QoC)
of the system. The accuracy of lane detection algorithm affects the robustness. Hardware- and
situation-aware sensing, which identifies different situations and dynamically reconfigure the IBC
system, can increase lane detection accuracy, i.e. increase robustness. On the other hand, time of
sensing task (Ts), which is the bottleneck for an IBC system on a resource-constraint device like
NVIDIA AGX Xavier, is influenced by hardware- and situation-aware sensing as well. The time
penalty brought by light-weight situation classifiers and gain brought by approximated ISP pipeline
both affect the sampling period, which is equal to the time difference between two consecutive
sensing tasks, i.e. affect QoC. The main focus of this project is to design hardware- and situation-
aware perception for the IBC system and evaluate its impact on robustness and QoC on the
system.

Therefore, the research question is: Can we improve the robustness and quality of
control of an image-based control system by designing hardware- and situation-aware
perception?

1.4 Contribution

We introduce light-weight CNN-based situation classifiers and configure the closed-loop LKAS
dynamically based on the situational knowledge to make the hardware-efficient traditional ap-
proaches [5], [26] robust. Moreover, we also dynamically change the sampling period and sensor-
to-actuation delay by using the approximated ISP pipelines and improve QoC. Thus, the new-
designed closed-loop LKAS achieves both hardware-efficiency and situation-robustness with a high
QoC.

The following paper [7] is published based on the results reported in this thesis. The paper
is accepted for publication in Design Automation Test in Europe (DATE) 2021 special session on

Study of Dynamically Reconfigurable Algorithmic Approximation on Quality of Control 3
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Predictable Perception for Autonomous Systems.

• Sayandip De, Yingkai Huang, Sajid Mohamed, Dip Goswami, and Henk Corporaal, “Hardware-
and situation-aware perception for robust closed-loop control systems,” In Design, Automa-
tion and Test in Europe (DATE) special session on Predictable Perception for Autonomous
Systems, 2021.

1.5 Report Structure

Chapter 1 is the introduction of the project. It contains motivation of this work, the problem
statement and contribution. Chapter 2 discusses the related works on traditional sensing ap-
proach and end-to-end CNN-based approach. Chapter 3 illustrates the background of our work.
Our purposed hardware-in-the-loop setup of LKAS, approximated ISP pipeline, lane detection
algorithm, lateral control model and the considered hardware platform are all introduced in this
chapter. Chapter 4 discusses the hardware- and situation-aware optimization we used in our work.
It contains the full workflow, the definition of situations, hardware- and situation-aware Charac-
terization, situation identification and dynamic runtime reconfiguration. Chapter 5 shows and
analyzes the experimental result. Chapter 6 concludes the work and points out future research
direction.

4 Study of Dynamically Reconfigurable Algorithmic Approximation on Quality of Control



Chapter 2

Related Work

2.1 Traditional Sensing Approaches

These approaches use traditional methods to detect lanes, process images and perform approximate
computing.

2.1.1 Traditional Lane Detection Algorithm

Many existing traditional algorithms are based on edge detection. [23] introduces a simple lane
detection algorithm using Region of Interest (ROI), Canny edge detection and Hough Transform.
[2] and [38] provide similar algorithms to [23]. [2] transforms the image from RGB to YCbCr and
reduce the noise by an averaging filter. Differencing filter and Hough Transform are applied for
edge detection. [38] constructs a lane geometrical model to gain lane geometrical features associated
with the geometrical relationship between camera and road, which can improve the accuracy and
reduce the computation in the lane detection process. [35] uses the bird’s eye view (BEV) instead
of a front-mounted camera. The image is transformed to grayscale first, and then the selected ROI
is transformed to BEV via inverse perspective mapping(IPM) in order to determine lane detection
region.

Although edge detection based algorithm is relatively mature now, it still has some limitations.
When faced with different scenarios such as glare on the road, rainy and foggy weather and lane
markers which are difficult to recognize, its performance will decrease.

2.1.2 Traditional Image Signal Processing Pipeline

The use of digital cameras is becoming significantly popular. To process the RAW images produced
by the cameras, image signal processing (ISP) pipelines are widely researched. [31] introduces
a digital color still camera (DSC) processing pipeline, which includes stages like demosaicing,
denoising, color transforming and compression. [5] provides a similar traditional ISP pipeline and
add functions such as gamut mapping and tone mapping to improve the quality of processed
images. To enhance color saturation, [17] uses CIELAB color space in an ISP pipeline. This
technology can increase the color saturation while keeping the hue and brightness of the pixels.

2.1.3 Approximate Computing in Image Processing

Approximated computing has been widely researched and implemented to achieve energy efficiency
[12]. In [6], a scalable effort hardware design is proposed, which is based on Support Vector
Machines (SVM). It can identify mechanisms at different levels of design abstraction such as circuit,
algorithm and architecture and then make them scalable in the implementation. [14] provides a
dynamic bitwidth adaptation in an Inverse Discrete Cosine Transform (IDCT) design. High-
frequency components are processed in reduced-bitwidth adders since high-frequency coefficients

Study of Dynamically Reconfigurable Algorithmic Approximation on Quality of Control 5
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have small magnitude values. This design can save 45% energy while losing 10dB peak signal-to-
noise ratio (PSNR). These mentioned technologies focus on the processing algorithms and hardware
implementation, which is hard to imply on an ISP pipeline.

