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Abstract

In modern industry, an industrial system is composed of lots of components or subsystems. Because
the manufacturers produce these subsystems according to a generic standard or design guideline
without full knowledge about the target system, the control model and system dynamics will
only follow a generic pattern with typical parameters, which will cause parameter changes on
the real system. Also, the system dynamics may be affected by thermal effects and mechanical
and electrical ageing, which cannot be directly measured and is challenging to account for in the
generic control model. These factors will result in the performance deterioration of the control
system under different scenarios. Therefore, it is necessary to provide a method for tuning and
adapting the subsystems at runtime to improve the system performance.

In this report, we propose an online model identification and adaptation of a control system at
runtime. The NARMA-L2 controller, a kind of neural network controller, is used for identification
and controller design. We show that the NARMA-L2 controller can achieve high training accuracy
and realize the control requirement in both linear and nonlinear systems. We validate our approach
using the cruise control system designed in Webots. Based on the NARMA-L2 controller, online
model identification method and an adaptive controller are designed to adapt to parameters’
changes. Also, for validation of the controller, we develop a MATLAB toolbox for SiL and HiL
simulation to validate the controller, which supports code generation for different parameters,
integration of widgets like SDF3 dataflow analysis, and switch between different implementation
platforms and controllers. Our evaluation shows that adapting the controller at runtime has better
performance than the traditional PID controller.
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Chapter 1

Introduction

1.1 Motivation

With the development of industrial control, it becomes essential to precisely model the dynamic
system for analysis and controller design. However, in most cases, the system is unknown to
outside, time-varying, too complicated or fuzzy. It cannot be represented or modelled directly
by traditional pre-defined models. Also, the parameters recorded in testing will be changed on
real systems due to different environment or disturbance from other subsystems. For instance, an
electric motor is affected by thermal effects [4] or mechanical and electrical ageing [5], which are
both difficult to measure and affects system dynamics. For example, a car in cruise control may
experience slopes, change of road surfaces like rain and snow, and loads on the vehicle. To not
degrade the controller’s performance when the system dynamics and parameters are varying with
different situations, an online identification method and adaptive controller design are required.

For analyzing the system in detail, especially to reproduce the problematic situations on phys-
ical systems, simulators and suitable frameworks are used. Using the simulation framework, the
designer can evaluate the controller’s performance under the desired situations.

1.2 Background introduction

1.2.1 System identification and controller design

System identification is an effective method to identify control systems in industrial practice
described above. It aims at finding a possible model that approximate the behaviours of the
unknown system based on the input and output data, as is described in [6]. The model obtained
from identification can then be applied in further analysis and controller design. Figure 1.1 shows
the general procedure of system identification, including appropriate model selection, parameter
identification and adjustment based on input and output data, and verification using error between
the identified and original system.

System identification can be used in various aspects of industrial applications. As is summar-
ized in [7], the use of identification includes simulation and prediction, which derives from the past
input to the output of next state, to predict the state of a complex system or generate a simulated
system like a software emulated sensor. It also includes control and optimization, which requires
the control input to adjust frequently based on the reference output and the change of model
parameters to give the optimal control input and optimize the control system’s performance.

1.2.2 Online and offline identification

Identification methods can be divided into two categories, namely, online and offline. Offline
identification means that the data must be collected before training. Online identification can

Online model identification and runtime adaptation of a closed-loop control system 1



CHAPTER 1. INTRODUCTION

Figure 1.1: General procedure of system identification

process the data one by one and train the model whilst the model is running [8].
Online and offline models have their advantages and disadvantages. As is summarized in [9],

an offline model can handle extensive data as computation time is not critical to this structure.
They are robust to small variations but fail to adapt to more extensive changes in the system. The
online model adapts quickly to variations in the non-linear behaviour but is less accurate because
of small sets of training data given as batches.

1.2.3 Adaptation of model

The traditional controller, including the controller designed with system identification described
above, can keep its functionalities to some extent when the parameters change. As the changes
become extensive, the performance will be reduced until the controller diverges. Therefore, the
controller requires adaptation at runtime based on the condition and parameters of the controlled
system to enhance the control performance and keep converged in different types of parameter
changes.

According to [10], adaptation can be divided into two categories. The direct adaptive control
can directly adjust the controller’s parameters based on the reference model and errors. The in-
direct adaptive control first identifies the model with system identification methods and adjust
the parameters based on the identified model. The controller adaptation based on system identi-
fication is also called model identification adaptive controller, which will also be addressed in this
report.

The process of model identification adaptive controller is shown in Figure 1.2. Figure 1.2 shows
that the system identification technique identifies the model on runtime in the model identifica-
tion adaptive controller. The result is used to update the controller using some kinds of update
strategies.

1.2.4 XiL simulation

In a real system and its control loop, the physical system is directly connected to and controlled by
a control system run on hardware platforms. However, it is difficult to use real physical systems for
simulation of the controller because of the cost and the fact that the real system cannot perform
extreme situations like extreme temperature. Therefore, when simulating a system, some parts
of the real system need to be replaced with the simulated part to observe the behaviour of each
part [11]. These kinds of simulation methods are called XiL simulation in general.”XiL” contains
two categories of simulation, Software-in-the-loop (SiL) and Hardware-in-the-loop (HiL). The ”X”
represents where the controller codes are executed, on controller hardware or on normal software
platforms like PC.

Hardware-in-the-loop simulations mean that the evaluated controllers are run on the target
hardware and interact with the simulator real-time with the same protocols as the ones on the

2 Online model identification and runtime adaptation of a closed-loop control system
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Figure 1.2: Procedure of model identification adaptive controller

actual robot sensors and actuators, as is summarized in [12]. Before writing the controller code
to the hardware, the code needs to be run on PC simulators to test if its basic functions and logic
meet the requirement of the control model. This is called Software-in-the-loop simulation [11].

1.2.5 Simulation environment

In order to build the XiL simulation environment introduced in Chapter 1.2.4, a robot simulator is
required to model the physical system in reality for simulation and measurement. The simulators
currently used in robotics and control simulation includes Gazebo1 [13], V-REP2 [14] and Webots3

[15].
Most of these simulators allow users to define customized controller to control the movement of

robot parts, either inside the simulator or using one of the programming language and environment
provided by operating systems and third-party libraries. However, changing control parameters of
the external controller requires direct modification of codes, which is vulnerable to mistakes and
hard to maintain. It is not user-friendly to users who are not familiar with the language used for
the controller.

1.3 Report structure

The report consists of nine chapters. Chapter 1 introduces the motivation and background in-
troduction of the report. Chapter 2 discusses related work. Chapter 3 states the problems to be
solved in this project and describes the contribution of the project. Chapter 4 describes the overall
design approach. Chapter 5 introduces the controller’s theoretical background and mathematical
derivations, and Chapter 6 talks about the implementation and verification of the selected con-
troller. Chapter 7 introduces the design of the XiL simulation framework. Chapter 8 applies the
identification and controller design on the chosen system and discuss the adaption strategies for
parameter changes. Finally, Chapter 9 concludes the whole project and describes future work
after the project.

1http://gazebosim.org/
2https://www.coppeliarobotics.com/
3https://www.cyberbotics.com/
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Chapter 2

Related Work

This chapter introduces the related work about the thesis. Chapter 2.1 discusses standard system
identification approaches, including traditional methods, machine learning methods, and discus-
sion about online and offline identification methods. Chapter 2.2 discusses common approaches to
deal with parameter changes and adaptation of the system. Chapter 2.3 discusses the simulators,
their comparison and related works about XiL simulation using them.

