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ABSTRACT

Steel circular hollow sections (CHS) are widely used for structures in the civil industry, such as mooring and off-
shore structures. A common joint in these structures is the X-joint, in which two coaxial braces are connected to
either side of the chord, the main structural element. In most cases, the braces are welded to the chord, without
penetrating it at the intersection. However, in civil structures, another type of X-joint for circular hollow sections
is frequently used. These joints are referred to as penetrated CHS X-joints in which the brace passes through the
chord. Although penetrated CHS X-joints are frequently applied by Dutch engineering firms in civil structures and
extensive guidelines and rules are available for non-penetrated X-joints, there are no specific design rules
available for penetrated CHS X-joints and available research into these joints is limited.

This research focused on gaining insight into and predicting the behavior of penetrated CHS X-joints. Since very
limited research has been done into this type of CHS X-joints, literature and existing research into a comparable
penetrated connection, plate-to-structural hollow sections (SHS), has been studied. Analogous to the penetrated
CHS X-joints and their non-penetrated equivalents, the behavior of through plate joints is compared with their
corresponding branched plate equivalents. It has been found that the former has a capacity of more than double
till even three times the capacity of their equivalent branched plate joints.

A similar increase in capacity is expected for penetrated CHS X-joints. To gain insight into the structural behavior
of the penetrated joints and the possible differences with respect to their non-penetrated equivalents, a
parameter study consisting of 388 finite element (FE) analyses is conducted in which applied loads and
geometrical dimensions are varied. For this purpose a FE model is created using a python script. The script is
imported in the FE software ABAQUS, which is used to perform a geometrical and material non-linear FE analysis.
An elastic-plastic material model with linear strain hardening, as provided in Eurocode (EC) EN 1993-1-5 is
adopted.

In the parameter study for several load cases the geometrical parameters, the brace width-to-chord width ratio
B, the chord diameter to thickness ratio 2y, and the brace diameter to thickness ratio 26 are varied within a certain
range that is common for applicantions in civil structures. The parameter study is performed for penetrated, as
well as for non-penetrated, CHS X-joints. Initially only the boundary values of the geometrical parameters are
simulated to identify the critical areas for which the current set of design rules insufficiently describe the behavior
of the joint and the capacity of the penetrated CHS X-joint is underestimated significantly. Based on these results,
additional parameter configurations have been evaluated using finite element analysis (FEA). The parameter study

”noou

is performed for the load cases “Double-sided compression and tension (Fx)”, “Single-sided compression and

tension (Fx)”, “Bending moment about the Y-axis (My)”, “Bending moment about the Z-axis (M:)”, “Shear Fy(chord
bending moment)”, and “Shear Fz(chord torsional moment)”.

It appears that for several load cases, the design rules for non-penetrated CHS X-joints, as provided in the EN
1993-1-8, do not suffice for penetrated CHS X-joints in those critical areas. The critical areas are identified and
evaluated and based on the FEA results, improved and new design rules for penetrated joints are created for the
load cases for which this is required: “Single-sided compression and tension (Fx)”, “Shear in the Y-direction (Fy)”,
and “Shear in the Z-direction (F;). For the load cases “Double-sided compression and tension (Fx)” and “Bending
moment about the Y- (My) and Z-axis (M.)” the behavior can be approximated accurately with the basic cross-
section design rules from the EC, and therefore, the EC design rules for non-penetrated joint failures should for
penetrated geometries in these load cases, be omitted while calculating the governing failure mechanisms and
the corresponding plastic design resistances. The new sets of design rules for penetrated CHS X-joints are
evaluated and the behavior of penetrated CHS X-joints subjected to the aforementioned failure mechanisms can
be described well. Additionally, the application of the new design rules for penetrated CHS X-joints is validated
for combined load cases. The research is concluded with a clear and uniform set of design rules that can be used
for the calculation of penetrated CHS X-joints.
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NOMENCLATURE

ACRONYMS

Bbm  brace bending moment
Bcs brace cross-section
Cbm  chord bending moment
Cff chord face failure

Cps chord punching shear
Ctm chord torsional moment
CT+S combination of a torsional moment and shear

CHS circular hollow section

EC eurocode

FE finite element

FEA finite element analysis

FEM finite element method

NP non-penetrated

P penetrated

RR resistance ratio, which is the ratio between the FEA plastic capacity and the plastic design resistance

according to corresponding design rule (xrga/Xaesign rute)
SHS structural hollow section
uc unity check

GREEK SYMBOLS

a chord length parameter

B chord diameter to brace diameter ratio

y chord diameter to twice the wall thickness ratio
Yu partial safety factor

1) brace diameter to twice the wall thickness ratio
£ strain

n longitudinal plate depth-to-HSS width ratio

0 angle between chord and brace member

o stress

op stress value excluding the stress due to the components parallel to the chord axis
T shear

v poisson’s ratio

ROMAN SYMBOLS

A, shear area

L, polar moment of inertia

w, torsional modulus

fe::s  factor for (B,y,or &)

k, reduction factor to take into account the compression stress in the chord member
ny ratio design value to yield strength
A cross sectional area

E elastic modulus

F force

I moment of area

L length

M bending moment

N axial force

RF reaction force



ROMAN SYMBOLS (CONTINUED)
stress

torsional

shear force

section modulus

width

diameter

eccentricity

strength

radius

R N

thickness

SUPERSCRIPTS

! effective

SUBSCRIPTS

0 chord member

1 brace member

Ed design value

FEA finite element analysis
N reduced by the normal force
Rd design resistance

el elastic

eng engineering

i relevant brace member
pl plastic

true true

u ultimate

x X-direction

y Y-direction

y yield value

z Z-direction

T reduced by shear
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1 INTRODUCTION

Steel circular hollow sections (CHS) are widely used for structures in the civil industry, such as mooring and off-
shore structures. Acommon joint in these structures is the CHS X-joint, in which two coaxial braces are connected
to either side of the chord, which is the main structural element (with the largest diameter). In most cases, the
braces are welded to the chord, without penetrating it at the intersection. However, in civil structures, another
type of X-joint for CHS is frequently used. These joints are referred to as penetrated CHS X-joints, in which the
brace passes through the chord.

Although penetrated CHS X-joints are frequently applied by Dutch engineering firms in civil structures and
extensive guidelines and rules are available for non-penetrated X-joints, there are no specific design rules
available for penetrated CHS X-joints and research into these joints is limited.

This research focused on gaining insight into and predicting the behavior of penetrated CHS X-joints. Since very
limited research has been done into this type of CHS X-joints, literature and existing research into a comparable
penetrated connection, plate-to-structural hollow sections (SHS), has been studied. Analogous to the penetrated
CHS X-joints and their non-penetrated equivalents, the behavior of through plate joints is compared with their
corresponding branched plate equivalents.

In Section 2.1 the failure mechanisms and design rules for non-penetrated X-joints according to EN 1993-1-8 are
presented and elaborated. The literature study into comparable penetrated connections, is then elaborated in
Section 2.2.

In a similar way, as done in the literature study, in this research, a Finite Element (FE) model is created of both a
penetrated CHS X-joint and its ‘standard’, non-penetrated equivalent in which the brace is welded to the chord.
A schematic view of both joints and an example structure of the joint is given in Figure 1. With a Finite Element
Method (FEM) a FE model is created which is further elaborated in Section 3.

To gain insight into the structural behavior and the possible differences between the penetrated and non-
penetrated X-joints, a numerical parameter study is conducted in which applied loads as well as geometrical
dimensions are varied. The effects of the boundary conditions and material models on the joint behavior are
evaluated once and then fixed for the remaining of this research.

By analyzing the results of the parameter study, which are elaborated in Section 4, and comparing the different
failure mechanisms of the penetrated and non-penetrated CHS X-joints, several critical areas are distinguished
for which the current set of design rules insufficiently describes the behavior of the joint and the capacity of the
penetrated CHS X-joint is underestimated significantly.

Since it appears that the design rules for (non-penetrated) CHS X-joints, as provided in the EN 1993-1-8, do not
apply to penetrated CHS X-joints in those critical areas, a suggestion for an adjustment or addition to the existing
design rules is presented. In Section 5, the development and performance of these rules is elaborated.
Concludingly, it is the objective of this study to gain insight into and be able to predict the behavior of penetrated
CHS X-joints. Moreover, a clear and uniform set of design rules that can be used for the calculation of penetrated
CHS X-joints is aimed for.
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Figure 1: Penetrated CHS X-joint (left), “standard” non-penetrated CHS X-joint (middle) and an example (right) [1]
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2 LITERATURE STUDY

2.1 DESIGN RULES FOR HOLLOW SECTION JOINTS

The NEN-EN 1993-1-8 provides design rules for the determination of the static design resistance of hollow section
joints in uniplanar and multiplanar arrangements. The provided design rules are applicable to circular, square and
rectangular hollow sections in various configurations, e.g. K-, N-, Y-, T- and X-joints. This research focusses on
penetrated X-joints, in which a single brace penetrates the chord, in contrast to its conventional equivalent in
which two coaxial braces are connected to the chord. The scope of this research is limited to uniplanar
connections for which 6, the included angle between the brace and the chord, equals 90 degrees. For these
connections, the influence of the penetration of the chord is researched for various loading conditions, including
both single-sided loading, for which only one of the brace edges is loaded, and double-sided loading. For the
latter, the joint is expected to behave as an X-joint, however, the behavior of the former may possibly show more
resemblance to T-joints. Therefore, in this paragraph the EC design rules, as provided in Section 7 of the NEN-EN
1993-1-8, for both X-joints, as well as for T-joints, are elaborated.

2.1.1  Failure modes for hollow section joints
For CHS T- and X-joints, the design resistance of the chord, brace, and the connection is based on the following
failure modes, as stated in the NEN-EN 1993-1-8 [2] and provided in Figure 2:
a) Chord face failure (plastic failure of the chord face) or chord plastification (plastic failure of the chord
cross-section);
) Chord sidewall failure (or chord web failure) by yielding, crushing or instability (crippling or buckling of
the chord side wall of chord web) under compression brace member;
c) Chord shear failure;
d) Punching shear failure of a hollow section chord wall (crack initiation leading to rupture of the brace
members from the chord member);
e) Brace failure with reduced effective width (cracking in the welds or in the brace members);
f)  Local buckling failure of a brace member or of a hollow section chord member at the joint location. [2]

O

Mode Axial loading Bending moment

S I _J e
Figure 2: Failure modes for joints between CHS members [2]




2.1.2 Design resistance

In general, the chord and brace member(s) shall be designed to have sufficient design resistance to safely
withstand the design values of the internal axial forces and/or moments, according to EN 1993-1-1. Moreover,
the welded connection between the chord and the brace shall be designed to have sufficient resistance and
deformation capacity to allow redistribution of bending moments. However, the actual resistance and check of
the welds is out of the scope of this research. The design rules provided in NEN-EN 1993-1-8 Section 7.4 are
outlined in Paragraph 2.1.2.2 till 2.1.2.4, and may be used to determine the design capacity of the X- and T-joints
when the validity requirements outlined in Paragraph 2.1.2.1 are met. Design rules are provided for braces
subjected to an axial force, braces subjected to a bending moment or subjected to a combination of both. The
calculated maximum design resistance is expressed in terms of a maximum axial force or bending moment on the
brace member and should be calculated using the stresses as defined below.

The stresses in the chord 6 gq Or 0, gq should be determined from [2]:
No,Ed + Mo,Ed

O-O'Ed = Ao Wel,o' (21)
_ NpEa | MoEa
Oppa = 222 4 Mozt (2.2)
where:
Npga = Noga — Z N; gq * cos 6;. (2.3)

1>0

Where g g4 is the maximum compressive stress in the chord at the joint and oy, g4 is the value of gy gq excluding
the chord stress due to the axial force in the brace at that joint. Ny gq and Ny, g4 are the design values of the internal
axial force in the chord, which relate to each other in a similar way as 6o g and oy, 4. Mo gq represents design value
of the bending moment in the chord, 4, is the cross-sectional area of the chord, W, , is the elastic section
modulus of the chord, and 6; is the angle between the brace and chord, where i refers to the relevant brace
member i, in this research limited to i = 1. [2] Note that, in this thesis the subscript 1 refers to the brace
whereas the subscript 0 refers to the chord member.

2.1.2.1  Range of validity

The design rules can be applied for hot finished hollow sections and cold formed hollow sections with a minimal
nominal wall thickness of 2.5 mm for both hollow sections, a nominal chord wall thickness of less than 25 mm and
a nominal yield strength of less than 460 N/mm?. The design resistance of elements with yield strengths higher
than 355 N/mm?, needs to be reduced by multiplying for a factor of 0.9.

Furthermore, to use the provided design rules for the calculation of the design resistance of CHS joints, the
members in compression must belong to either the class 1 or class 2 steel profiles and additionally, the validity
requirements as presented in Table 1 must be met. These validity requirements regulate the relationship between
the dimensions of the chord and the brace. The ratio between the brace and chord diameter, d; and d,
respectively, needs to be between 0.2 and 1.0. Additionally, the ratio between the chord diameter (d,) and wall
thickness (t) needs to be between 10 and 50 for braces subjected to both tension and compression, and the
brace diameter (d,) to brace wall thickness (t,) ratio needs to be below 50 for members subjected to tension. [2]
If the requirements are met, only the resistance of the joint to the chord face failure and punching shear failure
needs to be considered. The design resistance of the CHS joint is then defined as the minimum of those two
values, which can, depending on the loading condition, be calculated using the rules as elaborated in the following
paragraphs. For joints that do not meet the requirements of Table 1, all failure modes as described in Paragraph
2.1.1 should be taken into consideration for the calculation of the design resistance. [2] However, these joints are
beyond the scope of this research.

Table 1: Range of validity for welded joints between CHS brace and chord members [2]

Diameter ratio 02 <d,/dy £ 1.0
Tension 10 < dy/ty < 50

Chords
Compression Class10or2 & 10 < dy/t, < 50
Tension d/t; <50

Braces

Compression Class 1 or2




2.1.2.2  Brace subjected to axial load

Figure 3 shows a schematization of a CHS T- and X-joint, subjected to compression or tension. The NEN-EN 1993-
1-8 Table 7.2 [2] provides calculation rules to predict the design resistance for chord face failure and punching
shear failure of joints for which the brace is subjected to axial loads. These formulas can be used to obtain the
design resistance for chord face failure of T- and X-joints. The resistance to chord face failure for T-joints can be

calculated with the formula provided in Equation 2.4, and the formula for X-joints is provided in Equation 2.5. [2]
yo'z*kp*fyo*tg

Nypg = sind, (2.8 +14.2% %) /yus, (2.4)
_ kptfyortd 52

Niga = sind, ¥ (1=081p) /Yus- (2.5)

For n, > 0 (compression): k, =1 — 0.3 *n, * (1 +n,), but k,<1.0

For n, < 0 (tension): k, =1.0

In these formulas, y is the ratio of the chord diameter to twice its wall thickness (y = dy/2t,), B is the chord
diameter to the brace diameter ratio (8 = dy/d;), and yys is the partial safety factor for joint resistance in hollow
section lattice girders. k,, is a reduction factor based on n,, which takes into account the stress ratio between the
action stress in the chord and the yield strength and can be calculated using n, = (09 ga/fy0)/Yus- [2]

Finally, the design resistance for punching shear failure for both joint types when d; < d, — 2t,, can be calculated
using Equation 2.6:

1+sin6,

£
Nipg == * to* % d; * JsinZ8, /Yus- (2.6)

V3

2.1.2.3  Brace subjected to bending moment

In Figure 4, a schematization of a CHS T-joint subjected to a bending moment is shown. The NEN-EN 1993-1-8 [2]
provides calculation rules to predict the design resistance to chord face failure and punching shear failure for
joints where the brace is subjected to a bending moment. The Eurocode (EC) formulas for the chord face failure
resistance for a T- and X-joint subjected to an in-plane bending moment M;, and out-of-plane bending moment
M,,, are provided in Equation 2.7 and 2.8, respectively. [2]

fyo*tg*d1

Mip1,ra = 485 * “smo, VY * B *kp/Yus, (2.7)
_ fyo*tg*d1 2.7

Mop1,ra = sin 6, * 1—0818 * kp/Yus- (2.8)

Forn, > 0 (compression): k, =1 —0.3 *n, * (1 +n,), but k,<1.0

For n, < 0 (tension): k,=10

The design resistance formulas for punching shear failure, given that d; < d, — 2t,, are provided in Equation 2.9
and 2.10:

_ fyoxtoxdi , L¥3sin6,

Miprra =5 * oimze, /Yms (2.9)

_ fyoxtoxdf , 3+sind,

Mopra = =5 * Jsinza, /VMs- (2.10)

2.1.2.4  Combination of axial force and bending moments
For joints where the brace member connection is subjected to a combination of an axial force and a bending
moment, the joint resistance should satisfy the following equation [2]:

2
Ny Eaq + [Mip,l,Ed] + |Mop,1,Ed| <1.0
N1 Rrd Mip,1,Rd MopiRd !

(2.11)

where:
Nigq is the design axial force;
Ni ra is the design axial force resistance;
M, 1£q is the design in-plane internal moment;
M, 1 ra is the design in-plane moment resistance;
M,p1,5q is the design out-of-plane internal moment;
M,p1,rq is the design out-of-plane moment resistance.
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Figure 3: T- and X-joint subjected to an axial force [2]
Mip,1

Figure 4: T-joint subjected to in-plane and out-of-plane bending moment [2]

2.1.2.5 CIDECT Design Guides

The CIDECT is is an international association researching streel construction and engineering with CHS’s as main
focus, for which they also provide design guides. The CIDECT provides the design rule “chord plastification” and
“punching shear” for non-penetrated CHS joints, for which the design rule chord plastification is comparable to
the EC design rule for chord face failure, and the punching shear failure design rule is exactly the same as the EC

design rule. The design rule for the prediction of geometries failing in chord plastification is given as:

Fyo*t3 . 2.6+2.6%f8

_ 0.15
Nira = sint, * 1-o7p V¥ Qs (2.12)

where Q; = (1 — [n])¢*, which can be calculated by n = LNoka | Mord 54 1 = 0.45 — 0.25 = 8. [3]
Npiord  MpioRd

To compare the design rules from the CIDECT with the EC design rules, the design resistances are calculated for
different parameter configurations. From these calculations, it can be concluded that the formula for chord
plastification almost predicts the same yield loads as the design rule from the EC for chord face failure. The design
rules of the CIDECT are therefore, not further taken into account within this study.



2.2 PENETRATED HOLLOW STRUCTURAL SECTION

During the literature search into performed studies and realized projects into CHS X-joints, no information could
be found about penetrated CHS X-joints. However, some studies on penetrated plate-to-hollow structural
sections (HSS) were found: Kosteski and Packer researched “Longitudinal plate and through plate-to-hollow
structural section welded connections” [4], Voth et al. looked into “Branch plate-to-circular hollow structural
section connections, part | and part 1I” [5] [6] and lastly, Voth and Packer studied “Circular hollow through plate
connections” [7]. These studies may be interesting for the current research due to their applicability for CHS joints
and their relation to penetrated connections. In this paragraph, these relevant studies are evaluated and
information on the researched joint configuration, applied deformation limit, the finite element modeling,
parameter study and conclusions and recommendations are provided.

2.2.1 Through plate-to-hollow structural section joint

HSS are becoming a commonly used steel member, and the joint possibilities and techniques are still expanding.
Within the performed researches into HSS, the main focus lies on CHS joints. CHS joints have their own specific
design rules that are provided in the NEN-EN 1993-1-8 [2], in the design guide for CHS joints under predominantly
static loading [8], and in the study of “Deformation limit for the ultimate strength of hollow joints” by Wardenier
J. and Winkel L.H. [9].

Currently, joints and connections between circular hollow sections are expensive due to their complex and labor-
intensive joint designs [4]. With the further optimized processing techniques that are applied nowadays, such as
for example laser cutting techniques, more precise joints can be designed and created in a limited time period,
which reduces previous drawbacks of these joints in terms of costs. Therefore recently, an increasing amount of
research is done to further optimize CHS joints and expand the possible joint types, including also penetrated
joints in CHS members. Penetrated CHS-to-CHS joints are still relatively unknown, however a more commonly
applied similar joint type, optimized plate-to-CHS joints, have been studied before. In these joints, the plate passes
through the CHS, and the welded connection is applied on both sides of the CHS, for which an example is shown
in Figure 5. These types of plate joints are often applied as shear joints or in wind bracing connections. Especially
in wind bracings, where the normal force in the diagonal is distributed via the plate to the CHS. The double welded
connection, on both sides of the CHS column, can be beneficial for the distribution of the stresses and the
activation of the back of the CHS column.

2.2.2  Design resistance by deformation limit

In accordance with the research goal of this thesis, in these studies the behavior of through plate joints is
compared with their corresponding branched plate equivalents. As a first indication for the resistance of the
through plate joints, i.e. penetrated plate-to-CHS joints, the design rules for uniplanar branch plate-to-CHS
connections under axial load are used and deformation limits provided by the research from Wardenier J. and
Winkel L.H. are applied. [4] [5] [6] [7] [9] The deformation limits give practical restrictions for the joint
deformations in the serviceability limit state and the ultimate limit state. In the serviceability limit state, an
ultimate deformation limit of 1% of the diameter (1% d,) of the main CHS member is allowed for. While in the
ultimate limit state, the ultimate deformation limit is set to 3% of the chord diameter (3% d,).

2.2.3  Finite element modeling

In the evaluated studies, the created finite element (FE) models and
assumptions are validated using experimental tests. The test and the results
obtained using the FEM are compared and verified on the overall load-
deformation behavior, local deformation, local spot strain, and ultimate failure
mechanisms. Validation of the FE models ensures that the FE model and
associated assumptions are verified and that the results of the FE models
approach reality. The validation of the FE models allows for the expansion of the
model to a numerical parametrical model. [5] In the next paragraphs, the
geometries, boundary conditions, mesh-, and material properties researched in
the mentioned studies will be evaluated.

Figure 5: Example of a through
plate connection to a CHS [6]



2.2.3.1  Geometry and boundary conditions

Both transverse and longitudinal oriented through plate-to-CHS connections and their branched equivalents have
been researched for T-type as well as X-type plate-to-CHS connections. The geometrical dimensions of the
examined joints are based on proportionality ratios. The proportionality ratios are defined as the effective
longitudinal plate depth-to-HSS width ratio (1), the effective transverse plate width-to-HSS width ratio (), and
the chord diameter-to-thickness ratio (2y). Where the effective longitudinal plate depth-to-HSS width ratio(n)
can be calculated by dividing the plate depth in longitudinal direction trough the HSS width (n = hi/bg), the
effective transverse plate width-to-HSS width ratio (8) can be calculated by dividing the plate width trough the
HSS width (8 = b;/bg), and the chord diameter-to-thickness ratio (2y) can be calculated by dividing the chord
diameter trough the wall thickness (2y = dg/t}), using the dimensions as shown in Figure 6. For T-type
connections the chord diameter to thickness ratio must be equal or less than 50, whereas for X-type connections
this ratio must be equal or less than 40. [5]

To avoid that end effects of the boundary conditions have an influence on the behavior and strength of the joint,
the free “effective” length of the chord extending beyond the plate or HSS must be sufficiently long. Kosteski and
Packer state in their paper the following about the free length: FEM analysis showed that the free length of the
chord must be greater than 1.25 times the HSS chord width (by) to avoid end effects. As a precaution, a more
conservative value of 1.5 by was used in the FEM parametric study. [4]

On the contrary, Voth et al. [6] and Vegte and Makino [10] both state that the end effects can be eliminated for
all geometric configurations for which the effective chord length parameter (a") is equal or higher than 20. This
effective chord length parameter can be calculated by dividing two times the effective chord length by the chord
width or diameter (a' = 2l'y/d,). In other words, the effective chord length needs to be at least ten times the
chord width or diameter, which is four times as much as stated by Kosteski and Packer [4].

To ensure that the applied boundary conditions in the FE model optimally approach the boundary conditions from
the experimental test set-up, in the research of Voth et al. [5] and Voth and Packer [7], end plates are modeled
to the chord. Furthermore, Voth et al. researched the schematization of the model and included a boundary
condition study in their research. The research concludes that by implying a fully restrained boundary condition
to the CHS chord end, the modeled structure was found to have a stiffer behavior than the experimental test
results. To simulate the experimental setup and conditions, deformable end plates are modeled to the CHS chord,
and only the inside surface of the bolt holes are restraint against displacements. This boundary condition is applied
for the T-joint, as well as for the X-joint.

2.2.3.2 Mesh
In all studies [4], [5], [6], and [7], solid brick elements are applied in the FE model. In the papers, mesh convergence
studies are presented which have been carried out to decide on a suitable level of discretization and the best
appropriate mesh settings and layout. The mesh settings are chosen based on the comparison between the FEA
results and results of the experimental load-deformation responses. Voth et al. [5] [6] and Voth and Packer [7]
applied in their studies eight-node solid brick elements (SOLID45), with three translational degrees of freedom
per node. However, Voth et al. also executed the study with twenty-node solid brick elements (SOLID 95), which
have been applied by Kosteski and Packer as well [4]. Voth et al. concluded that the eight-node SOLID45 elements
show a load-deformation response and an overall joint behavior that better approaches the experimentally
obtained results. Additionally, Voth et al. [5] [6] and Voth and Packer [7] applied in their studies integration with
hourglass control in order to limit the zero-energy modes, which are physically not possible. Moreover, in their
models, both applied a nonlinear time step analysis to incorporate the nonlinear material properties, allow for
large deformations, and apply a full Newton-Raphson frontal equation solver.
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Figure 6: Branch plate joint configurations with geometric properties as used for the proportionality ratios of branch- and
through plate-to-CHS connections. [5]



2.2.3.3  Material properties

In the mentioned papers [4] [5] [6] [7], the material models for FEA are obtained from the experimental tests.
From the HSS and plate used in the experimental tests, the exact material properties are determined by tensile
coupon tests. From the test results, the stress-strain curves of the average measured material properties are
plotted. The engineering and true stress-strain material curves are plotted, and the true stress-strain curve is used
for the FEA. The true strain is calculated by the formula &4y = In (1 + £¢5,4) and the true stress value is calculated
by the formula 4ye = Teng (1 + €eng)- In the research of Kosteski and Packer [4] and Voth and Packer [7] the exact
weld properties are not investigated. The weld is assumed to be strong and stiff enough, and the material
properties are therefore assumed to be the same as the plate material. In the research of Voth et al. [5] + [6], the
material behavior of the welded connection is taken into account by applying the true stress-strain behavior of
the welded material in the same manner as the HSS and plate are applied.

2.2.4 Parametric study

For the parametric study, the researchers [4] [5] [6] [7] used the proportionality ratios as outlined in Paragraph
2.2.3.1, being the effective longitudinal plate depth-to-HSS width ratio (1), the effective transverse plate width-
to-HSS width ratio (8), and the chord diameter-to-thickness ratio (2y)

In the papers, the value of the effective longitudinal plate depth-to-HSS width ratio () is varied between 0.32
and 4.12. Where Kosteski and Packer chose for the values 0.5, 1.0, 1.5 and 2.0, Voth et al. opted for the values
0.32,0.53,0.72,0.92,1.12,1.62,2.12,2.62,3.12, and 4.12 and, finally, Voth and Packer applied an n 0of 0.32, 0.72,
1.12, 1.62, 2.12 and 2.62. The value of the effective transverse plate width-to-HSS width ratio(B) is varied
between 0.2 and 1.0, with intermediate steps of 0.2, and the values of the chord diameter-to-thickness ratio (2y)
is varied between 13 and 46.

2.2.5 Conclusions and recommendations
The studies from Kosteski and Packer [4], Voth et al. [5], and Voth and Packer [7], evaluated the behavior of a T-
type through plate-to-CHS joints and compared it with the behavior of T-type branch plate-to-CHS joints loaded
in tension and compression.
Voth et al. [6] studied the effect of the chord length and boundary conditions on the behavior of a branch plate-
to-CHS X-joint. The study concluded that the effects of the chord end boundary conditions could be neglected by
an effective chord length of at least 10 d (or @’ = 20). Kosteski and Packer state however, that their FEM analysis
showed that the free length of the chord must be greater than 1.25 times the HSS chord width (b,) to avoid end
effects and used as a precaution, a more conservative value of 1.5 b, in their FEM parametric study. [4]
Voth et al. and Voth and Packer concluded that for branch plate-to-CHS joints loaded in tension, the CIDECT
international design guidelines by Wardenier [3] underpredict the capacity of the joints significantly. For through
plate-to-CHS joints, it is concluded from the parameter studies, that the joints have a capacity of more than double
the capacity of an equivalent branch plate connection. Voth et al. and Voth and Packer concluded that the capacity
is approximately the summation of a branch plate-to-CHS joint under tension and compression loading, which
results in a capacity of even more than three times the joint capacity of a branch plate joint loaded in compression.
By Voth and Packer [7], a recommendation is given for a set of design rules for through plate-to-CHS joints. In the
set of design rules, the advantageous behavior of joints in which the plate penetrates the chord, is taken into
account. Voth and Packer developed the following design rules for the design resistance of transverse (Equation
2.13) and longitudinal (Equation 2.14) through plate-to-CHS T-joints [7]:

NP = fyo*t§ *{# [29% (1 +3B"2) xy35 + 2.6 x (1 + 2.58'2) x y*55] x Qf, (2.13)
(2.14)
Where { is a reduction factor for the design resistance, equivalent to the inverse of the European partial safety
factor and can be taken as 0.85. This reduction factor should provide sufficient conservatism for structures with
a geometric parameter outside the investigated range since the parameter study used to create the design rule
has been verified for a limited parameter and data range only. The factor Qf is a factor for the chord plastification,

Ni = fyoxt§ *{+[7.2% (1 4+ 0.7n") +10.2 % (1 + 0.6n")] * Qf.

which is provided by Wardenier in the CIDECT international design guidelines [3]. The design guideline states that
Qr = (1 —[nD, where n = (No/sz,o) + (Mo/Mp,0) and €1 = 0.25 for chord compression stress (n < 0), and
C1 = 0.20 for chord tension stress (n = 0).
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3 FINITE ELEMENT MODEL FOR CHS X-JOINTS

In this research, a finite element (FE) model is created to perform a parameter study and to predict the structural
behavior, the yield, and the ultimate loads of (non-) penetrated CHS X-joints. For the FE model, a script is created
using Python programming language; the script is imported in the FE software ABAQUS CAE 6.14 which is used to
run the model and perform the calculations. In this section, the construction of the FE model is presented and
the model is validated using the results of a research done on the “Axial capacity of circular hollow section T-joints
using grade HSB 600 steel” [11]. The geometry build-up, material model, mesh settings and element types,
including a mesh convergence study and the loads and boundary conditions, including a boundary condition study
are elaborated in Section 3.1. In Section 3.2, the validation study of the FE model is presented. First the research
and tests from literature, used for validation, are outlined. Next the adjustments to the created FEM to allow
validation with the (experimental) results from the presented paper are listed. And finally, various material models
are studied and the conclusions of the validation study are presented.

3.1  FINITE ELEMENT MODEL

A FEM is constructed to evaluate the structural behavior and the failure mechanisms of (non-) penetrated CHS X-
joints. In this paragraph, the main features of the finite element model are explained. A Python based script is
used as base from which two comparable FEM’s, for the penetrated and non-penetrated joint, are created. In the
following paragraph the geometrical differences between these models will be explained and in Appendix A, the
Python script for the penetrated CHS X-joint is provided. Additionally, the material models, mesh settings and
element types, the mesh convergence study, applied loads, and boundary conditions for the model are explained.

3.1.1 Geometry

The joint geometry is modeled in a three-dimensional

environment, in which the brace and the chord are modeled Reference point
using deformable shell elements. Both members are build up Boundary condition

parametrically using geometrical parameters, in a similar way o . ! .

as in the literature presented in section 2.2.4. The E : ! |

geometrical setup, based on these geometrical parameters, el ! i o

is equal for the penetrated and the non-penetrated models. : | : =

The only difference is that for a non-penetrated joint, the part | i i - E

of the brace member that falls within the chord diameter has Brace Enl,__i JJ o ] 3

been removed, and that for a penetrated joint, the part of the P__________‘[____l____ % 2=

chord wall that falls within the brace diameter has been . :"_|"'[ ''''' o EE
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geometrical parameters (ratios) and geometrical properties. : i : o
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study and are referred to with Greek symbols, while the ' i : dp

geometrical properties are used to set up the geometry of . i :

the model and are referred to by abbreviations of the specific

properties. The defined geometrical parameters are the Bgfngr:c;ﬁgm;n

effective chord length parameter (a’), the brace width-to-

chord width ratio (B8), the chord diameter-to-wall thickness Figure 7: Geometrical parameters of a CHS X-joint

ratio (2y), and the brace diameter-to-wall thickness ratio

(28), and can be calculated using the following formula’s:
a' = Zlé/do (3.15)
B =di/do (3.16)
2y = do/to (3.17)
26 =dy/tq (3.18)

Where d, is the chord diameter, d; is the brace diameter, t, is the chord wall thickness and t; is the brace wall
thickness, and [j is the effective chord length, which is defined as the chord length minus the brace diameter
divided by two (I = (I — d1)/dy). The parameters and the related geometrical properties are shown in Figure 7.



The geometrical properties are fixed formulas, used for creating the geometry. The first geometrical property is
the chord diameter (d,), which is fixed on 762.0 mm. The second property is the chord wall thickness (t,), which
can be calculated by dividing the chord diameter through the chord diameter-to-wall thickness ratio (t, = do/2y).
With the chord diameter and wall thickness, the chord radius till mid-surface of the cross-section wall thickness
can be calculated by dividing the chord diameter minus the wall thickness by two (ry = (dy — to)/2). The brace
diameter is set by multiplying the chord diameter with the brace width-to-chord width ratio (d; = d, * B). The
brace wall thickness can be calculated in the similar manner as the chord wall thickness, but this time by dividing
the brace diameter through the brace diameter-to-thickness ratio (t; = d,/26). Furthermore, for the brace radius
the same formula holds as for the chord radius. The last geometrical properties are the chord and brace lengths.
The chord length is based on the effective chord length parameter divided by two times the chord diameter, plus
the brace diameter (I, = a'/2 * dy + d;), and the brace length is set to eight times the brace diameter plus the
chord diameter (I; = 8 x d; + dy). The factor eight for the brace length is assumed to have sufficient length to
induce the flow of stresses in the brace, while still resulting in a limited brace length, preventing the brace from
buckling in compression.

With the above geometrical properties, the members can be created in Abaqus. To create the chord and brace
member, the radii till mid-surface of the cross-sections (ry, ;) and their lengths (ly, l;) are used. After generating
the geometry, the shell thicknesses and material properties are assigned to the sections.

In the next step, the members are combined. Therefore, first, the members have to be translated and moved to
the right positions. Next, the members are merged, dependent instances are created from them. Doing so, creates
a fixed connection on all locations where the instances intersect each other. The difference between the
penetrated and the non-penetrated model is made by removing different joint parts. In the penetrated model,
the part of the chord wall that falls in between the brace diameter is cut out of the model, and at the non-
penetrated model, the brace part that passes through the chord is cut out the model. The different models are
shown in Figure 9.

3.1.2 Material model

Several material models are compared and evaluated in the validation study of the FE model, which can be found
in paragraph 3.2.2. Based on the outcomes from this material study, an elastic-plastic material model with linear
strain hardening, which is based on the formulas as provided in the EC EN 1993-1-5 appendix C.6 [12], is adopted
within this research. Furthermore, a yield strength (g,) of 355 N/mm? and an ultimate strength (g,) of 490
N/mm? are applied. Since this study aims to evaluate the behavior up to the plastic capacity of penetrated CHS X-
joints subjected to several load cases, by the means of a parameter study, material damage is not taken into
account in this analysis. The Von Mises yield criterion is used to evaluate when the geometry starts yielding and
to determine the corresponding plastic capacity. The strain hardening effect is accounted for by a reduced Youngs
modulus once the yield strain is reached. The reduced Youngs modulus is defined by the slope as shown in Figure
8, which can be calculated using tan=1(E/100). The material model provided in EC EN 1993-1-5 appendix C.6
concerns the engineering stress and strain, which not represents the physics properly. Therefore, the engineering
stress-strain model is converted to a true stress-strain model, which is required FEA in the software Abaqus, for
which the true strain and true stress can be calculated with formula 3.19 and 3.20, respectively.

Etrue = I (1 + €eng) (3.19)
Otrue = Oeng(1 + €eng) (3.20)
UZX
fuf o
r- [ tan ! (E/100)
. 3
Eran”{E)
Y = Y ’_’ & rl/:‘:.
z-hx | zhx gl Figure 8: Elastic-plastic material

Figure 9: Geometry of a penetrated (left) and non-penetrated (right) CHS X-joint model with linear strain hardening



3.1.3 Mesh settings and element types

In this paragraph, the mesh settings and element types are explained, and the mesh convergence study is
discussed. The mesh design of the X-joint model is created using datum planes, which are planes that span two
axis at an certain offset from the datum point in the direction of the third axis. These datum planes make it
possible to create partitions where the plane intersects the members, as shown in Figure 11, to which different
element types and mesh settings can be assigned. These distinctions allow for a reduction in the number of
elements and accordingly, a reduction in computational time. Moreover, diagonal partitions were required for
controlling the structured meshing technique around the connection.

