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ABSTRACT 

Steel circular hollow sections (CHS) are widely used for structures in the civil industry, such as mooring and off-

shore structures. A common joint in these structures is the X-joint, in which two coaxial braces are connected to 

either side of the chord, the main structural element. In most cases, the braces are welded to the chord, without 

penetrating it at the intersection. However, in civil structures, another type of X-joint for circular hollow sections 

is frequently used. These joints are referred to as penetrated CHS X-joints in which the brace passes through the 

chord. Although penetrated CHS X-joints are frequently applied by Dutch engineering firms in civil structures and 

extensive guidelines and rules are available for non-penetrated X-joints, there are no specific design rules 

available for penetrated CHS X-joints and available research into these joints is limited.  

 

This research focused on gaining insight into and predicting the behavior of penetrated CHS X-joints. Since very 

limited research has been done into this type of CHS X-joints, literature and existing research into a comparable 

penetrated connection, plate-to-structural hollow sections (SHS), has been studied. Analogous to the penetrated 

CHS X-joints and their non-penetrated equivalents, the behavior of through plate joints is compared with their 

corresponding branched plate equivalents. It has been found that the former has a capacity of more than double 

till even three times the capacity of their equivalent branched plate joints. 

 

A similar increase in capacity is expected for penetrated CHS X-joints. To gain insight into the structural behavior 

of the penetrated joints and the possible differences with respect to their non-penetrated equivalents, a 

parameter study consisting of 388 finite element (FE) analyses is conducted in which applied loads and 

geometrical dimensions are varied. For this purpose a FE model is created using a python script. The script is 

imported in the FE software ABAQUS, which is used to perform a geometrical and material non-linear FE analysis. 

An elastic-plastic material model with linear strain hardening, as provided in Eurocode (EC) EN 1993-1-5 is 

adopted. 

 

In the parameter study for several load cases the geometrical parameters, the brace width-to-chord width ratio 

𝛽, the chord diameter to thickness ratio 2𝛾, and the brace diameter to thickness ratio 2𝛿 are varied within a certain 

range that is common for applicantions in civil structures. The parameter study is performed for penetrated, as 

well as for non-penetrated, CHS X-joints. Initially only the boundary values of the geometrical parameters are 

simulated to identify the critical areas for which the current set of design rules insufficiently describe the behavior 

of the joint and the capacity of the penetrated CHS X-joint is underestimated significantly. Based on these results, 

additional parameter configurations have been evaluated using finite element analysis (FEA). The parameter study 

is performed for the load cases “Double-sided compression and tension (Fx)”, “Single-sided compression and 

tension (Fx)”, “Bending moment about the Y-axis (My)”, “Bending moment about the Z-axis (Mz)”, “Shear Fy (chord 

bending moment)”, and “Shear Fz (chord torsional moment)”.  

 

It appears that for several load cases, the design rules for non-penetrated CHS X-joints, as provided in the EN 

1993-1-8, do not suffice for penetrated CHS X-joints in those critical areas. The critical areas are identified and 

evaluated and based on the FEA results, improved and new design rules for penetrated joints are created for the 

load cases for which this is required: “Single-sided compression and tension (Fx)”, “Shear in the Y-direction (Fy)”, 

and “Shear in the Z-direction (Fz). For the load cases “Double-sided compression and tension (Fx)” and “Bending 

moment about the Y- (My) and Z-axis (Mz)” the behavior can be approximated accurately with the basic cross-

section design rules from the EC, and therefore, the EC design rules for non-penetrated joint failures should for 

penetrated geometries in these load cases, be omitted while calculating the governing failure mechanisms and 

the corresponding plastic design resistances. The new sets of design rules for penetrated CHS X-joints are 

evaluated and the behavior of penetrated CHS X-joints subjected to the aforementioned failure mechanisms can 

be described well. Additionally, the application of the new design rules for penetrated CHS X-joints is validated 

for combined load cases. The research is concluded with a clear and uniform set of design rules that can be used 

for the calculation of penetrated CHS X-joints. 
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NOMENCLATURE 

 

ACRONYMS 

B bm brace bending moment 

B cs brace cross-section  

C bm chord bending moment  

C ff chord face failure 

C ps chord punching shear 

C tm chord torsional moment 

C T+S combination of a torsional moment and shear 

CHS circular hollow section 

EC eurocode 

FE finite element 

FEA finite element analysis 

FEM finite element method 

NP non-penetrated 

P penetrated 

RR resistance ratio, which is the ratio between the FEA plastic capacity and the plastic design resistance 

 according to corresponding design rule (𝜒𝐹𝐸𝐴 𝜒𝑑𝑒𝑠𝑖𝑔𝑛 𝑟𝑢𝑙𝑒⁄ ) 

SHS structural hollow section 

UC unity check 

 

GREEK SYMBOLS 

𝛼  chord length parameter 

𝛽  chord diameter to brace diameter ratio 

𝛾  chord diameter to twice the wall thickness ratio 

𝛾𝑀 partial safety factor 

𝛿  brace diameter to twice the wall thickness ratio 

𝜀  strain 

𝜂  longitudinal plate depth-to-HSS width ratio 

𝜃  angle between chord and brace member 

𝜎  stress 

𝜎𝑝  stress value excluding the stress due to the components parallel to the chord axis 

𝜏  shear 

𝜐 poisson’s ratio 

 

ROMAN SYMBOLS 

𝐴𝑣   shear area 

𝐼𝑝  polar moment of inertia 

𝑊𝑡  torsional modulus 

𝑓𝛽;𝛾;𝛿  factor for (𝛽, 𝛾, 𝑜𝑟 𝛿)  

𝑘𝑝  reduction factor to take into account the compression stress in the chord member 

𝑛𝑝  ratio design value to yield strength 

𝐴  cross sectional area 

𝐸  elastic modulus 

𝐹  force 

𝐼  moment of area 

𝐿  length 

𝑀  bending moment 

𝑁  axial force 

𝑅𝐹  reaction force 
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ROMAN SYMBOLS (CONTINUED) 

𝑆  stress 

𝑇  torsional 

𝑉  shear force 

𝑊  section modulus 

𝑏  width 

𝑑  diameter 

𝑒  eccentricity  

𝑓  strength 

𝑟  radius 

𝑡  thickness 

 

SUPERSCRIPTS 

′ effective 

 

SUBSCRIPTS 

0 chord member 

1 brace member 

𝐸𝑑  design value 

𝐹𝐸𝐴  finite element analysis 

𝑁  reduced by the normal force 

𝑅𝑑 design resistance 

𝑒𝑙  elastic 

𝑒𝑛𝑔  engineering 

𝑖  relevant brace member 

𝑝𝑙  plastic 

𝑡𝑟𝑢𝑒  true  

𝑢  ultimate 

𝑥 X-direction 

𝑦 Y-direction 

𝑦 yield value  

𝑧  Z-direction 

𝜏  reduced by shear 
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 INTRODUCTION 

Steel circular hollow sections (CHS) are widely used for structures in the civil industry, such as mooring and off-

shore structures. A common joint in these structures is the CHS X-joint, in which two coaxial braces are connected 

to either side of the chord, which is the main structural element (with the largest diameter). In most cases, the 

braces are welded to the chord, without penetrating it at the intersection. However, in civil structures, another 

type of X-joint for CHS is frequently used. These joints are referred to as penetrated CHS X-joints, in which the 

brace passes through the chord.  

Although penetrated CHS X-joints are frequently applied by Dutch engineering firms in civil structures and 

extensive guidelines and rules are available for non-penetrated X-joints, there are no specific design rules 

available for penetrated CHS X-joints and research into these joints is limited.  

This research focused on gaining insight into and predicting the behavior of penetrated CHS X-joints. Since very 

limited research has been done into this type of CHS X-joints, literature and existing research into a comparable 

penetrated connection, plate-to-structural hollow sections (SHS), has been studied. Analogous to the penetrated 

CHS X-joints and their non-penetrated equivalents, the behavior of through plate joints is compared with their 

corresponding branched plate equivalents. 

In Section 2.1 the failure mechanisms and design rules for non-penetrated X-joints according to EN 1993-1-8 are 

presented and elaborated. The literature study into comparable penetrated connections, is then elaborated in 

Section 2.2. 

In a similar way, as done in the literature study, in this research, a Finite Element (FE) model is created of both a 

penetrated CHS X-joint and its ‘standard’, non-penetrated equivalent in which the brace is welded to the chord. 

A schematic view of both joints and an example structure of the joint is given in Figure 1. With a Finite Element 

Method (FEM) a FE model is created which is further elaborated in Section 3. 

To gain insight into the structural behavior and the possible differences between the penetrated and non-

penetrated X-joints, a numerical parameter study is conducted in which applied loads as well as geometrical 

dimensions are varied. The effects of the boundary conditions and material models on the joint behavior are 

evaluated once and then fixed for the remaining of this research. 

By analyzing the results of the parameter study, which are elaborated in Section 4, and comparing the different 

failure mechanisms of the penetrated and non-penetrated CHS X-joints, several critical areas are distinguished 

for which the current set of design rules insufficiently describes the behavior of the joint and the capacity of the 

penetrated CHS X-joint is underestimated significantly.    

Since it appears that the design rules for (non-penetrated) CHS X-joints, as provided in the EN 1993-1-8, do not 

apply to penetrated CHS X-joints in those critical areas, a suggestion for an adjustment or addition to the existing 

design rules is presented. In Section 5, the development and performance of these rules is elaborated.  

Concludingly, it is the objective of this study to gain insight into and be able to predict the behavior of penetrated 

CHS X-joints. Moreover, a clear and uniform set of design rules that can be used for the calculation of penetrated 

CHS X-joints is aimed for. 
 

                          
Figure 1: Penetrated CHS X-joint (left), “standard” non-penetrated CHS X-joint (middle) and an example (right) [1] 
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 LITERATURE STUDY 

2.1 DESIGN RULES FOR HOLLOW SECTION JOINTS 
The NEN-EN 1993-1-8 provides design rules for the determination of the static design resistance of hollow section 

joints in uniplanar and multiplanar arrangements. The provided design rules are applicable to circular, square and 

rectangular hollow sections in various configurations, e.g. K-, N-, Y-, T- and X-joints. This research focusses on 

penetrated X-joints, in which a single brace penetrates the chord, in contrast to its conventional equivalent in 

which two coaxial braces are connected to the chord. The scope of this research is limited to uniplanar 

connections for which 𝜃, the included angle between the brace and the chord, equals 90 degrees. For these 

connections, the influence of the penetration of the chord is researched for various loading conditions, including 

both single-sided loading, for which only one of the brace edges is loaded, and double-sided loading. For the 

latter, the joint is expected to behave as an X-joint, however, the behavior of the former may possibly show more 

resemblance to T-joints. Therefore, in this paragraph the EC design rules, as provided in Section 7 of the NEN-EN 

1993-1-8,  for both X-joints, as well as for T-joints, are elaborated. 

2.1.1 Failure modes for hollow section joints 
For CHS T- and X-joints, the design resistance of the chord, brace, and the connection is based on the following 

failure modes, as stated in the NEN-EN 1993-1-8 [2] and provided in Figure 2: 

a) Chord face failure (plastic failure of the chord face) or chord plastification (plastic failure of the chord 

cross-section); 

b) Chord sidewall failure (or chord web failure) by yielding, crushing or instability (crippling or buckling of 

the chord side wall of chord web) under compression brace member; 

c) Chord shear failure; 

d) Punching shear failure of a hollow section chord wall (crack initiation leading to rupture of the brace 

members from the chord member); 

e) Brace failure with reduced effective width (cracking in the welds or in the brace members); 

f) Local buckling failure of a brace member or of a hollow section chord member at the joint location. [2] 

Figure 2: Failure modes for joints between CHS members [2] 

Mode Axial loading Bending moment 

a 

  

b 

      

c 

  

d 

  

e 

  

f 
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2.1.2 Design resistance 
In general, the chord and brace member(s) shall be designed to have sufficient design resistance to safely 

withstand the design values of the internal axial forces and/or moments, according to EN 1993-1-1. Moreover, 

the welded connection between the chord and the brace shall be designed to have sufficient resistance and 

deformation capacity to allow redistribution of bending moments. However, the actual resistance and check of 

the welds is out of the scope of this research. The design rules provided in NEN-EN 1993-1-8 Section 7.4 are 

outlined in Paragraph 2.1.2.2 till 2.1.2.4, and may be used to determine the design capacity of the X- and T-joints 

when the validity requirements outlined in Paragraph 2.1.2.1 are met. Design rules are provided for braces 

subjected to an axial force, braces subjected to a bending moment or subjected to a combination of both. The 

calculated maximum design resistance is expressed in terms of a maximum axial force or bending moment on the 

brace member and should be calculated using the stresses as defined below.  

The stresses in the chord 𝜎0,𝐸𝑑  or 𝜎𝑝,𝐸𝑑  should be determined from [2]: 

 𝜎0,𝐸𝑑 =
𝑁0,𝐸𝑑

𝐴𝑜
+

𝑀0,𝐸𝑑

𝑊𝑒𝑙,0
,  (2.1) 

 𝜎𝑝,𝐸𝑑 =
𝑁𝑝,𝐸𝑑

𝐴𝑜
+

𝑀0,𝐸𝑑

𝑊𝑒𝑙,0
,  (2.2) 

where: 

 𝑁𝑝,𝐸𝑑 = 𝑁0,𝐸𝑑 − ∑ 𝑁𝑖,𝐸𝑑 ∗ 𝑐𝑜𝑠 𝜃𝑖 .
𝑖 > 0 

 (2.3) 

Where 𝜎0,𝐸𝑑 is the maximum compressive stress in the chord at the joint and 𝜎𝑝,𝐸𝑑 is the value of 𝜎0,𝐸𝑑 excluding 

the chord stress due to the axial force in the brace at that joint. 𝑁0,𝐸𝑑 and 𝑁𝑝,𝐸𝑑 are the design values of the internal 

axial force in the chord, which relate to each other in a similar way as 𝜎0,𝐸𝑑 and 𝜎𝑝,𝐸𝑑. 𝑀0,𝐸𝑑 represents design value 

of the bending moment in the chord, 𝐴0  is the cross-sectional area of the chord, 𝑊𝑒𝑙,0  is the elastic section 

modulus of the chord, and 𝜃𝑖  is the angle between the brace and chord, where 𝑖 refers to the relevant brace 

member 𝑖  , in this research limited to 𝑖 =  1. [2] Note that, in this thesis the subscript 1 refers to the brace 

whereas the subscript 0 refers to the chord member. 

2.1.2.1 Range of validity  

The design rules can be applied for hot finished hollow sections and cold formed hollow sections with a minimal 

nominal wall thickness of 2.5 mm for both hollow sections, a nominal chord wall thickness of less than 25 mm and 

a nominal yield strength of less than 460 N/mm². The design resistance of elements with yield strengths higher 

than 355 N/mm², needs to be reduced by multiplying for a factor of 0.9. 

Furthermore, to use the provided design rules for the calculation of the design resistance of CHS joints, the 

members in compression must belong to either the class 1 or class 2 steel profiles and additionally, the validity 

requirements as presented in Table 1 must be met. These validity requirements regulate the relationship between 

the dimensions of the chord and the brace. The ratio between the brace and chord diameter, 𝑑1  and 𝑑0 

respectively, needs to be between 0.2 and 1.0. Additionally, the ratio between the chord diameter (𝑑0) and wall 

thickness (𝑡0) needs to be between 10 and 50 for braces subjected to both tension and compression, and the 

brace diameter (𝑑1) to brace wall thickness (𝑡1) ratio needs to be below 50 for members subjected to tension. [2] 

If the requirements are met, only the resistance of the joint to the chord face failure and punching shear failure 

needs to be considered. The design resistance of the CHS joint is then defined as the minimum of those two 

values, which can, depending on the loading condition, be calculated using the rules as elaborated in the following 

paragraphs. For joints that do not meet the requirements of Table 1, all failure modes as described in Paragraph 

2.1.1 should be taken into consideration for the calculation of the design resistance. [2] However, these joints are 

beyond the scope of this research.   

 
Table 1: Range of validity for welded joints between CHS brace and chord members [2] 

Diameter ratio 0.2 ≤  𝑑1/𝑑0 ≤  1.0  

Chords 
Tension 10 ≤  𝑑0/𝑡0  ≤  50  

Compression Class 1 or 2 & 10 ≤  𝑑0/𝑡0  ≤  50  

Braces 
Tension 𝑑1/𝑡1  ≤  50  

Compression Class 1 or 2 
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2.1.2.2 Brace subjected to axial load 

Figure 3 shows a schematization of a CHS T- and X-joint, subjected to compression or tension. The NEN-EN 1993-

1-8 Table 7.2 [2] provides calculation rules to predict the design resistance for chord face failure and punching 

shear failure of joints for which the brace is subjected to axial loads. These formulas can be used to obtain the 

design resistance for chord face failure of T- and X-joints. The resistance to chord face failure for T-joints can be 

calculated with the formula provided in Equation 2.4, and the formula for X-joints is provided in Equation 2.5. [2] 

  𝑁1,𝑅𝑑 =
𝛾0.2∗𝑘𝑝∗𝑓𝑦0∗𝑡0

2

𝑠𝑖𝑛𝜃1
∗ (2.8 + 14.2 ∗ 𝛽2)/𝛾𝑀5,  (2.4) 

  𝑁1,𝑅𝑑 =
𝑘𝑝∗𝑓𝑦0∗𝑡0

2

𝑠𝑖𝑛𝜃1
∗

5.2

(1−0.81𝛽)
/𝛾𝑀5.  (2.5) 

For 𝑛𝑝 > 0 (compression): 𝑘𝑝 = 1 − 0.3 ∗ 𝑛𝑝 ∗ (1 + 𝑛𝑝),  but 𝑘𝑝 ≤ 1.0  

For 𝑛𝑝 ≤ 0 (tension):  𝑘𝑝 = 1.0  

In these formulas, 𝛾 is the ratio of the chord diameter to twice its wall thickness (𝛾 = 𝑑0 2𝑡0⁄ ), 𝛽 is the chord 

diameter to the brace diameter ratio (𝛽 = 𝑑0/𝑑1), and 𝛾𝑀5 is the partial safety factor for joint resistance in hollow 

section lattice girders. 𝑘𝑝 is a reduction factor based on 𝑛𝑝 which takes into account the stress ratio between the 

action stress in the chord and the yield strength and can be calculated using 𝑛𝑝 = (𝜎0,𝐸𝑑/𝑓𝑦0)/𝛾𝑀5. [2] 

Finally, the design resistance for punching shear failure for both joint types when  𝑑1 ≤ 𝑑0 − 2𝑡0, can be calculated 

using Equation 2.6:  

  𝑁1,𝑅𝑑 =
𝑓𝑦0

√3
∗ 𝑡0 ∗ 𝜋 ∗ 𝑑1 ∗

1+𝑠𝑖𝑛𝜃1

2 𝑠𝑖𝑛2 𝜃1
/𝛾𝑀5.    (2.6) 

2.1.2.3 Brace subjected to bending moment 

In Figure 4, a schematization of a CHS T-joint subjected to a bending moment is shown. The NEN-EN 1993-1-8 [2] 

provides calculation rules to predict the design resistance to chord face failure and punching shear failure for 

joints where the brace is subjected to a bending moment. The Eurocode (EC) formulas for the chord face failure 

resistance for a T- and X-joint subjected to an in-plane bending moment 𝑀𝑖𝑝 and out-of-plane bending moment 

𝑀𝑜𝑝 are provided in Equation 2.7 and 2.8, respectively. [2] 

  𝑀𝑖𝑝,1,𝑅𝑑 = 4.85 ∗
𝑓𝑦0∗𝑡0

2∗𝑑1

𝑠𝑖𝑛 𝜃1
∗ √𝛾 ∗ 𝛽 ∗ 𝑘𝑝/𝛾𝑀5,   (2.7) 

  𝑀𝑜𝑝,1,𝑅𝑑 =
𝑓𝑦0∗𝑡0

2∗𝑑1

𝑠𝑖𝑛 𝜃1
∗

2.7

1−0.81𝛽
∗ 𝑘𝑝/𝛾𝑀5.  (2.8) 

For 𝑛𝑝 > 0 (compression): 𝑘𝑝 = 1 − 0.3 ∗ 𝑛𝑝 ∗ (1 + 𝑛𝑝),  but 𝑘𝑝 ≤ 1.0    

For 𝑛𝑝 ≤ 0 (tension):  𝑘𝑝 = 1.0  

 

The design resistance formulas for punching shear failure, given that 𝑑1 ≤ 𝑑0 − 2𝑡0, are provided in Equation 2.9 

and 2.10: 

  𝑀𝑖𝑝,1,𝑅𝑑 =
𝑓𝑦0∗𝑡0∗𝑑1

2

√3
∗

1+3𝑠𝑖𝑛𝜃1

4𝑠𝑖𝑛2𝜃1
/𝛾𝑀5,  (2.9) 

  𝑀𝑜𝑝,1,𝑅𝑑 =
𝑓𝑦0∗𝑡0∗𝑑1

2

√3
∗

3+𝑠𝑖𝑛𝜃1

4𝑠𝑖𝑛2𝜃1
/𝛾𝑀5.  (2.10) 

2.1.2.4 Combination of axial force and bending moments 

For joints where the brace member connection is subjected to a combination of an axial force and a bending 

moment, the joint resistance should satisfy the following equation [2]: 

  
𝑁1,𝐸𝑑

𝑁1,𝑅𝑑
+ [

𝑀𝑖𝑝,1,𝐸𝑑

𝑀𝑖𝑝,1,𝑅𝑑
]

2

+
|𝑀𝑜𝑝,1,𝐸𝑑|

𝑀𝑜𝑝,1,𝑅𝑑
≤ 1.0,   (2.11) 

where: 

 𝑁1,𝐸𝑑 is the design axial force; 

 𝑁1,𝑅𝑑 is the design axial force resistance; 

 𝑀𝑖𝑝,1,𝐸𝑑 is the design in-plane internal moment; 

 𝑀𝑖𝑝,1,𝑅𝑑  is the design in-plane moment resistance; 

 𝑀𝑜𝑝,1,𝐸𝑑 is the design out-of-plane internal moment; 

 𝑀𝑜𝑝,1,𝑅𝑑 is the design out-of-plane moment resistance. 
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Figure 3: T- and X-joint subjected to an axial force  [2] 

                      
Figure 4: T-joint subjected to in-plane and out-of-plane bending moment [2] 

 

2.1.2.5 CIDECT Design Guides 

The CIDECT is is an international association researching streel construction and engineering with CHS’s as main 

focus, for which they also provide design guides. The CIDECT provides the design rule “chord plastification” and 

“punching shear” for non-penetrated CHS joints, for which the design rule chord plastification is comparable to 

the EC design rule for chord face failure, and the punching shear failure design rule is exactly the same as the EC 

design rule. The design rule for the prediction of geometries failing in chord plastification is given as: 

 𝑁1,𝑅𝑑 =
𝐹𝑦0∗𝑡0

2

𝑠𝑖𝑛𝜃1
∗

2.6+2.6∗𝛽

1−0.7∗𝛽
∗ 𝛾0.15 ∗ 𝑄𝑓,  (2.12) 

where 𝑄𝑓 = (1 − |𝑛|)𝐶1, which can be calculated by 𝑛 =
𝑁0,𝐸𝑑

𝑁𝑝𝑙,0,𝑅𝑑
+

𝑀0,𝐸𝑑

𝑀𝑝𝑙,0,𝑅𝑑
 and 𝐶1 = 0.45 − 0.25 ∗ 𝛽. [3] 

To compare the design rules from the CIDECT with the EC design rules, the design resistances are calculated for 

different parameter configurations. From these calculations, it can be concluded that the formula for chord 

plastification almost predicts the same yield loads as the design rule from the EC for chord face failure. The design 

rules of the CIDECT are therefore, not further taken into account within this study.    
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2.2 PENETRATED HOLLOW STRUCTURAL SECTION 
During the literature search into performed studies and realized projects into CHS X-joints, no information could 

be found about penetrated CHS X-joints. However, some studies on penetrated plate-to-hollow structural 

sections (HSS) were found: Kosteski and Packer researched “Longitudinal plate and through plate-to-hollow 

structural section welded connections” [4], Voth et al. looked into “Branch plate-to-circular hollow structural 

section connections, part I and part II” [5] [6] and lastly, Voth and Packer studied “Circular hollow through plate 

connections” [7]. These studies may be interesting for the current research due to their applicability for CHS joints 

and their relation to penetrated connections. In this paragraph, these relevant studies are evaluated and 

information on the researched joint configuration, applied deformation limit, the finite element modeling, 

parameter study and conclusions and recommendations are provided. 

2.2.1 Through plate-to-hollow structural section joint 
HSS are becoming a commonly used steel member, and the joint possibilities and techniques are still expanding. 

Within the performed researches into HSS, the main focus lies on CHS joints. CHS joints have their own specific 

design rules that are provided in the NEN-EN 1993-1-8 [2], in the design guide for CHS joints under predominantly 

static loading [8], and in the study of “Deformation limit for the ultimate strength of hollow joints” by Wardenier 

J. and Winkel L.H. [9].  

Currently, joints and connections between circular hollow sections are expensive due to their complex and labor-

intensive  joint designs [4]. With the further optimized processing techniques that are applied nowadays, such as 

for example laser cutting techniques, more precise joints can be designed and created in a limited time period, 

which reduces previous drawbacks of these joints in terms of costs. Therefore recently, an increasing amount of 

research is done to further optimize CHS joints and expand the possible joint types, including also penetrated 

joints in CHS members. Penetrated CHS-to-CHS joints are still relatively unknown, however a more commonly 

applied similar joint type, optimized plate-to-CHS joints, have been studied before. In these joints, the plate passes 

through the CHS, and the welded connection is applied on both sides of the CHS, for which an example is shown 

in Figure 5. These types of plate joints are often applied as shear joints or in wind bracing connections. Especially 

in wind bracings, where the normal force in the diagonal is distributed via the plate to the CHS. The double welded 

connection, on both sides of the CHS column, can be beneficial for the distribution of the stresses and the 

activation of the back of the CHS column. 

2.2.2 Design resistance by deformation limit 
In accordance with the research goal of this thesis, in these studies the behavior of through plate joints is 

compared with their corresponding branched plate equivalents. As a first indication for the resistance of the 

through plate joints, i.e. penetrated plate-to-CHS joints, the design rules for uniplanar branch plate-to-CHS 

connections under axial load are used and deformation limits provided by the research from Wardenier J. and 

Winkel L.H. are applied. [4] [5] [6] [7] [9] The deformation limits give practical restrictions for the joint 

deformations in the serviceability limit state and the ultimate limit state. In the serviceability limit state, an 

ultimate deformation limit of 1% of the diameter (1% 𝑑0) of the main CHS member is allowed for. While in the 

ultimate limit state, the ultimate deformation limit is set to 3% of the chord diameter (3% 𝑑0).  

2.2.3 Finite element modeling 
In the evaluated studies, the created finite element (FE) models and 

assumptions are validated using experimental tests. The test and the results 

obtained using the FEM are compared and verified on the overall load-

deformation behavior, local deformation, local spot strain, and ultimate failure 

mechanisms. Validation of the FE models ensures that the FE model and 

associated assumptions are verified and that the results of the FE models 

approach reality. The validation of the FE models allows for the expansion of the 

model to a numerical parametrical model. [5] In the next paragraphs, the 

geometries, boundary conditions, mesh-, and material properties researched in 

the mentioned studies will be evaluated. 
Figure 5: Example of a through 
plate connection to a CHS [6] 
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2.2.3.1 Geometry and boundary conditions 

Both transverse and longitudinal oriented through plate-to-CHS connections and their branched equivalents have 

been researched for T-type as well as X-type plate-to-CHS connections. The geometrical dimensions of the 

examined joints are based on proportionality ratios. The proportionality ratios are defined as the effective 

longitudinal plate depth-to-HSS width ratio (𝜂), the effective transverse plate width-to-HSS width ratio (𝛽), and 

the chord diameter-to-thickness ratio (2𝛾). Where the effective longitudinal plate depth-to-HSS width ratio(𝜂) 

can be calculated by dividing the plate depth in longitudinal direction trough the HSS width (𝜂 = ℎ1
′ 𝑏0

′⁄ ), the 

effective transverse plate width-to-HSS width ratio (𝛽) can be calculated by dividing the plate width trough the 

HSS width (𝛽 = 𝑏1
′ 𝑏0

′⁄ ), and the chord diameter-to-thickness ratio (2𝛾) can be calculated by dividing the chord 

diameter trough the wall thickness (2𝛾 = 𝑑0
′ 𝑡0

′⁄ ) , using the dimensions as shown in Figure 6. For T-type 

connections the chord diameter to thickness ratio must be equal or less than 50, whereas for X-type connections 

this ratio must be equal or less than 40. [5] 

To avoid that end effects of the boundary conditions have an influence on the behavior and strength of the joint, 

the free “effective” length of the chord extending beyond the plate or HSS must be sufficiently long. Kosteski and 

Packer state in their paper the following about the free length: FEM analysis showed that the free length of the 

chord must be greater than 1.25 times the HSS chord width (𝑏0) to avoid end effects. As a precaution, a more 

conservative value of 1.5 𝑏0 was used in the FEM parametric study. [4] 

On the contrary, Voth et al. [6] and Vegte and Makino [10] both state that the end effects can be eliminated for 

all geometric configurations for which the effective chord length parameter (𝛼′) is equal or higher than 20. This 

effective chord length parameter can be calculated by dividing two times the effective chord length by the chord 

width or diameter (𝛼′ = 2𝑙′0 𝑑0⁄ ). In other words, the effective chord length needs to be at least ten times the 

chord width or diameter, which is four times as much as stated by Kosteski and Packer [4]. 

To ensure that the applied boundary conditions in the FE model optimally approach the boundary conditions from 

the experimental test set-up, in the research of Voth et al. [5] and Voth and Packer [7], end plates are modeled 

to the chord. Furthermore, Voth et al. researched the schematization of the model and included a boundary 

condition study in their research. The research concludes that by implying a fully restrained boundary condition 

to the CHS chord end, the modeled structure was found to have a stiffer behavior than the experimental test 

results. To simulate the experimental setup and conditions, deformable end plates are modeled to the CHS chord, 

and only the inside surface of the bolt holes are restraint against displacements. This boundary condition is applied 

for the T-joint, as well as for the X-joint. 

2.2.3.2 Mesh 

In all studies [4], [5], [6], and [7], solid brick elements are applied in the FE model. In the papers, mesh convergence 

studies are presented which have been carried out to decide on a suitable level of discretization and the best 

appropriate mesh settings and layout. The mesh settings are chosen based on the comparison between the FEA 

results and results of the experimental load-deformation responses. Voth et al. [5] [6] and Voth and Packer [7] 

applied in their studies eight-node solid brick elements (SOLID45), with three translational degrees of freedom 

per node. However, Voth et al. also executed the study with twenty-node solid brick elements (SOLID 95), which 

have been applied by Kosteski and Packer as well [4]. Voth et al. concluded that the eight-node SOLID45 elements 

show a load-deformation response and an overall joint behavior that better approaches the experimentally 

obtained results. Additionally, Voth et al. [5] [6] and Voth and Packer [7] applied in their studies integration with 

hourglass control in order to limit the zero-energy modes, which are physically not possible. Moreover, in their 

models, both applied a nonlinear time step analysis to incorporate the nonlinear material properties, allow for 

large deformations, and apply a full Newton-Raphson frontal equation solver.  

          
 

 

  

   Transverse T-type      Transverse X-type   Longitudinal T-type               Longitudinal X-type 

Figure 6: Branch plate joint configurations with geometric properties as used for the proportionality ratios of branch- and 
through plate-to-CHS connections.  [5] 
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2.2.3.3 Material properties 

In the mentioned papers [4] [5] [6] [7], the material models for FEA are obtained from the experimental tests. 

From the HSS and plate used in the experimental tests, the exact material properties are determined by tensile 

coupon tests. From the test results, the stress-strain curves of the average measured material properties are 

plotted. The engineering and true stress-strain material curves are plotted, and the true stress-strain curve is used 

for the FEA. The true strain is calculated by the formula 𝜀𝑡𝑟𝑢𝑒 = ln (1 + 𝜀𝑒𝑛𝑔) and the true stress value is calculated 

by the formula 𝜎𝑡𝑟𝑢𝑒 = 𝜎𝑒𝑛𝑔(1 + 𝜀𝑒𝑛𝑔). In the research of Kosteski and Packer [4] and Voth and Packer [7] the exact 

weld properties are not investigated. The weld is assumed to be strong and stiff enough, and the material 

properties are therefore assumed to be the same as the plate material. In the research of Voth et al. [5] + [6], the 

material behavior of the welded connection is taken into account by applying the true stress-strain behavior of 

the welded material in the same manner as the HSS and plate are applied.  

2.2.4 Parametric study 
For the parametric study, the researchers [4] [5] [6] [7] used the proportionality ratios as outlined in Paragraph 

2.2.3.1, being the effective longitudinal plate depth-to-HSS width ratio (𝜂), the effective transverse plate width-

to-HSS width ratio (𝛽), and the chord diameter-to-thickness ratio (2𝛾) 

In the papers, the value of the effective longitudinal plate depth-to-HSS width ratio (𝜂) is varied between 0.32 

and 4.12. Where Kosteski and Packer chose for the values 0.5, 1.0, 1.5 and 2.0, Voth et al. opted for the values 

0.32, 0.53, 0.72, 0.92, 1.12, 1.62, 2.12, 2.62, 3.12, and 4.12 and, finally, Voth and Packer applied an 𝜂 of 0.32, 0.72, 

1.12, 1.62, 2.12 and 2.62. The value of the effective transverse plate width-to-HSS width ratio(𝛽)  is varied 

between 0.2 and 1.0, with intermediate steps of 0.2, and the values of the chord diameter-to-thickness ratio (2𝛾) 

is varied between 13 and 46.  

2.2.5 Conclusions and recommendations 
The studies from Kosteski and Packer [4], Voth et al. [5], and Voth and Packer [7], evaluated the behavior of a T-

type through plate-to-CHS joints and compared it with the behavior of T-type branch plate-to-CHS joints loaded 

in tension and compression.  

Voth et al. [6] studied the effect of the chord length and boundary conditions on the behavior of a branch plate-

to-CHS X-joint. The study concluded that the effects of the chord end boundary conditions could be neglected by 

an effective chord length of at least 10 𝑑0 (𝑜𝑟 𝛼′ = 20). Kosteski and Packer state however, that their FEM analysis 

showed that the free length of the chord must be greater than 1.25 times the HSS chord width (𝑏0) to avoid end 

effects and used as a precaution, a more conservative value of 1.5 𝑏0 in their FEM parametric study. [4] 

Voth et al. and Voth and Packer concluded that for branch plate-to-CHS joints loaded in tension, the CIDECT 

international design guidelines by Wardenier [3] underpredict the capacity of the joints significantly. For through 

plate-to-CHS joints, it is concluded from the parameter studies, that the joints have a capacity of more than double 

the capacity of an equivalent branch plate connection. Voth et al. and Voth and Packer concluded that the capacity 

is approximately the summation of a branch plate-to-CHS joint under tension and compression loading, which 

results in a capacity of even more than three times the joint capacity of a branch plate joint loaded in compression.  

By Voth and Packer [7], a recommendation is given for a set of design rules for through plate-to-CHS joints. In the 

set of design rules, the advantageous behavior of joints in which the plate penetrates the chord, is taken into 

account. Voth and Packer developed the following design rules for the design resistance of transverse (Equation 

2.13) and longitudinal (Equation 2.14) through plate-to-CHS T-joints [7]: 

 
𝑁1

∗ = 𝑓𝑦0 ∗ 𝑡0
2 ∗ 𝜁 ∗ [2.9 ∗ (1 + 3𝛽′2) ∗ 𝛾0.35 + 2.6 ∗ (1 + 2.5𝛽′ 2) ∗ 𝛾0.55] ∗ 𝑄𝑓,  

(2.13) 

 
𝑁1

∗ = 𝑓𝑦0 ∗ 𝑡0
2 ∗ 𝜁 ∗ [7.2 ∗ (1 + 0.7𝜂′) + 10.2 ∗ (1 + 0.6𝜂′)] ∗ 𝑄𝑓.  

(2.14) 
Where 𝜁 is a reduction factor for the design resistance, equivalent to the inverse of the European partial safety 

factor and can be taken as 0.85. This reduction factor should provide sufficient conservatism for structures with 

a geometric parameter outside the investigated range since the parameter study used to create the design rule 

has been verified for a limited parameter and data range only. The factor 𝑄𝑓 is a factor for the chord plastification, 

which is provided by Wardenier in the CIDECT international design guidelines [3]. The design guideline states that 

𝑄𝑓 = (1 − |𝑛|)𝐶1 , where 𝑛 = (𝑁0 𝑁𝑝𝑙,0⁄ ) + (𝑀0 𝑀𝑝𝑙,0⁄ )  and 𝐶1 = 0.25  for chord compression stress (𝑛 < 0), and 

𝐶1 = 0.20 for chord tension stress (𝑛 ≥ 0).  
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 FINITE ELEMENT MODEL FOR CHS X-JOINTS 

In this research, a finite element (FE) model is created to perform a parameter study and to predict the structural 

behavior, the yield, and the ultimate loads of (non-) penetrated CHS X-joints. For the FE model, a script is created 

using Python programming language; the script is imported in the FE software ABAQUS CAE 6.14 which is used to 

run the model and perform the calculations. In this section, the construction of the FE model is presented and 

the model is validated using the results of a research done on the “Axial capacity of circular hollow section T-joints 

using grade HSB 600 steel” [11]. The geometry build-up, material model, mesh settings and element types, 

including a mesh convergence study and the loads and boundary conditions, including a boundary condition study 

are elaborated in Section 3.1. In  Section 3.2, the validation study of the FE model is presented. First the research 

and tests from literature, used for validation, are outlined. Next the adjustments to the created FEM to allow 

validation with the (experimental) results from the presented paper are listed. And finally, various material models 

are studied and the conclusions of the validation study are presented.  

3.1 FINITE ELEMENT MODEL 
A FEM is constructed to evaluate the structural behavior and the failure mechanisms of (non-) penetrated CHS X-

joints. In this paragraph, the main features of the finite element model are explained. A Python based script is 

used as base from which two comparable FEM’s, for the penetrated and non-penetrated joint, are created. In the 

following paragraph the geometrical differences between these models will be explained and in Appendix A, the 

Python script for the penetrated CHS X-joint is provided. Additionally, the material models, mesh settings and 

element types, the mesh convergence study, applied loads, and boundary conditions for the model are explained. 

3.1.1 Geometry 
The joint geometry is modeled in a three-dimensional 

environment, in which the brace and the chord are modeled 

using deformable shell elements. Both members are build up 

parametrically using geometrical parameters, in a similar way 

as in the literature presented in section 2.2.4. The 

geometrical setup, based on these geometrical parameters, 

is equal for the penetrated and the non-penetrated models. 

The only difference is that for a non-penetrated joint, the part 

of the brace member that falls within the chord diameter has 

been removed, and that for a penetrated joint, the part of the 

chord wall that falls within the brace diameter has been 

removed.In the script difference is made between 

geometrical parameters (ratios) and geometrical properties. 

The geometrical parameters are used for the parameter 

study and are referred to with Greek symbols, while the 

geometrical properties are used to set up the geometry of 

the model and are referred to by abbreviations of the specific 

properties. The defined geometrical parameters are the 

effective chord length parameter (𝛼′), the brace width-to-

chord width ratio (𝛽), the chord diameter-to-wall thickness 

ratio (2𝛾) , and the brace diameter-to-wall thickness ratio 

(2𝛿), and can be calculated using the following formula’s: 

 𝛼′  = 2𝑙0
′ 𝑑0⁄  (3.15) 

  𝛽  = 𝑑1/𝑑0 (3.16) 

 2𝛾 = 𝑑0/𝑡0 (3.17) 

 2𝛿 = 𝑑1/𝑡1  (3.18) 

Where 𝑑0 is the chord diameter, 𝑑1 is the brace diameter, 𝑡0 is the chord wall thickness and 𝑡1 is the brace wall 

thickness, and 𝑙0
′  is the effective chord length, which is defined as the chord length minus the brace diameter 

divided by two (𝑙0
′ = (𝑙0 − 𝑑1) 𝑑0)⁄ . The parameters and the related geometrical properties are shown in Figure 7. 

Figure 7: Geometrical parameters of a CHS X-joint 
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Figure 8: Elastic-plastic material 
model with linear strain hardening 

The geometrical properties are fixed formulas, used for creating the geometry. The first geometrical property is 

the chord diameter (𝑑0), which is fixed on 762.0 mm. The second property is the chord wall thickness (𝑡0), which 

can be calculated by dividing the chord diameter through the chord diameter-to-wall thickness ratio (𝑡0 = 𝑑0/2𝛾). 

With the chord diameter and wall thickness, the chord radius till mid-surface of the cross-section wall thickness 

can be calculated by dividing the chord diameter minus the wall thickness by two (𝑟0 = (𝑑0 − 𝑡0)/2). The brace 

diameter is set by multiplying the chord diameter with the brace width-to-chord width ratio (𝑑1 = 𝑑0 ∗ 𝛽). The 

brace wall thickness can be calculated in the similar manner as the chord wall thickness, but this time by dividing 

the brace diameter through the brace diameter-to-thickness ratio (𝑡1 = 𝑑1/2𝛿). Furthermore, for the brace radius 

the same formula holds as for the chord radius. The last geometrical properties are the chord and brace lengths. 

The chord length is based on the effective chord length parameter divided by two times the chord diameter, plus 

the brace diameter (𝑙0 = 𝛼′ 2⁄ ∗ 𝑑0 + 𝑑1), and the brace length is set to eight times the brace diameter plus the 

chord diameter (𝑙1 = 8 ∗ 𝑑1 + 𝑑0). The factor eight for the brace length is assumed to have sufficient length to 

induce the flow of stresses in the brace, while still resulting in a limited brace length, preventing the brace from 

buckling in compression. 

With the above geometrical properties, the members can be created in Abaqus. To create the chord and brace 

member, the radii till mid-surface of the cross-sections (𝑟0, 𝑟1) and their lengths (𝑙0, 𝑙1) are used. After generating 

the geometry, the shell thicknesses and material properties are assigned to the sections.  

In the next step, the members are combined. Therefore, first, the members have to be translated and moved to 

the right positions. Next, the members are merged, dependent instances are created from them. Doing so, creates 

a fixed connection on all locations where the instances intersect each other. The difference between the 

penetrated and the non-penetrated model is made by removing different joint parts. In the penetrated model, 

the part of the chord wall that falls in between the brace diameter is cut out of the model, and at the non-

penetrated model, the brace part that passes through the chord is cut out the model. The different models are 

shown in Figure 9. 