2.1 System identification methods

2.1.1 Classical identification

System identification has been a traditional topic since L.A.Zadeh raised the concept in [6]. Before
the introduction of neural network or statistical learning, several mathematical methods are used
to approximate the model to be identified into a chosen model.

Least square methods are the most traditional and popular statistical methods for linear re-
gression [16]. It is widely used to identify linear models, but it does not apply for nonlinear models.
Kalman filter is optimal in approximating linear models and is commonly used in linear approx-
imation [17]. The nonlinear variations of Kalman filter, like extended Kalman filter in [18] and
unscented Kalman Filter in [19] can deal with special cases of nonlinear systems by linearization.
These methods mostly focus on mathematical solutions of system functions.

2.1.2 Identification with machine learning methods

In order to solve the problem of nonlinear approximation, which is proved difficult using traditional
identification, Levin et al. introduced the use of the neural network in system identification in
[20]. In [21] and [22], Narendra et al. gave a brief introduction about the method and raised
the complete process and system architecture to identify dynamic time-varying systems. Also in
[23], Narendra et al. applied Nonlinear Auto-Regressive Moving-Average (NARMA) model and its
approximation NARMA-L2 to predict the output with the time-delayed past inputs and outputs,
which sharply simplified the network structure and controller design.

Apart from using a traditional neural network like multi-layer perceptron and back-propagation,
neural networks with other models and algorithms are raised to solve the problem. Support Vector
Machine (SVM) and its variation Least-Square Support Vector Machine (LS-SVM) proposed by
Vapnik et al. [24] are usually used in classification problems. SVMs can be modified to construct
a hyperplane in high-dimensional space to transform nonlinear problems into linear optimization
problems in higher-dimensional space. They can be applied to system identification and used in
nonlinear regression, often referred to as Support Vector Regression (SVR). Lu et al. presented an
algorithm for time-varying nonlinear systems using Radial Basis Function Neural Network (RB-
FNN) [25], which can achieve higher speed and suitable for the time-varying nonlinear system.
Lin et al. in [1] proposed a fuzzy network using type-2 fuzzy sets to model uncertainties associated

4 Online model identification and runtime adaptation of a closed-loop control system
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with information and used for online system identification while eliminating the uncertainties in
the typical fuzzy model. The process of fuzzy network identification is shown in Figure 2.1, which
is cited from [1].

Figure 2.1: Identification using fuzzy network [1]

2.1.3 Online and offline model identification

Based on the basic identification methods in Chapter 2.1.1 and Chapter 2.1.2, the algorithms
listed are adapted and optimized to various systems using either online or offline approaches.

Among online approaches, Puttige et al. introduced a real-time neural network-based online
identification used to identify a UAV system in [26], using autoregressive moving average exogenous
(ARMAX), which is a generalized model of ARMA and NARMA described above. Park et al.
designed an online global model identification using MLP and RBF neural networks to identify
a synchronous generator connected to an infinite bus [27], where the data is collected offline and
trained online. In [28] Liu et al. used FCA-CMAC Neural Networks, some kinds of fuzzy network,
for fault identification and fault-tolerant control for an unmanned underwater vehicle.

Among offline approaches, Erazo et al. described an offline method to use Bayesian identifica-
tion for an output-only system by recursive estimation using the unscented Kalman filter in [29].
In [30], Caponio et al. introduced a fast adaptive memetic algorithm and applied it to both offline
and online identification and controller design.

2.2 Adaptive control

A traditional implementation of adaptive control is adaptive PID controller used for auto-tuning
of PID parameters. Ping Ge el al in [31] introduced an adaptive PID controller for tracking a
piezoceramic actuator by adding feedforward to the feedback loop in PID. Training neural networks
using PID parameters for the self-tuning of PID is also widely discussed, either using single-neuron
network [32] or using RBFNN [33].

For adaptive control concerning neural network controllers, there have been lots of research in
this direction. [2] used internal model control to control the temperature of an oven. They used
RBFNN to identify the model with initial parameters offline, and updated the network online by
replacing the outdated data points with newly generated data. The control process is shown in
Figure 2.2, which is cited from [2]. The model has similar structures with the model identification
adaptation introduced in Chapter 1.2.3, while the controller design requires training of another
neural network. It will lead to larger computational pressure on hardware controllers with limited
performance.

Also, [34] presents an adaptive inverse controller using neural networks that applied adaptive
control for the water level of a boiler drum. The author uses neural networks to train the inverse
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Figure 2.2: Procedure of internal control using RBFNN [2]

model of the controller, and the NN controller is combined with a robust feedback controller to
provide better adaptation.
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2.3 Simulators

As is introduced in Chapter 1, the simulators play an essential role in XiL simulation. The three
simulators are widely used to simulate robot-related physical objects, and they are proved their
abilities to use in XiL simulation in plenty of related work.

V-REP is developed by Rohmer et al. and introduced in [14]. Compared with Gazebo, it is
more user-friendly on model design and integrates more features while having a similar performance
of controller design and external APIs, according to the summary given by Nogueira in [35]. As a
part of the simulation framework, Mohamed et al. implemented an XiL framework for IBC using
V-REP in [36].

Webots is an open-source (commercial before 2018) robot simulation platform, which provides
complete modelling, control application and simulation functions. Webots provides a large num-
ber of pre-designed robots and vehicle scenarios, and it also provides APIs of several popular
programming languages with better readability or systems in robotics like C++, MATLAB, ROS,
Python, etc [15]. The use of Webots in simulation is similar to V-REP, like [3] by Mohamed et
al., which is the optimization of [36] using Webots instead of V-REP. An example of the use of
Webots in the simulation is shown in Figure 2.3, which is cited from [3].

Figure 2.3: The use of Webots in simulation [3]
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Chapter 3

Problem Statement

This section introduces the research question this thesis tries to solve and list the contributions of
this thesis.

3.1 Problem statement

According to Chapter 1 and 2, a control system, in reality, will experience changes in parameters,
which will cause the system to behave differently in different states, and it is not always possible
to evaluate the physical changes, like thermal and ageing effects on an actual system.

In order to identify the controller and design the controller, system identification is necessary
for complex dynamic systems described above. Furthermore, because of the need to design the
controller and adapt the control input to the current controller when the parameters change, a
strategy to make the controller adapt to the changes is highly demanded. However, online identi-
fication suffers from the methods for its inaccuracy and strict real-time timing requirements. Thus,
a mixed-method using offline algorithms and online update strategy is preferred. Furthermore,
simulation and simulation environments are proved to be useful for simulating extreme conditions
and parameters for a dynamic system. Further, the performance of the controller can also be
evaluated under these conditions.

Therefore, the research question is: Can we design a controller that can identify a
control system model online and adapts to parameter changes of the systems during
its lifetime?

3.2 Contribution

The contribution of this thesis includes the following items:

1. Study algorithms of system identification using neural network and justify its feasibility.

2. Choose the appropriate neural network based controller and test its performance.

3. Integrate the selected controller in the control system and do model learning and controller
design for the chosen dynamic system.