3.1.3.1  Mesh settings

To create an optimized mesh design, both the chord and the brace member are divided into four sections. Using
the seed edges function, the number of elements or the maximum size of elements along the edges of the
partitions are controlled. The region near the connection is the most important region for analyzing the joint
behavior and therefore has the finest mesh. The regions near the end of the chord and the brace are less
important since they have less influence on the joint behavior, and are therefore designed with a coarser mesh.
The mesh is controlled by using a structured mesh technique and assigning different element shape options. Near
the connection, only quadrilateral element shapes are applied to ensure that the elements in this joint region
have optimal mesh shapes. On the other parts of the model, a quad-dominated shape option is applied, which
uses primarily quadrilateral elements but also allows triangular elements where needed for the creation of
adequate mesh shapes, for example, in mesh size transition regions [13]. The resulting meshed model is shown
in Figure 11, in which it can be seen that a fine mesh is obtained near the connection between the chord and the
brace, and that towards the ends of the members, the mesh size is increasing.

3.1.3.2  Element type

The shell elements are applied as quadratic, 8-node doubly curved thick shell elements with reduced integration
and six degrees of freedom per node (S8R). The six degrees of freedom per node take into account the translation
and the rotations in three directions. The shell elements make use of a reduced integration scheme with four
integration points, which are shown in Figure 10. The reduced integration option uses fewer integration points in
each direction, which makes the element slightly less accurate, but in computational time, the FEA substantially
faster. Moreover, the application of reduced integration mainly influences the plastic behavior, while in this
research is focussed merely on the onset of the plastic behavior and therefore the application of reduced
integration has very limited influence on the results of the analysis. Over the thickness of the shell element, 5
section points are defined.
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Figure 11: Partitioned and meshed geometry Figure 10: Reduced integration points
(top) and section points (bottom) in
two-dimensional elements [11]



3.1.3.3  Mesh convergence study
A mesh convergence study is performed to decide on a suitable

Reaction
mesh refinement level for which the model provides accurate
results, but no more elements then necessary are applied in order
to keep the required computational time limited. Initially, a FEA is
performed on a coarsely meshed model. Then, the level of mesh Stress
refinement, i.e. the number of elements, is increased gradually.
While the mesh becomes finer, the results should become more Displacement
accurate and the influence of mesh size on the obtained results X-direction

should reduce. An accurate solution is assumed to be found when

further refinement of the mesh results in a negligibly small
difference of the solution. For comparison of the results, the ¢
reaction force, the stress at one specific node in the chord, and z-hx
displacement in one specific node in the connection between the
chord and the brace are measured, which are indicated in Figure
12.

In section 3.1.3.1 the construction of the mesh using seeded edges and the distinctions made in mesh refinement
for certain regions of the joints are elaborated; the number of seeds on the edges is increased for regions near
the connections while a coarser mesh is allowed near the ends of the members. In the Python script, the number
of elements on an edge is set to a specific value depending on the required mesh refinement for the region of the
joint concerned. This value is expressed in terms of the geometrical dimensions of the specific edges and is
multiplied with a certain ‘mesh number’; this number is a factor that scales the number of seeds on the edge
linearly and equals 1 for the basic ‘very coarse’ mesh. To increase the mesh density and study the consequent
effects on the solution, the mesh number can be easily adjusted, while the proportional mesh refinement levels
of the different joint regions are maintained.

The mesh number in the script is doubled from 1 till 16, causing the number of elements to grow exponentially.
In the mesh convergence study, the following models with the corresponding number of elements are compared,
and shown in Figure 13:

Figure 12: Locations for mesh refinement study

- 1Very coarse mesh 728 elements

- 2 Coarse mesh 2880 elements

- 4 Normal mesh 11712 elements
- 8Fine mesh 46080 elements
- 16 Very fine mesh 182784 elements

The results of the mesh convergence study can be seen in Table 2 and in the left graph in Figure 14. In the table
from left to right, the mesh number, number of elements, normalized mesh density, displacement, normalized
displacement, reaction force, normalized reaction force, stress, normalized stress, and the computational (CPU)
time. Using the normalized results, which can be calculated by Normalized res. = X,/X;, ..., X16/X1, the results
of the different mesh refinement levels are compared with the basic ‘very coarse” mesh with mesh number 1.

In the left graph of Figure 14, the normalized displacement, react ion force and stress are plotted against the
normalized mesh density in blue, orange and grey respectively.

Figure 13: Very coarse (1), coarse (2), normal (4), fine (8), and very fine (16) mesh



Table 2: Mesh convergence study results mesh 1-16

Mesh Mesh Norm. Displ. Norm. RF Norm. RF Stress Norm. CPU time
density Mesh d. Displ. Stress
1v.C 728 1.00 4.352 1.000 1020.9 1.000 121.72 1.000 13.8
2C. 2880 3.96 4.450 1.022 973.0 1.049 108.26 1.124 59.6
4 N. 11712 16.09 4.486 1.031 952.6 1.072 105.92 1.149 322.1
8 F. 46080 63.30 4.502 1.034 943.3 1.082 105.59 1.153 2356.1
16 V. F. 182784 251.08 4.508 1.036 939.0 1.087 105.37 1.155 20912.0
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Figure 14: Normalized mesh convergence study results mesh 1-16 (left) and mesh 4-12 (right)

In the graph can be seen that between mesh number 2 and 4, an increase in mesh density still effects the results,
however, between mesh number 4 and 8, the graph is flattening, and between 8 and 16, the graph is almost
horizontal, yielding a converged solution. To determine on the optimal mesh refinement level, the studied mesh
numbers in between these flattened and horizontal regions, is increased and an additional mesh convergence
study is performed for the mesh numbers between 4 and 12. The results of this study are shown in Table 3 and
in the right graph of Figure 14. The graph shows a relatively flat and horizontal line, which means that from mesh
number 4 on, the results are almost stable, and convergence is reached. Comparing the results of mesh numbers
four and five, there is a maximal difference observed of 0.5% for the reaction forces, while the CPU time doubles.
Looking to the relative change between the parameters ((old — new)/old * 100 = (X, — X5)/X, * 100), there is a
difference of 0.43%. It can be concluded that improvements in accuracy do not outweigh the increase in
computational time. Therefore, mesh number four is assumed as converging and gives sufficiently stable results
without increasing the computation time too much.

Table 3: Mesh convergence study results mesh 4-12

Mesh Mesh Norm. Displ. Norm. RF Norm. RF Stress Norm. CPU time
density Mesh d. Displ. Stress

1V.C 728 1.00 6.677 1.000 1116.0 1.000 137.57 1.000 13.8
4 N. 11712 16.09 6.852 1.026 1028.4 1.085 11941 1.152 322.1
5 18152 24.93 6.859 1.027 1024.0 1.090 119.30 1.153 594.8
6 25634 35.21 6.864 1.028 1021.1 1.093 119.22 1.154 1039.2
7 35496 48.76 6.868 1.029 1019.1 1.095 119.18 1.154 1814.0
8F. 46080 63.30 6.870 1.029 1017.6 1.097 119.15 1.155 2356.1
9 58592 80.48 6.872 1.029 1016.5 1.098 119.14 1.155 3494.3
10 72000 98.90 6.873 1.029 1015.6 1.099 119.11 1.155 4660.5
11 86928 119.41 6.874 1.030 1014.9 1.100 119.09 1.155 6520.1
12 V. F. 102528 140.84 6.875 1.030 1014.3 1.100 119.06 1.155 7546.6



3.1.4 Loads and boundary conditions

3.1.4.1 Load

Within this research, displacement controlled calculations are performed; the prescribed displacements are
imposed in a stepwise manner. In the model, the prescribed displacement is applied as a boundary condition with
a uniform distributed displacement on a reference point. The reference point is located at the center of the brace
edge and is connected with a rigid body constraint to the edge of the brace element. The rigid body constraint is
applied as tie nodes, which means that both the translational and rotational degrees of freedom are part of the
constraint and that the edge motion is governed by the motion of the reference point and the relative positions
of the edge nodes with respect to the reference point remain constant during the simulation. [13]

3.1.4.2 Boundary conditions

Based on the conclusion of Voth et al. from the literature study, first a boundary condition study is performed.
Voth et al. [6] concluded in their research, as explained in section 2.2.5, that the effect of the end boundary
conditions on the behavior of a plate-to-CHS X-joint can be neglected when an effective chord length of at least
10 * d, (or a’ = 20) is applied.

To see if this conclusion holds for CHS X-joints as well, four different boundary conditions and five effective chord
lengths have been compared. The boundary conditions (BC) clamped, pinned, X symmetrical, and X asymmetrical
are applied to the top and bottom edges of the chord. In case of a clamped BC all six degrees of freedom are fixed,
for a pinned BC the displacements in X-, Y- and Z-direction are fixed, for a X symmetrical BC displacement in X-
direction and rotations about the Y- and Z-axis are fixed, and for a X asymmetrical BC, displacements in Y- and Z-
direction and rotations about the X-axis are fixed. For the effective chord length, the length parameters (a’) 16,
24, 32, 40, and 48 are compared. The resulting load-displacement curves for the effective chord length
parameters 16, 32, and 48 are provided in Figure 15. In the graphs, the scale of the vertical axis (Force in kN) is
kept equal. It can be seen that the boundary condition X asymmetrical is only plotted for an effective chord length
parameter of 16. This is due to an increasing instability of this model for increasing chord lengths. The top end of
the chord is allowed to displace in Y-direction. When a load is applied in X-direction on the brace, a bending
moment is introduced in the chord and, therefore, due to cable effects, a large displacement of the top edge is
caused. In the model with an effective chord length parameter of 16, the model is able to handle these
displacements, however, in the models with a higher effective length, the model becomes unstable due to these
displacements.

Additionally, it can be noticed in the graphs that the force-displacement curves of clamped and X symmetrical
boundary conditions, and pinned and X asymmetrical boundary conditions coincide up to a displacement of 150
mm. The models behave equally because of the application of the boundary conditions; the boundary conditions
are applied on the edge of the chord members. Applying the X symmetrical boundary condition on the chord
leads to a fixed chord end, which is equal to the clamped model. The same holds for the x asymmetrical and the
pinned model.
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Figure 15: Force-displacement graphs boundary condition study



The graphs show that with a longer effective chord length, the type of boundary conditions applied, has less
influence on the behavior of the joint, however, even for an effective chord length parameter of 48, differences
in the behavior are noticeable. It is therefore concluded that the statement of Voth et al. [6], that the effects of
the chord end boundary conditions can be neglected when a’ < 20, cannot be used. Furthermore, with an
effective chord length parameter of 48, the bending moment of the chord will always be normative and the failure
mechanisms of interest cannot be studied.

For the parameter study, the boundary conditions are applied on a reference point and tied by constrains as a
rigid body to the chord edge, and the clamped and pinned boundary conditions are compared. A noticable
difference in the force-displacement curves between the boundary conditions is that the clamped boundary
conditions, have a significantly higher failure load for the longer chord lengths. This is due to the failure of the
chord on bending moment. Bending moment is, next to the standard member failures, one of the failure
mechanisms that is not interesting for this study on the behavior of penetrated joints. Therefore, bending
moment as a governing failure mechanismn, needs to be avoided as much as possible within the parameter study.
To do so, clamped boundary conditions will be applied at the chord ends and additionally, the effective chord
length parameter is set to 12. The latter is done in order to limit the chord length and thus prevent bending
moment of the chord to be governing, will ensuring to have a sufficient chord length to allow for a well distribution
of the stresses around the joint.

3.1.5 Finite element analysis (FEA)

For the FEA of the structural behavior of a CHS X-joint, a geometric and material nonlinear analysis is implemented
in the script. In this paragraph, the geometric and material nonlinear analysis and the solver methods are
explained.

3.1.5.1  Geometric and material nonlinear analysis (GMNA)

Within the FEM, geometrical and material nonlinearity are applied because the model will show large
deformations and displacements. Geometric nonlinearity is associated with large displacements, and is applied
within Abaqus by turning on the NLGEOM function. The material nonlinearity is associated with the elastic-plastic
material model with strain hardening that is applied in this research, as explained in section 3.1.2. The nonlinearity
makes it possible to include the changes in the geometry during the analysis and to take into account the stiffening
effects; a standard Newton-Raphson incremental-iterative procedure is adopted in which the stiffness matrix is
updated each iteration. [14]

3.1.5.2  Solving method

As mentioned above, for the nonlinear FEA a standard Newton-Raphson incremental-iterative procedure is used.
This method makes use of an algorithm to find equilibrium in every increment, where the increments are the
converged stages after of a number of iterations. The stiffness matrix is updated For the nonlinear analysis, the
initial time increment is set at 0.001, the maximum time increment on 0.015, and the maximum number of time
increments at 200.

3.1.6 Output
The requested results from the FEA are obtained from the history & field output and saved in an output database
and additionally, plotted in an Excel sheet. The mentioned steps will be elaborated within this paragraph.

3.1.6.1  History and field output

The requested results are saved in the history and field output of Abaqus. The field output is the more general
output of the data collected from the whole structure, and the history output can contain data from the whole
model or specified smaller regions, e.g. specific elements or nodes. In this study, the requested data saved in the
field output are the stresses, strains, plastic strains, plastic strain equivalent, elastic strains, and deformations. In
the history output, the displacement and reaction force are collected at the reference point on the brace, where
the load is applied. Secondly, the energy dissipated by rate-independent and rate-dependent plastic deformation
(ALLPD) is requested for the whole model; this function shows plastic strains in the structure [13]. Lastly, also ten
node displacements are collected; these displacements are provided to implement a deformation criterion for
the ultimate load, which will be explained in the following paragraph.
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Figure 16: Deformation criterion [15] and deformation criterion application within the model

3.1.6.2  Deformation criterion

The ultimate load of CHS joints can be found by the lowest value of the first peak load from the load-displacement
graph or via an ultimate load predicted by a deformation criterion. Wardenier J. and Winkel L.H. have performed
several studies on CHS joints, after which they concluded that the ultimate load of a CHS joints also could be
described by a deformation criterion. The deformation limit is set to 3% of the CHS diameter (3% * d,) for the
ultimate limit state, and limits the ultimate load in case eccessive deformation is observed for one of the failure
mechanisms that can cause the chord to be severly deformed [9], i.e. chord face failure, chord side wall failure.
Two ways to determine the ultimate load obtained from FEA are thus build in, as is illustrated in Figure 16. The
left graph shows that the peak load is reached by a smaller displacement than the 3% criterion; therefore, the
peak load is assumed as the ultimate load. The right graph shows that the 3% deformation criterion is reached
before the peak load, here the 3% deformation criterion is governing for the ultimate load.

The 3% rule is applied within the Python script as a criterion on several nodes. In the right figure in Figure 16, the
application of the deformation criterion within the model is shown. Node sets are created of nodes that are
situated opposite to each other, and from these node sets, the in-between distance and deformation are
measured. In the figure, the node sets are shown with a double arrow in between. The blue arrows are node sets
for which the deformation criterion relates to the Z-direction, and the green arrows are node sets for which the
deformation criterion relates to the X-direction. If deformation between the nodes becomes more than the limit
of 3%, the load capacity at that increment is stored.

3.1.6.3  Output database and creating Excel values

With the history and field output, an output database (ODB output) is created. To use the history and field output
for processing the results, the output has to be requested upfront within the script. Therefore, the ODB output is
created. For the ODB, the storage directory is set, and from the history or field output, the required results are
requested. The history and field output are requested for every increment, and additionally, for the reaction force
and the displacement, the maximum value reached during the simulation is requested.

3.1.6.4  Create Excel values

For collecting and accessing of the results, the results are plotted in an Excel sheet. For every model, an excel
sheet is created and opened in which the results from the ODB output are written to. In the Excel sheet, the
increment number, displacement, reaction force, plastic dissipation, deformation limit, maximum reaction force,
and maximum reaction force due to the deformation limit are plotted. As a last step, the workbook is closed, so
a new calculation with new parameters can be started.



3.2 VALIDATION OF THE FINITE ELEMENT MODEL

For the validation of the FE model, the research “Axial capacity of circular hollow section T-joint using grade HSB
600 steel” from Byong-Jeong Choi, Eun-Taik Lee, Jae-Guen Yang, and Cheol-Kyu Kang is used [11]. In their
research, eight specimens with different geometries and material properties are analyzed numerically and
evaluated. For the validation of the FE model, these eight specimens have been reproduced and tested
experimentally as well. In this paragraph, the experimental and numerical results from Byong-Jeong Choi et al.
are elaborated, and the FE model created for the current study, as described in the previous paragraph, is
validated.

3.2.1 Experimental test

3.2.1.1 Test specimen

Byong-Jeong Choi et al. did research on the axial capacity of a CHS T-joint, loaded under compression. The basic
model for the test specimen is shown on the left side in Figure 17, where can be seen that the specimen lengths
are fixed on a length of 3000 mm for the chord and 1950 mm for the brace, and the diameters are fixed on a
diameter of 750 mm for the chord and 650 mm for the brace. The chord thickness has been varied between 12
and 26 mm, the brace thickness between 12 and 40 mm, and the material strength has been chosen as 400 or
600 N/mm?2. On top of the brace, a 50 mm thick steel plate is welded, to attach the specimen to the testing
machine and to introduce the forces in the brace. [11]

3.2.1.2 Testsetup

On the right side of Figure 17, the test setup with the locations of the LVDTs is shown. With the LVDTs, the
deformations and displacements of the model are measured. [11] Next to that, the supports of the specimens are
shown: it can be seen that double steel plates are welded to both chord ends.

3.2.1.3  Material properties

The material properties of the specimens are obtained by coupon tests of the elements. The materials that are
used for the experiments are 55400 and HSB600 steel. The SS400 steel refers to steel with yield stress (F,) of 235
N/mm? or 215 N/mm? for thicknesses of more than 40 mm, ultimate tensile stress (F,) of 400 N/mm?, and the
HSB 600 steel refers to steel with a yield stress (F,) of 480 N/mm? for all thicknesses and ultimate stress (F,) of
600 N/mm?. In the paper, the minimum yield and ultimate stress are applied in the FE models. [11]

3.2.1.4  Finite element analysis

For the finite element analysis, Byong-Jeong Choi et al. used the software package Abaqus to simulate a
displacement controlled nonlinear static analysis using the static-Riks analysis option. For the analysis,
quadrilateral shell elements with six degrees of freedom per node are applied (S4R elements). Furthermore, an
elastic-perfectly plastic material model was applied, based on the minimum yield and ultimate stress as given in
section 3.2.1.3. For the elastic part of the material model, the Young’s modulus (E) of 205 GPa and a Poisson’s
ratio (v) of 0.3 are applied. For the welded connection between the chord and the brace was assumed that it is
strong and stiff enough, and therefore, the welded connection was not modelled within the FEA. For the boundary
conditions, Byong-Jeong Choi et al. assumed in the FE model that the steel plates behave as a pinned constraint
on the chord ends. [11]

B
o ]_m_[m = ;
B — b
v/ / == B
4 | / —= B
F= e - é B
H ; \ pa— E 4 B
1 | Toad Cell ToadCel| &
| | g
| ' =
2 | | g :
4 1 | : B
™ 1 ;
| / e B
L,’ﬁ ‘ / PN é
TN T VD2 R
| ' B
g I E— e —-—-—-—U-—--E Lvor4 g
- ' ‘ [ITIL]
J T B
| 0 | R

Figure 17: Test specimen and test setup with the locations of the LVDTs [11].



3.2.1.5

The results of the experiment, the FEA, and design resistances calculated with the design rules from AISC and
CIDECT are compared on nominal strength (kN). A ratio between the experiment result and resistance according
to AISC, the experiment and FEA result, and FEA result and resistance according to AISC, is given. The results are
shown in Table 4 and Figure 18, in which the results are divided into the two material groups, SS 400 series, and
HSB 600 series. In the graphs, two calculation methods and four geometries are shown, where every geometry is
indicated by its own color and every calculation method by its own line type. Specifications of the graphs are

Experimental and numerical calculation results

shown in Table 5.

Table 4: Nominal strengths and yield loads [11]

No Specimen Nominal strength (kN) Exp. FEM Exp./ Exp./ FEM./
AISC CIDECT (kN) (kN) AISC FEM AISC
1 400M-t12-bt12 995 896 1326 1400 1.33 0.95 1.41
2 400M-t12-bt40 995 896 1522 1250 1.53 1.22 1.26
3 400M-t26-bt12 4000 3600 4698 4400 1.17 1.07 1.10
4 400M-t26-bt40 4000 3600 4945 4350 1.24 1.14 1.09
5 600M-t12-bt12 2031 1828 2105 2750 1.04 0.77 1.35
6 600M-t12-bt40 2031 1828 1975 2500 0.97 0.79 1.23
7 600M-t26-bt12 8170 7353 8857 8550 1.08 1.04 1.05
8 600M-t26-bt40 8170 7353 8523 8500 1.04 1.00 1.04

Table 5: Legend two calculation methods and two steel classes with both four geometries, used to obtain results

Calculation methods

SS 400 series
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Figure 18: Force-displacement diagram experimental and numerical results

Figure 19: 400M-t12-bt12, FEM result and experimental result of geometry failing in chord face failure [11]
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The results show that the behavior of the FE model differed from the experimental results. For the stiffness of the
models, the elastic path is acceptable, but looking to the plastic phase, the FE model continues to increase and
there is no maximum reaction force reached or softening behavior shown. The models with a chord thickness of
12 mm seem to have almost the same yield load, but for the models with a chord diameter of 26 mm, there is a
significant difference in yield load. It seems that their FEA does not give accurate results to predict the behavior
of the joints. In Figure 19, the finite element and experimental result of the 400M-t12-bt12 are shown. These
results show that in both cases, the failure mechanism chord face failure occurs.

3.2.2 FE model

For the FE model created in the current research, the Python script as explained in section 3.1, is used. The python
script is altered in such a way that the material model, boundary conditions and element types from the FEA in
the paper are incorporated. Byong-Jeong Choi et al. used the minimum standard yield stress and ultimate stress
for their FEA, instead of using the actual mechanical steel properties obtained from their coupon tests.
Furthermore, they used S4R elements in their FE model and applied pinned boundary conditions to the edges of
the chord.

The FEA results from the FE model created in this research with the above mentioned assumptions from Byong-
Jeong Choi et al., give an acceptable prediction for the behavior of the joint, however, compared to the
experimental results, the joint behaves slightly too stiff. Therefore, several steps are taken in an attempt to obtain
numerical results that better match the experimental tests from Byong-Jeong Choi et al.; different element types
are tested, the material properties are upgraded to the mechanical properties retrieved from the coupon tests,
and furthermore, different boundary conditions and material models are studied. The FEA results of the steps
taken are given in Appendix B, and the steps are described in the next paragraph.

As a first step the influence of the type of shell elements is evaluated. Byong-Jeong Choi et al. used 4-node shell
elements with a linear shape function. But in some cases, it can have significant influence to calculate the stiffness
matrix in a higher-order, so apply a quadratic shape function with 8-noded shell elements. In this case, the 8-
noded doubly curved thick shell elements give more accurate results than the 4-node shell elements and
therefore, the 8-node shell elements are applied in the following steps.

In the second step. the mechanical steel properties retrieved from the coupon tests presented in the paper are
implemented. For every geometry, one coupon test was performed, and the mechanical properties of the tests
are provided. The engineering stresses and strains are converted to true stresses and strains, with formulas 3.19
and 3.20. The coupon test yield and ultimate stresses are significantly higher than the stresses initially assumed,
resulting in higher loads, which in this case fits the experimental results better.

After implementation of the steel properties from the coupon tests, the yield and ultimate loads fit the
experimental results well, however, for the elastic part, the FE model tends to behaves stiffer than is observed in
the experimental results. Therefore, as a third step, the boundary conditions are varied between Pinned, X
symmetrical, clamped and pinned applied on a reference point. For the first three, the boundary conditions are
applied directly on the edge of the chord; for the latter, the pinned boundary with a reference point, a reference
point is created on which the boundary condition is applied. In Figure 22, the left graph, the results for the varied
boundary conditions are shown. It can be seen that the boundary conditions mostly influence the stiffness of the
structure and the height of the yield- and ultimate load. The pinned and the clamped boundary conditions show
the same results: a very stiff behavior of the structure and the highest loads. The pinned boundary condition with
areference point, shows a less stiff behavior and lower loads, however, the behavior observed in the experimental
test results are best approximated by the X symmetrical boundary condition that shows the lowest stiffness and
yield load. Therefore, X symmetrical is assumed as the boundary condition in the next steps.

The fourth and last step takes into account different material models. Material models from the EC EN 1993-1-5
[12] and the British standard 7910 [16] are applied. From the EC, models a, b and c are based on the standard
steel properties, while model d (d1 and d2) are based on the true stress-strain curve from the coupon tests. Model
d2 differed from model d1 as in model d2, the Liders strain plateau from the British standard is implemented.
Model d3 is also based on the true stress-strain curve from the coupon tests, like model d1 and d2 from the EC,
but now the approach from the British standard is applied to generate a stress-strain curve.



The material models are shown in Figure 20, and the explanation of the models is as follows:
EC EN 1993-1-5 [12]:
a) Elastic-perfectly plastic without strain hardening;
b) Elastic-plastic with a nominal plateau slope;
c) Elastic-plastic with linear strain hardening;
d1) Elastic-plastic with linear strain hardening, eu = % elongation;
d2) Elastic-plastic with linear strain hardening, eu = % elongation, with liders strain plateau.
British standard 7910 [16]:
d3) Stress-strain curve modified from the test results.

In Figure 21 the results from the material model study are shown. In the first stage of the validation study, model
a — elastic perfectly plastic was applied. In the graph, it can be seen that both model a and b, however, do not
capture the hardening behavior of the material observed in experimental results. Though the d models, describe
this behavior slightly better, model c provides the best approximation of the experimental results, and since it is
based on a standard rule from the EC, material model c is used for obtaining the final results.

Finally, from both Figure 21 and Figure 22, it is visible that the FEA results from Byong-Jeong Choi et al. are
insufficiently describing the stiffness and strength behavior observed in their experiments. Therefore, their FEM
results are omitted in the graphs in the next paragraph and the results from the FE model created in this research
are merely compared with their experimental results.
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Figure 20: Material models by the EC EN 1993-1-5 and the British standard 7910 approach
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3.2.3 Results
Concludingly, starting from a FE model with the assumptions applied by Byong-Jeong Choi et al., the following
steps, as also explained in section 3.2.2, are taken to arrive at the final results:

- Shell elements varied between S4R and S8R elements;

- Material properties (true stress-strain curve) from coupon tests applied;

- Boundary condition study performed;

- Material model study performed.
With these steps taken, a FE model is created with mechanical steel properties as predicted from the coupon
tests (converted to true stresses and strains), in which 8-noded doubly curved thick shell elements, pinned
boundary conditions on a reference point, and a material model with strain hardening are applied. The results
obtained with this optimized model are shown in Figure 23 and Figure 24. The legend associated with these
graphs, indicating the different calculation methods and geometries, is shown in Table 6.

Though significant improvements have been made compared to the FEA results of Byong-Jeong Choi et al., the
graphs show that the curves from the FE models do not exactly follow the curves from the experimental tests.
The elastic behavior of the geometrical configurations is predicted reasonably well; only for the geometry with a
chord thickness of 26 mm and a brace thickness of 12 mm in HSB 600 steel, a stiffer behavior of the joint is
observed in the FEA. In addition, it can be seen that the FE models from SS 400 steel geometries show a similar
trend as the experimental results in the plastic regime, however, for some geometries, the heights of the graphs,
and therefore the heights of the yield loads, differ from the tests. For the geometry with a chord and brace
thickness of 12 mm from SS 400 steel, the FEA describes the joint behavior quite accurately, but for the other
geometries, the FE models predict, in particular, the plastic behavior of the joint less accurate. In the FE models
of most of these geometries, plastic behavior of the joints is initiated slightly earlier than observed in the
experimental tests, resulting in an slight underestimation of the yield loads as well.

Overall, it may be concluded that the experimental results of the SS 400 series are better approximated by the
FEA than those of the HSB 600 series, and that geometries with smaller wall thicknesses of the members also
match the experimental results better than those with larger wall thicknesses.

Table 6: Two methods and two steel classes with both four geometries, used to obtain results

Calculation methods SS 400 series HSB 600 series
—_— Choi et al. Exp. [11] mmmm 400M-t12-bt12 s 600M-t12-bt12
+ Finite element model 400M-t12-bt40 600M-t12-bt40
400M-t26-bt12 600M-126-bt12
400M-t26-bt40 600M-t26-bt40
SS 400 series - t12 SS 400 series - t26
2000 8000
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Figure 23: Validation study results for SS 400 series
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Figure 24: Validation study results for HSB 600 series

3.2.4 Conclusion
The numerical results describe the joint behavior as observed in the experimental tests from Byong-Jeong Choi et
al. accurately enough to be able to conclude that the, in this research, created FE model works as intended. For
the eight specimens the correct failure mechanisms, i.e. chord face failure and brace cross-section failure, in
accordance to the experimental tests are obtained. The deviations from the FEA results in failure loads compared
to the experimental results, as mentioned in the previous paragraph, may be caused by several unknown aspects
of the research from Byon-Jeong Choi et al. as for example:

- Alack of information on the experimental tests and the interpretation of the results;

- Included side effects in the experimental results, that are omitted in the FEA, e.g. the weld strengths,

which may provide additional stiffness;
- Theinterpretation and computation of the displacements and strains from the LVDT’s measurements.



4  PARAMETER STUDY

In this section, information is provided about the performed parameter study, the failure mechanisms that may
occur are elaborated, the results from the FEA are presented and the way they are processed is explained. A
geometrical parameter study is performed for each of the following load combinations:

- Double-sided compression and tension (Fx) - Bending moment about the Z-axis (M)
- Single-sided compression and tension (Fx) - Shear Fy (chord bending moment)
- Bending moment about the Y-axis (My) - Shear F; (chord torsional moment)

The Python script is used to retrieve the results from the Abaqus database and create Excel files that contain the
requested outputs from the FEA, as explained in section 3.1. In the Excel sheets, the following information is
plotted:

- increment number;

- prescribed displacement in the reference point;

- reaction force in the reference point;

- plastic dissipation (PEEQ);

- relative deformation of the node sets (to check for the deformation limit);

- maximum reaction force reached in the reference point (RF1.1);

- maximum reaction force reached based on the deformation limit (RF1.2).
A complete overview of all results from the FEA of penetrated CHS X-joints is presented in Appendix D. Using the
outputted Excel sheets, the maximum yield loads, ultimate loads, and the associated displacements are plotted
in graphs. With the Abaqus viewer, the stresses and strains of the models are evaluated. The Von Mises stress
(Swmises), stresses in the X- (S1;) and Y- (S,,) direction and the equivalent plastic strain (PEEQ) are plotted and
shown at the increment that is, by examination of the load-displacement curves, identified as the increment in
which the yield load is reached. In the plots of the stresses, the yield strength is applied as the upper and lower
limit (tensile and compressive yield strength, respectively) of the color bar. By setting this limit, a clear yield
pattern can be observed at the increment associated with the yield load, from which the governing failure
mechanism is identified. Additionally, the locations at which plastic deformation is initiated, are shown in the
equivalent plastic strain (PEEQ) plots.

4.1 PARAMETER STUDY
In the parameter study, different parameters are chosen to create a reasonable representation of the types and
geometries of CHS X-joints that can be applied in the field of civil engineering. In Figure 25, an overview of the
varied parameters is shown, for which the definitions and formulas are provided in section 3.1.1 and formulas
3.15 till 3.18. The parameters varied in these study are:

- the applied load case;

- the brace width-to-chord width ratio (8);

- the chord diameter-to-thickness ratio (2y);

- the brace diameter-to-thickness ratio (26).

Load case B 2y 28

Double-sided

compr. / tens. (F,) 0.8 10 10

Single-sided

15 15
compr. / tens, (F,)
0,6
Bending moment
. 20 20
around Y-axis (M,)
Bending moment
around Z-axis (M,) 30 30
0.4
Shear F_ (chord
¥ 40 40
bending moment)
Shear F, (chord 0.2 50 50

torsional moment)

Figure 25: Overview of the parameter study



The applied load case is varied between normal forces (with respect to the brace) in the X-direction (double- and
single-sided compression and tension), bending moment about the Y- and Z-axis, and shear in Y- and Z-direction.
The brace width-to-chord width ratio () is varied between 0.2, 0.4, 0.6, and 0.8, and the chord diameter-to-
thickness ratio (2y), as well as the brace diameter-to-thickness ratio (28), are varied between 10, 15, 20, 30, 40,
and 50.

However, it can be seen in Figure 25, that initially, not all parameter combinations are analyzed numerically. Since
the main interest of this research is the behavior and capacity of joints, for which a failure mechanism is governing
that cannot be calculated with, or is insufficiently described by the standard cross-section design rules from the
EC, an indication for the critical areas within the varied parameter field is created first by varying the g between
0.2and 0.8, and the 2y and 26 between 10, 30 and 50. In this way, the limit or boundary parameter configurations
are modelled and analyzed and an indication can be given for the critical areas in which joint failures occur that
are insufficiently described by the current design rules. To decrease the gap between the values 10 and 50 for the
parameters 2y and 26, the value 30 is also included in this first study.

For the parameter configurations in Figure 25, the failure mechanisms are derived from the results of the FEA.
The critical areas are identified and further investigated. For those areas, where joint failures may occur that are
described insufficiently by the EC, extra parameter configurations are modelled and investigated in order to define
the parameter limits for which failure mechanism occurs and to create a larger dataset on which a newly created
design rule may be fitted. The parameter study is performed for penetrated, as well as for non-penetrated CHS
X-joints. The conclusions for studies on penetrated geometries are elaborated in this section and a complete
overview including the stresses, PEEQ and load-displacement plots, is provided in the in Appendix C. The results
of parameter study on non-penetrated geometries are compared to the results of their penetrated equivalents
and a complete overview of this comparison, containing the FEA yield loads and governing failure mechanisms, is
provided in Appendix D.

4.2  FAILURE MECHANISMS
There are several failure mechanisms for CHS X-joints, which can be divided into three groups. The first group
includes the joints that fail in basic cross-section failures, which can be calculated using the standard design rules
from the EC. The second group is the group of non-penetrated CHS joint failures, for which the design rules are
provided in the NEN-EN 1993-1-8, and which are elaborated in section 2.1 [2]. The third group is for failure
mechanisms for which the current design rules do not describe the capacity correctly and thus no suitable design
rules exist, for instance, chord face failure and mixed chord side-wall failure for penetrated CHS X-joints. The three
groups and the corresponding failure mechanisms are:
1. Basic section failures
1Bcs Brace cross-section failure;
1B bm Brace bending moment failure;
1 Cbm Chord bending moment failure;
1Ctm Chord torsional moment failure;
2. Non-penetrated CHS joint failures;
2Cff  Chord face failure;
2 Cps Chord punching shear failure;
3. Penetrated CHS X-joint failures (failure mechanism without existing design rule);
3Cff  Chord face & mixed chord side-wall failures.

For the most common failure mechanisms, the failure patterns are shown in the figures below, in which the Von
Mises stresses (Suises), the stresses in the X-direction (S14), the stresses in the Y-direction (S,,) and the plastic
equivalent strain (PEEQ) are plotted. In Figure 26, Figure 27 and Figure 28, brace cross-section failure, brace
bending moment and chord bending moment failure from failure group 1 are shown. In Figure 29, chord face
failure is shown. For this failure mechanism, the same failure patterns are observed for non-penetrated (failure
group 2 C ff) and penetrated (failure group 3 C ff) geometries, however, for this latter, the capacity is insufficiently
described by the existing design rules. In Figure 30, another possible failure mechanism from failure group 3 C ff,
mixed chord side-wall failure, is shown. Also for this failure mechanism, no suitable design rule exists. Chord
torsional moment failure from group 1 and punching shear failure from failure group 2 are not shown; these
failure mechanisms are often not governing and did not occur within this research.
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4.3 PROCESSING RESULTS

In this paragraph, two examples are provided to show how the results are processed and to illustrate the
procedure for determining the failure mechanisms. The first example is a penetrated CHS X-joint subjected to
double-sided compression in X-direction (Fx) and with geometrical parameters g 0.8 — 2y 10 — 2§ 30. In this
model, it is evident, based on the FEA results, that from failure group 1, brace cross-section failure occurs. The
second model is a penetrated CHS X-joint subjected to single-sided compression in X-direction (Fx) with
geometrical parameters g 0.2 — 2y 50 — 26 10. From the results of this model it is less obvious which failure
mechanism occurs, because in the stress plots from Abaqus, the influence of two failure mechanisms can be seen,
and in the force-displacement diagram, two yield and two ultimate loads can be observed. The principles used to
identify the failure mechanisms for the different geometries are described in the next paragraphs and are used
to obtain the governing failure mechanism of all the models in the parameter study.

43.1 Penetrated double-sided compression § 0.8 —2y 10— 26 30

The first example is a penetrated CHS X-joint subjected to double-sided compression in X-direction (Fx) with the
geometrical parameters B 0.8 — 2y 10 — 26 30. For this geometry, the design resistance according to the EC design
rules for brace cross-section failure, chord face failure, and punching shear failure are provided in Table 7. In Table
8, the FEA results for the yield load, the maximum load based on the load-displacement graph (RF1.1), the
maximum load according to the deformation criterion (RF1.2), and the ultimate load (RF1), being the lowest value
of RF1.1 and RF1.2, are shown. In the table can be seen that the deformation criterion is not reached, which
means that the maximum deformation of the chord cross-section is less than 3%. In Figure 31, the force-
displacement diagram is shown in which the yield load of 13358 kN and corresponding displacement are marked
with the dashed black lines, and the ultimate load and corresponding displacement are indicated with the dashed-
dotted grey lines. In Figure 32, the Von Mises stresses, and the normal stresses in the X and Y-direction from the
Abaqus FEA are shown. The stresses are plotted for the increment in which, according to the force-displacement
diagram in Figure 31, the yield load as given in Table 8, is reached.