3.1.2 Material model 
Several material models are compared and evaluated in the validation study of the FE model, which can be found 

in paragraph 3.2.2. Based on the outcomes from this material study, an elastic-plastic material model with linear 

strain hardening, which is based on the formulas as provided in the EC EN 1993-1-5 appendix C.6 [12], is adopted 

within this research. Furthermore, a yield strength (𝜎𝑦) of 355 N/mm² and an ultimate strength (𝜎𝑢) of 490 

N/mm² are applied. Since this study aims to evaluate the behavior up to the plastic capacity of penetrated CHS X-

joints subjected to several load cases, by the means of a parameter study, material damage is not taken into 

account in this analysis. The Von Mises yield criterion is used to evaluate when the geometry starts yielding and 

to determine the corresponding plastic capacity. The strain hardening effect is accounted for by a reduced Youngs 

modulus once the yield strain is reached. The reduced Youngs modulus is defined by the slope as shown in Figure 

8, which can be calculated using tan−1(𝐸 100⁄ ). The material model provided in EC EN 1993-1-5 appendix C.6 

concerns the engineering stress and strain, which not represents the physics properly. Therefore, the engineering 

stress-strain model is converted to a true stress-strain model, which is required FEA in the software Abaqus, for 

which the true strain and true stress can be calculated with formula 3.19 and 3.20, respectively. 

 𝜀𝑡𝑟𝑢𝑒 = ln (1 + 𝜀𝑒𝑛𝑔)  (3.19) 

 𝜎𝑡𝑟𝑢𝑒 = 𝜎𝑒𝑛𝑔(1 + 𝜀𝑒𝑛𝑔) (3.20) 

             
Figure 9: Geometry of a penetrated (left) and non-penetrated (right) CHS X-joint 
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3.1.3 Mesh settings and element types 
In this paragraph, the mesh settings and element types are explained, and the mesh convergence study is 

discussed. The mesh design of the X-joint model is created using datum planes, which are planes that span two 

axis at an certain offset from the datum point in the direction of the third axis. These datum planes make it 

possible to create partitions where the plane intersects the members, as shown in Figure 11, to which different 

element types and mesh settings can be assigned. These distinctions allow for a reduction in the number of 

elements and accordingly, a reduction in computational time. Moreover, diagonal partitions were required for 

controlling the structured meshing technique around the connection.  

3.1.3.1 Mesh settings 

To create an optimized mesh design, both the chord and the brace member are divided into four sections. Using 

the seed edges function, the number of elements or the maximum size of elements along the edges of the 

partitions are controlled. The region near the connection is the most important region for analyzing the joint 

behavior and therefore has the finest mesh. The regions near the end of the chord and the brace are less 

important since they have less influence on the joint behavior, and are therefore designed with a coarser mesh.  

The mesh is controlled by using a structured mesh technique and assigning different element shape options. Near 

the connection, only quadrilateral element shapes are applied to ensure that the elements in this joint region 

have optimal mesh shapes. On the other parts of the model, a quad-dominated shape option is applied, which 

uses primarily quadrilateral elements but also allows triangular elements where needed for the creation of 

adequate mesh shapes, for example, in mesh size transition regions [13]. The resulting meshed model is shown 

in Figure 11, in which it can be seen that a fine mesh is obtained near the connection between the chord and the 

brace, and that towards the ends of the members, the mesh size is increasing.  

3.1.3.2 Element type 

The shell elements are applied as quadratic, 8-node doubly curved thick shell elements with reduced integration 

and six degrees of freedom per node (S8R). The six degrees of freedom per node take into account the translation 

and the rotations in three directions. The shell elements make use of a reduced integration scheme with four 

integration points, which are shown in Figure 10. The reduced integration option uses fewer integration points in 

each direction, which makes the element slightly less accurate, but in computational time, the FEA substantially 

faster. Moreover, the application of reduced integration mainly influences the plastic behavior, while in this 

research is focussed merely on the onset of the plastic behavior and therefore the application of reduced 

integration has very limited influence on the results of the analysis. Over the thickness of the shell element, 5 

section points are defined.  

 

      
Figure 11: Partitioned and meshed geometry 

 

  

Figure 10: Reduced integration points 
(top) and section points (bottom) in 
two-dimensional elements [11] 
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3.1.3.3 Mesh convergence study 

A mesh convergence study is performed to decide on a suitable 

mesh refinement level for which the model provides accurate 

results, but no more elements then necessary are applied in order 

to keep the required computational time limited. Initially, a FEA is 

performed on a coarsely meshed model. Then, the level of mesh 

refinement, i.e. the number of elements, is increased gradually. 

While the mesh becomes finer, the results should become more 

accurate and the influence of mesh size on the obtained results 

should reduce. An accurate solution is assumed to be found when 

further refinement of the mesh results in a negligibly small 

difference of the solution. For comparison of the results, the 

reaction force, the stress at one specific node in the chord, and 

displacement in one specific node in the connection between the 

chord and the brace are measured, which are indicated in Figure 

12. 

In section 3.1.3.1 the construction of the mesh using seeded edges and the distinctions made in mesh refinement 

for certain regions of the joints are elaborated; the number of seeds on the edges is increased for regions near 

the connections while a coarser mesh is allowed near the ends of the members. In the Python script, the number 

of elements on an edge is set to a specific value depending on the required mesh refinement for the region of the 

joint concerned. This value is expressed in terms of the geometrical dimensions of the specific edges and is 

multiplied with a certain ‘mesh number’; this number is a factor that scales the number of seeds on the edge 

linearly and equals 1 for the basic ‘very coarse’ mesh. To increase the mesh density and study the consequent 

effects on the solution, the mesh number can be easily adjusted, while the proportional mesh refinement levels 

of the different joint regions are maintained. 

The mesh number in the script is doubled from 1 till 16, causing the number of elements to grow exponentially. 

In the mesh convergence study, the following models with the corresponding number of elements are compared, 

and shown in Figure 13: 

- 1 Very coarse mesh 728 elements 

- 2 Coarse mesh  2880 elements 

- 4 Normal mesh  11712 elements 

- 8 Fine mesh  46080 elements 

- 16 Very fine mesh 182784 elements 

The results of the mesh convergence study can be seen in Table 2 and in the left graph in Figure 14. In the table 

from left to right, the mesh number, number of elements, normalized mesh density, displacement, normalized 

displacement, reaction force, normalized reaction force, stress, normalized stress, and the computational (CPU) 

time. Using the normalized results, which can be calculated by 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑟𝑒𝑠.  = 𝑋2 𝑋1⁄ ,  … ,  𝑋16 𝑋1⁄ , the results 

of the different mesh refinement levels are compared with the basic ‘very coarse’ mesh with mesh number 1.  

In the left graph of Figure 14, the normalized displacement, react ion force and stress are plotted against the 

normalized mesh density in blue, orange and grey respectively.  

 

     
Figure 13: Very coarse (1), coarse (2), normal (4), fine (8), and very fine (16) mesh 
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Figure 12: Locations for mesh refinement study  
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Table 2: Mesh convergence study results mesh 1-16 
Mesh Mesh 

density 
Norm. 

Mesh d. 
Displ. Norm. 

Displ. 
RF Norm. RF Stress Norm. 

Stress 
CPU time 

1 V. C. 728 1.00 4.352 1.000 1020.9 1.000 121.72 1.000 13.8 
2 C. 2880 3.96 4.450 1.022 973.0 1.049 108.26 1.124 59.6 
4 N. 11712 16.09 4.486 1.031 952.6 1.072 105.92 1.149 322.1 
8 F. 46080 63.30 4.502 1.034 943.3 1.082 105.59 1.153 2356.1 
16 V. F. 182784 251.08 4.508 1.036 939.0 1.087 105.37 1.155 20912.0 

 

  

 
Figure 14: Normalized mesh convergence study results mesh 1-16 (left) and mesh 4-12 (right) 

 

In the graph can be seen that between mesh number 2 and 4, an increase in mesh density still effects the results, 

however, between mesh number 4 and 8, the graph is flattening, and between 8 and 16, the graph is almost 

horizontal, yielding a converged solution. To determine on the optimal mesh refinement level, the studied mesh 

numbers in between these flattened and horizontal regions, is increased and an additional mesh convergence 

study is performed for the mesh numbers between 4 and 12. The results of this study are shown in Table 3 and 

in the right graph of Figure 14. The graph shows a relatively flat and horizontal line, which means that from mesh 

number 4 on, the results are almost stable, and convergence is reached. Comparing the results of mesh numbers 

four and five, there is a maximal difference observed of 0.5% for the reaction forces, while the CPU time doubles. 

Looking to the relative change between the parameters ((𝑜𝑙𝑑 − 𝑛𝑒𝑤) 𝑜𝑙𝑑⁄ ∗ 100 = (𝑋4 − 𝑋5) 𝑋4⁄ ∗ 100), there is a 

difference of 0.43%. It can be concluded that improvements in accuracy do not outweigh the increase in 

computational time. Therefore, mesh number four is assumed as converging and gives sufficiently stable results 

without increasing the computation time too much. 

 
Table 3: Mesh convergence study results mesh 4-12 

Mesh Mesh 
density 

Norm. 
Mesh d.  

Displ. Norm. 
Displ. 

RF Norm. RF Stress Norm. 
Stress 

CPU time 

1 V. C. 728 1.00 6.677 1.000 1116.0 1.000 137.57 1.000 13.8 
4 N. 11712 16.09 6.852 1.026 1028.4 1.085 119.41 1.152 322.1 
5 18152 24.93 6.859 1.027 1024.0 1.090 119.30 1.153 594.8 
6 25634 35.21 6.864 1.028 1021.1 1.093 119.22 1.154 1039.2 
7 35496 48.76 6.868 1.029 1019.1 1.095 119.18 1.154 1814.0 
8 F. 46080 63.30 6.870 1.029 1017.6 1.097 119.15 1.155 2356.1 
9 58592 80.48 6.872 1.029 1016.5 1.098 119.14 1.155 3494.3 
10 72000 98.90 6.873 1.029 1015.6 1.099 119.11 1.155 4660.5 
11 86928 119.41 6.874 1.030 1014.9 1.100 119.09 1.155 6520.1 
12 V. F. 102528 140.84 6.875 1.030 1014.3 1.100 119.06 1.155 7546.6 
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3.1.4 Loads and boundary conditions 

3.1.4.1 Load 

Within this research, displacement controlled calculations are performed; the prescribed displacements are  

imposed in a stepwise manner. In the model, the prescribed displacement is applied as a boundary condition with 

a uniform distributed displacement on a reference point. The reference point is located at the center of the brace 

edge and is connected with a rigid body constraint to the edge of the brace element. The rigid body constraint is 

applied as tie nodes, which means that both the translational and rotational degrees of freedom are part of the 

constraint and that the edge motion is governed by the motion of the reference point and the relative positions 

of the edge nodes with respect to the reference point remain constant during the simulation. [13] 

3.1.4.2  Boundary conditions 

Based on the conclusion of Voth et al. from the literature study, first a boundary condition study is performed. 

Voth et al. [6] concluded in their research, as explained in section 2.2.5, that the effect of the end boundary 

conditions on the behavior of a plate-to-CHS X-joint can be neglected when an effective chord length of at least 

10 ∗ 𝑑0 (𝑜𝑟 𝛼′ = 20) is applied.  

To see if this conclusion holds for CHS X-joints as well, four different boundary conditions and five effective chord 

lengths have been compared. The boundary conditions (BC) clamped, pinned, X symmetrical, and X asymmetrical 

are applied to the top and bottom edges of the chord. In case of a clamped BC all six degrees of freedom are fixed, 

for a pinned BC the displacements in X-, Y- and Z-direction are fixed, for a X symmetrical BC displacement in X-

direction and rotations about the Y- and Z-axis are fixed, and for a X asymmetrical BC, displacements in Y- and Z-

direction and rotations about the X-axis are fixed. For the effective chord length, the length parameters (𝛼′) 16, 

24, 32, 40, and 48 are compared. The resulting load-displacement curves for the effective chord length 

parameters 16, 32, and 48 are provided in Figure 15. In the graphs, the scale of the vertical axis (Force in kN) is 

kept equal. It can be seen that the boundary condition X asymmetrical is only plotted for an effective chord length 

parameter of 16. This is due to an increasing instability of this model for increasing chord lengths. The top end of 

the chord is allowed to displace in Y-direction. When a load is applied in X-direction on the brace, a bending 

moment is introduced in the chord and, therefore, due to cable effects, a large displacement of the top edge is 

caused. In the model with an effective chord length parameter of 16, the model is able to handle these 

displacements, however, in the models with a higher effective length, the model becomes unstable due to these 

displacements.  

Additionally, it can be noticed in the graphs that the force-displacement curves of clamped and X symmetrical 

boundary conditions, and pinned and X asymmetrical boundary conditions coincide up to a displacement of 150 

mm. The models behave equally because of the application of the boundary conditions; the boundary conditions 

are applied on the edge of the chord members. Applying the X symmetrical boundary condition on the chord 

leads to a fixed chord end, which is equal to the clamped model. The same holds for the x asymmetrical and the 

pinned model.  

 

     
 

Figure 15: Force-displacement graphs boundary condition study 
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The graphs show that with a longer effective chord length, the type of boundary conditions applied, has less 

influence on the behavior of the joint, however, even for an effective chord length parameter of 48, differences 

in the behavior are noticeable. It is therefore concluded that the statement of Voth et al. [6], that the effects of 

the chord end boundary conditions can be neglected when 𝛼′ ≤ 20, cannot be used. Furthermore, with an 

effective chord length parameter of 48, the bending moment of the chord will always be normative and the failure 

mechanisms of interest cannot be studied. 

For the parameter study, the boundary conditions are applied on a reference point and tied by constrains as a 

rigid body to the chord edge, and the clamped and pinned boundary conditions are compared. A noticable 

difference in the force-displacement curves between the boundary conditions is that the clamped boundary 

conditions, have a significantly higher failure load for the longer chord lengths. This is due to the failure of the 

chord on bending moment. Bending moment is, next to the standard member failures, one of the failure 

mechanisms that is not interesting for this study on the behavior of penetrated joints. Therefore, bending 

moment as a governing failure mechanismn, needs to be avoided as much as possible within the parameter study. 

To do so, clamped boundary conditions will be applied at the chord ends and additionally, the effective chord 

length parameter is set to 12. The latter is done in order to limit the chord length and thus prevent bending 

moment of the chord to be governing, will ensuring to have a sufficient chord length to allow for a well distribution 

of the stresses around the joint. 

3.1.5 Finite element analysis (FEA) 
For the FEA of the structural behavior of a CHS X-joint, a geometric and material nonlinear analysis is implemented 

in the script. In this paragraph, the geometric and material nonlinear analysis and the solver methods are 

explained.  

3.1.5.1 Geometric and material nonlinear analysis (GMNA) 

Within the FEM, geometrical and material nonlinearity are applied because the model will show large 

deformations and displacements. Geometric nonlinearity is associated with large displacements, and is applied 

within Abaqus by turning on the NLGEOM function. The material nonlinearity is associated with the elastic-plastic 

material model with strain hardening that is applied in this research, as explained in section 3.1.2. The nonlinearity 

makes it possible to include the changes in the geometry during the analysis and to take into account the stiffening 

effects; a standard Newton-Raphson incremental-iterative procedure is adopted in which the stiffness matrix is 

updated each iteration. [14] 

3.1.5.2 Solving method 

As mentioned above, for the nonlinear FEA a standard Newton-Raphson incremental-iterative procedure is used. 

This method makes use of an algorithm to find equilibrium in every increment, where the increments are the 

converged stages after of a number of iterations. The stiffness matrix is updated  For the nonlinear analysis, the 

initial time increment is set at 0.001, the maximum time increment on 0.015, and the maximum number of time 

increments at 200. 

3.1.6 Output 
The requested results from the FEA are obtained from the history & field output and saved in an output database 

and additionally, plotted in an Excel sheet. The mentioned steps will be elaborated within this paragraph. 

3.1.6.1 History and field output 

The requested results are saved in the history and field output of Abaqus. The field output is the more general 

output of the data collected from the whole structure, and the history output can contain data from the whole 

model or specified smaller regions, e.g. specific elements or nodes. In this study, the requested data saved in the 

field output are the stresses, strains, plastic strains, plastic strain equivalent, elastic strains, and deformations. In 

the history output, the displacement and reaction force are collected at the reference point on the brace, where 

the load is applied. Secondly, the energy dissipated by rate-independent and rate-dependent plastic deformation 

(ALLPD) is requested for the whole model; this function shows plastic strains in the structure [13]. Lastly, also ten 

node displacements are collected; these displacements are provided to implement a deformation criterion for 

the ultimate load, which will be explained in the following paragraph. 
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Figure 16: Deformation criterion [15] and deformation criterion application within the model 

 

3.1.6.2 Deformation criterion 

The ultimate load of CHS joints can be found by the lowest value of the first peak load from the load-displacement 

graph or via an ultimate load predicted by a deformation criterion. Wardenier J. and Winkel L.H. have performed 

several studies on CHS joints, after which they concluded that the ultimate load of a CHS joints also could be 

described by a deformation criterion. The deformation limit is set to 3% of the CHS diameter (3% ∗ 𝑑0) for the 

ultimate limit state, and limits the ultimate load in case eccessive deformation is observed for one of the failure 

mechanisms that can cause the chord to be severly deformed [9], i.e. chord face failure, chord side wall failure. 

Two ways to determine the ultimate load obtained from FEA are thus build in, as is illustrated in Figure 16. The 

left graph shows that the peak load is reached by a smaller displacement than the 3% criterion; therefore, the 

peak load is assumed as the ultimate load. The right graph shows that the 3% deformation criterion is reached 

before the peak load, here the 3% deformation criterion is governing for the ultimate load. 

The 3% rule is applied within the Python script as a criterion on several nodes. In the right figure in Figure 16, the 

application of the deformation criterion within the model is shown. Node sets are created of nodes that are 

situated opposite to each other, and from these node sets, the in-between distance and deformation are 

measured. In the figure, the node sets are shown with a double arrow in between. The blue arrows are node sets 

for which the deformation criterion relates to the Z-direction, and the green arrows are node sets for which the 

deformation criterion relates to the X-direction. If deformation between the nodes becomes more than the limit 

of 3%, the load capacity at that increment is stored.  

3.1.6.3 Output database and creating Excel values 

With the history and field output, an output database (ODB output) is created. To use the history and field output 

for processing the results, the output has to be requested upfront within the script. Therefore, the ODB output is 

created. For the ODB, the storage directory is set, and from the history or field output, the required results are 

requested. The history and field output are requested for every increment, and additionally, for the reaction force 

and the displacement, the maximum value reached during the simulation is requested. 

3.1.6.4 Create Excel values 

For collecting and accessing of the results, the results are plotted in an Excel sheet. For every model, an excel 

sheet is created and opened in which the results from the ODB output are written to. In the Excel sheet, the 

increment number, displacement, reaction force, plastic dissipation, deformation limit, maximum reaction force, 

and maximum reaction force due to the deformation limit are plotted. As a last step, the workbook is closed, so 

a new calculation with new parameters can be started. 
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3.2 VALIDATION OF THE FINITE ELEMENT MODEL  
For the validation of the FE model, the research “Axial capacity of circular hollow section T-joint using grade HSB 

600 steel” from Byong-Jeong Choi, Eun-Taik Lee, Jae-Guen Yang, and Cheol-Kyu Kang is used [11]. In their 

research, eight specimens with different geometries and material properties are analyzed numerically and 

evaluated. For the validation of the FE model, these eight specimens have been reproduced and tested 

experimentally as well. In this paragraph, the experimental and numerical results from Byong-Jeong Choi et al. 

are elaborated, and the FE model created for the current study, as described in the previous paragraph, is 

validated.  

3.2.1 Experimental test 

3.2.1.1 Test specimen 

Byong-Jeong Choi et al. did research on the axial capacity of a CHS T-joint, loaded under compression. The basic 

model for the test specimen is shown on the left side in Figure 17, where can be seen that the specimen lengths 

are fixed on a length of 3000 mm for the chord and 1950 mm for the brace, and the diameters are fixed on a 

diameter of 750 mm for the chord and 650 mm for the brace. The chord thickness has been varied between 12 

and 26 mm, the brace thickness between 12 and 40 mm, and the material strength has been chosen as 400 or 

600 N/mm². On top of the brace, a 50 mm thick steel plate is welded, to attach the specimen to the testing 

machine and to introduce the forces in the brace. [11] 

3.2.1.2 Test setup 

On the right side of Figure 17, the test setup with the locations of the LVDTs is shown. With the LVDTs, the 

deformations and displacements of the model are measured. [11] Next to that, the supports of the specimens are 

shown: it can be seen that double steel plates are welded to both chord ends. 

3.2.1.3 Material properties 

The material properties of the specimens are obtained by coupon tests of the elements. The materials that are 

used for the experiments are SS400 and HSB600 steel. The SS400 steel refers to steel with yield stress (𝐹𝑦) of 235 

N/mm² or 215 N/mm² for thicknesses of more than 40 mm, ultimate tensile stress (𝐹𝑢) of 400 N/mm², and the 

HSB 600 steel refers to steel with a yield stress (𝐹𝑦) of 480 N/mm² for all thicknesses and ultimate stress (𝐹𝑢) of 

600 N/mm². In the paper, the minimum yield and ultimate stress are applied in the FE models. [11] 

3.2.1.4 Finite element analysis 

For the finite element analysis, Byong-Jeong Choi et al. used the software package Abaqus to simulate a 

displacement controlled nonlinear static analysis using the static-Riks analysis option. For the analysis, 

quadrilateral shell elements with six degrees of freedom per node are applied (S4R elements). Furthermore, an 

elastic-perfectly plastic material model was applied, based on the minimum yield and ultimate stress as given in 

section 3.2.1.3. For the elastic part of the material model, the Young’s modulus (𝐸) of 205 GPa and a Poisson’s 

ratio (𝜈) of 0.3 are applied. For the welded connection between the chord and the brace was assumed that it is 

strong and stiff enough, and therefore, the welded connection was not modelled within the FEA. For the boundary 

conditions, Byong-Jeong Choi et al. assumed in the FE model that the steel plates behave as a pinned constraint 

on the chord ends. [11] 

 

               
Figure 17: Test specimen and test setup with the locations of the LVDTs [11]. 
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3.2.1.5 Experimental and numerical calculation results 

The results of the experiment, the FEA, and design resistances calculated with the design rules from AISC and 

CIDECT are compared on nominal strength (kN). A ratio between the experiment result and resistance according 

to AISC, the experiment and FEA result, and FEA result and resistance according to AISC, is given. The results are 

shown in Table 4 and Figure 18, in which the results are divided into the two material groups, SS 400 series, and 

HSB 600 series. In the graphs, two calculation methods and four geometries are shown, where every geometry is 

indicated by its own color and every calculation method by its own line type. Specifications of the graphs are 

shown in Table 5. 

 
Table 4: Nominal strengths and yield loads [11] 

No Specimen 
Nominal strength (kN) Exp. 

(kN) 
FEM 
(kN) 

Exp./ 
AISC 

Exp./ 
FEM 

FEM./ 
AISC AISC CIDECT 

1 400M-t12-bt12 995 896 1326 1400 1.33 0.95 1.41 
2 400M-t12-bt40 995 896 1522 1250 1.53 1.22 1.26 
3 400M-t26-bt12 4000 3600 4698 4400 1.17 1.07 1.10 
4 400M-t26-bt40 4000 3600 4945 4350 1.24 1.14 1.09 
5 600M-t12-bt12 2031 1828 2105 2750 1.04 0.77 1.35 
6 600M-t12-bt40 2031 1828 1975 2500 0.97 0.79 1.23 
7 600M-t26-bt12 8170 7353 8857 8550 1.08 1.04 1.05 
8 600M-t26-bt40 8170 7353 8523 8500 1.04 1.00 1.04 

 
Table 5: Legend two calculation methods and two steel classes with both four geometries, used to obtain results 

Calculation methods SS 400 series HSB 600 series 

 Choi et al. Exp. [11]  400M-t12-bt12  600M-t12-bt12 
 Choi et al. FEM [11]  400M-t12-bt40  600M-t12-bt40 
   400M-t26-bt12  600M-t26-bt12 
   400M-t26-bt40  600M-t26-bt40 
      

  
Figure 18: Force-displacement diagram experimental and numerical results 

 

         
Figure 19: 400M-t12-bt12, FEM result and experimental result of geometry failing in chord face failure [11] 
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The results show that the behavior of the FE model differed from the experimental results. For the stiffness of the 

models, the elastic path is acceptable, but looking to the plastic phase, the FE model continues to increase and 

there is no maximum reaction force reached or softening behavior shown. The models with a chord thickness of 

12 mm seem to have almost the same yield load, but for the models with a chord diameter of 26 mm, there is a 

significant difference in yield load. It seems that their FEA does not give accurate results to predict the behavior 

of the joints. In Figure 19, the finite element and experimental result of the 400M-t12-bt12 are shown. These 

results show that in both cases, the failure mechanism chord face failure occurs.  

3.2.2 FE model 
For the FE model created in the current research, the Python script as explained in section 3.1, is used. The python 

script is altered in such a way that the material model, boundary conditions and element types from the FEA in 

the paper are incorporated. Byong-Jeong Choi et al. used the minimum standard yield stress and ultimate stress 

for their FEA, instead of using the actual mechanical steel properties obtained from their coupon tests. 

Furthermore, they used S4R elements in their FE model and applied pinned boundary conditions to the edges of 

the chord.  

The FEA results from the FE model created in this research with the above mentioned assumptions from Byong-

Jeong Choi et al., give an acceptable prediction for the behavior of the joint, however, compared to the 

experimental results, the joint behaves slightly too stiff. Therefore, several steps are taken in an attempt to obtain 

numerical results that better match the experimental tests from Byong-Jeong Choi et al.; different element types 

are tested, the material properties are upgraded to the mechanical properties retrieved from the coupon tests, 

and furthermore, different boundary conditions and material models are studied. The FEA results of the steps 

taken are given in Appendix B, and the steps are described in the next paragraph.  

 

As a first step the influence of the type of shell elements is evaluated. Byong-Jeong Choi et al. used 4-node shell 

elements with a linear shape function. But in some cases, it can have significant influence to calculate the stiffness 

matrix in a higher-order, so apply a quadratic shape function with 8-noded shell elements. In this case, the 8-

noded doubly curved thick shell elements give more accurate results than the 4-node shell elements and 

therefore, the 8-node shell elements are applied in the following steps. 

In the second step. the mechanical steel properties retrieved from the coupon tests presented in the paper are 

implemented. For every geometry, one coupon test was performed, and the mechanical properties of the tests 

are provided. The engineering stresses and strains are converted to true stresses and strains, with formulas 3.19 

and 3.20. The coupon test yield and ultimate stresses are significantly higher than the stresses initially assumed, 

resulting in higher loads, which in this case fits the experimental results better.  

After implementation of the steel properties from the coupon tests, the yield and ultimate loads fit the 

experimental results well, however, for the elastic part, the FE model tends to behaves stiffer than is observed in 

the experimental results. Therefore, as a third step, the boundary conditions are varied between Pinned, X 

symmetrical, clamped and pinned applied on a reference point. For the first three, the boundary conditions are 

applied directly on the edge of the chord; for the latter, the pinned boundary with a reference point, a reference 

point is created on which the boundary condition is applied. In Figure 22, the left graph, the results for the varied 

boundary conditions are shown. It can be seen that the boundary conditions mostly influence the stiffness of the 

structure and the height of the yield- and ultimate load. The pinned and the clamped boundary conditions show 

the same results: a very stiff behavior of the structure and the highest loads. The pinned boundary condition with 

a reference point, shows a less stiff behavior and lower loads, however, the behavior observed in the experimental 

test results are best approximated by the X symmetrical boundary condition that shows the lowest stiffness and 

yield load. Therefore, X symmetrical is assumed as the boundary condition in the next steps. 

The fourth and last step takes into account different material models. Material models from the EC EN 1993-1-5 

[12] and the British standard 7910 [16] are applied. From the EC, models a, b and c are based on the standard 

steel properties, while model d (d1 and d2) are based on the true stress-strain curve from the coupon tests. Model 

d2 differed from model d1 as in model d2, the Lüders strain plateau from the British standard is implemented. 

Model d3 is also based on the true stress-strain curve from the coupon tests, like model d1 and d2 from the EC, 

but now the approach from the British standard is applied to generate a stress-strain curve.  
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The material models are shown in Figure 20, and the explanation of the models is as follows: 

EC EN 1993-1-5 [12]: 

a) Elastic-perfectly plastic without strain hardening; 

b) Elastic-plastic with a nominal plateau slope; 

c) Elastic-plastic with linear strain hardening; 

d1) Elastic-plastic with linear strain hardening, 𝜀u = % elongation; 

d2) Elastic-plastic with linear strain hardening, 𝜀u = % elongation, with lüders strain plateau. 

British standard 7910 [16]: 

d3) Stress-strain curve modified from the test results. 

 

In Figure 21 the results from the material model study are shown. In the first stage of the validation study, model 

a – elastic perfectly plastic was applied. In the graph, it can be seen that both model a and b, however,  do not 

capture the hardening behavior of the material observed in experimental results. Though the d models, describe 

this behavior slightly better, model c provides the best approximation of the experimental results, and since it is 

based on a standard rule from the EC, material model c is used for obtaining the final results. 

 

Finally, from both Figure 21 and Figure 22, it is visible that the FEA results from Byong-Jeong Choi et al. are 

insufficiently describing the stiffness and strength behavior observed in their experiments. Therefore, their FEM 

results are omitted in the graphs in the next paragraph and the results from the FE model created in this research 

are merely compared with their experimental results. 
 

 
Figure 20: Material models by the EC EN 1993-1-5 and the British standard 7910 approach 
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3.2.3 Results 
Concludingly, starting from a FE model with the assumptions applied by Byong-Jeong Choi et al., the following 

steps, as also explained in section 3.2.2, are taken to arrive at the final results: 

- Shell elements varied between S4R and S8R elements; 

- Material properties (true stress-strain curve) from coupon tests applied; 

- Boundary condition study performed; 

- Material model study performed. 

With these steps taken, a FE model is created with mechanical steel properties as predicted from the coupon 

tests (converted to true stresses and strains), in which 8-noded doubly curved thick shell elements, pinned 

boundary conditions on a reference point, and a material model with strain hardening are applied. The results 

obtained with this optimized model are shown in Figure 23 and Figure 24. The legend associated with these 

graphs, indicating the different calculation methods and geometries, is shown in Table 6. 

 

Though significant improvements have been made compared to the FEA results of Byong-Jeong Choi et al., the 

graphs show that the curves from the FE models do not exactly follow the curves from the experimental tests. 

The elastic behavior of the geometrical configurations is predicted reasonably well; only for the geometry with a 

chord thickness of 26 mm and a brace thickness of 12 mm in HSB 600 steel, a stiffer behavior of the joint is 

observed in the FEA. In addition, it can be seen that the FE models from SS 400 steel geometries show a similar 

trend as the experimental results in the plastic regime, however, for some geometries, the heights of the graphs, 

and therefore the heights of the yield loads, differ from the tests. For the geometry with a chord and brace 

thickness of 12 mm from SS 400 steel, the FEA describes the joint behavior quite accurately, but for the other 

geometries, the FE models predict, in particular, the plastic behavior of the joint less accurate. In the FE models 

of most of these geometries, plastic behavior of the joints is initiated slightly earlier than observed in the 

experimental tests, resulting in an slight underestimation of the yield loads as well.  

Overall, it may be concluded that the experimental results of the SS 400 series are better approximated by the 

FEA than those of the HSB 600 series, and that geometries with smaller wall thicknesses of the members also 

match the experimental results better than those with larger wall thicknesses. 

 
Table 6: Two methods and two steel classes with both four geometries, used to obtain results 

Calculation methods SS 400 series HSB 600 series 

 Choi et al. Exp. [11]  400M-t12-bt12  600M-t12-bt12 
 Finite element model  400M-t12-bt40  600M-t12-bt40 
   400M-t26-bt12  600M-t26-bt12 
   400M-t26-bt40  600M-t26-bt40 
      

  
Figure 23: Validation study results for SS 400 series 
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Figure 24: Validation study results for HSB 600 series 

 

3.2.4 Conclusion 
The numerical results describe the joint behavior as observed in the experimental tests from Byong-Jeong Choi et 

al. accurately enough to be able to conclude that the, in this research, created FE model works as intended. For 

the eight specimens the correct failure mechanisms, i.e. chord face failure and brace cross-section failure, in 

accordance to the experimental tests are obtained. The deviations from the FEA results in failure loads compared 

to the experimental results, as mentioned in the previous paragraph, may be caused by several unknown aspects 

of the research from Byon-Jeong Choi et al. as for example:  

- A lack of information on the experimental tests and the interpretation of the results; 

- Included side effects in the experimental results, that are omitted in the FEA, e.g. the weld strengths, 

which may provide additional stiffness; 

- The interpretation and computation of the displacements and strains from the LVDT’s measurements.  
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 PARAMETER STUDY 

In this section, information is provided about the performed parameter study, the failure mechanisms that may 

occur are elaborated, the results from the FEA are presented and the way they are processed is explained. A 

geometrical parameter study is performed for each of the following load combinations: 

- Double-sided compression and tension (Fx) - Bending moment about the Z-axis (Mz) 
- Single-sided compression and tension (Fx) - Shear Fy (chord bending moment) 
- Bending moment about the Y-axis (My) - Shear Fz (chord torsional moment) 

 

The Python script is used to retrieve the results from the Abaqus database and create Excel files that contain the 

requested outputs from the FEA, as explained in section 3.1. In the Excel sheets, the following information is 

plotted: 

- increment number; 

- prescribed displacement in the reference point; 

- reaction force in the reference point; 

- plastic dissipation (PEEQ); 

- relative deformation of the node sets (to check for the deformation limit); 

- maximum reaction force reached in the reference point (RF1.1); 

- maximum reaction force reached based on the deformation limit (RF1.2). 

A complete overview of all results from the FEA of penetrated CHS X-joints is presented in Appendix D. Using the 

outputted Excel sheets, the maximum yield loads, ultimate loads, and the associated displacements are plotted 

in graphs. With the Abaqus viewer, the stresses and strains of the models are evaluated. The Von Mises stress 

(𝑆𝑀𝑖𝑠𝑒𝑠), stresses in the X- (𝑆11) and Y- (𝑆22) direction and the equivalent plastic strain (𝑃𝐸𝐸𝑄) are plotted and 

shown at the increment that is, by examination of the load-displacement curves, identified as the increment in 

which the yield load is reached. In the plots of the stresses, the yield strength is applied as the upper and lower 

limit (tensile and compressive yield strength, respectively) of the color bar. By setting this limit, a clear yield 

pattern can be observed at the increment associated with the yield load, from which the governing failure 

mechanism is identified. Additionally, the locations at which plastic deformation is initiated, are shown in the 

equivalent plastic strain (PEEQ) plots. 

4.1 PARAMETER STUDY 
In the parameter study, different parameters are chosen to create a reasonable representation of the types and 

geometries of CHS X-joints that can be applied in the field of civil engineering. In Figure 25, an overview of the 

varied parameters is shown, for which the definitions and formulas are provided in section 3.1.1 and formulas 

3.15 till 3.18. The parameters varied in these study are: 

- the applied load case; 

- the brace width-to-chord width ratio (𝛽); 

- the chord diameter-to-thickness ratio (2𝛾); 

- the brace diameter-to-thickness ratio (2𝛿). 

 
Figure 25: Overview of the parameter study 
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The applied load case is varied between normal forces (with respect to the brace) in the X-direction (double- and 

single-sided compression and tension), bending moment about the Y- and Z-axis, and shear in Y- and Z-direction. 

The brace width-to-chord width ratio (𝛽) is varied between 0.2, 0.4, 0.6, and 0.8, and the chord diameter-to-

thickness ratio (2𝛾), as well as the brace diameter-to-thickness ratio (2𝛿), are varied between 10, 15, 20, 30, 40, 

and 50.  

However, it can be seen in Figure 25, that initially, not all parameter combinations are analyzed numerically. Since 

the main interest of this research is the behavior and capacity of joints, for which a failure mechanism is governing 

that cannot be calculated with, or is insufficiently described by the standard cross-section design rules from the 

EC, an indication for the critical areas within the varied parameter field is created first by varying the 𝛽 between 

0.2 and 0.8, and the 2𝛾 and 2𝛿 between 10, 30 and 50. In this way, the limit or boundary parameter configurations 

are modelled and analyzed and an indication can be given for the critical areas in which joint failures occur that 

are insufficiently described by the current design rules. To decrease the gap between the values 10 and 50 for the 

parameters 2𝛾 and 2𝛿, the value 30 is also included in this first study. 

For the parameter configurations in Figure 25, the failure mechanisms are derived from the results of the FEA. 

The critical areas are identified and further investigated. For those areas, where joint failures may occur that are 

described insufficiently by the EC, extra parameter configurations are modelled and investigated in order to define 

the parameter limits for which failure mechanism occurs and to create a larger dataset on which a newly created 

design rule may be fitted. The parameter study is performed for penetrated, as well as for non-penetrated CHS 

X-joints. The conclusions for studies on penetrated geometries are elaborated in this section and a complete 

overview including the stresses, PEEQ and load-displacement plots, is provided in the in Appendix C. The results 

of parameter study on non-penetrated geometries are compared to the results of their penetrated equivalents 

and a complete overview of this comparison, containing the FEA yield loads and governing failure mechanisms, is 

provided in Appendix D. 

4.2 FAILURE MECHANISMS 
There are several failure mechanisms for CHS X-joints, which can be divided into three groups. The first group 

includes the joints that fail in basic cross-section failures, which can be calculated using the standard design rules 

from the EC. The second group is the group of non-penetrated CHS joint failures, for which the design rules are 

provided in the NEN-EN 1993-1-8, and which are elaborated in section 2.1  [2]. The third group is for failure 

mechanisms for which the current design rules do not describe the capacity correctly and thus no suitable design 

rules exist, for instance, chord face failure and mixed chord side-wall failure for penetrated CHS X-joints. The three 

groups and the corresponding failure mechanisms are: 

1. Basic section failures 

1 B cs Brace cross-section failure; 

1 B bm Brace bending moment failure; 

1 C bm Chord bending moment failure; 

1 C tm Chord torsional moment failure; 

2. Non-penetrated CHS joint failures; 

2 C ff Chord face failure; 

2 C ps Chord punching shear failure; 

3. Penetrated CHS X-joint failures (failure mechanism without existing design rule); 

3 C ff Chord face & mixed chord side-wall failures. 

 

For the most common failure mechanisms, the failure patterns are shown in the figures below, in which the Von 

Mises stresses (𝑆𝑀𝑖𝑠𝑒𝑠), the stresses in the X-direction (𝑆11), the stresses in the Y-direction (𝑆22) and the plastic 

equivalent strain (𝑃𝐸𝐸𝑄) are plotted. In Figure 26, Figure 27 and Figure 28, brace cross-section failure, brace 

bending moment and chord bending moment failure from failure group 1 are shown. In Figure 29, chord face 

failure is shown. For this failure mechanism, the same failure patterns are observed for non-penetrated (failure 

group 2 C ff) and penetrated (failure group 3 C ff) geometries, however, for this latter, the capacity is insufficiently 

described by the existing design rules. In Figure 30, another possible failure mechanism from failure group 3 C ff, 

mixed chord side-wall failure, is shown. Also for this failure mechanism, no suitable design rule exists. Chord 

torsional moment failure from group 1 and punching shear failure from failure group 2 are not shown; these 

failure mechanisms are often not governing and did not occur within this research. 
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Figure 26: 1. Brace cross-section failure (penetrated joint - double-sided tension – 𝛽 0.8 – 2𝛾 10 – 2𝛿 50) 

 

         
Figure 27: 1. Brace bending moment failure (penetrated joint – bending moment My – 𝛽 0.8 – 2𝛾 50 – 2𝛿 10) 

 

         
Figure 28: 1. Chord bending moment failure (penetrated joint – single-sided tension – 𝛽 0.8 – 2𝛾 50 – 2𝛿 10) 

 

         
Figure 29: 2 & 3. Chord face failure (penetrated joint – single-sided tension – 𝛽 0.8 – 2𝛾 50 – 2𝛿 30) 

 

         
Figure 30: 3. Mixed chord side-wall failure (penetrated joint - shear – 𝛽 0.8 – 2𝛾 50 – 2𝛿 10) 
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Figure 32: 𝑆𝑀𝑖𝑠𝑒𝑠 , 𝑆11, 𝑆22, 𝑃𝐸𝐸𝑄 plotted from Abaqus 

4.3 PROCESSING RESULTS 
In this paragraph, two examples are provided to show how the results are processed and to illustrate the 

procedure for determining the failure mechanisms. The first example is a penetrated CHS X-joint subjected to 

double-sided compression in X-direction (Fx) and with geometrical parameters 𝛽 0.8 − 2𝛾 10 − 2𝛿 30 . In this 

model, it is evident, based on the FEA results, that from failure group 1, brace cross-section failure occurs. The 

second model is a penetrated CHS X-joint subjected to single-sided compression in X-direction (Fx) with 

geometrical parameters 𝛽 0.2 − 2𝛾 50 − 2𝛿 10. From the results of this model it is less obvious which failure 

mechanism occurs, because in the stress plots from Abaqus, the influence of two failure mechanisms can be seen, 

and in the force-displacement diagram, two yield and two ultimate loads can be observed. The principles used to 

identify the failure mechanisms for the different geometries are described in the next paragraphs and are used 

to obtain the governing failure mechanism of all the models in the parameter study. 

4.3.1 Penetrated double-sided compression β 0.8 – 2γ 10 – 2δ 30 
The first example is a penetrated CHS X-joint subjected to double-sided compression in X-direction (Fx) with the 

geometrical parameters 𝛽 0.8 − 2𝛾 10 − 2𝛿 30. For this geometry, the design resistance according to the EC design 

rules for brace cross-section failure, chord face failure, and punching shear failure are provided in Table 7. In Table 

8, the FEA results for the yield load, the maximum load based on the load-displacement graph (RF1.1), the 

maximum load according to the deformation criterion (RF1.2), and the ultimate load (RF1), being the lowest value 

of RF1.1 and RF1.2, are shown. In the table can be seen that the deformation criterion is not reached, which 

means that the maximum deformation of the chord cross-section is less than 3%. In Figure 31, the force-

displacement diagram is shown in which the yield load of 13358 kN and corresponding displacement are marked 

with the dashed black lines, and the ultimate load and corresponding displacement are indicated with the dashed-

dotted grey lines. In Figure 32, the Von Mises stresses, and the normal stresses in the X and Y-direction from the 

Abaqus FEA are shown. The stresses are plotted for the increment in which, according to the force-displacement 

diagram in Figure 31, the yield load as given in Table 8, is reached.  

Based on these stresses and yield patterns, brace cross-section failure is identified as the governing failure 

mechanism of the joint as it is clearly visible in Figure 32 that the brace is yielding over the whole section. The 

lowest design resistance according the EC design rules in Table 7  equals 13354 kN for brace cross-section failure, 

from which it can be concluded that the EC design rules predict both the governing failure mechanism and the 

yield load of the joint correctly.  
 