[5] takes an different approach with [6] and [14]. Instead of using algorithm-level technologies,
a reconfigurable image signal processing (ISP) pipeline is developed which can skip some complete
stages. Although the quality of processed images is reduced, it has limited impact on the accuracy
of vision tasks and can save 75% energy comparing to a complete traditional ISP pipeline. However,
although the results of these approaches are promising, their evaluation is based on a particular
dataset and does not consider a closed-loop system.

[8,9,26] considers image approximation for closed-loop image-based control systems. Here, the
approximation scenarios are evaluated at design time, and one scenario is chosen to be implemented
at runtime. For dynamically changing scenarios at runtime, the conclusion may not stand anymore.
We will try to solve this problem by introducing a dynamically configured approximate ISP pipeline
in this project.

2.2 End-to-end CNN-based Sensing Approaches

These approaches use CNN-based methods to detect lanes and process images.

2.2.1 End-to-end CNN-based Lane Detection Algorithms

In recent years, deep learning based algorithms are heavily researched due to the rapid development
of the neural network. [20] presents a real-time lane-detection-and-tracking system which uses a
classifier to separate the lane markers. In addition, it detects the left- and right-lane boundaries
separately instead of using a fixed-width model. The system can therefore deal with challenging
situations like worn lane markings and merging or splitting lanes. [11] introduces an end-to-end
lane position estimation based on deep neural network, which can achieve 99% accuracy. [18]
uses convolutional neural networks to enhance input images and extract ROI before performing
RANSAC [19].

Another approach is made in [30], where a neural network end-to-end for lane detection referred
to as LaneNet is developed. As Figure 2.1 shows, the input image is first encoded by a shared
encoder, which is used for feature extraction. Then two decoders are purposed. One is for binary
lane segmentation, which is used to an output binary segmentation map to identify lane pixels.
The other one is for pixel embedding, which is trained, for instance, segmentation. Finally, these
two featured branches are combined together and clustered to give the result of pixels of each line.
LaneNet can achieve a 96.4% accuracy at 50fps measured on an NVIDIA 1080 TI.

Figure 2.1: Framework of LaneNet

2.2.2 End-to-end CNN-based Image Signal Processing Pipeline

In recent years, deep learning also achieved success in image processing tasks. [32] presents a full
end-to-end deep neural model of the camera image signal processing pipeline called DeepISP, which
can perform different low-level corrections and higher-level global image restoration simultaneously.
[15] applies deep learning technology to image processing approximation. For a new camera system,
the ISP pipeline can be designed automatically and still provides high-quality images.

6 Study of Dynamically Reconfigurable Algorithmic Approximation on Quality of Control



CHAPTER 2. RELATED WORK

2.3 Shortcomings of Existing Approaches

Unfortunately, for our work, both traditional and CNN-based approaches have their own weak-
ness. For traditional approaches, their robustness for different situations is not ensured because
their configurations are static and cannot be aware of the situation changing. Although they
are hardware-efficient, it is impossible to take the risk of crashing a vehicle. On the other hand,
CNN-based approaches are more robust and adaptive to different situations. However, they are
compute-heavy. For an edge device implemented in an autonomous vehicle, it will take too much
time to perform one cycle and thus results in a low FPS. This will reduce the QoC of the system
a lot and even crash the car as well.

To solve this problem, we consider a strategy to combine traditional and CNN-based approaches
together. The traditional lane detection algorithm introduced in [26], [9] are used as backbone of
the closed-loop system. To improve robustness, three different classifiers are trained to reconfigure
the system based on the current situation the vehicle is running under. Moreover, knowledge of
the approximated ISP pipeline introduced in [8, 9, 26] is also considered in the system to reduce
the sampling period and sensor-to-actuation delay. This approach will be described in Chapter.

Study of Dynamically Reconfigurable Algorithmic Approximation on Quality of Control 7



Chapter 3

Background

3.1 Hardware-in-the-Loop (HiL) Setup

The HiL setup of the considered LKAS in our work consists of two main parts, as Figure 3.1
shows. Webots, an open-source and multi-platform desktop application used to simulate robots, is
used as the simulation server. It provides a complete development environment to model, program
and simulate robots [24] and, more importantly, can be extended for automobile simulation. The
simulation environment is built-in Webots as a .wbt world file. The camera equipped on the vehicle
will send an image every sampling period to the client. The communication between server and
client is completed through the TCP/IP protocol.

Figure 3.1: HiL simulator setup

The client is executed in NVIDIA AGX Xavier platform and contains four components: ISP
pipeline, perception, light-weight CNN classifiers and controller. The approximated ISP pipeline,
which is based on Halide programming language, preprocesses the RAW image and pass it to the
lane detection component. Then the perception part will process the image and calculate the
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lateral deviation. The controller will calculate the required steering angle based on the lateral
deviation and send it back to Webots to keep the vehicle staying in the middle of the lane.
Several light-weight CNN classifiers, which will be explained in Chapter 4.4, are also introduced
to dynamically tune the configuration of ISP pipeline, perception and controller based on the
environmental situations and hardware settings.

3.2 Approximated Image Signal Processing Pipeline

3.2.1 Image Signal Processing Pipeline

ISP technology largely determines the imaging quality since cameras currently have physical im-
perfections and need to adapt to the environment because of the variety of light conditions for
shooting. By performing subsequent processing on the RAW signal output by the front-end image
sensor, ISP can generate compressed images which satisfy human vision.