Based on these stresses and vyield patterns, brace cross-section failure is identified as the governing failure
mechanism of the joint as it is clearly visible in Figure 32 that the brace is yielding over the whole section. The
lowest design resistance according the EC design rules in Table 7 equals 13354 kN for brace cross-section failure,
from which it can be concluded that the EC design rules predict both the governing failure mechanism and the
yield load of the joint correctly.

Table 7: Design resistance according to EC design rules Pen. - Double sid. compr. - B 0.8 - 2y 10 - 26 30
Brace cross-section failure: Nyrra 20000
26 30 13354 kN

Ultimate load
14590 kN; 46.54

E
Chord face failure: Nyira 15000 *
_______ PR
2}/ 10 30451 kN Fy— ‘,...oooonoon-' o ! o...
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. . ) | Yield load X o
Punching shear failure: Nyira 810000 |, 13358 kN; 5.19 ®oe,
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Figure 31: Force-displacement diagram
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4.3.2 Penetrated single-sided compression 3 0.2 —2y 50— 26 10

The second example is a penetrated CHS X-joint subjected to single-sided compression in X-direction (Fx), with
geometrical parameters B 0.2 — 2y 50 — 26 10. For this geometry, the design resistances for brace cross-section
failure, chord bending moment, chord face failure, and chord punching shear failure according to the EC are
provided in Table 9. In Table 10, the FEA results for the yield load, the maximum load based on the load-
displacement graph (RF1.1), the maximum load according to the deformation criterion (RF1.2), and the ultimate
load (RF1), being the lowest value of RF1.1 and RF1.2, are shown. In the table can be seen that the maximum load
from the deformation criterion is lower than the maximum load according to the load-displacement graph, and
therefore RF1 equals RF1.2.

In Figure 33, the force-displacement diagram is shown, in which the yield load and corresponding displacement
are marked with the dashed black line, and the ultimate load and corresponding displacement are indicated with
the dashed-dotted grey line. Two kinks are observed in the curve, indicating the plastic behavior of the joint is
influenced by two failure mechanisms. When evaluating the stresses plotted with Abaqus at the increment
corresponding to the first kink, indeed the influence of two failure mechanisms can be identified. The first and
the most evident yield pattern indicates chord face failure, as can be seen from the yield pattern that is distributed
around the brace on the chord and that is mainly distributed in the Z-direction. Additionally, it can be seen that
the yield strength is reached in some parts of the brace, indicating that brace cross-section failure is the second
failure mechanism that has an influence on the behavior of the joint. By evaluating and comparing the results
from the FEA and the design resistances according to the EC, this assumption is confirmed; the load corresponding
to the second kink in the graph, indicated by the thin dashed lines, corresponds to the design resistance to brace
cross-section failure according to the EC. Since the second kink is associated with brace cross-section failure, the
first kink in the graph, is associated with the first observed failure mechanism; chord face failure. This means that
the observed FEA yield load for chord face failure is twice as high as the design resistance for chord face failure
according to the existing EC design rule. The difference between the yield load predicted by the EC design rule for
non-penetrated models and the true capacity of the penetrated joint according to FEA can be attributed to the
fact the brace is now continuous and penetrates the chord and some conservatism that is included in the design
rules from the EC.

Besides the two kinks that are indicated in the graph, also two ultimate loads are indicated with the grey dashed-
dotted lines. The highest load is the maximum load according to the load-displacement curve, however, the lower
is the maximum load based on the deformation criterion which is governing in this case and thus equals the
ultimate load capacity of the joint.

Pen. - Single sid. compr. -3 0.2 -2y 50-26 30
Table 9: Design resistance according to EC design rules
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Brace cross-section failure: Np1ra FE— — = = —. e P \
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Chord bendi t: N. o Ultimate load | |
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2}/ 10 5110 kN ..o [} T |
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Chord face failure: Npira 8 1500 .." | | |
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4.4  DOUBLE-SIDED COMPRESSION AND TENSION (Fx)

4.4.1 Penetrated CHS X-joint FEA results

A representation of the penetrated CHS X-joints subjected to double-
sided compression and tension (by a force in X-direction) is shown in
Figure 35. The results of the FEA are shown in Table 11, in which for
every geometry the FEA yield load (F,rga), the governing failure
mechanism according to FEA as identified according to the strategies
outlined in the previous paragraph (Failure mech.), the EC plastic
design resistance associated with this failure mechanism (Fyrq), and
the resistance ratio (RR), which is the ratio between the FEA yield load

Figure 35: X-joint subjected to double-

and the plastic design resistance according to corresponding EC design ) ;
sided tension (Fy)

rule (Frga/Frq) are shown.

The resistance ratio (RR) gives an indication of the way the true plastic capacity of the joint according to the FEA,
is approximated by the design resistance according to the EC design rule associated with the governing failure
mechanism. For a resistance ratio (RR) below 1.0, the plastic design resistance (Fgq) overpredicts the plastic
capacity according to FEA (Fgg4) and is unsafe. For values higher than 1.3, the plastic capacity is underpredicted
by the design rule and the plastic design resistance will therefore be conservative.

In the table, under “failure mechanisms’, it can be seen that all models subjected to compression, as well as to
tension, fail in brace cross-section failure, for which the failure pattern can be seen in Figure 26. Next to that, it
can be seen from the resistance ratio that the plastic design resistance obtained by the EC design rule for brace
cross-section failure, fits the yield load obtained by the FEA very well.

In Figure 36, the load-displacement curves from the FEA for joints with parameters 8 0.2 — 2y 10 and various
values of 28, subjected to compression and tension are shown. In the graphs, a similar behavior is observed for
joints in compression and tension and moreover, the yield loads of both failure mechanisms are equal. However,
for the models subjected to compression a lower ultimate load is reached and the joints fail in an earlier stage
than the models subjected to tension, due to local buckling of the brace members subjected to compression.

Table 11: FEA results penetrated model — double-sided compression and tension (Fy)

Model 2y 10 2y 30 2y 50
FxFea Fxrd Failure Fx rea Fxrd Failure Fxrea Fxrd Failure
Load 28 . . RR i . RR i . RR
oad  f KN)  (kN) mech. kN)  (kN) mech. kN)  (kN) mech.
= 0.8 10 37473.8 37300 1.005 1 Bcs 374614 37300 1.004 1 Bcs 37455.0 37300 1.004 1 Bcs
kS =t 0.8 30 13358.2 13354 1.000 1 Becs 13407.5 13354 1.004 1 Bcs 13405.2 13354 1.004 1 Bcs
-% .g 0.8 50 81235 8123 1.000 1 Bcs 8117.4 8123 0999 1 Bcs 8150.9 8123 1.003 1 Bcs
K
= g 0.2 10 2330.5 2331  1.000 1 Becs 23439 2331  1.006 1 Becs 23436 2331 1.005 1 Becs
8 g 0.2 30 835.3 835 1.000 1 Bcs 834.1 835 0999 1 Becs 835.8 835 1.001 1 Becs
© 102 50 507.2 508 0.998 1 Bcs 507.8 508 1.000 1 Bcs 506.7 508 0997 1 Bcs
0.8 10 37366.3 37300 1.002 1 Bcs 37365.6 37300 1.002 1 Bcs 373659 37300 1.002 1 Bcs
E = 0.8 30 13354.2 13354 1.000 1 Bcs 13380.3 13354 1.002 1 Bcs 13380.2 13354 1.002 1 Bcs
% = 0.8 50 8124.8 8123 1.000 1 Bcs 8139.8 8123 1.002 1 Bcs 8139.6 8123 1.002 1 Bcs
@ o
= g 0.2 10 2330.1 2331  1.000 1 Becs 23359 2331  1.002 1 Becs 23359 2331 1.002 1 Becs
8 <102 30 833.4 835 0998 1 Bcs 834.2 835 0999 1 Bcs 833.9 835 0999 1 Bcs
0.2 50 506.4 508 0.997 1 Bcs 507.7 508 0.999 1 Bcs 507.3 508 0.999 1 Bcs
Pen. - Double sided compression - 3 0.2 - 2y 10 Pen. - Double sided tension - $ 0.2 - 2y 10
® 2610 @ 2630 ® 2650
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Figure 36: FEA results B 0.2 - 2y 10 - double-sided compression and tension (Fy)



4.4.2 Comparison penetrated and non-penetrated results

The parameter configurations simulated for the penetrated joints are also simulated for the non-penetrated CHS
X-joints. In Table 12 and Table 13, the results for the non-penetrated, as well as the penetrated configurations
are shown, where Table 12 shows the results for models subjected to double-sided compression, and Table 13
shows the results for models subjected to double-sided tension. In the tables, for every penetrated and non-
penetrated geometry, the FEA yield load (Fyrga), the ratio between the FEA yield loads of the penetrated and
non-penetrated configurations (P/N-P), the governing failure mechanism (Fail. Mech.) as identified with the
strategy outlined in the previous paragraphs and the EC plastic design resistance (F, gq) corresponding to this
failure mechanism are shown. The results of penetrated joints are shown in black and the results of non-
penetrated joints are shown in grey. In column ‘P/N-P’, it can be seen that for the models with higher 2y factors
and lower 2§ factors, the ratio between the FEA yield loads of the penetrated and non-penetrated configurations
is above 1. This means that the plastic capacity that follows from the FEA of the penetrated model is higher than
the plastic capacity of its non-penetrated equivalent. This increased capacity can be explained by the difference
in governing failure mechanism; instead of chord face failure which is governing for the non-penetrated
geometries, brace cross section failure is triggered for the corresponding penetrated geometries. This difference
leads to an increase of the FEA yield load of penetrated geometries by a factor of 1.25 till 35.8 with respect to the
yield loads of their non-penetrated equivalents. The results of the parameter configurations for which this is the
case, are shaded in grey in the tables.

Table 12: Comparison penetrated and non-penetrated results double-sided compression (Fy)

Model 2y 10 2y 30 2y 50
FxFea Fxrd Fail. Fxren Fxrd Fail. Fx Fea Fx,rd Fail.
L 26 M . P/N-P . i P/N-P ’ i P/N-P .
B (kN) / (kN) mech. (kN) / (kN)  mech. (kN) / (kN) mech.
08 10 Pen 37473.8 37300 1 Bcs 37461.4 37300 1 Bcs 37455.0 37300 1 Bcs
< Pen 13358.2 13354 1 Becs 13407.5 13354 1 Becs 13405.2 13354 1 Becs
o |08 30
o
o
§ Pen 81235 8123 1 Bcs 8117.4 8123 1 Bcs 8150.9 8123 1 Bcs
5 0.8 50
£
5]
(8]
3 Pen 2330.5 2331 1 Becs 23439 2331 1 Bcs 23436 2331 1 Becs
S |02 10
w
&
-Dg 02 30 Pen 835.3 835 1 Bcs 834.1 835 1 Bcs 835.8 835 1 Bcs
02 50 Pen 507.2 508 1 Bcs 507.8 508 1 Bcs 506.7 508 1 Bcs
Table 13: Comparison penetrated and non-penetrated results double-sided tension (Fy)
Model 2y 10 2y 30 2y 50
FxFea Fxrd Fail. Fx rea Fxrd Fail. Fxrea Fxrd Fail.
L 2 4 - 4 g - : g - 4
B 5§ M (kN) P/N-P (kN) mech. (kN) P/N-P (kN)  mech. (kN) P/N-P (kN) mech.
08 10 Pen 37366.3 37300 1 Becs 37365.6 37300 1 Bcs 37365.9 37300 1 Bcs
08 30 Pen 13354.2 13354 1 Becs 13380.3 13354 1 Becs 13380.2 13354 1 Bcs
= |
j
K] Pen 8124.8 8123 1 Bcs 8139.8 8123 1 Bcs 8139.6 8123 1 Bcs
@ |08 50
e
hel
-
@ 02 10 Pen 2330.1 2331 1 Becs 23359 2331 1 Bcs 23359 2331 1 Becs
& .
el
3
o 02 30 Pen 833.4 835 1 Bcs 834.2 835 1 Bcs 833.9 835 1 Bcs
02 50 Pen 506.4 508 1 Bcs 507.7 508 1 Bcs 507.3 508 1 Bcs




4.4.3 Conclusion double-sided compression and tension

For CHS X-joints loaded in double-sided compression or tension, penetration of the chord by a continuous brace,
may decrease the load on the connection and the chord, as this load is now directly transferred through the brace
to obtain equilibrium with the force on the opposite end of the brace. This assumption is confirmed by the change
in governing failure mechanism that is observed for the grey shaded models in Table 12 and Table 13. From these
tables it can be concluded that joint failures are not governing for models subjected to double-sided tension or
compression in which the chord is penetrated by a continuous brace and therefore, the EC design rules for joint
failures must be omitted. These design rules, for chord face failure and punching shear failure, would otherwise
underestimate the plastic capacity of the penetrated models significantly.

In Table 11, it can be seen that the models with upper limit parameter values, as well as the models with lower
limit parameter values, fail in brace cross-section failure. From this it can be concluded that also the models with
parameters values between those limits, that are initially not simulated, fail in brace cross-section failure.
Therefore it is concluded that no additional parameter configurations need to be simulated.

Concludingly it is stated that the basic cross-section design rules from the EC, can be applied for penetrated CHS
X-joints subjected to double-sided compression and tension and that the EC design rules for joint failures of non-
penetrated CHS X-joints, should be omitted in these calculations. The current set of design rules in the EC does
otherwise not predict the governing failure mechanism correctly, which may result in an underestimation of the
plastic capacity by a factor 1.25 till 35.8.

4.5 SINGLE-SIDED COMPRESSION AND TENSION (Fx)

4.5.1 Penetrated CHS X-joint FEA results

In Figure 37, a representation of a penetrated CHS X-joint subjected to single-
sided compression and tension (by a force in X-direction) is shown. In Table
14 the FEA results are shown. It can be seen that a significant part of the
geometries fail in basic cross-section failures, i.e. in brace cross-section and
chord bending moment failure, while the remaining geometries, in Table 14
shaded in dark grey, fail due to chord face failure. When for those geometries
the yield load obtained with the FEA is compared to the plastic design
resistance calculated from the EC design rule for chord face failure, it can be
seen that the true plastic capacity according to FEA is 1.69 till 4.97 times
higher than predicted with the existing EC design rule. The plastic capacity of Figure 37: X-joint subjected to single-
the geometries failing in basic cross section failures, on the other hand, are  sjged tension (F)

approximated very well by the EC design rules.

Similar to the geometries subjected to double-sided tension and compression, the difference in joint behavior
and the FEA results between models subjected to single-sided compression or tension, is very limited and
therefore, additional simulations are only executed for models subjected to tension. The extra simulations are
done for the parameter configuration with g factors of 0.4 and 0.6, to create an extended overview in which the
boundaries of the critical areas for geometries failing on chord face failure can be identified. In general, chord
face failure is observed for joints with a higher 2y factors, for both models subjected to tension, as well as
compression.

4.5.2 Comparison penetrated and non-penetrated results

Table 15 and Table 16 show the results of the comparison between penetrated and non-penetrated FEA results,
for models subjected to single-sided compression (Table 16) and tension (Table 15). Similar as in Table 14, in Table
15 and Table 16 the data, associated with the parameter configurations for which the penetrated geometry fails
due to chord face failure, is shaded in dark grey. Additionally, the data associated with the parameter
configurations for which merely the non-penetrated geometry fails due to chord face failure, is shaded in light
grey in these tables. From the ratio between the plastic capacity (according to the FEA), P/N-P, it is observed that
for these parameter configurations, shaded in light grey, the plastic capacity of the penetrated models is increased
by a factor of approximately 1.07 till 2.49 compared to their non-penetrated equivalents. For the parameter
configurations shaded in dark grey, for which both the penetrated and non-penetrated models fail in chord face
failure, an increase in the plastic capacity of the penetrated geometries by a factor of approximately 1.04 till 3.15



compared to their non-penetrated equivalents is observed. This increase in plastic capacity is especially observed

for parameter configurations for which either the non-penetrated geometry or both the non-penetrated and the

penetrated geometries are failing in chord face failure, which is more often the case for 2y factors of 30 and 50.
For the other, non-shaded parameter configurations, both the penetrated and non-penetrated geometries fail in
one of the basic cross-section failures, which can be accurately approximated by the existing set of EC design

rules.

Table 14: FEA results penetrated model — single-sided compression and tension (Fy)

Model 2y 10 2y 30 2y 50
F,rea Fxrd Failure Fx,rea Fxrd Failure Fx,rea Fxrd Failure
Load 28 i ’ RR ’ ’ RR . . RR
B (kN) (kN) mech. (kN) (kN) mech. (kN) (kN) mech.
= 0.8 10 201469 19724 1.021 1 Cbm 8529.7 7557 1.129 1 Cbm 5126.5 4659 1.100 1 Cbm
2 ‘C‘ 0.8 30 13366.1 13354 1.001 1 Bcs 6312.1 3383 1.866 3 Cff 4449.6 1218 3.653 3 Cff
—09, .‘/91 0.8 50 8128.5 8123 1.001 1 Bcs 5699.8 3383 1.685 3 Cff 3850.9 1218 3.165 3 Cff
GIJ wn
EB g 0.2 10 2336.7 2331 1.002 1 Bcs 23334 2331 1.001 1 Bcs 1165.5 512 2.276 3 Cff
n g 0.2 30 834.8 835 1.000 1 Becs 837.6 835 1.003 1 Becs 822.3 835 0985 1 Bcs
© 102 50 508.4 508 1.001 1 Bcs 509.4 508 1.003 1 Bcs 504.0 508 0992 1 Bcs
0.8 10 202213 19724 1.025 1 Cbm 8742.3 7557 1.157 1 Cbm 5040.2 4659 1.082 1 Cbm
0.8 30 13369.4 13354 1.001 1 Bcs 6575.6 3383 1.944 3 Cff 4361.5 1218 3.581 3 Cff
. 108 50 8125.6 8123 1.000 1 Bcs 5752.6 3383 1.700 3 Cff 3789.7 1218 3.111 3 Cff
X
= |06 10 20373.1 20321 1.003 1 Cbm 8019.2 2317 3.461 3 Cff 4147.2 834 4973 3 Cff
% 0.6 30 7514.8 7512 1.000 1 Bcs 6540.1 2317 2.823 3 Cff 4028.7 834 4.831 3 Cff
§ 0.6 50 4574.2 4569  1.001 1 Becs 4554.5 4569 0.997 1 Bcs 3557.8 834 4.266 3 Cff
nel
§ 04 10 9333.6 9325 1.001 1 Bcs 5500.2 1762 3.122 3 Cff 2388.2 634 3.767 3 Cff
g 0.4 30 3341.8 3339 1.001 1 Becs 3348.4 3339 1.003 1 Becs 2124.8 634 3.351 3 Cff
Eo 0.4 50 2032.1 2031 1.001 1 Becs 2029.0 2031 0.999 1 Becs 2032.1 634 3.205 3 Cff
< 0.2 10 2331.0 2331 1.000 1 Bcs 23451 2331 1.006 1 Bcs 1178.1 512 2.301 3 Cff
0.2 30 833.6 835 0998 1 Bcs 843.0 835 1.010 1 Bcs 837.9 835 1.003 1 Bcs
0.2 50 507.8 508 1.000 1 Bcs 509.3 508 1.003 1 Bcs 520.5 508 1.010 1 Bcs
Table 15: Comparison penetrated and non-penetrated results single-sided tension (Fy)
Model 2y 10 2y 30 2y 50
FxFea Fxrd Fail. Fxrea Fxrd Fail. Fx rea Fxrd Fail.
L B 26 M (kN) P/N-P (kN) mech. (kN) P/N-P (kN)  mech. (kN) P/N-P (kN)  mech.
Pen 20221.3 19724 1 Cbm 8742.3 7557 1 Cbm 5040.2 4659 1 Cbm
08 10 N-P 23943.3 0.845 19724 1 Cbm 5774.8 L 3383 2 Cff 2385.1 e 1218 2 Cff
Pen 13369.4 13354 1 Becs 6575.6 3383 3 Cff 4361.5 1218 3 Cff
08 30 N-P 13378.9 0.999 13354 1 Becs 6010.4 1094 3383 2 Cff 2615.0 1668 1218 2 Cff
Pen 8125.6 8123 1 Bcs 5752.6 3383 3 Cff 3789.7 1218 3 Cff
08 50 N-P 8152.9 0.997 8123 1 Bcs 5638.8 Ee 3383 2 Cff 2582.6 L 1218 2 Cff
Pen 20373.1 20321 1 Cbm 8019.2 2317 3 Cff 4147.2 834 3 Cff
0.6 10 N-P 21053.7 0.999 20321 1 Cbm 3176.6 2524 2317 2 Cff 1317.2 o148 834 2 Cff
— Pen 7514.8 7512 1 Bcs 6540.1 2317 3 Cff 4028.7 834 3 Cff
E—t 0.6 30 N-P 7533.1 0.998 7512 1 Becs 3134.9 2,086 2317 2 Cff 1380.6 2918 834 2 Cff
c
S
= Pen 4574.2 4569 1 Bcs 4554.5 4569 1 Bcs 3557.8 834 3 Cff
(%)
5 0.6 50 N-P 4586.8 0.997 4569 1 Bcs 2899.3 Lol 2317 2 Cff 1343.7 i 834 2 Cff
g
°
ko) Pen 9333.6 9325 1 Becs 5500.2 1762 3 Cff 2388.2 634 3 Cff
g 04 10 N-P 9353.1 0.998 9325 1 Becs 2218.2 2480 1762 2 Cff 787.4 2033 634 2 Cff
)
= Pen 3341.8 3339 1 Becs 3348.4 3339 1 Becs 2124.8 634 3 Cff
«@ |04 30 N-P 3346.8 0.998 3339 1 Becs 2136.2 1567 1762 2 Cff 698.7 04l 634 2 Cff
Pen 2032.1 2031 1 Becs 2029.0 2031 1 Bcs 2032.1 634 3 Cff
0.4 50 N-P 2037.6 0.997 2031 1 Becs 1874.2 LIt 1762 2 Cff 674.0 e 634 2 Cff
Pen 2331.0 2331 1 Becs 23451 2331 1 Becs 1178.1 512 3 Cff
02 10 N-P 2339.1 0.997 2331 1 Becs 1519.4 1543 1421 2 Cff 660.2 Lred 512 2 Cff
Pen 833.6 835 1 Bcs 843.0 835 1 Bcs 837.9 835 1 Bcs
0.2 30 N-P 837.6 0995 835 1 Becs 846.2 0.996 835 1 Bcs 641.8 L2t 512 2 Cff
Pen 507.8 508 1 Bcs 509.3 508 1 Bcs 513.1 508 1 Bcs
0.2 50 N-P 5124 0991 508 1 Bcs 512.6 0.994 508 1 Bcs 510.8 1005 508 1 Bcs




Table 16: Comparison penetrated and non-penetrated results single-sided compression (Fy)

Model 2y 10 2y 30 2y 50
F,rea Fxrd Fail. Fx,rea Fxrd Fail. Fx,rea Fxrd Fail.
L 25 M ' P/N-P ’ ' P/N-P : ' P/N-P ’
b (kN) / (kN) mech. (kN) / (kN)  mech. (kN) / (kN) mech.
Pen 20146.9 19724 1 Cbm 8529.7 7557 1 Cbm 5126.5 4659 1 Cbm
08 10 N-P 23655.6 0.852 19724 1 Cbm 4997.3 e 3383 2 Cff 2060.3 — 1218 2 Cff
:_’? Pen 13366.1 13354 1 Becs 6312.1 3383 3 Cff 4449.6 1218 3 Cff
c 08 30 N-P 13361.4 1000 13354 1 Becs 5509.9 e 3383 2 Cff 2329.5 LRy 1218 2 Cff
o
‘n
b4 Pen 8128.5 8123 1 Bcs 5699.8 3383 3 Cff 3850.9 1218 3 Cff
4]
g_ 08 0 N-P 8126.7 1000 8123 1 Bcs 5490.3 e 3383 2 Cff 2341.8 e 1218 2 Cff
8
gl Pen 2336.7 2331 1 Becs 23334 2331 1 Becs 1165.5 529 3 Cff
7}
© 02 10 N-P 2329.7 1.003 2331 1 Becs 1332.0 1752 1326 2 Cff 499.6 2333 529 2 Cff
w
[]
[J}
) Pen 834.8 835 1 Bcs 837.6 835 1 Bcs 822.3 835 1 Bcs
. 1.001 1.002 1.
i‘/E) 0.2 30 N-P 834.1 0o 835 1 Bcs 835.6 00 835 1 Bcs 494.5 663 529 2 Cff
Pen 508.4 508 1 Bcs 509.4 508 1 Bcs 504.0 508 1 Bcs
0.2 50 N-P 507.0 1003 508 1 Becs 507.7 1003 508 1 Bcs 470.4 Lo 529 2 Cff

4.5.3 Conclusion single-sided compression and tension

From the above described observations, it is firstly concluded that for penetrated CHS X-joints failing in basic
cross-section failures, the design resistance as calculated by the existing EC design rules (for basic cross-section
failures) approximates the plastic capacity of these joints according to FEA very well. Secondly, it is however
concluded that, in contrast to what is stated for CHS X-joints subjected to double-sided compression or tension,
joint failures should not be omitted when calculating the design resistance of penetrated CHS X-joints subjected
to single-sided compression or tension, since for some parameter configurations (shaded in dark grey in Table 14,
Table 15 and Table 16), joint failures actually are governing. For these penetrated joint configurations, failing in
chord face failure, the plastic capacity is not properly predicted with the existing EC design rule for chord face
failure for non-penetrated joints and a new design rule to calculate the design resistances of the penetrated CHS
X-joints failing in chord face failure is required. This is indicated by the Resistance Ratio (RR) in Table 14, from
which it can be seen that the plastic capacity of these joints according to the FEA, is between 1.69 till 4.97 times
higher than the design resistance calculated with the existing EC design rule for the governing failure mechanism
as observed in FEA.

When comparing the FEA plastic capacity of these penetrated CHS X-joints (shaded in dark grey and failing in Cff)
with their non-penetrated equivalents, it is seen from the P/N-P ratio in Table 15 and Table 16, that the FEA yield
loads of the penetrated joints is 1.04 till 3.15 times higher than the vyield loads of their non-penetrated
equivalents. This increase in capacity of the penetrated geometries is slightly lower than the increase suggested
by the resistance ratio (RR), since for the P/N-P ratio the FEA capacity of penetrated and non-penetrated
geometries are compared, and thus the conservativeness of the existing EC design rules for non-penetrated
geometries is omitted.

Thirdly, it is observed that for parameter configurations for which another governing failure mechanism is
observed for the penetrated geometries compared to their non-penetrated equivalents, which are shaded in light
grey in Table 15 and Table 16, the FEA yield loads for penetrated models are 1.07 till 2.49 times higher than the
FEA yield loads of their non-penetrated equivalents. Finally, only a little difference is observed between the yield
loads of models subjected to single-sided compression and tension, and it is therefore concluded that a design
rule based on models subjected to single-sided tension will also be suitable for models subjected to single-sided
compression.



4.6 BENDING MOMENT ABOUT THE Y- (My) AND Z- (M) AXIS

4.6.1 Penetrated CHS X-joint FEA results

In Figure 38, a representation of a penetrated CHS X-joint subjected to a
bending moment applied on the brace, about the Y- (My) or Z- (M,) axis, is
shown. The FEA results for these joints are shown in Table 17, in which it can
be seen that the geometries from all analyzed parameter configurations fail
due to the basic cross-section failure mechanisms brace bending moment (1 B
bm) and chord torsional moment (1 C tm). Moreover, it can be seen that the
resistance ratio (RR) approximates 1 for all geometries, from which it can be
concluded that the plastic design resistance can be calculated with the existing
basic cross-section design rules from the EC and that no additional design rules
are required for penetrated CHS X-joints subjected to this load case.

4.6.2 Comparison non-penetrated and penetrated results

In Table 18 and Table 19, the comparison between the FEA results of the
penetrated and non-penetrated CHS X-joints subjected to a bending moment
about the Y- (Table 18) or Z- (Table 19) axis, is presented. In the tables can be
seen that for several non-penetrated geometries, which are shaded in light
grey, chord face failure is governing. However, for their equivalent penetrated
geometries, the basic cross-section failure mechanisms are governing and due
to this shift in governing failure mechanism, their plastic capacity observed in  Figure 38: X-joint subjected to a
FEA are approximately 1.21 till 12.1 times higher than the observed plastic bending moment about the Y- or Z-axis
capacity of their non-penetrated equivalents.

Table 17: FEA results penetrated model — bending moment about the Y- (M) and Z- (M) axis

Model 2y 10 2y 30 2y 50

load £ 26 Myzren  Myizrd Failure Myzrea  My;zrd Failure Myoren  Myzgd Failure

(kNm)  (kNm) mech. (kNm)  (kNm) mech. (kNm)  (kNm) mech.
£ =08 10 6567.8 6541 1.004 1 Bbm 6572.0 6541 1.005 1 Bbm 4723.4 4646 1.017 1 Ctm
g 2 0.8 30 2502.5 2506 0999 1 Bbm 2521.4 2506 1.006 1 Bbm 2505.2 2506 1.000 1 Bbm
g '% 0.8 50 1539.7 1545 0.997 1 Bbm 15419 1545 0.998 1 Bbm 1539.6 1545 0997 1 Bbm
téb : 0.2 10 101.7 102 0997 1 Bbm 102.0 102 1.000 1 Bbm 102.8 102 1.008 1 Bbm
g _:8, 0.2 30 39.1 39 1.003 1 Bbm 39.1 39 1.003 1 Bbm 39.2 39 1.005 1 Bbm
o ®© |02 50 23.9 24 0996 1 Bbm 23.6 24 0983 1 Bbm 24.0 24 1.000 1 Bbm
£ =|08 10 6533.5 6541 0.999 1 Bbm 6533.0 6541 0.999 1 Bbm 6533.0 6541 0.999 1 Bbm
g é 0.8 30 2501.8 2506 0.998 1 Bbm 25131 2506 1.003 1 Bbm 25131 2506 1.003 1 Bbm
g '% 0.8 50 1537.3 1545 0.995 1 Bbm 1533.7 1545 0.993 1 Bbm 1533.7 1545 0993 1 Bbm
%ﬂ ,.N_. 0.2 10 102.1 102 1.001 1 Bbm 102.1 102 1.001 1 Bbm 102.0 102 1.000 1 Bbm
g _§ 0.2 30 39.2 39 1.005 1 Bbm 39.1 39 1.003 1 Bbm 39.0 39 1.000 1 Bbm
m ®© |02 50 24.1 24 1.004 1 Bbm 24.0 24 1.000 1 Bbm 24.0 24 1.000 1 Bbm

Table 18: Comparison penetrated and non-penetrated results bending moment about the Y-axis (M)

Model 2y 10 2y 30 2y 50
My, rea My rd Fail. My, rea My rd Fail. My, rea My,rd Fail.
L 5 v, _ v, v, _ v, v, R v,
k § M (kNm) P/N-P (kNm)  mech. (kNm) P/N-P (kNm)  mech. (kNm) P/N-P (kNm)  mech.
Pen 6567.8 6541 1 Bbm 6572.0 6541 1 Bbm 4723.4 4646 1 Ctm
’E'; 08 10 N-P 6415.5 1024 5804 1 Cps 1098.4 LD 1071 2 Cff 392.1 e 386 2 Cff
z Pen 2502.5 2506 1 Bbm 2521.4 2506 1 Bbm 2505.2 2506 1 Bbm
4
i 08 30 N-P 2497.7 1.002 2506 1 Bbm 1099.5 22D 1071 2 Cff 399.9 525 386 2 Cff
[}
s Pen 1539.7 1545 1 Bbm 1541.9 1545 1 Bbm 1539.6 1545 1 Bbm
§ 08 0 N-P 1539.6 1.000 1545 1 Bbm 1096.1 LT 1071 2 Cff 394.1 =l0 386 2 Cff
®
IS Pen 101.7 102 1 Bbm 102.0 102 1 Bbm 102.8 102 1 Bbm
S . . .
g 02 10 N-P 101.8 0.999 102 1 Bbm 102.1 0.999 102 1 Bbm 40.4 2544 40 2 Cff
£
w0 Pen 39.1 39 1 Bbm 39.1 39 1 Bbm 39.2 39 1 Bbm
% 0.2 30 N-P 39.3 0.995 39 1 Bbm 39.3 0.995 39 1 Bbm 39.1 1002 39 1 Bbm
c
[}
=) Pen 23.9 24 1 Bbm 24.0 24 1 Bbm 24.0 24 1 Bbm
0.2 50 N-P 23.9 0999 24 1 Bbm 24.0 0.999 24 1 Bbm 24.0 1,000 24 1 Bbm




Table 19: Comparison penetrated and non-penetrated results bending moment about the Z-axis (M)

Model 2y 10 2y 30 2y 50
Mz rea Mzrd Fail. Mz rea Mz,rd Fail. Mz rea Mz rd Fail.
L 26 M ' P/N-P ’ ' P/N-P ' ' P/N-P ’
B (kNm) / (kNm)  mech. (kNm) / (kNm)  mech. (kNm) / (kNm)  mech.
Pen 6533.5 6541 1 Bbm 6533.0 6541 1 Bbm 6533.0 6541 1 Bbm
- 08 10 N-P 6596.5 0.990 6541 1 Bbm 2077.1 St 2098 2 Cff 978.1 S 975 2 Cff
>
E Pen 2501.8 2506 1 Bbm 2513.1 2506 1 Bbm 2513.1 2506 1 Bbm
é 08 30 N-P 2498.5 oot 2506 1 Bbm 2078.5 LA 2098 2 Cff 993.2 i 975 2 Cff
N
o
S Pen 1537.3 1545 1 Bbm 1533.7 1545 1 Bbm 1533.7 1545 1 Bbm
§ 08 0 N-P 1533.0 1003 1545 1 Bbm 1542.5 0.994 1545 1 Bbm 975.6 — 975 2 Cff
o
©
-
S Pen 102.1 102 1 Bbm 102.1 102 1 Bbm 102.0 102 1 Bbm
@
g 02 10 N-P 101.7 1.004 102 1 Bbm 103.1 0.991 102 1 Bbm 54.0 Lt 61 2 Cff
£
=4 Pen 39.2 39 1 Bbm 39.1 39 1 Bbm 39.0 39 1 Bbm
f=]
;g 0.2 30 N-P 38.9 1,006 39 1 Bbm 38.9 1005 39 1 Bbm 38.9 1005 39 1 Bbm
o}
o
Pen 24.1 24 1 Bbm 24.0 24 1 Bbm 24.0 24 1 Bbm
0250 N-P 239 1.005 24 1 Bbm 24.0 oot 24 1 Bbm 24.0 1002 24 1 Bbm

4.6.3 Conclusion bending moment about the Y- (M) and Z- (M.) axis

From the FEA of the geometries subjected to a bending moment about the Y- (My) or Z- (M;) axis, it is concluded
that no additional design rules are required for the calculation of the plastic design resistance of penetrated CHS
X-joints. For the geometries of all simulated parameter configurations, brace bending moment or chord torsional
moment is governing according to the FEA and the plastic capacity for these failure mechanisms are well
approximated by the plastic design resistance calculated with the EC design rules (as follows from the RR).
However, from the comparison between the penetrated and non-penetrated geometries, as given in Table 18
and Table 19, it is observed that for several penetrated geometries with higher 2y factors and lower 26 factors,
the plastic capacity (according to the FEA) from penetrated configurations ranges from 1.21 up till 12.1 times the
plastic capacity of their non-penetrated equivalents. This increase in capacity is caused by the shift in governing
failure mechanism that is observed in FEA; in contrast to non-penetrated geometries that fail in chord face failure,
their equivalent penetrated geometries fail due to a basic cross-section failure. To ensure that these basic cross-
section failures are also the governing failure mechanisms obtained while calculating the design resistance of a
joint subjected to bending moment My or M;, the design rules for joint failures, i.e. chord face failure and punching
shear failure, should be omitted. This is also clearly visible in the two tables presented in each paragraph of
Appendix F.5. In the first table, for each parameter configuration, the plastic design resistances according to all
relevant EC design rules for non-penetrated joints are given and the minimum design resistance is selected as the
governing (design) failure mechanism for non-penetrated geometries. The (governing) design resistance and
(design) failure mechanism are then compared to the ones obtained from FEA. In the second table, the same is
done for the penetrated geometries, and it can be seen that by omitting the EC design rules for joint failures,
indeed the correct (i.e. in accordance with the observations in the FEA) governing plastic design resistance and
failure mechanism are found. The tables shown in Appendix F.5 are further elaborated in Paragraph 5.2.1.3.

4.7  SHEAR Fy (CHORD BENDING MOMENT)

4.7.1 Penetrated CHS X-joint FEA results

Figure 39 shows a representation of the penetrated CHS X-joint subjected to
a shear force in the Y-direction (Fy), which also induces a small bending
moment in the brace and the chord. Bending moment on the brace is kept
as small as possible by reducing the eccentricity of the force to be applied.
Initially, only the geometrical parameter configurations with g factor 0.8 and
0.2 were simulated, to identify possible critical areas for which joint failures
are governing. From this FEA, from which the results are shown in Table 20,
chord face failure was observed as the governing failure mechanism for the
geometries with 0.8 —2y30/50—2610, and therefore, additional

simulations with g factors 0.6 and 0.4 are performed. The parameter Figure 39: X-joint subjected to shear in
Y-direction (F,)




configurations used for the additional simulations are selected based on the chance that the geometry fails in
chord face failure and to ensure the boundaries of the critical areas for models subjected to shear Fy are identified.
For the additional calculations, chord face failure is only governing for the geometry g 0.6 — 2y 50 — 2§ 10. For
the geometries failing in chord face failure, a plastic capacity is observed that is 4.46 till 7.59 times higher than
the plastic design resistance obtained with the existing EC design rules, causing the true capacity of the joint to
be underestimated significantly. It would therefore be interesting to create a new design rule for penetrated CHS
X-joints subjected to shear force in longitudinal direction of the chord (Fy). For the other simulated parameter
configurations, bending moment of the brace is governing, for which the plastic design resistance can be
calculated well with the existing EC design rules, as can be seen from the resistance ratios in Table 20.