Table 7: Design resistance according to EC design rules  
Brace cross-section failure:  𝑁𝑝𝑙.𝑅𝑑 

 2𝛿  30   13354 kN 
     
Chord face failure:  𝑁𝑝𝑙.𝑅𝑑 

 2𝛾  10   30451 kN 
     
Punching shear failure:  𝑁𝑝𝑙.𝑅𝑑 

 2𝛾  10   29910 kN 

 
 

Table 8: FEA results 
Yield Load RF1.1 RF1.2 RF1 

(kN) (kN) (kN) (kN) 
    

13358.2 14590.7 Not reached 14590.7 

 

      

𝑆𝑀𝑖𝑠𝑒𝑠  𝑆11 𝑆22 𝑃𝐸𝐸𝑄 

Yield load
13358 kN; 5.19 

Ultimate load
14590 kN; 46.54 
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Figure 34: 𝑆𝑀𝑖𝑠𝑒𝑠 , 𝑆11, 𝑆22, 𝑃𝐸𝐸𝑄 plotted from Abaqus 

4.3.2 Penetrated single-sided compression β 0.2 – 2γ 50 – 2δ 10 
The second example is a penetrated CHS X-joint subjected to single-sided compression in X-direction (Fx), with 

geometrical parameters 𝛽 0.2 − 2𝛾 50 − 2𝛿 10. For this geometry, the design resistances for brace cross-section 

failure, chord bending moment, chord face failure, and chord punching shear failure according to the EC are 

provided in Table 9. In Table 10, the FEA results for the yield load, the maximum load based on the load-

displacement graph (RF1.1), the maximum load according to the deformation criterion (RF1.2), and the ultimate 

load (RF1), being the lowest value of RF1.1 and RF1.2, are shown. In the table can be seen that the maximum load 

from the deformation criterion is lower than the maximum load according to the load-displacement graph, and 

therefore RF1 equals RF1.2.  

In Figure 33, the force-displacement diagram is shown, in which the yield load and corresponding displacement 

are marked with the dashed black line, and the ultimate load and corresponding displacement are indicated with 

the dashed-dotted grey line. Two kinks are observed in the curve, indicating the plastic behavior of the joint is 

influenced by two failure mechanisms. When evaluating the stresses plotted with Abaqus at the increment 

corresponding to the first kink, indeed the influence of two failure mechanisms can be identified. The first and 

the most evident yield pattern indicates chord face failure, as can be seen from the yield pattern that is distributed 

around the brace on the chord and that is mainly distributed in the Z-direction. Additionally, it can be seen that 

the yield strength is reached in some parts of the brace, indicating that brace cross-section failure is the second 

failure mechanism that has an influence on the behavior of the joint. By evaluating and comparing the results 

from the FEA and the design resistances according to the EC, this assumption is confirmed; the load corresponding 

to the second kink in the graph, indicated by the thin dashed lines, corresponds to the design resistance to brace 

cross-section failure according to the EC. Since the second kink is associated with brace cross-section failure, the 

first kink in the graph, is associated with the first observed failure mechanism; chord face failure. This means that 

the observed FEA yield load for chord face failure is twice as high as the design resistance for chord face failure 

according to the existing EC design rule. The difference between the yield load predicted by the EC design rule for 

non-penetrated models and the true capacity of the penetrated joint according to FEA can be attributed to the 

fact the brace is now continuous and penetrates the chord and some conservatism that is included in the design 

rules from the EC.  

Besides the two kinks that are indicated in the graph, also two ultimate loads are indicated with the grey dashed-

dotted lines. The highest load is the maximum load according to the load-displacement curve, however, the lower 

is the maximum load based on the deformation criterion which is governing in this case and thus equals the 

ultimate load capacity of the joint. 
 

Table 9: Design resistance according to EC design rules 
Brace cross-section failure:  𝑁𝑝𝑙.𝑅𝑑 

 2𝛿  30   2331 kN 
     

Chord bending moment:  𝑁𝑝𝑙.𝑅𝑑 

 2𝛾  10   5110 kN 
     

Chord face failure:  𝑁𝑝𝑙.𝑅𝑑 

 2𝛾  10   529 kN 
     

Punching shear failure:  𝑁𝑝𝑙.𝑅𝑑 

 2𝛾  10   1496 kN 
 

Table 10: FEA results 
Yield Load RF1.1 RF1.2 RF1 

(kN) (kN) (kN) (kN) 
    

1165.5 2846.9 2693.1 2693.1 
 

               

Figure 33: Force-displacement diagram 
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4.4 DOUBLE-SIDED COMPRESSION AND TENSION (FX)  

4.4.1 Penetrated CHS X-joint FEA results 
A representation of the penetrated CHS X-joints subjected to double-

sided compression and tension (by a force in X-direction) is shown in 

Figure 35. The results of the FEA are shown in Table 11, in which for 

every geometry the FEA yield load (𝐹𝑥,𝐹𝐸𝐴) , the governing failure 

mechanism according to FEA as identified according to the strategies 

outlined in the previous paragraph (𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑚𝑒𝑐ℎ. ) , the EC plastic 

design resistance associated with this failure mechanism (𝐹𝑥,𝑅𝑑), and 

the resistance ratio (𝑅𝑅), which is the ratio between the FEA yield load 

and  the plastic design resistance according to corresponding EC design 

rule (𝐹𝐹𝐸𝐴/𝐹𝑅𝑑) are shown.  

The resistance ratio (𝑅𝑅) gives an indication of the way the true plastic capacity of the joint according to the FEA, 

is approximated by the design resistance according to the EC design rule associated with the governing failure 

mechanism. For a resistance ratio (𝑅𝑅) below 1.0, the plastic design resistance (𝐹𝑅𝑑) overpredicts the plastic 

capacity according to FEA (𝐹𝐹𝐸𝐴) and is unsafe. For values higher than 1.3, the plastic capacity is underpredicted 

by the design rule and the plastic design resistance will therefore be conservative.  

In the table, under ‘failure mechanisms’, it can be seen that all models subjected to compression, as well as to 

tension, fail in brace cross-section failure, for which the failure pattern can be seen in Figure 26. Next to that, it 

can be seen from the resistance ratio that the plastic design resistance obtained by the EC design rule for brace 

cross-section failure, fits the yield load obtained by the FEA very well.  

In Figure 36, the load-displacement curves from the FEA for joints with parameters 𝛽 0.2 − 2𝛾 10 and various 

values of 2𝛿, subjected to compression and tension are shown. In the graphs, a similar behavior is observed for 

joints in compression and tension and moreover, the yield loads of both failure mechanisms are equal. However, 

for the models subjected to compression a lower ultimate load is reached and the joints fail in an earlier stage 

than the models subjected to tension, due to local buckling of the brace members subjected to compression.  
 

Table 11: FEA results penetrated model – double-sided compression and tension (Fx) 
Model  2𝛾 10  2𝛾 30  2𝛾 50 

Load 𝛽 2𝛿  
Fx,FEA 
(kN) 

Fx,Rd 
(kN) 

RR 
Failure 
mech. 

 
Fx,FEA 
(kN) 

Fx,Rd 
(kN) 

RR 
Failure 
mech. 

 
Fx,FEA 
(kN) 

Fx,Rd 
(kN) 

RR 
Failure 
mech. 

                  

D
o

u
b

le
-s

id
ed

 
co

m
p

re
ss

io
n

 (
F x

) 0.8 10  37473.8 37300 1.005  1  B cs  37461.4 37300 1.004  1  B cs  37455.0 37300 1.004  1  B cs 
0.8 30  13358.2 13354 1.000  1  B cs  13407.5 13354 1.004  1  B cs  13405.2 13354 1.004  1  B cs 
0.8 50  8123.5 8123 1.000  1  B cs  8117.4 8123 0.999  1  B cs  8150.9 8123 1.003  1  B cs 

                 

0.2 10  2330.5 2331 1.000  1  B cs  2343.9 2331 1.006  1  B cs  2343.6 2331 1.005  1  B cs 
0.2 30  835.3 835 1.000  1  B cs  834.1 835 0.999  1  B cs  835.8 835 1.001  1  B cs 
0.2 50  507.2 508 0.998  1  B cs  507.8 508 1.000  1  B cs  506.7 508 0.997  1  B cs 

                  

D
o

u
b

le
-s

id
ed

 
te

n
si

o
n

 (
F x

) 

0.8 10  37366.3 37300 1.002  1  B cs  37365.6 37300 1.002  1  B cs  37365.9 37300 1.002  1  B cs 
0.8 30  13354.2 13354 1.000  1  B cs  13380.3 13354 1.002  1  B cs  13380.2 13354 1.002  1  B cs 
0.8 50  8124.8 8123 1.000  1  B cs  8139.8 8123 1.002  1  B cs  8139.6 8123 1.002  1  B cs 

                 

0.2 10  2330.1 2331 1.000  1  B cs  2335.9 2331 1.002  1  B cs  2335.9 2331 1.002  1  B cs 
0.2 30  833.4 835 0.998  1  B cs  834.2 835 0.999  1  B cs  833.9 835 0.999  1  B cs 
0.2 50  506.4 508 0.997  1  B cs  507.7 508 0.999  1  B cs  507.3 508 0.999  1  B cs 
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Figure 36: FEA results 𝛽 0.2 - 2γ 10 - double-sided compression and tension (Fx) 
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4.4.2 Comparison penetrated and non-penetrated results 
The parameter configurations simulated for the penetrated joints are also simulated for the non-penetrated CHS 

X-joints. In Table 12 and Table 13, the results for the non-penetrated, as well as the penetrated configurations 

are shown, where Table 12 shows the results for models subjected to double-sided compression, and Table 13 

shows the results for models subjected to double-sided tension. In the tables, for every penetrated and non-

penetrated geometry, the FEA yield load (𝐹𝑥,𝐹𝐸𝐴), the ratio between the FEA yield loads of the penetrated and 

non-penetrated configurations (P/N-P), the governing failure mechanism (Fail. Mech.) as identified with the 

strategy outlined in the previous paragraphs and the EC plastic design resistance (𝐹𝑥,𝑅𝑑) corresponding to this 

failure mechanism are shown. The results of penetrated joints are shown in black and the results of non-

penetrated joints are shown in grey. In column ‘P/N-P’, it can be seen that for the models with higher 2𝛾 factors 

and lower 2𝛿 factors, the ratio between the FEA yield loads of the penetrated and non-penetrated configurations 

is above 1. This means that the plastic capacity that follows from the FEA of the penetrated model is higher than 

the plastic capacity of its non-penetrated equivalent. This increased capacity can be explained by the difference 

in governing failure mechanism; instead of chord face failure which is governing for the non-penetrated 

geometries, brace cross section failure is triggered for the corresponding penetrated geometries. This difference 

leads to an increase of the FEA yield load of penetrated geometries by a factor of 1.25 till 35.8 with respect to the 

yield loads of their non-penetrated equivalents. The results of the parameter configurations for which this is the 

case, are shaded in grey in the tables.  

 
Table 12: Comparison penetrated and non-penetrated results double-sided compression (Fx) 

Model  2𝛾 10  2𝛾 30  2𝛾 50 

L 𝛽 2𝛿 M  
Fx,FEA 
(kN) 

P/N-P 
Fx,Rd 
(kN) 

Fail. 
mech. 

 
Fx,FEA 
(kN) 

P/N-P 
Fx,Rd 
(kN) 

Fail. 
mech. 

 
Fx,FEA 
(kN) 

P/N-P 
Fx,Rd 
(kN) 

Fail. 
mech. 

                   

D
o

u
b

le
-s

id
ed

 c
o

m
p

re
ss

io
n

 (
F x

) 

0.8 10 
Pen  37473.8 

1.389 
37300  1  B cs  37461.4 

12.578 
37300  1  B cs  37455.0 

35.768 
37300  1  B cs 

N-P  26982.3 37300  2  C ff  2978.4 3383  2  C ff  1047.2 1218  2  C ff 
                  

0.8 30 
Pen  13358.2 

0.999 
13354  1  B cs  13407.5 

4.194 
13354  1  B cs  13405.2 

12.754 
13354  1  B cs 

N-P  13368.1 13354  1  B cs  3197.1 3383  2  C ff  1051.0 1218  2  C ff 
                  

0.8 50 
Pen  8123.5 

0.999 
8123  1  B cs  8117.4 

2.547 
8123  1  B cs  8150.9 

7.753 
8123  1  B cs 

N-P  8131.4 8123  1  B cs  3187.2 3383  2  C ff  1051.4 1218  2  C ff 

                  

0.2 10 
Pen  2330.5 

0.998 
2331  1  B cs  2343.9 

1.994 
2331  1  B cs  2343.6 

5.484 
2331  1  B cs 

N-P  2334.1 2331  1  B cs  1175.8 1326  2  C ff  427.3 512  2  C ff 
                  

0.2 30 
Pen  835.3 

1.000 
835  1  B cs  834.1 

0.997 
835  1  B cs  835.8 

1.977 
835  1  B cs 

N-P  835.4 835  1  B cs  836.6 835  1  B cs  422.7 512  2  C ff 
                  

0.2 50 
Pen  507.2 

1.000 
508  1  B cs  507.8 

1.003 
508  1  B cs  506.7 

1.246 
508  1  B cs 

N-P  507.1 508  1  B cs  506.0 508  1  B cs  406.5 512  2  C ff 

 
Table 13: Comparison penetrated and non-penetrated results double-sided tension (Fx) 

Model  2𝛾 10  2𝛾 30  2𝛾 50 

L 𝛽 2𝛿 M 
 Fx,FEA 

(kN) 
P/N-P 

Fx,Rd 
(kN) 

Fail. 
mech. 

 
Fx,FEA 
(kN) 

P/N-P 
Fx,Rd 
(kN) 

Fail. 
mech. 

 
Fx,FEA 
(kN) 

P/N-P 
Fx,Rd 
(kN) 

Fail. 
mech. 

                   

D
o

u
b

le
-s

id
ed

 t
en

si
o

n
 (

F x
) 

0.8 10 
Pen  37366.3 

1.190 
37300  1  B cs  37365.6 

9.936 
37300  1  B cs  37365.9 

26.778 
37300  1  B cs 

N-P  31396.6 30451  2  C ff  3760.5 3383  2  C ff  1395.4 1218  2  C ff 
                  

0.8 30 
Pen  13354.2 

0.996 
13354  1  B cs  13380.3 

3.606 
13354  1  B cs  13380.2 

10.365 
13354  1  B cs 

N-P  13406.3 13354  1  B cs  3710.2 3383  2  C ff  1290.9 1218  2  C ff 
                  

0.8 50 
Pen  8124.8 

0.994 
8123  1  B cs  8139.8 

2.172 
8123  1  B cs  8139.6 

5.925 
8123  1  B cs 

N-P  8173.2 8123  1  B cs  3747.1 3383  2  C ff  1373.8 1218  2  C ff 

                  

0.2 10 
Pen  2330.1 

0.996 
2331  1  B cs  2335.9 

1.623 
2331  1  B cs  2335.9 

4.281 
2331  1  B cs 

N-P  2338.3 2331  1  B cs  1439.6 1326  2  C ff  545.7 512  2  C ff 
                  

0.2 30 
Pen  833.4 

0.995 
835  1  B cs  834.2 

0.997 
835  1  B cs  833.9 

1.561 
835  1  B cs 

N-P  837.2 835  1  B cs  836.4 835  1  B cs  534.1 512  2  C ff 
                  

0.2 50 
Pen  506.4 

0.995 
508  1  B cs  507.7 

0.989 
508  1  B cs  507.3 

1.022 
508  1  B cs 

N-P  508.9 508  1  B cs  513.2 508  1  B cs  496.5 512  2  C ff 
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4.4.3 Conclusion double-sided compression and tension 
For CHS X-joints loaded in double-sided compression or tension, penetration of the chord by a continuous brace, 

may decrease the load on the connection and the chord, as this load is now directly transferred through the brace 

to obtain equilibrium with the force on the opposite end of the brace. This assumption is confirmed by the change 

in governing failure mechanism that is observed for the grey shaded models in Table 12 and Table 13. From these 

tables it can be concluded that joint failures are not governing for models subjected to double-sided tension or 

compression in which the chord is penetrated by a continuous brace and therefore, the EC design rules for joint 

failures must be omitted. These design rules, for chord face failure and punching shear failure, would otherwise 

underestimate the plastic capacity of the penetrated models significantly.  

In Table 11, it can be seen that the models with upper limit parameter values, as well as the models with lower 

limit parameter values, fail in brace cross-section failure. From this it can be concluded that also the models with 

parameters values between those limits, that are initially not simulated, fail in brace cross-section failure. 

Therefore it is concluded that no additional parameter configurations need to be simulated.  

Concludingly it is stated that the basic cross-section design rules from the EC, can be applied for penetrated CHS 

X-joints subjected to double-sided compression and tension and that the EC design rules for joint failures of non-

penetrated CHS X-joints, should be omitted in these calculations.  The current set of design rules in the EC does 

otherwise not predict the governing failure mechanism correctly, which may result in an underestimation of the 

plastic capacity by a factor 1.25 till 35.8. 
 

4.5 SINGLE-SIDED COMPRESSION AND TENSION (FX) 

4.5.1 Penetrated CHS X-joint FEA results 
In Figure 37, a representation of a penetrated CHS X-joint subjected to single-

sided compression and tension (by a force in X-direction) is shown. In Table 

14 the FEA results are shown. It can be seen that a significant part of the 

geometries fail in basic cross-section failures, i.e. in brace cross-section and 

chord bending moment failure, while the remaining geometries, in Table 14 

shaded in dark grey, fail due to chord face failure. When for those geometries 

the yield load obtained with the FEA is compared to the plastic design 

resistance calculated from the EC design rule for chord face failure, it can be 

seen that the true plastic capacity according to FEA is 1.69 till 4.97 times 

higher than predicted with the existing EC design rule. The plastic capacity of 

the geometries failing in basic cross section failures, on the other hand, are 

approximated very well by the EC design rules.  

Similar to the geometries subjected to double-sided tension and compression, the difference in joint behavior 

and the FEA results between models subjected to single-sided compression or tension, is very limited and 

therefore, additional simulations are only executed for models subjected to tension. The extra simulations are 

done for the parameter configuration with 𝛽 factors of 0.4 and 0.6, to create an extended overview in which the 

boundaries of the critical areas for geometries failing on chord face failure can be identified. In general, chord 

face failure is observed for joints with a higher 2𝛾  factors, for both models subjected to tension, as well as 

compression. 

4.5.2 Comparison penetrated and non-penetrated results 
Table 15 and Table 16 show the results of the comparison between penetrated and non-penetrated FEA results, 

for models subjected to single-sided compression (Table 16) and tension (Table 15). Similar as in Table 14, in Table 

15 and Table 16 the data, associated with the parameter configurations for which the penetrated geometry fails 

due to chord face failure, is shaded in dark grey. Additionally, the data associated with the parameter 

configurations for which merely the non-penetrated geometry fails due to chord face failure, is shaded in light 

grey in these tables. From the ratio between the plastic capacity (according to the FEA), P/N-P, it is observed that 

for these parameter configurations, shaded in light grey, the plastic capacity of the penetrated models is increased 

by a factor of approximately 1.07 till 2.49 compared to their non-penetrated equivalents. For the parameter 

configurations shaded in dark grey, for which both the penetrated and non-penetrated models fail in chord face 

failure, an increase in the plastic capacity of the penetrated geometries by a factor of approximately 1.04 till 3.15 

Figure 37: X-joint subjected to single-
sided tension (Fx) 

Fx 
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compared to their non-penetrated equivalents is observed. This increase in plastic capacity is especially observed 

for parameter configurations for which either the non-penetrated geometry or both the non-penetrated and the 

penetrated geometries are failing in chord face failure, which is more often the case for 2𝛾 factors of 30 and 50. 

For the other, non-shaded parameter configurations, both the penetrated and non-penetrated geometries fail in 

one of the basic cross-section failures, which can be accurately approximated by the existing set of EC design 

rules.  
 

Table 14: FEA results penetrated model – single-sided compression and tension (Fx) 
Model  2𝛾 10  2𝛾 30  2𝛾 50 

Load 𝛽 2𝛿 
 Fx,FEA 

(kN) 
Fx,Rd 
(kN) 

RR 
Failure 
mech. 

 Fx,FEA 
(kN) 

Fx,Rd 
(kN) 

RR 
Failure 
mech. 

 Fx,FEA 
(kN) 

Fx,Rd 
(kN) 

RR 
Failure 
mech. 

                  

Si
n

gl
e-

si
d

ed
 

co
m

p
re

ss
io

n
 (

F x
) 0.8 10  20146.9 19724 1.021  1  C bm  8529.7 7557 1.129  1  C bm  5126.5 4659 1.100  1  C bm 

0.8 30  13366.1 13354 1.001  1  B cs  6312.1 3383 1.866  3  C ff  4449.6 1218 3.653  3  C ff 
0.8 50  8128.5 8123 1.001  1  B cs  5699.8 3383 1.685  3  C ff  3850.9 1218 3.165  3  C ff 

                 

0.2 10  2336.7 2331 1.002  1  B cs  2333.4 2331 1.001  1  B cs  1165.5 512 2.276  3  C ff 
0.2 30  834.8 835 1.000  1  B cs  837.6 835 1.003  1  B cs  822.3 835 0.985  1  B cs 
0.2 50  508.4 508 1.001  1  B cs  509.4 508 1.003  1  B cs  504.0 508 0.992  1  B cs 

                  

Si
n

gl
e-

si
d

ed
 t

en
si

o
n

 (
F x

) 

0.8 10  20221.3 19724 1.025  1  C bm  8742.3 7557 1.157  1  C bm  5040.2 4659 1.082  1  C bm 
0.8 30  13369.4 13354 1.001  1  B cs  6575.6 3383 1.944  3  C ff  4361.5 1218 3.581  3  C ff 
0.8 50  8125.6 8123 1.000  1  B cs  5752.6 3383 1.700  3  C ff  3789.7 1218 3.111  3  C ff 

                 

0.6 10  20373.1 20321 1.003  1  C bm  8019.2 2317 3.461  3  C ff  4147.2 834 4.973  3  C ff 
0.6 30  7514.8 7512 1.000  1  B cs  6540.1 2317 2.823  3  C ff  4028.7 834 4.831  3  C ff 
0.6 50  4574.2 4569 1.001  1  B cs  4554.5 4569 0.997  1  B cs  3557.8 834 4.266  3  C ff 

                 

0.4 10  9333.6 9325 1.001  1  B cs  5500.2 1762 3.122  3  C ff  2388.2 634 3.767  3  C ff 
0.4 30  3341.8 3339 1.001  1  B cs  3348.4 3339 1.003  1  B cs  2124.8 634 3.351  3  C ff 
0.4 50  2032.1 2031 1.001  1  B cs  2029.0 2031 0.999  1  B cs  2032.1 634 3.205  3  C ff 

                 

0.2 10  2331.0 2331 1.000  1  B cs  2345.1 2331 1.006  1  B cs  1178.1 512 2.301  3  C ff 
0.2 30  833.6 835 0.998  1  B cs  843.0 835 1.010  1  B cs  837.9 835 1.003  1  B cs 
0.2 50  507.8 508 1.000  1  B cs  509.3 508 1.003  1  B cs  520.5 508 1.010  1  B cs 

 

Table 15: Comparison penetrated and non-penetrated results single-sided tension (Fx) 
Model  2𝛾 10  2𝛾 30  2𝛾 50 

L 𝛽 2𝛿 M 
 Fx,FEA 

(kN) 
P/N-P 

Fx,Rd 
(kN) 

Fail. 
mech. 

 
Fx,FEA 
(kN) 

P/N-P 
Fx,Rd 
(kN) 

Fail. 
mech. 

 
Fx,FEA 
(kN) 

P/N-P 
Fx,Rd 
(kN) 

Fail. 
mech. 

                   

Si
n

gl
e-

si
d

ed
 t

en
si

o
n

 (
F x

) 

0.8 10 
Pen  20221.3 

0.845 
19724  1  C bm  8742.3 

1.514 
7557  1  C bm  5040.2 

2.113 
4659  1  C bm 

N-P  23943.3 19724  1  C bm  5774.8 3383  2  C ff  2385.1 1218  2  C ff 
                  

0.8 30 
Pen  13369.4 

0.999 
13354  1  B cs  6575.6 

1.094 
3383  3  C ff  4361.5 

1.668 
1218  3  C ff 

N-P  13378.9 13354  1  B cs  6010.4 3383  2  C ff  2615.0 1218  2  C ff 
                  

0.8 50 
Pen  8125.6 

0.997 
8123  1  B cs  5752.6 

1.020 
3383  3  C ff  3789.7 

1.467 
1218  3  C ff 

N-P  8152.9 8123  1  B cs  5638.8 3383  2  C ff  2582.6 1218  2  C ff 

                  

0.6 10 
Pen  20373.1 

0.999 
20321  1  C bm  8019.2 

2.524 
2317  3  C ff  4147.2 

3.148 
834  3  C ff 

N-P  21053.7 20321  1  C bm  3176.6 2317  2  C ff  1317.2 834  2  C ff 
                  

0.6 30 
Pen  7514.8 

0.998 
7512  1  B cs  6540.1 

2.086 
2317  3  C ff  4028.7 

2.918 
834  3  C ff 

N-P  7533.1 7512  1  B cs  3134.9 2317  2  C ff  1380.6 834  2  C ff 
                  

0.6 50 
Pen  4574.2 

0.997 
4569  1  B cs  4554.5 

1.571 
4569  1  B cs  3557.8 

2.648 
834  3  C ff 

N-P  4586.8 4569  1  B cs  2899.3 2317  2  C ff  1343.7 834  2  C ff 

                  

0.4 10 
Pen  9333.6 

0.998 
9325  1  B cs  5500.2 

2.480 
1762  3  C ff  2388.2 

3.033 
634  3  C ff 

N-P  9353.1 9325  1  B cs  2218.2 1762  2  C ff  787.4 634  2  C ff 
                  

0.4 30 
Pen  3341.8 

0.998 
3339  1  B cs  3348.4 

1.567 
3339  1  B cs  2124.8 

3.041 
634  3  C ff 

N-P  3346.8 3339  1  B cs  2136.2 1762  2  C ff  698.7 634  2  C ff 
                  

0.4 50 
Pen  2032.1 

0.997 
2031  1  B cs  2029.0 

1.083 
2031  1  B cs  2032.1 

3.015 
634  3  C ff 

N-P  2037.6 2031  1  B cs  1874.2 1762  2  C ff  674.0 634  2  C ff 

                  

0.2 10 
Pen  2331.0 

0.997 
2331  1  B cs  2345.1 

1.543 
2331  1  B cs  1178.1 

1.784 
512  3  C ff 

N-P  2339.1 2331  1  B cs  1519.4 1421  2  C ff  660.2 512  2  C ff 
                  

0.2 30 
Pen  833.6 

0.995 
835  1  B cs  843.0 

0.996 
835  1  B cs  837.9 

1.306 
835  1  B cs 

N-P  837.6 835  1  B cs  846.2 835  1  B cs  641.8 512  2  C ff 
                  

0.2 50 
Pen  507.8 

0.991 
508  1  B cs  509.3 

0.994 
508  1  B cs  513.1 

1.005 
508  1  B cs 

N-P  512.4 508  1  B cs  512.6 508  1  B cs  510.8 508  1  B cs 
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Table 16: Comparison penetrated and non-penetrated results single-sided compression (Fx) 
Model  2𝛾 10  2𝛾 30  2𝛾 50 

L 𝛽 2𝛿 M 
 Fx,FEA 

(kN) 
P/N-P 

Fx,Rd 
(kN) 

Fail. 
mech. 

 
Fx,FEA 
(kN) 

P/N-P 
Fx,Rd 
(kN) 

Fail. 
mech. 

 
Fx,FEA 
(kN) 

P/N-P 
Fx,Rd 
(kN) 

Fail. 
mech. 

                   

Si
n

gl
e-

si
d

ed
 c

o
m

p
re

ss
io

n
 (

F x
) 

0.8 10 
Pen  20146.9 

0.852 
19724  1  C bm  8529.7 

1.707 
7557  1  C bm  5126.5 

2.488 
4659  1  C bm 

N-P  23655.6 19724  1  C bm  4997.3 3383  2  C ff  2060.3 1218  2  C ff 
                  

0.8 30 
Pen  13366.1 

1.000 
13354  1  B cs  6312.1 

1.146 
3383  3  C ff  4449.6 

1.910 
1218  3  C ff 

N-P  13361.4 13354  1  B cs  5509.9 3383  2  C ff  2329.5 1218  2  C ff 
                  

0.8 50 
Pen  8128.5 

1.000 
8123  1  B cs  5699.8 

1.038 
3383  3  C ff  3850.9 

1.644 
1218  3  C ff 

N-P  8126.7 8123  1  B cs  5490.3 3383  2  C ff  2341.8 1218  2  C ff 

                  

0.2 10 
Pen  2336.7 

1.003 
2331  1  B cs  2333.4 

1.752 
2331  1  B cs  1165.5 

2.333 
529  3  C ff 

N-P  2329.7 2331  1  B cs  1332.0 1326  2  C ff  499.6 529  2  C ff 
                  

0.2 30 
Pen  834.8 

1.001 
835  1  B cs  837.6 

1.002 
835  1  B cs  822.3 

1.663 
835  1  B cs 

N-P  834.1 835  1  B cs  835.6 835  1  B cs  494.5 529  2  C ff 
                  

0.2 50 
Pen  508.4 

1.003 
508  1  B cs  509.4 

1.003 
508  1  B cs  504.0 

1.071 
508  1  B cs 

N-P  507.0 508  1  B cs  507.7 508  1  B cs  470.4 529  2  C ff 

 

4.5.3 Conclusion single-sided compression and tension 
From the above described observations, it is firstly concluded that for penetrated CHS X-joints failing in basic 

cross-section failures, the design resistance as calculated by the existing EC design rules (for basic cross-section 

failures) approximates the plastic capacity of these joints according to FEA very well. Secondly, it is however 

concluded that, in contrast to what is stated for CHS X-joints subjected to double-sided compression or tension, 

joint failures should not be omitted when calculating the design resistance of penetrated CHS X-joints subjected 

to single-sided compression or tension, since for some parameter configurations (shaded in dark grey in Table 14, 

Table 15 and Table 16), joint failures actually are governing. For these penetrated joint configurations, failing in 

chord face failure, the plastic capacity is not properly predicted with the existing EC design rule for chord face 

failure for non-penetrated joints and a new design rule to calculate the design resistances of the penetrated CHS 

X-joints failing in chord face failure is required. This is indicated by the Resistance Ratio (RR) in Table 14, from 

which it can be seen that the plastic capacity of these joints according to the FEA, is between 1.69 till 4.97 times 

higher than the design resistance calculated with the existing EC design rule for the governing failure mechanism 

as observed in FEA.  

When comparing the FEA plastic capacity of these penetrated CHS X-joints (shaded in dark grey and failing in Cff) 

with their non-penetrated equivalents, it is seen from the P/N-P ratio in Table 15 and Table 16, that the FEA yield 

loads of the penetrated joints is 1.04 till 3.15 times higher than the yield loads of their non-penetrated 

equivalents. This increase in capacity of the penetrated geometries is slightly lower than the increase suggested 

by the resistance ratio (RR), since for the P/N-P ratio the FEA capacity of penetrated and non-penetrated 

geometries are compared, and thus the conservativeness of the existing EC design rules for non-penetrated 

geometries is omitted.  

Thirdly, it is observed that for parameter configurations for which another governing failure mechanism is 

observed for the penetrated geometries compared to their non-penetrated equivalents, which are shaded in light 

grey in Table 15 and Table 16, the FEA yield loads for penetrated models are 1.07 till 2.49 times higher than the 

FEA yield loads of their non-penetrated equivalents. Finally, only a little difference is observed between the yield 

loads of models subjected to single-sided compression and tension, and it is therefore concluded that a design 

rule based on models subjected to single-sided tension will also be suitable for models subjected to single-sided 

compression. 
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4.6 BENDING MOMENT ABOUT THE Y- (MY) AND Z- (MZ) AXIS 

4.6.1 Penetrated CHS X-joint FEA results 
In Figure 38, a representation of a penetrated CHS X-joint subjected to a  

bending moment applied on the brace, about the Y- (My) or Z- (Mz) axis, is 

shown. The FEA results for these joints are shown in Table 17, in which it can 

be seen that the geometries from all analyzed parameter configurations fail 

due to the basic cross-section failure mechanisms brace bending moment (1 B 

bm) and chord torsional moment (1 C tm). Moreover, it can be seen that the 

resistance ratio (RR) approximates 1 for all geometries, from which it can be 

concluded that the plastic design resistance can be calculated with the existing 

basic cross-section design rules from the EC and that no additional design rules 

are required for penetrated CHS X-joints subjected to this load case. 

4.6.2 Comparison non-penetrated and penetrated results 
In Table 18 and Table 19, the comparison between the FEA results of the 

penetrated and non-penetrated CHS X-joints subjected to a bending moment 

about the Y- (Table 18) or Z- (Table 19) axis, is presented. In the tables can be 

seen that for several non-penetrated geometries, which are shaded in light 

grey, chord face failure is governing. However, for their equivalent penetrated 

geometries, the basic cross-section failure mechanisms are governing and due 

to this shift in governing failure mechanism, their plastic capacity observed in 

FEA are approximately 1.21 till 12.1 times higher than the observed plastic 

capacity of their non-penetrated equivalents. 
 

Table 17: FEA results penetrated model – bending moment about the Y- (My) and Z- (Mz) axis 
Model  2𝛾 10  2𝛾 30  2𝛾 50 

Load 𝛽 2𝛿 
 My;z,FEA 

(kNm) 
My;z,Rd 
(kNm) 

RR 
Failure 
mech. 

 My;z,FEA 
(kNm) 

My;z,Rd 
(kNm) 

RR 
Failure 
mech. 

 My;z,FEA 
(kNm) 

My;z,Rd 
(kNm) 

RR 
Failure 
mech. 

                  

B
en

d
in

g 
m

o
m

en
t 

 
ab

o
u

t 
Y-

ax
is

 (M
y)

 

0.8 10  6567.8 6541 1.004  1  B bm  6572.0 6541 1.005  1  B bm  4723.4 4646 1.017  1  C tm 
0.8 30  2502.5 2506 0.999  1  B bm  2521.4 2506 1.006  1  B bm  2505.2 2506 1.000  1  B bm 
0.8 50  1539.7 1545 0.997  1  B bm  1541.9 1545 0.998  1  B bm  1539.6 1545 0.997  1  B bm 

                 

0.2 10  101.7 102 0.997  1  B bm  102.0 102 1.000  1  B bm  102.8 102 1.008  1  B bm 
0.2 30  39.1 39 1.003  1  B bm  39.1 39 1.003  1  B bm  39.2 39 1.005  1  B bm 
0.2 50  23.9 24 0.996  1  B bm  23.6 24 0.983  1  B bm  24.0 24 1.000  1  B bm 

                  

B
en

d
in

g 
m

o
m

en
t 

 
ab

o
u

t 
Z-

ax
is

 (
M

z)
 0.8 10  6533.5 6541 0.999  1  B bm  6533.0 6541 0.999  1  B bm  6533.0 6541 0.999  1  B bm 

0.8 30  2501.8 2506 0.998  1  B bm  2513.1 2506 1.003  1  B bm  2513.1 2506 1.003  1  B bm 
0.8 50  1537.3 1545 0.995  1  B bm  1533.7 1545 0.993  1  B bm  1533.7 1545 0.993  1  B bm 

                 

0.2 10  102.1 102 1.001  1  B bm  102.1 102 1.001  1  B bm  102.0 102 1.000  1  B bm 
0.2 30  39.2 39 1.005  1  B bm  39.1 39 1.003  1  B bm  39.0 39 1.000  1  B bm 
0.2 50  24.1 24 1.004  1  B bm  24.0 24 1.000  1  B bm  24.0 24 1.000  1  B bm 

 

Table 18: Comparison penetrated and non-penetrated results bending moment about the Y-axis (My) 
Model  2𝛾 10  2𝛾 30  2𝛾 50 

L 𝛽 2𝛿 M  
My,FEA 
(kNm) 

P/N-P 
My,Rd 
(kNm) 

Fail. 
mech. 

 
My,FEA 
(kNm) 

P/N-P 
My,Rd 
(kNm) 

Fail. 
mech. 

 
My,FEA 
(kNm) 

P/N-P 
My,Rd 
(kNm) 

Fail. 
mech. 

                   

B
en

d
in

g 
m

o
m

en
t 

ab
o

u
t 

th
e 

Y-
ax

is
 (

M
y)

 0.8 10 
Pen  6567.8 

1.024 
6541  1  B bm  6572.0 

5.983 
6541  1  B bm  4723.4 

12.046 
4646  1  C tm 

N-P  6415.5 5804  1  C ps  1098.4 1071  2  C ff  392.1 386  2  C ff 
                  

0.8 30 
Pen  2502.5 

1.002 
2506  1  B bm  2521.4 

2.293 
2506  1  B bm  2505.2 

6.265 
2506  1  B bm 

N-P  2497.7 2506  1  B bm  1099.5 1071  2  C ff  399.9 386  2  C ff 
                  

0.8 50 
Pen  1539.7 

1.000 
1545  1  B bm  1541.9 

1.407 
1545  1  B bm  1539.6 

3.907 
1545  1  B bm 

N-P  1539.6 1545  1  B bm  1096.1 1071  2  C ff  394.1 386  2  C ff 

                  

0.2 10 
Pen  101.7 

0.999 
102  1  B bm  102.0 

0.999 
102  1  B bm  102.8 

2.544 
102  1  B bm 

N-P  101.8 102  1  B bm  102.1 102  1  B bm  40.4 40  2  C ff 
                  

0.2 30 
Pen  39.1 

0.995 
39  1  B bm  39.1 

0.995 
39  1  B bm  39.2 

1.002 
39  1  B bm 

N-P  39.3 39  1  B bm  39.3 39  1  B bm  39.1 39  1  B bm 
                  

0.2 50 
Pen  23.9 

0.999 
24  1  B bm  24.0 

0.999 
24  1  B bm  24.0 

1.000 
24  1  B bm 

N-P  23.9 24  1  B bm  24.0 24  1  B bm  24.0 24  1  B bm 

Figure 38: X-joint subjected to a 
bending moment about the Y- or Z-axis 

Mz 

My 
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Table 19: Comparison penetrated and non-penetrated results bending moment about the Z-axis (Mz) 
Model  2𝛾 10  2𝛾 30  2𝛾 50 

L 𝛽 2𝛿 M 
 Mz,FEA 

(kNm) 
P/N-P 

Mz,Rd 
(kNm) 

Fail. 
mech. 

 
Mz,FEA 
(kNm) 

P/N-P 
Mz,Rd 
(kNm) 

Fail. 
mech. 

 
Mz,FEA 
(kNm) 

P/N-P 
Mz,Rd 
(kNm) 

Fail. 
mech. 

                   

B
en

d
in

g 
m

o
m

en
t 

ab
o

u
t 

th
e 

Z-
ax

is
 (

M
z)

 0.8 10 
Pen  6533.5 

0.990 
6541  1  B bm  6533.0 

3.145 
6541  1  B bm  6533.0 

6.711 
6541  1  B bm 

N-P  6596.5 6541  1  B bm  2077.1 2098  2  C ff  978.1 975  2  C ff 
                  

0.8 30 
Pen  2501.8 

1.001 
2506  1  B bm  2513.1 

1.209 
2506  1  B bm  2513.1 

2.542 
2506  1  B bm 

N-P  2498.5 2506  1  B bm  2078.5 2098  2  C ff  993.2 975  2  C ff 
                  

0.8 50 
Pen  1537.3 

1.003 
1545  1  B bm  1533.7 

0.994 
1545  1  B bm  1533.7 

1.590 
1545  1  B bm 

N-P  1533.0 1545  1  B bm  1542.5 1545  1  B bm  975.6 975  2  C ff 

                  

0.2 10 
Pen  102.1 

1.004 
102  1  B bm  102.1 

0.991 
102  1  B bm  102.0 

1.889 
102  1  B bm 

N-P  101.7 102  1  B bm  103.1 102  1  B bm  54.0 61  2  C ff 
                  

0.2 30 
Pen  39.2 

1.006 
39  1  B bm  39.1 

1.005 
39  1  B bm  39.0 

1.005 
39  1  B bm 

N-P  38.9 39  1  B bm  38.9 39  1  B bm  38.9 39  1  B bm 
                  

0.2 50 
Pen  24.1 

1.005 
24  1  B bm  24.0 

1.001 
24  1  B bm  24.0 

1.002 
24  1  B bm 

N-P  23.9 24  1  B bm  24.0 24  1  B bm  24.0 24  1  B bm 
 

4.6.3 Conclusion bending moment about the Y- (My) and Z- (Mz) axis 
From the FEA of the geometries subjected to a bending moment about the Y- (My) or Z- (Mz) axis, it is concluded 

that no additional design rules are required for the calculation of the plastic design resistance of penetrated CHS 

X-joints. For the geometries of all simulated parameter configurations, brace bending moment or chord torsional 

moment is governing according to the FEA and the plastic capacity for these failure mechanisms are well 

approximated by the plastic design resistance calculated with the EC design rules (as follows from the RR). 

However, from the comparison between the penetrated and non-penetrated geometries, as given in Table 18 

and Table 19, it is observed that for several penetrated geometries with higher 2𝛾 factors and lower 2𝛿 factors, 

the plastic capacity (according to the FEA) from penetrated configurations ranges from 1.21 up till 12.1 times the 

plastic capacity of their non-penetrated equivalents. This increase in capacity is caused by the shift in governing 

failure mechanism that is observed in FEA; in contrast to non-penetrated geometries that fail in chord face failure, 

their equivalent penetrated geometries fail due to a basic cross-section failure. To ensure that these basic cross-

section failures are also the governing failure mechanisms obtained while calculating the design resistance of a 

joint subjected to bending moment My or Mz, the design rules for joint failures, i.e. chord face failure and punching 

shear failure, should be omitted. This is also clearly visible in the two tables presented in each paragraph of 

Appendix F.5. In the first table, for each parameter configuration, the plastic design resistances according to all 

relevant EC design rules for non-penetrated joints are given and the minimum design resistance is selected as the 

governing (design) failure mechanism for non-penetrated geometries. The (governing) design resistance and 

(design) failure mechanism are then compared to the ones obtained from FEA. In the second table, the same is 

done for the penetrated geometries, and it can be seen that by omitting the EC design rules for joint failures, 

indeed the correct (i.e. in accordance with the observations in the FEA) governing plastic design resistance and 

failure mechanism are found. The tables shown in Appendix F.5 are further elaborated in Paragraph 5.2.1.3. 
 

4.7 SHEAR FY (CHORD BENDING MOMENT) 

4.7.1 Penetrated CHS X-joint FEA results 
Figure 39 shows a representation of the penetrated CHS X-joint subjected to 

a shear force in the Y-direction (Fy), which also induces a small bending 

moment in the brace and the chord. Bending moment on the brace is kept 

as small as possible by reducing the eccentricity of the force to be applied. 

Initially, only the geometrical parameter configurations with 𝛽 factor 0.8 and 

0.2 were simulated, to identify possible critical areas for which joint failures 

are governing. From this FEA, from which the results are shown in Table 20, 

chord face failure was observed as the governing failure mechanism for the 

geometries with  𝛽 0.8 − 2𝛾 30/50 − 2𝛿 10 , and therefore, additional 

simulations with 𝛽  factors 0.6 and 0.4 are performed. The parameter Figure 39: X-joint subjected to shear in 
Y-direction (Fy) 

Fy 
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configurations used for the additional simulations are selected based on the chance that the geometry fails in 

chord face failure and to ensure the boundaries of the critical areas for models subjected to shear Fy are identified. 

For the additional calculations, chord face failure is only governing for the geometry 𝛽 0.6 − 2𝛾 50 − 2𝛿 10. For 

the geometries failing in chord face failure, a plastic capacity is observed that is 4.46 till 7.59 times higher than 

the plastic design resistance obtained with the existing EC design rules, causing the true capacity of the joint to 

be underestimated significantly. It would therefore be interesting to create a new design rule for penetrated CHS 

X-joints subjected to shear force in longitudinal direction of the chord (Fy). For the other simulated parameter 

configurations, bending moment of the brace is governing, for which the plastic design resistance can be 

calculated well with the existing EC design rules, as can be seen from the resistance ratios in Table 20. 