A traditional ISP pipeline consists of a series of signal processing stages [5]:

1. Demosaicing: Bayer Color Filter Array (CFA) is commonly used on cameras. As a result,
each pixel in the RAW output image only contains one color: red, green or blue. Demosaicing
can obtain the composition value of red, green and blue of each pixel through interpolation and
generate an RGB image.

2. Denoising: Each sensor contains an analog part, so noise in the signal is difficult to avoid.
In addition, when the light condition is low, the entire system needs to amplify the signal, which
means the noise is also amplified. By averaging the neighboring pixels that resemble each other,
denoising can improve the signal-to-noise ratio.

3. Color transform: This stage mainly contains two parts, color mapping and white balancing.
The former attempts to make the intensity of RGB matched while the latter adjusts the color
temperature of the entire picture depending on light condition.

4. Gamut mapping: The pixel values are corrected to be within a display’s acceptable color
range in this stage.

5. Tone mapping: The image collected by the camera sometimes can not display enough
details in the darker or brighter parts at a certain exposure. Tone mapping raises pixel values in
particularly dark areas and reduces them in particularly bright areas in order to reproduce details
in these places.

6. Compression: Finally, the image will be compressed to reduce the data storage and com-
munication cost when it is transferred to another processing unit.

Figure 3.2 shows the workflow of a traditional ISP pipeline.

Figure 3.2: Traditional ISP pipeline

3.2.2 Approximated ISP pipeline

Although the traditional ISP pipeline has a great effect on the image quality, it requires more
calculation time and energy than an approximate ISP pipeline. Some stages may be unnecessary
for some computer vision applications so they can be skipped to improve the performance of
ISP pipeline. In this project, a tool called Configurable & Reversible Imaging Pipeline (CRIP)
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developed in [5] is implemented. CRIP can simulate an imaging pipeline in ”forward” operation
and invert the function in ”reverse” mode. By CRIP, different configurations of stages can be
simulated and evaluated in the application. Nine versions of pipelines are defined in this project

Version Stages Description
S0 DM, DN, CT, GM, TM All stages included
S1 DM. DN, CT, TM Skip gamut mapping
S2 DM, DN, CT, GM Skip tone mapping
S3 DM, DN, GM, TM Skip color transform
S4 DM, CT Only keep color transform
S5 DM, GM Only keep gamut mapping
S6 DM, TM Only keep tone mapping
S7 DM, DN Only keep denoising
S8 DM, CT, GM, TM Skip denoising

Table 3.1: Approximated ISP pipeline configuration

as Table 3.1 shows. S0 is the accurate version which will take the most time, the other eight
versions all skip some stages according to their configuration. Skipping the demosaic stage will
cause a crash because perception algorithm does not consider the Bayer pattern while skipping
compression will decrease energy efficiency, so demosaicing and compression are performed in all
these versions. The output images of these nine versions of pipelines are shown in Figure 3.3

Figure 3.3: Output of Nine Approximated ISP Pipelines
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3.3 Lane Detection Algorithm

The approximated ISP pipeline sends the preprocessed image to this process unit. Lane detection
algorithm mainly has three stages: perspective transform, feature extraction and inference as
Figure 3.4 shows.

Figure 3.4: Workflow of Lane Detection

3.3.1 Perspective Transform

The image provided by the approximated ISP pipeline contains a lot of unnecessary information
such as road lines of other lanes, buildings and debris off the road. So four region of interest (ROI)
points are selected to obtain the useful part of the image. For different cameras, these four points
should be different. Besides, when the vehicle is performing a left turn or right turn, its ROI needs
to be changed as well because the position of two road lines on the images slides to left of right.

Then the image is transformed to get a bird’s eye view (BEV) of the look-ahead lane. Table
3.2 lists the four BEV points.The four ROI points are mapped to the four defined BEV points as
Figure 3.5 shows. Finally, the BEV image is converted to grayscale in this stage.

x1d (120,512)
x2d (392,512)
x3d (120,0)
x4d (392,0)

Table 3.2: BEV points

3.3.2 Feature Extraction

To make the white road lane markings clearly differentiable from the road, color masking is then
performed. A threshold is set in this stage. If a pixel is brighter than this threshold, it is set to
the highest brightness, and otherwise, it becomes darkest. Sliding window based lane detection
follows behind, and tracks left and right road lines by sliding windows from bottom to top of the
image.
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Figure 3.5: Perspective Transform

3.3.3 Inference

The last step of lane detection is lateral deviation calculation. The tracked left and right road
lines are fit to a second degree polynomial. Then the center of the lane is identified using these
polynomials based on the look-ahead distance, which is 5.5 meters in this project. After that, the
reference of current vehicle position can be calculated according to :

ref = x1d +
(x2d − x1d)(256− x1)

x2 − x1
(3.1)

where x1 and x2 are abscissa of ROI points 1 and 2 shown in Figure 3.5, x1d and x2d are abscissa
of BEV points 1 and 2 shown in Figure 3.5.