4.7.2 Comparison non-penetrated and penetrated results

In Table 21, the comparison between penetrated and non-penetrated FEA results, for models subjected to shear
Fy (chord bending moment) are shown. In the results can be seen that a substantial part of the non-penetrated
geometries with 2y factor 30 and 50, fail in chord face failure, while only three of their penetrated equivalents
fail in chord face failure. Comparisons between the penetrated and the non-penetrated FEA results (P/N-P) show
that for the light grey shaded configurations, the penetrated X-joints have a plastic capacity of 1.30 till 6.03 times
the plastic capacity from their non-penetrated equivalents. This difference in plastic capacity is due to the
continuous brace that penetrates the chord, resulting in an increased resistance to chord face failure and for
some configurations, causes a shift in the governing failure mechanism; non-penetrated X-joints fail in chord face
failure, while the associated penetrated X-joints fail due to the bending moment in the brace for the
configurations shaded in light grey. For the configurations shaded in dark grey, for which both penetrated and
non-penetrated joints are failing in chord face failure, the penetrated geometries have a plastic capacity between
3.95 till 5.82 as high as the plastic capacity of their non-penetrated equivalents.

For the non-shaded configurations the non-penetrated and the penetrated X-joints fail in bending moment of the
brace and these plastic capacity can be approximated well by the plastic design resistances from the EC design
rules, as again can be seen from the RR.

4.7.3 Conclusion shear F, (chord bending moment)

For models subjected to shear Fy (chord bending moment), it can be concluded that for penetrated geometries
failing in the basic cross-section failures, the plastic capacity can be approximated well by the plastic design
resistances from the EC design rules. However, for penetrated geometries failing in chord face failure, which in
Table 20 and Table 21 are shaded dark grey, or penetrated models failing in a basic cross-section failure, for which
the non-penetrated equivalent fails in chord face failure, which in Table 21 are shaded in light grey, the yield load
is not predicted properly by the current set of EC design rules for non-penetrated and therefore, new design rules
are required. For penetrated geometries failing in chord face failure, a plastic capacity between 4.46 till 7.59 times
the design resistance obtained with the existing EC design rules is observed. Comparing the FEA results of
penetrated joints for which a shift in failure mechanism is observed with the results of the associated non-
penetrated joints, plastic capacity that are 1.30 till 6.30 times higher than their non-penetrated equivalents are
obtained.

Table 20: FEA results penetrated model — shear F, (chord bending moment)

Model 2y 10 2y 30 2y 50
Fy,reA Fy,rd Failure Fy,rea Fy,rd Failure Fy,rea Fy,rd Failure
Load 26 . v RR v v RR v v RR
oad  f kN)  (kN) mech. kN)  (kN) mech. kN)  (kN) mech.
08 10 125535 11332 1.108 1 Bbm 11165.0 2503 4.461 3 Cff 6380.1 1163 5.486 3 Cff
@ |08 30 43279 4342 0997 1 Bbm 44045 4342 1014 1 Bbm 43500 4342 1.002 1 Bbm
S |08 50 2597.9 2677 0970 1 Bbm 26136 2677 0976 1 Bbm 25958 2677 0970 1 Bbm
Q
S |06 10 64918 5637 1.152 1 Bbm 52559 692 7.595 3 Cff
§ €06 30 23030 2160 1.066 1 Bbm 23738 2160 1.099 1 Bbm
<
O O
= El04 10 25968 2322 1.118 1 Bbm 2613.5 2322 1126 1 Bbm
& o2 10 5139 559  0.919 1 Bbm 5837 559 1.044 1 Bbm 5906 559 1.057 1 Bbm
B |02 30 1832 214 0856 1 Bbm 2074 214 0969 1 Bbm 2077 214 0971 1 Bbm
02 50 1071 132 0811 1 Bbm 1235 132 0936 1 Bbm 1268 132 0961 1 Bbm




Table 21: Comparison penetrated and non-penetrated results shear F, (chord bending moment)

Model 2y 10 2y 30 2y 50
Fy,ren Fy,rd Fail. Fyrea Fyrd Fail. Fy,rea Fy,rd Fail.
L 26 M v P/N-P v I P/N-P v v P/N-P v
b (kN) / (kN) mech. (kN) / (kN)  mech. (kN) / (kN)  mech.
Pen 12553.5 11332 1 Bbm 11165.0 2503 3 Cff 6380.1 1163 3 Cff
08 10 N-P 12552.4 1000 11332 1 Bbm 2829.1 e 2503 2 Cff 1587.1 il 1163 2 Cff
Pen 4327.9 4342 1 Bbm 4404.5 4342 1 Bbm 4350.0 4342 1 Bbm
08 30 N-P 4342.7 0.997 4342 1 Bbm 2882.4 L 2503 2 Cff 1595.7 el 1163 2 Cff
Pen 25979 2677 1 Bbm 2613.6 2677 1 Bbm 2595.8 2677 1 Bbm
= 08 0 N-P 2600.8 0.999 2677 1 Bbm 2475.7 L 2503 2 Cff 1548.5 LA 1163 2 Cff
2
o Pen 6491.8 5637 1 Bbm 5255.9 692 3 Cff
QED 06 10 N-P 1721.2 BB 1489 2 Cff 903.8 S 692 2 Cff
j=d
£
< Pen 2303.0 2160 1 Bbm 2373.8 2160 1 Bbm
9]
g 0.6 30 N-P 1770.0 1301 1489 2 Cff 904.2 2625 692 2 Cff
S
S
e Pen 2596.8 2322 1 Bbm 2613.5 2322 1 Bbm
uE 0.4 10 N-P 1059.6 2451 748 2 Cff 43313 6.031 348 2 Cff
3
&
Pen 513.9 559 1 Bbm 583.7 559 1 Bbm 590.6 559 1 Bbm
02 10 N-P 510.9 1.006 559 1 Bbm 590.3 0.989 559 1 Bbm 258.8 e 233 2 Cff
Pen 183.2 214 1 Bbm 207.4 214 1 Bbm 207.7 214 1 Bbm
0.2 30 N-P 185.5 0.988 214 1 Bbm 207.2 oot 214 1 Bbm 226.6 0917 214 1 Bbm
Pen 107.1 132 1 Bbm 1235 132 1 Bbm 126.8 132 1 Bbm
0.2 50 N-P 108.9 0.984 132 1 Bbm 124.5 0.992 132 1 Bbm 125.2 1013 132 1 Bbm

4.8 SHEAR F;z (CHORD TORSIONAL MOMENT)

4.8.1 Penetrated CHS X-joint FEA results

A representation of the penetrated CHS X-joint subjected to a shear force in
the Z-direction (F;), which induces a small bending moment on the brace and
a torsional moment in the chord, is shown in Figure 40, and the FEA results
are shown in Table 22. Initially, only the geometrical parameters with 8 0.8
and 0.2 were simulated, for which only the geometries g 0.8 — 2y 30/50 —
25 10 and B 0.8 — 2y 50 — 26 30 fail in chord face failure. Therefore, additional
simulations for geometries with g factors 0.6 and 0.4 are performed, which
are selected based on the critical area for the geometries where chord face
failure may occur. For the additional calculations, chord face failure is only
governing for the geometrical parameter B 0.6 — 2y 50 — 25 10. For the
geometries failing in chord face failure, the FEA predicts a plastic capacity of  ;.Lx
4.68 till 11.9 times higher than the plastic design resistance predicted by the

EC for non-penetrated geometries. For the other simulated geometrical
parameters, bending moment of the brace is governing, for which the plastic Figure 40: X-joint subjected to shear in
capacity is well predicted with the existing EC design rules. Z-direction (F,)

Table 22: FEA results penetrated model — shear F, (chord torsional moment)

Model 2y 10 2y 30 2y 50
Faren Fyrd Failure Faren Frd Failure Fren Fzrd Failure
load B 26 (kN) (kN) RR mech. (kN) (kN) RR mech. (kN) (kN) RR mech.
0.8 10 11467.4 11332 1.012 1 Bbm 5979.6 1278  4.679 3 Cff 3575.7 460 7.773 3 Cff
TE 0.8 30 4165.5 4342 0.959 1 Bbm 42443 4342 0977 1 Bbm 3551.3 460 7.720 3 Cff
o 0.8 50 2479.8 2677 0926 1 Bbm 2552.9 2677 0954 1 Bbm 2595.7 2677 0970 1 Bbm
wv
g Ts-:-‘ 0.6 10 5644.4 5637 1.001 1 Bbm 2986.1 250 11.944 3 Cff
5 g 0.6 30 2155.5 2160 0.998 1 Bbm 2156.2 2160 0.998 1 Bbm
<
c
‘:: E|04 10 2558.2 2322 1.102 1 Bbm 2341.8 2322 1.009 1 Bbm
S
3 0.2 10 519.3 559 0929 1 Bbm 580.5 559 1.038 1 Bbm 569.3 559 1.018 1 Bbm
& 0.2 30 189.7 214 0.886 1 Bbm 216.7 214 1.013 1 Bbm 2149 214 1.004 1 Bbm
0.2 50 112.8 132 0.855 1 Bbm 133.0 132 1.008 1 Bbm 131.6 132 0.997 1 Bbm




Table 23: Comparison penetrated and non-penetrated results shear F, (chord torsional moment)

Model 2y 10 2y 30 2y 50
Fzrea Fzrd Fail. Faren Fzrd Fail. Fz,rea Fz,rd Fail.
L 26 M ' P/N-P ' ' P/N-P . ' P/N-P '
b (kN) / (kN) mech. (kN) / (kN)  mech. (kN) / (kN) mech.
Pen 11467.4 11332 1 Bbm 5979.6 1278 3 Cff 3575.7 460 3 Cff
08 10 \p 113264 O 11332 1 Bbm 20303 2% 1278 2 Cff 8646 130 4e0 2 cHf
Pen 4165.5 4342 1 Bbm 42443 4342 1 Bbm 3551.3 460 3 Cff
08 30 N-P 4098.0 1016 4342 1 Bbm 2380.0 LTS 1278 2 Cff 1053.7 A 460 2 Cff
Pen 2479.8 2677 1 Bbm 25529 2677 1 Bbm 2595.7 2677 1 Bbm
- 08 0 N-P 2462.3 1007 2677 1 Bbm 2339.2 Lk 1278 2 Cff 1083.9 LS 460 2 Cff
E
] Pen 5644.4 5637 1 Bbm 2986.1 250 3 Cff
r_Eu 0.6 10 N-P 955.6 2402 694 2 Cff 382.1 e 250 2 Cff
c
(<}
il Pen 2155.5 2160 1 Bbm 2156.2 2160 1 Bbm
el 0.6 30 N-P 1045.5 2062 694 2 Cff 441.9 4879 250 2 Cff
-
8
L Pen 2558.2 2322 1 Bbm 2341.8 2322 1 Bbm
"E 0.4 10 N-P 657.5 Sk 398 2 Cff 238.8 St 143 2 Cff
3
&
Pen 519.3 559 1 Bbm 580.5 559 1 Bbm 569.3 559 1 Bbm
02 10 N-P 5214 0.996 559 1 Bbm 436.7 1330 199 2 Cff 184.7 3082 72 2 Cff
Pen 189.7 214 1 Bbm 216.7 214 1 Bbm 214.9 214 1 Bbm
02 30 N-P 188.8 1.004 214 1 Bbm 217.9 0.994 214 1 Bbm 185.0 Lle2 72 2 Cff
Pen 112.8 132 1 Bbm 133.0 132 1 Bbm 131.6 132 1 Bbm
0250 N-P 113.1 0.997 132 1 Bbm 133.0 1.000 132 1 Bbm 129.8 Lot 132 1 Bbm

4.8.2 Comparison non-penetrated and penetrated results

Table 23 shows the comparison between non-penetrated and penetrated FEA results, for models subjected to
shear in the Z-direction (F;). The table shows that a substantial part of the non-penetrated models with 2y factor
30 and 50, fail in chord face failure, while only four of their penetrated equivalents fail in chord face failure. A
comparison between the penetrated and the non-penetrated results (P/N-P) shows that for the configurations
shaded in light grey, the penetrated configurations have a plastic capacity between 1.09 till 9.81 higher than their
non-penetrated equivalents, and for the configurations shaded in dark grey this is between 2.95 till 7.82. This
increase in capacity is caused, as elaborated in the previous paragraphs on Shear in y-direction, due to penetration
of the chord by a continuous brace, resulting in an increased strength of the joint. This causes for the penetrated
X-joints with the parameters configurations shaded in light grey, a shift in governing failure mechanism compared
to their non-penetrated equivalents; while the non-penetrated geometries fail in chord face failure, the
penetrated geometries fail in bending moment of the brace. For the non-shaded geometries, the penetrated, as
well as the non-penetrated X-joints, fail in bending moment of the brace.

4.8.3 Conclusion shear F, (chord torsional moment)

For penetrated CHS X-joints subjected to shear F; (chord torsional moment), the same can be concluded as for
the load case shear Fy: it can be concluded that for geometries failing in the basic cross-section failures, the plastic
capacity can be predicted well. However, for models failing in chord face failure, which in Table 22 are shaded in
dark grey, or penetrated models failing in a basic cross-section failure, for which the non-penetrated equivalent
fails in chord face failure, which in Table 23 are shaded in light grey, the plastic capacity is not predicted properly
by the current set of EC design rules for non-penetrated joints and therefore, new design rules are required. For
penetrated models failing in chord face failure, a plastic capacity between 4.68 till 11.9 higher compared to the
existing EC design rules for non-penetrated joints can be obtained.



4.9 CONCLUSION PARAMETER STUDY

In the presented parameter study, the load case and geometrical parameters B8, 2y, & 26 have been varied.
Initially only models with parameter configurations containing the limit values of these parameters have been
simulated & analyzed and based on these results, additional parameter configurations are simulated, in order to
identify the critical areas for which new design rules for penetrated X-joints are required. The parameter study is
performed for the load cases “Double-sided compression and tension (Fx)”, “Single-sided compression and
tension (Fx)”, “Bending moment about the Y-axis (My)”, “Bending moment about the Z-axis (M.)”, “Shear Fy (chord
bending moment)”, and “Shear F; (chord torsional moment)”. The parameter study is performed for penetrated
CHS X-joints, as well as for non-penetrated CHS X-joints, for which the FEA plastic capacity and calculated EC
design resistance are compared to each other and the governing failure mechanisms obtained via both methods,
as explained in Paragraph 4.2, are assigned and compared. The results are processed based on the procedure as
explained in Paragraph 4.3.

From the parameter study can be concluded that for penetrated geometries subjected to double-sided
compression and tension (Fx), and bending moment about the Y- (My) and Z- (M;) axis, the plastic capacity is
approximated well by the basic cross-section design rules for CHS from the EC, and therefore, no new design rules
are required. For the penetrated geometries subjected to double-sided compression and tension (Fx), a plastic
capacity of 1.25 till 35.8 times the plastic capacity of non-penetrated geometries is observed in FEA. It appears
that, for the geometries under these loading conditions, the penetration of the chord by the increases the joint
capacity to such an extent, that basic cross-section failures are observed as the governing failure mechanisms.
The same holds for penetrated CHS X-joints subjected to bending moment about the Y- (My) and Z- (M;) axis, for
which a plastic capacity of 1.21 till 12.1 times the plastic capacity of their non-penetrated equivalents can be
observed. For all penetrated geometries, subjected to one of the aforementioned load cases, joint failures are
not governing and the design rules for non-penetrated joint failures, which are chord face failure and punching
shear failure, should be omitted in the calculation of the joint capacity to predict the right failure mechanism and
its corresponding plastic design resistance.

For penetrated geometries subjected to single-sided compression and tension (Fx), shear F, (chord bending
moment), and shear F; (chord torsional moment), several geometrical parameter configurations fail in chord face
failure, and for these configurations, new design rules for penetrated CHS X-joints are recommended. Comparing
the plastic capacity from penetrated geometries failing in chord face failure, with the calculated design resistances
obtained with the existing EC design rules for non-penetrated joints, i.e. evaluating the RR, an increase in plastic
capacity can be observed for:

- single-sided compression and tension (Fx), of 1.69 till 4.97 times the EC plastic design resistance;

- shear Fy (chord bending moment), of 4.46 till 7.59 times the EC plastic design resistance;

- shear F; (chord torsional moment), of 4.68 till 11.9 times the EC plastic design resistance.
Moreover, for the penetrated geometries that fail in basic cross-section failures under compression and tension
(Fx), shear Fy and shear F;, an increase of the plastic capacity is observed in FEA by a factor 1.04 till 3.15, 1.30 till
6.30, and 1.09 till 9.81 with respect to their non-penetrated equivalents that fail in chord face failure, respectively.
Due to these significant increases in plastic capacity, new design rules for penetrated joints that fit the plastic
capacity from FEA are recommended for these three load cases (Fx, Fy and F;).



5 DESIGN RULES

5.1  INTRODUCTION

From the parameter study it is concluded that for penetrated CHS X-joints subjected to double-sided compression
and tension (Fx), and bending moment about the Y- (My) and Z- (M.) axis, the plastic capacity can be approximated
well with the basic cross-section design rules from the EC, and therefore, no new design rules are required.
However, for geometries subjected to single-sided compression and tension (Fx), shear Fy (chord bending
moment), and shear F; (chord torsional moment), several geometrical parameter configurations fail in chord face
failure for which the current design rules underestimate the yield loads significantly. For these configurations,
new design rules for penetrated CHS X-joints are required. In this section, the created design rules and the steps
to arrive at these design rules are elaborated. The failure mechanism that is governing according to these newly
defined set of design rules is then verified with the governing failure mechanism as observed in FEA. In addition
to the standard load cases, the behavior of CHS X-joints is analyzed for a combined load case and a check is
performed for the combination of design rules, for which the basis is provided in the EC and in Equation 2.11.
Finally, a calculation sheet for penetrated X-joints is created, in which a penetrated CHS X-joint subjected to a
certain load is checked for brace and chord gross cross-section failures and the joint failures. A case study has
been done to the mooring bollard from Witteveen+Bos.

5.2  SINGLE-SIDED COMPRESSION AND TENSION (Fx)

From the parameter study for models subjected to single-sided compression and tension (Fx) provided in
Paragraph 4.5, it is concluded that for the parameter configurations from Table 16 and Table 15 for which the
results are outlined and shaded in dark grey, new design rules are required. For these geometries failing in chord
face failure, the plastic capacity obtained by FEA are 1.04 till 3.15 times higher than the plastic design resistances
calculated by the design rules from the EC for non-penetrated joints.

Initially, the results for penetrated configurations were reviewed and there was tried to create a design rule for
penetrated CHS X-joints subjected to single-sided compression and tension (Fx). However, a first attempt to create
a suitable design rule was unsuccessful since a starting point for creating a design rule was missing. Therefore,
first the existing chord face failure design rules for non-penetrated CHS X-joints were reviewed and compared
with the corresponding FEA results and eventually, an improved design rule for non-penetrated CHS X-joints
subjected to single-sided compression and tension (Fx) is created. Improving the existing design rule for non-
penetrated models failing in chord face failure was less complex because more results were available on which
the design rule could be fitted. With this study to the EC design rules for non-penetrated joints, a solid foundation
was laid for the development of the design rules for penetrated CHS X-joints.

Since geometries subjected to tension and compression give almost the same results and plastic capacity, there
is chosen to work further with geometries subjected to single-sided tension, for which the design rules are
created. The plastic capacity from the models subjected to compression are slightly lower, which is due to local
buckling of the brace under compression.

5.2.1 Non-penetrated X-joints

5.2.1.1  Influence geometrical parameters on plastic capacity

For the non-penetrated geometries subjected to single-sided tension, first the results from the FEA are compared
to each other and the influences of the geometrical parameters are identified. Table 24 shows the results for non-
penetrated geometries subjected to single-sided tension and failing in chord face failure, where under “Model”
the geometrical parameters B, 2y, and 26 are given, and for every geometry under “Results” the plastic capacity
(yield load) from FEA, and the influences of the geometrical parameters on the results (infl. 8, infl. 2y, and infl.
28) are given. The influence ratios are calculated by dividing the plastic capacity from FEA of the higher order
geometry through the plastic capacity of the lower order geometry, as for example shown in the formulas below:

__B08-2y30-2510 B0.8-2y30-2530

i = 5.21
inflp B0.6-2y30-2510" B0.6-2y30-2530" etc. ( )

. 0.8—-2y30-2610 0.8—-2y30-2530
infl 2y = £08-2 , Boa-2y  etc. (5.22)
£0.8—2y50—-2510" £0.8— 2y 50— 25830

0.8-2y30-2810 B0.8—2y30—-2830
gos-2 g05-2% etc (5.23)

infl26 =
f B0.8—-2y30-2530" B0.8—2y30-2550"




The identify the influence of the factor B, the factor g is varied and the 2y and 26 factors are kept equal. The same
holds for the calculation of the influence of 2y and the influence of 26, where the factor 2y is varied and the g
and 26 factors are kept equal and the factor 26 is varied and the B and 2y factors are kept equal, respectively.

In the right part of Table 24, the joint capacity as calculated with two existing EC design rules and two adjusted
design rules are provided, where for every design rule, the calculated yield load (N p;rq) and resistance ratio
(RR) are shown. For the RR, the plastic capacity, as obtained by FEA, is divided by the plastic design resistance
obtained with the evaluated design rule, which means that for RR’s above 1.0, the design rule is on the safe side
since the true capacity of the joint, as obtained by the FEA, is higher than the capacity calculated using the design
rule. If the RR is below 1.0, a plastic design resistance is obtained with the design rule, that is higher than the
plastic capacity found in FEA and the design rule is unsafe. In Table 24, conservative results with a RR above 1.3
are marked with a grey line about their results and geometries with a RR less than 0.95 that are unsafe are marked
with a black line about their results.

5.2.1.2  Design rules

First the plastic design resistances according to the existing EC design rules for chord face failure of non-
penetrated X- and T-joints are calculated for the parameter configurations. The design rules for X-joints and T-
joints are given in Equation 5.24 and Equation 5.25, respectively:

kp*fyo*td 5,2

Nirar == 0 * tosip /M5 (5.24)
y"'z*k fyokt2

Nirax = ;TTOD * (2,8 + 14,2 * B2)/yus. (5.25)

Forn, > 0 (compression): k, = 1—0,3 *n, * (1 +n,), but k, <1,0

Forn, < 0 (tension): k,=10

The reduction factor kj, takes into account the stress in the chord due to compression or bending moment in the
chord member. In compression, the chord member is more sensitive to imperfections, reducing the critcal load,
which will be captured by the reduction factor. Imperfections are not included within the scope of this research,
and therefore, the k,, factor is assumed as a factor of 1.0, which is equal to the k, factor for a chord member
subjected to tension. The results from these design rules can be found under the columns “Eurocode X-joint” and
“Eurocode T-joint”, in which it can be seen that the EC design rule for X-joints has some conservative (grey
marked) approximations of the plastic capacity of the joint configurations with g factors 0.6 and 0.8, which is also
the case for the EC design rule for T-joints for a g factor 0.8. In addition, for this latter design rule, some unsafe
design resistances are obtained for joint configurations with g factors 0.6 and 0.4. When evaluating the resistance
ratios, it can be seen at the bottom of the table, that the EC design rule for X-joints results in an average RR of
1.46 and the EC design rule for T-joints in an average RR of 1.12. However, for the EC design rule for T-joints, the
capacity of some models is overpredicted (and thus unsafe), which is undesirable.

Therefore, a proposal is made for an adaptation to both design rules, in order to improve the EC design rule for
X-joints and adapt the EC design rule for T-joints in such a way that the lowest RR obtained equals approximately
0.95. The formula for the improved design rule, “X-joint — Improved”, is given in Equation 5.26. To arrive at this
formula for the design rule, the influences of the parameters are reviewed, from which it was concluded that only
the B and the 2y parameters have a significant influence on the plastic capacity. Therefore, based on the
influences of the parameters and by curve fitting to the FEA results, some factors are adapted in the formula to
better describe the influence of the g parameter, and a factor 1.15 is added to fit the plastic design resistance
obtained with the design rule to the plastic capacity of the FEA. The final adaptations to the design rule are shown
in bold in Equation 5.26. The improved design rule for T-joints is shown in Equation 5.27. The design rule is
adjusted in such a way that the overpredicted capacity deviate by a maximum of 5% from the (true) plastic
capacity obtained by FEA, thus having a minimal RR of 0.95. These results are obtained by changing some factors
in the design rule, which are shown in bold in Equation 5.27.

X-joint improved for non-penetrated joints

_ kp*fyo*ts 4.4
Nigqg = 1.15 % “eine, Y a-p /Yus, (5.26)

T-joint improved for non-penetrated joints

LE
L po00 (2,14 15,5 B2) [yus. (5.27)
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In the results in Table 24, it can be seen that for the “X-joint improved” only one calculated capacity is
conservative, and that the average, lowest and highest RR are 1.12, 0.97, and 1.32, respectively. Figure 41 shows
a box plot of the obtained RR’s of the different design rules, where for every design rule the highest and lowest
RR are shown by the horizontal top and bottom line, the middle 50% of the results fall within the drawn box, the
median value is the horizontal line in between, and the average value of the design rule is marked with a cross.
The boxplot for the EC X-joint, is shown in blue, and for the EC T-joint is shown in grey. The results for the RR by
the design rule “X-joint improved” are shown in orange, from which it can be seen that the approximation of the
FEA plastic capacity by the design rule is significantly improved, as the middle 50% of the results lays between a
RR of 1 till 1.2 and the range of RR’s is reduced. The results for the “T-joint improved” are provided in yellow, in
which multiple slightly conservative results may be identified, but the overprediction of the plastic capacity by the
design rule is reduced significantly. For the improved T-joint design rule the average, lowest and highest RR are
1.19, 0.94, and 1.55, respectively.
Non-pen. design rules - Single-sided tension (F,)

Based on the boxplots, the proposed design rule “X- ,,

joint improved” given in Equation 5.26, which results
in an average deviation from the FEA of 12.3%, a
minimum RR of 0.97 (unsafe side) and a maximum RR
of 1.32 (conservative), is found to be the most
suitable formula to predict the plastic design
resistance of non-penetrated geometries subjected 12
to single-sided tension. 1
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Figure 41: RR of the design rules for non-penetrated joints —
Single-sided tension (Fy)

Table 24: Results design rules for non-penetrated joints — Single-sided tension (Fy)

Model FEA results EC X-joint X-joint —impr. EC T-joint T-joint—impr.

B 2y 268 Nirea  Inflg Infl 2y Infl 25 N1,rd RR N1,rd RR N1,rd RR N1,rd RR
08 30 10 57748 1.818 2.421 0.961 3383 1.707 5795 0.997 4680 1.234 4732 1.220
0.8 30 30 6010.4 1917 2.298 1.066 3383 1.776 5795 1.037 4680 1.284 4732 1.270
0.8 30 50 5638.8 1.945 2.183 3383 1.667 5795 0.973 4680 1.205 4732  1.192
0.8 50 10 2385.1 1.811 0.912 1218 1.958 2086 1.143 1866 1.278 1887 1.264
0.8 50 30 2615 1.894 1.013 1218 2.147 2086 1.254 1866 1.401 1887 1.386
0.8 50 50 2582.6 1.922 1218 2.120 2086 1.238 1866 1.384 1887 1.369
06 30 10 3176.6 1432 2412 1013 2317 1.371 2897 1.096 3115 1.020 3023 1.051
06 30 30 31349 1.468 2.271 1.081 2317 1.353 2897 1.082 3115 1.007 3023 1.037
06 30 50 2899.3 1.547 2.158 2317 1.251 2897 1.001 3115 0.931 3023 0.959
0.6 50 10 1317.2 1.673 0.954 834 1579 1043 1.263 1242 1.061 1205 1.093
0.6 50 30 1380.6 1.976 1.027 834 1.655 1043  1.324 1242 1112 1205 1.145
0.6 50 50 1343.7 1.994 834 1611 1043 1.288 1242 1.082 1205 1.115
04 30 10 22182 1.460 2.817 1.038 1762 1.259 1932 1.148 1997 1.111 1803 1.230
04 30 30 2136.2 3.057 1.140 1762 1.213 1932 1.106 1997 1.070 1803 1.185
04 30 50 1874.2 2.781 1762 1.064 1932 0.970 1997 0.939 1803 1.040
04 50 10 787.4 1.193 1.127 634 1.241 695 1.132 796 0.989 719 1.095
04 50 30 698.7 1.089 1.037 634 1.102 695 1.005 796 0.878 719 0.972
04 50 50 674 634 1.063 695 0.969 796 0.847 719 0.938
0.2 30 10 1519.4 2.301 1421 1.069 1449 1.049 1326 1.146 1071 1.419
0.2 50 10 660.2 1.029 512 1.290 522 1.266 529 1.249 427  1.546
0.2 50 30 641.8 512 1.254 522 1.231 529 1.214 427  1.503
Mean 1.464 Mean 1.123 Mean 1.116 Mean 1.192

Lowest 1.063 Lowest  0.969 Lowest 0.847 Lowest 0.938
Highest  2.147 Highest 1.324 Highest  1.401 Highest  1.546



5.2.1.3  Verification of the governing failure mechanisms

For each parameter configuration, the plastic design resistances according to all relevant design rule for non-
penetrated joints are calculated. The minimum of these resistances then indicates which failure mechanism is
governing according to the used set of design rules. This governing failure mechanism is compared to the actual
governing failure mechanism that is observed in the FEA. This is done for the set of design rules containing existing
EC design rules, as well as for the set of design rules in which the, in this research created design rules, are
included. In this way the influence of the proposed new design rules on the prediction of the governing failure
mechanism can be evaluated while verifying it with the results from the FEA as well. A summary of this procedure,
containing merely the governing plastic design resistance and failure mechanisms according to FEA and design
rules, is presented in the tables shown in each subparagraph on the verification of the governing failure
mechanism for the several load cases. But as an example, in Table 25, the design resistances of all relevant failure
mechanisms and the selection of the governing failure mechanism is shown for non-penetrated geometries with
B factor 0.2. The relevant failure mechanisms are in this case from failure group 1, EC basic cross-section failures,
Brace cross-section failure (1 B cs), and Chord bending moment (1 C bm), and from failure group 2, EC joint
failures, chord face failure (2 C ff) and chord punching shear failure (2 C ps). For chord face failure, the plastic
design resistance according to the design rules for both X- and for T-joints are given, since the joint configurations
considered in this research could in case of single-sided loading be interpret as either an X-joint loaded on only
one side of the brace or a T-joint. Under “comparison EC-FEA”, the by the set of design rules governing plastic
design resistance and failure mechanism are given and next to it, the plastic capacity and corresponding failure
mechanism observed in the FEA are shown. This part of Table 25 is also visible in the last block of summarized
representations of this procedure in Table 26 and Table 27. The extensive versions (of which an example is given
in Table 25) of the summarized representations presented in all upcoming subparagraphs, can be found in
Appendix F.

In Table 26 and Table 27 the results for the parameter configurations for non-penetrated geometries subjected
to single-sided tension are shown, where in Table 26, the comparison between FEA and the existing set of design
rules is given, and Table 27 provides the comparison between FEA and the set of adjusted design rules, as
proposed in this research. It can be seen that for these geometrical parameter configurations, the design rules
from the EC (Table 26) predict the correct failure mechanism, and that the plastic design resistance for brace
cross-section failure corresponds to the plastic capacity obtained in the FEA. However, for geometries failing in
chord face failure, differences are observed between the FEA plastic capacity and the EC plastic design resistance.
For the adjusted set of design rules for non-penetrated CHS X-joints subjected to single-sided loading, for which
the comparison of the failure modes is given in Table 27, the basic cross-section design are retained, but for the
joint failures, the proposed “X-joint improved” design rule is applied. It can be seen that again the correct failure
mechanisms are predicted by the set of design rules, but for chord face failure, the plastic design resistances
calculated with the adjusted set of design rules, approximates the FEA plastic capacity better.

5.2.1.4  Conclusion design rule non-penetrated geometries

For the non-penetrated CHS X-joints subjected to single-sided tension (Fx) can be concluded that the EC design
rule for chord face failure of X-joints, with an average RR of 1.46, slightly underpredicts the plastic capacity and is
therefore conservative. In addition, it can be concluded that the design rule for T-joints better fits the FEA results,
with an average RR of 1.12, but there are some overpredicted yield loads, which is unsafe and undesirable.
Therefore, this design rule in such a way, that in unsafe cases, the RR deviates from 1 by a maximum of about 5%,
resulting in the design rule “T-joint adjusted” with an average RR of 1.19. The final design rule, which best fits the
FEA plastic capacity, is the “X-joint improved” design rule, which is given in Equation 5.26. This design rule has an
average RR of 1.12 and a lowest and highest RR of 0.97 and 1.32, respectively.

The improved design rule is based on the EC design rules for joints subjected to single-sided tension (Fx), for which
the current design rules well predicted the failure mechanisms, but for chord face failure the approximated design
resistances are conservative. With the new improved design rules, less conservative plastic resistances are
predicted, while still the correct failure mechanism is predicted.

The design rules for the load-case single-sided tension, are also applicable for the load-case single-sided
compression.



Table 25: Example EC design rules failure mechanism calculation

Model Failure mechanisms Comparison EC - FEA
1Bcs 1Cbm 2 C ff (X- and T-joint) 2Cps Governing Eurocode FEA

B 2y 26 Nigd™ Nird* Nx,1,rd" N7,1,rd" N1rd® Nird Failure Nirea Failure
(66 (kN) (kN) (kN) (kN) (kN) (kN) mode (kN) mode
0.2 10 10 2331 21632 12791 9579 7478 23313 1 Becs 2339.1 1 Becs
0.2 10 30 835 21632 12791 9579 7478 8346 1 Bcs 8376 1 Becs
0.2 10 50 508 21632 12791 9579 7478 507.7 1 Becs 5124 1 Becs
0.2 30 10 2331 8288 1421 1326 2493 1325.8 2 Cff 1519.4 2 Cff
0.2 30 30 835 8288 1421 1326 2493 8346 1 Bcs 846.2 1 Bcs
0.2 30 50 508 8288 1421 1326 2493 507.7 1 Becs 5126 1 Becs
0.2 50 10 2331 5110 512 529 1496 5116 2 Cff 660.2 2 Cff
0.2 50 30 835 5110 512 529 1496 5116 2 Cff 6418 2 Cff
0.2 50 50 508 5110 512 529 1496 507.7 1 Becs 5108 1 Becs
Table 26: Failure mechanism calculation results for existing EC design rules for non-penetrated joints

Model 08 B06 B 0.4 p0.2

EC FEA EC FEA EC FEA EC FEA

2y 26 Nipg Failure Nygea Failure Nigq Failure Nygea Failure Nigq Failure Nygea Failure Nigg Failure Ny Failure
() () (kN)  mode  (kN)  mode (kN)  mode (kN)  mode (kN)  mode  (kN)  mode (kN)  mode  (kN)  mode
10 10 19724 1 Cbm 23943 1 Cbm 20321 1 Cbm 21054 1 Cbm 9325 1 Becs 9353 1 Becs 2331 1 Becs 2339 1 Becs
10 30 13354 1 Bes 13379 1 Bes 7512 1 Becs 7533 1 Becs 3339 1 Becs 3347 1 Becs 835 1 Bces 838 1 Bcs
10 50 8123 1 Bcs 8153 1 Bcs 4569 1 Bcs 4587 1 Bcs 2031 1 Becs 2038 1 Becs 508 1 Bcs 512 1 Becs
30 10 3383 2 Cff 5775 3 Cff 2317 2 Cff 3177 3 Cff 1762 2 Cff 2218 3 Cff 1326 2 Cff 1519 3 Cff
30 30 3383 2 Cff 6010 3 Cff 2317 2 Cff 3135 3 Cff 1762 2 Cff 2136 3 Cff 835 1 Becs 846 1 Bcs
30 50 3383 2 Cff 5639 3 Cff 2317 2 Cff 2899 3 Cff 1762 2 Cff 1874 3 Cff 508 1 Bcs 513 1 Becs
50 10 1218 2 Cff 2385 3 Cff 834 2 Cff 1317 3 Cff 634 2 Cff 787 3 Cff 512 2 Cff 660 3 Cff
50 30 1218 2 Cff 2615 3 Cff 834 2 Cff 1381 3 Cff 634 2 Cff 699 3 Cff 512 2 Cff 642 3 Cff
50 50 1218 2 Cff 2583 3 Cff 834 2 Cff 1344 3 Cff 634 2 Cff 674 3 Cff 508 1 Bcs 511 1 Becs
Table 27: Failure mechanism calculation results for the improved design rules for non-penetrated joints

Model p 0.8 B 0.6 p04 p0.2

EC/ Pen FEA EC/ Pen FEA EC/ Pen FEA EC/ Pen FEA

2y 26 Nipg Failure Nygea Failure Nigq Failure Nygea Failure Nigq Failure Nygea Failure Nipg Failure Ny Failure
() () (kN)  mode  (kN)  mode (kN)  mode (kN)  mode (kN)  mode  (kN)  mode (kN)  mode  (kN)  mode
10 10 19724 1 Cbm 23943 1 Cbm 20321 1 Cbm 21054 1 Cbm 9325 1 Becs 9353 1 Becs 2331 1 Becs 2339 1 Becs
10 30 13354 1 Bes 13379 1 Bes 7512 1 Becs 7533 1 Becs 3339 1 Becs 3347 1 Becs 835 1 Bcs 838 1 Bcs
10 50 8123 1 Becs 8153 1 Becs 4569 1 Bcs 4587 1 Becs 2031 1 Becs 2038 1 Becs 508 1 Bcs 512 1 Bcs
30 10 5795 3 Cff 5775 3 Cff 2897 3 Cff 3177 3 Cff 1932 3 Cff 2218 3 Cff 1449 3 Cff 1519 3 Cff
30 30 5795 3 Cff 6010 3 Cff 2897 3 Cff 3135 3 Cff 1932 3 Cff 2136 3 Cff 835 1 Bcs 846 1 Bcs
30 50 5795 3 Cff 5639 3 Cff 2897 3 Cff 2899 3 Cff 1932 3 Cff 1874 3 Cff 508 1 Bcs 513 1 Bcs
50 10 2086 3 Cff 2385 3 Cff 1043 3 Cff 1317 3 Cff 695 3 Cff 787 3 Cff 522 3 Cff 660 3 Cff
50 30 2086 3 Cff 2615 3 Cff 1043 3 Cff 1381 3 Cff 695 3 Cff 699 3 Cff 522 3 Cff 642 3 Cff
50 50 2086 3 Cff 2583 3 Cff 1043 3 Cff 1344 3 Cff 695 3 Cff 674 3 Cff 508 1 Bcs 511 1 Becs

5.2.2 Penetrated CHS X-joints

With the knowledge gained from comparing the non-penetrated results, the existing EC design rules and the
improved design rules, the penetrated joints are examined. In this paragraph, the results from the parameter
study are provided and compared, various design rules and steps taken in order to arrive at these design rules are
given, and the governing failure mechanism obtained with the improved set of design rules is verified.