4.7.2 Comparison non-penetrated and penetrated results 
In Table 21, the comparison between penetrated and non-penetrated FEA results, for models subjected to shear 

Fy (chord bending moment) are shown. In the results can be seen that a substantial part of the non-penetrated 

geometries with 2𝛾 factor 30 and  50, fail in chord face failure, while only three of their penetrated equivalents 

fail in chord face failure. Comparisons between the penetrated and the non-penetrated FEA results (P/N-P) show 

that for the light grey shaded configurations, the penetrated X-joints have a plastic capacity of 1.30 till 6.03 times 

the plastic capacity from their non-penetrated equivalents. This difference in plastic capacity is due to the 

continuous brace that penetrates the chord, resulting in an increased resistance to chord face failure and for 

some configurations, causes a shift in the governing failure mechanism; non-penetrated X-joints fail in chord face 

failure, while the associated penetrated X-joints fail due to the bending moment in the brace for the 

configurations shaded in light grey. For the configurations shaded in dark grey, for which both penetrated and 

non-penetrated joints are failing in chord face failure, the penetrated geometries have a plastic capacity between 

3.95 till 5.82 as high as the plastic capacity of their non-penetrated equivalents.  

For the non-shaded configurations the non-penetrated and the penetrated X-joints fail in bending moment of the 

brace and these plastic capacity can be approximated well by the plastic design resistances from the EC design 

rules, as again can be seen from the RR. 

4.7.3 Conclusion shear Fy (chord bending moment) 
For models subjected to shear Fy (chord bending moment), it can be concluded that for penetrated geometries 

failing in the basic cross-section failures, the plastic capacity can be approximated well by the plastic design 

resistances from the EC design rules. However, for penetrated geometries failing in chord face failure, which in 

Table 20 and Table 21 are shaded dark grey, or penetrated models failing in a basic cross-section failure, for which 

the non-penetrated equivalent fails in chord face failure, which in Table 21 are shaded in light grey, the yield load 

is not predicted properly by the current set of EC design rules for non-penetrated and therefore, new design rules 

are required. For penetrated geometries failing in chord face failure, a plastic capacity between 4.46 till 7.59 times 

the design resistance obtained with the existing EC design rules is observed. Comparing the FEA results of 

penetrated joints for which a shift in failure mechanism is observed with the results of the associated non-

penetrated joints, plastic capacity that are 1.30 till 6.30 times higher than their non-penetrated equivalents are 

obtained. 

 
Table 20: FEA results penetrated model – shear Fy (chord bending moment) 

Model  2𝛾 10  2𝛾 30  2𝛾 50 

Load 𝛽 2𝛿 
 Fy,FEA 

(kN) 
Fy,Rd 
(kN) 

RR 
Failure 
mech. 

 Fy,FEA 
(kN) 

Fy,Rd 
(kN) 

RR 
Failure 
mech. 

 Fy,FEA 
(kN) 

Fy,Rd 
(kN) 

RR 
Failure 
mech. 

                  

Sh
ea

r 
F y

 (
ch

o
rd

 b
en

d
in

g 
m

o
m

en
t)

 

0.8 10  12553.5 11332 1.108  1  B bm  11165.0 2503 4.461  3  C ff  6380.1 1163 5.486  3  C ff 
0.8 30  4327.9 4342 0.997  1  B bm  4404.5 4342 1.014  1  B bm  4350.0 4342 1.002  1  B bm 
0.8 50  2597.9 2677 0.970  1  B bm  2613.6 2677 0.976  1  B bm  2595.8 2677 0.970  1  B bm 

                   

0.6 10       6491.8 5637 1.152  1  B bm  5255.9 692 7.595  3  C ff 
0.6 30       2303.0 2160 1.066  1  B bm  2373.8 2160 1.099  1  B bm 

                   

0.4 10       2596.8 2322 1.118  1  B bm  2613.5 2322 1.126  1  B bm 
                   

0.2 10  513.9 559 0.919  1  B bm  583.7 559 1.044  1  B bm  590.6 559 1.057  1  B bm 
0.2 30  183.2 214 0.856  1  B bm  207.4 214 0.969  1  B bm  207.7 214 0.971  1  B bm 
0.2 50  107.1 132 0.811  1  B bm  123.5 132 0.936  1  B bm  126.8 132 0.961  1  B bm 
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Table 21: Comparison penetrated and non-penetrated results shear Fy (chord bending moment) 
Model  2𝛾 10  2𝛾 30  2𝛾 50 

L 𝛽 2𝛿 M  
Fy,FEA 
(kN) 

P/N-P 
Fy,Rd 
(kN) 

Fail. 
mech. 

 
Fy,FEA 
(kN) 

P/N-P 
Fy,Rd 
(kN) 

Fail. 
mech. 

 
Fy,FEA 
(kN) 

P/N-P 
Fy,Rd 
(kN) 

Fail. 
mech. 

                   

Sh
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r 
F y

 (
ch

o
rd

 b
en

d
in

g 
m

o
m

en
t)

 

0.8 10 
Pen  12553.5 

1.000 
11332  1  B bm  11165.0 

3.947 
2503  3  C ff  6380.1 

4.020 
1163  3  C ff 

N-P  12552.4 11332  1  B bm  2829.1 2503  2  C ff  1587.1 1163  2  C ff 
                  

0.8 30 
Pen  4327.9 

0.997 
4342  1  B bm  4404.5 

1.528 
4342  1  B bm  4350.0 

2.726 
4342  1  B bm 

N-P  4342.7 4342  1  B bm  2882.4 2503  2  C ff  1595.7 1163  2  C ff 
                  

0.8 50 
Pen  2597.9 

0.999 
2677  1  B bm  2613.6 

1.056 
2677  1  B bm  2595.8 

1.676 
2677  1  B bm 

N-P  2600.8 2677  1  B bm  2475.7 2503  2  C ff  1548.5 1163  2  C ff 

                  

0.6 10 
Pen    

 
   6491.8 

3.873 
5637  1  B bm  5255.9 

5.815 
692  3  C ff 

N-P      1721.2 1489  2  C ff  903.8 692  2  C ff 
                  

0.6 30 
Pen    

 
   2303.0 

1.301 
2160  1  B bm  2373.8 

2.625 
2160  1  B bm 

N-P      1770.0 1489  2  C ff  904.2 692  2  C ff 

                  

0.4 10 
Pen    

 
   2596.8 

2.451 
2322  1  B bm  2613.5 

6.031 
2322  1  B bm 

N-P      1059.6 748  2  C ff  433.3 348  2  C ff 

                  

0.2 10 
Pen  513.9 

1.006 
559  1  B bm  583.7 

0.989 
559  1  B bm  590.6 

2.282 
559  1  B bm 

N-P  510.9 559  1  B bm  590.3 559  1  B bm  258.8 233  2  C ff 
                  

0.2 30 
Pen  183.2 

0.988 
214  1  B bm  207.4 

1.001 
214  1  B bm  207.7 

0.917 
214  1  B bm 

N-P  185.5 214  1  B bm  207.2 214  1  B bm  226.6 214  1  B bm 
                  

0.2 50 
Pen  107.1 

0.984 
132  1  B bm  123.5 

0.992 
132  1  B bm  126.8 

1.013 
132  1  B bm 

N-P  108.9 132  1  B bm  124.5 132  1  B bm  125.2 132  1  B bm 
 

4.8 SHEAR FZ (CHORD TORSIONAL MOMENT) 

4.8.1 Penetrated CHS X-joint FEA results  
A representation of the penetrated CHS X-joint subjected to a shear force in 

the Z-direction (Fz), which induces a small bending moment on the brace and 

a torsional moment in the chord, is shown in Figure 40, and the FEA results 

are shown in Table 22. Initially, only the geometrical parameters with 𝛽 0.8 

and 0.2 were simulated, for which only the geometries 𝛽 0.8 − 2𝛾 30/50 −

2𝛿 10 and 𝛽 0.8 − 2𝛾 50 − 2𝛿 30  fail in chord face failure. Therefore, additional 

simulations for geometries with 𝛽 factors 0.6 and 0.4 are performed, which 

are selected based on the critical area for the geometries where chord face 

failure may occur. For the additional calculations, chord face failure is only 

governing for the geometrical parameter 𝛽 0.6 − 2𝛾 50 − 2𝛿 10 . For the 

geometries failing in chord face failure, the FEA predicts a plastic capacity of 

4.68 till 11.9 times higher than the plastic design resistance predicted by the 

EC for non-penetrated geometries. For the other simulated geometrical 

parameters, bending moment of the brace is governing, for which the plastic 

capacity is well predicted with the existing EC design rules. 
 

Table 22: FEA results penetrated model – shear Fz (chord torsional moment) 
Model  2𝛾 10  2𝛾 30  2𝛾 50 

Load 𝛽 2𝛿 
 Fz,FEA 

(kN) 
Fz,Rd 
(kN) 

RR 
Failure 
mech. 

 Fz,FEA 
(kN) 

Fz,Rd 
(kN) 

RR 
Failure 
mech. 

 Fz,FEA 
(kN) 

Fz,Rd 
(kN) 

RR 
Failure 
mech. 

                  

Sh
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r 
F z

 (
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0.8 10  11467.4 11332 1.012  1  B bm  5979.6 1278 4.679  3  C ff  3575.7 460 7.773  3  C ff 
0.8 30  4165.5 4342 0.959  1  B bm  4244.3 4342 0.977  1  B bm  3551.3 460 7.720  3  C ff 
0.8 50  2479.8 2677 0.926  1  B bm  2552.9 2677 0.954  1  B bm  2595.7 2677 0.970  1  B bm 

                    

0.6 10        5644.4 5637 1.001  1  B bm  2986.1 250 11.944  3  C ff 
0.6 30        2155.5 2160 0.998  1  B bm  2156.2 2160 0.998  1  B bm 

                    

0.4 10        2558.2 2322 1.102  1  B bm  2341.8 2322 1.009  1  B bm 
                    

0.2 10  519.3 559 0.929  1  B bm  580.5 559 1.038  1  B bm  569.3 559 1.018  1  B bm 
0.2 30  189.7 214 0.886  1  B bm  216.7 214 1.013  1  B bm  214.9 214 1.004  1  B bm 
0.2 50  112.8 132 0.855  1  B bm  133.0 132 1.008  1  B bm  131.6 132 0.997  1  B bm 

Figure 40: X-joint subjected to shear in 
Z-direction (Fz) 

Fz 
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Table 23: Comparison penetrated and non-penetrated results shear Fz (chord torsional moment) 
Model  2𝛾 10  2𝛾 30  2𝛾 50 

L 𝛽 2𝛿 M  
Fz,FEA 
(kN) 

P/N-P 
Fz,Rd 
(kN) 

Fail. 
mech. 

 Fz,FEA 
(kN) 

P/N-P 
Fz,Rd 
(kN) 

Fail. 
mech. 

 Fz,FEA 
(kN) 

P/N-P 
Fz,Rd 
(kN) 

Fail. 
mech. 

                   

Sh
ea

r 
F z

 (
ch

o
rd

 t
o
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io

n
al
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o

m
en

t)
 

0.8 10 
Pen  11467.4 

1.011 
11332  1  B bm  5979.6 

2.945 
1278  3  C ff  3575.7 

4.136 
460  3  C ff 

N-P  11346.4 11332  1  B bm  2030.3 1278  2  C ff  864.6 460  2  C ff 
                  

0.8 30 
Pen  4165.5 

1.016 
4342  1  B bm  4244.3 

1.783 
4342  1  B bm  3551.3 

3.370 
460  3  C ff 

N-P  4098.0 4342  1  B bm  2380.0 1278  2  C ff  1053.7 460  2  C ff 
                  

0.8 50 
Pen  2479.8 

1.007 
2677  1  B bm  2552.9 

1.091 
2677  1  B bm  2595.7 

2.395 
2677  1  B bm 

N-P  2462.3 2677  1  B bm  2339.2 1278  2  C ff  1083.9 460  2  C ff 

                  

0.6 10 
Pen   

 
   5644.4 

5.906 
5637  1  B bm  2986.1 

7.815 
250  3  C ff 

N-P      955.6 694  2  C ff  382.1 250  2  C ff 
                  

0.6 30 
Pen   

 
   2155.5 

2.062 
2160  1  B bm  2156.2 

4.879 
2160  1  B bm 

N-P      1045.5 694  2  C ff  441.9 250  2  C ff 

                  

0.4 10 
Pen   

 
   2558.2 

3.891 
2322  1  B bm  2341.8 

9.806 
2322  1  B bm 

N-P      657.5 398  2  C ff  238.8 143  2  C ff 

                  

0.2 10 
Pen  519.3 

0.996 
559  1  B bm  580.5 

1.330 
559  1  B bm  569.3 

3.082 
559  1  B bm 

N-P  521.4 559  1  B bm  436.7 199  2  C ff  184.7 72  2  C ff 
                  

0.2 30 
Pen  189.7 

1.004 
214  1  B bm  216.7 

0.994 
214  1  B bm  214.9 

1.162 
214  1  B bm 

N-P  188.8 214  1  B bm  217.9 214  1  B bm  185.0 72  2  C ff 
                  

0.2 50 
Pen  112.8 

0.997 
132  1  B bm  133.0 

1.000 
132  1  B bm  131.6 

1.014 
132  1  B bm 

N-P  113.1 132  1  B bm  133.0 132  1  B bm  129.8 132  1  B bm 

 

4.8.2 Comparison non-penetrated and penetrated results 
Table 23 shows the comparison between non-penetrated and penetrated FEA results, for models subjected to 

shear in the Z-direction (Fz). The table shows that a substantial part of the non-penetrated models with 2𝛾 factor 

30 and 50, fail in chord face failure, while only four of their penetrated equivalents fail in chord face failure. A 

comparison between the penetrated and the non-penetrated results (P/N-P) shows that for the configurations 

shaded in light grey, the penetrated configurations have a plastic capacity between 1.09 till 9.81 higher than their 

non-penetrated equivalents, and for the configurations shaded in dark grey this is between 2.95 till 7.82. This 

increase in capacity is caused, as elaborated in the previous paragraphs on Shear in y-direction, due to penetration 

of the chord by a continuous brace, resulting in an increased strength of the joint. This causes for the penetrated 

X-joints with the parameters configurations shaded in light grey, a shift in governing failure mechanism compared 

to their non-penetrated equivalents; while the non-penetrated geometries fail in chord face failure, the 

penetrated geometries fail in bending moment of the brace. For the non-shaded geometries, the penetrated, as 

well as the non-penetrated X-joints, fail in bending moment of the brace. 

4.8.3 Conclusion shear Fz (chord torsional moment) 
For penetrated CHS X-joints subjected to shear Fz (chord torsional moment), the same can be concluded as for 

the load case shear Fy: it can be concluded that for geometries failing in the basic cross-section failures, the plastic 

capacity can be predicted well. However, for models failing in chord face failure, which in Table 22 are shaded in 

dark grey, or penetrated models failing in a basic cross-section failure, for which the non-penetrated equivalent 

fails in chord face failure, which in Table 23 are shaded in light grey, the plastic capacity is not predicted properly 

by the current set of EC design rules for non-penetrated joints and therefore, new design rules are required. For 

penetrated models failing in chord face failure, a plastic capacity between 4.68 till 11.9 higher compared to the 

existing EC design rules for non-penetrated joints can be obtained.  
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4.9 CONCLUSION PARAMETER STUDY 
In the presented parameter study, the load case and geometrical parameters 𝛽 , 2𝛾, & 2𝛿  have been varied. 

Initially only models with parameter configurations containing the limit values of these parameters have been 

simulated & analyzed and based on these results, additional parameter configurations are simulated, in order to 

identify the critical areas for which new design rules for penetrated X-joints are required. The parameter study is 

performed for the load cases “Double-sided compression and tension (Fx)”, “Single-sided compression and 

tension (Fx)”, “Bending moment about the Y-axis (My)”, “Bending moment about the Z-axis (Mz)”, “Shear Fy (chord 

bending moment)”, and “Shear Fz (chord torsional moment)”. The parameter study is performed for penetrated 

CHS X-joints, as well as for non-penetrated CHS X-joints, for which the FEA plastic capacity and calculated EC 

design resistance are compared to each other and the governing failure mechanisms obtained via both methods, 

as explained in Paragraph 4.2, are assigned and compared. The results are processed based on the procedure as 

explained in Paragraph 4.3. 

From the parameter study can be concluded that for penetrated geometries subjected to double-sided 

compression and tension (Fx), and bending moment about the Y- (My) and Z- (Mz) axis, the plastic capacity is 

approximated well by the basic cross-section design rules for CHS from the EC, and therefore, no new design rules 

are required. For the penetrated geometries subjected to double-sided compression and tension (Fx), a plastic 

capacity of 1.25 till 35.8 times the plastic capacity of non-penetrated geometries is observed in FEA. It appears 

that, for the geometries under these loading conditions, the penetration of the chord by the increases the joint 

capacity to such an extent, that basic cross-section failures are observed as the governing failure mechanisms. 

The same holds for penetrated CHS X-joints subjected to bending moment about the Y- (My) and Z- (Mz) axis, for 

which a plastic capacity of 1.21 till 12.1 times the plastic capacity of their non-penetrated equivalents can be 

observed. For all  penetrated geometries, subjected to one of the aforementioned load cases, joint failures are 

not governing and the design rules for non-penetrated joint failures, which are chord face failure and punching 

shear failure, should be omitted in the calculation of the joint capacity to predict the right failure mechanism and 

its corresponding plastic design resistance.  

For penetrated geometries subjected to single-sided compression and tension (Fx), shear Fy (chord bending 

moment), and shear Fz (chord torsional moment), several geometrical parameter configurations fail in chord face 

failure, and for these configurations, new design rules for penetrated CHS X-joints are recommended. Comparing 

the plastic capacity from penetrated geometries failing in chord face failure, with the calculated design resistances 

obtained with the existing EC design rules for non-penetrated joints, i.e. evaluating the RR, an increase in plastic 

capacity can be observed for: 

- single-sided compression and tension (Fx),  of 1.69 till 4.97 times the EC plastic design resistance; 

- shear Fy (chord bending moment),   of 4.46 till 7.59 times the EC plastic design resistance; 

- shear Fz (chord torsional moment),   of 4.68 till 11.9 times the EC plastic design resistance. 

Moreover, for the penetrated geometries that fail in basic cross-section failures under compression and tension 

(Fx), shear Fy and shear Fz, an increase of the plastic capacity is observed in FEA by a factor 1.04 till 3.15, 1.30 till 

6.30, and 1.09 till 9.81 with respect to their non-penetrated equivalents that fail in chord face failure, respectively. 

Due to these significant increases in plastic capacity, new design rules for penetrated joints that fit the plastic 

capacity from FEA are recommended for these three load cases (Fx, Fy and Fz). 
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 DESIGN RULES 

5.1 INTRODUCTION 
From the parameter study it is concluded that for penetrated CHS X-joints subjected to double-sided compression 

and tension (Fx), and bending moment about the Y- (My) and Z- (Mz) axis, the plastic capacity can be approximated 

well with the basic cross-section design rules from the EC, and therefore, no new design rules are required. 

However, for geometries subjected to single-sided compression and tension (Fx), shear Fy (chord bending 

moment), and shear Fz (chord torsional moment), several geometrical parameter configurations fail in chord face 

failure for which the current design rules underestimate the yield loads significantly. For these configurations, 

new design rules for penetrated CHS X-joints are required. In this section, the created design rules and the steps 

to arrive at these design rules are elaborated. The failure mechanism that is governing according to these newly 

defined set of design rules is then verified with the governing failure mechanism as observed in FEA. In addition 

to the standard load cases, the behavior of CHS X-joints is analyzed for a combined load case and a check is 

performed for the combination of design rules, for which the basis is provided in the EC and in Equation 2.11. 

Finally, a calculation sheet for penetrated X-joints is created, in which a penetrated CHS X-joint subjected to a 

certain load is checked for brace and chord gross cross-section failures and the joint failures. A case study has 

been done to the mooring bollard from Witteveen+Bos. 

5.2 SINGLE-SIDED COMPRESSION AND TENSION (FX) 
From the parameter study for models subjected to single-sided compression and tension (Fx) provided in 

Paragraph 4.5, it is concluded that for the parameter configurations from Table 16 and Table 15 for which the 

results are outlined and shaded in dark grey, new design rules are required. For these geometries failing in chord 

face failure, the plastic capacity obtained by FEA are 1.04 till 3.15 times higher than the plastic design resistances 

calculated by the design rules from the EC for non-penetrated joints. 

Initially, the results for penetrated configurations were reviewed and there was tried to create a design rule for 

penetrated CHS X-joints subjected to single-sided compression and tension (Fx). However, a first attempt to create 

a suitable design rule was unsuccessful since a starting point for creating a design rule was missing. Therefore, 

first the existing chord face failure design rules for non-penetrated CHS X-joints were reviewed and compared 

with the corresponding FEA results and eventually, an improved design rule for non-penetrated CHS X-joints 

subjected to single-sided compression and tension (Fx) is created. Improving the existing design rule for non-

penetrated models failing in chord face failure was less complex because more results were available on which 

the design rule could be fitted. With this study to the EC design rules for non-penetrated joints, a solid foundation 

was laid for the development of the design rules for penetrated CHS X-joints. 

Since geometries subjected to tension and compression give almost the same results and plastic capacity, there 

is chosen to work further with geometries subjected to single-sided tension, for which the design rules are 

created. The plastic capacity from the models subjected to compression are slightly lower, which is due to local 

buckling of the brace under compression.  

5.2.1 Non-penetrated X-joints 

5.2.1.1 Influence geometrical parameters on plastic capacity 

For the non-penetrated geometries subjected to single-sided tension, first the results from the FEA are compared 

to each other and the influences of the geometrical parameters are identified. Table 24 shows the results for non-

penetrated geometries subjected to single-sided tension and failing in chord face failure, where under “Model” 

the geometrical parameters 𝛽, 2𝛾, and 2𝛿 are given, and for every geometry under “Results” the plastic capacity 

(yield load) from FEA, and the influences of the geometrical parameters on the results (infl. 𝛽, infl. 2𝛾, and infl. 

2𝛿) are given. The influence ratios are calculated by dividing the plastic capacity from FEA of the higher order 

geometry through the plastic capacity of the lower order geometry, as for example shown in the formulas below: 

 𝑖𝑛𝑓𝑙 𝛽  =
𝜷 𝟎.𝟖 − 2𝛾 30 − 2𝛿 10

𝜷 𝟎.𝟔 − 2𝛾 30 − 2𝛿 10
,

𝜷 𝟎.𝟖 − 2𝛾 30 − 2𝛿 30

𝜷 𝟎.𝟔 − 2𝛾 30 − 2𝛿 30
, 𝑒𝑡𝑐.   (5.21) 

 𝑖𝑛𝑓𝑙 2𝛾 =
𝛽 0.8 − 𝟐𝜸 𝟑𝟎 − 2𝛿 10

𝛽 0.8 − 𝟐𝜸 𝟓𝟎 − 2𝛿 10
,

𝛽 0.8 − 𝟐𝜸 𝟑𝟎 − 2𝛿 30

𝛽 0.8 − 𝟐𝜸 𝟓𝟎 − 2𝛿 30
, 𝑒𝑡𝑐.   (5.22) 

 𝑖𝑛𝑓𝑙 2𝛿 =
𝛽 0.8 − 2𝛾 30 − 𝟐𝜹 𝟏𝟎

𝛽 0.8 − 2𝛾 30 − 𝟐𝜹 𝟑𝟎
,

𝛽 0.8 − 2𝛾 30 − 𝟐𝜹 𝟑𝟎

𝛽 0.8 − 2𝛾 30 − 𝟐𝜹 𝟓𝟎
, 𝑒𝑡𝑐.   (5.23) 
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The identify the influence of the factor 𝛽, the factor 𝛽 is varied and the 2𝛾 and 2𝛿 factors are kept equal. The same 

holds for the calculation of the influence of 2𝛾 and the influence of  2𝛿, where the factor 2𝛾 is varied and the 𝛽 

and 2𝛿 factors are kept equal and the factor 2𝛿 is varied and the 𝛽 and 2𝛾 factors are kept equal, respectively. 

In the right part of Table 24, the joint capacity as calculated with two existing EC design rules and two adjusted 

design rules are provided, where for every design rule, the calculated yield load (𝑁1,𝑝𝑙,𝑅𝑑) and resistance ratio 

(𝑅𝑅) are shown. For the RR, the plastic capacity, as obtained by FEA, is divided by the plastic design resistance 

obtained with the evaluated design rule, which means that for RR’s above 1.0, the design rule is on the safe side 

since the true capacity of the joint, as obtained by the FEA, is higher than the capacity calculated using the design 

rule. If the RR is below 1.0, a plastic design resistance is obtained with the design rule, that is higher than the 

plastic capacity found in FEA and the design rule is unsafe. In Table 24, conservative results with a RR above 1.3 

are marked with a grey line about their results and geometries with a RR less than 0.95 that are unsafe are marked 

with a black line about their results. 

5.2.1.2 Design rules 

First the plastic design resistances according to the existing EC design rules for chord face failure of non-

penetrated X- and T-joints are calculated for the parameter configurations. The design rules for X-joints and T-

joints are given in Equation 5.24 and Equation 5.25, respectively: 

 

  𝑁1,𝑅𝑑,𝑋 =
𝛾0,2∗𝑘𝑝∗𝑓𝑦0∗𝑡0

2

𝑠𝑖𝑛𝜃1
∗ (2,8 + 14,2 ∗ 𝛽2)/𝛾𝑀5.   (5.25) 

For 𝑛𝑝 > 0 (compression): 𝑘𝑝 = 1 − 0,3 ∗ 𝑛𝑝 ∗ (1 + 𝑛𝑝),  but 𝑘𝑝 ≤ 1,0  

For 𝑛𝑝 ≤ 0 (tension):  𝑘𝑝 = 1,0  

The reduction factor 𝑘𝑝 takes into account the stress in the chord due to compression or bending moment in the 

chord member. In compression, the chord member is more sensitive to imperfections, reducing the critcal load, 

which will be captured by the reduction factor. Imperfections are not included within the scope of this research, 

and therefore, the 𝑘𝑝 factor is assumed as a factor of 1.0, which is equal to the 𝑘𝑝 factor for a chord member 

subjected to tension. The results from these design rules can be found under the columns “Eurocode X-joint” and 

“Eurocode T-joint”, in which it can be seen that the EC design rule for X-joints has some conservative (grey 

marked) approximations of the plastic capacity of the joint configurations with 𝛽 factors 0.6 and 0.8, which is also 

the case for the EC design rule for T-joints for a 𝛽 factor 0.8. In addition, for this latter design rule, some unsafe 

design resistances are obtained for joint configurations with 𝛽 factors 0.6 and 0.4. When evaluating the resistance 

ratios, it can be seen at the bottom of the table, that the EC design rule for X-joints results in an average RR of 

1.46 and the EC design rule for T-joints in an average RR of 1.12. However, for the EC design rule for T-joints, the 

capacity of some models is overpredicted (and thus unsafe), which is undesirable. 

Therefore, a proposal is made for an adaptation to both design rules, in order to improve the EC design rule for 

X-joints and adapt the EC design rule for T-joints in such a way that the lowest RR obtained equals approximately 

0.95. The formula for the improved design rule, “X-joint – Improved”, is given in Equation 5.26. To arrive at this 

formula for the design rule, the influences of the parameters are reviewed, from which it was concluded that only 

the 𝛽  and the 2𝛾  parameters have a significant influence on the plastic capacity. Therefore, based on the 

influences of the parameters and by curve fitting to the FEA results, some factors are adapted in the formula to 

better describe the influence of the 𝛽 parameter, and a factor 1.15 is added to fit the plastic design resistance 

obtained with the design rule to the plastic capacity of the FEA. The final adaptations to the design rule are shown 

in bold in Equation 5.26. The improved design rule for T-joints is shown in Equation 5.27. The design rule is 

adjusted in such a way that the overpredicted capacity deviate by a maximum of 5% from the (true) plastic 

capacity obtained by FEA, thus having a minimal RR of 0.95. These results are obtained by changing some factors 

in the design rule, which are shown in bold in Equation 5.27. 

X-joint improved for non-penetrated joints 

 𝑁1,𝑅𝑑 = 𝟏. 𝟏𝟓 ∗
𝑘𝑝∗𝑓𝑦0∗𝑡0

2

𝑠𝑖𝑛𝜃1
∗

𝟒.𝟒

(𝟏−𝛃)
/𝛾𝑀5,  (5.26) 

T-joint improved for non-penetrated joints 

 𝑁1,𝑅𝑑 =
𝛾0,2∗𝑘𝑝∗𝑓𝑦0∗𝑡0

2

𝑠𝑖𝑛𝜃1
∗ (𝟐, 𝟏 + 𝟏𝟓, 𝟓 ∗ 𝛽2)/𝛾𝑀5.  (5.27) 

  𝑁1,𝑅𝑑,𝑇 =
𝑘𝑝∗𝑓𝑦0∗𝑡0

2

𝑠𝑖𝑛𝜃1
∗

5,2

(1−0,81β)
/𝛾𝑀5,   (5.24) 
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In the results in Table 24, it can be seen that for the “X-joint improved” only one calculated capacity is 

conservative, and that the average, lowest and highest RR are 1.12, 0.97, and 1.32, respectively. Figure 41 shows 

a box plot of the obtained RR’s of the different design rules, where for every design rule the highest and lowest 

RR are shown by the horizontal top and bottom line, the middle 50% of the results fall within the drawn box, the 

median value is the horizontal line in between, and the average value of the design rule is marked with a cross. 

The boxplot for the EC X-joint, is shown in blue, and for the EC T-joint is shown in grey. The results for the RR by 

the design rule “X-joint improved” are shown in orange, from which it can be seen that the approximation of the 

FEA plastic capacity by the design rule is significantly improved, as the middle 50% of the results lays between a 

RR of 1 till 1.2 and the range of RR’s is reduced. The results for the “T-joint improved” are provided in yellow, in 

which multiple slightly conservative results may be identified, but the overprediction of the plastic capacity by the 

design rule is reduced significantly. For the improved T-joint design rule the average, lowest and highest RR are 

1.19, 0.94, and 1.55, respectively. 

 

Based on the boxplots, the proposed design rule “X-

joint improved” given in Equation 5.26, which results 

in an average deviation from the FEA of 12.3%, a 

minimum RR of 0.97 (unsafe side) and a maximum RR 

of 1.32 (conservative), is found to be the most 

suitable formula to predict the plastic design 

resistance of non-penetrated geometries subjected 

to single-sided tension. 

 

 

 

 

 
Table 24: Results design rules for non-penetrated joints – Single-sided tension (Fx) 

Model  FEA results  EC X-joint  X-joint – impr.  EC T-joint  T-joint – impr. 
𝛽 2𝛾 2𝛿  N1,FEA Infl 𝛽 Infl 2𝛾 Infl 2𝛿  N1,Rd RR  N1,Rd RR  N1,Rd RR  N1,Rd RR 

                    

0.8 30 10  5774.8 1.818 2.421 0.961  3383 1.707  5795 0.997  4680 1.234  4732 1.220 
0.8 30 30  6010.4 1.917 2.298 1.066  3383 1.776  5795 1.037  4680 1.284  4732 1.270 
0.8 30 50  5638.8 1.945 2.183   3383 1.667  5795 0.973  4680 1.205  4732 1.192 

                     

0.8 50 10  2385.1 1.811  0.912  1218 1.958  2086 1.143  1866 1.278  1887 1.264 

0.8 50 30  2615 1.894  1.013  1218 2.147  2086 1.254  1866 1.401  1887 1.386 
0.8 50 50  2582.6 1.922    1218 2.120  2086 1.238  1866 1.384  1887 1.369 

                     
0.6 30 10  3176.6 1.432 2.412 1.013  2317 1.371  2897 1.096  3115 1.020  3023 1.051 
0.6 30 30  3134.9 1.468 2.271 1.081  2317 1.353  2897 1.082  3115 1.007  3023 1.037 

0.6 30 50  2899.3 1.547 2.158   2317 1.251  2897 1.001  3115 0.931  3023 0.959 
                     

0.6 50 10  1317.2 1.673  0.954  834 1.579  1043 1.263  1242 1.061  1205 1.093 

0.6 50 30  1380.6 1.976  1.027  834 1.655  1043 1.324  1242 1.112  1205 1.145 

0.6 50 50  1343.7 1.994    834 1.611  1043 1.288  1242 1.082  1205 1.115 

                     
0.4 30 10  2218.2 1.460 2.817 1.038  1762 1.259  1932 1.148  1997 1.111  1803 1.230 
0.4 30 30  2136.2  3.057 1.140  1762 1.213  1932 1.106  1997 1.070  1803 1.185 
0.4 30 50  1874.2  2.781   1762 1.064  1932 0.970  1997 0.939  1803 1.040 

                     

0.4 50 10  787.4 1.193  1.127  634 1.241  695 1.132  796 0.989  719 1.095 

0.4 50 30  698.7 1.089  1.037  634 1.102  695 1.005  796 0.878  719 0.972 

0.4 50 50  674     634 1.063  695 0.969  796 0.847  719 0.938 

                     

0.2 30 10  1519.4  2.301   1421 1.069  1449 1.049  1326 1.146  1071 1.419 
                     

0.2 50 10  660.2   1.029  512 1.290  522 1.266  529 1.249  427 1.546 
0.2 50 30  641.8     512 1.254  522 1.231  529 1.214  427 1.503 

                    
        Mean 1.464 Mean 1.123 Mean 1.116 Mean 1.192 
        Lowest 1.063 Lowest 0.969 Lowest 0.847 Lowest 0.938 
        Highest 2.147 Highest 1.324 Highest 1.401 Highest 1.546 

Figure 41: RR of the design rules for non-penetrated joints – 
Single-sided tension (Fx) 
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5.2.1.3 Verification of the governing failure mechanisms 

For each parameter configuration, the plastic design resistances according to all relevant design rule for non-

penetrated joints are calculated. The minimum of these resistances then indicates which failure mechanism is 

governing according to the used set of design rules. This governing failure mechanism is compared to the actual 

governing failure mechanism that is observed in the FEA. This is done for the set of design rules containing existing 

EC design rules, as well as for the set of design rules in which the, in this research created design rules, are 

included. In this way the influence of the proposed new design rules on the prediction of the governing failure 

mechanism can be evaluated while verifying it with the results from the FEA as well. A summary of this procedure, 

containing merely the governing plastic design resistance and failure mechanisms according to FEA and design 

rules, is presented in the tables shown in each subparagraph on the verification of the governing failure 

mechanism for the several load cases. But as an example, in Table 25, the design resistances of all relevant failure 

mechanisms and the selection of the governing failure mechanism is shown for non-penetrated geometries with 

𝛽 factor 0.2. The relevant failure mechanisms are in this case from failure group 1, EC basic cross-section failures, 

Brace cross-section failure (1 B cs), and Chord bending moment (1 C bm), and from failure group 2, EC joint 

failures, chord face failure (2 C ff) and chord punching shear failure (2 C ps). For chord face failure, the plastic 

design resistance according to the design rules for both X- and for T-joints are given, since the joint configurations 

considered in this research could in case of single-sided loading be interpret as either an X-joint loaded on only 

one side of the brace or a T-joint. Under “comparison EC-FEA”, the by the set of design rules governing plastic 

design resistance and failure mechanism are given and next to it, the plastic capacity and corresponding failure 

mechanism observed in the FEA are shown. This part of Table 25 is also visible in the last block of summarized 

representations of this procedure in Table 26 and Table 27. The extensive versions (of which an example is given 

in Table 25) of the summarized representations presented in all upcoming subparagraphs, can be found in 

Appendix F. 

In Table 26 and Table 27 the results for the parameter configurations for non-penetrated geometries subjected 

to single-sided tension are shown, where in Table 26, the comparison between FEA and the existing set of design 

rules is given, and Table 27 provides the comparison between FEA and the set of adjusted design rules, as 

proposed in this research. It can be seen that for these geometrical parameter configurations, the design rules 

from the EC (Table 26) predict the correct failure mechanism, and that the plastic design resistance for brace 

cross-section failure corresponds to the plastic capacity obtained in the FEA. However, for geometries failing in 

chord face failure, differences are observed between the FEA plastic capacity and the EC plastic design resistance. 

For the adjusted set of design rules for non-penetrated CHS X-joints subjected to single-sided loading, for which 

the comparison of the failure modes is given in Table 27, the basic cross-section design are retained, but for the 

joint failures, the proposed “X-joint improved” design rule is applied. It can be seen that again the correct failure 

mechanisms are predicted by the set of design rules, but for chord face failure, the plastic design resistances 

calculated with the adjusted set of design rules, approximates the FEA plastic capacity better. 

5.2.1.4 Conclusion design rule non-penetrated geometries 

For the non-penetrated CHS X-joints subjected to single-sided tension (Fx) can be concluded that the EC design 

rule for chord face failure of X-joints, with an average RR of 1.46, slightly underpredicts the plastic capacity and is 

therefore conservative. In addition, it can be concluded that the design rule for T-joints better fits the FEA results, 

with an average RR of 1.12, but there are some overpredicted yield loads, which is unsafe and undesirable. 

Therefore, this design rule in such a way, that in unsafe cases, the RR deviates from 1 by a maximum of about 5%, 

resulting in the design rule “T-joint adjusted” with an average RR of 1.19. The final design rule, which best fits the 

FEA plastic capacity, is the “X-joint improved” design rule, which is given in Equation 5.26. This design rule has an 

average RR of 1.12 and a lowest and highest RR of 0.97 and 1.32, respectively. 

The improved design rule is based on the EC design rules for joints subjected to single-sided tension (Fx), for which 

the current design rules well predicted the failure mechanisms, but for chord face failure the approximated design 

resistances are conservative. With the new improved design rules, less conservative plastic resistances are 

predicted, while still the correct failure mechanism is predicted.  

The design rules for the load-case single-sided tension, are also applicable for the load-case single-sided 

compression. 
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Table 25: Example EC design rules failure mechanism calculation 
Model  Failure mechanisms  Comparison EC - FEA 

  1 B cs  1 C bm  2 C ff (X- and T-joint)  2 C ps  Governing Eurocode FEA 
𝛽 2𝛾 2𝛿  N1,Rd

*  N1,Rd
*  NX,1,Rd

*  NT,1,Rd
*  N1,Rd

*  N1,Rd Failure 
mode 

N1,FEA Failure 
mode (-) (-) (-)  (kN)  (kN)  (kN)  (kN)  (kN)  (kN) (kN) 

                   

0.2 10 10  2331  21632  12791  9579  7478  2331.3   1  B cs 2339.1   1  B cs 
0.2 10 30  835  21632  12791  9579  7478  834.6   1  B cs 837.6   1  B cs 
0.2 10 50  508  21632  12791  9579  7478  507.7   1  B cs 512.4   1  B cs 

                  

0.2 30 10  2331  8288  1421  1326  2493  1325.8   2  C ff 1519.4   2  C ff 
0.2 30 30  835  8288  1421  1326  2493  834.6   1  B cs 846.2   1  B cs 
0.2 30 50  508  8288  1421  1326  2493  507.7   1  B cs 512.6   1  B cs 

                  

0.2 50 10  2331  5110  512  529  1496  511.6   2  C ff 660.2   2  C ff 
0.2 50 30  835  5110  512  529  1496  511.6   2  C ff 641.8   2  C ff 
0.2 50 50  508  5110  512  529  1496  507.7   1  B cs 510.8   1  B cs 

 
Table 26: Failure mechanism calculation results for existing EC design rules for non-penetrated joints 
Model  𝜷 0.8  𝜷 0.6  𝜷 0.4  𝜷 0.2 

   EC FEA  EC FEA  EC FEA  EC FEA 

2𝛾 2𝛿  N1,Rd Failure 
mode 

N1,FEA Failure 
mode 

 N1,Rd Failure 
mode 

N1,FEA Failure 
mode 

 N1,Rd Failure 
mode 

N1,FEA Failure 
mode 

 N1,Rd Failure 
mode 

N1,FEA Failure 
mode (-) (-)  (kN) (kN)  (kN) (kN)  (kN) (kN)  (kN) (kN) 

                      

10 10  19724  1  C bm 23943  1  C bm  20321  1  C bm 21054  1  C bm  9325  1  B cs 9353  1  B cs  2331  1  B cs 2339  1  B cs 
10 30  13354  1  B cs 13379  1  B cs  7512  1  B cs 7533  1  B cs  3339  1  B cs 3347  1  B cs  835  1  B cs 838  1  B cs 
10 50  8123  1  B cs 8153  1  B cs  4569  1  B cs 4587  1  B cs  2031  1  B cs 2038  1  B cs  508  1  B cs 512  1  B cs 

                      

30 10  3383  2  C ff 5775  3  C ff  2317  2  C ff 3177  3  C ff  1762  2  C ff 2218  3  C ff  1326  2  C ff 1519  3  C ff 
30 30  3383  2  C ff 6010  3  C ff  2317  2  C ff 3135  3  C ff  1762  2  C ff 2136  3  C ff  835  1  B cs 846  1  B cs 
30 50  3383  2  C ff 5639  3  C ff  2317  2  C ff 2899  3  C ff  1762  2  C ff 1874  3  C ff  508  1  B cs 513  1  B cs 

                      

50 10  1218  2  C ff 2385  3  C ff  834  2  C ff 1317  3  C ff  634  2  C ff 787  3  C ff  512  2  C ff 660  3  C ff 
50 30  1218  2  C ff 2615  3  C ff  834  2  C ff 1381  3  C ff  634  2  C ff 699  3  C ff  512  2  C ff 642  3  C ff 
50 50  1218  2  C ff 2583  3  C ff  834  2  C ff 1344  3  C ff  634  2  C ff 674  3  C ff  508  1  B cs 511  1  B cs 

 
Table 27: Failure mechanism calculation results for the improved design rules for non-penetrated joints 
Model  𝜷 0.8  𝜷 0.6  𝜷 0.4  𝜷 0.2 

   EC / Pen FEA  EC / Pen FEA  EC / Pen FEA  EC / Pen FEA 

2𝛾 2𝛿  N1,Rd Failure 
mode 

N1,FEA Failure 
mode 

 N1,Rd Failure 
mode 

N1,FEA Failure 
mode 

 N1,Rd Failure 
mode 

N1,FEA Failure 
mode 

 N1,Rd Failure 
mode 

N1,FEA Failure 
mode (-) (-)  (kN) (kN)  (kN) (kN)  (kN) (kN)  (kN) (kN) 

                      

10 10  19724  1  C bm 23943  1  C bm  20321  1  C bm 21054  1  C bm  9325  1  B cs 9353  1  B cs  2331  1  B cs 2339  1  B cs 
10 30  13354  1  B cs 13379  1  B cs  7512  1  B cs 7533  1  B cs  3339  1  B cs 3347  1  B cs  835  1  B cs 838  1  B cs 
10 50  8123  1  B cs 8153  1  B cs  4569  1  B cs 4587  1  B cs  2031  1  B cs 2038  1  B cs  508  1  B cs 512  1  B cs 

                      

30 10  5795  3  C ff 5775  3  C ff  2897  3  C ff 3177  3  C ff  1932  3  C ff 2218  3  C ff  1449  3  C ff 1519  3  C ff 
30 30  5795  3  C ff 6010  3  C ff  2897  3  C ff 3135  3  C ff  1932  3  C ff 2136  3  C ff  835  1  B cs 846  1  B cs 
30 50  5795  3  C ff 5639  3  C ff  2897  3  C ff 2899  3  C ff  1932  3  C ff 1874  3  C ff  508  1  B cs 513  1  B cs 

                      

50 10  2086  3  C ff 2385  3  C ff  1043  3  C ff 1317  3  C ff  695  3  C ff 787  3  C ff  522  3  C ff 660  3  C ff 
50 30  2086  3  C ff 2615  3  C ff  1043  3  C ff 1381  3  C ff  695  3  C ff 699  3  C ff  522  3  C ff 642  3  C ff 
50 50  2086  3  C ff 2583  3  C ff  1043  3  C ff 1344  3  C ff  695  3  C ff 674  3  C ff  508  1  B cs 511  1  B cs 

 

5.2.2 Penetrated CHS X-joints 
With the knowledge gained from comparing the non-penetrated results, the existing EC design rules and the 

improved design rules, the penetrated joints are examined. In this paragraph, the results from the parameter 

study are provided and compared, various design rules and steps taken in order to arrive at these design rules are 

given, and the governing failure mechanism obtained with the improved set of design rules is verified. 