Finally, the lateral deviation is calculated according to:

yL = (ref − lanecenter) ∗ lm
lp

(3.2)

where lm is lane width in meter and lp is lane width in pixel.
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3.4 Lateral Control

The control task receives the lateral deviation (yL) at look-ahead distance from lane detection
algorithm and calculates the steering angle δf . The lateral controller is defined as a linear time-
invariant (LTI) system:

ẋ = Ax(t) +Bu(t), y(t) = Cx(t) (3.3)

where x(t), u(t) and y(t) represent the state, input and output of the system. The lateral controller
used in this work is adapted from [25,27–29,37].

The state vector x(t) =
[
vy ψ yL εL KL

]T
where vy is the lateral velocity, ψ is the

yaw rate, yL is the lateral deviation, εL is the angle between the tangent of the road and the
vehicle orientation, KL is the curvature of the road at look-ahead distance.

The input u(t) is the front wheel steering angle δf and the output y(t) is yL. A, B, C represent
the state, input and output matrices of the system, and these matrices are:

A =


− cf+crmvx

−mv2x+crlr−cf lf
mvx

0 0 0
crlr−cf lf
Iψvx

crl
2
r−cf l

2
f

Iψvx
0 0 0

−1 −L 0 vx 0
0 −1 0 0 vx
0 0 0 0 0

 , B =


cf
m
lf cf
Iψ

0
0
0

 , C =
[

0 0 1 0 0
]

(3.4)

where cf and cr (= 2×60000N/rad) are the cornering stiffness of the front and rear tires,
m (=2000kg) is the mass of the vehicle,
vx is the longitudinal velocity,
lf and lr (= 1:6975 and 1:2975 m respectively) are the front and rear axle-center of gravity (CoG)
distance,
Iψ (= 6337.74kg·m2) is the total inertia of vehicle around CoG,
L is the look-ahead distance of the camera.

The lateral controller needs to be discretized using the Zero-Order Hold (ZOH) method since it
is implemented on a digital platform. The lateral controller also needs to take the worst sensor-to-
actuator delay(Dc) into account. The sampling period(h) should always be larger than Dc. The
sensor-to-actuator delay is obtained by first profiling the individual tasks and then summation of
their profile times. Timing analysis [3] is done to obtain the delay and period for different mapping
options. The system is then modeled considering the delay and period as:

x[k + 1] = Adx[k] +B0(Dc)u[k] +B1(Dc)u[k − 1] (3.5)

where Ad = eAh, B0(h) =
∫ h−Dc
0

eAcsds ·Bc, B1(h) =
∫ h
h−Dc e

Acsds ·Bc.
An augmented state is introduced such that z[k] = [x(k)u[k − 1]]. Assuming z[0] = [x(0)0], a

higher-order augmented system is shown as:

z[k + 1] = Aaug(h)z[k] +Baug(h)u[k] (3.6)

where Aaug =

[
A B1(h)
0 0

]
, and Baug =

[
B0(h)
I

]
The objective of the lateral controller is getting an input u[k] which can make output y[k] reach

a constant reference as k tends to infinity. In the LKAS, the reference is zero.

Due to dynamic reconfiguration at runtime, the controllers are switching based on different
situations. Each situation i has a controller configuration defined by hi, Dci . The stability of the
switched control system is shown by the existence of a common quadratic Lyapunov function as
explained in [25,27].
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3.5 Considered Platform

3.5.1 Platform Description

NVIDIA AGX Xavier platform, an edge device with a maximum power budget of 30W [1], is used
to execute LKAS as a client. The used parts in this project. an 8-core NVIDIA Carmel ARMv8.2
CPU, an integrated 512-core NVIDIA Volta GPU and 16GB of LPDDR4x off-chip DRAM memory,
is shown in Figure 3.6.

Figure 3.6: Framework of NVIDIA AGX Xavier Platform

3.5.2 Task Mapping

Table 3.3 shows the CPU-GPU task mapping on the client. Since the ISP pipeline is computing-
heavy, all the ISP tasks are mapped to the GPU except input data loading. Besides, ROI selection,
perspective transform and image thresholding of perception are also mapped to the GPU to help
reduce the running time. The actuation part is mapped to the CPU because it is relatively light
in computation.

CPU GPU
Demosaicing

Denoising
Color Mapping

Gamut Mapping
ISP Loading input data

Tone Mapping
Sliding window based tracking ROI selection & Perspective transform

Perception
yL calculation Image thresholding

Actuation Steering angle computing

Table 3.3: Task Mapping on the Client
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Chapter 4

Hardware- and Situation-aware
Sensing

4.1 Step-wise Overview of Hardware- and Situation-aware
Method

Figure 4.1: Step-wise Overview of Hardware- and Situation-aware Method

Figure 4.1 shows the step-wise overview of our proposed hardware- and situation-aware method.
First, we will define different situations based on three main features. Then hardware- and
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situation-aware characterization will be used to find out the specific configuration of LKAS which
can achieve the best robustness and QoC. After this, three light-weight CNN-based situation clas-
sifiers are trained and integrated into the LKAS system. Finally, we will design a dynamic runtime
reconfiguration workflow for the considered LKAS.

4.2 Situation Definition

In this project, three different features are considered to have the most impact on robustness and
QoC: road layouts, type of lane markers and type of scene/weather.