5.2.2.1 Design rules

In Table 28, the plastic capacity according to FEA and the influences of the geometrical parameters on these
results are given for penetrated joint configurations subjected to single-sided tension. Next to that, the plastic
design resistances as calculated with five different design rules are shown. The first two design rules are the
existing EC design rules for non-penetrated joints and the other three design rules are adjustments on the existing
design rules proposed in this graduation research. The formulas for the first design rule “Eurocode X-joint” and
the second design rule “Eurocode T-joint”, are provided in Equation 5.24 and Equation 5.25, respectively. In the
associated columns in Table 28, it can be seen that for both design rules, a significantly lower plastic design
resistance is calculated than the plastic capacity that is observed in FEA. With an average RR for the EC X-joint and



EC T-joint, of 3.32 and 2.45, respectively, the design rules are considered to be very conservative, which can also
be seen in the boxplot of the RR’s in Figure 42. Using these two design rules and a similar procedure as used to
create the improved and adjusted design rules for non-penetrated joints, as provided in Equation 5.26 and 5.27,
the design rules “X-joint improved”, presented in Equation 5.28, and “T-joint improved”, presented in Equation
5.29, are created.

X-joint improved for penetrated joints

_ kp*fyo*fs*td 9.0
Nipa =1.1x sinf; (1-0.81+fg*B) /Yus, (5.28)

where fs =1+ (50 — 28)/200,
where f = 1.8+ + 2.3.
T-joint improved for penetrated joints

0.2k fyo*t2
V5ot (6.8 +14.2 % fg * B2)/Yus (5.29)

N =
LRd sinfy

In the improved design rule for penetrated CHS X-joints, a factor f; is applied to describe the influence of § on the
plastic capacity of the joints. This factor is created in such a way, that it fits the influences of 26 as given in the
associated column of Table 28, i.e. it approximates the values 1.2, 1.1 and 1.0 for 2§ factors of 10, 30 and 50,
respectively. The same is done for fz,with which the influence of g is described in the design rule. The factors 1.1
and 9.0 in the formula, are adjusted to improve the fit of the plastic design resistances of the design rule to the
observed plastic capacity in the FEA.

In the improved design rule for penetrated CHS T-joints, merely the factor fz is included and by changing the
factor 2.8 (as found in the original EC design rule) to 6.8, the plastic design resistance is fitted to the plastic
capacity. Table 28 and the left graph in Figure 42, show the design resistances and associated resistance ratios of
these five design rules. It can be seen that the design rule “X-joint improved” has some conservative results, which
are indicated by a grey square about the result, and one overpredicted design resistance, which is indicated by a
black square. The design rule has an average RR of 1.39, for which the lowest and highest RR are 0.83 and 2.15,
respectively. For the improved design rule for T-joints there are no overpredicted results. However, more results
are considered to be conservative. For the design rule an average, lowest and highest RR is found of 1.47, 0.95
and 2.03, respectively.

The fifth design rule “Stress pattern”, is not based on the existing EC design rules for non-penetrated X- or T-
joints, but is created by examination of the, in FEA observed, stress pattern in the chord member. The geometrical
parameters that partially describe the stress pattern observed, have an influence on the height of the stresses in
the joints and therefore on the final plastic capacity. The chord diameter (d,), chord wall thickness (t,), B factor
and m are used to describe the stress pattern for chord face failure on the chord wall, finally resulting in a new
design formula that is presented in Equation 5.30. To improve the fit of the design rule results to the plastic
capacity found in FEA, a factor of 0.35 is included. With this formula, an average, lowest and highest RR for the
investigated parametrical geometries is achieved of 1.19, 0.95, and 1.52, respectively. It is observed that, in
particular for models with a g factor of 0.4 and 0.6, some plastic design resistances may be considered as
conservative, with a RR between 1.3 and 1.5.

Stress pattern

kyxfyoxtoxrdo*TTf
Nyga = 0.35 5 P IY0T0TPTR0TR T8

sing. /Yus (5.30)
The design rule represented in Equation 5.30 is simplified by replacing B - dy by the brace diameter (d,) and
combining the factor 0.35 with m into a factor of 1.1, which resulted in the sixth design rule “Stress pattern 17,
shown in Equation 5.31. The plastic design resistances obtained with this design rule are nearly the same as
obtained with the original formula, and are presented in Table 29 and the right graph in Figure 42.

Stress pattern 1
kp*fyo*toxd1*fs

Niga = 1.1+ === /Yus (5.31)
The simplified formula is used as a starting point for further improvements of the conservative approximations of
the plastic capacity for joint configurations with a g factor of 0.4 and 0.6. Since for geometries with g factor 0.8
and 0.2, the RR’s do approach 1, the way the influence of the g factor is processed in the design formula is
reviewed again.



Two additional design rules are created, that describe the influence that g has on the plastic resistance more
accurate. In Equation 5.32 and 5.33, the adjusted design rules “Stress pattern 2a” and “Stress pattern 2b” are
presented, for which the adjustments with respect to Equation 5.31 are shown in bold. With these improved
design rules, the average RR is decreased from 1.19 to 1.11 for design rule 2a and to 1.09 for design rule 2b, as
can be seen in the third and fourth column of Table 29 and the right graph in Figure 42. Next to that, the highest
RR for stress pattern 2a is decreased from 1.52 to 1.35, and for design rule 2b from 1.52 to 1.34.

Stress pattern 2a

ky*fyoxto*xdyxf
Niga = 1,05*%;15*(_2*(3—0. 5)2+1.2)/Yus (5.32)
Stress pattern 2b
Nygg = 1.1 % 200t 95, (6in(0.65 « B+ ) — B+ 0.8
1ra = 1. v (sin(0. B+*m)—B+0.8)/yys (5.33)

Lastly, a design rule is considered that is completely constructed using the influences of the geometrical
parameters as given in the table next to the plastic capacity from FEA. For this design rule, a basic value for the
plastic resistance is back-calculated by dividing the plastic capacity through the corresponding influences of B, 2y,
28. This resulted in an almost stable value for all considered geometrical parameter configurations, which has to
be described by the parameters that are fixed in this study, like the yield strength (f;,,) and chord diameter (d,)
(as only the brace diameter is valued using the B factor). Once this stable part has been formulated, the influences
of the geometrical parameters are formulated in three independent formula parts, by fitting these parts on the
influence factors shown in the table. The independent parts are then combined in a single design rule that is
shown in Equation 5.34.

Result factors

100 Kp*fyoxd,xyO ity
N = * Py
VR = S5gs T g, /WS (5.34)

This design rule approximates the plastic capacity (according to FEA) with an average, lowest and highest RR of
1.09, 0.88, and 1.30, respectively. However, two of the geometrical parameter configurations resulted in a plastic
design resistance that overpredicts the plastic capacity and are therefore unsafe. Adjusting the formula in such a
way that the lowest RR was 0.95, resulted in the highest RR to be larger than 1.3, causing this design rule to
become less interesting than the design rules Stress pattern 2a and 2b.

Table 29 and Figure 42 (right graph), shows the results of the extra four design rules that were just elaborated. It
can be seen that design rules stress pattern 2a and stress pattern 2b best approximates the plastic capacity.

Table 28: Results design rules for penetrated joints - Single-sided tension (Fy) — part 1
Model FEA results EC X-joint EC T-joint X-joint impr. T-joint impr. Stress pattern
B 2y 28 Nirea Infl g Infl 2y Infl 28 N1,rd RR N1,rd RR N1,rd RR N1,rd RR N1,rd RR

0.8 30 30 6575.6 1.005 1.508 1.143 3383 1.943 4680 1.405 5634 1.167 5754 1.143 6648 0.989

0.8 30 50 5752.6 1.518 3383 1.700 4680 1.229 5122 1.123 5754 1.000 6044 0.952
0.8 50 30 4361.5 1.083 1.151 1218 3.581 1866 2.337 2028 2.150 2294 1901 3989 1.093
0.8 50 50 3789.7 1.065 1218 3.111 1866 2.031 1844 2.055 2294 1.652 3626 1.045

0.6 30 10 8019.2 1.458 1.934 1.226 2317 3.461 3115 2.575 6684 1.200 5132 1.563 5440 1.474

0.6 30 30 6540.1 1.623 2317 2.823 3115 2.100 6127 1.067 5132 1.274 4986 1.312
0.6 50 10 4147.2 1.737 1.029 834 4.972 1242 3.340 2406 1.724 2046 2.027 3264 1.271
0.6 50 30 4028.7 1.896 1.132 834 4.830 1242 3.244 2206 1.826 2046 1.969 2992 1.347
0.6 50 50 3557.8 1.751 834 4.265 1242 2.865 2005 1.774 2046 1.739 2720 1.308
0.4 30 10 5500.2 2.303 1762 3.122 1997 2.755 5575 0.987 4090 1.345 3626 1.517
0.4 50 10 2388.2 2.027 1.124 634 3.765 796 3.000 2007 1.190 1631 1.464 2176 1.098
0.4 50 30 2124.8 1.046 634 3.350 796 2.669 1840 1.155 1631 1.303 1995 1.065
0.4 50 50 2032.1 634 3.204 796 2.553 1672 1.215 1631 1.246 1813 1.121
0.2 50 10 1178.1 512 2.303 529 2.229 1428 0.825 1240 0.950 1088 1.083

Mean 3.316 Mean 2.452 Mean 1.390 Mean 1.470 Mean 1.191
Lowest 1.700 Lowest 1.229 Lowest 0.825 Lowest 0.950 Lowest 0.952
Highest 4.972 Highest 3.340 Highest 2.150 Highest 2.027 Highest 1.517
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Figure 42: RR design rules for penetrated joints — Single-sided tension (Fy) — Part 1 (left) & 2 (right)

Table 29: Results design rules for penetrated joints - Single-sided tension (Fy) — part 1

Model FEA results Stress patt. 1 Stress patt. 2a Stress patt. 2b Result factors
B2y 26 Nirea  Inflg Infl 2y Infl25 N1rd RR N1rd RR N1rd RR N1rd RR
0.8 30 30 6575.6 1.005 1.508 1.143 6651 0.989 6476 1.015 6638 0.991 6863 0.958
0.8 30 50 5752.6 1.518 6046 0.951 5887 0.977 6035 0.953 5765 0.998
0.8 50 30 43615 1.083 1.151 3991 1.093 3885 1.123 3983 1.095 4334 1.006
0.8 50 50 3789.7 1.065 3628 1.045 3532 1.073 3621 1.047 3640 1.041
06 30 10 8019.2 1.458 1.934 1.226 5442 1.474 6129 1.308 6208 1.292 6359 1.261
0.6 30 30 6540.1 1.623 4988 1.311 5619 1.164 5691 1.149 5147 1.271
0.6 50 10 41472 1.737 1.029 3265 1.270 3678 1.128 3725 1.113 4015 1.033
0.6 50 30 4028.7 1.896 1.132 2993 1.346 3371 1.195 3415 1.180 3250 1.239
06 50 50 3557.8 1.751 2721 1.308 3065 1.161 3104 1.146 2730 1.303
04 30 10 5500.2 2.303 3628 1.516 4086 1.346 4096 1.343 4239  1.298
04 50 10 2388.2 2.027 1.124 2177 1.097 2452 0.974 2457  0.972 2677 0.892
04 50 30 21248 1.046 1995 1.065 2247 0945] | 2253 0.943| 2167 0.981
04 50 50 2032.1 1814 1.120 2043 0.995 2048 0.992 1820 1.116
0.2 50 10 1178.1 1088 1.082 1060 1.112 1085 1.086 1338 0.880
Mean 1.190 Mean 1.108 Mean 1.093 Mean 1.091

Lowest 0.951 Lowest 0.945 Lowest 0.943 Lowest  0.880
Highest 1.516 Highest 1.346 Highest 1.343 Highest  1.303

5.2.2.2  Verification of the governing failure mechanism

In Paragraph 5.2.1.3 the principles are explained for the verification of the governing failure mechanism. In this
paragraph the same principles are applied to verify the governing failure mechanism for penetrated CHS X-joints
subjected to single-sided tension. In Table 30 the results for the existing set of EC design rules (intended for non-
penetrated CHS joints) are given. The basic cross-section design rules and the existing EC design rules for non-
penetrated joints are applied to approximate the plastic design resistance and governing failure mechanism. In
Table 31 the results for the improved penetrated set of design rules are given. The existing basic cross-section
design rules and the joint failure design rule Stress pattern 2b, as provided in Equation 5.33, are used. In the tables
the results of the joint configurations for which the governing failure mechanisms as calculated with the set of
design rules deviates from the governing mechanism observed in FEA, are marked. It can be seen that the
improved penetrated set of design rules, predict the correct failure mechanism more often than the existing set
of EC design rules. Moreover, it can be seen that for the penetrated set of design rules, the plastic design
resistances for chord face failure deviate significantly less from the plastic capacity, compared to the resistances
calculated with the set of EC design rules for non-penetrated joints. The calculations with the design set containing
the new design rules for penetrated joints, still deviates from the results observed in FEA for some parameter
configurations. This can however be explained by the slight conservatism of the new chord face failure rule and
the fact that for these particular configurations, the differences in plastic design resistance to the different failure
mechanisms are minimal.



Table 30: Failure mechanism calculation results for existing EC design rules for non-penetrated joints

Model B 0.8 B 0.6 p 0.4 B 0.2
EC FEA EC FEA EC FEA EC FEA

2y 26 Nigrs Failure  Nygea  Failure Nigs Failure  Nygea  Failure Nigs Failure  Nygea  Failure Nigs Failure  Nygea  Failure
() () (kN)  mode  (kN)  mode (kN)  mode (kN)  mode (kN)  mode  (kN)  mode (kN)  mode  (kN)  mode
10 10 19724 1 Cbm 20221 1 Cbm 20321 1 Cbm 20373 1 Cbm 9325 1 Bcs 9334 1 Bcs 2331 1 Becs 2331 1 Becs
10 30 13354 1 Bcs 13369 1 Bces 7512 1 Becs 7515 1 Becs 3339 1 Becs 3342 1 Becs 835 1 Bcs 834 1 Bcs
10 50 8123 1 Bcs 8126 1 Bces 4569 1 Bcs 4574 1 Becs 2031 1 Bcs 2032 1 Bcs 508 1 Bcs 508 1 Bcs
30 10 3383 2 Cff 8742 1 Cbm| 2317 2 Cff 8019 3 Cff 1762 2 Cff 5500 3 Cff 1326 2 Cff 2345 1 Bcs
30 30 3383 2 Cff 6576 3 Cff 2317 2 Cff 6540 3 Cff 1762 2 Cff 3348 1 Bcs 835 1 Bcs 843 1 Bcs
30 50 3383 2 Cff 5753 3 Cff I 2317 2 Cff 4555 1 Bcs 1762 2 Cff 2029 1 Bcs 508 1 Bcs 509 1 Bcs
50 10 1218 2 Cff 5040 1 Cbm] 834 2 Cff 4147 3 Cff 634 2 Cff 2388 3 Cff 512 2 Cff 1178 3 Cff
50 30 1218 2 Cff 4362 3 Cff 834 2 Cff 4029 3 Cff 634 2 Cff 2125 3 Cff 512 2 Cff 838 1 Bcs
50 50 1218 2 Cff 3790 3 Cff 834 2 Cff 3558 3 Cff 634 2 Cff 2032 3 Cff 508 1 Bcs 513 1 Bcs

Table 31: Failure mechanism calculation results for new design rules for penetrated joints

Model p 0.8 B 0.6 p0.4 p 0.2
EC/Pen FEA EC/ Pen FEA EC/ Pen FEA EC/ Pen FEA

2y 26 Nigrs Failure Nigea  Failure Nigs Failure Nigea  Failure Nigs Failure Nygea  Failure Nigs Failure  Nygea  Failure
) () (kN)  mode  (kN)  mode (kN)  mode  (kN)  mode (kN)  mode  (kN)  mode (kN)  mode  (kN)  mode
10 10 19724 1 Cbm 20221 1 Cbm | 18625 3 Cff 20373 1 Cbml 9325 1 Becs 9334 1 Becs 2331 1 Becs 2331 1 Becs
10 30 13354 1 Bes 13369 1 Bes 7512 1 Becs 7515 1 Becs 3339 1 Becs 3342 1 Becs 835 1 Bcs 834 1 Bcs
10 50 8123 1 Bcs 8126 1 Bces 4569 1 Bcs 4574 1 Bcs 2031 1 Becs 2032 1 Becs 508 1 Bcs 508 1 Bcs
30 10 [ 7241 3cCff 8742 1 Cbm| 6208 3 Cff 8019 3 Cff 4096 3 Cff 5500 3 Cff [ 1809 3 Cff 2345 1 Bcs
30 30 6638 3 Cff 6576 3 Cff 5691 3 Cff 6540 3 Cff 3339 1 Becs 3348 1 Becs 835 1 Bcs 843 1 Bcs
30 50 6035 3 Cff 5753 3 Cff 4569 1 Bcs 4555 1 Becs 2031 1 Becs 2029 1 Becs 508 1 Bcs 509 1 Bcs
50 10 | 4345 3 Cff 5040 1 Cbm] 3725 3 Cff 4147 3 Cff 2457 3 Cff 2388 3 Cff 1085 3 Cff 1178 3 Cff
50 30 3983 3 Cff 4362 3 Cff 3415 3 Cff 4029 3 Cff 2253 3 Cff 2125 3 Cff 835 1 Bces 838 1 Bcs
50 50 3621 3 Cff 3790 3 Cff 3104 3 Cff 3558 3 Cff | 2031 1 Becs 2032 3 Cff | 508 1 Bcs 513 1 Bcs

5.2.2.3  Conclusion design rule for penetrated CHS X-joints subjected to single-sided tension (Fx)

For penetrated CHS X-joints subjected to single-sided tension (Fx) can be concluded that the existing EC design
rules for non-penetrated T- and X-joints, with an average RR of 3.32 and 2.45, underpredict the plastic capacity
observed in FEA. The improved design rules “X-joint impr.” and “T-joint impr.”, which are based on the existing
EC design rules for non-penetrated T- and X-joints, better approximate the plastic design capacity, however, with
an average RR of 1.39 and 1.47, they are still considered to be too conservative and some results deviate too
much. Therefore five alternative design rules are created of which four are based on the stress pattern observed
in FEA and the other one is based on the influences of the parameter factors on the plastic capacity. Although this
latter design rule “Result factors”, is easier to interpret and can be deduced more clearly from the applied
geometrical parameters, this design rule predicts design resistances with larger deviations from the plastic
capacity observed in FEA. Based on the RR’s, it is therefore proposed to use the design rule “Stress Pattern 2b”
which is provided in Equation 5.33, for calculating the plastic design resistance of penetrated CHS X-joints
subjected to single-sided tension (Fx). For this design rule an average, lowest and highest RR of 1.09, 0.94, and
1.34, respectively, are obtained.

From the verification of the governing failure mechanisms, for which the results are shown in Table 30 and Table
31, it can be concluded that for the set of improved design rules for penetrated joints, in which the design rule
Stress pattern 2b is included, more often the correct failure mechanism is approximated compared to the set of
existing EC design rules for non-penetrated joints. Next to that, can be concluded that for geometries failing in
chord face failure, the plastic design resistance calculated by the improved design rules, deviates less from the
plastic capacity obtained by FEA, as the plastic design resistance calculated with the existing EC design rules for
non-penetrated joints did. However, also for the new set of design rules, some deviations in governing failure
mechanism are observed in Table 31, but this can be explained by the slight conservatism of the new chord face
failure rule and the fact that for the particular configurations for which the failure mechanism deviates from the
one observed in FEA, the differences in plastic design resistance to the different possible failure mechanisms are
minimal.



5224  Compression

The parameter study for penetrated configurations subjected to single-sided compression is provided only for the
geometries with a B factor of 0.2 and 0.8. From these parameter configurations it has been concluded that
geometries subjected to single-sided compression have plastic capacity that are almost equal to the capacity of
geometries subjected to single-sided tension. Therefore, no simulations have been performed for additional
parameter configurations. To confirm the validity of the new proposed design rules for compression as well, the
plastic capacity observed in FEA are compared with the new design rules for penetrated joints, as is also done in
Table 29 for tension. The results of the comparisons are given in Table 32 and in the left graph of Figure 43. In the
table, it can be seen that the new design rules for penetrated joints are also suitable for geometries subjected to
single-sided compression, since an average, lowest and highest RR for stress pattern 2b of 1.03, 0.95, and 1.12,
respectively, is found. The average and highest RR depicted in the table are slightly lower compared to those of
the geometries subjected to single-sided tension. This can however, be explained by the fact that g 0.4 and 0.6
are omitted for geometries subjected to single-sided compression, while they cause produce the highest RR’s and
an increase of the average RR for the geometries subjected to single-sided tension.

Table 32: Result design rules for penetrated joints — single-sided compression (Fy)

Model FEA results Stress patt. 1 Stress patt. 2a Stress patt. 2b Result factors
B 2y 25 Nirea  Inflg Infl 2y Infl 28 N1,rd RR N1,rd RR N1,rd RR N1,rd RR

0.8 30 30 6312.1 1418 1.107 6651 0.949 6476 0.975 6638 0.951 6863 0.920
0.8 30 50 5699.8 1.480 6046 0.943 5887 0.968 6035 0.945 5765 0.989
0.8 50 30 4449.6 1.155 3991 1.115 3885 1.145 3983 1.117 4334 1.027
0.8 50 50 3850.9 3628 1.061 3532 1.090 3621 1.064 3640 1.058
0.2 50 10 1165.5 1088 1.071 1060 1.100 1085 1.074 1338 0.871

Mean 1.028 Mean 1.056 Mean 1.030 Mean 0.973

Lowest 0.943 Lowest 0.968 Lowest  0.945 Lowest 0.871
Highest 1.115 Highest 1.145 Highest 1.117 Highest 1.058

5.2.2.5  Reduction factor kp

For geometries where the brace is subjected to single-sided compression, the influence of the reduction factor
k, is evaluated. This factor takes into account the reduction of the plastic joint capacity when the chord member
is subjected to initial compression stresses, arising from compression or bending moments on the chord member.
This reduction factor is based on the n,, factor, which takes into account the stress ratio between the acting stress
(Np,zq) in the chord divided by the yield strength (fy,0), as shown in Equation 5.35. The factor k, to consider, can
be calculated with the following design rule:

Forn, > 0 (compression): k, =1 — 0.3 xn, * (1 +n,), but k, <1.0
Forn, < 0 (tension): k,=10
Ny = (0p,ea/fy0)/Yus, (5.35)

where o, g4 is the maximum compressive stress in the chord at the joint, excluding the stress due to the axial
forces in the brace at that joint. The stress can be calculated by 6, gq = Np ga/Ao + Mo ga/Wei0, Where Ny, g4 is the
design value of the internal axial force, A is the chord surface, My g4 is the bending moment design value of the
chord and W, is the elastic section modulus of the chord member. [2] To calculate the maximum compressive
stress in the chord at the joint, the bending moment present in the chord, which is due to the normal force in the
brace, is implemented within the formula.

Taking into account the reduction factor k, has significant influences on the plastic design resistances for
penetrated CHS X-joints sunjected to single-sided compression. Table 33 and the right graph of Figure 43, shows
the results for the final four penetrated desing rules for single-sided tension, where the reduction factor k,, is
included. In the table can be seen that the calculated average RR of the design rules are between 1.45 to 1.52,
which means that the plastic design resistances become very conservative. Comparing the results with the non-
reduced resistances, provided in Table 32 and in the left graph of Figure 43, an average, lowest and highest RR of
1.03, 0.95, and 1.12, respectively, is found for the non-reduced design rule stress pattern 2b, whereas the
reduction factor decreases the plastic design resistance to an average, lowest and highest RR to 1.50, 1.19, and
1.75, respectively.



It can be concluded that for geometries subjected to single-sided compression, the design rules “Stress pattern
2a” and “Stress pattern 2b”, well predict the plastic capacity obtained from FEA, with an average RR of 1.06 and
1.03, respectively, and that applying the reduction factor k,, to the design rules for the calculation of the plastic
design resistances for geometries subjected to single-sided compression, results in significant underpredictions
of the true plastic capacity, as follows from the average RR’s of approximately 1.50.
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Figure 43: RR of the design rules for penetrated joints — Single-sided compression (F,) — standard (left) & reduced k, (right)

Table 33: Results design rules for penetrated joints reduced by k, factor — Single-sided compression (F)

Model FEA results Stress patt. 1 Stress patt. 2a Stress patt. 2b Result factors
B 2y 25 Nirea  Inflg Infl 2y Infl 28 N1,rd RR N1,rd RR N1,rd RR N1,rd RR

0.8 30 30 6312.1 1418 1.107 4159 1.518 4099 1.540 4154 1.519 4229 1.492
0.8 30 50 5699.8 1.480 3944 1.445 3884 1.467 3940 1.447 3837 1.486
0.8 50 30 4449.6 1.155 2541 1.751 2504 1.777 2539 1.753 2657 1.675
0.8 50 50 3850.9 2407  1.600 2370 1.625 2404 1.602 2412 1.597
0.2 50 10 1165.5 986 1.182 963 1.211 984 1.185 1182 0.986

Mean 1.499 Mean 1.524 Mean 1.501 Mean 1.447

Lowest 1.182 Lowest 1.211 Lowest 1.185 Lowest 0.986
Highest  1.751 Highest 1.777 Highest  1.753 Highest  1.675



5.3  SHEAR Fy (CHORD BENDING MOMENT)

To create a design rule for CHS X-joints subjected to shear Fy (chord bending moment), similar steps have been
performed as for joints subjected to single-sided tension. In this paragraph, some additional simulations are
performed and the results are evaluated, the steps to acquire the design rule are presented and the approximated
failure mechanisms are verified.

5.3.1 Additional simulations

The results of the parameter study for geometries subjected to shear Fy (chord bending moment), are elaborated
in Paragraph O. It has been seen that only three penetrated parameter configurations fail in chord face failure,
which is too limited to design and fit a design rule on. With only three geometries to calibrate the design rule, it
will very likely that the design rule does not describe the behavior and plastic design resistance of the geometries
correctly. Therefore, additional simulations are performed for geometries with g factors 0.6 and 0.8, 2y factors
30, 40 and 50, and 26 factors 10, 15 and 20. These geometrical parameters are chosen based on the three
parameter configurations that fail in chord face failure, to ensure the boundaries of the critical areas where joint
failures are common can be identified and more results are available for the creation and calibration of the new
design rule. Table 34 shows the results for the additional simulations, of which eight parameter configurations
are identified that fail in chord face failure.

Table 34: Additional simulations geometries subjected to shear F,

Model 2y 30 2y 40 2y 50

Fy,FEA Fled Failure Fy,FEA Fled Failure Fy,FEA Fy,Rd Failure
load f 26 ) 6N SR ech, k) kN R ech. kN kN TR mech.
- E|08 10 11165.0 2503 4.461 3 Cff 81817 1626 5.032 3 Cff 6380.1 1163 5.486 3 Cff
E glo8 15 8424.0 8105 1.039 1 Bbm 8072.0 1626 4.964 3 Cff 6459.4 1163 5.554 3 Cff
Qg 0.8 20 6444.8 6293 1.024 1 Bbm 6353.2 6293 1.010 1 Bbm 62842 1163 5.403 3 Cff
>
L 2los 10 6491.8 5637 1.152 1 Bbm 6411.1 967 6.630 3 Cff 5255.9 692 7.595 3 Cff
2206 15 45933 4032 1.139 1 Bbm 44751 4043  1.107 1 Bbm 44436 4043 1.099 1 Bbm
Y 8loe 20 3537.5 3131 1.130 1 Bbm 3377.4 3131  1.079 1 Bbm 34650 3131 1107 1 Bbm

5.3.2 Designrule

After a first evaluation of the results presented in Table 34, it was concluded that the location at which the shear
force is applied, has a significant influence on the joint capacity as well. Therefore, besides the standard varied
geometrical parameters, also the lever arm of the shear force with respect to the chord member is varied, i.e. the
eccentricity of the shear force with respect to the chord center axis, e,, is varied. The results from the parameter
and lever arm study for penetrated CHS X-joints subjected to shear Fy, are presented Table 35, Table 36
respectively and are both illustrated in Figure 45. In the tables, the plastic capacity observed in FEA and the
influences of the geometrical parameters on the plastic capacity are shown. Next to that, the plastic design
resistances according to the existing EC design rule for non-penetrated joint chord face failure (EC C ff) are shown,
for which formula is provided in Equation 2.7. This design rule is actually meant for joints of which the brace is
subjected to a moment, but is converted to a formula force formula by dividing the design moment resistance
through the eccentricity of the shear force with respect to the chord center axis, e,. With the converted design
rule, the plastic design resistance to a shear force in y direction is calculated, and compared to the plastic capacity
observed in FEA. An average, lowest and highest RR is observed of 5.64, 4.46 and 7.59, respectively, in case the
geometrical parameters are varied(Table 35). While varying the lever arms, L, (Table 36), an average, lowest and
highest RR of 6.20, 4.28, and 7.59, respectively, are found. This means that the design rules result in plastic design
resistances that could on average be approximately 5.5 times as high.

To create a design rule that approximates the plastic capacity, the design rule “result factors” from Equation 5.34,
is used as a basis. To take into account the influence of the application point of the force, the ratio between the
chord diameter (d,) and the length between the point of application of the force and the farthest chord wall, as
shown as L, in Figure 44, is included. Next, the plastic design resistance of the design rule are fitted on the plastic
capacity obtained from FEA, which is in this case done by including a factor 3 to the design rule. The established
formula is then rewritten into a moment formulation, resulting in the design rule “Result factors shear Fy,”, which
is provided in Equation 5.36. In Table 35, Table 36 and Figure 45 the results for this design rule are shown. It can
be seen that the “Result factors shear Fy” design rule results in an average RR of approximately 1.05.



Shear Fy (chord bending moment) — design rule “Result factors shear Fy” for penetrated joints
kp*fyo*to*di*dg

Fyara*L; =3 % sinf, /Yus (5.36)

Table 35: Results design rules for penetrated joints — shear F, — varied geometrical parameters

Model FEA results ECCff Result factors F,

B 2y 28 e Fyrea  Infl g Infl 2y Infl 28 Fyrd RR Fyrd RR
0.8 30 10 838 11165.0 1.364 2503 4.461 10306 1.083
0.8 40 10 838 8181.7 1.282 1.013 1626 5.032 7730 1.058
0.8 40 15 838 8072.0 1.250 1626 4.965 7730 1.044
0.8 50 10 838 6380.1 0.987 1163 5.484 6184 1.032
0.8 50 15 838 6459.4 1.027 1163 5.553 6184 1.045
0.8 50 20 838 6284.2 1163 5.402 6184 1.016
06 40 10 792 6411.1 1.220 967 6.628 6023 1.064
06 50 10 792 5255.9 692 7.594 4819 1.091
Mean 5.640 Mean 1.054

Lowest 4.461 Lowest 1.016
Highest  7.594 Highest  1.091

Table 36: Results design rules for penetrated joints — shear F, — varied eccentricity ex

Model FEA results ECCff Result factors F,

B 2y 28 e Fyrea  Infl g Infl 2y Infl 26 Fyrd RR Fyrd RR
08 50 10 381 10958.0 2559 4.282 9894 1.108
08 50 10 587 8369.6 1.294 1663 5.034 7793 1.074
0.8 50 10 792 6705.0 1.276 1231 5.446 6427 1.043
0.8 50 10 838 6380.1 1.287 1163 5.484 6184 1.032
0.8 50 10 938 5851.6 1039 5.630 5715 1.024
0.8 50 10 1038 5306.9 1.328 939 5.650 5312 0.999
06 40 10 792 6411.1 1.220 967 6.628 6023 1.064
0.6 40 10 838 6039.9 1.218 915 6.603 5798 1.042
06 50 10 587 6468.8 935 6.917 5844 1.107
06 50 10 792 5255.9 692 7.594 4819 1.091
0.6 50 10 838 4958.0 655 7.575 4639 1.069
06 50 10 1038 3995.3 528 7.561 3985 1.003
Mean 6.200 Mean 1.055

Lowest 4.282 Lowest  0.999
Highest  7.594 Highest  1.108
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Figure 45: RR design rules for penetrated joints — Shear F, Figure 44: CHS X-joint subjected to shear F,



5.3.3 Verification of the governing failure mechanism

Table 37 and Table 38 shows the verification of the governing failure mechanism for geometries subjected to
shear Fy for the design calculations executed according to the EC design rules for non-penetrated joints and the
new improved design rules for penetrated joints, by comparing their results with the failure mechanisms and
plastic capacity obtained by FEA. While in the existing EC design rules for non-penetrated joints the EC design rule
for chord face failure is applied, in the new design rules for penetrated joints the design rule “result factors shear
Fy” is applied. Table 37 shows that for the existing EC design rules for non-penetrated joints several failure
mechanisms are incorrect and deviate from the ones observed in FEA, while for the new design rule for
penetrated joints, shown in Table 38, all failure mechanisms correspond to the ones in FEA. Furthermore, it can
also be concluded that the calculated plastic design resistances obtained with the improved design rules for
penetrated joints, better approximate the plastic capacity obtained from FEA.

5.3.4 Conclusion design rule Shear F,

For the penetrated CHS X-joints subjected to shear F, (chord bending moment), it can be concluded that the
existing EC design rules for non-penetrated joints, with an average RR of 5.64 and 6.40, underestimate the plastic
capacity of the joints significantly. Therefore, an improved design rule “Result factors shear F,” is created, which
is based on the design rule “Result factors” for geometries subjected to single-sided tension. The improved design
rule, as shown in Equation 5.36, approximates the plastic capacity from FEA very well. With the design rule an
average RR is found of 1.05. Furthermore, it is concluded that by taking into account the new design rule in the
design set, the correct governing failure mechanism is predicted. It is therefore advised to use the design rule
“Result factors shear Fy”, as given in Equation 5.36, for the design check of penetrated CHS X-joints subjected to
shear Fy.