4. Design an adaptation strategy to deal with parameter changes and improve the control
performance.

5. Performance evaluation of the identification and adaptation method.

6. Design an XiL framework with MATLAB front-end for simulation and validation of the
controller.
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Chapter 4

Design approach

This chapter includes two parts. First, we give an overview of the design approach for identification
and runtime adaptation and describe the functionality and structure of each step. Second, we
describes the framework used for validation.

4.1 Overview of the design approach

The overall structure of the design approach is shown in Figure 4.1. In Figure 4.1, the whole
process is divided into four steps, namely data collection, training for identification, controller
design and runtime adaptation, which will be explained in detail below.

Figure 4.1: Overall design approach
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4.1.1 Data collection

The first step of the process is to collect enough data for system identification and adaptation. The
dynamic system required to be identified is more likely to be a black box, and the only available
information for the system is the input and output data. Therefore, the input and output data of
the system, including the input and output of the past moments to cover the time delays of the
control system, needs to be collected and sent for training. Also, the number of data points to
be collected depends on the performance of the identification model and the time permitted for
running the system to collect data. In our experiments, 1500 to 2500 data points (about 15s to
20s) is enough to train and identify an adaptive cruise control system.

4.1.2 Training for system identification

After collecting enough data for identification, the data will be used for training of the identifica-
tion model. Chapter 2 mentions several methods for identification, both traditional methods like
least-square or Kalman filtering, and methods using machine learning methods, like neural net-
works or SVR. To be prepared for a physical model with non-linearity and tine-varying, a proper
identification model should be chosen to present the model precisely and correctly.

Firstly, because the model must support non-linear and time-varying systems, traditional meth-
ods like least-square will then be exempted. Secondly, among machine learning methods, including
neural networks and SVR, SVR cannot deal with large samples [37], which is common in control
problems with high sample frequency. Therefore, the neural network approach is chosen. For a
standard neural network controller, it is challenging to figure out the control input u(k), which is
not suitable for adaptive controller design. Therefore, as is stated in Chapter 2.2, the NARMA-
L2 controller, whose control input can be calculated directly by algebraic methods, is chosen for
the model to be implemented. Therefore, the final identification model should be a NARMA-L2
model.

After selecting the proper model, the selected model, NARMA-L2, will be used for identification
and controller design. The model will be trained using the data provided by the data collection
block.

4.1.3 NARMA-L2 Controller Design

After the NARMA-L2 model identifies the dynamic model accurately enough, the model (or the
neural networks in it) will be stored and called in the NARMA-L2 controller. As is mentioned in
the comparison between NARMA-L2 and other kinds of identification model in the last subsection,
the controller accompanied with NARMA-L2 can be designed by simple algebraic calculation using
the networks, system output and the reference output. Firstly, the output that the dynamic system
is required to produce needs to be determined. Then the controller can produce the input to be
imported in the system. The controller and the dynamic system will then form a closed-loop
system, where the controller receives the control output from the system and produces the control
input of the next state, while the dynamic system receives the input generated by the controller
and gives the output corresponding to the input.

4.1.4 Runtime adaptation

The first three steps shown in Figure 4.1 do system identification and controller design assuming
that the system does not change. Therefore, this step aims at defining a strategy to deal with the
requirement about parameter changes in the system. In the proposed approach, the occurrence of
the update of the controller needs to be determined based on the data points needed to collect.
When the required data have completed collection, the collected data will be used to re-train the
NARMA-L2 model and replace the current model if the current model shows higher error rate,
which means that the original model cannot represent the dynamic system well.
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4.2 Validation of the approach

The approach described in the previous chapter discusses how the system is identified, and how
the controller is designed and adapted. To validate the approach and provide a detailed view of
the whole system, the following validation process is proposed, which is shown in Figure 4.2

Figure 4.2: Validation process for the approach

The validation process solves two problems of the overall approach in Figure 4.1. First, Webots,
the simulation platform of the dynamic system is added to replace the use of physical systems.
Second, training parameters and properties, like learning rates, training epochs, amount of data
points and the network structures are defined using the GUI in the XiL simulation framework. The
validation can be done by selecting the parameters in the GUI, use the GUI to connect to Webots
and observe the performance of the controller. The detailed description of the XiL simulation
framework will be given in Chapter 7.
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Chapter 5

Mathematical Background of
Identification

This chapter introduces the mathematical background of identification methods and controller
design.

5.1 Description of control system

A discrete-time control system can be represented in state-space equation as follows:

x(k + 1) = f [x(k), u(k)]

y(k) = g[x(k)]
(5.1)

where the state x(k) ∈ Rk, the input u(k) ∈ Rm, and the output y(k) ∈ Rn. The functions
f : Rm × Rk → Rk is the mappings from the current state and input to the next state, and
g : Rk → Rn is from the current state to the output, which are both unknown in this scenario to
be identified. x(k) is unknown to observers too, so the unknown system is observed as an input-
output black box from outside. If m = n = 1, the system is called Single Input Single Output
(SISO) system, while otherwise it is classified as Multi Input Multi Output (MIMO) system.

A discrete-time linear system can be represented as follows, which can be regarded as linear-
ization of Equation 5.1:

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k)
(5.2)

Because f and g in Equation 5.1 are unknown linear or nonlinear functions, the objective of
system identification is to derive the two functions from the unknown input-output plant.

5.2 NARMA and NARMA-L2 model

5.2.1 NARMA model

As is discussed in [38], a SISO system represented in the form of Equation 5.1 can be converted
into the following form:

y(k + 1) = Fn[y(k), y(k − 1), ..., y(k − n+ 1), u(k), u(k − 1), u(k − n+ 1)] (5.3)

where Fn is a map that Fn : R2n → R.
Equation 5.3 can be generalized to make the following equation exist:

y(k + d) = Fn[y(k), y(k − 1), ..., y(k − ny + 1), u(k), u(k − 1), ..., u(k − nu + 1)] (5.4)
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where Fn is a map that Fn : Rny+nb → R and d ≥ 2
Equation 5.4 shows that the time-delayed output can be represented by a nonlinear function of

the past inputs and states. It is called a Nonlinear Auto-Regressive Moving-Average (NARMA)
model.

5.2.2 NARMA-L2 model

In theory, NARMA model can be directly used in system identification by using a neural network
to approximate Fn. This method can achieve higher identification accuracy, but it is difficult to
calculate the desired u(k) in adaptive controller design, because according to Equation 5.4,the
control input required to get the desired reference output y∗(k) is

u(k) = Hn[y(k), y(k − 1), ..., y(k − ny + 1), y∗(k + d), u(k), u(k − 1), ..., u(k − nu + 1)] (5.5)

u(k) is nonlinear and needs to be approximated by neural network rather than algebraic calcu-
lation. Therefore, an approximated model, NARMA-L2 is raised in [39] in order to simplify the
controller design and accelerate the training process. Equation 5.4 can be derived by separating
u(k) apart and applying Taylor expansions at an equilibrium point u0 as follows:

y(k + d) = Fn[y(k), y(k − 1), ..., y(k − ny + 1), u(k), u(k − 1), ..., u(k − nu + 1)]

= Fn[φ(k), u(k)]

= Gn[φ(k), u0(k)] +
∂Gn
∂u(k)

|φ(k),u0(k)(u(k)− u0(k)) +R1(k)

⇒ {Gn[φ(k), u0(k)]− ∂Gn
∂u(k)

|φ(k),u0(k)u0(k)}+
∂Gn
∂u(k)

|φ(k),u0(k)u(k)

= f0[φ(k)] + g0[φ(k)]u(k)

(5.6)

where f0 and g0 are two nonlinear maps that can be approximated by two separate neural networks.
The network structure described in Equation 5.6 is shown in Figure 5.1, which visualizes how the
output y(k + 1) is calculated with the trained two networks and the input data series.