4.2.1 Road Layouts

In real scenarios, a vehicle does not always drive in one direction and needs to turn left and right in
different curves. However, it is hard to configure a static ROI for all types of turns. For example,
the ROI fit for the straight road cannot contain both two road lines in a right turn and will cause
a vehicle crash, which is shown in Figure 4.2. Therefore, a dynamic configured ROI is necessary
for a realistic environment. Three different road layouts are defined: straight, left turn and right
turn, as shown in Figure 4.3.

Figure 4.2: Static ROI’s Performance on Straight Road and Right Turn

Figure 4.3: Different Road Layouts
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4.2.2 Type of Lane Markers

Different forms of lane markers are widely used in real life, such as continuous line, double line
and dashed line. Some of these lane markers have an effect on the robustness of LKAS. After the
perspective transform, dashed lines are harder for the sliding window algorithm to recognize than
continuous and double lines, especially in the curve. Moreover, the color of lines also affects the
QoC since for some approximation ISP pipelines, the quality of their output image reduces. Thus,
one type of lane markers should be a combination of form and color. In this project, four kinds
of lane markers are considered: white-continuous line, white-dashed line, yellow-continuous line,
yellow-double line, as shown in Figure 4.4.

Figure 4.4: Different Types of Lane Markers

4.2.3 Type of Scene

In normal light conditions, the average grey value of the image is relatively uniform. However,
in real life, luminosity will not always remain ideal and vary with the weather and time, which
will make lane detection more difficult. To give LKAS information of the current situation, which
can help ISP pipeline to provide more accurate images facing with these scenarios, five different
scenes are considered: noon, dusk, dawn, night (with streetlight) and dark (without streetlight),
as shown in Figure 4.5.
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Figure 4.5: Different Types of Scenes

4.3 Hardware- and Situation-aware Characterization

4.3.1 Considered Configurable Knobs in the System

Hardware- and situation-aware characterization will identify the set of LKAS parameters which
perform best under a specific situation at design time. To achieve this goal, several system
parameters which are sensitive to the situation are described in Table. The nine ISP pipeline
versions, which are already discussed in Chapter 4, will have a big effect on the sensor-to-actor
delay and sampling delay. Besides, five different ROIs, whose pixels are reported for 512X256
resolution frames, are defined to improve the robustness of LKAS. Moreover, different vehicle
speeds are also considered since the high speed will bring more danger in the curve. Table 4.1
shows all the considered knobs in the system.

Knobs Detailed list Runtime

ISP knobs

S0:(DM, DN, CT, GM, TM)
S1:(DM. DN, CT, TM)
S2:(DM, DN, CT, GM)
S3:(DM, DN, GM, TM)

S4:(DM, CT)
S5:(DM, GM)
S6:(DM, TM)
s7:(DM, DN)

S8:(DM, CT, GM, TM)

21.5ms
3.3ms
3.2ms
20.9ms
3.2ms
3.1ms
3.2ms
3.1ms
18.9ms

PR knobs

ROI 1: (60, 0) (300, 0) (160, 65) (280, 65)
ROI 2: (208, 0) (469, 0) (308, 72) (439, 72)
ROI 3: (188, 0) (469, 0) (298, 72) (429, 72)
ROI 4: (69, 0) (333, 0) (117, 72) (221, 72)
ROI 5: (49, 0) (312, 0) (109, 72) (222, 72)

3.0ms

Control knobs
vehicle speed: 30km/h, 50km/h

sampling period(h), sensor-to-actuation delay(τ)
2.5us

Table 4.1: Considered configurable knobs in the system
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Sit.No. Road layout Left lane marker type Scene Speed ISP knobs PR knobs
Tc knobs
[h,τ ](ms)

1 straight white-continuous noon 50km/h S1 ROI1 [25,23.1]
2 straight white-dashed noon 50km/h S5 ROI1 [25,22.4]
3 straight yellow-continuous noon 50km/h S2 ROI1 [25,22.5]
4 straight yellow-double noon 50km/h S4 ROI1 [25,22.5]
5 straight white-continuous night 50km/h S4 ROI1 [25,22.5]
6 straight yellow-continuous night 50km/h S6 ROI1 [25,23.0]
7 straight white-continuous dark 50km/h S6 ROI1 [25,23.0]
8 right white-continuous noon 30km/h S4 ROI2 [25,22.5]
9 right yellow-continuous noon 30km/h S1 ROI2 [25,23.1]
10 right yellow-double noon 30km/h S1 ROI2 [25,23.1]
11 right white-continuous night 30km/h S6 ROI2 [25,23.0]
12 right yellow-continuous night 30km/h S1 ROI2 [25,23.1]
13 right white-dashed noon 30km/h S1 ROI3 [25,23.1]
14 right white-dashed night 30km/h S6 ROI3 [25,23.0]
15 left white-continuous noon 30km/h S1 ROI4 [25,23.1]
16 left yellow-continuous noon 30km/h S6 ROI4 [25,23.0]
17 left yellow-double noon 30km/h S6 ROI4 [25,23.0]
18 left white-continuous night 30km/h S1 ROI4 [25,23.1]
19 left yellow-continuous night 30km/h S6 ROI4 [25,23.0]
20 left white-dashed noon 30km/h S3 ROI5 [45,40.7]
21 left white-dashed night 30km/h S3 ROI5 [45,40.7]

Table 4.2: Pre-characterized situation-specific knob tunings

4.3.2 Pre-characterized Situation-specific Knob Tunings

Table 4.2 shows the 21 different situations considered in this project. For straight roads, the
vehicle speed is 50 km/h while in the curves it is reduced to 30 km/h. This is because 50 km/h is
too dangerous for a car to stay in a curve with a small radius. Such a high speed needs a smaller
sampling period and delay, which is hard to achieve in this work.