5.2.2.1 Design rules 

In Table 28, the plastic capacity according to FEA and the influences of the geometrical parameters on these 

results are given for penetrated joint configurations subjected to single-sided tension. Next to that, the plastic 

design resistances as calculated with five different design rules are shown. The first two design rules are the 

existing EC design rules for non-penetrated joints and the other three design rules are adjustments on the existing 

design rules proposed in this graduation research. The formulas for the first design rule “Eurocode X-joint” and 

the second design rule “Eurocode T-joint”, are provided in Equation 5.24 and Equation 5.25, respectively. In the 

associated columns in Table 28, it can be seen that for both design rules, a significantly lower plastic design 

resistance is calculated than the plastic capacity that is observed in FEA. With an average RR for the EC X-joint and 
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EC T-joint, of 3.32 and 2.45, respectively, the design rules are considered to be very conservative, which can also 

be seen in the boxplot of the RR’s in Figure 42. Using these two design rules and a similar procedure as used to 

create the improved and adjusted design rules for non-penetrated joints, as provided in Equation 5.26 and 5.27, 

the design rules “X-joint improved”, presented in Equation 5.28, and “T-joint improved”, presented in Equation 

5.29, are created.  

X-joint improved for penetrated joints 

 𝑁1,𝑅𝑑 = 𝟏. 𝟏 ∗
𝑘𝑝∗𝑓𝑦0∗𝒇𝜹∗𝑡0

2

𝑠𝑖𝑛𝜃1
∗

𝟗.𝟎

(1−0.81∗𝒇𝜷∗𝛽)
/𝛾𝑀5,  (5.28) 

 where 𝑓𝛿 = 1 + (50 − 2𝛿)/200, 

 where 𝑓𝛽 = 1.8 ∗ 𝛽 + 2.3. 

T-joint improved for penetrated joints 

 𝑁1,𝑅𝑑 =
𝛾0,2∗𝑘𝑝∗𝑓𝑦0∗𝑡0

2

𝑠𝑖𝑛𝜃1
∗ (𝟔. 𝟖 + 14.2 ∗ 𝒇𝜷 ∗ 𝛽2) 𝛾𝑀5⁄   (5.29) 

In the improved design rule for penetrated CHS X-joints, a factor 𝑓𝛿  is applied to describe the influence of 𝛿 on the 

plastic capacity of the joints. This factor is created in such a way, that it fits the influences of 2𝛿 as given in the 

associated column of Table 28, i.e. it approximates the values 1.2, 1.1 and 1.0 for 2𝛿 factors of 10, 30 and 50, 

respectively. The same is done for 𝑓𝛽,with which the influence of 𝛽 is described in the design rule. The factors 1.1 

and 9.0 in the formula, are adjusted to improve the fit of the plastic design resistances of the design rule to the 

observed plastic capacity in the FEA.  

In the improved design rule for penetrated CHS T-joints, merely the factor 𝑓𝛽 is included and by changing the 

factor 2.8 (as found in the original EC design rule) to 6.8, the plastic design resistance is fitted to the plastic 

capacity. Table 28 and the left graph in Figure 42, show the design resistances and associated resistance ratios of 

these five design rules. It can be seen that the design rule “X-joint improved” has some conservative results, which 

are indicated by a grey square about the result, and one overpredicted design resistance, which is indicated by a 

black square. The design rule has an average RR of 1.39, for which the lowest and highest RR are 0.83 and 2.15, 

respectively. For the improved design rule for T-joints there are no overpredicted results. However, more results 

are considered to be conservative. For the design rule an average, lowest and highest RR is found of 1.47, 0.95 

and 2.03, respectively.  

The fifth design rule “Stress pattern”, is not based on the existing EC design rules for non-penetrated X- or T-

joints, but is created by examination of the, in FEA observed, stress pattern in the chord member. The geometrical 

parameters that partially describe the stress pattern observed, have an influence on the height of the stresses in 

the joints and therefore on the final plastic capacity. The chord diameter (𝑑0), chord wall thickness (𝑡0), 𝛽 factor 

and 𝜋 are used to describe the stress pattern for chord face failure on the chord wall, finally resulting in a new 

design formula that is presented in Equation 5.30. To improve the fit of the design rule results to the plastic 

capacity found in FEA, a factor of 0.35 is included. With this formula, an average, lowest and highest RR for the 

investigated parametrical geometries is achieved of 1.19, 0.95, and 1.52, respectively. It is observed that, in 

particular for  models with a 𝛽  factor of 0.4 and 0.6, some plastic design resistances may be considered as 

conservative, with a RR between 1.3 and 1.5. 

Stress pattern 

 𝑁1,𝑅𝑑 = 0.35 ∗
𝑘𝑝∗𝑓𝑦0∗𝑡0∗𝛽∗𝑑0∗𝜋∗𝑓𝛿

𝑠𝑖𝑛𝜃1
/𝛾𝑀5  (5.30) 

The design rule represented in Equation 5.30 is simplified by replacing 𝛽 ⋅ 𝑑0  by the brace diameter (𝑑1) and 

combining the factor 0.35 with 𝜋 into a factor of 1.1, which resulted in the sixth design rule “Stress pattern 1”, 

shown in Equation 5.31. The plastic design resistances obtained with this design rule are nearly the same as 

obtained with the original formula, and are presented in Table 29 and the right graph in Figure 42.  

Stress pattern 1 

 𝑁1,𝑅𝑑 = 𝟏. 𝟏 ∗
𝑘𝑝∗𝑓𝑦0∗𝑡0∗𝒅𝟏∗𝑓𝛿

𝑠𝑖𝑛𝜃1
/𝛾𝑀5  (5.31) 

The simplified formula is used as a starting point for further improvements of the conservative approximations of 

the plastic capacity for joint configurations with a 𝛽 factor of 0.4 and 0.6. Since for geometries with 𝛽 factor 0.8 

and 0.2, the RR’s do approach 1, the way the influence of the 𝛽 factor is processed in the design formula is 

reviewed again.  
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Two additional design rules are created, that describe the influence that 𝛽 has on the plastic resistance more 

accurate. In Equation 5.32 and 5.33, the adjusted design rules “Stress pattern 2a” and “Stress pattern 2b” are 

presented, for which the adjustments with respect to Equation 5.31 are shown in bold. With these improved 

design rules, the average RR is decreased from 1.19 to 1.11 for design rule 2a and to 1.09 for design rule 2b, as 

can be seen in the third and fourth column of Table 29 and the right graph in Figure 42. Next to that, the highest 

RR for stress pattern 2a is decreased from 1.52 to 1.35, and for design rule 2b from 1.52 to 1.34. 

Stress pattern 2a 

 𝑁1,𝑅𝑑 = 𝟏, 𝟎𝟓 ∗
𝑘𝑝∗𝑓𝑦0∗𝑡0∗𝑑1∗𝑓𝛿

𝑠𝑖𝑛𝜃1
∗ (−𝟐 ∗ (𝜷 − 𝟎. 𝟓)𝟐 + 𝟏. 𝟐)/𝛾𝑀5  (5.32) 

Stress pattern 2b 

 𝑁1,𝑅𝑑 = 1.1 ∗
𝑘𝑝∗𝑓𝑦0∗𝑡0∗𝑑1∗𝑓𝛿

𝑠𝑖𝑛𝜃1
∗ (𝒔𝒊𝒏(𝟎. 𝟔𝟓 ∗ 𝜷 ∗ 𝝅) − 𝜷 + 𝟎. 𝟖)/𝛾𝑀5  (5.33) 

Lastly, a design rule is considered that is completely constructed using the influences of the geometrical 

parameters as given in the table next to the plastic capacity from FEA. For this design rule, a basic value for the 

plastic resistance is back-calculated by dividing the plastic capacity through the corresponding influences of 𝛽, 2𝛾, 

2𝛿. This resulted in an almost stable value for all considered geometrical parameter configurations, which has to 

be described by the parameters that are fixed in this study, like the yield strength (𝑓𝑦0) and chord diameter (𝑑0) 

(as only the brace diameter is valued using the 𝛽 factor). Once this stable part has been formulated, the influences 

of the geometrical parameters are formulated in three independent formula parts, by fitting these parts on the 

influence factors shown in the table. The independent parts are then combined in a single design rule that is 

shown in Equation 5.34. 

Result factors 

 𝑁1,𝑅𝑑 =
100

2𝛿+75
∗

𝑘𝑝∗𝑓𝑦0∗𝑑1∗𝛾0.1∗𝑡0

𝑠𝑖𝑛𝜃1
/𝛾𝑀5  (5.34) 

This design rule approximates the plastic capacity (according to FEA) with an average, lowest and highest RR of 

1.09, 0.88, and 1.30, respectively. However, two of the geometrical parameter configurations resulted in a plastic 

design resistance that overpredicts the plastic capacity and are therefore unsafe. Adjusting the formula in such a 

way that the lowest RR was 0.95, resulted in the highest RR to be larger than 1.3, causing this design rule to 

become less interesting than the design rules Stress pattern 2a and 2b.  

Table 29 and Figure 42 (right graph), shows the results of the extra four design rules that were just elaborated. It 

can be seen that design rules stress pattern 2a and stress pattern 2b best approximates the plastic capacity. 

 
Table 28: Results design rules for penetrated joints - Single-sided tension (Fx) – part 1 

Model  FEA results  EC X-joint  EC T-joint  X-joint impr.  T-joint impr.  Stress pattern 
𝛽 2𝛾 2𝛿  N1,FEA Infl 𝛽 Infl 2𝛾 Infl 2𝛿  N1,Rd RR  N1,Rd RR  N1,Rd RR  N1,Rd RR  N1,Rd RR 

                       

0.8 30 30  6575.6 1.005 1.508 1.143  3383 1.943  4680 1.405  5634 1.167  5754 1.143  6648 0.989 

0.8 30 50  5752.6  1.518   3383 1.700  4680 1.229  5122 1.123  5754 1.000  6044 0.952 
                            

0.8 50 30  4361.5 1.083  1.151  1218 3.581  1866 2.337  2028 2.150  2294 1.901  3989 1.093 
0.8 50 50  3789.7 1.065    1218 3.111  1866 2.031  1844 2.055  2294 1.652  3626 1.045 

                            

0.6 30 10  8019.2 1.458 1.934 1.226  2317 3.461  3115 2.575  6684 1.200  5132 1.563  5440 1.474 

0.6 30 30  6540.1  1.623   2317 2.823  3115 2.100  6127 1.067  5132 1.274  4986 1.312 
                            

0.6 50 10  4147.2 1.737  1.029  834 4.972  1242 3.340  2406 1.724  2046 2.027  3264 1.271 

0.6 50 30  4028.7 1.896  1.132  834 4.830  1242 3.244  2206 1.826  2046 1.969  2992 1.347 
0.6 50 50  3557.8 1.751    834 4.265  1242 2.865  2005 1.774  2046 1.739  2720 1.308 

                            
0.4 30 10  5500.2  2.303   1762 3.122  1997 2.755  5575 0.987  4090 1.345  3626 1.517 

                            

0.4 50 10  2388.2 2.027  1.124  634 3.765  796 3.000  2007 1.190  1631 1.464  2176 1.098 
0.4 50 30  2124.8   1.046  634 3.350  796 2.669  1840 1.155  1631 1.303  1995 1.065 

0.4 50 50  2032.1     634 3.204  796 2.553  1672 1.215  1631 1.246  1813 1.121 
                            

0.2 50 10  1178.1     512 2.303  529 2.229  1428 0.825  1240 0.950  1088 1.083 

                       
        Mean 3.316 Mean 2.452 Mean 1.390 Mean 1.470 Mean 1.191 
        Lowest 1.700 Lowest 1.229 Lowest 0.825 Lowest 0.950 Lowest 0.952 
        Highest 4.972 Highest 3.340 Highest 2.150 Highest 2.027 Highest 1.517 
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Figure 42: RR design rules for penetrated joints – Single-sided tension (Fx) – Part 1 (left) & 2 (right) 

 
Table 29: Results design rules for penetrated joints - Single-sided tension (Fx) – part 1 

Model  FEA results  Stress patt. 1  Stress patt. 2a  Stress patt. 2b  Result factors 
𝛽 2𝛾 2𝛿  N1,FEA Infl 𝛽 Infl 2𝛾 Infl 2𝛿  N1,Rd RR  N1,Rd RR  N1,Rd RR  N1,Rd RR 

                    

0.8 30 30  6575.6 1.005 1.508 1.143  6651 0.989  6476 1.015  6638 0.991  6863 0.958 
0.8 30 50  5752.6  1.518   6046 0.951  5887 0.977  6035 0.953  5765 0.998 

                      

0.8 50 30  4361.5 1.083  1.151  3991 1.093  3885 1.123  3983 1.095  4334 1.006 
0.8 50 50  3789.7 1.065    3628 1.045  3532 1.073  3621 1.047  3640 1.041 

                      

0.6 30 10  8019.2 1.458 1.934 1.226  5442 1.474  6129 1.308  6208 1.292  6359 1.261 

0.6 30 30  6540.1  1.623   4988 1.311  5619 1.164  5691 1.149  5147 1.271 
                      

0.6 50 10  4147.2 1.737  1.029  3265 1.270  3678 1.128  3725 1.113  4015 1.033 

0.6 50 30  4028.7 1.896  1.132  2993 1.346  3371 1.195  3415 1.180  3250 1.239 

0.6 50 50  3557.8 1.751    2721 1.308  3065 1.161  3104 1.146  2730 1.303 

                      

0.4 30 10  5500.2  2.303   3628 1.516  4086 1.346  4096 1.343  4239 1.298 
                      

0.4 50 10  2388.2 2.027  1.124  2177 1.097  2452 0.974  2457 0.972  2677 0.892 

0.4 50 30  2124.8   1.046  1995 1.065  2247 0.945  2253 0.943  2167 0.981 

0.4 50 50  2032.1     1814 1.120  2043 0.995  2048 0.992  1820 1.116 
                      

0.2 50 10  1178.1     1088 1.082  1060 1.112  1085 1.086  1338 0.880 

                    
        Mean 1.190 Mean 1.108 Mean 1.093 Mean 1.091 
        Lowest 0.951 Lowest 0.945 Lowest 0.943 Lowest 0.880 
        Highest 1.516 Highest 1.346 Highest 1.343 Highest 1.303 

 

5.2.2.2 Verification of the governing failure mechanism 

In Paragraph 5.2.1.3 the principles are explained for the verification of the governing failure mechanism. In this 

paragraph the same principles are applied to verify the governing failure mechanism for penetrated CHS X-joints 

subjected to single-sided tension. In Table 30 the results for the existing set of EC design rules (intended for non-

penetrated CHS joints) are given. The basic cross-section design rules and the existing EC design rules for non-

penetrated joints are applied to approximate the plastic design resistance and governing failure mechanism. In 

Table 31 the results for the improved penetrated set of design rules are given. The existing basic cross-section 

design rules and the joint failure design rule Stress pattern 2b, as provided in Equation 5.33, are used. In the tables 

the results of the joint configurations for which the governing failure mechanisms as calculated with the set of 

design rules deviates from the governing mechanism observed in FEA, are marked. It can be seen that the 

improved penetrated set of design rules, predict the correct failure mechanism more often than the existing set 

of EC design rules. Moreover, it can be seen that for the penetrated set of design rules, the plastic design 

resistances for chord face failure deviate significantly less from the plastic capacity, compared to the resistances 

calculated with the set of EC design rules for non-penetrated joints. The calculations with the design set containing 

the new design rules for penetrated joints, still deviates from the results observed in FEA for some parameter 

configurations. This can however be explained by the slight conservatism of the new chord face failure rule and 

the fact that for these particular configurations, the differences in plastic design resistance to the different failure 

mechanisms are minimal. 
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Table 30: Failure mechanism calculation results for existing EC design rules for non-penetrated joints 
Model  𝜷 0.8  𝜷 0.6  𝜷 0.4  𝜷 0.2 

   EC FEA  EC FEA  EC FEA  EC FEA 

2𝛾 2𝛿  N1,Rd Failure 
mode 

N1,FEA Failure 
mode 

 N1,Rd Failure 
mode 

N1,FEA Failure 
mode 

 N1,Rd Failure 
mode 

N1,FEA Failure 
mode 

 N1,Rd Failure 
mode 

N1,FEA Failure 
mode (-) (-)  (kN) (kN)  (kN) (kN)  (kN) (kN)  (kN) (kN) 

                      

10 10  19724  1  C bm 20221  1  C bm  20321  1  C bm 20373  1  C bm  9325  1  B cs 9334  1  B cs  2331  1  B cs 2331  1  B cs 
10 30  13354  1  B cs 13369  1  B cs  7512  1  B cs 7515  1  B cs  3339  1  B cs 3342  1  B cs  835  1  B cs 834  1  B cs 
10 50  8123  1  B cs 8126  1  B cs  4569  1  B cs 4574  1  B cs  2031  1  B cs 2032  1  B cs  508  1  B cs 508  1  B cs 

                      

30 10  3383  2  C ff 8742  1  C bm  2317  2  C ff 8019  3  C ff  1762  2  C ff 5500  3  C ff  1326  2  C ff 2345  1  B cs 

30 30  3383  2  C ff 6576  3  C ff  2317  2  C ff 6540  3  C ff  1762  2  C ff 3348  1  B cs  835  1  B cs 843  1  B cs 

30 50  3383  2  C ff 5753  3  C ff  2317  2  C ff 4555  1  B cs  1762  2  C ff 2029  1  B cs  508  1  B cs 509  1  B cs 
                      

50 10  1218  2  C ff 5040  1  C bm  834  2  C ff 4147  3  C ff  634  2  C ff 2388  3  C ff  512  2  C ff 1178  3  C ff 

50 30  1218  2  C ff 4362  3  C ff  834  2  C ff 4029  3  C ff  634  2  C ff 2125  3  C ff  512  2  C ff 838  1  B cs 

50 50  1218  2  C ff 3790  3  C ff  834  2  C ff 3558  3  C ff  634  2  C ff 2032  3  C ff  508  1  B cs 513  1  B cs 

 
Table 31: Failure mechanism calculation results for new design rules for penetrated joints 
Model  𝜷 0.8  𝜷 0.6  𝜷 0.4  𝜷 0.2 

   EC / Pen FEA  EC / Pen FEA  EC / Pen FEA  EC / Pen FEA 

2𝛾 2𝛿  N1,Rd Failure 
mode 

N1,FEA Failure 
mode 

 N1,Rd Failure 
mode 

N1,FEA Failure 
mode 

 N1,Rd Failure 
mode 

N1,FEA Failure 
mode 

 N1,Rd Failure 
mode 

N1,FEA Failure 
mode (-) (-)  (kN) (kN)  (kN) (kN)  (kN) (kN)  (kN) (kN) 

                      

10 10  19724  1  C bm 20221  1  C bm  18625  3  C ff 20373  1  C bm  9325  1  B cs 9334  1  B cs  2331  1  B cs 2331  1  B cs 

10 30  13354  1  B cs 13369  1  B cs  7512  1  B cs 7515  1  B cs  3339  1  B cs 3342  1  B cs  835  1  B cs 834  1  B cs 
10 50  8123  1  B cs 8126  1  B cs  4569  1  B cs 4574  1  B cs  2031  1  B cs 2032  1  B cs  508  1  B cs 508  1  B cs 

                      

30 10  7241  3  C ff 8742  1  C bm  6208  3  C ff 8019  3  C ff  4096  3  C ff 5500  3  C ff  1809  3  C ff 2345  1  B cs 

30 30  6638  3  C ff 6576  3  C ff  5691  3  C ff 6540  3  C ff  3339  1  B cs 3348  1  B cs  835  1  B cs 843  1  B cs 
30 50  6035  3  C ff 5753  3  C ff  4569  1  B cs 4555  1  B cs  2031  1  B cs 2029  1  B cs  508  1  B cs 509  1  B cs 

                      

50 10  4345  3  C ff 5040  1  C bm  3725  3  C ff 4147  3  C ff  2457  3  C ff 2388  3  C ff  1085  3  C ff 1178  3  C ff 

50 30  3983  3  C ff 4362  3  C ff  3415  3  C ff 4029  3  C ff  2253  3  C ff 2125  3  C ff  835  1  B cs 838  1  B cs 

50 50  3621  3  C ff 3790  3  C ff  3104  3  C ff 3558  3  C ff  2031  1  B cs 2032  3  C ff  508  1  B cs 513  1  B cs 

 

5.2.2.3 Conclusion design rule for penetrated CHS X-joints subjected to single-sided tension (Fx) 

For penetrated CHS X-joints subjected to single-sided tension (Fx) can be concluded that the existing EC design 

rules for non-penetrated T- and X-joints, with an average RR of 3.32 and 2.45, underpredict the plastic capacity 

observed in FEA. The improved design rules “X-joint impr.” and “T-joint impr.”, which are based on the existing 

EC design rules for non-penetrated T- and X-joints, better approximate the plastic design capacity, however, with 

an average RR of 1.39 and 1.47, they are still considered to be too conservative and some results deviate too 

much. Therefore five alternative design rules are created of which four are based on the stress pattern observed 

in FEA and the other one is based on the influences of the parameter factors on the plastic capacity. Although this 

latter design rule “Result factors”, is easier to interpret and can be deduced more clearly from the applied 

geometrical parameters, this design rule predicts design resistances with larger deviations from the plastic 

capacity observed in FEA. Based on the RR’s, it is therefore proposed to use the design rule “Stress Pattern 2b” , 

which is provided in Equation 5.33, for calculating the plastic design resistance of penetrated CHS X-joints 

subjected to single-sided tension (Fx). For this design rule an average, lowest and highest RR of 1.09, 0.94, and 

1.34, respectively, are obtained. 

From the verification of the governing failure mechanisms, for which the results are shown in Table 30 and Table 

31, it can be concluded that for the set of improved design rules for penetrated joints, in which the design rule 

Stress pattern 2b is included, more often the correct failure mechanism is approximated compared to the set of 

existing EC design rules for non-penetrated joints. Next to that, can be concluded that for geometries failing in 

chord face failure, the plastic design resistance calculated by the improved design rules, deviates less from the 

plastic capacity obtained by FEA, as the plastic design resistance calculated with the existing EC design rules for 

non-penetrated joints did. However, also for the new set of design rules, some deviations in governing failure 

mechanism are observed in Table 31, but this can be explained by the slight conservatism of the new chord face 

failure rule and the fact that for the particular configurations for which the failure mechanism deviates from the 

one observed in FEA, the differences in plastic design resistance to the different possible failure mechanisms are 

minimal. 
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5.2.2.4 Compression 

The parameter study for penetrated configurations subjected to single-sided compression is provided only for the 

geometries with a 𝛽  factor of 0.2 and 0.8. From these parameter configurations it has been concluded that 

geometries subjected to single-sided compression have plastic capacity that are almost equal to the capacity of 

geometries subjected to single-sided tension. Therefore, no simulations have been performed for additional 

parameter configurations. To confirm the validity of the new proposed design rules for compression as well, the 

plastic capacity observed in FEA are compared with the new design rules for penetrated joints, as is also done in 

Table 29 for tension. The results of the comparisons are given in Table 32 and in the left graph of Figure 43. In the 

table, it can be seen that the new design rules for penetrated joints are also suitable for geometries subjected to 

single-sided compression, since an average, lowest and highest RR for stress pattern 2b of 1.03, 0.95, and 1.12, 

respectively, is found. The average and highest RR depicted in the table are slightly lower compared to those of 

the geometries subjected to single-sided tension. This can however, be explained by the fact that 𝛽 0.4 and 0.6 

are omitted for geometries subjected to single-sided compression, while they cause produce the highest RR’s and 

an increase of the average RR for the geometries subjected to single-sided tension. 

 
Table 32: Result design rules for penetrated joints – single-sided compression (Fx) 

Model  FEA results  Stress patt. 1  Stress patt. 2a  Stress patt. 2b  Result factors 
𝛽 2𝛾 2𝛿  N1,FEA Infl 𝛽 Infl 2𝛾 Infl 2𝛿  N1,Rd RR  N1,Rd RR  N1,Rd RR  N1,Rd RR 

                    

0.8 30 30  6312.1  1.418 1.107  6651 0.949  6476 0.975  6638 0.951  6863 0.920 

0.8 30 50  5699.8  1.480   6046 0.943  5887 0.968  6035 0.945  5765 0.989 
                    

0.8 50 30  4449.6   1.155  3991 1.115  3885 1.145  3983 1.117  4334 1.027 
0.8 50 50  3850.9     3628 1.061  3532 1.090  3621 1.064  3640 1.058 

                    

0.2 50 10  1165.5     1088 1.071  1060 1.100  1085 1.074  1338 0.871 

                    
        Mean 1.028 Mean 1.056 Mean 1.030 Mean 0.973 
        Lowest 0.943 Lowest 0.968 Lowest 0.945 Lowest 0.871 
        Highest 1.115 Highest 1.145 Highest 1.117 Highest 1.058 

5.2.2.5 Reduction factor kp 

For geometries where the brace is subjected to single-sided compression, the influence of the reduction factor 

𝑘𝑝 is evaluated. This factor takes into account the reduction of the plastic joint capacity when the chord member 

is subjected to initial compression stresses, arising from compression or bending moments on the chord member. 

This reduction factor is based on the 𝑛𝑝 factor, which takes into account the stress ratio between the acting stress 

(𝑁𝑝,𝐸𝑑) in the chord divided by the yield strength (𝑓𝑦0), as shown in Equation 5.35. The factor 𝑘𝑝 to consider, can 

be calculated with the following design rule: 

For 𝑛𝑝 > 0 (compression): 𝑘𝑝 = 1 − 0.3 ∗ 𝑛𝑝 ∗ (1 + 𝑛𝑝),  but 𝑘𝑝 ≤ 1.0  

For 𝑛𝑝 ≤ 0 (tension):  𝑘𝑝 = 1.0  

  𝑛𝑝 = (𝜎𝑝,𝐸𝑑/𝑓𝑦0)/𝛾𝑀5,   (5.35) 

where 𝜎𝑝,𝐸𝑑 is the maximum compressive stress in the chord at the joint, excluding the stress due to the axial 

forces in the brace at that joint. The stress can be calculated by 𝜎𝑝,𝐸𝑑 = 𝑁𝑝,𝐸𝑑/𝐴0 + 𝑀0,𝐸𝑑/𝑊𝑒𝑙,0, where 𝑁𝑝,𝐸𝑑 is the 

design value of the internal axial force, 𝐴0 is the chord surface, 𝑀0,𝐸𝑑 is the bending moment design value of the 

chord and 𝑊𝑒𝑙,0 is the elastic section modulus of the chord member. [2] To calculate the maximum compressive 

stress in the chord at the joint, the bending moment present in the chord, which is due to the normal force in the 

brace, is implemented within the formula.  

Taking into account the reduction factor 𝑘𝑝  has significant influences on the plastic design resistances for 

penetrated CHS X-joints sunjected to single-sided compression. Table 33 and the right graph of Figure 43, shows 

the results for the final four penetrated desing rules for single-sided tension, where the reduction factor 𝑘𝑝 is 

included. In the table can be seen that the calculated average RR of the design rules are between 1.45 to 1.52, 

which means that the plastic design resistances become very conservative. Comparing the results with the non-

reduced resistances, provided in Table 32 and in the left graph of Figure 43, an average, lowest and highest RR of 

1.03, 0.95, and 1.12, respectively, is found for the non-reduced design rule stress pattern 2b, whereas the 

reduction factor decreases the plastic design resistance to an average, lowest and highest RR to 1.50, 1.19, and 

1.75, respectively. 
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It can be concluded that for geometries subjected to single-sided compression, the design rules “Stress pattern 

2a” and “Stress pattern 2b”, well predict the plastic capacity obtained from FEA, with an average RR of 1.06 and 

1.03, respectively, and that applying the reduction factor 𝑘𝑝  to the design rules for the calculation of the plastic 

design resistances for geometries subjected to single-sided compression, results in significant underpredictions 

of the true plastic capacity, as follows from the average RR’s of approximately 1.50.  

 

    
Figure 43: RR of the design rules for penetrated joints – Single-sided compression (Fx) – standard (left) & reduced kp (right) 

 
Table 33: Results design rules for penetrated joints reduced by kp factor – Single-sided compression (Fx)  

Model  FEA results  Stress patt. 1  Stress patt. 2a  Stress patt. 2b  Result factors 
𝛽 2𝛾 2𝛿  N1,FEA Infl 𝛽 Infl 2𝛾 Infl 2𝛿  N1,Rd RR  N1,Rd RR  N1,Rd RR  N1,Rd RR 

                    

0.8 30 30  6312.1  1.418 1.107  4159 1.518  4099 1.540  4154 1.519  4229 1.492 
0.8 30 50  5699.8  1.480   3944 1.445  3884 1.467  3940 1.447  3837 1.486 

                    

0.8 50 30  4449.6   1.155  2541 1.751  2504 1.777  2539 1.753  2657 1.675 
0.8 50 50  3850.9     2407 1.600  2370 1.625  2404 1.602  2412 1.597 

                    
0.2 50 10  1165.5     986 1.182  963 1.211  984 1.185  1182 0.986 

                    
        Mean 1.499 Mean 1.524 Mean 1.501 Mean 1.447 
        Lowest 1.182 Lowest 1.211 Lowest 1.185 Lowest 0.986 
        Highest 1.751 Highest 1.777 Highest 1.753 Highest 1.675 
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5.3 SHEAR FY (CHORD BENDING MOMENT) 
To create a design rule for CHS X-joints subjected to shear Fy (chord bending moment), similar steps have been 

performed as for joints subjected to single-sided tension. In this paragraph, some additional simulations are 

performed and the results are evaluated, the steps to acquire the design rule are presented and the approximated 

failure mechanisms are verified. 

5.3.1 Additional simulations 
The results of the parameter study for geometries subjected to shear Fy (chord bending moment), are elaborated 

in Paragraph 0. It has been seen that only three penetrated parameter configurations fail in chord face failure, 

which is too limited to design and fit a design rule on. With only three geometries to calibrate the design rule, it 

will very likely that the design rule does not describe the behavior and plastic design resistance of the geometries 

correctly. Therefore, additional simulations are performed for geometries with 𝛽 factors 0.6 and 0.8, 2𝛾 factors 

30, 40 and 50, and 2𝛿  factors 10, 15 and 20. These geometrical parameters are chosen based on the three 

parameter configurations that fail in chord face failure, to ensure the boundaries of the critical areas where joint 

failures are common can be identified and more results are available for the creation and calibration of the new 

design rule. Table 34 shows the results for the additional simulations, of which eight parameter configurations  

are identified that fail in chord face failure. 

 
Table 34: Additional simulations geometries subjected to shear Fy 

Model  2𝛾 30  2𝛾 40  2𝛾 50 

Load 𝛽 2𝛿 
 Fy,FEA 

(kN) 
Fy,Rd 
(kN) RR 

Failure 
mech. 

 Fy,FEA 
(kN) 

Fy,Rd 
(kN) RR 

Failure 
mech. 

 Fy,FEA 
(kN) 

Fy,Rd 
(kN) RR 

Failure 
mech. 
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d
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o
m
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0.8 10  11165.0 2503 4.461  3  C ff  8181.7 1626 5.032  3  C ff  6380.1 1163 5.486  3  C ff 
0.8 15  8424.0 8105 1.039  1  B bm  8072.0 1626 4.964  3  C ff  6459.4 1163 5.554  3  C ff 
0.8 20  6444.8 6293 1.024  1  B bm  6353.2 6293 1.010  1  B bm  6284.2 1163 5.403  3  C ff 

                 

0.6 10  6491.8 5637 1.152  1  B bm  6411.1 967 6.630  3  C ff  5255.9 692 7.595  3  C ff 
0.6 15  4593.3 4032 1.139  1  B bm  4475.1 4043 1.107  1  B bm  4443.6 4043 1.099  1  B bm 
0.6 20  3537.5 3131 1.130  1  B bm  3377.4 3131 1.079  1  B bm  3465.0 3131 1.107  1  B bm 

 

5.3.2 Design rule 
After a first evaluation of the results presented in Table 34, it was concluded that the location at which the shear 

force is applied, has a significant influence on the joint capacity as well. Therefore, besides the standard varied 

geometrical parameters, also the lever arm of the shear force with respect to the chord member is varied, i.e. the 

eccentricity of the shear force with respect to the chord center axis, 𝑒𝑥, is varied. The results from the parameter 

and lever arm study for penetrated CHS X-joints subjected to shear Fy, are presented Table 35, Table 36 

respectively and are both illustrated in Figure 45. In the tables, the plastic capacity observed in FEA and the 

influences of the geometrical parameters on the plastic capacity are shown. Next to that, the plastic design 

resistances according to the existing EC design rule for non-penetrated joint chord face failure (EC C ff) are shown, 

for which formula is provided in Equation 2.7. This design rule is actually meant for joints of which the brace is 

subjected to a moment, but is converted to a formula force formula by dividing the design moment resistance 

through the eccentricity of the shear force with respect to the chord center axis, 𝑒𝑥. With the converted design 

rule, the plastic design resistance to a shear force in y direction is calculated, and compared to the plastic capacity 

observed in FEA. An average, lowest and highest RR is observed of 5.64, 4.46 and 7.59, respectively, in case the 

geometrical parameters are varied(Table 35). While varying the lever arms, 𝑙𝑥, (Table 36), an average, lowest and 

highest RR of 6.20, 4.28, and 7.59, respectively, are found. This means that the design rules result in plastic design 

resistances that could on average be approximately 5.5 times as high. 

To create a design rule that approximates the plastic capacity, the design rule “result factors” from Equation 5.34, 

is used as a basis. To take into account the influence of the application point of the force, the ratio between the 

chord diameter (𝑑0) and the length between the point of application of the force and the farthest chord wall, as 

shown as 𝐿1 in Figure 44, is included. Next, the plastic design resistance of the design rule are fitted on the plastic 

capacity obtained from FEA, which is in this case done by including a factor 3 to the design rule. The established 

formula is then rewritten into a moment formulation, resulting in the design rule “Result factors shear Fy”, which 

is provided in Equation 5.36. In Table 35, Table 36 and Figure 45 the results for this design rule are shown. It can 

be seen that the “Result factors shear Fy” design rule results in an average RR of approximately 1.05. 
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Shear Fy (chord bending moment) – design rule “Result factors shear Fy” for penetrated joints 

 𝐹𝑦,1,𝑅𝑑 ∗ 𝐿1 = 𝟑 ∗
𝑘𝑝∗𝑓𝑦0∗𝑡0∗𝑑1∗𝑑0

𝑠𝑖𝑛𝜃1
/𝛾𝑀5  (5.36) 

 
Table 35: Results design rules for penetrated joints – shear Fy – varied geometrical parameters 

Model  FEA results  EC C ff  Result factors Fy 

𝛽 2𝛾 2𝛿 ex  Fy,FEA Infl 𝛽 Infl 2𝛾 Infl 2𝛿  Fy,Rd RR  Fy,Rd RR 
               

0.8 30 10 838  11165.0  1.364   2503 4.461  10306 1.083 
               

0.8 40 10 838  8181.7  1.282 1.013  1626 5.032  7730 1.058 
0.8 40 15 838  8072.0  1.250   1626 4.965  7730 1.044 

               
0.8 50 10 838  6380.1   0.987  1163 5.484  6184 1.032 
0.8 50 15 838  6459.4   1.027  1163 5.553  6184 1.045 
0.8 50 20 838  6284.2     1163 5.402  6184 1.016 

               
0.6 40 10 792  6411.1  1.220   967 6.628  6023 1.064 

               
0.6 50 10 792  5255.9     692 7.594  4819 1.091 

               
         Mean 5.640 Mean 1.054 
         Lowest 4.461 Lowest 1.016 
         Highest 7.594 Highest 1.091 

 
Table 36: Results design rules for penetrated joints – shear Fy – varied eccentricity ex 

Model  FEA results  EC C ff  Result factors Fy 
𝛽 2𝛾 2𝛿 ex  Fy,FEA Infl 𝛽 Infl 2𝛾 Infl 2𝛿  Fy,Rd RR  Fy,Rd RR 

               

0.8 50 10 381  10958.0     2559 4.282  9894 1.108 
0.8 50 10 587  8369.6 1.294    1663 5.034  7793 1.074 
0.8 50 10 792  6705.0 1.276    1231 5.446  6427 1.043 
0.8 50 10 838  6380.1 1.287    1163 5.484  6184 1.032 
0.8 50 10 938  5851.6     1039 5.630  5715 1.024 
0.8 50 10 1038  5306.9 1.328    939 5.650  5312 0.999 

               
0.6 40 10 792  6411.1  1.220   967 6.628  6023 1.064 
0.6 40 10 838  6039.9  1.218   915 6.603  5798 1.042 

               
0.6 50 10 587  6468.8     935 6.917  5844 1.107 
0.6 50 10 792  5255.9     692 7.594  4819 1.091 
0.6 50 10 838  4958.0     655 7.575  4639 1.069 
0.6 50 10 1038  3995.3     528 7.561  3985 1.003 

               
         Mean 6.200 Mean 1.055 
         Lowest 4.282 Lowest 0.999 
         Highest 7.594 Highest 1.108 

 

    
Figure 45: RR design rules for penetrated joints – Shear Fy 

 
Figure 44: CHS X-joint subjected to shear Fy 
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5.3.3 Verification of the governing failure mechanism 
Table 37 and Table 38 shows the verification of the governing failure mechanism for geometries subjected to 

shear Fy for the design calculations executed according to the EC design rules for non-penetrated joints and the 

new improved design rules for penetrated joints, by comparing their results with the failure mechanisms and 

plastic capacity obtained by FEA. While in the existing EC design rules for non-penetrated joints the EC design rule 

for chord face failure is applied, in the new design rules for penetrated joints the design rule “result factors shear 

Fy” is applied. Table 37 shows that for the existing EC design rules for non-penetrated joints several failure 

mechanisms are incorrect and deviate from the ones observed in FEA, while for the new design rule for 

penetrated joints, shown in Table 38, all failure mechanisms correspond to the ones in FEA. Furthermore, it can 

also be concluded that the calculated plastic design resistances obtained with the improved design rules for 

penetrated joints, better approximate the plastic capacity obtained from FEA. 

5.3.4 Conclusion design rule Shear Fy  
For the penetrated CHS X-joints subjected to shear Fy (chord bending moment), it can be concluded that the 

existing EC design rules for non-penetrated joints, with an average RR of 5.64 and 6.40, underestimate the plastic 

capacity of the joints significantly. Therefore, an improved design rule “Result factors shear Fy” is created, which 

is based on the design rule “Result factors” for geometries subjected to single-sided tension. The improved design 

rule, as shown in Equation 5.36, approximates the plastic capacity from FEA very well. With the design rule an 

average RR is found of 1.05. Furthermore, it is concluded that by taking into account the new design rule in the 

design set, the correct governing failure mechanism is predicted. It is therefore advised to use the design rule 

“Result factors shear Fy”, as given in Equation 5.36, for the design check of penetrated CHS X-joints subjected to 

shear Fy. 

 
Table 37: Failure mechanism calculation results for existing EC design rules for non-penetrated joints 
Model  𝜷 0.8  𝜷 0.6  𝜷 0.4  𝜷 0.2 

   EC FEA  EC FEA  EC FEA  EC FEA 
2𝛾 2𝛿  Fy,Rd Failure 

mode 
Fy,FEA Failure 

mode 
 Fy,Rd Failure 

mode 
Fy,FEA Failure 

mode 
 Fy,Rd Failure 

mode 
Fy,FEA Failure 

mode 
 Fy,Rd Failure 

mode 
Fy,FEA Failure 

mode (-) (-)  (kN) (kN)  (kN) (kN)  (kN) (kN)  (kN) (kN) 
                      

10 10  6924  2  C ps 12554  1  B bm  4120  2  C ps    2070  2  C ps    559  1  B bm 514  1  B bm 

10 30  4342  1  B bm 4328  1  B bm  2160  1  B bm    890  1  B bm    214  1  B bm 183  1  B bm 
10 50  2677  1  B bm 2598  1  B bm  1332  1  B bm    549  1  B bm    132  1  B bm 107  1  B bm 

                      

30 10  2308  2  C ps 11165  3  C ff  1373  2  C ps 6492  1  B bm  690  2  C ps 2597  1  B bm  214  2  C ps 584  1  B bm 

30 30  2308  2  C ps 4405  1  B bm  1373  2  C ps 2303  1  B bm  690  2  C ps    214  1  B bm 207  1  B bm 

30 50  2308  2  C ps 2614  1  B bm  1332  1  B bm    549  1  B bm    132  1  B bm 124  1  B bm 
                      

50 10  1163  2  C ff 6380  3  C ff  692  2  C ff 5256  3  C ff  348  2  C ff 2614  1  B bm  108  2  C ff 591  1  B bm 

50 30  1163  2  C ff 4350  1  B bm  692  2  C ff 2374  1  B bm  348  2  C ff    108  2  C ff 208  1  B bm 

50 50  1163  2  C ff 2596  1  B bm  692  2  C ff     348  2  C ff    108  2  C ff 127  1  B bm 

 
Table 38: Failure mechanism calculation results for new design rules for penetrated joints 
Model  𝜷 0.8  𝜷 0.6  𝜷 0.4  𝜷 0.2 

   EC / Pen FEA  EC / Pen FEA  EC / Pen FEA  EC / Pen FEA 

2𝛾 2𝛿  Fy,Rd Failure 
mode 

Fy,FEA Failure 
mode 

 Fy,Rd Failure 
mode 

Fy,FEA Failure 
mode 

 Fy,Rd Failure 
mode 

Fy,FEA Failure 
mode 

 Fy,Rd Failure 
mode 

Fy,FEA Failure 
mode (-) (-)  (kN) (kN)  (kN) (kN)  (kN) (kN)  (kN) (kN) 

                      

10 10  11332  1  B bm 12554  1  B bm  5637  1  B bm    2322  1  B bm    559  1  B bm 514  1  B bm 
10 30  4342  1  B bm 4328  1  B bm  2160  1  B bm    890  1  B bm    214  1  B bm 183  1  B bm 
10 50  2677  1  B bm 2598  1  B bm  1332  1  B bm    549  1  B bm    132  1  B bm 107  1  B bm 

                      

30 10  10306  3  C ff 11165  3  C ff  5637  1  B bm 6492  1  B bm  2322  1  B bm 2597  1  B bm  559  1  B bm 584  1  B bm 
30 30  4342  1  B bm 4405  1  B bm  2160  1  B bm 2303  1  B bm  890  1  B bm    214  1  B bm 207  1  B bm 
30 50  2677  1  B bm 2614  1  B bm  1332  1  B bm    549  1  B bm    132  1  B bm 124  1  B bm 

                      

50 10  6184  3  C ff 6380  3  C ff  4819  3  C ff 5256  3  C ff  2322  1  B bm 2614  1  B bm  559  1  B bm 591  1  B bm 
50 30  4342  1  B bm 4350  1  B bm  2160  1  B bm 2374  1  B bm  890  1  B bm    214  1  B bm 208  1  B bm 
50 50  2677  1  B bm 2596  1  B bm  1332  1  B bm     549  1  B bm    132  1  B bm 127  1  B bm 
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5.4 SHEAR FZ (CHORD TORSIONAL MOMENT) 
For the design rule for joints subjected to shear Fz (chord torsional moment), similar steps have been performed 

as for joints subjected to shear Fy (chord bending moment). In this paragraph, some additional simulations are 

performed and provided, the results are evaluated, the steps to acquire the design rule are presented and the 

governing failure mechanisms are verified. 