Adaptive controller design in NARMA-L2 can be much easier because it can be achieved only
with algebraic calculation, which is shown in the following:

u(k) =
y∗(k + d)− f0[φ(k)]

g0[φ(k)]
(5.7)

where φ(k) = [y(k), y(k−1), ..., y(k−ny+1), u(k−1), ..., u(k−nu+1)]. Because u(k) is determined
by y(k), the output at the same time, it is difficult to implement Equation 5.7 in reality. Therefore,
Equation 5.7 is modified to the following form:

u(k + 1) =
y∗(k + d)− f0[φ

′
(k)]

g0[φ′(k)]
(5.8)

where φ
′
(k) = [y(k), y(k − 1), ..., y(k − ny + 1), u(k), ..., u(k − nu + 1)].

5.2.3 NARMA-L2 model in MIMO system

Chapter 5.2.1 and 5.2.2 discusses how NARMA-L2 is derived and applied in SISO system with
one input and one output. This chapter will introduce how NARMA-L2 can be generalized in
MIMO systems [23].

Suppose an MIMO system described as Equation 5.4, while y(k) = [y1(k), y2(k), ..., yn(k)], and
u(k) = [u1(k), u2(k), ..., un(k)]T . The NARMA-L2 model that applies to this model is

yi(k + d) = fi[y(k), y(k − 1), ..., y(k − n+ 1), u(k), u(k − 1), u(k − n+ 1)]

+

n∑
j=1

gij [y(k), y(k − 1), ..., y(k − n+ 1), u(k), u(k − 1), u(k − n+ 1)]uj(k)
(5.9)
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Figure 5.1: Structure of NARMA-L2 network

The controller design result u(k) is given below so that the output follows the reference y∗(k):

u(k) =

g11[φ(k)] ... g1n[φ(k)]
... ... ...

gn1[φ(k)] ... gnn[φ(k)]

−1 y1(k)− f1[φ(k)]
...

yn(k)− fn[φ(k)]

 (5.10)

in which fi and gij is given by the approximation of neural networks trained using Equation 5.9.

5.3 Smoothing of controller performance

According to Section 6.1 and 6.2, the NARMA-L2 controller is able to generate the system input
that will make the control system act following the reference output. However, the controller can
only guarantee the system output, while the control input is not restrained. The generated control
input may have significant chatter or fluctuation. The fluctuation is caused by the sharp changes
in the reference input, which will lead the input to hit the upper or lower limit and form chatters.

Therefore, [40] raised a method to smooth the controller performance by adding time-delays
and linear feedback on the controller, inspired by the PID controller. In Equation 5.8, if some past
value of the output y is added to the equation as linear feedback, the equation will be transformed
as follows:

u(k + 1) =
c0y
∗(k + d)− f0[φ

′
(k)]− dT yp(k)

g0[φ′(k)]
(5.11)

where d = [d1, d2, ..., dn]T , yp(k) = [y(k), y(k − 1), ..., y(k − n+ 1)].
Take z-transform for Equation 5.11, the result is:

Y (z) =
c0
D(z)

Y ∗(z)

D(z) = 1 + d1z
−1 + d2z

−2 + ...+ dnz
−n

(5.12)

According to Equation 5.12, the steady-state error can be eliminated if
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c0 = 1 + d1 + d2 + ...+ dn (5.13)

where dn needs to be defined by the users.
Equation 5.11, 5.12 and 5.13 apply to the scenario that the generated input requires to be

smoothed. However, because there are time-delays added to the input, the response time of the
controller will increase. Whether to use the method in this part requires analysis on the trade-off
of response time and control performance.
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Implementation and verification of
NARMA-L2 controller

This chapter describes the implementation of the NARMA-L2 model and verification of its cor-
rectness and effectiveness using both linear and non-linear systems.

6.1 Implementation

The implementation of the NARMA-L2 model aims at implementing the two neural networks to
approximate f0 and g0 mentioned in Equation 5.6. The two neural networks are trained using the
following algorithms:

Algorithm 1 Identification of NARMA-L2 model

Input: Time-delay of inputs and outputs φ(k)=[ y(k), ..., y(k − n+ 1), u(k), ..., u(k − n+ 1)];
Output: Network represented as f and g
1: N ← number of datapoints, epoch← time of iteration, k ← 0, i← 0, lr ←learning rate
2: X(layer)(neuron) ← weights of the nerual network in a single neuron in a certain layer. X

represents f or g.
3: while k ≤ N do
4: while i ≤ epoch do
5: yr(k)← f [φ(k)] + g[φ(k)]u(k);
6: e(k)←MSE(yr(k)− plant(u(k)));
7: for l in layers of f do
8: for n in l do
9: f(l)(n)← f(l)(n)− lr ∗ diff(e(k), f(l)(n))

10: end for
11: end for
12: for l in layers of g do
13: for n in l do
14: g(l)(n)← g(l)(n)− lr ∗ diff(e(k), g(l)(n))
15: end for
16: end for
17: i← i+ 1;
18: end while
19: k ← k + 1;
20: end while
21: return f , g;
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After obtaining the parameters in neural networks f and g, the control input u(k) derived from
the reference output y∗(k) can be computed using the following algorithm, where d1 and d2 need
to be summarized from experiments.

Algorithm 2 Controller Design of NARMA-L2 model

Input: Output reference y∗(k), f and g
Output: control input u(k), network output y(k)
1: N ← number of datapoints, k ← 0, [u(0), ..., u(n)]← 0, [y(0), ..., y(n)]← 0.
2: c← 1 + d1 + d2
3: while k ≤ N do
4: yr(k + 1) = plant(u(k))
5: φ(k) = [yr(k), ..., yr(k − n+ 1), u(k), ..., u(k − n+ 1)]
6: u(k + 1) = [c ∗ y∗(k + 2)− f(φ(k))− d1 ∗ y(k)− d2 ∗ y(k − 1)/g(φ(k)];
7: k ← k + 1;
8: end while
9: return u, y;

The algorithm is implemented by Python and PyTorch and is plotted using matplotlib. Both
networks are multi-layer perceptrons with two hidden layers and 64 neurons for each layer. The
loss function selected is Mean Square Error (MSE), the optimizer is SGD or Adam, and the
activation function in the hidden layers is ReLU.

6.2 Simulation and verification

In this section, two examples are proposed to verify that the NARMA-L2 model and its imple-
mentation can successfully identify the model and give satisfying results on adaptive control.