To determine which knob tuning is can achieve the best QoC for each situation, MAE is
introduced in this project. MAE can be calculated as the average distance from the position of
the vehicle to the middle of lane and the knob tuning whose MAE is the smallest is considered as
the optimal one.

MAE =
1

n

n∑
i=1

|y[k]| (4.1)

where n is the no. of samples and y[k] is the value yL at the kth sample and ideally yL should be
zero.

Figure 4.6, 4.7 and 4.8 show the MAEs of different ISP knob tunings for straight, right turn and
left turn respectively. For straight roads and right turns, the ISP knobs with smaller sampling
periods perform better than those with bigger periods. However, when the left lane marker is
dashed in a left curve, S3 has the best QoC because it is difficult to track dashed lines in the
presence of approximation. The ROI is also changed for situations with the dashed left line in
a curve, which results in a worse QoC comparing to other situations. On the other hand, for
curves, several ISP pipeline versions will lead the vehicle to crash since they skip some specific
stages which are important for lane detection in a curve. For example, under situations with a
left curve, ISP pipeline version S2, S4, S5 and S7 will be likely to lead the car to crash. All these
four versions skip tone mapping, and thus, we can come to such a conclusion that tone mapping
is important to a left turn.

The final knob tunings are shown in Table 4.2. For situation 13, 14, 20 and 21, their ROI is
different from the situations with the same road layouts. This is due to the two dashed lines in a
curve which will lead the car to crash quickly. Thus a different ROI which is more stable in curves
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is used, although it will bring a higher MAE.

Figure 4.6: MAE of Different ISP Knob Tunings for Straight Road

Figure 4.7: MAE of Different ISP Knob Tunings for Right Turn
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Figure 4.8: MAE of Different ISP Knob Tunings for Left Turn

4.4 Situation Identification

The basic idea of situation classifiers is using transfer learning for computer vision to identify
different situations based on images caught by camera sensors on the vehicle. In practice, it is
difficult to get a sufficient dataset to train a new Convolutional Network(ConvNet).As a result,
transfer learning, which uses a ConvNet pretrained on a very large dataset like ImageNet [10]
either as an initialization or a fixed feature extractor, is commonly utilized. In this project, the
strategy of transfer learning is loading a pretrained model and resetting final fully connected
layer. Resnet18 [13] is selected as the pretrained model because of its good performance and high
accuracy. The structure of resnet18 is shown as Figure 4.9

To improve the accuracy of classifiers, the images need to be preprocessed before being used
as training data. The size of the original image provided by the camera in Webots is 512*256.
However, the road is only shown in the bottom part of the image. Therefore the image is cropped
to a size of 512*100 and then resized to 224*224 due to the requirement of resnet18. Then the
pretrained resnet18 model is loaded, and the final fully connected layer is reset. After 50 epochs
of training, the model with the best accuracy is saved. The workflow of transfer learning is shown
in Figure 4.10.

Three different classifiers are trained to output information about the current situation. Table
4.3 shows the brief detail of each classifier. The training processing is based on Pytorch 1.4.0
with CUDA 10.0. The running time is profiled on the NVIDIA AGX Xavier platform. Since the
dataset is all based on Webots, the accuracy can reach 99.90% at least.

Classifiers Function Dataset Output classes Accuracy Runtime

Road classifier recognizes road layout
5866 images

(train:5353, val:513)
straight, left turn, right turn 99.92% 5.5ms

Lane classifier recognizes lane type & color
4781 images

(train:3939, val:842)
white-dashed, white-continous,
yellow-double, yellow-continous

99.97% 5.5ms

Scene classifier recognizes operating scene/weather
4703 images

(train:3892, val:811)
day, night, dark, dawn, dusk 99.90% 5.5ms

Table 4.3: Brief details of situation classifiers
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Figure 4.9: Structure of Resnet 18

Figure 4.10: Workflow of Transfer Learning
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4.5 Dynamic Runtime Reconfiguration

Figure 4.11: Workflow of Dynamic Runtime Reconfiguration

The three light-weight CNN situation classifiers introduced in Chapter 4.4 will be used to
configure the knobs in LKAS dynamically. The workflow is shown in Figure 4.11. The ISP
pipeline will first process the input frame and then pass it to the three classifiers. The output
of classifiers will configure the PR and control knobs in the same cycle. However, the ISP knob
will be configured in the next cycle. Since in real life, the situation does not change per frame,
such an one-cycle delay will not result in a vehicle crash. For example, while operating at 40
FPS and vehicle speed of 50 km/h, the vehicle progresses only 35 cms per frame, which is well
below the look-ahead distance (LL = 5.5 m) considered for designing the controller. This will
also be certified in Chapter 5. All three classifiers decide the ISP pipeline version suitable for the
current situation, and for perception, ROI is decided by road classifier and lane classifier. Only
road classifier will directly have an impact on the control part since it will decide the vehicle speed
alone.
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Experimental Results

This chapter will discuss the evaluation of hardware- and situation-aware method introduced in
Chapter 4.