Table 37: Failure mechanism calculation results for existing EC design rules for non-penetrated joints

Model p 0.8 B 0.6 p0.4 p 0.2
EC FEA EC FEA EC FEA EC FEA

2y 26 Fyra  Failure F,een Failure Fyra  Failure Fyrea  Failure Fyra  Failure Fyrea  Failure Fyra  Failure Fyrea  Failure
) () (kN)  mode  (kN)  mode (kN)  mode  (kN)  mode (kN)  mode  (kN)  mode (kN)  mode  (kN)  mode
10 10 | 6924 2 Cps 12554 1 Bbml 4120 2 Cps 2070 2 Cps 559 1 Bbm 514 1 Bbm
10 30 4342 1 Bbm 4328 1 Bbm 2160 1 Bbm 890 1 Bbm 214 1 Bbm 183 1 Bbm
10 50 2677 1 Bbm 2598 1 Bbm 1332 1 Bbm 549 1 Bbm 132 1 Bbm 107 1 Bbm
30 10 2308 2 Cps 11165 3 Cff 1373 2 Cps 6492 1 B bm 690 2 Cps 2597 1 Bbml | 214 2 Cps 584 1 Bbm
30 30 2308 2 Cps 4405 1 B bm 1373 2 Cps 2303 1 Bbm 690 2 Cps 214 1 Bbm 207 1 Bbm
30 50 2308 2 Cps 2614 1 B bm 1332 1 Bbm 549 1 Bbm 132 1 Bbm 124 1 Bbm
50 10 1163 2 Cff 6380 3 Cff 692 2 Cff 5256 3 Cff [ 348 2 Cff 2614 1 B bm 108 2 Cff 591 1 Bbm
50 30 1163 2 Cff 4350 1 B bm | 692 2 Cff 2374 1 Bbml 348 2 Cff 108 2 Cff 208 1 Bbm
50 50 1163 2 Cff 2596 1 Bbm 692 2 Cff 348 2 Cff 108 2 Cff 127 1 Bbm

Table 38: Failure mechanism calculation results for new design rules for penetrated joints

Model p 0.8 p 0.6 p 0.4 p 0.2
EC/ Pen FEA EC/ Pen FEA EC/ Pen FEA EC/ Pen FEA

2y 26 Fyra Failure F,eea  Failure Fyra  Failure  Fyeea  Failure Fyra  Failure  Fyeea  Failure Fyra  Failure  Fyrea  Failure
() () (kN)  mode  (kN)  mode (kN)  mode (kN)  mode (kN)  mode  (kN)  mode (kN)  mode  (kN) mode
10 10 11332 1 Bbm 12554 1 Bbm 5637 1 Bbm 2322 1 Bbm 559 1 Bbm 514 1 Bbm
10 30 4342 1 Bbm 4328 1 Bbm 2160 1 Bbm 890 1 Bbm 214 1 Bbm 183 1 Bbm
10 50 2677 1 Bbm 2598 1 Bbm 1332 1 Bbm 549 1 Bbm 132 1 Bbm 107 1 Bbm
30 10 10306 3 Cff 11165 3 Cff 5637 1 Bbm 6492 1 Bbm 2322 1 Bbm 2597 1 Bbm 559 1 Bbm 584 1 Bbm
30 30 4342 1 Bbm 4405 1 Bbm 2160 1 Bbm 2303 1 Bbm 890 1 Bbm 214 1 Bbm 207 1 Bbm
30 S0 2677 1 Bbm 2614 1 Bbm 1332 1 Bbm 549 1 Bbm 132 1 Bbm 124 1 Bbm
50 10 6184 3 Cff 6380 3 Cff 4819 3 Cff 5256 3 Cff 2322 1 Bbm 2614 1 Bbm 559 1 Bbm 591 1 Bbm
50 30 4342 1 Bbm 4350 1 Bbm 2160 1 Bbm 2374 1 Bbm 890 1 Bbm 214 1 Bbm 208 1 Bbm

50 50 2677 1 Bbm 2596 1 Bbm 1332 1 Bbm 549 1 Bbm 132 1 Bbm 127 1 Bbm



5.4 SHEAR F; (CHORD TORSIONAL MOMENT)

For the design rule for joints subjected to shear F; (chord torsional moment), similar steps have been performed
as for joints subjected to shear Fy (chord bending moment). In this paragraph, some additional simulations are
performed and provided, the results are evaluated, the steps to acquire the design rule are presented and the
governing failure mechanisms are verified.

5.4.1 Additional simulations

The results of the basic parameter study for geometries subjected to shear F; (chord torsional moment), are
shown in Paragraph 4.8. The results show that only four penetrated parameter configurations fail in chord face
failure, which is too limited to create, fit and calibrate a design rule on. Therefore, similarly as done for the load
case Shear Fy, additional simulations are performed, for which the results are shown in Table 39. In the table it
can be seen that fourteen geometrical configurations fail in chord face failure.

5.4.2 Design rules

In Table 40, Table 41 and Figure 47 the results from the FEA and design rules are shown, including the influences
of the geometrical parameters on the plastic capacity (FEA). In Table 40 the geometrical parameters are varied
and in Table 41 the eccentricity of the shear force with respect to the chord center axis, e,, is varied. The first
design rule presented in the tables, is the existing EC design rule for non-penetrated joint chord face failure (EC C
ff), as provided in Equation 2.8. Similarly as done for shear Fy, this formula is converted such that the design
resistance is expressed in a shear force in Z-direction. This design rule results in an average, lowest and highest
RR of 7.86, 4.66, and 11.7 for varying geometrical parameters and an average, lowest and highest RR of 9.45, 6.48,
and 12.3, respectively, when the eccentricity is varied. This means that the plastic design resistance
underestimates the plastic capacity of the joints on average by a factor of approximately 8.5.

A new design rule is therefore created, for which the proposed design rule for penetrated joints subjected to
shear in y-direction, provided in Equation 5.36, is used as a basis. To fit the results of the design rule to the plastic
capacity for penetrated joints subjected to shear in Z-direction, the factor 3.0 is changed into 1.7. Implementing
this single adaptation leads to an average, lowest and highest RR of 1.04, 1.01, and 1.10, respectively, in case the
geometrical parameters are varied (Table 40) and an average, lowest and highest RR of 1.03, 0.97, and 1.07,
respectively, in case the lever arm e, is varied (Table 41). It is therefore concluded that this new design rule, which
is provided in Equation 5.37, accurately describes the plastic capacity and that the difference with the original
design rule for non-penetrated joints is substantial as is seen in Figure 47.

Shear F; (chord torsional moment) — design rule “Result factors shear F,” for penetrated joints

kp*fyo*toxd *d
Fripa ¥ L1 =1.7 % %/YMS (5.37)

Table 39: Additional simulations geometries subjected to shear F,

Model 2y 30 2y 40 2y 50

Fzren Fz,rd Failure Fzrea Fzrd Failure Fz,ren Fz,rd Failure
L 2 ! ! : ’ g '
oad B 26 W) kN TR ek W) 6N R e W) 6N TR ech
- 08 10 5979.6 1278 4.679 3 Cff 4515.2 719  6.280 3 Cff 3575.7 460 7.773 3 Cff
5 glo08 15 5984.8 1278 4.683 3 Cff 4508.2 719 6.270 3 Cff 3604.7 460 7.836 3 Cff
G glo8 20 5958.8 1278 4.663 3 Cff 4477.4 719 6.227 3 Cff 3596.0 460 7.817 3 Cff
=
s 2(06 10 5644.4 5637 1.001 1 Bbm 37255 390 9.553 3 Cff 2839.2 250 11.357 3 Cff
2 % 0.6 15 42536 4032 1.055 1 Bbm 3765.5 390 9.655 3 Cff 2912.7 250 11.651 3 Cff
Y Slo6 20 3219.9 3131  1.028 1 Bbm 32033 3131  1.023 1 Bbm 2926.8 250 11.707 3 Cff



Table 40: Results design rules for penetrated joints — shear F, — varied geometrical parameters

Model FEA results ECCff Result factors F,

B 2y 28 e Foeea  Infl g Infl 2y Infl 28 Fzrd RR Fzrd RR
0.8 30 10 838 5979.6 1.324 0.999 1278 4.680 5840 1.024
0.8 30 15 838 5984.8 1.327 1.004 1278 4.684 5840 1.025
0.8 30 20 838 5958.8 1.330 1278 4.664 5840 1.020
0.8 40 10 838 4515.2 1.212 1.262 1.001 719 6.283 4380 1.031
0.8 40 15 838 4508.2 1.197 1.250 1.006 719 6.273 4380 1.029
0.8 40 20 838 4477 .4 1.245 719 6.230 4380 1.022
0.8 50 10 838 3575.7 1.197 0.991 460 7.774 3504 1.020
0.8 50 15 838 3604.7 1.238 1.002 460 7.837 3504 1.029
0.8 50 20 838 3596.0 1.229 1.012 460 7.818 3504 1.026
0.8 50 30 838 3551.3 460 7.721 3504 1.013
06 40 10 792 3725.5 1.247 0.989 390 9.542 3413 1.092
06 40 15 792 3765.5 1.292 390 9.645 3413 1.103
06 50 10 792 2839.2 1.025 250 11.363 2731 1.040
06 50 15 792 2912.7 0.995 250 11.657 2731 1.067
06 50 20 792 2926.8 250 11.713 2731 1.072
Mean 7.859 Mean 1.041

Lowest 4.664 Lowest 1.013
Highest 11.713 Highest  1.103

Table 41: Results design rules for penetrated joints — shear F, — varied eccentricity e

Model FEA results ECCff Result factors F,

B 2y 25 e Frea  InflB Infl 2y Infl 28 F2rd RR F2Rd RR
0.8 50 10 587 42589 1.207 657 6.484 4414 0.965
0.8 50 10 838 3575.7 1.197 460 7.774 3504 1.020
0.8 50 10 1038 3100.4 1.325 371 8.347 3011 1.030
06 50 10 587 3528.8 337 10.461 3310 1.066
06 50 10 792 2839.2 250 11.363 2731 1.040
0.6 50 10 1038 2340.7 191 12.270 2258 1.037
Mean 9.450 Mean 1.026

Lowest 6.484 Lowest  0.965
Highest 12.270 Highest  1.066
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Figure 47: Results design rules for penetrated joints — Shear F, Figure 46: CHS X-joint subjected to shear F,



5.4.3 \Verification of the failure mechanisms

In Table 42 and Table 43 the results of the verification procedure for the governing failure mechanisms as
determined by the existing and new set of design rules, are shown. For the existing design set, of which the results
are shown in Table 42, the non-penetrated EC chord face failure design rule is used, which is replaced by the
“Result factors shear F.” design rule for shear (F:) (Equation 5.37) for the improved set of design rules for
penetrated geometries (Table 43). Table 42 shows that with the existing EC design rules, an incorrect governing
failure mechanism is predicted, while for the improved design rules for penetrated joints, most of the failure
mechanisms are predicted correct, as can be seen in Table 43. For this set of design rules, only two failure
mechanisms are predicted wrong, and for these geometries the design rule for chord face failure is slightly
conservative, causing a failure mechanism with almost the same plastic design resistance to be selected as
governing.

5.4.4 Conclusion design rule shear F,

It can be concluded that for the penetrated CHS X-joints subjected to shear F; (chord torsional moment), the
existing EC design rules for non-penetrated joints, with an average of 7.86 and 9.45, underestimate the plastic
capacity of penetrated CHS X-joints significantly. Therefore, an new design rule “Result factors shear F,” is created,
which is provided in Equation 5.37. With this new design rules for penetrated joints, the plastic capacity of the
penetrated joints is approximated very well, as follows from an average RR of approximately 1.04.

Additionally it is concluded from the verification of the failure mechanisms, that for the set of design rules in
which the new design rules for penetrated joints is included, not only the plastic design resistance is in accordance
with the capacity observed in FEA, but also the calculated governing failure mechanisms often corresponds with
the failure mechanism observed in FEA. It is therefore proposed to use the new design rule “Result factors shear
FZ”, which is given in Equation 5.37, to calculate the design resistance of penetrated CHS X-joints subjected to
shear in Z-direction.

Table 42: Failure mechanism calculation results for existing EC design rules for non-penetrated joints

Model B 0.8 B 0.6 p 0.4 p 0.2
EC FEA EC FEA EC FEA EC FEA

2y 26 F,ra  Failure F,rea  Failure F,ra  Failure F,eea  Failure F,ra  Failure F,rea  Failure F,ra  Failure F,eea  Failure
) () (kN) mode  (kN)  mode (kN)  mode  (kN)  mode (kN)  mode  (kN)  mode (kN)  mode  (kN)  mode
10 10 [ 6924 2 Cps 11467 1 Bbm| 4120 2 Cps 2070 2 Cps 559 1Bbm 519 1 Bbm
10 30 4342 1 Bbm 4166 1 Bbm 2160 1 Bbm 890 1 Bbm 214 1 Bbm 190 1 Bbm
10 50 2677 1 Bbm 2480 1 Bbm 1332 1 Bbm 549 1 Bbm 132 1 Bbm 113 1 Bbm
30 10 1278 2 Cff 5980 3 Cff 694 2 Cff 5644 1 Bbm 398 2 Cff 2558 1 Bbm 199 2 Cff 581 1 Bbm
30 30 1278 2 Cff 4244 1 B bm 694 2 Cff 2156 1 Bbm 398 2 Cff 199 2 Cff 217 1 Bbm
30 50 1278 2 Cff 2553 1 Bbm 694 2 Cff 398 2 Cff 132 1 Bbm 133 1 Bbm
50 10 460 2 Cff 3576 3 Cff 250 2 Cff 2986 3 Cff [ 143 2 Cff 2342 1 Bbm 72 2 Cff 569 1 Bbm
50 30 460 2 Cff 3551 3 Cff | 250 2 Cff 2156 1 Bbml 143 2 Cff 72 2 Cff 215 1 Bbm
50 50 | 460 2 Cff 2596 1 Bbm]| 250 2 Cff 143 2 Cff 72 2 Cff 132 1 Bbm

Table 43: Failure mechanism calculation results for new design rules for penetrated joints

Model p 0.8 B 0.6 p0.4 p0.2
EC/ Pen FEA EC/ Pen FEA EC/ Pen FEA EC/ Pen FEA

2y 26 F,ra  Failure F, e Failure F,ra  Failure F,pen Failure F,ra  Failure F,pen  Failure F,ra  Failure F,een  Failure
() () (kN)  mode  (kN)  mode (kN)  mode (kN)  mode (kN)  mode  (kN)  mode (kN)  mode  (kN) mode
10 10 11332 1 Bbm 11467 1 Bbm 5637 1 Bbm 2322 1 Bbm 559 1 Bbm 519 1 Bbm
10 30 4342 1 Bbm 4166 1 Bbm 2160 1 Bbm 890 1 Bbm 214 1 Bbm 190 1 Bbm
10 50 2677 1 Bbm 2480 1 Bbm 1332 1 Bbm 549 1 Bbm 132 1 Bbm 113 1 Bbm
30 10 5840 3 Cff 5980 3 Cff 4551 2 Cff 5644 1 Bbm| 2322 1 Bbm 2558 1 Bbm 559 1 Bbm 581 1 Bbm
30 30 4342 1 Bbm 4244 1 Bbm 2160 1 Bbm 2156 1 Bbm 890 1 Bbm 214 1 Bbm 217 1 Bbm
30 S0 2677 1 Bbm 2553 1 Bbm 1332 1 Bbm 549 1 Bbm 132 1 Bbm 133 1 Bbm
50 10 3504 3 Cff 3576 3 Cff 2731 2 Cff 2986 3 Cff | 1974 2 Cff 2342 1 Bbm 559 1 Bbm 569 1 Bbm
50 30 3504 3 Cff 3551 3 Cff 2160 1 Bbm 2156 1 Bbm 890 1 Bbm 214 1 Bbm 215 1 Bbm

50 50 2677 1 Bbm 2596 1 Bbm 1332 1 Bbm 549 1 Bbm 132 1 Bbm 132 1 Bbm



5.5 COMBINATION OF LOAD CASES

5.5.1 Introduction

In addition to the standard load cases, the behavior of CHS X-joints is analyzed for two combined load cases. The
performance and validity of the newly created design rules for joint failures in penetrated geometries are
evaluated for these combined load cases. Furthermore it is checked, whether the design rule provided in the EC
for the combination of load cases as given in Equation 2.11, can be applied for the new design rules for penetrated
joints as well. In this design rule, the unity checks, i.e. the ratios between the design values and the design
resistances, of the normal force in the brace (Fx) and bending moments on the brace about the Y- (My) and Z- (M)
axis are used. However, since the newly created design rules for joint failures of penetrated geometries are
created for tension/compression and a shear force in Y- or Z-direction, the design rule from the EC (Equation 2.11)
is converted so the unity checks from the new design rules can be used.

The resulting converted design rule for joint failures of penetrated geometries subjected to a combination of
loads, is provided in Equation 5.38. To verify the results from this combination rule, when using the design
resistances obtained with the new design rules for penetrated joints proposed in this research, the resistance
ratios are used and entered in the combination rule, instead of the unity checks. The true capacity of the joints
subjected to combined loads is in that case, approximated correctly (i.e. safely) by the design rules, if the resulting
Resistance Ratio (RR) is equal or above 1.0. The formula for the resistance ratio is given in Equation 5.39.

In this paragraph, first the combination of shear Fy, and shear F is analyzed, and secondly the combination of
single-sided tension (Fx), shear Fy and shear F; is analyzed. For both combinations, first the FEA results are
compared with the existing EC design rules for non-penetrated joints and next with the improved design rules for
penetrated joints. In this paragraph only the comparisons between FEA and the design rules are shown in the
tables. A total overview of the FEA results for both load combinations are given in Appendix E.

The non-penetrated comparisons are performed to get an indication of the conservatism of the existing EC design
rules for non-penetrated joints, applied to penetrated geometries. The geometries for which the combination
design rule is analyzed are (B 0.8, 2y 30/40/50, 26 10), for these geometries, joint failures are governing for the
individual load cases. In the FEA, the models are subjected to displacements of 100 mm in the indicated directions.

Converted design rule for the combination compression/tension & shear in Fy and F,

2
Nxa,Ed [Fy,1,Ed] + |Fz,1,Ed] <10
_— »M

Nx,l,Rd Fy,l,Rd Fz,l,Rd (538)
Resistance ratio for the validation of the converted design rule in 5.38
2
Ny,1,FEA Fy,l,FEA] |Fz1,FEAl >10
Ny,1,Rrd [Fy,l,Rd Fzira (5.39)

where Ny 1 rq, Fy 1,54, F21,4, are the design values for single-sided compression or tension (Fx), shear in Y-direction
(Fy) and shear in Z-direction (Fz), Ny 1,ra Fy,1,ra Fz,1,ra, are the plastic design resistances from the design rules for
single-sided compression or tension (Fx), Shear in Y-direction (Fy) and shear in Z-direction (F;), and
Ny1,rear Fyreas Fz 1 re4, @re the plastic capacity for single-sided compression or tension (Fx), Shear in Y-direction
(Fy) and shear in Z-direction (F;) obtained from FEA.

5.5.2 Combination of Shear F, and Shear F,

5.5.2.1  Introduction

For the load combination of shear Fy, and shear F;, a representation in
which the location and directions of the applied displacements are
shown in Figure 48. In this paragraph, first the combination check is
performed using the existing EC design rules for non-penetrated
joints, and next using the new design rules for penetrated joints. The
plastic design resistances obtained with the design rules will be
entered as the denominators in Equation 5.39. Since no tension or
compression is imposed on the brace, the first ratio in Equation 5.39
is omitted and only F, ; g and F,; rg Will be used.

Figure 48: X-joint subjected to shear Fy & F,



5.5.2.2  Existing EC design rules for non-penetrated joints

In Table 44 the results of the FEA and the design rules are shown. From left to right the geometrical parameters,
the plastic capacity according to FEA, the plastic design resistances to shear (Fy) and shear (F;) as derived from
the resistances to a bending moment in plane and out of plane, respectively, and the final RR for the combination
rule are provided. The plastic capacity obtained from FEA are decomposed and provided in the Y-direction (Fy)
and Z-direction (F;). In the same rows, the plastic design resistances as calculated with the existing EC design rules
for non-penetrated joints and the associated RR are given. The existing EC design rules for non-penetrated chord
face failure (EC C ff) are applied, for which the moment design rules, as provided in Equation 2.7 and 2.8, are
divided by e,, the eccentricity of the shear force with respect to the chord center axis. In the last column, under
“Combined RR”, the check for the combined resistance ratio, as provided in Equation 5.39, is applied. In this
column it can be seen for each geometrical parameter configuration, to what extent the FEA capacity of the
penetrated X-joint is approached by the design resistance according to the applied design set. At the bottom of
the table, it can be seen that for these geometrical parameter configurations subjected to a combination of shear
Fy and shear F;, an average, lowest and highest RR is found of 22.2, 17.3, and 26.0, respectively. This means that
the true plastic capacity of penetrated configurations are approximated very conservatively by the existing EC
design rules for non-penetrated joints, and that plastic design resistances may have been obtained that are 22
times as high.

5.5.2.3  New design rules for penetrated joints

The improved design rules for penetrated joints are analyzed in a similar way as the EC design rules for non-
penetrated joints. The results are shown in Table 45. For the combined design check, the new design rules for
penetrated joints for shear Fy and shear F,, which are provided in Equation 5.36 and 5.37, are applied. In the table,
resistance ratios (RR) below 1.0 can be observed for the individual design rules. Though in normal cases, a RR
value below 1 is undesired and considered unsafe, it is easily explainable and acceptable in this situation. The
design rule calculates the plastic design resistance for joints subjected to merely a force in a single particular
direction, while the capacity according to the FEA in these tables, is actually obtained for joints subjected to the
evaluated load combination. Since the plastic capacity of the joint in a certain direction, is influenced by all
imposed loads, it will be smaller as the capacity observed when subjected to only one of them, and therefore a
partial RR below 1.0 is obvious and allowed, as long as the combined RR is above 1.0. When evaluating the
combined RR, shown in the last column of the table, an average, lowest and highest combined RR of 1.34, 1.24,
and 1.41, are found respectively. This means that the design rules has an average safety of 34%.

Table 44: Results existing EC design rules for non-penetrated joints — combination shear F, and shear F,

Model FEA results ECect Mip,1,ra (Fy) ECctf Mop,1,rd (F2) Combined RR
B 2y 286 e Firea Fy1,rd RR F21rd RR (Fy,rea/Fy,100)% +
Fz,l,FEA/Fz,l,Rd
Fy 9676.8 2503 3.866
08 30 10 838 F, 2962.4 1278 2.319 17.265
Fy 7326.5 1626 4.506
08 40 10 838 F, 2226.9 719 3.099 23.407
Fy 5544.7 1163 4.766
08 50 10 838 F, 1513.1 460 3.290 26.007
Mean 4.380 Mean 2.902 Mean 22.226
Lowest 3.866 Lowest 2.319 Lowest 17.265
Highest 4.766 Highest 3.290 Highest 26.007

Table 45: Results design rules for penetrated joints — combination shear F, and shear F,

Model FEA results Pencs Shear Fy Penc# Shear F. Combined RR

B 2y 26 e F1rea Fy 1.0 RR Fa1rd RR (Fyren/Fya,pa)? +

Fa1,7e0/F21,80
Fy 9676.8 10306 0.939

08 30 10 838 F, 2962.4 5840 0.507 1.389
Fy 7326.5 7730 0.948

08 40 10 838 F, 22269 4380 0.508 1.407
Fy 5544.7 6184 0.897

08 0 10 838 F, 1513.1 3504 0.432 1.236

Mean 0.928 Mean 0.482 Mean 1.344

Lowest 0.897 Lowest 0.432 Lowest 1.236

Highest 0.948 Highest 0.508 Highest 1.407



5.5.3 Combination of Tension (Fy), Shear F, and Shear F,

5.5.3.1 Introduction

In Figure 49 a representation is shown of a penetrated CHS X-joint
subjected to a combination of tension (Fx), shear Fy, and shear F..
First the results from the FEA will be compared with the design
resistances obtained with the existing EC design rules for non-
penetrated joints, and next, the same analysis will be performed
for the set of design rules for penetrated joints in which the new
design rules created in this graduation research, are included. To

obtain the overall RR for combined load cases, Equation 5.39 is  Figure 49: X-joint subjected to tension (F),
and shear F, & F,

used.

5.5.3.2  Existing EC design rules for non-penetrated joints

Table 46 shows the results for the geometrical parameter configurations subjected to a combination of tension
(Fx), shear Fy, and shear F.. In the table, next to the plastic capacity obtained from FEA, the design resistances
according to the three relevant EC design rules are given; the EC design rule for chord face failure of non-
penetrated geometries subjected to tension Fx (ECc # Nird (Fx)), an in-plane bending moment (ECc # Mip,1,rd
(converted to shear Fy)) and an out-of-plane bending moment (ECc t Mop,1,rd (cOnverted to shear F;)), for which
the EC design rules for non-penetrated joints are provided in Equation 2.5, 2.7 and 2.8. In the column “Combined
RR”, it can be seen that for the geometrical parameter configurations, a combined RR is obtained with an average,
lowest and highest value of 21.0, 16.5, and 25.5, respectively. This means that the plastic design resistances
calculated with the EC design rules for non-penetrated joints could, on average, be 21 times as high.

5.5.3.3  New design rules for penetrated joints

In a similar way as done for the EC design rules for non-penetrated joints, the results obtained with the new design
rules for penetrated joints are evaluated, of which the results are shown in Table 47. The single-sided tension (Fx)
design rule, as given in Equation 5.33, the design rule for shear Fy, as given in Equation 5.36, and the design rule
for shear F;, as given in Equation 5.37, are applied. In Table 47, it can be seen that again the partial resistance
ratios are below 1.0, as also was seen in Table 45 for the combined load case shear Fy and F.. However, as
explained in Paragraph 5.5.2.3, this is due to the interaction of the different load cases and the influence that has
on the plastic capacity observed in FEA. It can be seen that the combination of the design rules for the geometrical
configurations, results in an average, lowest and highest RR of 1.79, 1.71, and 1.86, respectively, which means
that the combined design rules has an average safety factor of 79%.

Table 46: Results EC design rules for non-penetrated joints — combination single-sided tension (F), shear F, and shear F,

Model FEA results ECct Ni,rd (Fx) ECc Mip,1,ed (Fy) ECc Mop,1,rd (Fz) Combined RR
B 2y 286 e N/F1eea Ny 1,rd RR Fy,1,rd RR Fz1,rd RR Ny, 1,rea/Ny 1,80 +
(Fy,1,ren/Fy,1,r0)> +
Nx 4471.8 4680  0.956 Fo1rea/Foip
0.8 30 10 838 Fy 9174.1 2503  3.665
Fz 2650.5 1278  2.075 16.463
Nx 3228.0 2788  1.158
0.8 40 10 838 Fy 6762.7 1626  4.160
F2 1887.9 719  2.627 21.087
N 2439.1 1866  1.307
0.8 50 10 838 Fy 5339.9 1163 4.590
Fz 1422.4 460 3.092 25.470
Mean  1.140 Mean  4.138 Mean  2.598 Mean 21.007
Lowest  0.956 Lowest  3.665 Lowest  2.075 Lowest  16.463

Highest  1.307 Highest  4.590 Highest  3.092 Highest  25.470



Table 47: Results design rules for penetrated joints — combination single-sided tension (F), shear F, and shear F,

Model FEA results Pencg Tens. Fx Penc s Shear Fy Penc Shear F, Combined RR
B2y 26 e N/Firen Ny1,pd RR Fy,1rd RR Fa1pd RR Ny, ren/Ny1rd +
(Fy1rea/Fy1pa)% +
Nx 4471.8 7241 0.618 Fo1,7e8/F21,80
0.8 30 10 838 Fy 9174.1 10306  0.890
F. 2650.5 5840 0.454 1.864
Nx 3228.0 5431 0.594
0.8 40 10 838 Fy 6762.7 7730 0.875
F. 1887.9 4380 0.431 1.791
Nx 2439.1 4345  0.561
0.8 50 10 838 Fy 5339.9 6184  0.864
F. 1422.4 3504 0.406 1.713
Mean  0.591 Mean  0.876 Mean  0.430 Mean 1.789
Lowest  0.561 Lowest  0.864 Lowest  0.406 Lowest 1.713
Highest  0.618 Highest  0.890 Highest  0.454 Highest 1.864

5.5.4 Conclusion combined load cases

For penetrated CHS X-joints subjected the a combination of compression/tension (Fx), and shear in the Y- (F,) and
Z- (F;) direction, several checks have been performed. First a check for the load combination shear Fy and shear
F.is performed for the existing EC design rules for non-penetrated joints and the new design rules for penetrated
joints. In a similar way, the checks have been performed for the load combination single-sided tension (Fx), shear
Fy, and shear F..

It can be concluded that the combination rule (Equation 5.38) can be used with both the existing EC design rules
for non-penetrated joints, as well as the new design rules for penetrated joints, to check the design resistance to
the load combination of shear Fy and shear F;, as well as to the load combination single-sided tension (Fx), shear
Fy, and shear F,.

However, for X-joints subjected to a combination of shear Fy and shear F, the existing EC design rules for non-
penetrated joints result in an average RR 22.2, which means that the design rule is very conservative and that the
plastic design resistances could in fact be 22 times as high. Using the design rules for penetrated joints, an average
RR of 1.34 is found, which means that the design rule will result in X-joints with an average overcapacity of 34%.
For the combination of single-sided tension (Fx), shear Fy, and shear F;, the existing EC design rules for non-
penetraetd joints result in average RR of 21.0, which means that the resistances predicted could on average be
21 times higher. Using the new design rules for penetrated joints, an average RR of 1.79 is found, which means
that with the new design rules a significant improvement in the approximation of the true capacity of CHS X-joints
is obtained.



5.6  PENETRATED CHS X-JOINT DESIGN CHECKS

5.6.1 Introduction

To provide a complete overview of the various design checks to be performed, a calculation sheet has been
created that includes the checks for joint, chord and brace failure mechanisms. The sheet from Witteveen+Bos,
which was provided upon the start of this graduation project, has been used as the basis for this calculation sheet.
This sheet contains the design checks for the brace and is, for the purpose of the calculation sheet supplemented
by the design checks for the chord and joint failures. In this paragraph, the calculation sheet and the used design
rules are explained. Furthermore, an extra calculation sheet is created for the casus of the mooring bollard from
Witteveen+Bos, in which eccentricities are allowed for the application point of the imposed loads. The calculation
sheet for penetrated CHS X-joints by which the design resistances for various load combinations are calculated
for a certain geometrical parameter configuration is provided in Appendix G.1 and in Appendix G.2 the calculation
sheet to verify the mooring bollard from Witteveen+Bos model is provided.

5.6.2 Penetrated CHS X-joint calculation sheet

For the computation of the plastic design resistance of a penetrated CHS X-joint, a calculation sheet is created
that is divided into three parts. In the first part, the Design values are calculated, in the second part an overview
of the material and sectional properties is given and in the third part the design checks are executed. Table 48
shows the first part concerning the design values, in which the applied load (Fg4), the eccentricity of the
application point of the force the X-direction with respect to the chord axis (e,), and the chord length (Ly) can be
filled in. Based on these parameters, the load is applied in 5 directions in the horizontal plane (0°, 45°, 90°, 135°
and 180°), and in 3 directions the in vertical plane (m = 0°, t = + 45°, b = -45°), causing the load to be applied to
the brace in fifteen different directions. The applied load is then decomposed into the following axial loads and/or
moments acting on the brace member: axial force (Ngq), shear force in Y- and Z-direction (Vy gq,V;£q), bending
moment about the Z- and Y-axis (M, g4, My £q). Additionally, the sum of the bending moments (XM, , gq), and the
bending moment acting on the chord (My,-q) are calculated and provided.

In the second part “Input material and sectional properties” the yield (f;) and ultimate (f,,) strength, the chord
and brace diameter and wall thickness (do,1, to;1) and the joint properties (n,, 85, and yys) must be filled in. With
these inputs, the material and sectional properties of the chord and brace member and the joint itself are
calculated. For the material properties the yield strength (f,), tensile strength (f,), reduced yield strength for
shear and torsion (f; 1), and partial safety factor MO (yy,) are calculated. For the sectional chord and brace
properties the diameters (dy.;), wall thicknesses (to,1), corrosion depth, effective diameters and wall thicknesses
after reduction for corrosion (d’,t") and diameter over thickness ratio for both members (2y; 28) are given.
Furthermore, the steel class, area (4), shear area (4,), point of gravity, and the mechanical properties, i.e. the
elastic and plastic section modulus (W, Wy,), torsional modulus (Wr), second moment of area (I, ; I,,) and the
polar moment of inertia (I,) are included for both the chord and the brace. To calculate the joint failures, the
properties B, n, and k,,, which takes into account the compression stresses in the chord member, the angle
between the chord and the brace (6;) and partial safety factor M5 (yys) are added.

Table 48: Calculation of the Design values
Design values

Feq 2190 kN ey 0.65 m Lo 518 m

nr Oy oy Neq Vyed Vaed Mz 4 My eq My, Mehord

[ [°] [’ [kN] [kN] [kN] [kNm] [kNm] [kNm] [kNm]
ml 0 0 -2190 0 0 0 0 0 1418
m2 45 0 -1548 0 1548 0 1006 1006 1003
m3 90 0 0 0 2190 0 1423 1423 0
m4 135 0 1548 0 1548 0 1006 1006 1003
m5 180 0 2190 0 0 0 0 0 1418
t1 0 45 -1548 1548 0 1006 0 1006 1003
t2 45 45 -1095 1548 1095 1006 712 1233 709
t3 90 45 0 1548 1548 1006 1006 1423 0
t4 135 45 1095 1548 1095 1006 712 1233 709
t5 180 45 1548 1548 0 1006 0 1006 1003
bl 0 -45 -1548 -1548 0 -1006 0 1006 1003
b2 45 -45 -1095 -1548 1095 -1006 712 1233 709
b3 90 -45 0 -1548 1548 -1006 1006 1423 0
b4 135 -45 1095 -1548 1095 -1006 712 1233 709

b5 180 -45 1548 -1548 0 -1006 0 1006 1003



In the third part of the sheet, named “Design checks” which is shown in Table 49, the calculations for the brace,
chord and joint design resistances are provided. For the calculation of the design resistances to gross cross-section
failures of the chord and brace, the formulas as provided in chapter 6 from the NEN-EN 1993-1-1 are applied. [17]
The resistances of the chord and brace cross-section are checked for the acting normal force (Ngq), Bending
moment (Mgq), Shear force (Vgq), torsional moment (Tgq), combination of torsion and shear (Vyireq).,
combination of bending moment and normal force (My ;) and a combination of bending moment, shear force
and normal force. For the calculation of the gross cross-section resistance of the brace, the torsional moment and
combination of torsional moment and shear have been omitted, since these load combinations are not present
in the brace member.

The normal force can be checked for a tension and compression force, for which in chapter 6.2.3 and 6.2.4 from
the EC is stated that the design value of the normal force (Ng4) must be equal to or smaller than the plastic design
resistance of the gross cross-section (N rqa). The plastic design resistance of the gross cross-section can be
calculated by multiplying the area (A) with the yield strength (f;) divided by the partial safety factor (yuo).

The design resistance check of the bending moment is provided in EC chapter 6.2.5, in which it is stated that the
design value of the bending moment (Mg,;) must be equal to or smaller than the plastic design resistance to a
bending moment (M, rq). The plastic design moment resistance can be calculated by multiplying the plastic
section modulus (wy,;) with the yield strength (f,,) and the division by the partial safety factor (yyo).

The shear force is calculated in the same manner, the design value of the shear force (Vgz4) must be equal to or
smaller than the plastic design shear resistance (Vy;rq), @s provided in chapter 6.2.6. The plastic design shear
resistance can be calculated by multiplying the shear area (4,) by the reduced yield strength for shear and torsion
(fy,r) and dividing it by the partial safety factor (yu,). The shear area for circular hollow sections is two times the
area divided by 7, and the reduced yield strength for shear and torsion can be calculated by dividing the yield
strength (f,) by the square root of 3 (+/3). [18]

Torsion is approached in the same way as shear, as stated in chapter 6.2.7, the torsional design value (Tgq), also
called (M,), must be equal to or less than the torsional design resistance of the cross-section (Tgq). In the
calculation sheet, the torsional design resistance is calculated by multiplying the torsional modulus (Wy) with the
reduced yield strength (f; ;) and dividing it by the partial safety factor (yuo). Where the torsional section modulus
(Wy) equals two times the elastic section modulus (W,,;).

The combined torsional moment and shear force can be checked by dividing the design value of the shear force
(Vgq) by the plastic shear resistance that is reduced due to the effects of the imposed torsional moment (V7 ra),
as provided in EC chapter 6.2.7. For the reduced plastic shear resistance, the NEN-EN 1993-1-1 gives the following
formula:

_ Tt,Ed
Vpir.Ra = [1 - m] * Vpirds (5.40)

where the torsional shear stress (7 g4) is calculated by multiplying the torsional design value (Tg4) with the radius
(r) and dividing that by the polar moment of inertia (I, = 2 - I,,,;) [17]

The combination of a bending moment and an axial force can be checked by dividing the design value of the
bending moment (Mgq4) by My rq, for which, in the NEN-EN 1993-1-1 Dutch national annex [19] the following
formula is given:

My ra = Mpiga * 1,04 % [1 = (Npa/Npira) | (5.41)

Where My, rq is the plastic moment resistance, Ngq the normal force design value and Ny, rq the plastic normal
force design resistance.

For the design check of the interaction between the bending moment, shear force and normal force the Dutch
national annex of the NEN-EN 1993-1-1 [19] gives the following formula:

1,7
Mgq + Nga
1.04 a*Mp| Rd a*Npi Rd

= 10, (5.42)
Yo Yo
where:
VEa 2
q=103+ [1- (72 (5.43)

Where q represents a reduction factor based on the shear force present in the member. [19]



Next to checks for basic cross-section failures, joint failures are checked using the new design rules for penetrated
joints as presented in this research. The design rule “Stress pattern 2b”, as provided in Equation 5.33, is calculate
the design resistance to single-sided tension/compression (Fx), and for the design resistance to shear in the Y-
direction (Fy) and Z-direction (F;), Equation 5.36 and Equation 5.37 are applied, respectively. Finally, Equation
5.38, is used to check the resistance joint failures under combined loads.

From the different chord and brace gross cross-section calculations and the joint failure calculations, the
governing UC is provided as the final line of the calculation sheet.