6.2.1 Non-linear system

Suppose a non-linear control system from [41] as follows:

y(k + 1) =
y(k)

1 + y2(k)
+ u3(k) (6.1)

The input training signal is set to:

u(k) = sin(
πk

30
) + sin(

πk

120
) (6.2)

the input test signal is set to

u
′
(k) = sin(

2πk

10
) + sin(

2πk

25
) (6.3)

and the reference output is set to

yr(k) = 4sin(
2πk

10
) + 4sin(

2πk

25
) (6.4)

The simulation result is shown in Figure 6.1, and the control result is shown in Figure 6.2.
In Figure 6.1 , ”model output” is the output from the trained and identified NARMA-L2

controller, ”plant output” is the output from the controlled system. The input used to generate
both outputs is the training or test signals u or u′. And in Figure 6.2, ”predicted input” is the
input value generated by the NARMA-L2 controller, ”model output” is the output from the system
using the input from the NARMA-L2 controller, and ”reference” is the reference output defined
previously, which the controller is hoped to follow.
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Training Testing

Figure 6.1: Identification result for the non-linear system

Control input Control output

Figure 6.2: Controller Design result for the non-linear system
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Figure 6.1 shows that the identified NARMA-L2 model is able to produce almost the same
output as the real system when excited by the same input signal, which proves that the model is
able to identify the given example non-linear system with satisfactory accuracy, And Figure 6.2
shows that the control input given by the controller can produce the output that can follow the
reference signal. The shape and trend in changes of the control output keep almost the same as
the reference model, while there are minor errors in some sharp turning points. The controller is
able to accomplish the goal to control the system to generate desired outputs.

6.2.2 Linear system

Suppose a linear control system as follows:

x1(k + 1) = x1(k) + u(k)

x2(k + 1) = −0.016x1(k) + x2(k) + u(k)

y(k) = −x1(k)

(6.5)

The input and reference output signals are the same as Equation 6.2, 6.3 and 6.4. The result is
shown in 6.3 and 6.4. The definition of elements in these figures are the same as that in Figure
6.1 and 6.2.

Training Testing

Figure 6.3: Identification result for the linear system

Control input Control output

Figure 6.4: Controller Design result for the non-linear system

Figure 6.3 also show accurate identification of the system, which can be proved by the match
between the output of the NARMA-L2 model and the real system. According to 6.4, the control
output also keeps the same shapes as the reference, but there are errors on the upper limit of the
curve. The error can be compensated by further tuning of the network or trying other training
input.
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In conclusion, the results given above prove that the implemented model can identify the
example models well, and the calculated control input can make the model output follow the
given reference model. And the linearity of the system does not affect the performance of the
controller.
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Chapter 7

XiL setup and configuration

7.1 Environment configuration

The following table lists the environment used in the development of the toolbox. The platforms
and software used can be newer than listed except for Guest OS platform and Virtual machine (if
the user chooses to run the environment in VM), because version difference of dependency libraries
may cause unpredictable issues, especially on controller codes if the controller is written in C or
C++.

Parameters Type and version
Virtual Machine VMWare Workstation 15

Host OS Platform Windows 10 Patch 2004
Guest OS Platform Ubuntu 18.04.3 LTS
Desktop Manager Xfce (GNOME also compatible)
MATLAB version MATLAB R2019a

Webots version Webots R2020b

Table 7.1: Required environment of toolbox

7.2 Design of XiL setup

7.2.1 Overview

The GUI to be designed should have the following functions:

1. It should be able to call supported simulators from the GUI, start or stop the simulation.

2. It should be able to modify parameters of the external controllers of simulators and keep
transparency between users and raw codes.

3. It should be able to react in real-time when a parameter changes.

4. It would be better to have some portability. Some extent of portability can be implemented
by reducing hard-coded paths.

5. If needed, It would be better to be able to call or integrate required programs other than
simulators to provide a reference to analysis.

Based on the requirements above, the toolbox is designed with the following features:

1. Support V-REP, Webots and MATLAB simulation engines as part of IMACS framework [36].
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2. Paths of V-REP and Webots can be selected.

3. The control parameters are temporarily stored after generation and updated to the plant
at the next frame. The control parameters considered are adopted from and explained
in [3, 42, 43, 44, 45, 46, 47, 48].

4. Several pre-defined controllers - LQR and LQG are integrated. The LQG controller for the
IMACS framework is explained in [46].

5. Integrate SDF31, a dataflow graph analysis tool developed by [49] to give an analysis of
given dataflow graphs, and timing analysis [50] or profiling tools.

The toolbox is designed as a GUI application in MATLAB. Compared with other GUI libraries
on Linux platform like Qt or GTK, MATLAB GUI can integrate appropriately with MATLAB
and Simulink scripts and models, and it can achieve some extent of cross-platform portability
provided that MATLAB is installed.

Within MATLAB toolboxes, The GUI is designed using MATLAB App Designer2, a novel
integrated GUI designer introduced in MATLAB 2016a to replace the traditional and deprecated
GUIDE GUI designer. App Designer improves designing and coding experience, add a number of
components, and fully converted to object-oriented programming in code generation.

7.2.2 Front-end design

The design of GUI is shown in Figure 7.1, 7.2 and 7.3.

Figure 7.1: SiL Simulation page of the GUI

Figure 7.1 shows the fist page of the toolbox GUI, which focuses on the main function of
software-in-the-loop simulation and parameter modification. The simulation platforms and con-
troller types can be selected at the right side, and the button ”Generate parameter” and ”Run
simulation” will have different clicking actions depending on the selection of platforms and. In
this demo, five of the parameters in LQR and LQG controller can be modified at the left side.
The paths can be changed by navigating explorer windows or typing in the full path.

1http://www.es.ele.tue.nl/sdf3/
2https://www.mathworks.com/products/matlab/app-designer.html
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Figure 7.2: Timing analysis page of the GUI

Figure 7.2 shows the timing analysis page, where the GUI can call SDF3 and run several
supported analysis, including throughput, cycle mean, etc. The result will be displayed in the
window below, and there is an option that can use the given throughput to calculate tau (τ) on
the first page.

Figure 7.3: HiL simulation page of the GUI

Figure 7.3 is used for HiL analysis or profiling. Now the platform selection between Nvidia
AGX and CompSOC and simulation platform selection has been implemented.
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7.2.3 Back-end design

The back-end design is about how the buttons, edit files and selection boxes can interact with the
code and how they can be given functionality.

According to [51], MATLAB GUI uses callback function for activities of components. A call-
back function can be defined for a particular interaction or state change. When the state changes
or interaction occurs, the callback function will be executed.

The following code is a simple callback function that calls a MATLAB function to allow users
to select an XML file for SDF3 analysis in a file navigation window.

Figure 7.4: An example of callback function

When the button ”Generate parameter” is clicked, the callback function will call a MAT-
LAB script that calculates the controller parameters based on the inserted value. If ”V-REP” or
”Webots” is selected as the simulator, the script will back up the external controller code (C++
in this project) and generate the cpp and hpp files with the value derived from the given para-
meters using MATLAB built-in file operation functions. If ”MATLAB” is selected, then the code
generation will be disabled, and a plot of control output will be returned.

For the second part of timing analysis, the button ”Run SDF3” will call the command of SDF3
and return the throughput or other value in the window below.
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Chapter 8

Case study: Adaptive cruise
control system

This chapter introduces the controlled system used for identification and controller adaptation.
The control model and its properties is described first, and a Webots world which contains the
required simulation scenarios is proposed.

8.1 Description of the cruise control system

The cruise control system consists of several vehicles of different types and several kinds of roads,
including plain surface and slopes. The process of the cruise control is to adjust the throttle angle
of the vehicle to accelerate and decelerate, in order to make the vehicle keep a certain speed. We
assume that in a particular scenario, the brake is kept unchanged.

In the cruise system, the vehicle is affected by two forces, one is the torque in the same direction
to the forward, and the other is the friction and other resistance to the backward direction. The
resistance is assumed to be linearly related to the velocity of the vehicle. The free-body diagram
of the system is shown in Figure 8.1.