5.1 Experimental Settings

The Webots version used in the project is R2020a reversion 1. For evaluation, the camera frame
rate is considered as 200 FPS in Webots. Lane width is always set to 3.25m according to standard
road safety guidelines. Although the type of left lane marker may change with different situations,
the right lane marker will always remain white-dashed, which is more common in real life. The
time step of Webots simulation is set to 5 ms. To ensure that the correct frames are captured,
and the correct steering angles are actuated, the sensor-to-actuation delay and sampling period
are ceiled to the nearest factor of 5 ms.

To evaluate the closed-loop QoC of LKAS, MAE, which is introduced in sector 4.3.2, is again
used as the evaluation metric.

5.2 Static Situation-specific Results and Analysis

5.2.1 Considered cases

Four cases, whose details are shown in Table 5.1, are considered to motivate the necessity of
hardware- and situation-aware sensing for improving the robustness of LKAS. Case 1, which is
used as the baseline, has the smallest sampling period since there are no classifiers in the LKAS.
In case 2, a road classifier is added to tune the ROI and vehicle speed dynamically. When the
classifier recognizes that the current road layout is a curve, the vehicle will slow down to 30 km/h;
otherwise, it will keep 50 km/h. However, the ROI can only be set to ROI 1 for straight roads,
ROI 2 for right curves and ROI 4 for left curves. This will be solved in case 3 because of the
implementation of the lane classifier. Finally, case 4 will use all three classifiers in the system. As
a result, the best approximated ISP pipeline version can be chosen via the output of the classifiers,
which will also change the sampling period and sensor-to-actuation delay.

In this section, each situation will be evaluated separately, which means that there is no
transition between different situations. All the tested situations are already listed in Section 4.3.2.

5.2.2 Results and Analysis

Figure 5.1 shows the result of straight road. Since ROI 1 is fixed for these situations, all four cases
have good performance. Figure 5.2 and 5.3 show the result of right and left turn respectively. Case
1 always fails in these situations because of its static ROI while case 2 fails in situation 13, 14, 20
and 21 since its ROI can’t meet the need of dashed lines without the help of the lane classifier.
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Sit.No. Classifiers used ISP knobs ROI knobs
Control knobs

[h,tau](ms)
Speed

1 none S0 ROI1 [25, 24.6] 50 km/h

2 road classifier S0
change dynamically

within {ROI1, ROI2, ROI4} [35, 30.1]
30 km/h
50 km/h

3 road + lane classifier S0
change dynamically

within ROI 1-5
[40, 35.6]

30 km/h
50 km/h

4 road + lane +scene classifier change dynamically
change dynamically

within ROI 1-5
change dynamically

30 km/h
50 km/h

Table 5.1: Considered Case for Static Situation-specific Test

For case 3 and 4, the vehicle is able to run stably. Thus, it can be concluded that the robustness
of LKAS is improved.

On the other hand, the classifiers will result in downgraded control performance. For situations
with straight road layout, case 1 has the smallest MAE among case 1-3. Each classifier will add 5.5
ms to sampling period and sensor-to-actuation delay, and with higher timings, QoC will decrease.
As a result, case 3 is also outperformed by case 2 in curve situations except situation 15 and 16,
which is due to additional sensor noise encountered in left turns. This can be solved by modelling
sensor noise in a linear-quadratic gaussian (LQG) controller, which can be a research direction in
future work.

Figure 5.1: Result of Static Situation with Straight Road Layput

To overcome the runtime penalty brought by classifiers, approximated ISP pipeline can reduce
the runtime of image processing. Case 4 uses three classifiers to determine the best ISP pipeline
version for the current situation based on Table 4.2. As a result, case 4 performs better than case
3 in most situations except situation 15. This is due to the reduced image quality of approximated
ISP pipeline have a bigger impact on QoC than smaller sampling period in this situation. Therefore
QoC of case 4 is worse than case3. It is also apparent that situation 13, 14, 20, 21 have a high
MAE. This is because of the fixed ROI for situations with two dashed lines. The vehicle will be
settled more left or right to the middle of the lane in left or right curves, respectively, by doing this,
the vehicle can avoid crashing. Although their QoCs in these situations are not good comparing
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Figure 5.2: Result of Static Situation with Right Curve Layput

Figure 5.3: Result of Static Situation with Left Curve Layput
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to others, the robustness is guaranteed. Comparing case 1 and case 4, the result shows that the
classifiers can improve the robustness while the QoC will not decrease a lot. Thus the classifiers
achieve its goal in static situations.

5.3 Analysis of Dynamic Switching between Situations

5.3.1 Experimental Setup

In real-world, the situations may change with the running of the vehicle. A world model is created
for studying the dynamic switching between situations in Webots, as shown in Figure 5.4. Table
5.2 shows the situation of each sector in the world model. The vehicle will start from sector 1,
and while it enters the next sector, LKAS will switch to the corresponding situation. This track
contains dynamic road layout switch such as sector 1 to 2, lane type switches such as sector 5 to
6 and scene switch such as sector 8 to 9. Thus it can be considered as a concrete case study for
evaluating the robustness and QoC of LKAS.