5.4.1 Additional simulations 
The results of the basic parameter study for geometries subjected to shear Fz (chord torsional moment), are 

shown in Paragraph 4.8. The results show that only four penetrated parameter configurations fail in chord face 

failure, which is too limited to create, fit and calibrate a design rule on. Therefore, similarly as done for the load 

case Shear Fy, additional simulations are performed, for which the results are shown in Table 39. In the table it 

can be seen that fourteen geometrical configurations fail in chord face failure. 

5.4.2 Design rules 
In Table 40, Table 41 and Figure 47 the results from the FEA and design rules are shown, including the influences 

of the geometrical parameters on the plastic capacity (FEA). In Table 40 the geometrical parameters are varied 

and in Table 41 the eccentricity of the shear force with respect to the chord center axis, 𝑒𝑥, is varied. The first 

design rule presented in the tables, is the existing EC design rule for non-penetrated joint chord face failure (EC C 

ff), as provided in Equation 2.8. Similarly as done for shear Fy, this formula is converted such that the design 

resistance is expressed in a shear force in Z-direction. This design rule results in an average, lowest and highest 

RR of 7.86, 4.66, and 11.7 for varying geometrical parameters and an average, lowest and highest RR of 9.45, 6.48, 

and 12.3, respectively, when the eccentricity is varied. This means that the plastic design resistance 

underestimates the plastic capacity of the joints on average by a factor of approximately 8.5. 

A new design rule is therefore created, for which the proposed design rule for penetrated joints subjected to 

shear in y-direction, provided in Equation 5.36, is used as a basis. To fit the results of the design rule to the plastic 

capacity for penetrated joints subjected to shear in Z-direction, the factor 3.0 is changed into 1.7. Implementing 

this single adaptation leads to an average, lowest and highest RR of 1.04, 1.01, and 1.10, respectively, in case the 

geometrical parameters are varied (Table 40) and an average, lowest and highest RR of 1.03, 0.97, and 1.07, 

respectively, in case the lever arm 𝑒𝑥 is varied (Table 41). It is therefore concluded that this new design rule, which 

is provided in Equation 5.37, accurately describes the plastic capacity and that the difference with the original 

design rule for non-penetrated joints is substantial as is seen in Figure 47. 

 

Shear Fz (chord torsional moment) – design rule “Result factors shear Fz” for penetrated joints 

 𝐹𝑧,1,𝑅𝑑 ∗ 𝐿1 = 𝟏. 𝟕 ∗
𝑘𝑝∗𝑓𝑦0∗𝑡0∗𝑑1∗𝑑0

𝑠𝑖𝑛𝜃1
/𝛾𝑀5   (5.37) 

 
Table 39: Additional simulations geometries subjected to shear Fz 

Model  2𝛾 30  2𝛾 40  2𝛾 50 

Load 𝛽 2𝛿 
 Fz,FEA 

(kN) 
Fz,Rd 
(kN) RR 

Failure 
mech. 

 Fz,FEA 
(kN) 

Fz,Rd 
(kN) RR 

Failure 
mech. 

 Fz,FEA 
(kN) 

Fz,Rd 
(kN) RR 

Failure 
mech. 
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0.8 10  5979.6 1278 4.679  3  C ff  4515.2 719 6.280  3  C ff  3575.7 460 7.773  3  C ff 
0.8 15  5984.8 1278 4.683  3  C ff  4508.2 719 6.270  3  C ff  3604.7 460 7.836  3  C ff 
0.8 20  5958.8 1278 4.663  3  C ff  4477.4 719 6.227  3  C ff  3596.0 460 7.817  3  C ff 

                 

0.6 10  5644.4 5637 1.001  1  B bm  3725.5 390 9.553  3  C ff  2839.2 250 11.357  3  C ff 
0.6 15  4253.6 4032 1.055  1  B bm  3765.5 390 9.655  3  C ff  2912.7 250 11.651  3  C ff 
0.6 20  3219.9 3131 1.028  1  B bm  3203.3 3131 1.023  1  B bm  2926.8 250 11.707  3  C ff 
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Table 40: Results design rules for penetrated joints – shear Fz – varied geometrical parameters 
Model  FEA results  EC C ff  Result factors Fz 

𝛽 2𝛾 2𝛿 ex  Fz,FEA Infl 𝛽 Infl 2𝛾 Infl 2𝛿  Fz,Rd RR  Fz,Rd RR 
               

0.8 30 10 838  5979.6  1.324 0.999  1278 4.680  5840 1.024 
0.8 30 15 838  5984.8  1.327 1.004  1278 4.684  5840 1.025 
0.8 30 20 838  5958.8  1.330   1278 4.664  5840 1.020 

                
0.8 40 10 838  4515.2 1.212 1.262 1.001  719 6.283  4380 1.031 
0.8 40 15 838  4508.2 1.197 1.250 1.006  719 6.273  4380 1.029 
0.8 40 20 838  4477.4  1.245   719 6.230  4380 1.022 

                
0.8 50 10 838  3575.7 1.197  0.991  460 7.774  3504 1.020 
0.8 50 15 838  3604.7 1.238  1.002  460 7.837  3504 1.029 
0.8 50 20 838  3596.0 1.229  1.012  460 7.818  3504 1.026 
0.8 50 30 838  3551.3     460 7.721  3504 1.013 

                
0.6 40 10 792  3725.5  1.247 0.989  390 9.542  3413 1.092 
0.6 40 15 792  3765.5  1.292   390 9.645  3413 1.103 

                
0.6 50 10 792  2839.2   1.025  250 11.363  2731 1.040 
0.6 50 15 792  2912.7   0.995  250 11.657  2731 1.067 
0.6 50 20 792  2926.8     250 11.713  2731 1.072 

               
         Mean 7.859 Mean 1.041 
         Lowest 4.664 Lowest 1.013 
         Highest 11.713 Highest 1.103 

 
Table 41: Results design rules for penetrated joints – shear Fy – varied eccentricity ex 

Model  FEA results  EC C ff  Result factors Fz 
𝛽 2𝛾 2𝛿 ex  Fz,FEA Infl 𝛽 Infl 2𝛾 Infl 2𝛿  Fz,Rd RR  Fz,Rd RR 

               

0.8 50 10 587  4258.9 1.207    657 6.484  4414 0.965 
0.8 50 10 838  3575.7 1.197    460 7.774  3504 1.020 
0.8 50 10 1038  3100.4 1.325    371 8.347  3011 1.030 

                
0.6 50 10 587  3528.8     337 10.461  3310 1.066 
0.6 50 10 792  2839.2     250 11.363  2731 1.040 
0.6 50 10 1038  2340.7     191 12.270  2258 1.037 

               
         Mean 9.450 Mean 1.026 
         Lowest 6.484 Lowest 0.965 
         Highest 12.270 Highest 1.066 

 

    
Figure 47: Results design rules for penetrated joints – Shear Fz 

  
Figure 46: CHS X-joint subjected to shear Fz 
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5.4.3 Verification of the failure mechanisms 
In Table 42 and Table 43 the results of the verification procedure for the governing failure mechanisms as 

determined by the existing and new set of design rules, are shown. For the existing design set, of which the results 

are shown in Table 42, the non-penetrated EC chord face failure design rule is used, which is replaced by the 

“Result factors shear Fz” design rule for shear (Fz) (Equation 5.37) for the improved set of design rules for 

penetrated geometries (Table 43). Table 42 shows that with the existing EC design rules, an incorrect governing 

failure mechanism is predicted, while for the improved design rules for penetrated joints, most of the failure 

mechanisms are predicted correct, as can be seen in Table 43. For this set of design rules, only two failure 

mechanisms are predicted wrong, and for these geometries the design rule for chord face failure is slightly 

conservative, causing a failure mechanism with almost the same plastic design resistance to be selected as 

governing.  

5.4.4 Conclusion design rule shear Fz  
It can be concluded that for the penetrated CHS X-joints subjected to shear Fz (chord torsional moment), the 

existing EC design rules for non-penetrated joints, with an average of 7.86 and 9.45, underestimate the plastic 

capacity of penetrated CHS X-joints significantly. Therefore, an new design rule “Result factors shear Fz” is created, 

which is provided in Equation 5.37. With this new design rules for penetrated joints, the plastic capacity of the 

penetrated joints is approximated very well, as follows from an average RR of approximately 1.04.  

Additionally it is concluded from the verification of the failure mechanisms, that for the set of design rules in 

which the new design rules for penetrated joints is included, not only the plastic design resistance is in accordance 

with the capacity observed in FEA, but also the calculated governing failure mechanisms often corresponds with 

the failure mechanism observed in FEA. It is therefore proposed to use the new design rule “Result factors shear 

FZ”, which is given in Equation 5.37, to calculate the design resistance of penetrated CHS X-joints subjected to 

shear in Z-direction.  

 
Table 42: Failure mechanism calculation results for existing EC design rules for non-penetrated joints 
Model  𝜷 0.8  𝜷 0.6  𝜷 0.4  𝜷 0.2 

   EC FEA  EC FEA  EC FEA  EC FEA 

2𝛾 2𝛿  Fz,Rd Failure 
mode 

Fz,FEA Failure 
mode 

 Fz,Rd Failure 
mode 

Fz,FEA Failure 
mode 

 Fz,Rd Failure 
mode 

Fz,FEA Failure 
mode 

 Fz,Rd Failure 
mode 

Fz,FEA Failure 
mode (-) (-)  (kN) (kN)  (kN) (kN)  (kN) (kN)  (kN) (kN) 

                      

10 10  6924  2  C ps 11467  1  B bm  4120  2  C ps    2070  2  C ps    559  1  B bm 519  1  B bm 

10 30  4342  1  B bm 4166  1  B bm  2160  1  B bm    890  1  B bm    214  1  B bm 190  1  B bm 
10 50  2677  1  B bm 2480  1  B bm  1332  1  B bm    549  1  B bm    132  1  B bm 113  1  B bm 

                      

30 10  1278  2  C ff 5980  3  C ff  694  2  C ff 5644  1  B bm  398  2  C ff 2558  1  B bm  199  2  C ff 581  1  B bm 

30 30  1278  2  C ff 4244  1  B bm  694  2  C ff 2156  1  B bm  398  2  C ff    199  2  C ff 217  1  B bm 

30 50  1278  2  C ff 2553  1  B bm  694  2  C ff    398  2  C ff    132  1  B bm 133  1  B bm 
                      

50 10  460  2  C ff 3576  3  C ff  250  2  C ff 2986  3  C ff  143  2  C ff 2342  1  B bm  72  2  C ff 569  1  B bm 

50 30  460  2  C ff 3551  3  C ff  250  2  C ff 2156  1  B bm  143  2  C ff    72  2  C ff 215  1  B bm 

50 50  460  2  C ff 2596  1  B bm  250  2  C ff     143  2  C ff    72  2  C ff 132  1  B bm 

 
Table 43: Failure mechanism calculation results for new design rules for penetrated joints 
Model  𝜷 0.8  𝜷 0.6  𝜷 0.4  𝜷 0.2 

   EC / Pen FEA  EC / Pen FEA  EC / Pen FEA  EC / Pen FEA 

2𝛾 2𝛿  Fz,Rd Failure 
mode 

Fz,FEA Failure 
mode 

 Fz,Rd Failure 
mode 

Fz,FEA Failure 
mode 

 Fz,Rd Failure 
mode 

Fz,FEA Failure 
mode 

 Fz,Rd Failure 
mode 

Fz,FEA Failure 
mode (-) (-)  (kN) (kN)  (kN) (kN)  (kN) (kN)  (kN) (kN) 

                      

10 10  11332  1  B bm 11467  1  B bm  5637  1  B bm    2322  1  B bm    559  1  B bm 519  1  B bm 
10 30  4342  1  B bm 4166  1  B bm  2160  1  B bm    890  1  B bm    214  1  B bm 190  1  B bm 
10 50  2677  1  B bm 2480  1  B bm  1332  1  B bm    549  1  B bm    132  1  B bm 113  1  B bm 

                      

30 10  5840  3  C ff 5980  3  C ff  4551  2  C ff 5644  1  B bm  2322  1  B bm 2558  1  B bm  559  1  B bm 581  1  B bm 

30 30  4342  1  B bm 4244  1  B bm  2160  1  B bm 2156  1  B bm  890  1  B bm    214  1  B bm 217  1  B bm 
30 50  2677  1  B bm 2553  1  B bm  1332  1  B bm    549  1  B bm    132  1  B bm 133  1  B bm 

                      

50 10  3504  3  C ff 3576  3  C ff  2731  2  C ff 2986  3  C ff  1974  2  C ff 2342  1  B bm  559  1  B bm 569  1  B bm 

50 30  3504  3  C ff 3551  3  C ff  2160  1  B bm 2156  1  B bm  890  1  B bm    214  1  B bm 215  1  B bm 
50 50  2677  1  B bm 2596  1  B bm  1332  1  B bm     549  1  B bm    132  1  B bm 132  1  B bm 
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5.5 COMBINATION OF LOAD CASES 

5.5.1 Introduction 
In addition to the standard load cases, the behavior of CHS X-joints is analyzed for two combined load cases. The 

performance and validity of the newly created design rules for joint failures in penetrated geometries are 

evaluated for these combined load cases. Furthermore it is checked, whether the design rule provided in the EC 

for the combination of load cases as given in Equation 2.11, can be applied for the new design rules for penetrated 

joints as well. In this design rule, the unity checks, i.e. the ratios between the design values and the design 

resistances, of the normal force in the brace (Fx) and bending moments on the brace about the Y- (My) and Z- (Mz) 

axis are used. However, since the newly created design rules for joint failures of penetrated geometries are 

created for tension/compression and a shear force in Y- or Z-direction, the design rule from the EC (Equation 2.11) 

is converted so the unity checks from the new design rules can be used.  

The resulting converted design rule for joint failures of penetrated geometries subjected to a combination of 

loads, is provided in Equation 5.38. To verify the results from this combination rule, when using the design 

resistances obtained with the new design rules for penetrated joints proposed in this research, the resistance 

ratios are used and entered in the combination rule, instead of the unity checks. The true capacity of the joints 

subjected to combined loads is in that case, approximated correctly (i.e. safely) by the design rules, if the resulting 

Resistance Ratio (RR) is equal or above 1.0. The formula for the resistance ratio is given in Equation 5.39.  

In this paragraph, first the combination of shear Fy and shear Fz is analyzed, and secondly the combination of 

single-sided tension (Fx), shear Fy and shear Fz is analyzed. For both combinations, first the FEA results are 

compared with the existing EC design rules for non-penetrated joints and next with the improved design rules for 

penetrated joints. In this paragraph only the comparisons between FEA and the design rules are shown in the 

tables. A total overview of the FEA results for both load combinations are given in Appendix E.  

The non-penetrated comparisons are performed to get an indication of the conservatism of the existing EC design 

rules for non-penetrated joints, applied to penetrated geometries. The geometries for which the combination 

design rule is analyzed are (𝛽 0.8, 2𝛾 30/40/50, 2𝛿 10), for these geometries, joint failures are governing for the 

individual load cases. In the FEA, the models are subjected to displacements of 100 mm in the indicated directions. 

 

Converted design rule for the combination compression/tension & shear in Fy and Fz  

 
𝑁𝑥,1,𝐸𝑑

𝑁𝑥,1,𝑅𝑑
+ [

𝐹𝑦,1,𝐸𝑑

𝐹𝑦,1,𝑅𝑑
]

2

+
|𝐹𝑧,1,𝐸𝑑|

𝐹𝑧,1,𝑅𝑑
≤ 1,0,   (5.38) 

Resistance ratio for the validation of the converted design rule in 5.38 

 
𝑁𝑥,1,𝐹𝐸𝐴

𝑁𝑥,1,𝑅𝑑
+ [

𝐹𝑦,1,𝐹𝐸𝐴

𝐹𝑦,1,𝑅𝑑
]

2

+
|𝐹𝑧,1,𝐹𝐸𝐴|

𝐹𝑧,1,𝑅𝑑
≥ 1,0,   (5.39) 

where 𝑁𝑥,1,𝐸𝑑 , 𝐹𝑦,1,𝐸𝑑 , 𝐹𝑧,1,𝐸𝑑 , are the design values for single-sided compression or tension (Fx), shear in Y-direction 

(Fy) and shear in Z-direction (Fz), 𝑁𝑥,1,𝑅𝑑 , 𝐹𝑦,1,𝑅𝑑 , 𝐹𝑧,1,𝑅𝑑 , are the plastic design resistances from the design rules for 

single-sided compression or tension (Fx), Shear in Y-direction (Fy) and shear in Z-direction (Fz), and 

𝑁𝑥,1,𝐹𝐸𝐴, 𝐹𝑦,1,𝐹𝐸𝐴, 𝐹𝑧,1,𝐹𝐸𝐴, are the plastic capacity for single-sided compression or tension (Fx), Shear in Y-direction 

(Fy) and shear in Z-direction (Fz) obtained from FEA. 

 

5.5.2 Combination of Shear Fy and Shear Fz 

5.5.2.1 Introduction 

For the load combination of shear Fy and shear Fz, a representation in 

which the location and directions of the applied displacements are 

shown in Figure 48. In this paragraph, first the combination check is 

performed using the existing EC design rules for non-penetrated 

joints, and next using the new design rules for penetrated joints. The 

plastic design resistances obtained with the design rules will be 

entered as the denominators in Equation 5.39. Since no tension or 

compression is imposed on the brace, the first ratio in Equation 5.39 

is omitted and only 𝐹𝑦,1,𝑅𝑑  and 𝐹𝑧,1,𝑅𝑑 will be used. Figure 48: X-joint subjected to shear Fy & Fz 
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5.5.2.2 Existing EC design rules for non-penetrated joints 

In Table 44 the results of the FEA and the design rules are shown. From left to right the geometrical parameters, 

the plastic capacity according to FEA, the plastic design resistances to shear (FY) and shear (Fz) as derived from 

the resistances to a bending moment in plane and out of plane, respectively, and the final RR for the combination 

rule are provided. The plastic capacity obtained from FEA are decomposed and provided in the Y-direction (Fy) 

and Z-direction (Fz). In the same rows, the plastic design resistances as calculated with the existing EC design rules 

for non-penetrated joints and the associated RR are given. The existing EC design rules for non-penetrated chord 

face failure (EC C ff) are applied, for which the moment design rules, as provided in Equation 2.7 and 2.8, are 

divided by 𝑒𝑥, the eccentricity of the shear force with respect to the chord center axis. In the last column, under 

“Combined RR”, the check for the combined resistance ratio, as provided in Equation 5.39, is applied. In this 

column it can be seen for each geometrical parameter configuration, to what extent the FEA capacity of the 

penetrated X-joint is approached by the design resistance according to the applied design set. At the bottom of 

the table, it can be seen that for these geometrical parameter configurations subjected to a combination of shear 

Fy and shear Fz, an average, lowest and highest RR is found of 22.2, 17.3, and 26.0, respectively. This means that 

the true plastic capacity of penetrated configurations are approximated very conservatively by the existing EC 

design rules for non-penetrated joints, and that plastic design resistances may have been obtained that are 22 

times as high.  

5.5.2.3 New design rules for penetrated joints 

The improved design rules for penetrated joints are analyzed in a similar way as the EC design rules for non-

penetrated joints. The results are shown in Table 45. For the combined design check, the new design rules for 

penetrated joints for shear Fy and shear Fz, which are provided in Equation 5.36 and 5.37, are applied. In the table, 

resistance ratios (RR) below 1.0 can be observed for the individual design rules. Though in normal cases, a RR 

value below 1 is undesired and considered unsafe, it is easily explainable and acceptable in this situation. The 

design rule calculates the plastic design resistance for joints subjected to merely a force in a single particular 

direction, while the capacity according to the FEA in these tables, is actually obtained for joints subjected to the 

evaluated load combination. Since the plastic capacity of the joint in a certain direction, is influenced by all 

imposed loads, it will be smaller as the capacity observed when subjected to only one of them, and therefore a 

partial RR below 1.0 is obvious and allowed, as long as the combined RR is above 1.0. When evaluating the 

combined RR, shown in the last column of the table, an average, lowest and highest combined RR of 1.34, 1.24, 

and 1.41, are found respectively. This means that the design rules has an average safety of 34%. 
 

Table 44: Results existing EC design rules for non-penetrated joints – combination shear Fy and shear Fz 

Model  FEA results  ECC ff Mip,1,Rd (Fy)  ECC ff Mop,1,Rd (Fz)  Combined RR 

𝛽 2𝛾 2𝛿 ex   F1,FEA  Fy,1,Rd RR  Fz,1,Rd RR  (Fy,1,FEA/Fy,1,Rd)2 + 
Fz,1,FEA/Fz,1,Rd               

0.8 30 10 838 
 Fy 9676.8  2503 3.866         
 Fz 2962.4      1278 2.319   17.265 

                    

0.8 40 10 838 
 Fy 7326.5  1626 4.506         
 Fz 2226.9      719 3.099   23.407 

                    

0.8 50 10 838 
 Fy 5544.7  1163 4.766         
 Fz 1513.1      460 3.290   26.007 

                

       Mean 4.380 Mean 2.902 Mean 22.226 
       Lowest 3.866 Lowest 2.319 Lowest 17.265 
       Highest 4.766 Highest 3.290 Highest 26.007 

 

Table 45: Results design rules for penetrated joints – combination shear Fy and shear Fz 
Model  FEA results  PenC ff Shear Fy  PenC ff Shear Fz  Combined RR 

𝛽 2𝛾 2𝛿 ex   F1,FEA  Fy,1,Rd RR  Fz,1,Rd RR  (Fy,1,FEA/Fy,1,Rd)2 + 
Fz,1,FEA/Fz,1,Rd               

0.8 30 10 838 
 Fy 9676.8  10306 0.939         
 Fz 2962.4      5840 0.507   1.389 

                    

0.8 40 10 838 
 Fy 7326.5  7730 0.948         
 Fz 2226.9      4380 0.508   1.407 

                    

0.8 50 10 838 
 Fy 5544.7  6184 0.897         
 Fz 1513.1      3504 0.432   1.236 

                

       Mean 0.928 Mean 0.482 Mean 1.344 
       Lowest 0.897 Lowest 0.432 Lowest 1.236 
       Highest 0.948 Highest 0.508 Highest 1.407 



 

 5. Design rules Marc Nijenhuis | 1264311 

61 

5.5.3 Combination of Tension (Fx), Shear Fy and Shear Fz 

5.5.3.1 Introduction 

In Figure 49 a representation is shown of a penetrated CHS X-joint 

subjected to a combination of tension (Fx), shear Fy, and shear Fz. 

First the results from the FEA will be compared with the design 

resistances obtained with the existing EC design rules for non-

penetrated joints, and next, the same analysis will be performed 

for the set of design rules for penetrated joints in which the new 

design rules created in this graduation research, are included. To 

obtain the overall RR for combined load cases, Equation 5.39 is 

used.  

 

5.5.3.2 Existing EC design rules for non-penetrated joints 

Table 46 shows the results for the geometrical parameter configurations subjected to a combination of tension 

(Fx), shear Fy, and shear Fz. In the table, next to the plastic capacity obtained from FEA, the design resistances 

according to the three relevant EC design rules are given; the EC design rule for chord face failure of non-

penetrated geometries subjected to tension Fx (ECC ff N1,Rd (Fx)), an in-plane bending moment (ECC ff Mip,1,Rd 

(converted to shear Fy)) and an out-of-plane bending moment (ECC ff Mop,1,Rd (converted to shear Fz)), for which 

the EC design rules for non-penetrated joints are provided in Equation 2.5, 2.7 and 2.8. In the column “Combined 

RR”, it can be seen that for the geometrical parameter configurations, a combined RR is obtained with an average, 

lowest and highest value of 21.0, 16.5, and 25.5, respectively. This means that the plastic design resistances 

calculated with the EC design rules for non-penetrated joints could, on average, be 21 times as high. 

 

5.5.3.3 New design rules for penetrated joints 

In a similar way as done for the EC design rules for non-penetrated joints, the results obtained with the new design 

rules for penetrated joints are evaluated, of which the results are shown in Table 47. The single-sided tension (Fx) 

design rule, as given in Equation 5.33, the design rule for shear Fy, as given in Equation 5.36, and the design rule 

for shear Fz, as given in Equation 5.37, are applied. In Table 47, it can be seen that again the partial resistance 

ratios are below 1.0, as also was seen in Table 45 for the combined load case shear Fy and Fz. However, as 

explained in Paragraph 5.5.2.3, this is due to the interaction of the different load cases and the influence that has 

on the plastic capacity observed in FEA. It can be seen that the combination of the design rules for the geometrical 

configurations, results in an average, lowest and highest RR of 1.79, 1.71, and 1.86, respectively, which means 

that the combined design rules has an average safety factor of 79%. 

 
Table 46: Results EC design rules for non-penetrated joints – combination single-sided tension (Fx), shear Fy and shear Fz 

Model  FEA results  ECC ff N1,Rd (Fx)  ECC ff Mip,1,Rd (Fy)  ECC ff Mop,1,Rd (Fz)  Combined RR 
𝛽 2𝛾 2𝛿 ex   N/F1,FEA  Nx,1,Rd RR  Fy,1,Rd RR  Fz,1,Rd RR  Nx,1,FEA/Nx,1,Rd + 

(Fy,1,FEA/Fy,1,Rd)2 + 
Fz,1,FEA/Fz,1,Rd 

                 

     Nx 4471.8  4680 0.956          

0.8 30 10 838  Fy 9174.1      2503 3.665        
     Fz 2650.5          1278 2.075   16.463 
                        

     Nx 3228.0  2788 1.158             
0.8 40 10 838  Fy 6762.7      1626 4.160         

     Fz 1887.9          719 2.627   21.087 
                        

     Nx 2439.1  1866 1.307             
0.8 50 10 838  Fy 5339.9      1163 4.590         

     Fz 1422.4          460 3.092   25.470 
                   
       Mean 1.140 Mean 4.138 Mean 2.598 Mean 21.007 
       Lowest 0.956 Lowest 3.665 Lowest 2.075 Lowest 16.463 
       Highest 1.307 Highest 4.590 Highest 3.092 Highest 25.470 

 

  

Figure 49: X-joint subjected to tension (Fx), 
and shear Fy & Fz 
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Table 47: Results design rules for penetrated joints – combination single-sided tension (Fx), shear Fy and shear Fz 
Model  FEA results  PenC ff Tens. Fx  PenC ff Shear Fy  PenC ff Shear Fz  Combined RR 

𝛽 2𝛾 2𝛿 ex   N/F1,FEA  Nx,1,Rd RR  Fy,1,Rd RR  Fz,1,Rd RR  Nx,1,FEA/Nx,1,Rd + 
(Fy,1,FEA/Fy,1,Rd)2 + 

Fz,1,FEA/Fz,1,Rd 

                 

     Nx 4471.8  7241 0.618          

0.8 30 10 838  Fy 9174.1      10306 0.890        
     Fz 2650.5          5840 0.454   1.864 
                        
     Nx 3228.0  5431 0.594             

0.8 40 10 838  Fy 6762.7      7730 0.875         
     Fz 1887.9          4380 0.431   1.791 
                        
     Nx 2439.1  4345 0.561             

0.8 50 10 838  Fy 5339.9      6184 0.864         
     Fz 1422.4          3504 0.406   1.713 
                   
       Mean 0.591 Mean 0.876 Mean 0.430 Mean 1.789 
       Lowest 0.561 Lowest 0.864 Lowest 0.406 Lowest 1.713 
       Highest 0.618 Highest 0.890 Highest 0.454 Highest 1.864 

 

5.5.4 Conclusion combined load cases 
For penetrated CHS X-joints subjected the a combination of compression/tension (Fx), and shear in the Y- (Fy) and 

Z- (Fz) direction, several checks have been performed. First a check for the load combination shear Fy and shear 

Fz is performed for the existing EC design rules for non-penetrated joints and the new design rules for penetrated 

joints. In a similar way, the checks have been performed for the load combination single-sided tension (Fx), shear 

Fy, and shear Fz.  

It can be concluded that the combination rule (Equation 5.38) can be used with both the existing EC design rules 

for non-penetrated joints, as well as the new design rules for penetrated joints, to check the design resistance to 

the load combination of shear Fy and shear Fz, as well as to the load combination single-sided tension (Fx), shear 

Fy, and shear Fz. 

However, for X-joints subjected to a combination of shear Fy and shear Fz, the existing EC design rules for non-

penetrated joints result in an average RR 22.2, which means that the design rule is very conservative and that the 

plastic design resistances could in fact be 22 times as high. Using the design rules for penetrated joints, an average 

RR of 1.34 is found, which means that the design rule will result in X-joints with an average overcapacity of 34%.  

For the combination of single-sided tension (Fx), shear Fy, and shear Fz, the existing EC design rules for non-

penetraetd joints result in average RR of 21.0, which means that the resistances predicted could on average be 

21 times higher. Using the new design rules for penetrated joints, an average RR of 1.79 is found, which means 

that with the new design rules a significant improvement in the approximation of the true capacity of CHS X-joints 

is obtained. 
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5.6 PENETRATED CHS X-JOINT DESIGN CHECKS 

5.6.1 Introduction 
To provide a complete overview of the various design checks to be performed, a calculation sheet has been 

created that includes the checks for joint, chord and brace failure mechanisms. The sheet from Witteveen+Bos, 

which was provided upon the start of this graduation project, has been used as the basis for this calculation sheet. 

This sheet contains the design checks for the brace and is, for the purpose of the calculation sheet supplemented 

by the design checks for the chord and joint failures. In this paragraph, the calculation sheet and the used design 

rules are explained. Furthermore, an extra calculation sheet is created for the casus of the mooring bollard from 

Witteveen+Bos, in which eccentricities are allowed for the application point of the imposed loads. The calculation 

sheet for penetrated CHS X-joints by which the design resistances for various load combinations are calculated 

for a certain geometrical parameter configuration is provided in Appendix G.1 and in Appendix G.2 the calculation 

sheet to verify the mooring bollard from Witteveen+Bos model is provided. 

5.6.2 Penetrated CHS X-joint calculation sheet 
For the computation of the plastic design resistance of a penetrated CHS X-joint, a calculation sheet is created 

that is divided into three parts. In the first part, the Design values are calculated, in the second part an overview 

of the material and sectional properties is given and in the third part the design checks are executed. Table 48 

shows the first part concerning the design values, in which the applied load (𝐹𝐸𝑑) , the eccentricity of the 

application point of the force the X-direction with respect to the chord axis (𝑒𝑥), and the chord length (𝐿0) can be 

filled in. Based on these parameters, the load is applied in 5 directions in the horizontal plane (0°, 45°, 90°, 135° 

and 180°), and in 3 directions the in vertical plane (m = 0°, t = + 45°, b = -45°), causing the load to be applied to 

the brace in fifteen different directions. The applied load is then decomposed into the following axial loads and/or 

moments acting on the brace member: axial force (𝑁𝐸𝑑), shear force in Y- and Z-direction (𝑉𝑦,𝐸𝑑 , 𝑉𝑧,𝐸𝑑), bending 

moment about the Z- and Y-axis (𝑀𝑧,𝐸𝑑, 𝑀𝑦,𝐸𝑑). Additionally, the sum of the bending moments (∑𝑀𝑦,𝑧,𝐸𝑑), and the 

bending moment acting on the chord (𝑀𝑐ℎ𝑜𝑟𝑑) are calculated and provided. 

In the second part “Input material and sectional properties” the yield (𝑓𝑦) and ultimate (𝑓𝑢) strength, the chord 

and brace diameter and wall thickness (𝑑0;1, 𝑡0;1) and the joint properties (𝑛𝑝, 𝜃1, 𝑎𝑛𝑑 𝛾𝑀5) must be filled in. With 

these inputs, the material and sectional properties of the chord and brace member and the joint itself are 

calculated. For the material properties the yield strength (𝑓𝑦), tensile strength (𝑓𝑢), reduced yield strength for 

shear and torsion (𝑓𝑦,𝜏), and partial safety factor M0 (𝛾𝑀0) are calculated. For the sectional chord and brace 

properties the diameters (𝑑0;1), wall thicknesses (𝑡0;1), corrosion depth, effective diameters and wall thicknesses 

after reduction for corrosion (𝑑′, 𝑡′) and diameter over thickness ratio for both members (2𝛾 ;  2𝛿) are given. 

Furthermore, the steel class, area (𝐴), shear area (𝐴𝑣), point of gravity, and the mechanical properties, i.e. the 

elastic and plastic section modulus (𝑊𝑒𝑙 , 𝑊𝑝𝑙), torsional modulus (𝑊𝑇), second moment of area (𝐼𝑧 ; 𝐼𝑦) and the 

polar moment of inertia (𝐼𝑝) are included for both the chord and the brace. To calculate the joint failures, the 

properties 𝛽, 𝑛𝑝  and 𝑘𝑝 , which takes into account the compression stresses in the chord member, the angle 

between the chord and the brace (𝜃1) and partial safety factor M5 (𝛾𝑀5) are added. 
 

Table 48: Calculation of the Design values 
Design values 

          

FEd 2190 kN ex 0.65 m L0 5.18 m  
          

nr αh αv NEd Vy,Ed Vz,Ed Mz,Ed My,Ed ∑My,z Mchord 
[-] [°] [°] [kN] [kN] [kN] [kNm] [kNm] [kNm] [kNm] 

          

m1 0 0 -2190 0 0 0 0 0 1418 
m2 45 0 -1548 0 1548 0 1006 1006 1003 
m3 90 0 0 0 2190 0 1423 1423 0 
m4 135 0 1548 0 1548 0 1006 1006 1003 
m5 180 0 2190 0 0 0 0 0 1418 

          

t1 0 45 -1548 1548 0 1006 0 1006 1003 
t2 45 45 -1095 1548 1095 1006 712 1233 709 
t3 90 45 0 1548 1548 1006 1006 1423 0 
t4 135 45 1095 1548 1095 1006 712 1233 709 
t5 180 45 1548 1548 0 1006 0 1006 1003 

          

b1 0 -45 -1548 -1548 0 -1006 0 1006 1003 
b2 45 -45 -1095 -1548 1095 -1006 712 1233 709 
b3 90 -45 0 -1548 1548 -1006 1006 1423 0 
b4 135 -45 1095 -1548 1095 -1006 712 1233 709 
b5 180 -45 1548 -1548 0 -1006 0 1006 1003 
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In the third part of the sheet, named “Design checks” which is shown in Table 49, the calculations for the brace, 

chord and joint design resistances are provided. For the calculation of the design resistances to gross cross-section 

failures of the chord and brace, the formulas as provided in chapter 6 from the NEN-EN 1993-1-1 are applied. [17] 

The resistances of the chord and brace cross-section are checked for the acting normal force (𝑁𝐸𝑑), Bending 

moment (𝑀𝐸𝑑) , Shear force (𝑉𝐸𝑑) , torsional moment (𝑇𝐸𝑑) , combination of torsion and shear (𝑉𝑝𝑙,𝑇,𝐸𝑑) , 

combination of bending moment and normal force (𝑀𝑁,𝑝𝑙,𝐸𝑑) and a combination of bending moment, shear force 

and normal force. For the calculation of the gross cross-section resistance of the brace, the torsional moment and 

combination of torsional moment and shear have been omitted, since these load combinations are not present 

in the brace member.  

The normal force can be checked for a tension and compression force, for which in chapter 6.2.3 and 6.2.4 from 

the EC is stated that the design value of the normal force (𝑁𝐸𝑑) must be equal to or smaller than the plastic design 

resistance of the gross cross-section (𝑁𝑝𝑙,𝑅𝑑). The plastic design resistance of the gross cross-section can be 

calculated by multiplying the area (𝐴) with the yield strength (𝑓𝑦) divided by the partial safety factor (𝛾𝑀0).  

The design resistance check of the bending moment is provided in EC chapter 6.2.5, in which it is stated that the 

design value of the bending moment (𝑀𝐸𝑑) must be equal to or smaller than the plastic design resistance to a 

bending moment (𝑀𝑝𝑙,𝑅𝑑). The plastic design moment resistance can be calculated by multiplying the plastic 

section modulus (𝑤𝑝𝑙) with the yield strength (𝑓𝑦) and the division by the partial safety factor (𝛾𝑀0). 

The shear force is calculated in the same manner, the design value of the shear force (𝑉𝐸𝑑) must be equal to or 

smaller than the plastic design shear resistance (𝑉𝑝𝑙,𝑅𝑑), as provided in chapter 6.2.6. The plastic design shear 

resistance can be calculated by multiplying the shear area (𝐴𝑣) by the reduced yield strength for shear and torsion 

(𝑓𝑦,𝜏) and dividing it by the partial safety factor (𝛾𝑀0). The shear area for circular hollow sections is two times the 

area divided by 𝜋, and the reduced yield strength for shear and torsion can be calculated by dividing the yield 

strength (𝑓𝑦) by the square root of 3 (√3). [18] 

Torsion is approached in the same way as shear, as stated in chapter 6.2.7, the torsional design value (𝑇𝐸𝑑), also 

called (𝑀𝑥), must be equal to or less than the torsional design resistance of the cross-section (𝑇𝑅𝑑). In the 

calculation sheet, the torsional design resistance is calculated by multiplying the torsional modulus (𝑊𝑇) with the 

reduced yield strength (𝑓𝑦,𝜏) and dividing it by the partial safety factor (𝛾𝑀0). Where the torsional section modulus 

(𝑊𝑇) equals two times the elastic section modulus (𝑊𝑒𝑙).  

The combined torsional moment and shear force can be checked by dividing the design value of the shear force 

(𝑉𝐸𝑑) by the plastic shear resistance that is reduced due to the effects of the imposed torsional moment (𝑉𝑝𝑙,𝑇,𝑅𝑑), 

as provided in EC chapter 6.2.7. For the reduced plastic shear resistance, the NEN-EN 1993-1-1 gives the following 

formula: 

 𝑉𝑝𝑙,𝑇,𝑅𝑑 = [1 −
𝜏𝑡,𝐸𝑑

𝑓𝑦 √3⁄ 𝛾𝑀0⁄
] ∗ 𝑉𝑝𝑙,𝑅𝑑 ,  (5.40) 

where the torsional shear stress (𝜏𝑡,𝐸𝑑) is calculated by multiplying the torsional design value (𝑇𝐸𝑑) with the radius 

(𝑟) and dividing that by the polar moment of inertia (𝐼𝑝 = 2 ⋅ 𝐼𝑦;𝑧) [17] 

The combination of a bending moment and an axial force can be checked by dividing the design value of the 

bending moment (𝑀𝐸𝑑) by 𝑀𝑁,𝑅𝑑 , for which, in the NEN-EN 1993-1-1 Dutch national annex [19] the following 

formula is given: 

 𝑀𝑁,𝑅𝑑 = 𝑀𝑝𝑙,𝑅𝑑 ∗ 1,04 ∗ [1 − (𝑁𝐸𝑑 𝑁𝑝𝑙,𝑅𝑑⁄ )
1.7

],    (5.41) 

Where 𝑀𝑝𝑙,𝑅𝑑  is the plastic moment resistance, 𝑁𝐸𝑑 the normal force design value and 𝑁𝑝𝑙,𝑅𝑑 the plastic normal 

force design resistance.  

For the design check of the interaction between the bending moment, shear force and normal force the Dutch 

national annex of the NEN-EN 1993-1-1 [19] gives the following formula: 

 
𝑀𝐸𝑑

1,04∗
𝑞∗𝑀𝑝𝑙,𝑅𝑑

𝛾𝑀0

+ (
𝑁𝐸𝑑

𝑞∗𝑁𝑝𝑙,𝑅𝑑

𝛾𝑀0

)

1,7

≤  1.0 ,  (5.42) 

where: 

 𝑞 = 1,03 ∗ √1 − (
𝑉𝐸𝑑

𝑉𝑝𝑙,𝑅𝑑
)

2

.  (5.43) 

Where q represents a reduction factor based on the shear force present in the member. [19] 
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Next to checks for basic cross-section failures, joint failures are checked using the new design rules for penetrated 

joints as presented in this research. The design rule “Stress pattern 2b”, as provided in Equation 5.33, is calculate 

the design resistance to single-sided tension/compression (Fx), and for the design resistance to shear in the Y-

direction (Fy) and Z-direction (Fz), Equation 5.36 and Equation 5.37 are applied, respectively. Finally, Equation 

5.38, is used to check the resistance joint failures under combined loads. 

From the different chord and brace gross cross-section calculations and the joint failure calculations, the 

governing UC is provided as the final line of the calculation sheet.  