Figure 8.1: Force figure of the cruising vehicle

If we assume that the torque generated by the road and tire surface is determined by the
throttle angle of the vehicle and can be directly controlled by the driver, the input value of the
control system can be set as the force u. Therefore, according to Newton’s second law, the system
can be represented as follows [52]:

u− bv = mv̇ (8.1)

where b represents the damping coefficient.

Assume the state x = v, we can convert Equation 8.1 into state-space equation as Equation
8.2.
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ẋ = − b

m
x+

1

m
u

y = x
(8.2)

However, the driver can only control the torque by pushing the accelerator pedal to adjust the
throttle angle instead. The relationship between the torque and throttle angle is complicated and
out of the control of drivers. For instance, in Webots, the relationship between the torque and
throttle on combustion engines is shown in Equation 8.3, according to [53]:

T = t ∗ (a ∗ rpm2 + b ∗ rpm+ c) (8.3)

T represents output torque, t represents the coefficient of the throttle, which is ranged from 0 to 1.
t is the only value in Webots that can be adjusted using user-oriented APIs, like setThrottle().
Moreover, a, b and c are determined by the vehicle design and gears. The rpm value is related
to the throttle angle, but the exact relation is based on the mechanical properties of the vehicle,
which is unknown to drivers.

Therefore, the cruise system in Webots, with throttle coefficient (from 0 to 1) as input and
the velocity (in kilometre per hour) as output, is more complicated and requires more insight on
it.

8.2 Parameter changes and related simulation environment

According to Equation 8.2 and 8.3, the parameters that influence the control system includes
the mass of the vehicle (affect m), the brake intensity, the slope grade (affect b), and the engine
model (affect the relation between u and the throttle angle). Among these parameters, the mass
and engine model is constant during a single driving period, while the slope grade and the brake
intensity will vary as time goes.

To fully simulate the situations above, the following Webots world is built, in which a variety
of road surface, slope grades and vehicle models are tested.

8.2.1 World settings

The simulation takes part in the following Webots world, whose screenshot is shown in Figure 8.2.
The road is built with Road nodes in Webots, including StraightRoadSegment node for plain

road surface and Road node for slopes and custom roads. The length of the roads is from 450
meters to 600 meters, and the grade of slope roads is 10%.

8.2.2 Vehicle properties

Webots integrates several pre-defined vehicle models in the Webots project in PROTO node type,
which include different types and values of mass, gears, engines, etc.

Figure 8.3 shows two types of Car PROTO nodes, BmwX5 and MercedersBenzSprinter. The
difference between these two vehicle models, according to Webots documentation, is listed in Table
8.1.

Model BmwX5 MercedesBenzSprinter
mass (kg) 2000 4500
engine coefficient [34.11 0.136 -0.00001461] [600,0.2,0]
brake coefficient 1800 3500
maximum speed on Gear 1 (km/h) 73 60

Table 8.1: Properties of Car PROTO models
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Figure 8.2: Appearance of the scenario

Figure 8.3: Different car models in Webots
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8.2.3 Summary

From the information listed above, we can find out that the world includes all the components
and possible scenarios that can influence the control system. The environment can then be used
for data collection, training and controller design in the following chapter.
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Experimental results

9.1 Webots controller structures

Because the identification method is dependent on PyTorch and is developed in Python, and
automobile APIs in Webots does not support MATLAB, the Webots controller for cruise control
is written in Python.

A controller first starts with the initialization of packages and devices. In this part, required
packages are imported (included), including Robot or Driver packages that contain Webots APIs.
Also, a Driver instance and arrays that contain the collected data are created, and some para-
meters, like the initial throttle, gear and brake intensity is set here. Then the controller enters the
main loop, which loops every 10ms (time steps in the simulation). The first several loops (about
100 iterations) must be discarded because Webots may generate irregular value at the beginning
of the simulation, like nan or unusual large value. In every time steps, the controller calculates
the input, set the throttle and store the throttle and the current speed. When the required data
are collected, the loop is jumped out, and the stored input and output are dumped and saved into
CSV files.

In the cruise control scenario, operations to be made by the controller are listed in Table 9.1
[53].

API Name Input Range Description
setThrottle() [0,1] Set the percentage of throttle angle
setBrakeIntensity() [0,1] Set the percentage of brake intensity
getCurrentSpeed() Get the current speed in km/h
setCruisingSpeed() per car model Set the cruise speed in km/h.
setGear() per car model Set gearbox. Set before setting throttle.
step() The main loop. One step equals 10ms in default.

Table 9.1: Webots APIs used in the controller

The structure of vehicle controller is shown in Figure 9.14.
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Figure 9.1: Procedures of the controller in Webots

9.2 A traditional solution for reference: PID controller

Before applying the NARMA-L2 controller on the system, a traditional solution for the cruise
control using PID controller needs to be reviewed for reference and test cases for identification.
PID controller (or PD controller) is commonly used in the control of linear time-invariant systems,
so it is selected as a traditional solution for cruise control problems.

The PID controller can be represented as follows:

err(k) = setpoint− value

errI(k) =

k−1∑
i=0

errI(i) + err(k) ∗ T

output(k) = P ∗ err(k) + I ∗ errI +D ∗ (err(k)− err(k − 1))

(9.1)

In the reference scenario, a BmwX5 car is placed on a plain surface. The cruise speed (setpoint)
is set to 25km/h. The initial brake intensity is set to 0.1. The simulation time is 20s (2000 cycles).
In Equation 9.1, P equals 150, I equals 2.7, D equals 10. The output (throttle) is divided by 1000
before fed into the system to enhance visibility.

The result of input (throttle) and output (speed) is shown in Figure 9.2.

Throttle Speed

Figure 9.2: Throttle and speed from the PID controller

From Figure 9.2, some features of the controller to be designed can be summarized. First,
the process can be divided into the acceleration phase and the cruise phase. In the acceleration
phase, the throttle is set to the maximum value (1.0 or otherwise defined), and when the speed
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is approaching the cruise speed, the throttle will slowly decrease to the equilibrium point (about
0.25), and the speed will become constant. Therefore, to find the equilibrium throttle point is the
target of the controller. Second, the settling time of the PID controller is relatively high, which
means that the vehicle will take a longer time to achieve the desired speed.

9.3 NARMA-L2 controller design

As is described in Chapter 7, designing the NARMA-L2 controller is divided into three steps.
Firstly, some test controllers are run to collect the data for identification and training. Therefore,
using the input-output data, NARMA-L2 model is trained for identification of the model, and the
trained model will be verified by test datasets otherwise generated. Then the controller is designed
using the trained model.

Firstly, we focus on the most common cases: a BmwX5 car is placed on a plain road surface. The
braking coefficient is set to 0.1 for the whole simulation process. The aim is to design a controller
for this system to make the car keep a certain speed.

9.3.1 Data collection

For data collection, the main concern is to find a proper input (excitation signal) dataset that
can achieve better accuracy on identification and save the input and output dataset for training.
Although the NARMA-L2 controller has no restriction on input and output signals, the selection
of the excitation signal will have a significant influence on the accuracy of identification.

There are three choices on the excitation signal, which is:

1. Using a pre-defined regular signal like sine functions. It is following the same pattern as the
signal used in Chapter 7. In the experiment, the following signal is chosen, where time t is
represented in second, and the smallest time step of t is 0.01s:

u = sinπt (9.2)

2. Using random values as regular signals, as is used in MATLAB Simulink. The random
number is between 0 and 1, generated by numpy.random.rand().