Figure 5.4: Model for Dynamic Switching between Situations

Sector No. Situation No. Road layout Left lane marker type Scene
1 5 straight white-continuous night
2 12 right yellow-continuous night
3 6 straight yellow-continuous night
4 18 left white-continuous night
5 6 straight yellow-continuous night
6 21 left white-dashed night
7 5 straight white-continuous night
8 14 right white-dashed night
9 7 straight white-continuous dark

Table 5.2: Situations for Dynamic Switching
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5.3.2 Result and Analysis

Figure 5.5 shows the result of dynamic switching between situations. The results are all normalized
to case 3. For case 1, the vehicle crashes when it is running from sector 1 to 2 because of the
absence of dynamic ROI switch. Case 2 can run a bit further. However, the vehicle crashing while
moving from sector 5 to 6. Case 3 and 4 can run through the whole track. This can illustrate the
improved robustness of LKAS by using hardware- and situation-aware sensing.

On the other hand, the performance for LKAS with classifiers decreases. Case 3, which is used
as the baseline, performs 55% and 22% worse than case 1 and case 2, respectively, on average.
This comparison is only considering sectors without vehicle crash. For case 4, it performs 30%
better than case 3 due to the implementation of the approximated ISP pipeline. Thus, the QoC of
LKAS with hardware- and situation-aware sensing also improves while situations are dynamically
switching.

Figure 5.5: Result of Dynamically Switching Situation

5.4 Tuning Invocation Frequency of Classifiers

5.4.1 Experimental Setup

In Section 5.3, case 4 invokes all three classifiers in each frame, which brings a 16.5 ms runtime
penalty. This penalty makes the sampling period and delay increased by 60% for ISP S0. Further-
more, for ISP pipeline versions skipping more stages, the time penalty even reaches 200%. Thus,
an invocation frequency of these classifiers is considered as a solution to improve QoC of LKAS.

An evaluation window of 300 ms is considered as the invocation frequency. The reason for this
is that the perception part of LKAS calculates the lateral deviation based on a 5.5 m look-ahead
distance. Since the top vehicle speed in this project is 50 km/h, the current control decision can
be valid for 400 ms. To prevent the instability of the system, a tighter window of 300 ms is
chosen. Figure 5.6 shows the timeline of the invoked classifier. In every evaluation window, the
first sampling period will invoke lane classifier, the in the second sampling period scene classifier
will be invoked. For the rest sampling periods of this evaluation window, only road classifier will
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be invoked, because road layout changes more often in real-world and the robustness of LKAS is
more sensitive to this change. This cycle will repeat every 300 ms.

Figure 5.6: Timeline of Invoked Classifier

5.4.2 Result and Analysis

Figure 5.7: Result of Dynamically Switching Situation with Invocation Frequency

Figure 5.7 shows the result of dynamically switching situation with invocation frequency. For
all the sectors with straight road and right curve layouts, the QoC is better than both case 3 and
4. Only in a left curve such as sector 4 and 6 the invocation frequency makes the QoC worse. This
is due to the sensor noise brought by the right dashed line in a left turn. Introducing invocation
frequency can improve the QoC by 32% and 3% comparing with case 3 and 4, respectively, on
average. Thus, such a method to reduce the penalty brought by classifiers makes sense.

Study of Dynamically Reconfigurable Algorithmic Approximation on Quality of Control 29



Chapter 6

Conclusions

6.1 Summary

This work focuses on improving the robustness and QoC of an LKAS system. First, two different
types of approaches are compared. Although end-to-end CNN-based sensing methods have high
accuracy, the traditional sensing method is finally chosen because of its fast speed on an embedded
edge device. Along with the ISP pipeline and actuation part, these three parts make up an LKAS
system.

We introduce hardware- and situation-aware sensing to this LKAS system. First, several
situations are defined by three main features: road layouts, types of lane markers and types of
scene. Three light-weight CNN situation classifier are trained and implemented into the LKAS
system to identify each feature. These classifiers have a high accuracy of 96% and a relatively
low runtime of 5.5 ms. Then we define 21 situations and test them to get their best configuration
of approximated ISP pipeline version, the region of interest, sampling period, vehicle speed and
sensor-to-actuation delay. After setting up such a look-up table, a dynamic runtime reconfiguration
strategy is designed to ensure that LKAS can identify the current situation the vehicle is running
under and then change to the corresponding configuration.

Using this new LKAS system, we test both static and dynamic situations. For the static
situations, we see that although the time penalty brought by classifier have a negative impact on
QoC, it can highly improve the robustness. Moreover, thanks to the approximated ISP pipeline,
the QoC can also become better. For dynamic situations, we create a track in Webots, which
includes several different situations changing with road layouts, type of lines and type of scene. It
is obvious that comparing to the traditional LKAS without hardware- and situation-aware sensing,
our approach can make the car successfully running through the whole track without crashing.
Besides, QoC is also 30% better than LKAS with only two classifiers.

Finally, to further improve QoC, we design an invocation scheme to reduce the sampling period
and sensor-to-actuation delay. An invocation frequency window of 300 ms can help LKAS to gain
a 3% QoC improvement.

6.2 Future works

There are several future research directions. The first one is using a better simulator such as
LGSVL can replace Webots as the server since more dynamic situation changes can be tested in
it. Moreover, more features such as traffic and weather condition can also be taken into account
while they are hard to realize in Webots.

Another direction is that one classifier which can identify different features at the same time
can be developed. This can reduce the time penalty and simplify the system comparing using an
invocation scheme.
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