Table 49: Design checks chord gross cross-section and joint failures

Chord gross cross-section Joint failures
Normal force (article 6.2.3) Chord face failure tension (Fy)
Neg Neg Input (Neq)
Npi,rd f,*A/Ymo Pencirx 1.1* (ko *fyo*to*d1*fs*fg)/sinB1/yms
UCp\ NEd/Np\,Rd fs 1+(50’26)/2OO
fg (sin(0.65*B*m)-B+0.8)
Bending moment (article 6.2.5) UCcrix Ned/Pencix
MEd,resu\tant
Mpird f,*Woi/ymo
UCo Med/Mpird Chord face failure shear F,
Vy,ed1 Input (Vyeq)
Shear force (article 6.2.6) Penciry 3*(ko*f,0*to*d1*do)/(L1*sinB1)/Vwms
VEd,resu\tant V(Vz,Ed2+Vy,Ed2) UCCff,y V\/,Ed/Pencff,y
Tved VEd*Sq rt(3)/Av
Tv,Ed V*S/l*t = VEd*A/Z*agrav/tcalc*z*ly
Vpi,rd Ay Chord face failure shear F,
UCu Ved/Vpird V2Ed 1 Input (V,eq)
Penct, 1.7*(kp*fy0*to*d1*do)/(L1*sinB1)/yms
Torsion (article 6.2.7) UCcriy Vi ed/PeNcir,
Teq Input (My,ed)
Tt ed Tea*r/lp
Tol,rd Wr*f,

UCo Ted/Tpird

Combination of torsion with shear force (article 6.2.7.9)
VoiTRd [1-(teea/fy0) *Voira
UCo Ved/VpiTrd

Combination bending and normal force (article 6.2.9.1)
MEd,resu\tant
M pi,Rd Mo ra*1,04*(1-(Nea/Ncga) ')

Ucp\ MEd,res/M N,pl,Rd

Combination bending, shear and normal force (article 6.2.10) Combination tension (Fy), shear Fyand F,
q 1,03*V(1-(Vea/Veira)?) UC  UCcst(UCctt,y)+UCcr,
UCp Mea/(1,04*(0*Mpira/¥nmo))+(Nea/ (0 * Npira/ Vo))

UCchord gross cross-section U Cjoi nt failures

5.6.3 Combination design rule torsional moment and shear

The calculation sheet is validated by FE simulations for different geometrical parameter configurations and load
cases. In the calculation sheet the maximum plastic design resistance can be derived by making use of the “solver”
function in Excel, which in this case, increases or decreases the applied force till the governing UC equals 1.0. The
plastic design resistances are compared with the plastic capacity obtained from FEA, where in most cases, the
plastic capacity and the corresponding failure mechanisms are approximated quite well.

However, it has also been found that specifically for geometries loaded in shear F; (chord torsional moment), a
failure mechanism appears to be governing that was not taken into account in the parameter study: failing of the
chord member due to a combination of a torsional moment and shear, as described in the NEN-EN 1993-1-8 [2]
article 6.2.7.9. This failure mechanism was not included in the parameter study, as initially the failure mechanism
did not appear to be governing, and the plastic design resistance (Vt,rd) to be calculated, depends on the design
value of the shear force (Vzed), and could therefore not be calculated manually in advance.
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An example of a geometrical parameter configuration where this load combination is governingis p 0.8 — 2y 50 —
26 10. In Figure 51 the Von Mises stresses from Abaqus are shown and in Figure 49 the corresponding load-
displacement graph is given.

In the graph it can be seen that for this geometry, a plastic capacity of 3575 kN is reached. Bases on the principles
for identifying the governing failure mechanism as outlined in Paragraph 4.3, chord face failure was assumed to
be the governing failure mechanism for this geometry during the parameter study. Based on this result, and the
other geometrical configurations failing on chord face failure, the design rules for penetrated joints for CHS X-
joints subjected to shear F; (chord torsional moment) is created, which for this specific geometry predicts a plastic
design resistance of 3628 kN.

When using the calculation sheet, a governing plastic design resistance of 2190 kN is found instead, since also the
design resistance to failure in a combination of a torsional moment and shear is calculated. However, when
comparing this governing plastic design resistance to the true plastic capacity observed in FEA of 3575 kN, it is
concluded that this true capacity is underpredicted significantly by the latter design rule (combination of torsional
moment and shear) and approximated much better by the design resistance calculated with the new design rule
for CFF in shear F..

This comparison has also been performed for all other geometrical parameter configurations evaluated in
Paragraph 5.4.1, from which it is concluded that the combination of a torsional moment and shear (C T+S), is
governing for more parameter configurations, especially for the ones with a higher g factor (0.6 or 0.8), since for
these configurations, the brace and joint capacity are increased significantly due to the increase in brace diameter.
This is illustrated for the parameter configurations with g factor 0.8 in Table 50.

For every geometrical parameter configuration in this table, it is checked whether the combination of torsional
moment and shear would be governing over the failure mechanism that is initially predicted with the set of design
rules for penetrated joints. This is done by calculating what the reduced plastic design resistance to C T+S (Vpl,r,Rd)
according to Equation 5.41 would have been, if the plastic design resistance according to the set of design rules
for penetrated joints, F, g4, would have been applied as Vg4. With Vg4 the torsional moment and corresponding
stress are calculated and these are used to reduce the Vy; rg t0 Vpy 1 ra-

For the parameter configurations for which then the ratio F,gq/Vpirra is above 1.0, marked in Table 50, the
plastic design resistance according to the design rules for penetrated joints can not be reached, since failure due
to a C T+S will occur first. For these parameter configurations, the plastic design resistance for a combination of
a torsional moment and shear is determined, by using the solver function in Excel to adjust the design value (Vgq)
till the UC between this value and the reduced shear resistance (V. rq) becomes 1.0. The resulting value for
Vpir,ra 1S 8iven under “Design resist. 1 CT+S” (in which 1 refers to failure group 1). Additionally, in the last column
of the table, the resistance ratio between the plastic capacity obtained from FEA (F,rz4) and the approximated
plastic design resistance for the failure due to a combination of a torsional moment and shear (V1 rq), is shown.
It can be seen that the failure mechanism “combination of torsional moment and shear” approximates plastic
design resistances with RR’s of 1.19 to 1.69, which means that the calculated plastic design resistances should
have been 19 to 69% higher.



Table 50: Results check combination torsional moment and shear

Check governing failure mechanism Design resist. 1 C T+S
Model FEA Set design rules pen. 1CT+S CT+S RR
F., Failure F,

B 2y 26 (k,F\IE)A mech. (kS; Voltrd (KN)  Fzrd/Verg Voitrd (kN)  Fzeea/ Vpitrd
08 10 10 11467.4 1Bbm 11332.0 | 6412.2 1.77] 9215.5 1.26
0.8 10 30 4165.5 1Bbm 43415 15671.1 0.28
0.8 10 50 2479.8 1Bbm 2676.6 17876.4 0.15
0.8 30 10 5979.6 2Cff 5840.3 650.1 9.30 3549.2 1.68
0.8 30 15 5984.8 2Cff 5840.3 650.1 9.30 3549.2 1.69
08 30 20 5958.8 2Cff 5840.3 650.1 9.30 3549.2 1.68
0.8 30 30 42443 1Bbm 43415 2629.3 1.65 3549.2 1.20
0.8 30 50 2552.9 1Bbm 2676.6 4562.2 0.59
0.8 40 10 4515.2 2Cff 4380.2 624.0 7.27 2708.8 1.67
0.8 40 15 4508.2 2Cff 4380.2 624.0 7.27 2708.8 1.66
0.8 40 20 4477.4 2Cff 4380.2 624.0 7.27 2708.8 1.65
0.8 50 10 3575.7 2Cff 3504.2 564.2 6.43 2189.8 1.63
08 50 15 3604.7 2Cff 3504.2 564.2 6.43 2189.8 1.65
0.8 50 20 3596.0 2 Cff 3504.2 564.2 6.43 2189.8 1.64
0.8 50 30 3551.3 2Cff 3504.2 564.2 6.43 2189.8 1.62
0.8 50 50 2595.7 1Bbm 2676.6 1639.5 1.63 2189.8 1.19

The new design rule “Result factors — Shear F,” for penetrated joint failure is created, fitted and calibrated on the
FEA results from Abaqus and therefore results in plastic design resistances that fit well to the plastic capacity
observed in FEA. However, after the above finding it can be concluded that according to the complete set of
design rules, the combination of a torsional moment and shear is governing for multiple geometrical parameter
configurations. In Table 50 it can, however, be seen that this design rule underpredicts the true plastic capacity
while this capacity is approximated correctly by the new design rule for penetrated chord face failure. It is
therefore stated that this new CFF design rule for penetrated joints subjected to shear F; also captures the
resistances for failure due to a combination of torsional moment and shear and thus eliminates the existing (too
conservative) rule for combined torsional moment and shear.



5.6.4 Case study | Mooring bollard Witteveen+Bos

To be able to check the mooring bollard of Witteveen+Bos, as shown in Figure
52, the calculation sheet has been adjusted to allow for eccentricities in the
Y- and Z-direction (e, =375mm, and e; = 450mm). Due to these eccentricities,
the additional bending and torsional moments are introduced in the joint.
Figure 53 elaborates on the calculation of these additional bending and
torsional moments. Eventually, the following forces & moments that are

acting on the brace, have to be taken into account: Figure 52: Model Witteveen+Bos
- Single-sided tension/compr. (Fx) - Shear Fy (chord bending moment) - Shear F; (chord torsional moment)
- Ned - Vyed - Vzed
- Mzed  (Fxed*ey) - Myxed (Vy,ea*ez) - Myed (Vzea*ey)

- My (Fxea*es)

Fx 650 MY,Ed
Ned
Mz,Ed
F
y 650 Vy,ed
Mx,Ed
F.
6509
Mx,Ed
Vz,Ed

Figure 53: Mechanical scheme and acting forces

The influence of the design values Ngq,Vy gq and V, gq ON the resistance of the bollard to joint failures, is taken
into account in the combination rule for joint failures of penetrated CHS X-joints given in Equation 5.38. However,
for the additional bending and torsional moments (M,, M,,, and M,) acting on the brace member of the mooring
bollard structure, no joint failure design rules are available. Therefore, two alternative methods have been
determined to take into account the stresses caused by them.

The first method takes into account the additional bending moments about the Z- and Y-axis, by dividing the
bending moment by the eccentricity in the X-direction. By doing so, additional forces in the Y- and Z-direction are
obtained (Vy gq, = M,/ex and V, g4, = M, /e,), which can be coped for in the design rules for penetrated joints
subjected to shear Fy and shear F.. These additional forces are added to the initial shear forces Vy,, g4 1, as can be
seen in the formulas in the left part of Table 51. The torsional moment (M,) on the brace, is taken into account
by a bending moment about the X-axis that acts halfway the chord length. The UC for the bending moment on
the chord can be calculated by dividing the acting bending moment (M,,) by the bending moment resistance -
(Mpyra)- The computed value for the UC M, /M, rq, is added to the combination rule, as can be seen at the bottom
of the left part of Table 51. A disadvantage of this method is that for the bending moment about the Z- and Y-axis,
also extra shear forces in Y- and Z-direction are introduced, which in reality do act on the brace member of the
mooring bollard; those forces are in fact merely a byproduct of the way the bending moments M, & M, are
accounted for.

For the second method, the bending moment M, is processed exactly the same as for method one, but now the
same procedure is used for the bending moment about the Z- and Y-axis as well. For bending moment about the
Z-axis, a unity check is computed in a similar way as done for the bending moment about the X-axis; by dividing
the acting bending moment (M,) by the bending moment resistance of the chord (Mp;rq). For the bending
moment about the Y-axis, which acts as a torsional moment on the chord, the unity check is calculated using the
torsional moment resistance of the chord (T, rq) instead of the bending moment resistance. The additional UC’s
for the bending moments M, & M, are included in the combination rule, and, in correspondence to the basic
combination formulas provided in the EC, the square of the UC associated with M, is added to the combination
rule.



Table 51: Design checks — joint failures method 1 & 2

Joint failures method 1

Joint failures method 2

Chord face failure tension (Fy)

Chord face failure tension (Fy)

Neg Input (Neqg) Neg Input (Neq)
Pencirx 1.1*(ko*fy0*to*d1*fs*fg)/sinB1/yms Pencrrx 1.1* (ko *fyo*to*d1*fs*fg)/sinB1/yms
fs 14(50-26)/200 fs 14(50-26)/200
fg (sin(0.65*B*m)-B+0.8) fg (sin(0.65*B*m)-B+0.8)
UCcttx Neo/Penciix UCctrx Nea/Pencirx

Chord face failure shear F, Chord face failure shear Fy

Vyd1 Input (Vy,edq) Vyed Input (Vy,eq)
Vy,ed,2 Fxea*ey/ex Pencsry 3*(kp*fyo*to*d1*do)/(L1*sin61)/vwms
Vy,Ed,tot Vy,Ed,1+Vy,Ed,2 Uccff,y Vy/Ed/Pencﬁ'y
Pencry 3*(kp*fyo*to*d1*do)/(L1*sin61)/yms

UCctty Vy,edtor/PeNctty Chord face failure shear F,

Voed Input (V,,eq)

Chord face failure shear F, Penc, 1.7*(kp*fyo*to*d1*do)/(L1*sinB1)/yms
Vaed1 Input (Vyeq) UCct, Vied/Pencs,
Vaed2 Fxed *es/ex
Vo ed tot Vo ed1+Vaed 2 Chord bending moment M (torsional moment brace)
Pencir, 1.7*(ko*f,0*to*d1*do)/(L1*sinB1)/yms Ted Input (My)

Uchﬂz Vz,Ed,tot/Pencfﬂz Mpl Wpl*f\/o

UCcbmyx  Tea/Mpi
Chord bending moment (torsional moment brace)

Teq Input (My) Chord bending moment M (Fc*ey)
MT,pI,Rd Wp|*fyo Mz,Ed FX,Ed*ey
UCcbm Ted/Mrpird Mol Woi*fyo
UCcbm,: Myed/Mpi
Chord torsional moment My (Fy*e;)
My ed Fxed*e,
Tol,rd Wr*f,
UCCtm,y Mz,Ed/Tp\,Rd
Combination Combination

UC UCcesx+(UCctry)*+UCcr s+UCchbmx UC  UCcxx+(UCctry)+UCct,,+UCcbm,x+(UCcbm,z)*+UCctmy

u Cjoint failures U Cjoint failures

From the breasting dolphin column (chord) and steel arm (brace) of the mooring bollard, a representative FE
model has been set up, which is shown in Figure 53 including its simplified mechanical model. In the FE model the
design values of the load are applied in a force controlled simulation, on a reference point from which, by means
of a constraint, the prescribed loads are transferred to normal forces, shear forces and bending moments on the
brace edge.

From the calculation sheet the governing directions of the resultant force F,.., are identified and the associated
combinations of F, F, and F, have been implemented and simulated in Abaqus. Both the FEA and the calculation
sheet show that the load combination B3 (see Appendix G.2) is governing and fails on the combination of a
torsional moment and shear force that are acting on the brace. With the design rule for C T+S, which is
implemented in the calculation sheet, a plastic design resistance of 797.5 kN is found. While comparing to the
plastic capacity of 901.5 kN that is obtained with FEA, a deviation of about 13% is observed due to some
conservatism in the EC design rule for the combination of a torsional moment and shear.

The UC's for joint failures obtained using either of methods implemented in the calculation sheet, show that joint
failures are not governing for this geometrical configuration of a mooring bollard. Calculation method 1 resulted
in UC of 0.47 (at the moment the plastic design resistance of 797.5 kN due to C T+S is reached), which is higher
than the UC resulting from method 2 with a value of 0.39. This difference in the values of the UC’s is possibly due
to the additional shear forces that are accounted for when applying calculation method 1.



5.7 SUMMARY AND CONCLUSION DESIGN RULES

This section aims to find a suitable design rules for penetrated geometries subjected to single-sided tension &
compression (Fx), shear in the Y-direction (Chord bending moment) and shear in the Z-direction (chord torsional
moment). The results of the parameter study are used to create the new design rules. Additionally, some
additional parameter configurations have been simulated for geometries subjected to shear Fy and shear F;, as
well. The plastic capacity observed in FEA and the geometrical parameters that have influence on them (B, 2y, 26)
have been evaluated. With the existing EC design rules for non-penetrated joints as a basis, and by curve fitting
the influence of the geometrical parameters on the plastic capacity observed in FEA, seven new improved design
rules are created for penetrated CHS X-joints failing due to joint failures (chord face failure).

For geometries subjected to single-sided tension, a start had been made on evaluating the results of penetrated
geometries and the creation of a design rule. But, since for non-penetrated geometries more parameter
configurations were failing in chord face failure, it was straightforward to start with evaluating the performance
of the pre-existing EC design rules for non-penetrated joints in order to create a solid basis from which the new
design rules for penetrated joints could be built on. It is concluded that both the design rule for non-penetrated
X-joints and T-joints subjected to single-sided tension, underestimate the plastic capacity by an average factor of
1.46 or even overpredicts the plastic capacity for certain situations. Therefore, an improved design rule for X-
joints is suggested that will lead to significant improvement in the approximation of the true plastic capacity of
the non-penetrated CHS joints. This design rule is provided in Equation 5.26 and leads to an average RR of 1.12.

The process of creating a design rule for penetrated CHS X-joints subjected to single-sided tension (Fy) is started
with the knowledge gained from evaluating the non-penetrated CHS X-joints and their design rules. From the
parameter study, it had already been concluded that the plastic capacity of penetrated joints are underestimated
significantly by the existing EC design rules for non-penetrated X- and T-joints, as is confirmed by their average
RR of 3.32 and 2.45, respectively.

To create a suitable design rule, several steps have been taken which have eventually resulted in two improved
versions of the existing design rules, and five alternative design rules. Three of the latter are considered to be a
suitable design rule for the determination of the plastic design resistance of penetrated CHS X-joints subjected to
single-sided loadings. Two of them are based on the stress pattern observed in FEA and the other one is based on
the influences of the parameter factors on the plastic capacity. Although this latter design rule “Result factors”, is
easier to interpret and can be deduced more clearly from the applied geometrical parameters, this design rule
predicts design resistances that deviate more from the observed plastic capacity and therefore, based on the
RR’s, it is proposed to use the design rule “Stress Pattern 2b” , provided in Equation 5.33, for calculating the plastic
design resistance of penetrated CHS X-joints subjected to single-sided tension (Fx). For this design rule an average,
lowest and highest RR of 1.09, 0.94, and 1.34, respectively, are obtained.

To check whether the existing EC design rules for non-penetrated joints and the new design rules for penetrated
joints predict the failure mechanism well, a verification of the failure mechanisms and approximated plastic design
resistances is done, which is provided in paragraph 5.2.2.2. For the verification of the new design rules for
penetrated joints, the design rule “Stress pattern 2b” is included in a set of design rules. It can be seen that by
including the new design rule for penetrated joints in the design set, the failure mechanism observed in FEA is
also identified more often as the governing failure mechanism according to the set of design rules, as was done
while using the existing EC design rules for non-penetrated joints. Furthermore, it is observed that for the
geometries failing in chord face failure, the plastic design resistances obtained with the new design rules for
penetrated joints deviate significantly less from the plastic capacity obtained with FEA than the resistances of the
pre-existing EC design rules did.

As the three above mentioned design rules were created and fitted on the FEA results obtained for joints
subjected to single-sided tension, their application to penetrated CHS X-joints subjected to single-sided
compression (Fx) is verified explicitly. For the calculated parameter configurations, an average, lowest and highest
RR is achieved with “stress pattern 2a” of 1.06, 0.97, and 1.15, with “stress pattern 2b” of 1.03, 0.95, and 1.12,
respectively, and with “result factors” of 0.97, 0.87, and 1.06, respectively, from which it can be concluded that
the two design rules based on the stress patterns are suitable for the approximation of the plastic capacity in
single-sided compression as well.



Furthermore, the reduction factor k,, that is prescribed in the EC for the reduction of the plastic capacity because
of the pre-existing compression stresses in the chord member, due to an initial bending moment or compression
force, is evaluated for the CHS X-joints subjected to single-sided compression, as it is known to have a significant
influence for this load case. It is concluded that applying the k,, factor, causes the average RR to increase from
1.03 to 1.50, making the design rule unnecessarily conservative. It is therefore decided to still include k, in the
new design rules for penetrated joints, but set its value to 1.0 for the remaining of this research. Some additional
follow-up research is however recommended to identify the importance of k.

Next, CHS X-joints subjected to shear in the Y- and Z-direction are researched, for which the same design principles
and steps are applied to arrive at a new suitable design rule. For both load cases, additional simulations are
performed to obtain more results based on which the design rule could be created, fitted and calibrated. First the
performance of the existing EC design rules for non-penetrated joints is evaluated, for which an average value of
RR is found to be 5.6 for shear Fy and 7.86 for shear F;, indicating the design rules to be very conservative. Next,
the earlier discussed design rule “Result factors” is fitted on the plastic capacity obtained for joints subjected to
either force in Y- or Z-direction. Additionally, the influence of the eccentricity of the shear force with respect to
the chord axis is taken into account. Resulting in the design rule for geometries subjected to shear Fy as provided
in Equation 5.36 with an average, lowest and highest RR of 1.05, 1.02, and 1.09, respectively and the design rule
for geometries subjected to shear F; as provided in Equation 5.37 with an average, lowest and highest RR of 1.04,
1.01 and 1.10, respectively.

Lastly, the applicability of the new design rules for penetrated joints for combined joint failures is analyzed using
the combination rule as provided in the EC. First the combination of shear Fy and shear F; is analyzed and lastly a
check is performed for the combination of single-sided tension (Fx), shear Fy and shear F.. To perform this check,
the combination rule from the EC is converted into a combined Resistance Ratio (RR) for which the formula is
provided in Equation 5.39. The new design rules for penetrated joints approximate the plastic capacity of joints
failing due to a combination of shear F, and shear F, with an average RR of 1.34, and joints failing due to a
combination of single-sided tension (Fx), shear Fy and shear F, with an average RR of 1.79. Which means that with
the combination of the new design rules for penetrated joints significantly higher design resistances can be
obtained, compared to the existing EC design rules for non-penetrated joints and their corresponding RR’s of 22.2
and 21.0. While at the same time, the new rule does not lead to an overprediction of the plastic capacity of joints
failing in chord face failure under combined loadings, and an average safety of 34 and 79% is maintained on the
design resistance.

To create a complete overview of the various design checks to be performed for penetrated CHS X-joints, a
calculation sheet has been created that includes all unity checks for the relevant joint, chord and brace failure
mechanisms. In the calculation sheet, the design value of the applied force, the geometrical and the material
properties of the joint can be filled in, from which the plastic design resistances to basic cross-section failures of
the brace and the chord, joint failures single-sided tension (Fx), shear Fy, shear F; and a combination of these three
joint failures is computed. This is done for 15 different load directions of the design force Fed.

The results from the calculation sheet are verified using FEA. For most simulations, corresponding failure
mechanisms and plastic design resistances with merely small deviations from the FEA plastic capacity were
observed, except for joints for which the shear F; was dominating.

It seems that, e.g. the plastic design resistance for the combination of a torsional moment and shear on the chord
member, 2190 kN, governs over the design resistance obtained with the new design rule for chord face failure
(F2), 3628 kN, while in FEA in fact a plastic capacity of 3575 kN is observed for failure due to this last mechanism.
The new penetrated chord face failure design rule for geometries subjected in shear F; is thus resulting in the
correct plastic design resistance, however, due to conservatism of the combination design rule of a torsional
moment and shear, this last failure mechanism is falsly governing according to the calculation sheet. It is evaluated
for which parameter configurations subjected to shear F, this issue arises. It seems that for multiple geometries
with a relatively large brace compared to their chord, i.e. with g factors of 0.6 and 0.8, the combination of
torsional moment and shear becomes governing and the plastic design resistance approximated with the set of



design rules becomes conservative with RR for the simulated geometries up to 1.70. It is concluded that the joint
failure design rule for shear F; underpredicts the true plastic capacity of these joints while their actual capacity
are approximated correctly by the new design rule for penetrated chord face failure. It is therefore stated that
this new CFF design rule for penetrated joints subjected to shear F; also captures the resistances for failure due
to a combination of torsional moment and shear and thus eliminates the existing (too conservative) rule for
combined torsional moment and shear.

A case study has been done on the mooring bollard from Witteveen+Bos, for which the calculation sheet has been
slightly adjusted to allow for eccentricities of the load application in Y- and Z-direction. The eccentricities cause
additional bending and torsional moments, for which no joint failure design rules are readily available. Therefore,
two alternative methods are applied to take into account the additional bending and torsional moments for the
calculation of the joint failure. In the first method, the bending moments about the Z- and Y-axis are converted to
shear forces in the Y- and Z-direction that are added to the shear forces initially acting on the brace. To take into
account the torsional moment My on the brace, the unity check for the bending moment resistance of the chord
member has been added to the combination rule. For the second method, next to the UCcbmyx, also the unity
check’s for the resistance to a bending moment about the Z-, and a torsional moment about the Y-axis on the
chord member, are included in the combination rule.

From the results of the calculation sheet, it can be concluded that joint failures are not governing for the mooring
bollard structure and that the bollard is failing on a combination of a torsional moment and shear. For this load
combination, a plastic design resistance of 797.5 kN is found using the calculation sheet, which deviates
approximatel 13% from the plastic capacity of 901.5 kN as observed in FEA.

The first method for processing the additional bending moments resulted in a UC of 0.47 (at the moment the
plastic design resistance of 797.5 kN due to C T+S is reached), which is higher than the UC resulting from the
second processing method, 0.39. This difference in the values of the UC’s is possibly due to the additional shear
forces that are accounted for when applying calculation method 1.

It has thus been observed that the statement concerning the elimination of the existing (too conservative) rule
for combined torsional moment and shear, as outlined in Paragraph 5.6.3, does not hold for penetrated CHS X-
joints to which the load is applied with a certain eccentricity with respect to the Y- and/or Z-axis. For these joints,
the existing design rule for a combination of a torsional moment and shear could indeed be governing, and the a
correct plastic design resistance can be calculated with the design rule, albeit with some conservativeness.

Based on this case study, Witteveen+Bos can be advised to check more directions for application of the design
force and, though joint failures may not be governing for the mooring bollard, the new design rules for joint
failures of penetrated CHS X-joints could be included in their calculation sheet, to provide some extra insights into
the behavior of the structure and to exclude the chance joint failures are governing as failure mechanism. The
parameter study showed that this latter may be the case for relatively large brace members with a substantial
wall thickness, in combination with chord member with a smaller wall thickness.

To be able to fully use the joint failure checks, additional research into the processing methods of the bending
and torsional moments caused by the eccentricities should be performed.
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6 CONCLUSION & RECOMMENDATION

6.1 CONCLUSIONS

In this research, the focus was to gain insight into and predicting the behavior of penetrated CHS X-joints.
Analogous to studies into branched plate-structural hollow sections and the behavior of their penetrated
equivalents, in this study, the behavior of penetrated CHS X-joints and the behavior of their non-penetrated
equivalent, are evaluated and compared. For this purpose a finite element model is created using a python script.
The script is imported in the FE software ABAQUS, which is used to perform a geometrical and material non-linear
FE analysis. An elastic-plastic material model with linear strain hardening, as provided in EC EN 1993-1-5 is
adopted within this research and the Von Mises yield criterion is used to evaluate when the geometry starts
yielding and to determine the corresponding plastic capacity.

In the parameter study, the load case, B, 2y, and 26 are varied for penetrated, as well as for non-penetrated, CHS
X-joints. Initially, only the boundary values of the geometrical parameters are simulated to identify the critical
areas for which joint failures may be governing, and based on these results, additional parameter configurations
have been evaluated using FEA. The parameter study is performed for the load cases “Double-sided compression
and tension (Fx)”, “Single-sided compression and tension (Fx)”, “Bending moment about the Y-axis (My)”, “Bending
moment about the Z-axis (Mz)”, “Shear Fy(chord bending moment)”, and “Shear Fz(chord torsional moment)”.

From the parameter study, it can be concluded that for the penetrated geometries subjected to double-sided
compression and tension (Fx), and bending moment about the Y- (My) and Z- (M) axis, the plastic capacity can be
approximated with the basic cross-section design rules from the EC. Therefore, no new design rules are required
and the existing joint failure design rules for non-penetrated geometries, which are chord face failure and
punching shear failure, can be omitted in the calculation of the joint capacity for penetrated geometries. For the
penetrated geometries that fail in basic cross-section failure, instead of chord face failure as their non-penetrated
equivalents do, a plastic capacity of 1.25 till 35.8, and 1.21 till 12.1 times the plastic capacity of their non-
penetrated equivalent is observed, for the load cases double-sided compression & tension (Fx) and bending
moment about the Y- (My) & Z- (M) axis, respectively. Their correct plastic design resistances can be calculated
with the already available design rules for basic cross section failures.

However, several geometries with penetrated braces subjected to single-sided compression and tension (Fx),
shear Fy (chord bending moment), and shear F:(chord torsional moment), fail in chord face failure for which the
correct plastic design resistance can not be predicted correctly with existing design rules. Comparing the plastic
capacity obtained in FEA from the penetrated geometries that fail in chord face failure, with the calculated design
resistances obtained with the existing EC design rules for non-penetrated joints, i.e. evaluating the resistance
ratio’s (RR), an increase in plastic capacity can be observed for:

- single-sided compression and tension (Fx), of 1.69 till 4.97 times the EC plastic design resistance;

- shear Fy(chord bending moment), of 4.46 till 7.49 times the EC plastic design resistance;

- shear Fz(chord torsional moment), of 4.68 till 11.9 times the EC plastic design resistance.
Moreover, for the penetrated geometries that fail in basic cross-section failures under tension & compression
(Fx), shear Fyand shear F;, an increase of the plastic capacity is observed in FEA by a factor 1.04 till 3.15, 1.30 till
6.30, and 1.09 till 9.81 with respect to their non-penetrated equivalents that fail in chord face failure, respectively.
Due to these significant increases in capacity of the penetrated joints with respect to their non-penetrated
equivalents and the inaccurate prediction of these capacity by the existing EC design rules, new design rules for
penetrated joints that fit the plastic capacity from FEA are recommended for these three load combinations (Fy,
Fyand Fz).

To create design rules for penetrated joints for these three load combinations, the plastic capacity observed in
FEA and the geometrical parameters that have an influence on them (B, 2y, 26) have been evaluated. With the
existing EC design rules for non-penetrated joints as a basis, and by curve fitting the influence of the geometrical
parameters on the plastic capacity observed in FEA, several improved and new design rules are created.



For the non-penetrated geometries subjected to single-sided tension (Fx) that fail in chord face failure, it is
concluded that the EC design rules for X- and T-joints, do not approximate their plastic capacity very well.
Therefore, an improved X-joint design rule is created, based on curve fitting of the plastic design resistance to the
plastic capacity, as given in Table 52 Equation 6.44. This led to an improvement in the approximation of the plastic
capacity observed in FEA by the calculated plastic design resistance, as appears from the average RR that has
become 1.12 (and was 1.46 for the existing EC design rule for X-joints failing in chord face failure).

Table 52: Improved EC design rules for non-penetrated joints
Improved EC design rule “chord face failure” for non-penetrated joints — single-sided axial load (Fx)
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With the knowledge gained while evaluating the non-penetrated CHS X-joints and their design rules, the process
of creating design rules for penetrated CHS X-joints subjected to single-sided tension (Fx) is started. The two
existing EC design rules for non-penetrated joints are evaluated and two improvements are provided on these
design rules. Additionally, 5 alternative design rules are created of which four are based on the stress pattern
observed in the FEA results and the last one is based on the influences of the parameter factors on the plastic
capacity. From the obtained design rules, “Stress pattern 2b” approximates the FEA plastic capacity best, with an
average, lowest and highest RR of 1.09, 0.94, and 1.34, respectively. This design rule can also used for penetrated
CHS X-joints subjected to single-sided compression (Fx), resulting in an average RR of 1.06. For both load cases
the RR values indicate that the design rule approximates the joint capacity well, and therefore, the design rule
“Stress pattern 2b”, as given in Table 53 Equation 6.45, is proposed as the design rule for penetrated CHS X-joints
subjected to single-sided compression and tension (Fx).

For the design rules of penetrated CHS X-joints subjected to shear in the Y- and Z-direction, the design rule “Result
factors” from geometries subjected to single-sided tension (Fx) is taken and fitted on the plastic capacity obtained
for joints subjected to either a force in Y- or Z-direction. Additionally, the influence of the eccentricity of the shear
force with respect to the chord axis is taken into account. With these steps the design rules “Result factors —shear
Fy”, as given in Equation 6.46, and “Result factors — shear F,”, as given in Equation 6.47, are created. The plastic
design resistance obtained with these two design rules approximate the true plastic capacity of the joints
accurately, as follows from the average, lowest and highest RR of 1.05, 1.02, and 1.09, for shear Fy, and 1.04, 1.01
and 1.10, respectively.

Lastly, the applicability of the new design rules for penetrated joints for combined joint failures is analyzed using
the combined Resistance Ratio (RR) that is based on the EC combination rule and for which the formula is provided
in Equation 5.39. First the performance of the design rules for penetrated joints for a load combination of shear
Fyand shear F;is analyzed, which resulted in an average RR of 1.34 in cases for which joint failures were governing.
Next to that, the check is performed for the combination of single-sided tension (Fx), shear Fy and shear F;, where
with the design rules for penetrated joints an average RR of 1.79 if found. From this it follows that the new design
rules for penetrated joints can also be applied for calculation the plastic design resistance to joint failures under
combined loadings.

A complete overview of the various design checks to be performed for penetrated CHS X-joints has been captured
in a calculation sheet that includes all unity checks for the relevant joint, chord and brace failure mechanisms.

In this calculation sheet, the plastic design resistances to basic cross-section failures of the brace and the chord,
joint failures single-sided tension (Fx), shear Fy, shear F; and a combination of these three joint failures is computed
for 15 different load directions of a given design force Feq.



From the sheet and the corresponding FEA is concluded that the new design rules for penetrated joints
approximate the plastic capacity well. However, for some geometrical parameter configurations subjected to
shear F;, the design rule for the combination of a torsional moment and shear is due to its conservatism,
incorrectly governing over the joint failures. This issue arises specifically for several geometries with a relatively
large brace compared to their chord (8 0.6 / 0.8). It is concluded that the C T+S design rule underpredicts the true
plastic capacity of these joints for shear F;, while their actual capacity are approximated correctly by the new
design rule for penetrated chord face failure. It is therefore stated that this new CFF design rule for penetrated
joints subjected to shear F; also captures the resistances for failure due to a combination of torsional moment
and shear and thus eliminates the existing (too conservative) rule for combined torsional moment and shear.

From this graduation research, it is concluded that the pre-existing design rules for joint failures of non-
penetrated CHS joints are not suitable for calculation of the design resistance to joint failures of penetrated CHS
X-joints. For CHS X-joints subjected to double-sided compression and tension (Fx) and bending moment about the
Y- (My) and Z- (M,) axis, the plastic capacity can be approximated well with the current basic cross-section design
rules from the EC, however, the EC design rules for joint failures of non-penetrated CHS X-joints should be omitted
to approximate the true plastic capacity correctly. For penetrated CHS X-joints subjected to single-sided
compression and tension (Fx), shear Fy and shear F;, the plastic design resistance to joint failures can be calculated
with Equation 6.45, 6.46 and 6.47.

Table 53: Penetrated CHS X-joint design rules
Single-sided axial load (Fx) — design rule “stress pattern 2b” for penetrated joints
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6.2 RECOMMENDATIONS

In this graduation research, a clear and uniform set of design rules that can be used for the calculation of joint
failures of penetrated CHS X-joints was aimed for. Although it resulted in three clear new design rules, as
presented in the previous paragraph. Several recommendations are done for follow-up research.

To create the new design rules, a parameter study has been carried out for penetrated CHS X-joints subjected to
multiple load cases, however no research was conducted into the load case “Bending moment about the X-axis
(My)”, and it is recommended to investigate this load case as well.

Next to that, for the load cases bending moment about the Y- and Z-axis, all penetrated geometrical parameter
configurations fail in brace bending moment. The plastic capacity related to this failure mechanism can be
approximated well with the current EC design rules and therefore, it was concluded that no additional design
rules are required for this load case. However, for the prediction of the joint capacity subjected to a combination
of loads, the influence of the bending moment needs to be taken into account, which is not possible with the
current set of design rules. It is recommended to investigate the possibilities to implement the stresses from
bending moments in the various directions within the combination rule of the different load cases. Two processing
methods have been proposed for this in the case study to the mooring bollard from Witteveen+Bos.

In both methods, the torsional moment My is accounted for by adding the UC for the bending moment resistance
of the chord member to the combination rule. The bending moments about the Z- and Y-axis are in the first
method converted to shear forces in the Y- and Z-direction that are added to the shear forces what were already
acting on the brace, and for the second method, the UC’s from basic cross-section moment resistances (bending
and torsional for M; and My respectively) are added to the combination rule. A disadvantage of the first method
is that, due to the way the bending moments are converted to shear forces, extra shear forces in the Y- and Z-
direction are included within the design check. The two proposed methods, therefore, need to be checked and
validated, and when they do not satifsy, additional research needs to be performed into the way the stresses
resulting from additional bending moments, should be accounted for.

In the design rules presented in Table 53, the factor ky is applied, which is prescribed in the EC to reduce the
plastic capacity of the CHS joint when the chord member is subjected to compression or a bending moment. It is
concluded that applying the k, factor, causes the average RR to increase from 1.03 to 1.50, making the design
rule unnecessarily conservative. Itis therefore decided to include k, in the new design rules for penetrated joints,
but setits value to 1.0 for the remaining of the research. Additional follow-up research is recommended to identify
the importance, verify the formulation and application of the reduction factor k,,.

Besides, the new design rules for penetrated CHS X-joints need to be evaluated and verified by experimental tests,
since the design rules are only calibrated on FEA. Next to that, additional research must confirm whether the
design rule can also be applied to other steel strengths, as in this study, only circulas hollow sections with steel
strength S355 are evaluated. As a follow-up step, the material model could be extended by the integration of
damage in the FEA. Damage and crack initiation in regions with peak stresses can then be taken into account for
the plastic capacity allowing the failure mechanism to be described in more detail. Also the influence of the weld,
which in this study is omitted and is the subject of a separate graduation research, should be evaluated and when
needed, taken into account. Obviously, the new design rules should also be further evaluated on, e.g. their
reliability and the required safety factors, before they may be included in a publiced code or guideline.