3. Using existing collected datasets like that produced by PID controller in Chapter 9.2.

For comparing the training performance among different inputs, the three inputs listed above
are imported into the Webots world with the same properties as that in PID controller, and the
datasets generated are used to train a sample NARMA-L2 model. The number of data points of
all cases is 1400. The result is shown in Figure 9.3 to 9.5.

Random input Training result

Figure 9.3: Training result using random inputs
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Sine input Training result

Figure 9.4: Training result using sine inputs

PID input Training result

Figure 9.5: Training result using PID inputs
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In the figures above, ”model output” represents the output of the trained NARMA-L2 model
when the input is the signal shown on the left. ”Plant output” represents the output of the real
cruise control system with the same input. X-axises represent the number of data, while the
Y-axises represent either the throttle angle (input, in a ratio between 0 and 1) or the velocity
of the vehicle (output, in km/h). From the figures listed above, we can observe that when using
random inputs, the model output of the trained NARMA-L2 model appears closely around the
output of the real output, while the other two inputs will cause the result to differ apparently
between the model output and the plant output. It is apparent that the result using random
input has the smallest training error rate compared to sine input and PID input, while the other
two inputs show output with larger error rate or even unstable output. Also, because the vehicle
has a maximum speed for each gear (as is mentioned in Table 8.1), the collected data is limited
to the amount before the vehicle reaches the upper speed limit. So the input that can provide a
slower acceleration is preferred, for it can provide more data points and higher accuracy in the
training. Therefore, in the training part, the random input is used.

Another issue to be mentioned for random data collection is the situation at the start of the
simulation. The default random number range is [0, 1), but sometimes if the random number is
lower than the expectation, the car will not get enough torque to start up. If such issue happens,
possible solutions include changing the brake intensity, retry the simulation to reset the random
seeds and change the lower bound of the random number range to, for instance, [0.3, 1).

The controller for data collection is located in vehicles\controllers\data_collection.

9.3.2 Training for identification

After the selection of excitation signals, the datasets are used for training of the NARMA-L2
controller. The training algorithm is the same as Algorithm 1 in Chapter 7.1, while the parameters
for training is required to change. The parameter includes learning rate, time-delays of u and y
(n in Algorithm 1), size of hidden layers and epoch numbers.

The parameters chosen in training are listed in Table 9.2.

Parameter Value or Choices
learning rate 1e-6
Input time delays 3
Output time delays 3
network structures [6, 10, 1]
epoch 50
optimizer SGD

Table 9.2: Training parameters for identification

The training result using the parameter in Table 9.2, along with test result with the PID
controller and input signal in Equation 9.2 is shown in Figure 9.6, 9.7 and 9.8. The definition
of each line in the figure is the same as that in Figure 9.3. For training results, the MAE of the
model input is about 0.15. We can find from these figures that no matter what input signals are
used to excite the NARMA-L2 model, the output generated by the model can perfectly follow
the output from the real system. Therefore, it can be summarized that the trained NARMA-L2
model has almost the same behaviour as the cruise control system, which proves that the model
can fully identify the cruise model and represent the cruise control system precisely.

In the training process, learning rate plays the most important role in shaping the training
performance. Because the input is relatively smaller than the output, the optimal learning rate
will be smaller than the simulation in Chapter 7. Larger learning rate will cause the model to
converge into a non-optimal point, which in NARMA-L2 means that the network output has a
similar shape with the model output, but the value differs a lot. Lower learning rate will cause
the model to converge less than required, which in NARMA-L2 means that the network output
will fail to follow the trend of the model output while the value has a small difference. Figure 9.9
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Figure 9.6: Training result for the cruise control

Figure 9.7: Test result for the cruise control
using sine input

Figure 9.8: Test result for the cruise control
using PID input

and 9.10 show the training result with larger (1e-2) and lower (1e-8) learning rate, compared with
the adequate (1e-6) learning rate, whose result is shown in Figure 9.6.

Figure 9.9: Training result with higher learning
rate

Figure 9.10: Training result with lower learning
rate

From Figure 9.9 and 9.10, we can find that when the learning rate is higher than the optimal
value, the model output differs significantly from the plant output, while some similarity on the
shapes can be found between two plots, like the location to accelerate faster or slower, i.e. they
both accelerate around the 500th data point and their acceleration both change on the 1250th
data point. When the learning rate is lower, we can find that the model output is much lower
than the plant output, but the precision is reasonable at the start of the simulation. The reason
is that lower learning rate makes the model converge too slowly to reach the convergence point,
so the model stops on the process of convergence when the training ends, and fails to converge to
a precise value. These two figures prove the discussion above and prove the value of choosing the
learning rate in identification and controller design.

Apart from the learning rate, the input-output time delays will also affect the performance
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to some extent. The influence is lower than the learning rate, which means that in a reasonable
range like 2 delays, the performance will still be acceptable but require tuning of other parameters.
For the size of hidden layer and epochs, changes in these parameters will lead to the difference in
the training time, which need to be considered if the update interval of the model is short or the
device to run the controller has lower performance or fails to support CUDA.

9.3.3 NARMA-L2 Controller design

In the last section, the NARMA-L2 model is trained to identify the cruise control model. After
obtaining an accurate model, the controller can be easily designed using Algorithm 2 mentioned
in Chapter 7.1 with constraints of control input (between 0 and 1) and smoothed output as is
described in Chapter 6.3. The d in the smoothed controller is [0.5, 0.2].

After designing the controller, the next step is to evaluate the controller to check if it meets
the design requirements. Usually, the controller needs to be connected to Webots to test if the
vehicle can achieve and keep the desired speed. However, fast and intuitive evaluation methods
are still valuable, because the simulation in Webots is slow and hard to visualize, and the odd
results can be discarded fast to reduce experiment time.

Therefore, to test the performance of the trained NARMA-L2 controller in the regard of con-
troller performance without running Webots simulation multiple times and give instant feedback
about the control input and output, a pre-trained NARMA-L2 model is connected to the newly-
trained NARMA-L2 controller and serves as the controlled system. The pre-trained model should
be the model with high training accuracy, and it should be replaced by the model ever trained
with the highest accuracy. The structure of the controller is shown in Figure 9.11.

Figure 9.11: Simulation without Webots

In the simulation, the generated control input and the output of the accurate NARMA-L2
model are shown in Figure 9.12. The desired speed is set to 40km/h, and the simulation starts at
5km/h because if the initial speed is under 5km/h, the controller will not converge. The reason is
perhaps because of the relatively low precision of the model near 0.

Throttle Speed

Figure 9.12: Throttle and speed for the cruise control system without Webots

Figure 9.12 shows that the vehicle keeps full throttle until the speed reaches 40km/h, the
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desired cruise speed. Then the throttle sharply decreases to a balance point (about 0.25 in Figure
9.12), and the speed will be kept at the cruise speed. From the figures above, it can be found
that the controller has the proper functionality to accelerate the controller and keep the speed
setting in the non-Webots environment. Therefore, the trained model is imported into the Webots
controller. Before the car reaches the initial speed, the throttle is set to the maximum value (1).
The result is shown in Figure 9.13

Throttle Speed

Figure 9.13: Throttle and speed for the cruise control system in Webots

From the figures, we can find that although the performance between the evaluation system
with and without Webots slightly differs, the action of the controller is similar and that the simu-
lation method is proved effective. The NARMA-L2 controller is proved to be effective in Webots,
and compared with the PID controller, the change of the throttle is much sharper, which means
that the controller finds the equilibrium point much faster than the traditional PID controller.