 
Table 49: Design checks chord gross cross-section and joint failures 

Chord gross cross-section  Joint failures 
     
Normal force (article 6.2.3)  Chord face failure tension (Fx) 
NEd   NEd Input (NEd) 
Npl,Rd fy*A/γM0  PenCff,x 1.1*(kp*fy0*t0*d1*fδ*fβ)/sinθ1/γM5 

UCpl NEd/Npl,Rd  fδ 1+(50-2δ)/200 
   fβ (sin(0.65*β*π)-β+0.8) 
Bending moment (article 6.2.5)  UCCff,x NEd/Pencff,x 
MEd,resultant     
Mpl,Rd fy*Wpl/γM0   

UCpl MEd/Mpl,Rd  Chord face failure shear Fy 
   Vy,Ed,1 Input (Vy,Ed) 
Shear force (article 6.2.6)  PenCff,y 3*(kp*fy0*t0*d1*d0)/(L1*sinθ1)/γM5 
VEd,resultant √(Vz,Ed²+Vy,Ed²)  UCCff,y Vy,Ed/Pencff,y 
τv,Ed  VEd*sqrt(3)/Av   
τv,Ed  V*S/I*t = VEd*A/2*agrav/tcalc*2*Iy    
Vpl,Rd Av*fy,τ  Chord face failure shear Fz 

UCpl VEd/Vpl,Rd  Vz,Ed,1 Input (Vz,Ed) 
   PenCff,z 1.7*(kp*fy0*t0*d1*d0)/(L1*sinθ1)/γM5 
Torsion (article 6.2.7)  UCCff,z Vz,Ed/Pencff,z 
TEd Input (My,Ed)    
τt,Ed  TEd*r/Ip    
Tpl,Rd WT*fy    

UCpl TEd/Tpl,Rd    
     

Combination of torsion with shear force (article 6.2.7.9)    
Vpl,T,Rd [1-(τt,Ed/fy,τ)*Vpl.Rd    

UCpl VEd/Vpl,T,Rd    
     

Combination bending and normal force (article 6.2.9.1)    
MEd,resultant     
MN,pl,Rd Mpl,Rd*1,04*(1-(NEd/Nc,Rd)1,7)    

UCpl MEd,res/MN,pl,Rd    
     

Combination bending, shear and normal force (article 6.2.10)  Combination tension (Fx), shear Fy and Fz 
q 1,03*√(1-(VEd/Vpl,Rd)²)  UC UCCff,x+(UCCff,y)2+UCCff,z 

UCpl MEd/(1,04*(q*Mpl,Rd/γM0))+(NEd/(q*Npl,Rd/γM0))1,7    
     

UCChord gross cross-section  UCjoint failures 

 

5.6.3 Combination design rule torsional moment and shear 
The calculation sheet is validated by FE simulations for different geometrical parameter configurations and load 

cases. In the calculation sheet the maximum plastic design resistance can be derived by making use of the “solver” 

function in Excel, which in this case, increases or decreases the applied force till the governing UC equals 1.0. The 

plastic design resistances are compared with the plastic capacity obtained from FEA, where in most cases, the 

plastic capacity and the corresponding failure mechanisms are approximated quite well.  

However, it has also been found that specifically for geometries loaded in shear Fz (chord torsional moment), a 

failure mechanism appears to be governing that was not taken into account in the parameter study: failing of the 

chord member due to a combination of a torsional moment and shear, as described in the NEN-EN 1993-1-8 [2] 

article 6.2.7.9. This failure mechanism was not included in the parameter study, as initially the failure mechanism 

did not appear to be governing, and the plastic design resistance (VT,Rd) to be calculated, depends on the design 

value of the shear force (Vz,Ed), and could therefore not be calculated manually in advance. 
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Figure 51: Geometry Von Mises stresses 

 

An example of a geometrical parameter configuration where this load combination is governing is 𝛽 0.8 − 2𝛾 50 −

2𝛿 10. In Figure 51 the Von Mises stresses from Abaqus are shown and in Figure 49 the corresponding load-

displacement graph is given. 

In the graph it can be seen that for this geometry, a plastic capacity of 3575 kN is reached. Bases on the principles 

for identifying the governing failure mechanism as outlined in Paragraph 4.3, chord face failure was assumed to 

be the governing failure mechanism for this geometry during the parameter study. Based on this result, and the 

other geometrical configurations failing on chord face failure, the design rules for penetrated joints for CHS X-

joints subjected to shear Fz (chord torsional moment) is created, which for this specific geometry predicts a plastic 

design resistance of 3628 kN.  

When using the calculation sheet, a governing plastic design resistance of 2190 kN is found instead, since also the 

design resistance to failure in a combination of a torsional moment and shear is calculated. However, when 

comparing this governing plastic design resistance to the true plastic capacity observed in FEA of 3575 kN, it is 

concluded that this true capacity is underpredicted significantly by the latter design rule (combination of torsional 

moment and shear) and approximated much better by the design resistance calculated with the new design rule 

for CFF in shear Fz. 

This comparison has also been performed for all other geometrical parameter configurations evaluated in 

Paragraph 5.4.1, from which it is concluded that the combination of a torsional moment and shear (C T+S), is 

governing for more parameter configurations, especially for the ones with a higher 𝛽 factor (0.6 or 0.8), since for 

these configurations, the brace and joint capacity are increased significantly due to the increase in brace diameter. 

This is illustrated for the parameter configurations with 𝛽 factor 0.8 in Table 50.  

 

For every geometrical parameter configuration in this table, it is checked whether the combination of torsional 

moment and shear would be governing over the failure mechanism that is initially predicted with the set of design 

rules for penetrated joints. This is done by calculating what the reduced plastic design resistance to C T+S (𝑉𝑝𝑙,𝜏,𝑅𝑑) 

according to Equation 5.41 would have been, if the plastic design resistance according to the set of design rules 

for penetrated joints, 𝐹𝑧,𝑅𝑑, would have been applied as 𝑉𝐸𝑑. With 𝑉𝐸𝑑 the torsional moment and corresponding 

stress are calculated and these are used to reduce the 𝑉𝑝𝑙,𝑅𝑑  to 𝑉𝑝𝑙,𝜏,𝑅𝑑 .  

For the parameter configurations for which then the ratio 𝐹𝑧,𝑅𝑑 𝑉𝑝𝑙,𝜏,𝑅𝑑⁄  is above 1.0, marked in Table 50, the 

plastic design resistance according to the design rules for penetrated joints can not be reached, since failure due 

to a C T+S will occur first. For these parameter configurations, the plastic design resistance for a combination of 

a torsional moment and shear is determined, by using the solver function in Excel to adjust the design value (𝑉𝐸𝑑) 

till the UC between this value and the reduced shear resistance (𝑉𝑝𝑙,𝜏,𝑅𝑑) becomes 1.0. The resulting value for 

𝑉𝑝𝑙,𝜏,𝑅𝑑 is given under “Design resist. 1 C T+S” (in which 1 refers to failure group 1).  Additionally, in the last column 

of the table, the resistance ratio between the plastic capacity obtained from FEA (𝐹𝑧,𝐹𝐸𝐴) and the approximated 

plastic design resistance for the failure due to a combination of a torsional moment and shear (𝑉𝑝𝑙,𝜏,𝑅𝑑), is shown. 

It can be seen that the failure mechanism “combination of torsional moment and shear” approximates plastic 

design resistances with RR’s of 1.19 to 1.69, which means that the calculated plastic design resistances should 

have been 19 to 69% higher.  

Figure 50: Load-displacement graph 
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Table 50: Results check combination torsional moment and shear 
    Check governing failure mechanism  Design resist. 1 C T+S 

Model  FEA  Set design rules pen.  1 C T+S  C T+S RR 

𝛽 2𝛾 2𝛿 
 Fz,FEA 

(kN) 
 Failure 

mech. 
Fz,Rd 
(kN) 

 Vpl,τ,Rd  (kN) Fz,Rd/Vτ,Rd  Vpl,τ,Rd  (kN) Fz,FEA / Vpl,T,Rd 

              

0.8 10 10  11467.4    1 B bm 11332.0  6412.2 1.77  9215.5 1.26 

0.8 10 30  4165.5    1 B bm 4341.5  15671.1 0.28    
0.8 10 50  2479.8    1 B bm 2676.6  17876.4 0.15    

              

0.8 30 10  5979.6    2 C ff 5840.3  650.1 9.30  3549.2 1.68 
0.8 30 15  5984.8    2 C ff 5840.3  650.1 9.30  3549.2 1.69 
0.8 30 20  5958.8    2 C ff 5840.3  650.1 9.30  3549.2 1.68 
0.8 30 30  4244.3    1 B bm 4341.5  2629.3 1.65  3549.2 1.20 

0.8 30 50  2552.9    1 B bm 2676.6  4562.2 0.59    
              

0.8 40 10  4515.2    2 C ff 4380.2  624.0 7.27  2708.8 1.67 
0.8 40 15  4508.2    2 C ff 4380.2  624.0 7.27  2708.8 1.66 
0.8 40 20  4477.4    2 C ff 4380.2  624.0 7.27  2708.8 1.65 

              

0.8 50 10  3575.7    2 C ff 3504.2  564.2 6.43  2189.8 1.63 
0.8 50 15  3604.7    2 C ff 3504.2  564.2 6.43  2189.8 1.65 
0.8 50 20  3596.0    2 C ff 3504.2  564.2 6.43  2189.8 1.64 
0.8 50 30  3551.3    2 C ff 3504.2  564.2 6.43  2189.8 1.62 
0.8 50 50  2595.7    1 B bm 2676.6  1639.5 1.63  2189.8 1.19 

 

The new design rule “Result factors – Shear Fz” for penetrated joint failure is created, fitted and calibrated on the 

FEA results from Abaqus and therefore results in plastic design resistances that fit well to the plastic capacity 

observed in FEA. However, after the above finding it can be concluded that according to the complete set of 

design rules, the combination of a torsional moment and shear is governing for multiple geometrical parameter 

configurations. In Table 50 it can, however, be seen that this design rule underpredicts the true plastic capacity 

while this capacity is approximated correctly by the new design rule for penetrated chord face failure. It is 

therefore stated that this new CFF design rule for penetrated joints subjected to shear Fz also captures the 

resistances for failure due to a combination of torsional moment and shear and thus eliminates the existing (too 

conservative) rule for combined torsional moment and shear. 
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5.6.4 Case study | Mooring bollard Witteveen+Bos 
To be able to check the mooring bollard of Witteveen+Bos, as shown in Figure 

52, the calculation sheet has been adjusted to allow for eccentricities in the 

Y- and Z-direction (ey = 375mm, and ez = 450mm). Due to these eccentricities, 

the additional bending and torsional moments are introduced in the joint. 

Figure 53 elaborates on the calculation of these additional bending and 

torsional moments. Eventually, the following forces & moments that are 

acting on the brace, have to be taken into account:  
 

 - Single-sided tension/compr. (Fx) 
- NEd 
- Mz,Ed (FX,Ed*ey) 
- My,Ed (FX,Ed*ez) 

 - Shear Fy (chord bending moment) 
- Vy,Ed  
- Mx,Ed (Vy,Ed*ez) 

 - Shear Fz (chord torsional moment) 
- Vz,Ed 
- Mx,Ed (Vz,Ed*ey) 

 

 

 

 

 

 

 

 

 

 

 

 

 

The influence of the design values 𝑁𝐸𝑑, 𝑉𝑦,𝐸𝑑 and 𝑉𝑧,𝐸𝑑 on the resistance of the bollard to joint failures, is taken 

into account in the combination rule for joint failures of penetrated CHS X-joints given in Equation 5.38. However, 

for the additional bending and torsional moments (𝑀𝑧, 𝑀𝑦, 𝑎𝑛𝑑 𝑀𝑥) acting on the brace member of the mooring 

bollard structure, no joint failure design rules are available. Therefore, two alternative methods have been 

determined to take into account the stresses caused by them. 

The first method takes into account the additional bending moments about the Z- and Y-axis, by dividing the 

bending moment by the eccentricity in the X-direction. By doing so, additional forces in the Y- and Z-direction are 

obtained (𝑉𝑦,𝐸𝑑,2 = 𝑀𝑧/𝑒𝑥 and 𝑉𝑧,𝐸𝑑,2 = 𝑀𝑦/𝑒𝑥), which can be coped for in the design rules for penetrated joints 

subjected to shear Fy and shear Fz. These additional forces are added to the initial shear forces 𝑉𝑦;𝑧,𝐸𝑑,1, as can be 

seen in the formulas in the left part of Table 51. The torsional moment (𝑀𝑥) on the brace, is taken into account 

by a bending moment about the X-axis that acts halfway the chord length. The UC for the bending moment on 

the chord can be calculated by dividing the acting bending moment (𝑀𝑥) by the bending moment resistance -

(𝑀𝑝𝑙,𝑅𝑑). The computed value for the UC 𝑀𝑥 𝑀𝑝𝑙,𝑅𝑑⁄ , is added to the combination rule, as can be seen at the bottom 

of the left part of Table 51. A disadvantage of this method is that for the bending moment about the Z- and Y-axis, 

also extra shear forces in Y- and Z-direction are introduced, which in reality do act on the brace member of the 

mooring bollard; those forces are in fact merely a byproduct of the way the bending moments 𝑀𝑦  &  𝑀𝑧 are 

accounted for. 

 

For the second method, the bending moment 𝑀𝑥 is processed exactly the same as for method one, but now the 

same procedure is used for the bending moment about the Z- and Y-axis as well. For bending moment about the 

Z-axis, a unity check is computed in a similar way as done for the bending moment about the X-axis; by dividing 

the acting bending moment (𝑀𝑧)  by the bending moment resistance of the chord (𝑀𝑝𝑙,𝑅𝑑 ). For the bending 

moment about the Y-axis, which acts as a torsional moment on the chord, the unity check is calculated using the 

torsional moment resistance of the chord (𝑇𝑝𝑙,𝑅𝑑) instead of the bending moment resistance. The additional UC’s 

for the bending moments 𝑀𝑥 &  𝑀𝑦 are included in the combination rule, and, in correspondence to the basic 

combination formulas provided in the EC, the square of the UC associated with 𝑀𝑧 is added to the combination 

rule. 

Figure 53: Mechanical scheme and acting forces 

Figure 52: Model Witteveen+Bos 
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Table 51: Design checks – joint failures method 1 & 2 
Joint failures method 1  Joint failures method 2 

     
Chord face failure tension (Fx)  Chord face failure tension (Fx) 
NEd Input (NEd)  NEd Input (NEd) 
PenCff,x 1.1*(kp*fy0*t0*d1*fδ*fβ)/sinθ1/γM5  PenCff,x 1.1*(kp*fy0*t0*d1*fδ*fβ)/sinθ1/γM5 
fδ 1+(50-2δ)/200  fδ 1+(50-2δ)/200 
fβ (sin(0.65*β*π)-β+0.8)  fβ (sin(0.65*β*π)-β+0.8) 

UCCff,x NEd/Pencff,x  UCCff,x NEd/Pencff,x 
     
Chord face failure shear Fy  Chord face failure shear Fy 
Vy,Ed,1 Input (Vy,Ed)  Vy,Ed Input (Vy,Ed) 
Vy,Ed,2 FX,Ed*ey/ex  PenCff,y 3*(kp*fy0*t0*d1*d0)/(L1*sinθ1)/γM5 
Vy,Ed,tot Vy,Ed,1+Vy,Ed,2  UCCff,y Vy,Ed/Pencff,y 
PenCff,y 3*(kp*fy0*t0*d1*d0)/(L1*sinθ1)/γM5    

UCCff,y Vy,Ed,tot/Pencff,y  Chord face failure shear Fz 
   Vz,Ed Input (Vz,Ed) 
Chord face failure shear Fz  PenCff,z 1.7*(kp*fy0*t0*d1*d0)/(L1*sinθ1)/γM5 
Vz,Ed,1 Input (Vz,Ed)  UCCff,z Vz,Ed/Pencff,z 
Vz,Ed,2 FX,Ed *ez/ex    
Vz,Ed,tot Vz,Ed,1+Vz,Ed,2  Chord bending moment Mx (torsional moment brace) 
PenCff,z 1.7*(kp*fy0*t0*d1*d0)/(L1*sinθ1)/γM5  TEd Input (Mx) 

UCCff,z Vz,Ed,tot/Pencff,z  Mpl Wpl*fy0 
   UCCbm,x TEd/Mpl 
Chord bending moment (torsional moment brace)    
TEd Input (Mx)  Chord bending moment  Mz (Fx*ey) 
MT,pl,Rd Wpl*fy0  Mz,Ed FX,Ed*ey 

UCCbm TEd/MT,pl,Rd  Mpl Wpl*fy0 
   UCCbm,z Mz,Ed/Mpl 
    

   Chord torsional moment  My (Fx*ez) 
   My,Ed FX,Ed*ez 
   Tpl,Rd WT*fy 
   UCCtm,y Mz,Ed/Tpl,Rd 
     
Combination  Combination 

UC UCCff,x+(UCCff,y)2+UCCff,z+UCCbm,x  UC   UCCff,x+(UCCff,y)2+UCCff,z+UCCbm,x+(UCCbm,z)2+UCCtm,y 
     

UCjoint failures  UCjoint failures 

 

From the breasting dolphin column (chord) and steel arm (brace) of the mooring bollard, a representative FE 

model has been set up, which is shown in Figure 53 including its simplified mechanical model. In the FE model the 

design values of the load are applied in a force controlled simulation, on a reference point from which, by means 

of a constraint, the prescribed loads are transferred to normal forces, shear forces and bending moments on the 

brace edge. 

 

From the calculation sheet the governing directions of the resultant force 𝐹𝑟𝑒𝑠 are identified and the associated 

combinations of 𝐹𝑥 , 𝐹𝑦  and 𝐹𝑧 have been implemented and simulated in Abaqus. Both the FEA and the calculation 

sheet show that the load combination B3 (see Appendix G.2) is governing and fails on the combination of a 

torsional moment and shear force that are acting on the brace. With the design rule for C T+S, which is 

implemented in the calculation sheet, a plastic design resistance of 797.5 kN is found. While comparing to the 

plastic capacity of 901.5 kN that is obtained with FEA, a deviation of about 13% is observed due to some 

conservatism in the EC design rule for the combination of a torsional moment and shear.  

The UC’s for joint failures obtained using either of methods implemented in the calculation sheet, show that joint 

failures are not governing for this geometrical configuration of a mooring bollard. Calculation method 1 resulted 

in UC of 0.47 (at the moment the plastic design resistance of 797.5 kN due to C T+S is reached), which is higher 

than the UC resulting from method 2 with a value of 0.39. This difference in the values of the UC’s is possibly due 

to the additional shear forces that are accounted for when applying calculation method 1.  
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5.7 SUMMARY AND CONCLUSION DESIGN RULES 
This section aims to find a suitable design rules for penetrated geometries subjected to single-sided tension & 

compression (Fx), shear in the Y-direction (Chord bending moment) and shear in the Z-direction (chord torsional 

moment). The results of the parameter study are used to create the new design rules. Additionally, some 

additional parameter configurations have been simulated for geometries subjected to shear Fy and shear Fz, as 

well. The plastic capacity observed in FEA and the geometrical parameters that have influence on them (𝛽, 2𝛾, 2𝛿) 

have been evaluated. With the existing EC design rules for non-penetrated joints as a basis, and by curve fitting 

the influence of the geometrical parameters on the plastic capacity observed in FEA, seven new improved design 

rules are created for penetrated CHS X-joints failing due to joint failures (chord face failure).  

 

For geometries subjected to single-sided tension, a start had been made on evaluating the results of penetrated 

geometries and the creation of a design rule. But, since for non-penetrated geometries more parameter 

configurations were failing in chord face failure, it was straightforward to start with evaluating the performance 

of the pre-existing EC design rules for non-penetrated joints in order to create a solid basis from which the new 

design rules for penetrated joints could be built on. It is concluded that both the design rule for non-penetrated 

X-joints and T-joints subjected to single-sided tension, underestimate the plastic capacity by an average factor of 

1.46 or even overpredicts the plastic capacity for certain situations. Therefore, an improved design rule for X-

joints is suggested that will lead to significant improvement in the approximation of the true plastic capacity of 

the non-penetrated CHS joints. This design rule is provided in Equation 5.26 and leads to an average RR of 1.12. 

 

The process of creating a design rule for penetrated CHS X-joints subjected to single-sided tension (Fx) is started 

with the knowledge gained from evaluating the non-penetrated CHS X-joints and their design rules. From the 

parameter study, it had already been concluded that the plastic capacity of penetrated joints are underestimated 

significantly by the existing EC design rules for non-penetrated X- and T-joints, as is confirmed by their average 

RR of 3.32 and 2.45, respectively.  

To create a suitable design rule, several steps have been taken which have eventually resulted in two improved 

versions of the existing design rules, and five alternative design rules. Three of the latter are considered to be a 

suitable design rule for the determination of the plastic design resistance of penetrated CHS X-joints subjected to 

single-sided loadings. Two of them are based on the stress pattern observed in FEA and the other one is based on 

the influences of the parameter factors on the plastic capacity. Although this latter design rule “Result factors”, is 

easier to interpret and can be deduced more clearly from the applied geometrical parameters, this design rule 

predicts design resistances that deviate more from the observed plastic capacity and therefore, based on the 

RR’s, it is proposed to use the design rule “Stress Pattern 2b” , provided in Equation 5.33, for calculating the plastic 

design resistance of penetrated CHS X-joints subjected to single-sided tension (Fx). For this design rule an average, 

lowest and highest RR of 1.09, 0.94, and 1.34, respectively, are obtained. 

To check whether the existing EC design rules for non-penetrated joints and the new design rules for penetrated 

joints predict the failure mechanism well, a verification of the failure mechanisms and approximated plastic design 

resistances is done, which is provided in paragraph 5.2.2.2. For the verification of the new design rules for 

penetrated joints, the design rule “Stress pattern 2b” is included in a set of design rules. It can be seen that by 

including the new design rule for penetrated joints in the design set, the failure mechanism observed in FEA is 

also identified more often as the governing failure mechanism according to the set of design rules, as was done 

while using the existing EC design rules for non-penetrated joints. Furthermore, it is observed that for the 

geometries failing in chord face failure, the plastic design resistances obtained with the new design rules for 

penetrated joints deviate significantly less from the plastic capacity obtained with FEA than the resistances of the 

pre-existing EC design rules did. 

As the three above mentioned design rules were created and fitted on the FEA results obtained for joints 

subjected to single-sided tension, their application to penetrated CHS X-joints subjected to single-sided 

compression (Fx) is verified explicitly. For the calculated parameter configurations, an average, lowest and highest 

RR is achieved with “stress pattern 2a” of 1.06, 0.97, and 1.15, with “stress pattern 2b” of 1.03, 0.95, and 1.12, 

respectively, and with “result factors” of 0.97, 0.87, and 1.06, respectively, from which it can be concluded that 

the two design rules based on the stress patterns are suitable for the approximation of the plastic capacity in 

single-sided compression as well.  
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Furthermore, the reduction factor 𝑘𝑝 that is prescribed in the EC for the reduction of the plastic capacity because 

of the pre-existing compression stresses in the chord member, due to an initial bending moment or compression 

force, is evaluated for the CHS X-joints subjected to single-sided compression, as it is known to have a significant 

influence for this load case. It is concluded that applying the 𝑘𝑝 factor, causes the average RR to increase from 

1.03 to 1.50, making the design rule unnecessarily conservative. It is therefore decided to still include 𝑘𝑝 in the 

new design rules for penetrated joints, but set its value to 1.0 for the remaining of this research. Some additional 

follow-up research is however recommended to identify the importance of  𝑘𝑝 . 

 

Next, CHS X-joints subjected to shear in the Y- and Z-direction are researched, for which the same design principles 

and steps are applied to arrive at a new suitable design rule. For both load cases, additional simulations are 

performed to obtain more results based on which the design rule could be created, fitted and calibrated. First the 

performance of the existing EC design rules for non-penetrated joints is evaluated, for which an average value of 

RR is found to be 5.6 for shear Fy and 7.86 for shear Fz, indicating the design rules to be very conservative. Next, 

the earlier discussed design rule “Result factors” is fitted on the plastic capacity obtained for joints subjected to 

either force in Y- or Z-direction. Additionally, the influence of the eccentricity of the shear force with respect to 

the chord axis is taken into account. Resulting in the design rule for geometries subjected to shear Fy as provided 

in Equation 5.36 with an average, lowest and highest RR of 1.05, 1.02, and 1.09, respectively and the design rule 

for geometries subjected to shear Fz as provided in Equation 5.37 with an average, lowest and highest RR of 1.04, 

1.01 and 1.10, respectively. 

 

Lastly, the applicability of the new design rules for penetrated joints for combined joint failures is analyzed using 

the combination rule as provided in the EC. First the combination of shear Fy and shear Fz is analyzed and lastly a 

check is performed for the combination of single-sided tension (Fx), shear Fy and shear Fz. To perform this check, 

the combination rule from the EC is converted into a combined Resistance Ratio (RR) for which the formula is 

provided in Equation 5.39. The new design rules for penetrated joints approximate the plastic capacity of joints 

failing due to a combination of shear Fy and shear Fz with an average RR of 1.34, and joints failing due to a 

combination of single-sided tension (Fx), shear Fy and shear Fz with an average RR of 1.79. Which means that with 

the combination of the new design rules for penetrated joints significantly higher design resistances can be 

obtained, compared to the existing EC design rules for non-penetrated joints and their corresponding RR’s of 22.2 

and 21.0. While at the same time, the new rule does not lead to an overprediction of the plastic capacity of joints 

failing in chord face failure under combined loadings, and an average safety of 34 and 79% is maintained on the 

design resistance.  

 

To create a complete overview of the various design checks to be performed for penetrated CHS X-joints, a 

calculation sheet has been created that includes all unity checks for the relevant joint, chord and brace failure 

mechanisms. In the calculation sheet, the design value of the applied force, the geometrical and the material 

properties of the joint can be filled in, from which the plastic design resistances to basic cross-section failures of 

the brace and the chord, joint failures single-sided tension (Fx), shear Fy, shear Fz and a combination of these three 

joint failures is computed. This is done for 15 different load directions of the design force FEd.  

The results from the calculation sheet are verified using FEA. For most simulations, corresponding failure 

mechanisms and plastic design resistances with merely small deviations from the FEA plastic capacity were 

observed, except for joints for which the shear Fz was dominating. 

It seems that, e.g. the plastic design resistance for the combination of a torsional moment and shear on the chord 

member, 2190 kN, governs over the design resistance obtained with the new design rule for chord face failure 

(Fz), 3628 kN, while in FEA in fact a plastic capacity of 3575 kN is observed for failure due to this last mechanism. 

The new penetrated chord face failure design rule for geometries subjected in shear Fz is thus resulting in the 

correct plastic design resistance, however, due to conservatism of the combination design rule of a torsional 

moment and shear, this last failure mechanism is falsly governing according to the calculation sheet. It is evaluated 

for which parameter configurations subjected to shear Fz, this issue arises. It seems that for multiple geometries 

with a relatively large brace compared to their chord, i.e. with 𝛽  factors of 0.6 and 0.8, the combination of 

torsional moment and shear becomes governing and the plastic design resistance approximated with the set of 
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design rules becomes conservative with RR for the simulated geometries up to 1.70. It is concluded that the joint 

failure design rule for shear Fz underpredicts the true plastic capacity of these joints while their actual capacity 

are approximated correctly by the new design rule for penetrated chord face failure. It is therefore stated that 

this new CFF design rule for penetrated joints subjected to shear Fz also captures the resistances for failure due 

to a combination of torsional moment and shear and thus eliminates the existing (too conservative) rule for 

combined torsional moment and shear. 

 

A case study has been done on the mooring bollard from Witteveen+Bos, for which the calculation sheet has been 

slightly adjusted to allow for eccentricities of the load application in Y- and Z-direction. The eccentricities cause 

additional bending and torsional moments, for which no joint failure design rules are readily available. Therefore, 

two alternative methods are applied to take into account the additional bending and torsional moments for the 

calculation of the joint failure. In the first method, the bending moments about the Z- and Y-axis are converted to 

shear forces in the Y- and Z-direction that are added to the shear forces initially acting on the brace. To take into 

account the torsional moment Mx on the brace, the unity check for the bending moment resistance of the chord 

member has been added to the combination rule. For the second method, next to the UCCbm,x, also the unity 

check’s for the resistance to a bending moment about the Z-, and a torsional moment about the Y-axis on the 

chord member, are included in the combination rule.  

From the results of the calculation sheet, it can be concluded that joint failures are not governing for the mooring 

bollard structure and that the bollard is failing on a combination of a torsional moment and shear. For this load 

combination, a plastic design resistance of 797.5 kN is found using the calculation sheet, which deviates 

approximatel 13% from the plastic capacity of 901.5 kN as observed in FEA. 

The first method for processing the additional bending moments resulted in a UC of 0.47 (at the moment the 

plastic design resistance of 797.5 kN due to C T+S is reached), which is higher than the UC resulting from the 

second processing method, 0.39. This difference in the values of the UC’s is possibly due to the additional shear 

forces that are accounted for when applying calculation method 1. 

It has thus been observed that the statement concerning the elimination of the existing (too conservative) rule 

for combined torsional moment and shear, as outlined in Paragraph 5.6.3, does not hold for penetrated CHS X-

joints to which the load is applied with a certain eccentricity with respect to the Y- and/or Z-axis. For these joints, 

the existing design rule for a combination of a torsional moment and shear could indeed be governing, and the a 

correct plastic design resistance can be calculated with the design rule, albeit with some conservativeness. 

 

Based on this case study, Witteveen+Bos can be advised to check more directions for application of the design 

force and, though joint failures may not be governing for the mooring bollard, the new design rules for joint 

failures of penetrated CHS X-joints could be included in their calculation sheet, to provide some extra insights into 

the behavior of the structure and to exclude the chance joint failures are governing as failure mechanism. The 

parameter study showed that this latter may be the case for relatively large brace members with a substantial 

wall thickness, in combination with chord member with a smaller wall thickness. 

To be able to fully use the joint failure checks, additional research into the processing methods of the bending 

and torsional moments caused by the eccentricities should be performed.  
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 CONCLUSION & RECOMMENDATION 

6.1 CONCLUSIONS 
In this research, the focus was to gain insight into and predicting the behavior of penetrated CHS X-joints. 

Analogous to studies into branched plate-structural hollow sections and the behavior of their penetrated 

equivalents, in this study, the behavior of penetrated CHS X-joints and the behavior of their non-penetrated 

equivalent, are evaluated and compared. For this purpose a finite element model is created using a python script. 

The script is imported in the FE software ABAQUS, which is used to perform a geometrical and material non-linear 

FE analysis. An elastic-plastic material model with linear strain hardening, as provided in EC EN 1993-1-5 is 

adopted within this research and the Von Mises yield criterion is used to evaluate when the geometry starts 

yielding and to determine the corresponding plastic capacity. 

In the parameter study, the load case, 𝛽, 2𝛾, and 2𝛿 are varied for penetrated, as well as for non-penetrated, CHS 

X-joints. Initially, only the boundary values of the geometrical parameters are simulated to identify the critical 

areas for which joint failures may be governing, and based on these results, additional parameter configurations 

have been evaluated using FEA. The parameter study is performed for the load cases “Double-sided compression 

and tension (Fx)”, “Single-sided compression and tension (Fx)”, “Bending moment about the Y-axis (My)”, “Bending 

moment about the Z-axis (Mz)”, “Shear Fy (chord bending moment)”, and “Shear Fz (chord torsional moment)”.  

 

From the parameter study, it can be concluded that for the penetrated geometries subjected to double-sided 

compression and tension (Fx), and bending moment about the Y- (My) and Z- (Mz) axis, the plastic capacity can be 

approximated with the basic cross-section design rules from the EC. Therefore, no new design rules are required 

and the existing joint failure design rules for non-penetrated geometries, which are chord face failure and 

punching shear failure, can be omitted in the calculation of the joint capacity for penetrated geometries. For the 

penetrated geometries that fail in basic cross-section failure, instead of chord face failure as their non-penetrated 

equivalents do, a plastic capacity of 1.25 till 35.8, and 1.21 till 12.1 times the plastic capacity of their non-

penetrated equivalent is observed, for the load cases double-sided compression & tension (Fx) and bending 

moment about the Y- (My) & Z- (Mz) axis, respectively. Their correct plastic design resistances can be calculated 

with the already available design rules for basic cross section failures.  

 

However, several geometries with penetrated braces subjected to single-sided compression and tension (Fx), 

shear Fy (chord bending moment), and shear Fz (chord torsional moment), fail in chord face failure for which the 

correct plastic design resistance can not be predicted correctly with existing design rules. Comparing the plastic 

capacity obtained in FEA from the penetrated geometries that fail in chord face failure, with the calculated design 

resistances obtained with the existing EC design rules for non-penetrated joints, i.e. evaluating the resistance 

ratio’s (RR), an increase in plastic capacity can be observed for:  

- single-sided compression and tension (Fx),  of 1.69 till 4.97 times the EC plastic design resistance;  

- shear Fy (chord bending moment),   of 4.46 till 7.49 times the EC plastic design resistance;  

- shear Fz (chord torsional moment),  of 4.68 till 11.9 times the EC plastic design resistance.  

Moreover, for the penetrated geometries that fail in basic cross-section failures under tension & compression 

(Fx), shear Fy and shear Fz, an increase of the plastic capacity is observed in FEA by a factor 1.04 till 3.15, 1.30 till 

6.30, and 1.09 till 9.81 with respect to their non-penetrated equivalents that fail in chord face failure, respectively. 

Due to these significant increases in capacity of the penetrated joints with respect to their non-penetrated 

equivalents and the inaccurate prediction of these capacity by the existing EC design rules, new design rules for 

penetrated joints that fit the plastic capacity from FEA are recommended for these three load combinations (Fx, 

Fy and Fz). 

 

To create design rules for penetrated joints for these three load combinations, the plastic capacity observed in 

FEA and the geometrical parameters that have an influence on them (𝛽, 2𝛾, 2𝛿) have been evaluated. With the 

existing EC design rules for non-penetrated joints as a basis, and by curve fitting the influence of the geometrical 

parameters on the plastic capacity observed in FEA, several improved and new design rules are created.  
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For the non-penetrated geometries subjected to single-sided tension (Fx) that fail in chord face failure, it is 

concluded that the EC design rules for X- and T-joints, do not approximate their plastic capacity very well. 

Therefore, an improved X-joint design rule is created, based on curve fitting of the plastic design resistance to the 

plastic capacity, as given in Table 52 Equation 6.44. This led to an improvement in the approximation of the plastic 

capacity observed in FEA by the calculated plastic design resistance, as appears from the average RR that has 

become 1.12 (and was 1.46 for the existing EC design rule for X-joints failing in chord face failure). 

 
Table 52: Improved EC design rules for non-penetrated joints 

Improved EC design rule “chord face failure” for non-penetrated joints – single-sided axial load (Fx) 

 

𝑁1,𝑅𝑑 = 1.15 ∗
𝑘𝑝∗𝑓𝑦0∗𝑡0

2

𝑠𝑖𝑛𝜃1
∗

4.4

(1−β)
/𝛾𝑀5,   (6.44) 

 

With the knowledge gained while evaluating the non-penetrated CHS X-joints and their design rules, the process 

of creating design rules for penetrated CHS X-joints subjected to single-sided tension (Fx) is started. The two 

existing EC design rules for non-penetrated joints are evaluated and two improvements are provided on these 

design rules. Additionally, 5 alternative design rules are created of which four are based on the stress pattern 

observed in the FEA results and the last one is based on the influences of the parameter factors on the plastic 

capacity. From the obtained design rules, “Stress pattern 2b” approximates the FEA plastic capacity best, with an 

average, lowest and highest RR of 1.09, 0.94, and 1.34, respectively. This design rule can also used for penetrated 

CHS X-joints subjected to single-sided compression (Fx), resulting in an average RR of 1.06. For both load cases 

the RR values indicate that the design rule approximates the joint capacity well, and therefore, the design rule 

“Stress pattern 2b”, as given in Table 53 Equation 6.45, is proposed as the design rule for penetrated CHS X-joints 

subjected to single-sided compression and tension (Fx). 

 

For the design rules of penetrated CHS X-joints subjected to shear in the Y- and Z-direction, the design rule “Result 

factors” from geometries subjected to single-sided tension (Fx) is taken and fitted on the plastic capacity obtained 

for joints subjected to either a force in Y- or Z-direction. Additionally, the influence of the eccentricity of the shear 

force with respect to the chord axis is taken into account. With these steps the design rules “Result factors – shear 

Fy”, as given in Equation 6.46, and “Result factors – shear Fz”, as given in Equation 6.47, are created. The plastic 

design resistance obtained with these two design rules approximate the true plastic capacity of the joints 

accurately, as follows from the average, lowest and highest RR of 1.05, 1.02, and 1.09, for shear Fy, and 1.04, 1.01 

and 1.10, respectively.  

 

Lastly, the applicability of the new design rules for penetrated joints for combined joint failures is analyzed using 

the combined Resistance Ratio (RR) that is based on the EC combination rule and for which the formula is provided 

in Equation 5.39. First the performance of the design rules for penetrated joints for a load combination of shear 

Fy and shear Fz is analyzed, which resulted in an average RR of 1.34 in cases for which joint failures were governing. 

Next to that, the check is performed for the combination of single-sided tension (Fx), shear Fy and shear Fz, where 

with the design rules for penetrated joints an average RR of 1.79 if found. From this it follows that the new design 

rules for penetrated joints can also be applied for calculation the plastic design resistance to joint failures under 

combined loadings. 

 

A complete overview of the various design checks to be performed for penetrated CHS X-joints has been captured 

in a calculation sheet that includes all unity checks for the relevant joint, chord and brace failure mechanisms.  

In this calculation sheet, the plastic design resistances to basic cross-section failures of the brace and the chord, 

joint failures single-sided tension (Fx), shear Fy, shear Fz and a combination of these three joint failures is computed 

for 15 different load directions of a given design force FEd.  
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From the sheet and the corresponding FEA is concluded that the new design rules for penetrated joints 

approximate the plastic capacity well. However, for some geometrical parameter configurations subjected to 

shear Fz, the design rule for the combination of a torsional moment and shear is due to its conservatism, 

incorrectly governing over the joint failures. This issue arises specifically  for several geometries with a relatively 

large brace compared to their chord (𝛽 0.6 / 0.8). It is concluded that the C T+S design rule underpredicts the true 

plastic capacity of these joints for shear Fz, while their actual capacity are approximated correctly by the new 

design rule for penetrated chord face failure. It is therefore stated that this new CFF design rule for penetrated 

joints subjected to shear Fz also captures the resistances for failure due to a combination of torsional moment 

and shear and thus eliminates the existing (too conservative) rule for combined torsional moment and shear. 

 

From this graduation research, it is concluded that the pre-existing design rules for joint failures of non-

penetrated CHS joints are not suitable for calculation of the design resistance to joint failures of penetrated CHS 

X-joints. For CHS X-joints subjected to double-sided compression and tension (Fx) and bending moment about the 

Y- (My) and Z- (Mz) axis, the plastic capacity can be approximated well with the current basic cross-section design 

rules from the EC, however, the EC design rules for joint failures of non-penetrated CHS X-joints should be omitted 

to approximate the true plastic capacity correctly. For penetrated CHS X-joints subjected to single-sided 

compression and tension (Fx), shear Fy and shear Fz, the plastic design resistance to joint failures can be calculated 

with Equation 6.45, 6.46 and 6.47.  

 
Table 53: Penetrated CHS X-joint design rules 

Single-sided axial load (Fx) – design rule “stress pattern 2b” for penetrated joints 

 

 
 

𝑁1,𝑅𝑑 = 1.1 ∗
𝑘𝑝∗𝑓𝑦0∗𝑡0∗𝑑1∗𝑓𝛿

𝑠𝑖𝑛𝜃1
∗ (𝑠𝑖𝑛(0.65𝛽 ∗ 𝜋) − 𝛽 + 0.8)/𝛾𝑀5   

 
               where 𝑓𝛿 = 1 + (50 − 2𝛿)/200 

(6.45) 

   

Shear Fy (chord bending moment) – design rule “Result factors shear Fy” for penetrated joints 

 

𝐹𝑦,1,𝑅𝑑 ∗ 𝐿1 = 3 ∗
𝑘𝑝∗𝑓𝑦0∗𝑡0∗𝑑1∗𝑑0

𝑠𝑖𝑛𝜃1
/𝛾𝑀5    (6.46) 

 
Shear Fz (chord torsional moment) – design rule “Result factors shear Fz” for penetrated joints 

 

𝐹𝑧,1,𝑅𝑑 ∗ 𝐿1 = 1.7 ∗
𝑘𝑝∗𝑓𝑦0∗𝑡0∗𝑑1∗𝑑0

𝑠𝑖𝑛𝜃1
/𝛾𝑀5   (6.47) 
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6.2 RECOMMENDATIONS 

In this graduation research, a clear and uniform set of design rules that can be used for the calculation of joint 

failures of penetrated CHS X-joints was aimed for. Although it resulted in three clear new design rules, as 

presented in the previous paragraph. Several recommendations are done for follow-up research. 

To create the new design rules, a parameter study has been carried out for penetrated CHS X-joints subjected to 

multiple load cases, however no research was conducted into the load case “Bending moment about the X-axis 

(Mx)”, and it is recommended to investigate this load case as well.  

Next to that, for the load cases bending moment about the Y- and Z-axis, all penetrated geometrical parameter 

configurations fail in brace bending moment. The plastic capacity related to this failure mechanism can be 

approximated well with the current EC design rules and therefore, it was concluded that no additional design 

rules are required for this load case. However, for the prediction of the joint capacity subjected to a combination 

of loads, the influence of the bending moment needs to be taken into account, which is not possible with the 

current set of design rules. It is recommended to investigate the possibilities to implement the stresses from 

bending moments in the various directions within the combination rule of the different load cases. Two processing 

methods have been proposed for this in the case study to the mooring bollard from Witteveen+Bos. 

In both methods, the torsional moment Mx is accounted for by adding the UC for the bending moment resistance 

of the chord member to the combination rule. The bending moments about the Z- and Y-axis are in the first 

method converted to shear forces in the Y- and Z-direction that are added to the shear forces what were already 

acting on the brace, and for the second method, the UC’s from basic cross-section moment resistances (bending 

and torsional for Mz and My respectively) are added to the combination rule. A disadvantage of the first method 

is that, due to the way the bending moments are converted to shear forces, extra shear forces in the Y- and Z-

direction are included within the design check. The two proposed methods, therefore, need to be checked and 

validated, and when they do not satifsy, additional research needs to be performed into the way the stresses 

resulting from additional bending moments, should be accounted for.  

 

In the design rules presented in Table 53, the factor kp is applied, which is prescribed in the EC to reduce the 

plastic capacity of the CHS joint when the chord member is subjected to compression or a bending moment. It is 

concluded that applying the 𝑘𝑝 factor, causes the average RR to increase from 1.03 to 1.50, making the design 

rule unnecessarily conservative. It is therefore decided to include 𝑘𝑝 in the new design rules for penetrated joints, 

but set its value to 1.0 for the remaining of the research. Additional follow-up research is recommended to identify 

the importance, verify the formulation and application of the reduction factor 𝑘𝑝. 

 

Besides, the new design rules for penetrated CHS X-joints need to be evaluated and verified by experimental tests, 

since the design rules are only calibrated on FEA. Next to that, additional research must confirm whether the 

design rule can also be applied to other steel strengths, as in this study, only circulas hollow sections with steel 

strength S355 are evaluated. As a follow-up step, the material model could be extended by the integration of 

damage in the FEA. Damage and crack initiation in regions with peak stresses can then be taken into account for 

the plastic capacity allowing the failure mechanism to be described in more detail. Also the influence of the weld, 

which in this study is omitted and is the subject of a separate graduation research, should be evaluated and when 

needed, taken into account. Obviously, the new design rules should also be further evaluated on, e.g. their 

reliability and the required safety factors, before they may be included in a publiced code or guideline. 

 

Furthermore, some issues concerning the EC design rule for the combination of a torsional moment and a shear 

force, are elaborated in Paragraph 5.7. To conclude, it has been observed that when a combination of loads is 

imposed directly on the brace the existing rule for combined torsional moment and shear is too conservative and 

should be omitted (Paragraph 5.6.3), while a combination of loads that is applied to the brace with a certain 

eccentricity in the Y- and/or Z-axis, this design rule is governing and may therefore certainly not be omitted. 

Further research into these issues is necessary. 
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Engineering firms working with penetrated CHS X-joints in mooring bollard structures, are advised to ensure that 

they include a sufficient amount of directions of the design force in their calculation sheet and, though joint 

failures may not be governing for the mooring bollard, the new design rules for joint failures of penetrated CHS 

X-joints could be included as well, to provide some extra insights into the behavior of the structure and to ensure 

joint failures are not governing for the mooring bollards. The parameter study showed that this latter could be 

the case for relatively large brace members with a substantial wall thickness, in combination with a chord member 

with a smaller wall thickness. 