Furthermore, some issues concerning the EC design rule for the combination of a torsional moment and a shear
force, are elaborated in Paragraph 5.7. To conclude, it has been observed that when a combination of loads is
imposed directly on the brace the existing rule for combined torsional moment and shear is too conservative and
should be omitted (Paragraph 5.6.3), while a combination of loads that is applied to the brace with a certain
eccentricity in the Y- and/or Z-axis, this design rule is governing and may therefore certainly not be omitted.
Further research into these issues is necessary.



Engineering firms working with penetrated CHS X-joints in mooring bollard structures, are advised to ensure that
they include a sufficient amount of directions of the design force in their calculation sheet and, though joint
failures may not be governing for the mooring bollard, the new design rules for joint failures of penetrated CHS
X-joints could be included as well, to provide some extra insights into the behavior of the structure and to ensure
joint failures are not governing for the mooring bollards. The parameter study showed that this latter could be
the case for relatively large brace members with a substantial wall thickness, in combination with a chord member
with a smaller wall thickness.

In this research, differences have been observed in the behavior of CHS X-joints between penetrated and non-
penetrated geometries, and therefore, a new set of design rules for penetrated CHS X-joints is proposed, to
ensure the plastic capacity of these joints is no longer underestimated as was the case with the existing EC design
rules for non-penetrated joints. Although several recommendations need to be explored in extensive follow-up
research, this research may have already laid a good foundation for future guidelines and increased the insight in
the behavior of penetrated CHS X-joints significantly.
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APPENDICES

A. PYTHON SCRIPT

The below provided script is created as a basic script for penetrated CHS X-joints subjected to single-sided
compression and tension (Fx), where for compression a displacement of -100 mm is applied and for tension a
displacement of 150 mm. Using 4 for loops, the geometrical parameters are varied between g = (0.2; 0.4; 0.6; 0.8),
2y = (10;30;50), 26 = (10;30; 50). For the above mentioned load case and geometries, 72 (2*4*3*3) models are
generated that and analysed in Abaqus and the results are plotted in an Excel sheets. For the scripts for the
analysis of the non-penetrated geometries as well as the scripts for the other load cases, merely small adaptions
have been made. Therefore only the basic script is provided in this appendix.

1 # —-*- coding: mbcs -*-
2 from part import *
from material import *
4 from section import *

w

5 from assembly import *

6 from step import *

/ from interaction import *
8 from load import *

9 from mesh import *

from optimization import *
from job import *

from sketch import *

from visualization import *
from connectorBehavior import *
import os

import sys

import csv

import odbAccess

import math

import numpy as np

import xlsxwriter

def cosd (angle):

cosine = math.cos((angle)*math.pi/180)
: return cosine
26 def sind (angle):

277 sine = math.sin((angle)*math.pi/180)
28 return sine

session.journalOptions.setValues (replayGeometry=COORDINATE, recoverGeometry=COORDINATE)

for beta in [0.2, 0.4, 0.6, 0.8]:
for gamma in [10.0, 30.0, 50.0]:
for delta in [10.0, 30.0, 50.0]:
for UlR in [-100, 150]:

#parameters
Mesh = 4
Alpha = 12
40 Beta = beta

41 Gamma = gamma
42 Delta = delta
43 BoundaryCondition = "EncastreBC"

do = 762.0

t0 = (d0/Gamma)

r0 = (d0-t0)/2

dl = (dO*Beta)

tl = (dl1/Delta)

rl = (dl-tl)/2

L0 = (Alpha/2*d0+dl)
Ll = (8*d1+d0)

#Directiory
VNamel=str (int (Beta*10))
VName2=str (int (Gamma) )
VName3=str (int(Delta))
VName4=(U1R)

59 Filename=('Pen BO'+'{0}'+' G'+'{1}'+' D'+'{2}'+' U'+'{3}').format(VNamel,
VName?2, VName3, VName4)
60 Loadpath="C:\\Temp\\Simplified model\\2 Pen - Single-sided d\\{0}".

format (Filename)
if not os.path.exists(Loadpath) :
os.makedirs (Loadpath)
os.chdir (Loadpath)
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#Model
myModel=mdb.Model (name="Model-"+'{0}'.format(Filename))

#GEOMETRY
myModel.ConstrainedSketch (name=' profile ', sheetSize=200.0)

myModel.sketches[' profile '].CircleByCenterPerimeter (center=(0.0, 0.0),

pointl=((x0), 0.0))

myModel.Part (dimensionality=THREE D, name='Chord', type=DEFORMABLE_ BODY)

myModel.parts['Chord'] .BaseShellExtrude (depth=(L0), sketch=myModel.
sketches[' profile '])

myModel.ConstrainedSketch (name=' profile ', sheetSize=200.0)

myModel.sketches[' profile '].CircleByCenterPerimeter (center=(0.0, 0.0),
pointl=((rl), 0.0))

myModel.Part (dimensionality=THREE D, name='Brace',6 type=DEFORMABLE BODY)

myModel.parts['Brace'].BaseShellExtrude (depth=(L1) , sketch=myModel.
sketches[' profile 1)

#Assembly

myRoot=myModel.rootAssembly

myRoot.DatumCsysByDefault (CARTESIAN)

myRoot.Instance (dependent=0N, name='Chord-1"', part=myModel.parts['Chord'])
myRoot.Instance (dependent=0ON, name='Brace-1', part=myModel.parts['Brace'])

#Translation
myRoot.rotate (angle=90.0, axisDirection=(-r0, 0.0, 0.0), axisPoint=(x0,
0.0, 0.0), instancelList=('Chord-1", ))
myRoot.translate (instanceList=('Chord-1', ), vector=(0.0, -(L0/2), 0.0))
myRoot.rotate (angle=90.0, axisDirection=(0.0, -LO, 0.0), axisPoint=(0.0,
L0, 0.0), instancelList=('Brace-1', ))
myRoot.translate(instancelList=('Brace-1', ), vector=((L1/2), 0.0, 0.0))

#Merge and cut

myRoot.InstanceFromBooleanMerge (domain=GEOMETRY, instances=(myRoot.
instances['Chord-1"], myRoot.instances['Brace-1']), keepIntersections=
ON, name='Joint', originalInstances=SUPPRESS)

myPart=myModel.parts['Joint']

myPart.RemoveFaces (deleteCells=False, facelist=(myPart.faces.findAt ((x0, O
;0. )0 ))

myPart.RemoveFaces (deleteCells=False, facelist=(myPart.faces.findAt((-x0,

0, 0, ), )

#Material

myModel .Material (name='Steel')

myModel.materials['Steel '] .Elastic(table=((210000.0, 0.3), ))

myModel.materials['Steel'].Plastic(table=((355.0, 0.0), (490.0, 0.06585),
))

#Section

myModel.HomogeneousShellSection(idealization=NO IDEALIZATION,
integrationRule=SIMPSON, material='Steel', name='Csec', numIntPts=5,
poissonDefinition=DEFAULT, prelntegrate=OFF, temperature=GRADIENT,
thickness=(t0), thicknessField='"', thicknessModulus=None,
thicknessType=UNIFORM, useDensity=0FF)

myModel.HomogeneousShellSection(idealization=NO IDEALIZATION,
integrationRule=SIMPSON, material='Steel', name='Bsec', numIntPts=5,
poissonDefinition=DEFAULT, prelntegrate=0OFF, temperature=GRADIENT,
thickness=(tl), thicknessField='"', thicknessModulus=None,
thicknessType=UNIFORM, useDensity=O0FF)

#SectionAssignment

myPart.Set (faces=myPart.faces.findAt (((0, 0, r0), )), name='Cset')

myPart.SectionAssignment (offset=0.0, offsetField='"', offsetType=
MIDDLE_ SURFACE, region=myPart.sets['Cset'], sectionName='Csec',
thicknessAssignment=FROM_ SECTION)

myPart.Set (faces=myPart.faces.findAt (((0, rl, 0), ), ((xO+rl, rl1, 0), ),
((-(xO+rl), rl, 0), )), name='Bset')

myPart.SectionAssignment (offset=0.0, offsetField='"', offsetType=
MIDDLE_ SURFACE, region=myPart.sets['Bset'], sectionName='Esec',
thicknessAssignment=FROM_ SECTION)

#Planes

myPart.DatumAxisByPrincipalAxis (principalAxis=XAXIS) #6
myPart.DatumAxisByPrincipalAxis(principalAxis=YAXIS) #7
myPart.DatumAxisByPrincipalAxis (principalAxis=ZAXIS) #8

myPart.DatumPlaneByPrincipalPlane (offset=0.0, principalPlane=XYPLANE) #9
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myPart.DatumPlaneByPrincipalPlane (offset=0.0, principalPlane=YZPLANE) #10
myPart.DatumPlaneByPrincipalPlane (offset=0.0, principalPlane=XZPLANE) #11

# Offset XZ and XY
C offl (rO*2*math.pi/4)
C off3 = (rl1+5*r0)
C off2 = (C_offl+C off3)/2
B off0 = (r0-(1.8-Beta)*rl)
B offl = (r0+1.5*%(1.8-Beta)*rl)
B off3 = (r0+5*rl)
B off2 = (B_offl+B off3)/2

#X7

myPart.DatumPlaneByPrincipalPlane (offset=C_offl, principalPlane=XZPLANE)
#12

myPart.DatumPlaneByPrincipalPlane (offset=C_off2, principalPlane=XZPLANE)
#13

myPart.DatumPlaneByPrincipalPlane (offset=C off3, principalPlane=XZPLANE)
#14

myPart.DatumPlaneByPrincipalPlane (offset=-C _offl, principalPlane=XZPLANE)
#15

myPart.DatumPlaneByPrincipalPlane (offset=-C off2, principalPlane=XZPLANE)
#16

myPart.DatumPlaneByPrincipalPlane (offset=-C off3, principalPlane=XZPLANE)
#17
#YZ

myPart.DatumPlaneByPrincipalPlane (offset=B off0, principalPlane=YZPLANE)
#18

myPart.DatumPlaneByPrincipalPlane (offset=B offl, principalPlane=YZPLANE)
#19

myPart.DatumPlaneByPrincipalPlane (offset=B off2, principalPlane=YZPLANE)
#20

myPart.DatumPlaneByPrincipalPlane (offset=B off3, principalPlane=YZPLANE)
#21

myPart.DatumPlaneByPrincipalPlane (offset=-B off0, principalPlane=YZPLANE)
#22

myPart.DatumPlaneByPrincipalPlane (offset=-B offl, principalPlane=YZPLANE)
#23

myPart.DatumPlaneByPrincipalPlane (offset=-B off2, principalPlane=YZPLANE)
#24

myPart.DatumPlaneByPrincipalPlane (offset=-B off3, principalPlane=YZPLANE)
#25

#rotation X

myPart.DatumPlaneByRotation(angle=45, axis=myPart.datums[6], plane=myPart.
datums[11]) #26

myPart.DatumPlaneByRotation(angle=-45, axis=myPart.datums[6], plane=myPart
.datums[11]) #27

#PartitionFaceByDatumPlane
#X7
myPart.PartitionFaceByDatumPlane (datumPlane=myPart.datums[14], faces=
myPart.faces.findAt (((0, 0, (x0)), )))
myPart.PartitionFaceByDatumPlane (datumPlane=myPart.datums[13], faces=
myPart.faces.findAt (((0, 0, (x0)), )))
myPart.PartitionFaceByDatumPlane (datumPlane=myPart.datums[12], faces=
myPart.faces.findAt (((0, 0, (x0)), )))
myPart.PartitionFaceByDatumPlane (datumPlane=myPart.datums[17], faces=
myPart.faces.findAt (((0, 0, (x0)), )))
myPart.PartitionFaceByDatumPlane (datumPlane=myPart.datums[16], faces=
myPart.faces.findAt (((0, 0, (x0)), )))
myPart.PartitionFaceByDatumPlane (datumPlane=myPart.datums[15], faces=
myPart.faces.findAt (((0, 0, (x0)), )))

#YZ
myPart.PartitionFaceByDatumPlane (datumPlane=myPart.datums[21], faces=
myPart.faces.findAt ((((x0), 0, (rl)), )))
myPart.PartitionFaceByDatumPlane (datumPlane=myPart.datums[20], faces=
myPart.faces.findAt ((((x0), 0, (xl)), )))
myPart.PartitionFaceByDatumPlane (datumPlane=myPart.datums[19], faces=
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myPart.faces.findAt ((((x0), 0, (xl)), )))
myPart.PartitionFaceByDatumPlane (datumPlane=myPart.datums[25], faces=
myPart.faces.findAt (((-(x0), 0, (rl)), )))
myPart.PartitionFaceByDatumPlane (datumPlane=myPart.datums[24], faces=
myPart.faces.findAt (((-(x0), 0, (rl)), )))
myPart.PartitionFaceByDatumPlane (datumPlane=myPart.datums[23], faces=
myPart.faces.findAt (((-(x0), 0, (rl)), )))
myPart.PartitionFaceByDatumPlane (datumPlane=myPart.datums[18], faces=
myPart.faces.findAt (((0, 0, (rl)), )))
myPart.PartitionFaceByDatumPlane (datumPlane=myPart.datums[22], faces=
myPart.faces.findAt (((0, 0, (rl)), )))

#X7Z chord
myPart.PartitionFaceByDatumPlane (datumPlane=myPart.datums[11], faces=
myPart.faces.findAt (((0, 0, xr0), ), ((0, 0, =xr0), ), ))

#XY chord
Cpart = [C_off3+10, C_off3-10, C_offl+10, C_offl-10, -(C_off3+10), —(
C_off3-10), -(C_offl+10), -(C_offl-10)]
for yy in Cpart:
Facepoint = (0, yy, x0)
myPart.PartitionFaceByDatumPlane (datumPlane=myPart.datums[9], faces=
myPart.faces.findAt (((Facepoint), ), ))

#YZ chord
for yy in Cpart:
for i in [1, -1]:
Facepoint = (0, yy, i1*r0)
myPart.PartitionFaceByDatumPlane (datumPlane=myPart.datums[10],
faces=myPart.faces.findAt (((Facepoint), ), ))

#XY brace
Bpart = [B_off3+10, B off3-10, B offl+10, B _offl-10, B off0+10, 0, -(
B off3+10), -(B off3-10), -(B_offl+10), -(B_offl-10),-(B_off0+10)]
for xx in Bpart:
Facepoint = (xx, 0, rl)
myPart.PartitionFaceByDatumPlane (datumPlane=myPart.datums[9], faces=
myPart.faces.findAt (((Facepoint), ), ))

#XZ brace
for xx in Bpart:
for i in [1, -1]:
Facepoint = (xx, 0, i*rl)
myPart.PartitionFaceByDatumPlane (datumPlane=myPart.datums[11],
faces=myPart.faces.findAt (((Facepoint), ), ))

#Diagonals brace
for xx in Bpart:
for angle in [135,315]:
Facepoint = (xx, cosd(angle)*rl, sind(angle)*rl)
myPart.PartitionFaceByDatumPlane (datumPlane=myPart.datums[26],
faces=myPart.faces.findAt (((Facepoint), ), ))
for angle in [45,225]:
Facepoint = (xx, cosd(angle)*rl, sind(angle)*rl)
myPart.PartitionFaceByDatumPlane (datumPlane=myPart.datums[27],
faces=myPart.faces.findAt (((Facepoint), ), ))

#Partition diagonals
for yy in [(sind(45)*rl), -(sind(45)*rl)]:
for a in [(45,90), (135,90), (225,270), (315,270)]:
p 1 = (((math.copysign(l,cosd(a[0])))* (math.sqgrt ((r0**2)-((cosd(al
01))*rl)**2))), yy, (sind(al0])*rl))
Fc_d = (cosd(al0]1)*r0, yy, sind(a[0])*r0)
p_2 = (0, math.copysign(C_offl,yy), sind(a[l])*r0)
myPart.PartitionFaceByShortestPath (faces=myPart.faces.findAt ((Fc d
), ), pointl=myPart.vertices.findAt((p 1), ), point2=myPart.
vertices.findAt ((p_2), ))

#mesh
#Set Element type and mesh region
Faces T = myPart.faces.getByBoundingBox(-L1/2, -L0/2, -r0, L1/2, L0/2, r0)
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Faces QUAD = myPart.faces.getByBoundingBox(-B offl, -C offl, -r0, B offl,
C_offl, r0)

myPart.setElementType (elemTypes=(ElemType (elemCode=S8R, elemLibrary=
STANDARD) , ElemType (elemCode=STRI65, elemLibrary=STANDARD)), regions
=(((Faces_QUAD), ), ))

myPart.setMeshControls (elemShape=QUAD DOMINATED, regions=(Faces T),
technique=STRUCTURED)

myPart.setMeshControls (elemShape=QUAD, regions=(Faces QUAD), technique=
STRUCTURED)

#Seed edges
C parts = 4
B parts = 8

#Fine mesh

myPart.seedEdgeByNumber (constraint=FINER, edges=(myRoot.instances][
'"Joint-1"'].edges.getByBoundingBox (- (B offl+10), -(C offl+10), -(r0+10
), (B _offl+10), C offl+410, (r0+10))), number=int(3.0*Mesh))

for yy in [(10, C_offl+10), (-(C_offl+10), -10)1:
for zz in [(10, r0+10), (-(xr0+10), -10)]:
myPart.seedEdgeByNumber (constraint=FINER, edges=(myRoot.instances][
'"Joint-1"'].edges.getByBoundingBox (-r0, yy[0], zz[0], rO, yy[l
1, zz[1])), number=int(2.5*Mesh+1.6/Beta))
for yy in [C_off1-10, -(C_offl-10)]:
for i in [0, 180]:
Edgepoint = (cosd(i)*r0, yy, sind(i)*r0)
myPart.seedEdgeByNumber (constraint=FINER, edges=myPart.edges.
findAt (((Edgepoint), ), ), number=int(2.5*Mesh+1.6/Beta))
for ya in [85, 95, 265, 275]:
for i in range(C_parts):
Edgepoint = (cosd(ya)*r0, 0, sind(ya)*r0)
myPart.seedEdgeByNumber (constraint=FINER, edges=myPart.edges.
findAt (((Edgepoint), ), ), number=int(2.5*Mesh+1.6/Beta))

for xx in [B_off0+10, -(B_off0+10)]:
for i in range (B _parts):
Edgepoint = (xx, sind(i*45.0)*rl, cosd(i*45.0)*rl)
myPart.seedEdgeByNumber (constraint=FINER, edges=myPart.edges.
findAt (((Edgepoint), ), ), number=int(l.5*Mesh))

#Coarse mesh
for yy in [C off3, L0O/2, -C off3, -L0/2]:
for i in range(C parts):
Edgepoint = (cosd(i*90.0445)*r0, yy, sind(i*90.0445)*x0)
myPart.seedEdgeByNumber (constraint=FINER, edges=myPart.edges.
findAt (((Edgepoint), ), ), number=2*Mesh)
for xx in [B off3, L1/2, -B off3, -L1/2]:
for i in range (B parts):
Edgepoint = (xx, sind(i*45.0422.5)*rl, cosd(i*45.0+422.5)*rl)
myPart.seedEdgeByNumber (constraint=FINER, edges=myPart.edges.
findAt (((Edgepoint), ), ), number=1*Mesh)

for yy in [C off3+10, -(C_off3+10)]:
for i in range(C parts):
Edgepoint = (cosd(i*¥90.0)*r0, yy, sind(i*90.0)*r0)
myPart.seedEdgeByNumber (constraint=FINER, edges=myPart.edges.
findAt (((Edgepoint), ), ), number=(Alpha/8*Mesh))
for xx in [B off3+10, -(B off3+10)]:
for i in range (B parts):
Edgepoint = (xx, sind(i*45.0)*rl, cosd(i*45.0)*rl)
myPart.seedEdgeByNumber (constraint=FINER, edges=myPart.edges.
findAt (((Edgepoint), ), ), number=int(l.5*Mesh))

#Coarse/fine mesh
for yy in [C off2-10, -(C_off2-10)]:
for i in range(C parts):
Edgepoint = (cosd(i*90.0)*r0, yy, sind(i*90.0)*r0)
myPart.seedEdgeByNumber (constraint=FINER, edges=myPart.edges.
findAt (((Edgepoint), ), ), number=int(l.5%*Mesh))
for yy in [C_off2+10, -(C_off2+10)]:
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for i in range(C_parts):
Edgepoint = (cosd(i*¥90.0)*r0, yy, sind(i*90.0)*r0)
myPart.seedEdgeByNumber (constraint=FINER, edges=myPart.edges.
findAt (((Edgepoint), ), ), number=int(l.0*Mesh))
for yy in [C_off2, -C_off2]:
for i in range(C_parts):
Edgepoint = (cosd(i*90.0+45.0)*r0, yy, sind(i*90.0+45.0)*r0)
myPart.seedEdgeByNumber (constraint=FINER, edges=myPart.edges.
findAt (((Edgepoint), ), ), number=int(2.5*Mesh))

for i in range(B_parts):
Edgepoint = (0, sind(i*45.0)*rl, cosd(i*45.0)*rl)
myPart.seedEdgeByNumber (constraint=FINER, edges=myPart.edges.findAt (((
Edgepoint), ), ), number=int(1l.6/Beta))

for xx in [B_off2-10, -(B_off2-10)]:
for i in range(B_parts):
Edgepoint = (xx, sind(i*45.0)*rl, cosd(i*45.0)*rl)
myPart.seedEdgeByNumber (constraint=FINER, edges=myPart.edges.
findAt (((Edgepoint), ), ), number=int(l.5*Mesh))
for xx in [B off2+10, -(B off2+10)]:
for i in range(B parts):
Edgepoint = (xx, sind(i*45.0)*rl, cosd(i*45.0)*rl)
myPart.seedEdgeByNumber (constraint=FINER, edges=myPart.edges.
findAt (((Edgepoint), ), ), number=int(1l.0%*Mesh))
for xx in [B off2, -B off2]:
for i in range (B parts):
Edgepoint = (xx, sind(i*45.0422.5)*rl, cosd(i*45.0+422.5)*rl)
myPart.seedEdgeByNumber (constraint=FINER, edges=myPart.edges.
findAt (((Edgepoint), ), ), number=int(2.0*Mesh))

myPart.generateMesh ()

#Steps
myModel.StaticStep(initialInc=0.001, maxInc=0.015, maxNumInc=200, name=
'Static, General', nlgeom=ON, previous='Initial')

#Boundary conditions and loads
#Loads

myRoot.ReferencePoint (point=(L1/2, 0.0, 0.0)) #8

myRoot.Set (name='B RefR', referencePoints=(myRoot.referencePoints[8], ))

myRoot.Set (edges=myRoot.instances['Joint-1"].edges.getByBoundingBox (L1/2,
-L0/2, -r0, L1/2, LO/2, r0), name='B edgesR')

myModel.EquallySpacedAmplitude (begin=0.0, data=(0.0, 1.0), fixedInterval=
1.0, name='Amp-1', smooth=SOLVER DEFAULT, timeSpan=STEP)

myModel .RigidBody (name='Constraint-B1', refPointRegion=myRoot.sets][
'B RefR'], tieRegion=myRoot.sets['B edgesR'])

myModel.DisplacementBC (amplitude='"Amp-1"', createStepName='Static, General'
, distributionType=UNIFORM, fieldName='"', fixed=OFF, localCsys=None,
name='BC LoadR', region=myRoot.sets['B RefR'], ul=UlR, u2=UNSET, u3=
UNSET, url=UNSET, ur2=UNSET, ur3=UNSET)

#Bounday condition
myRoot.ReferencePoint (point=(0.0, L0/2, 0.0)) #11 #14
myRoot.Set (name='C RefT', referencePoints=(myRoot.referencePoints[11], ))
myRoot.Set (edges=myRoot.instances['Joint-1'].edges.getByBoundingBox (-1L1/2,
Lo/2, -r0, L1/2, L0O/2, r0), name='C edgesT')
myModel.RigidBody (name='Constraint-Cl', refPointRegion=myRoot.sets][
'C RefT'], tieRegion=myRoot.sets['C edgesT'])

myRoot.ReferencePoint (point=(0.0, -(L0/2), 0.0)) #14 #17

myRoot.Set (name='C RefB', referencePoints=(myRoot.referencePoints[14], ))

myRoot.Set (edges=myRoot.instances['Joint-1"'].edges.getByBoundingBox (-L1/2,
-L0/2, -r0, L1/2, -LO/2, r0), name='C edgesB')

myModel.RigidBody (name='Constraint-C2', refPointRegion=myRoot.sets][

'C RefB'], tieRegion=myRoot.sets['C edgesB'])

if BoundaryCondition == 'PinnedBC':
myModel.PinnedBC (createStepName='Static, General', localCsys=None,
name='BC BCT', region=myRoot.sets['C RefT'])
myModel.PinnedBC (createStepName='Static, General', localCsys=None,
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name='BC BCB', region=myRoot.sets['C RefB'])
elif BoundaryCondition == 'XsymmBC':
myModel.XsymmBC (createStepName='Static, General',
='BC BCT', region=myRoot.sets['C RefT'])
myModel.XsymmBC (createStepName='Static, General',
='BC BCB', region=myRoot.sets['C RefB'])
elif BoundaryCondition == 'EncastreBC':

myModel.EncastreBC (createStepName='Static, Genera

name='BC BCT', region=myRoot.sets['C RefT'])

myModel.EncastreBC (createStepName='Static, Genera

name='BC BCB', region=myRoot.sets['C RefB'])

#HistoryOutput and FieldOutput

localCsys=None, name

localCsys=None, name

1", localCsys=None,

1", localCsys=None,

myRoot.Set (name='Node ¥11', vertices=myRoot.instances['Joint-1"].vertices.

findAt (((r0, C_offl, 0.0), )))
myRoot.Set (name="Node X12',
findAt (((-x0, C_offl, 0.0), )))

vertices=myRoot.instances['Joint-1"'].vertices.

myRoot.Set (name='Node X21', vertices=myRoot.instances['Joint-1"].vertices.

findAt (((r0, -C_offl, 0.0), )))

myRoot.Set (name='Node ¥22', vertices=myRoot.instances['Joint-1"].vertices.

findAt (((-r0, -C_offl, 0.0), )))

myRoot.Set (name='Node 701', vertices=myRoot.instances['Joint-1"].vertices.

findAt (((0.0, 0.0, r0), )))

myRoot.Set (name='Node 702', vertices=myRoot.instances['Joint-1"].vertices.

findAt (((0.0, 0.0, -r0), )))

myRoot.Set (name='Node 711', vertices=myRoot.instances['Joint-1"].vertices.

findAt (((0.0, C_offl, r0), )))

myRoot.Set (name='Node 712', vertices=myRoot.instances['Joint-1"].vertices.

findAt (((0.0, C_offl, -r0), )))

myRoot.Set (name='Node 721', vertices=myRoot.instances['Joint-1"].vertices.

£indAt (((0.0, -C_offl, r0), )))

myRoot.Set (name='Node 722', vertices=myRoot.instances['Joint-1"].vertices.

findAt (((0.0, -C_offl, -r0), )))

del myModel.historyOutputRequests['H-Output-1"]
myModel.HistoryOutputRequest (createStepName='Static,

General',

name=

'H-Output-BCR', rebar=EXCLUDE, region=myRoot.sets['B RefR'],

sectionPoints=DEFAULT, variables=('RF1', 'Ul", ))
myModel.HistoryOutputRequest (createStepName='Static,

General',

name=

'H-Output-Ux11', rebar=EXCLUDE, region=myRoot.sets['Node X11'],

sectionPoints=DEFAULT, variables=('Ul"', ))
myModel.HistoryOutputRequest (createStepName='Static,

General',

name=

'H-Output-Ux12', rebar=EXCLUDE, region=myRoot.sets['Node X12'],

sectionPoints=DEFAULT, variables=('Ul"', ))
myModel.HistoryOutputRequest (createStepName='Static,

General',

name=

'H-Output-Ux21"', rebar=EXCLUDE, region=myRoot.sets['Node X21'],

sectionPoints=DEFAULT, variables=('Ul"', ))
myModel.HistoryOutputRequest (createStepName='Static,

General',

name=

'"H-Output-Ux22', rebar=EXCLUDE, region=myRoot.sets['Node x22'7,

sectionPoints=DEFAULT, variables=('Ul'"', ))
myModel.HistoryOutputRequest (createStepName='Static,

General',

name=

'H-Output-Uz01', rebar=EXCLUDE, region=myRoot.sets['Node 701'],

sectionPoints=DEFAULT, variables=('U3"', ))
myModel.HistoryOutputRequest (createStepName='Static,

General',

name=

'H-Output-Uz02', rebar=EXCLUDE, region=myRoot.sets['Node 702'],

sectionPoints=DEFAULT, variables=('U3"', ))
myModel .HistoryOutputRequest (createStepName='Static,

General',

name=

'"H-Output-Uzll', rebar=EXCLUDE, region=myRoot.sets['Node 711'],

sectionPoints=DEFAULT, variables=('U3', ))
myModel.HistoryOutputRequest (createStepName='Static,

General',

name=

'H-Output-Uz12', rebar=EXCLUDE, region=myRoot.sets['Node 712'],

sectionPoints=DEFAULT, variables=('U3"', ))
myModel.HistoryOutputRequest (createStepName='Static,

General',

name=

'"H-Output-Uz21', rebar=EXCLUDE, region=myRoot.sets['Node 721'],

sectionPoints=DEFAULT, variables=('U3"', ))
myModel.HistoryOutputRequest (createStepName='Static,

General',

name=

'H-Output-Uz22', rebar=EXCLUDE, region=myRoot.sets['Node 722'],

sectionPoints=DEFAULT, variables=('U3", ))
myModel.HistoryOutputRequest (createStepName='Static,
"H-Output-ALLPD'", variables=('ALLPD', ))

General',

name=

myModel.fieldOutputRequests['F-Output-1'].setValues(variables=('S', 'E',
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'"PE', 'PEEQ', 'EE', 'U'))

#job

mdb.Job (atTime=None, contactPrint=0FF, description='"', echoPrint=0FF,
explicitPrecision=SINGLE, getMemoryFromAnalysis=True, historyPrint=0FF
, memory=90, memoryUnits=PERCENTAGE, model='Model-"+4+'{0}'.format (
Filename), modelPrint=0FF, multiprocessingMode=DEFAULT, name='Job-'+
'"{0}'.format(Filename), nodalOutputPrecision=SINGLE, numCpus=1l,
numGPUs=0, queue=None, resultsFormat=0DB, scratch='"', type=ANALYSIS,
userSubroutine="'"', waitHours=0, waitMinutes=0)

mdb.jobs['Job-"+"{0}'".format (Filename)].submit (consistencyChecking=0FF)

mdb.jobs['Job-"+"{0}'.format(Filename)].waitForCompletion ()

#Create ODB output
RF1, Ul = ([] for i in range (2))

Directory odb = '"{0}'.format(Loadpath)+'/'+'Job-"+"'{0}"'.format(Filename)+
'.odb'

open_odb = session.openOdb(name=Directory odb)

odb = session.odbs[Directory odb]

session.viewports['Viewport: 1'].setValues(displayedObject=open odb)

frames = open_odb.steps['Static, General'].frames

numFrames = len(frames)

#Reaction Force

xy_rf = session.XYDataFromHistory(name='XY-RF1', odb=odb,
outputVariableName='Reaction force: RF1 PI: rootAssembly Node 1 in
NSET B REFR', steps=('Static, General', ), )

RF1 = [abs(x[1]*10**(-3)) for x in xy rf]

Max RF1 = max(RF1)

#Displacement

Xy u = session.XYDataFromHistory(name='XY U', odb=odb, outputVariableName=
Spatial displacement: Ul PI: rootAssembly Node 1 in NSET B REFR',
steps=('Static, General', ), )

Ul = [abs(x[1]) for x in xy u]

#First Yield load

xy_allpd = session.XYDataFromHistory(name='XY-ALLPD',6odb=odb,
outputVariableName='Plastic dissipation: ALLPD for Whole Model', steps
=('Static, General', ), )

Pl diss = [x[1]*10**(-3) for x in xy allpd]

#Deformation limit

xy uxll = session.XYDataFromHistory(name='XY-UX11', odb=odb,
outputVariableName='Spatial displacement: Ul PI: JOINT-1 Node 17 in
NSET NODE_X11', steps=('Static, General', ), )

xy uxl2 = session.XYDataFromHistory(name='XY-UX12', odb=odb,
outputVariableName='Spatial displacement: Ul PI: JOINT-1 Node 23 in
NSET NODE_X12', steps=('Static, General', ), )

xy ux2l = session.XYDataFromHistory(name='XY-UxX21', odb=odb,
outputVariableName='Spatial displacement: Ul PI: JOINT-1 Node 13 in
NSET NODE_X21', steps=('Static, General', ), )

Xy ux22 = session.XYDataFromHistory(name='XY-Ux22', odb=odb,
outputVariableName='Spatial displacement: Ul PI: JOINT-1 Node 6 in
NSET NODE_X22', steps=('Static, General', ), )

xy _uz0l = session.XYDataFromHistory(name='XY-Uz01', odb=odb,
outputVariableName='Spatial displacement: U3 PI: JOINT-1 Node 10 in
NSET NODE 701', steps=('Static, General', ), )

xy uz02 = session.XYDataFromHistory(name='XY-Uz02', odb=odb,
outputVariableName='Spatial displacement: U3 PI: JOINT-1 Node 3 in
NSET NODE 702', steps=('Static, General', ), )

xy uzll = session.XYDataFromHistory(name='XY-Uz11', odb=odb,
outputVariableName='Spatial displacement: U3 PI: JOINT-1 Node 22 in
NSET NODE_711', steps=('Static, General', ), )

xy uzl2 = session.XYDataFromHistory(name='XY-Uz12', odb=odb,
outputVariableName='Spatial displacement: U3 PI: JOINT-1 Node 16 in
NSET NODE_712', steps=('Static, General', ), )

xy uz2l = session.XYDataFromHistory(name='XY-Uz21', odb=odb,
outputVariableName='Spatial displacement: U3 PI: JOINT-1 Node 9 in
NSET NODE 721', steps=('Static, General', ), )
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xy_uz22 = session.XYDataFromHistory(name='xXY-U%22"', odb=odb,

outputVariableName='Spatial displacement:
NSET NODE 722', steps=(

Static, General',

Def lim x11 [x[1] for x in xy uxll]
Def lim x12 = [x[1] for x in xy uxl2]
Def lim x1 = np.zeros(len(Def lim x11))
for i in range(len(Def lim x11)):

U3 PI:

). )

JOINT-1 Node 2 in

Def 1im x1 [i] = abs(Def lim x11[i]-Def 1lim x12[i])/d0*100

Def lim x21 = [x[1] for x in xy ux21]
Def lim x22 = [x[1] for x in xy ux22]
Def lim x2 = np.zeros(len(Def lim x21))
for i in range(len(Def lim x21)):

Def lim x2 [i] = abs(Def lim x21[i]-Def lim x22[i])/d0*100

Def 1lim z01 [x[1] for x in xy uz01]
Def lim z02 = [x[1] for x in xy uz02]
Def lim z0 = np.zeros(len(Def lim z01))
for i in range(len(Def lim z01)):

Def 1im z0 [i] = abs(Def lim z01[i]-Def lim 2z02[1])/d0*100

Def lim z11 = [x[1] for x in xy uzll]
Def lim z12 = [x[1] for x in xy uzl2]
Def lim zl1 = np.zeros(len(Def lim z11))
for i in range(len(Def lim z11)):

Def 1im zl [i] = abs(Def lim z11[i]-Def 1lim z12[i])/d0*100

Def lim z21 [x[1] for x in xy uz2l]
Def lim z22 = [x[1] for x in xy uz22]
Def lim z2 = np.zeros(len(Def lim z21))
for i in range(len(Def lim z21)):

Def lim z2 [i] = abs(Def lim z21[i]-Def lim z22[i])/d0*100

Def lim = np.zeros(len(Def lim x1))
for i in range(len(Def lim x11)):

Def 1im[i] = max(Def lim x1[i], Def lim x2[i], Def lim zO[i],

Def lim z1[i], Def lim z2[i])

Def lim reached = 0
Max RF12 = 'Not reached’
for i in range (len(Def 1lim)):
if Def lim reached ==
break
else:
if Def lim[i] > 3.0:
Def lim reached = 1
Max RF12 = RF1[i]

#CREATE EXCEL VALUES
INC=range (0, numFrames)

workbook = xlsxwriter.Workbook('{0}.xlsx'.format(Filename))

worksheetl = workbook.add worksheet ('ABAQUSDAT

#Write general data
bold = workbook.add format({'bold': 1})
headingsl = ['',"{0}'.format(Filename)]

N
A

headings2 = ['"INC','ULl','RF1','P1l. diss.','Def. Lim.','Max RF1','Max
RE12']
headings3 = [' (=)', " (mm) ", " (kKN) ", " (=)', " (%) ", " (kN)'," (kN)"']

worksheetl.write row('Al', headingsl, bold)
worksheetl.write row('A2', headings2, bold)
worksheetl.write row('A3', headings3)

worksheetl.write column(3, 0, INC)
worksheetl.write column(3, 1, Ul)
worksheetl.write column(3, 2, RF1)
worksheetl.write column(3, 3, Pl diss)
worksheetl.write column(3, 4, Def lim)
worksheetl.write('F4', Max RF1)

worksheetl.write('G4', Max RF12)

workbook.close ()
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