9.4 Parameter shift and its solution

Firstly, we need to check the performance of the controller without changing it as the environment
changes, to find if the adaptability of the NARMA-L2 can compensate for the shift of parameters
and keep acceptable performance. Consider the following scenario:

The road is composed of a plain surface and a slope, which goes uphill first and then downhill.
The grade of the slope is about 10%. The vehicle runs on this road using the controller trained on
plain road, completes acceleration and reaches cruise speed on the plain road, then goes up and
down on the slope. The speed and throttle are recorded as follows (cruise speed is 30km/h):

In Figure 9.15, we can discover that the throttle still shows some extent of adaptation and
changes as the time and slope grade go, but the fluctuation and vibration of the throttle are high,
and the speed is fluctuating between 28km/h and 35km/h. Therefore, Figure 9.15 shows that
the NARMA-L2 controller can adapt to the changes to some extent, but the performance of the
controller cannot be guaranteed and the result is not satisfactory.

Therefore, a solution for the parameter shifts is raised that the neural networks in the controller
are re-trained during the driving process when the environment changes, and when the training
accuracy meets the requirement, the model will replace the older one in the controller and complete
the update process. The data used for training is collected when driving.

To prove the feasibility of the solution, we need to prove that the performance improved after
retraining. Consider an uphill slope with 10% grade, and a BmwX5 is running on the slope. The
default brake intensity is set to 0. The retraining process uses the same network structure as
the original training process, which consists of one hidden layer with 10 neurons. The default
parameters are listed in Table 9.2.

The performance of the old controller and the controller retrained is shown below. The figure
for speed discards the acceleration part and records the output from 2.8s to improve visibility:
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Figure 9.14: A scenario with slopes

Throttle Speed

Figure 9.15: Throttle and speed on an up-down slope

Throttle Output on an uphill slope using old controller

Figure 9.16: Throttle and speed on an uphill slope using the old controller
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Throttle Speed

Figure 9.17: Throttle and speed on a uphill slope using the new controller

The Mean square error of the old controller, based on the equilibrium point of the speed is
0.0154, while the MSE of the new controller is 3.8e-5. And from the figures, we can find that
the fluctuation of speed on the original controller can be up to 3km/h (10%), but in the newly
trained controller, the fluctuation can be reduced to 0.08km/h (0.26%). We can summarize from
the result that for the systems that change the damping coefficient b, re-training the model has
better performance than using the original model.

Consider another scenario, where a MercedersBenzSprinter replaces BmwX5 runs on a plain
surface. According to Table 8.1, the MercedersBenzSprinter differs from BmwX5 in mass and the
relation between torque and throttle angle. It can simulate the situation when the vehicle load or
gear settings change. The speed is set to 40km/h.

Throttle Speed

Figure 9.18: Throttle and speed on a Benz Sprinter using the old controller

The Mean square error of the old controller is 0.003, while the MSE of the new controller is
9.1e-7. And from the figures, we can find that the response time of the old controller, which is the
time for the controller to converge to the equilibrium speed, is much longer than the new controller.
We can summarize from the result that for the systems that change the mass m, re-training the
model has better performance than using the original model.

We show that the re-training of the model can improve the performance of the controller,
and the solution proposed in this thesis is indeed feasible. However, the method requires diverse
scenarios and driver operations, and it is hard to implement it in Webots. The implementation
will be completed in the future using a comprehensive platform.
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Throttle Speed

Figure 9.19: Throttle and speed on a Benz Sprinter using the new controller
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Conclusion

10.1 Conclusion

As is discussed from Chapter 1 to 3, the control performance of a controller will experience
fluctuation by parameter changes of the controlled system caused by environmental changes or in-
teraction with other systems. Online model identification and runtime adaptation help to improve
the system performance when parameters change by identifying the new system and updating
the controller frequently. This thesis discusses the approach of identification and adaptation and
elaborates the feasibility of the method with a series of experiments.

In this thesis, we first discuss the NARMA-L2 controller based on system identification and
neural network. The mathematical background and detailed implementation of the NARMA-L2
controller are introduced. Then, an XiL simulation framework is designed for validation of the
controller, which enables the users to perform simulation using the GUI interface. Furthermore,
the NARMA-L2 controller is applied to a cruise control system in Webots simulator. By applying
identification and training methods on the controller, the controller for the cruise control system
is designed and achieves better performance than the traditional PID controller. For dealing with
the parameter changes, online-offline mixed model identification and adaptation is proposed and
analyzed.

The work in detail completed in this graduation project is listed below:

1. Do research and literature study about system identification and XiL simulation methods and
platforms. Several system identification methods are investigated and evaluated, including
the NARMA-L2 controller, which is chosen for the project.

2. Introduce NARMA-L2 model and controller, give mathematical proof for the controller and
algorithms for training and controller design of the NARMA-L2, and several cases using
NARMA-L2 controller for the linear or nonlinear control system are investigated and eval-
uated to prove the feasibility of the controller.

3. Apply NARMA-L2 to the cruise control system. Build a verification environment that can
do simple simulation without Webots, and realize cruise control in Webots using PROTO
nodes integrated with Webots.

4. Propose an online-offline mixed method to deal with the variance of parameters. Do ex-
periments with the changed model to assess the performance of newly trained or previously
trained controllers.

5. The XiL simulation platform and toolbox is designed. The toolbox integrated parameter
change, platform selection and SDF3 dataflow analysis. Code generation for the controller
is also implemented.
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From the work conclusion above, it is proved that the NARMA-L2 controller can accurately
and effectively identify both linear and nonlinear systems, and its effectiveness has been shown
in an actual case, the adaptive cruise control system. The experiments show high potential of
adapting the current solution to other control systems with higher complexity.

10.2 Future works

After the completion of the graduation project, there is still some work to do for improvement
and further research.

1. To integrate the NARMA-L2 model in the XiL simulation toolbox. Possible methods include
calling Python scripts in MATLAB or refactoring the toolbox using Python GUI framework
like PyQt.

2. To implement the online solution for dealing with parameter changes described in Chapter
9.4.

3. To extend the controller to other control systems like image-based control.
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Appendix A

Source code and documentation

The source code and documentation of the identification model, NARMA-L2 controller and the
Webots world, including the controller files and world files, can be found here1. The project in-
cludes two environments, train for training and vehicle for simulation and controller design.
train includes Jupyter Notebook Python files for NARMA-L2 implementation, training and vir-
tual environment for controller design and validation without Webots. vehicle includes the
world file and built-in libraries and PROTO nodes embedded in each Webots projects. And
vehicle/controller includes the controller codes in Python that either define a certain input
for data collection, or implementation of NARMA-L2 controllers using the model trained before.

The source code and documentation of the XiL framework for validation can be found on the
ES Gitlab page2. The documentation introduces how to install the framework and configure the
environment of the example IMACS controller.

1https://git.ics.ele.tue.nl/ecs/mep/chaolun-ma/-/tree/master/cruise control
2https://git.ics.ele.tue.nl/ecs/mep/chaolun-ma/-/tree/master/Control codes and requesting readme
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