 

In this research, differences have been observed in the behavior of CHS X-joints between penetrated and non-

penetrated geometries, and therefore, a new set of design rules for penetrated CHS X-joints is proposed, to 

ensure the plastic capacity of these joints is no longer underestimated as was the case with the existing EC design 

rules for non-penetrated joints. Although several recommendations need to be explored in extensive follow-up 

research, this research may have already laid a good foundation for future guidelines and increased the insight in 

the behavior of penetrated CHS X-joints significantly.  
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A.I 

APPENDICES 

A. PYTHON SCRIPT 

The below provided script is created as a basic script for penetrated CHS X-joints subjected to single-sided 

compression and tension (Fx), where for compression a displacement of -100 mm is applied and for tension a 

displacement of 150 mm. Using 4 for loops, the geometrical parameters are varied between 𝛽 = (0.2; 0.4; 0.6; 0.8), 

2𝛾 = (10; 30; 50), 2𝛿 = (10; 30; 50). For the above mentioned load case and geometries, 72 (2*4*3*3) models are 

generated that and analysed in Abaqus and the results are plotted in an Excel sheets. For the scripts for the 

analysis of the non-penetrated geometries as well as the scripts for the other load cases, merely small adaptions 

have been made. Therefore only the basic script is provided in this appendix.  

 

1 # -*- coding: mbcs -*- 

2 from part import * 

3 from material import * 

4 from section import * 

5 from assembly import * 

6 from step import * 

7 from interaction import * 

8 from load import * 

9 from mesh import * 

10 from optimization import * 

11 from job import * 

12 from sketch import * 

13 from visualization import * 

14 from connectorBehavior import * 

15 import os 

16 import sys 

17 import csv 

18 import odbAccess 

19 import math 

20 import numpy as np 

21 import xlsxwriter 

22 

23 def cosd (angle): 

24 cosine = math.cos((angle)*math.pi/180) 

25 return cosine 

26 def sind (angle): 

27 sine = math.sin((angle)*math.pi/180) 

28 return sine 

29 

30 session.journalOptions.setValues(replayGeometry=COORDINATE,recoverGeometry=COORDINATE) 

31 

32 for beta in [0.2, 0.4, 0.6, 0.8]: 

33 for gamma in [10.0, 30.0, 50.0]: 

34 for delta in [10.0, 30.0, 50.0]: 

35 for U1R in [-100, 150]: 

36 

37 #parameters 

38 Mesh = 4 

39 Alpha = 12 

40 Beta = beta 

41 Gamma = gamma 

42 Delta = delta 

43 BoundaryCondition = "EncastreBC" 

44 

45 d0 = 762.0 

46 t0 = (d0/Gamma) 

47 r0 = (d0-t0)/2 

48 d1 = (d0*Beta) 

49 t1 = (d1/Delta) 

50 r1 = (d1-t1)/2 

51 L0 = (Alpha/2*d0+d1) 

52 L1 = (8*d1+d0) 

53 

54 #Directiory 

55 VName1=str(int(Beta*10)) 

56 VName2=str(int(Gamma)) 

57 VName3=str(int(Delta)) 

58 VName4=(U1R) 

59 Filename=('Pen_B0'+'{0}'+'_G'+'{1}'+'_D'+'{2}'+'_U'+'{3}').format(VName1, 

VName2, VName3, VName4) 

60 Loadpath='C:\\Temp\\Simplified model\\2 Pen - Single-sided loaded\\{0}'. 

format(Filename) 

61 if not os.path.exists(Loadpath): 

62 os.makedirs(Loadpath) 

63 os.chdir(Loadpath) 

64 

65 #Model 

66 myModel=mdb.Model(name='Model-'+'{0}'.format(Filename)) 

67 

68 #GEOMETRY 

69 myModel.ConstrainedSketch(name=' profile ', sheetSize=200.0) 
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1 # -*- coding: mbcs -*- 

2 from part import * 

3 from material import * 

4 from section import * 

5 from assembly import * 

6 from step import * 

7 from interaction import * 

8 from load import * 

9 from mesh import * 

10 from optimization import * 

11 from job import * 

12 from sketch import * 

13 from visualization import * 

14 from connectorBehavior import * 

15 import os 

16 import sys 

17 import csv 

18 import odbAccess 

19 import math 

20 import numpy as np 

21 import xlsxwriter 

22 

23 def cosd (angle): 

24 cosine = math.cos((angle)*math.pi/180) 

25 return cosine 

26 def sind (angle): 

27 sine = math.sin((angle)*math.pi/180) 

28 return sine 

29 

30 session.journalOptions.setValues(replayGeometry=COORDINATE,recoverGeometry=COORDINATE) 

31 

32 for beta in [0.2, 0.4, 0.6, 0.8]: 

33 for gamma in [10.0, 30.0, 50.0]: 

34 for delta in [10.0, 30.0, 50.0]: 

35 for U1R in [-100, 150]: 

36 

37 #parameters 

38 Mesh = 4 

39 Alpha = 12 

40 Beta = beta 

41 Gamma = gamma 

42 Delta = delta 

43 BoundaryCondition = "EncastreBC" 

44 

45 d0 = 762.0 

46 t0 = (d0/Gamma) 

47 r0 = (d0-t0)/2 

48 d1 = (d0*Beta) 

49 t1 = (d1/Delta) 

50 r1 = (d1-t1)/2 

51 L0 = (Alpha/2*d0+d1) 

52 L1 = (8*d1+d0) 

53 

54 #Directiory 

55 VName1=str(int(Beta*10)) 

56 VName2=str(int(Gamma)) 

57 VName3=str(int(Delta)) 

58 VName4=(U1R) 

59 Filename=('Pen_B0'+'{0}'+'_G'+'{1}'+'_D'+'{2}'+'_U'+'{3}').format(VName1, 

VName2, VName3, VName4) 

60 Loadpath='C:\\Temp\\Simplified model\\2 Pen - Single-sided loaded\\{0}'. 

format(Filename) 

61 if not os.path.exists(Loadpath): 

62 os.makedirs(Loadpath) 

63 os.chdir(Loadpath) 

64 

65 #Model 

66 myModel=mdb.Model(name='Model-'+'{0}'.format(Filename)) 

67 

68 #GEOMETRY 

69 myModel.ConstrainedSketch(name=' profile ', sheetSize=200.0) 

70 myModel.sketches[' profile '].CircleByCenterPerimeter(center=(0.0, 0.0), 

point1=((r0), 0.0)) 

71 myModel.Part(dimensionality=THREE_D, name='Chord', type=DEFORMABLE_BODY) 

72 myModel.parts['Chord'].BaseShellExtrude(depth=(L0), sketch=myModel. 

sketches[' profile ']) 

73 myModel.ConstrainedSketch(name=' profile ', sheetSize=200.0) 

74 myModel.sketches[' profile '].CircleByCenterPerimeter(center=(0.0, 0.0), 

point1=((r1), 0.0)) 

75 myModel.Part(dimensionality=THREE_D, name='Brace', type=DEFORMABLE_BODY) 

76 myModel.parts['Brace'].BaseShellExtrude(depth=(L1), sketch=myModel. 

sketches[' profile ']) 

77 

78 #Assembly 

79 myRoot=myModel.rootAssembly 

80 myRoot.DatumCsysByDefault(CARTESIAN) 

81 myRoot.Instance(dependent=ON, name='Chord-1', part=myModel.parts['Chord']) 

82 myRoot.Instance(dependent=ON, name='Brace-1', part=myModel.parts['Brace']) 

83 

84 #Translation 

85 myRoot.rotate(angle=90.0, axisDirection=(-r0, 0.0, 0.0), axisPoint=(r0, 

0.0, 0.0), instanceList=('Chord-1', )) 

86 myRoot.translate(instanceList=('Chord-1', ), vector=(0.0, -(L0/2), 0.0)) 

87 myRoot.rotate(angle=90.0, axisDirection=(0.0, -L0, 0.0), axisPoint=(0.0, 

L0, 0.0), instanceList=('Brace-1', )) 

88 myRoot.translate(instanceList=('Brace-1', ), vector=((L1/2), 0.0, 0.0)) 

89 

90 #Merge and cut 

91 myRoot.InstanceFromBooleanMerge(domain=GEOMETRY, instances=(myRoot. 

instances['Chord-1'], myRoot.instances['Brace-1']), keepIntersections= 

ON, name='Joint', originalInstances=SUPPRESS) 

92 myPart=myModel.parts['Joint'] 

93 myPart.RemoveFaces(deleteCells=False, faceList=(myPart.faces.findAt((r0, 0 

, 0), ), )) 

94 myPart.RemoveFaces(deleteCells=False, faceList=(myPart.faces.findAt((-r0, 

0, 0), ), )) 

95 

96 #Material 

97 myModel.Material(name='Steel') 

98 myModel.materials['Steel'].Elastic(table=((210000.0, 0.3), )) 

99 myModel.materials['Steel'].Plastic(table=((355.0, 0.0), (490.0, 0.06585), 

)) 

100 

101 #Section 

102 myModel.HomogeneousShellSection(idealization=NO_IDEALIZATION, 

integrationRule=SIMPSON, material='Steel', name='Csec', numIntPts=5, 

poissonDefinition=DEFAULT, preIntegrate=OFF, temperature=GRADIENT, 

thickness=(t0), thicknessField='', thicknessModulus=None, 

thicknessType=UNIFORM, useDensity=OFF) 

103 myModel.HomogeneousShellSection(idealization=NO_IDEALIZATION, 

integrationRule=SIMPSON, material='Steel', name='Bsec', numIntPts=5, 

poissonDefinition=DEFAULT, preIntegrate=OFF, temperature=GRADIENT, 

thickness=(t1), thicknessField='', thicknessModulus=None, 

thicknessType=UNIFORM, useDensity=OFF) 

104  

105 #SectionAssignment 

106 myPart.Set(faces=myPart.faces.findAt(((0, 0, r0), )), name='Cset') 

107 myPart.SectionAssignment(offset=0.0, offsetField='', offsetType= 

MIDDLE_SURFACE, region=myPart.sets['Cset'], sectionName='Csec', 

thicknessAssignment=FROM_SECTION) 

108 myPart.Set(faces=myPart.faces.findAt(((0, r1, 0), ), ((r0+r1, r1, 0), ), 

((-(r0+r1), r1, 0), )), name='Bset') 

109 myPart.SectionAssignment(offset=0.0, offsetField='', offsetType= 

MIDDLE_SURFACE, region=myPart.sets['Bset'], sectionName='Bsec', 

thicknessAssignment=FROM_SECTION) 

110  

111 #Planes 

112 myPart.DatumAxisByPrincipalAxis(principalAxis=XAXIS) #6 

113 myPart.DatumAxisByPrincipalAxis(principalAxis=YAXIS) #7 

114 myPart.DatumAxisByPrincipalAxis(principalAxis=ZAXIS) #8 

115 

116 myPart.DatumPlaneByPrincipalPlane(offset=0.0, principalPlane=XYPLANE) #9 
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117 myPart.DatumPlaneByPrincipalPlane(offset=0.0, principalPlane=YZPLANE) #10 

118 myPart.DatumPlaneByPrincipalPlane(offset=0.0, principalPlane=XZPLANE) #11 

119 

120 # Offset XZ and XY 

121 C_off1 = (r0*2*math.pi/4) 

122 C_off3 = (r1+5*r0) 

123 C_off2 = (C_off1+C_off3)/2 

124 B_off0 = (r0-(1.8-Beta)*r1) 

125 B_off1 = (r0+1.5*(1.8-Beta)*r1) 

126 B_off3 = (r0+5*r1) 

127 B_off2 = (B_off1+B_off3)/2 

128 

129 #XZ 

130 myPart.DatumPlaneByPrincipalPlane(offset=C_off1, principalPlane=XZPLANE) 

#12 

131 myPart.DatumPlaneByPrincipalPlane(offset=C_off2, principalPlane=XZPLANE) 

#13 

132 myPart.DatumPlaneByPrincipalPlane(offset=C_off3, principalPlane=XZPLANE) 

#14 

133 myPart.DatumPlaneByPrincipalPlane(offset=-C_off1, principalPlane=XZPLANE) 

#15 

134 myPart.DatumPlaneByPrincipalPlane(offset=-C_off2, principalPlane=XZPLANE) 

#16 

135 myPart.DatumPlaneByPrincipalPlane(offset=-C_off3, principalPlane=XZPLANE) 

#17 

136  

137 #YZ 

138 myPart.DatumPlaneByPrincipalPlane(offset=B_off0, principalPlane=YZPLANE) 

#18 

139 myPart.DatumPlaneByPrincipalPlane(offset=B_off1, principalPlane=YZPLANE) 

#19 

140 myPart.DatumPlaneByPrincipalPlane(offset=B_off2, principalPlane=YZPLANE) 

#20 

141 myPart.DatumPlaneByPrincipalPlane(offset=B_off3, principalPlane=YZPLANE) 

#21 

142 myPart.DatumPlaneByPrincipalPlane(offset=-B_off0, principalPlane=YZPLANE) 

#22 

143 myPart.DatumPlaneByPrincipalPlane(offset=-B_off1, principalPlane=YZPLANE) 

#23 

144 myPart.DatumPlaneByPrincipalPlane(offset=-B_off2, principalPlane=YZPLANE) 

#24 

145 myPart.DatumPlaneByPrincipalPlane(offset=-B_off3, principalPlane=YZPLANE) 

#25 

146  

147 #rotation X 

148 myPart.DatumPlaneByRotation(angle=45, axis=myPart.datums[6], plane=myPart. 

datums[11]) #26 

149 myPart.DatumPlaneByRotation(angle=-45, axis=myPart.datums[6], plane=myPart 

.datums[11]) #27 

150  

151 #PartitionFaceByDatumPlane 

152 #XZ 

153 myPart.PartitionFaceByDatumPlane(datumPlane=myPart.datums[14], faces= 

myPart.faces.findAt(((0, 0, (r0)), ))) 

154 myPart.PartitionFaceByDatumPlane(datumPlane=myPart.datums[13], faces= 

myPart.faces.findAt(((0, 0, (r0)), ))) 

155 myPart.PartitionFaceByDatumPlane(datumPlane=myPart.datums[12], faces= 

myPart.faces.findAt(((0, 0, (r0)), ))) 

156 myPart.PartitionFaceByDatumPlane(datumPlane=myPart.datums[17], faces= 

myPart.faces.findAt(((0, 0, (r0)), ))) 

157 myPart.PartitionFaceByDatumPlane(datumPlane=myPart.datums[16], faces= 

myPart.faces.findAt(((0, 0, (r0)), ))) 

158 myPart.PartitionFaceByDatumPlane(datumPlane=myPart.datums[15], faces= 

myPart.faces.findAt(((0, 0, (r0)), ))) 

159  

160 #YZ 

161 myPart.PartitionFaceByDatumPlane(datumPlane=myPart.datums[21], faces= 

myPart.faces.findAt((((r0), 0, (r1)), ))) 

162 myPart.PartitionFaceByDatumPlane(datumPlane=myPart.datums[20], faces= 

myPart.faces.findAt((((r0), 0, (r1)), ))) 

163 myPart.PartitionFaceByDatumPlane(datumPlane=myPart.datums[19], faces= 
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163  

myPart.faces.findAt((((r0), 0, (r1)), ))) 

164 myPart.PartitionFaceByDatumPlane(datumPlane=myPart.datums[25], faces= 

myPart.faces.findAt(((-(r0), 0, (r1)), ))) 

165 myPart.PartitionFaceByDatumPlane(datumPlane=myPart.datums[24], faces= 

myPart.faces.findAt(((-(r0), 0, (r1)), ))) 

166 myPart.PartitionFaceByDatumPlane(datumPlane=myPart.datums[23], faces= 

myPart.faces.findAt(((-(r0), 0, (r1)), ))) 

167 myPart.PartitionFaceByDatumPlane(datumPlane=myPart.datums[18], faces= 

myPart.faces.findAt(((0, 0, (r1)), ))) 

168 myPart.PartitionFaceByDatumPlane(datumPlane=myPart.datums[22], faces= 

myPart.faces.findAt(((0, 0, (r1)), ))) 

169  

170 #XZ chord 

171 myPart.PartitionFaceByDatumPlane(datumPlane=myPart.datums[11], faces= 

myPart.faces.findAt(((0, 0, r0), ), ((0, 0, -r0), ), )) 

172  

173 #XY chord 

174 Cpart = [C_off3+10, C_off3-10, C_off1+10, C_off1-10, -(C_off3+10), -( 

C_off3-10), -(C_off1+10), -(C_off1-10)] 

175 for yy in Cpart: 

176 Facepoint = (0, yy, r0) 

177 myPart.PartitionFaceByDatumPlane(datumPlane=myPart.datums[9], faces= 

myPart.faces.findAt(((Facepoint), ), )) 

178  

179 #YZ chord 

180 for yy in Cpart: 

181 for i in [1, -1]: 

182 Facepoint = (0, yy, i*r0) 

183 myPart.PartitionFaceByDatumPlane(datumPlane=myPart.datums[10], 

faces=myPart.faces.findAt(((Facepoint), ), )) 

184  

185 #XY brace 

186 Bpart = [B_off3+10, B_off3-10, B_off1+10, B_off1-10, B_off0+10, 0, -( 

B_off3+10), -(B_off3-10), -(B_off1+10), -(B_off1-10),-(B_off0+10)] 

187 for xx in Bpart: 

188 Facepoint = (xx, 0, r1) 

189 myPart.PartitionFaceByDatumPlane(datumPlane=myPart.datums[9], faces= 

myPart.faces.findAt(((Facepoint), ), )) 

190  

191 #XZ brace 

192 for xx in Bpart: 

193 for i in [1, -1]: 

194 Facepoint = (xx, 0, i*r1) 

195 myPart.PartitionFaceByDatumPlane(datumPlane=myPart.datums[11], 

faces=myPart.faces.findAt(((Facepoint), ), )) 

196  

197 #Diagonals brace 

198 for xx in Bpart: 

199 for angle in [135,315]: 

200 Facepoint = (xx, cosd(angle)*r1, sind(angle)*r1) 

201 myPart.PartitionFaceByDatumPlane(datumPlane=myPart.datums[26], 

faces=myPart.faces.findAt(((Facepoint), ), )) 

202 for angle in [45,225]: 

203 Facepoint = (xx, cosd(angle)*r1, sind(angle)*r1) 

204 myPart.PartitionFaceByDatumPlane(datumPlane=myPart.datums[27], 

faces=myPart.faces.findAt(((Facepoint), ), )) 

205  

206 #Partition diagonals 

207 for yy in [(sind(45)*r1), -(sind(45)*r1)]: 

208 for a in [(45,90), (135,90), (225,270), (315,270)]: 

209 p_1 = (((math.copysign(1,cosd(a[0])))*(math.sqrt((r0**2)-((cosd(a[ 

0]))*r1)**2))), yy, (sind(a[0])*r1)) 

210 Fc_d = (cosd(a[0])*r0, yy, sind(a[0])*r0) 

211 p_2 = (0, math.copysign(C_off1,yy), sind(a[1])*r0) 

212 myPart.PartitionFaceByShortestPath(faces=myPart.faces.findAt((Fc_d 

), ), point1=myPart.vertices.findAt((p_1), ), point2=myPart. 

vertices.findAt((p_2), )) 

213  

214 #mesh 

215 #Set Element type and mesh region 

216 Faces_T = myPart.faces.getByBoundingBox(-L1/2, -L0/2, -r0, L1/2, L0/2, r0) 
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217 Faces_QUAD = myPart.faces.getByBoundingBox(-B_off1, -C_off1, -r0, B_off1, 

C_off1, r0) 

218 myPart.setElementType(elemTypes=(ElemType(elemCode=S8R, elemLibrary= 

STANDARD), ElemType(elemCode=STRI65, elemLibrary=STANDARD)), regions 

=(((Faces_QUAD), ), )) 

219 myPart.setMeshControls(elemShape=QUAD_DOMINATED, regions=(Faces_T), 

technique=STRUCTURED) 

220 myPart.setMeshControls(elemShape=QUAD, regions=(Faces_QUAD), technique= 

STRUCTURED) 

221  

222 #Seed edges 

223 C_parts = 4 

224 B_parts = 8 

225  

226 #Fine mesh 

227 myPart.seedEdgeByNumber(constraint=FINER, edges=(myRoot.instances[ 

'Joint-1'].edges.getByBoundingBox(-(B_off1+10), -(C_off1+10), -(r0+10 

), (B_off1+10), C_off1+10, (r0+10))), number=int(3.0*Mesh)) 

228  

229 for yy in [(10, C_off1+10), (-(C_off1+10), -10)]: 

230 for zz in [(10, r0+10), (-(r0+10), -10)]: 

231 myPart.seedEdgeByNumber(constraint=FINER, edges=(myRoot.instances[ 

'Joint-1'].edges.getByBoundingBox(-r0, yy[0], zz[0], r0, yy[1 

], zz[1])), number=int(2.5*Mesh+1.6/Beta)) 

232 for yy in [C_off1-10, -(C_off1-10)]: 

233 for i in [0, 180]: 

234 Edgepoint = (cosd(i)*r0, yy, sind(i)*r0) 

235 myPart.seedEdgeByNumber(constraint=FINER, edges=myPart.edges. 

findAt(((Edgepoint), ), ), number=int(2.5*Mesh+1.6/Beta)) 

236 for ya in [85, 95, 265, 275]: 

237 for i in range(C_parts): 

238 Edgepoint = (cosd(ya)*r0, 0, sind(ya)*r0) 

239 myPart.seedEdgeByNumber(constraint=FINER, edges=myPart.edges. 

findAt(((Edgepoint), ), ), number=int(2.5*Mesh+1.6/Beta)) 

240  

241 for xx in [B_off0+10, -(B_off0+10)]: 

242 for i in range(B_parts): 

243 Edgepoint = (xx, sind(i*45.0)*r1, cosd(i*45.0)*r1) 

244 myPart.seedEdgeByNumber(constraint=FINER, edges=myPart.edges. 

findAt(((Edgepoint), ), ), number=int(1.5*Mesh)) 

245  

246 #Coarse mesh 

247 for yy in [C_off3, L0/2, -C_off3, -L0/2]: 

248 for i in range(C_parts): 

249 Edgepoint = (cosd(i*90.0+45)*r0, yy, sind(i*90.0+45)*r0) 

250 myPart.seedEdgeByNumber(constraint=FINER, edges=myPart.edges. 

findAt(((Edgepoint), ), ), number=2*Mesh) 

251 for xx in [B_off3, L1/2, -B_off3, -L1/2]: 

252 for i in range(B_parts): 

253 Edgepoint = (xx, sind(i*45.0+22.5)*r1, cosd(i*45.0+22.5)*r1) 

254 myPart.seedEdgeByNumber(constraint=FINER, edges=myPart.edges. 

findAt(((Edgepoint), ), ), number=1*Mesh) 

255 

256 for yy in [C_off3+10, -(C_off3+10)]: 

257 for i in range(C_parts): 

258 Edgepoint = (cosd(i*90.0)*r0, yy, sind(i*90.0)*r0) 

259 myPart.seedEdgeByNumber(constraint=FINER, edges=myPart.edges. 

findAt(((Edgepoint), ), ), number=(Alpha/8*Mesh)) 

260 for xx in [B_off3+10, -(B_off3+10)]: 

261 for i in range(B_parts): 

262 Edgepoint = (xx, sind(i*45.0)*r1, cosd(i*45.0)*r1) 

263 myPart.seedEdgeByNumber(constraint=FINER, edges=myPart.edges. 

findAt(((Edgepoint), ), ), number=int(1.5*Mesh)) 

264  

265 #Coarse/fine mesh 

266 for yy in [C_off2-10, -(C_off2-10)]: 

267 for i in range(C_parts): 

268 Edgepoint = (cosd(i*90.0)*r0, yy, sind(i*90.0)*r0) 

269 myPart.seedEdgeByNumber(constraint=FINER, edges=myPart.edges. 

findAt(((Edgepoint), ), ), number=int(1.5*Mesh)) 

270 for yy in [C_off2+10, -(C_off2+10)]: 
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271 for i in range(C_parts): 

272  Edgepoint = (cosd(i*90.0)*r0, yy, sind(i*90.0)*r0) 

273  myPart.seedEdgeByNumber(constraint=FINER, edges=myPart.edges. 
  findAt(((Edgepoint), ), ), number=int(1.0*Mesh)) 

274 for yy in [C_off2, -C_off2]: 

275  for i in range(C_parts): 

276  Edgepoint = (cosd(i*90.0+45.0)*r0, yy, sind(i*90.0+45.0)*r0) 

277  myPart.seedEdgeByNumber(constraint=FINER, edges=myPart.edges. 
   findAt(((Edgepoint), ), ), number=int(2.5*Mesh)) 

278   

279 for i in range(B_parts): 

280  Edgepoint = (0, sind(i*45.0)*r1, cosd(i*45.0)*r1) 

281  myPart.seedEdgeByNumber(constraint=FINER, edges=myPart.edges.findAt((( 

  Edgepoint), ), ), number=int(1.6/Beta)) 

282   

283 for xx in [B_off2-10, -(B_off2-10)]: 

284  for i in range(B_parts): 

285  Edgepoint = (xx, sind(i*45.0)*r1, cosd(i*45.0)*r1) 

286  myPart.seedEdgeByNumber(constraint=FINER, edges=myPart.edges. 
   findAt(((Edgepoint), ), ), number=int(1.5*Mesh)) 

287 for xx in [B_off2+10, -(B_off2+10)]: 

288  for i in range(B_parts): 

289 Edgepoint = (xx, sind(i*45.0)*r1, cosd(i*45.0)*r1) 

290 myPart.seedEdgeByNumber(constraint=FINER, edges=myPart.edges. 

findAt(((Edgepoint), ), ), number=int(1.0*Mesh)) 

291 for xx in [B_off2, -B_off2]: 

292 for i in range(B_parts): 

293 Edgepoint = (xx, sind(i*45.0+22.5)*r1, cosd(i*45.0+22.5)*r1) 

294 myPart.seedEdgeByNumber(constraint=FINER, edges=myPart.edges. 

findAt(((Edgepoint), ), ), number=int(2.0*Mesh)) 

295 

296 myPart.generateMesh() 

297 

298 #Steps 

299 myModel.StaticStep(initialInc=0.001, maxInc=0.015, maxNumInc=200, name= 

'Static, General', nlgeom=ON, previous='Initial') 

300  

301 #Boundary conditions and loads 

302 #Loads 

303 myRoot.ReferencePoint(point=(L1/2, 0.0, 0.0)) #8 

304 myRoot.Set(name='B_RefR', referencePoints=(myRoot.referencePoints[8], )) 

305 myRoot.Set(edges=myRoot.instances['Joint-1'].edges.getByBoundingBox(L1/2, 

-L0/2, -r0, L1/2, L0/2, r0), name='B_edgesR') 

306 myModel.EquallySpacedAmplitude(begin=0.0, data=(0.0, 1.0), fixedInterval= 

1.0, name='Amp-1', smooth=SOLVER_DEFAULT, timeSpan=STEP) 

307 myModel.RigidBody(name='Constraint-B1', refPointRegion=myRoot.sets[ 

'B_RefR'], tieRegion=myRoot.sets['B_edgesR']) 

308 myModel.DisplacementBC(amplitude='Amp-1', createStepName='Static, General' 

, distributionType=UNIFORM, fieldName='', fixed=OFF, localCsys=None, 

name='BC_LoadR', region=myRoot.sets['B_RefR'], u1=U1R, u2=UNSET, u3= 

UNSET, ur1=UNSET, ur2=UNSET, ur3=UNSET) 

309  

310 #Bounday condition 

311 myRoot.ReferencePoint(point=(0.0, L0/2, 0.0)) #11 #14 

312 myRoot.Set(name='C_RefT', referencePoints=(myRoot.referencePoints[11], )) 

313 myRoot.Set(edges=myRoot.instances['Joint-1'].edges.getByBoundingBox(-L1/2, 

L0/2, -r0, L1/2, L0/2, r0), name='C_edgesT') 

314 myModel.RigidBody(name='Constraint-C1', refPointRegion=myRoot.sets[ 

'C_RefT'], tieRegion=myRoot.sets['C_edgesT']) 

315  

316 myRoot.ReferencePoint(point=(0.0, -(L0/2), 0.0)) #14 #17 

317 myRoot.Set(name='C_RefB', referencePoints=(myRoot.referencePoints[14], )) 

318 myRoot.Set(edges=myRoot.instances['Joint-1'].edges.getByBoundingBox(-L1/2, 

-L0/2, -r0, L1/2, -L0/2, r0), name='C_edgesB') 

319 myModel.RigidBody(name='Constraint-C2', refPointRegion=myRoot.sets[ 

'C_RefB'], tieRegion=myRoot.sets['C_edgesB']) 

320  

321 if BoundaryCondition == 'PinnedBC': 

322 myModel.PinnedBC(createStepName='Static, General', localCsys=None, 

name='BC_BCT', region=myRoot.sets['C_RefT']) 

323 myModel.PinnedBC(createStepName='Static, General', localCsys=None, 
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name='BC_BCB', region=myRoot.sets['C_RefB']) 

324 elif BoundaryCondition == 'XsymmBC': 

325 myModel.XsymmBC(createStepName='Static, General', localCsys=None, name 

='BC_BCT', region=myRoot.sets['C_RefT']) 

326 myModel.XsymmBC(createStepName='Static, General', localCsys=None, name 

='BC_BCB', region=myRoot.sets['C_RefB']) 

327 elif BoundaryCondition == 'EncastreBC': 

328 myModel.EncastreBC(createStepName='Static, General', localCsys=None, 

name='BC_BCT', region=myRoot.sets['C_RefT']) 

329 myModel.EncastreBC(createStepName='Static, General', localCsys=None, 

name='BC_BCB', region=myRoot.sets['C_RefB']) 

330  

331 #HistoryOutput and FieldOutput 

332 myRoot.Set(name='Node_X11', vertices=myRoot.instances['Joint-1'].vertices. 

findAt(((r0, C_off1, 0.0), ))) 

333 myRoot.Set(name='Node_X12', vertices=myRoot.instances['Joint-1'].vertices. 

findAt(((-r0, C_off1, 0.0), ))) 

334 myRoot.Set(name='Node_X21', vertices=myRoot.instances['Joint-1'].vertices. 

findAt(((r0, -C_off1, 0.0), ))) 

335 myRoot.Set(name='Node_X22', vertices=myRoot.instances['Joint-1'].vertices. 

findAt(((-r0, -C_off1, 0.0), ))) 

336 myRoot.Set(name='Node_Z01', vertices=myRoot.instances['Joint-1'].vertices. 

findAt(((0.0, 0.0, r0), ))) 

337 myRoot.Set(name='Node_Z02', vertices=myRoot.instances['Joint-1'].vertices. 

findAt(((0.0, 0.0, -r0), ))) 

338 myRoot.Set(name='Node_Z11', vertices=myRoot.instances['Joint-1'].vertices. 

findAt(((0.0, C_off1, r0), ))) 

339 myRoot.Set(name='Node_Z12', vertices=myRoot.instances['Joint-1'].vertices. 

findAt(((0.0, C_off1, -r0), ))) 

340 myRoot.Set(name='Node_Z21', vertices=myRoot.instances['Joint-1'].vertices. 

findAt(((0.0, -C_off1, r0), ))) 

341 myRoot.Set(name='Node_Z22', vertices=myRoot.instances['Joint-1'].vertices. 

findAt(((0.0, -C_off1, -r0), ))) 

342  

343 del myModel.historyOutputRequests['H-Output-1'] 

344 myModel.HistoryOutputRequest(createStepName='Static, General', name= 

'H-Output-BCR', rebar=EXCLUDE, region=myRoot.sets['B_RefR'], 

sectionPoints=DEFAULT, variables=('RF1', 'U1', )) 

345 myModel.HistoryOutputRequest(createStepName='Static, General', name= 

'H-Output-Ux11', rebar=EXCLUDE, region=myRoot.sets['Node_X11'], 

sectionPoints=DEFAULT, variables=('U1', )) 

346 myModel.HistoryOutputRequest(createStepName='Static, General', name= 

'H-Output-Ux12', rebar=EXCLUDE, region=myRoot.sets['Node_X12'], 

sectionPoints=DEFAULT, variables=('U1', )) 

347 myModel.HistoryOutputRequest(createStepName='Static, General', name= 

'H-Output-Ux21', rebar=EXCLUDE, region=myRoot.sets['Node_X21'], 

sectionPoints=DEFAULT, variables=('U1', )) 

348 myModel.HistoryOutputRequest(createStepName='Static, General', name= 

'H-Output-Ux22', rebar=EXCLUDE, region=myRoot.sets['Node_X22'], 

sectionPoints=DEFAULT, variables=('U1', )) 

349 myModel.HistoryOutputRequest(createStepName='Static, General', name= 

'H-Output-Uz01', rebar=EXCLUDE, region=myRoot.sets['Node_Z01'], 

sectionPoints=DEFAULT, variables=('U3', )) 

350 myModel.HistoryOutputRequest(createStepName='Static, General', name= 

'H-Output-Uz02', rebar=EXCLUDE, region=myRoot.sets['Node_Z02'], 

sectionPoints=DEFAULT, variables=('U3', )) 

351 myModel.HistoryOutputRequest(createStepName='Static, General', name= 

'H-Output-Uz11', rebar=EXCLUDE, region=myRoot.sets['Node_Z11'], 

sectionPoints=DEFAULT, variables=('U3', )) 

352 myModel.HistoryOutputRequest(createStepName='Static, General', name= 

'H-Output-Uz12', rebar=EXCLUDE, region=myRoot.sets['Node_Z12'], 

sectionPoints=DEFAULT, variables=('U3', )) 

353 myModel.HistoryOutputRequest(createStepName='Static, General', name= 

'H-Output-Uz21', rebar=EXCLUDE, region=myRoot.sets['Node_Z21'], 

sectionPoints=DEFAULT, variables=('U3', )) 

354 myModel.HistoryOutputRequest(createStepName='Static, General', name= 

'H-Output-Uz22', rebar=EXCLUDE, region=myRoot.sets['Node_Z22'], 

sectionPoints=DEFAULT, variables=('U3', )) 

355 myModel.HistoryOutputRequest(createStepName='Static, General', name= 

'H-Output-ALLPD', variables=('ALLPD', )) 

356 myModel.fieldOutputRequests['F-Output-1'].setValues(variables=('S', 'E', 
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'PE', 'PEEQ', 'EE', 'U')) 

357 

358 #job 

359 mdb.Job(atTime=None, contactPrint=OFF, description='', echoPrint=OFF, 

explicitPrecision=SINGLE, getMemoryFromAnalysis=True, historyPrint=OFF 

, memory=90, memoryUnits=PERCENTAGE, model='Model-'+'{0}'.format( 

Filename), modelPrint=OFF, multiprocessingMode=DEFAULT, name='Job-'+ 

'{0}'.format(Filename), nodalOutputPrecision=SINGLE, numCpus=1, 

numGPUs=0, queue=None, resultsFormat=ODB, scratch='', type=ANALYSIS, 

userSubroutine='', waitHours=0, waitMinutes=0) 

360 mdb.jobs['Job-'+'{0}'.format(Filename)].submit(consistencyChecking=OFF) 

361 mdb.jobs['Job-'+'{0}'.format(Filename)].waitForCompletion() 

362 

363 #Create ODB output 

364 RF1, U1 = ([] for i in range (2)) 

365  

366 Directory_odb = '{0}'.format(Loadpath)+'/'+'Job-'+'{0}'.format(Filename)+ 

'.odb' 

367 open_odb = session.openOdb(name=Directory_odb) 

368 odb = session.odbs[Directory_odb] 

369 session.viewports['Viewport: 1'].setValues(displayedObject=open_odb) 

370 frames = open_odb.steps['Static, General'].frames 

371 numFrames = len(frames) 

372  

373 #Reaction Force 

374 xy_rf = session.XYDataFromHistory(name='XY-RF1', odb=odb, 

outputVariableName='Reaction force: RF1 PI: rootAssembly Node 1 in 

NSET B_REFR', steps=('Static, General', ), ) 

375 RF1 = [abs(x[1]*10**(-3)) for x in xy_rf] 

376 Max_RF1 = max(RF1) 

377  

378 #Displacement 

379 xy_u = session.XYDataFromHistory(name='XY_U', odb=odb, outputVariableName= 

 'Spatial displacement: U1 PI: rootAssembly Node 1 in NSET B_REFR', 
 steps=('Static, General', ), ) 

380 U1 = [abs(x[1]) for x in xy_u]  

381   

382 #First Yield load  

383 xy_allpd = session.XYDataFromHistory(name='XY-ALLPD',odb=odb,  

 outputVariableName='Plastic dissipation: ALLPD for Whole Model', steps 

 =('Static, General', ), )  

384 Pl_diss = [x[1]*10**(-3) for x in xy_allpd]  

385   

386 #Deformation limit  

387 xy_ux11 = session.XYDataFromHistory(name='XY-UX11', odb=odb,  

 outputVariableName='Spatial displacement: U1 PI: JOINT-1 Node 17 in 

 NSET NODE_X11', steps=('Static, General', ), )  

388 xy_ux12 = session.XYDataFromHistory(name='XY-UX12', odb=odb,  

 outputVariableName='Spatial displacement: U1 PI: JOINT-1 Node 23 in 

 NSET NODE_X12', steps=('Static, General', ), )  

389 xy_ux21 = session.XYDataFromHistory(name='XY-UX21', odb=odb,  

 outputVariableName='Spatial displacement: U1 PI: JOINT-1 Node 13 in 

 NSET NODE_X21', steps=('Static, General', ), )  

390 xy_ux22 = session.XYDataFromHistory(name='XY-UX22', odb=odb,  

 outputVariableName='Spatial displacement: U1 PI: JOINT-1 Node 6 in 

 NSET NODE_X22', steps=('Static, General', ), )  

391 xy_uz01 = session.XYDataFromHistory(name='XY-UZ01', odb=odb,  

 outputVariableName='Spatial displacement: U3 PI: JOINT-1 Node 10 in 

 NSET NODE_Z01', steps=('Static, General', ), )  

392 xy_uz02 = session.XYDataFromHistory(name='XY-UZ02', odb=odb,  

 outputVariableName='Spatial displacement: U3 PI: JOINT-1 Node 3 in 

 NSET NODE_Z02', steps=('Static, General', ), )  

393 xy_uz11 = session.XYDataFromHistory(name='XY-UZ11', odb=odb,  

 outputVariableName='Spatial displacement: U3 PI: JOINT-1 Node 22 in 

 NSET NODE_Z11', steps=('Static, General', ), )  

394 xy_uz12 = session.XYDataFromHistory(name='XY-UZ12', odb=odb,  

 outputVariableName='Spatial displacement: U3 PI: JOINT-1 Node 16 in 

 NSET NODE_Z12', steps=('Static, General', ), )  

395 xy_uz21 = session.XYDataFromHistory(name='XY-UZ21', odb=odb,  

 outputVariableName='Spatial displacement: U3 PI: JOINT-1 Node 9 in 

 NSET NODE_Z21', steps=('Static, General', ), )  
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396 xy_uz22 = session.XYDataFromHistory(name='XY-UZ22', odb=odb, 

outputVariableName='Spatial displacement: U3 PI: JOINT-1 Node 2 in 

NSET NODE_Z22', steps=('Static, General', ), ) 

397 

398 Def_lim_x11 = [x[1] for x in xy_ux11] 

399 Def_lim_x12 = [x[1] for x in xy_ux12] 

400 Def_lim_x1 = np.zeros(len(Def_lim_x11)) 

401 for i in range(len(Def_lim_x11)): 

402 Def_lim_x1 [i] = abs(Def_lim_x11[i]-Def_lim_x12[i])/d0*100 

403 

404 Def_lim_x21 = [x[1] for x in xy_ux21] 

405 Def_lim_x22 = [x[1] for x in xy_ux22] 

406 Def_lim_x2 = np.zeros(len(Def_lim_x21)) 

407 for i in range(len(Def_lim_x21)): 

408 Def_lim_x2 [i] = abs(Def_lim_x21[i]-Def_lim_x22[i])/d0*100 

409 

410 Def_lim_z01 = [x[1] for x in xy_uz01] 

411 Def_lim_z02 = [x[1] for x in xy_uz02] 

412 Def_lim_z0 = np.zeros(len(Def_lim_z01)) 

413 for i in range(len(Def_lim_z01)): 

414 Def_lim_z0 [i] = abs(Def_lim_z01[i]-Def_lim_z02[i])/d0*100 

415 

416 Def_lim_z11 = [x[1] for x in xy_uz11] 

417 Def_lim_z12 = [x[1] for x in xy_uz12] 

418 Def_lim_z1 = np.zeros(len(Def_lim_z11)) 

419 for i in range(len(Def_lim_z11)): 

420 Def_lim_z1 [i] = abs(Def_lim_z11[i]-Def_lim_z12[i])/d0*100 

421 

422 Def_lim_z21 = [x[1] for x in xy_uz21] 

423 Def_lim_z22 = [x[1] for x in xy_uz22] 

424 Def_lim_z2 = np.zeros(len(Def_lim_z21)) 

425 for i in range(len(Def_lim_z21)): 

426 Def_lim_z2 [i] = abs(Def_lim_z21[i]-Def_lim_z22[i])/d0*100 

427 

428 Def_lim = np.zeros(len(Def_lim_x1)) 

429 for i in range(len(Def_lim_x11)): 

430 Def_lim[i] = max(Def_lim_x1[i], Def_lim_x2[i], Def_lim_z0[i], 

Def_lim_z1[i], Def_lim_z2[i]) 

431 

432 Def_lim_reached = 0 

433 Max_RF12 = 'Not reached' 

434 for i in range (len(Def_lim)): 

435 if Def_lim_reached == 1: 

436 break 

437 else: 

438 if Def_lim[i] > 3.0: 

439 Def_lim_reached = 1 

440 Max_RF12 = RF1[i] 

441  

442 #CREATE EXCEL VALUES 

443 INC=range(0, numFrames) 

444 

445 workbook = xlsxwriter.Workbook('{0}.xlsx'.format(Filename)) 

446 worksheet1 = workbook.add_worksheet('ABAQUSDATA') 

447 

448 #Write general data 

449 bold = workbook.add_format({'bold': 1}) 

450 headings1 = ['','{0}'.format(Filename)] 

451 headings2 = ['INC','U1','RF1','Pl. diss.','Def. Lim.','Max RF1','Max 

RF12'] 

452 headings3 = ['(-)','(mm)','(kN)','(-)','(%)','(kN)','(kN)'] 

453 worksheet1.write_row('A1', headings1, bold) 

454 worksheet1.write_row('A2', headings2, bold) 

455 worksheet1.write_row('A3', headings3) 

456 worksheet1.write_column(3, 0, INC) 

457 worksheet1.write_column(3, 1, U1) 

458 worksheet1.write_column(3, 2, RF1) 

459 worksheet1.write_column(3, 3, Pl_diss) 

460 worksheet1.write_column(3, 4, Def_lim) 

461 worksheet1.write('F4', Max_RF1) 

462 worksheet1.write('G4', Max_RF12) 

463  

464 workbook.close() 
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