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Abstract

Integrated simulation for output profiles of a nuclear fusion reactor is generally too slow,
when using first-principle-based modeling, to be useful for real-time plasma dynamics con-
trol purposes. Neural networks hold the promise of delivering surrogate models that are
sufficiently fast to operate in real-time. Here we present the results of using a deep genera-
tive model as a neural network alternative for integrated simulation suites. First, by training
a conditional variational auto-encoder on a simple synthetic dataset, the quality of generated
data is investigated, yielding high-quality predictions with a relative error of only 1.38% on
a testing set. We also examine the role that the latent space plays in this generation, and
find it to effectively take the role of all relevant parameters that are the source of varia-
tion between the samples. Then, we introduce the more powerful regressive disentanglement
variational auto-encoder (ReD-VAE), which is applied to a much larger and complex exper-
imental dataset. By introducing an additional loss term, the quality of generated data is
improved significantly with respect to a normal VAE. This leads to excellent performance
in the prediction of known scaling laws, which are used to validate the correctness of model
predictions. Other usages of ReD-VAE are also presented, including statistical inference of
experimental parameters with good accuracy. A proof-of-principle is provided of using the
latent space for unsupervised hidden parameter discovery. Plasma mode is expected to be
the main hidden parameter (to the model), which can be reconstructed with 86% accuracy
in an unsupervised fashion, showing that this model can potentially be used to gain further
insights into what other hidden parameters influence tokamak performance.
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1 INTRODUCTION

1 Introduction

1.1 Motivation

In the ongoing energy transition, nuclear fusion energy holds a strong promise for the more
distant future. Nuclear fusion has the potential to provide a clean source of vast amounts of
energy, with practically no limits on the sustainability, since most of the resources can be gained
from water [1].

However, at this point in time, fusion is not yet profitable. While the techniques have high
potential, existing fusion reactors require more energy to run than the amount of energy that is
output by the reactor, resulting in a net energy loss. Lots of research is currently being done to
increase the efficiency of fusion reactors, including large international projects such as the ITER
project [2].

In these projects, it is not feasible to base work solely on experimental investigations. The cost of
an experiment is far too great, and therefore simulation software has been developed to provide
complementary avenues of research. Traditionally, this takes the shape of integrated modeling
software, where complex differential equations are numerically integrated. This process is com-
putationally very expensive. In order to speed up these simulations, all sorts of approximations
have to be made.

Another way to speed up simulations is by using the recent advancements that have been made
in machine learning. It has already been shown that neural networks can yield tremendous
speed-ups in multi-physics tokamak simulation through the development of surrogate networks
[3], indicating the potential that these methods harbor. However, in these publications, only
discriminative models have been used. A discriminative neural network models the probability
distribution of observing some variable x given an input y1, i.e. P(x | y).

We believe that a lot more can be learned about tokamak nuclear fusion, by using neural networks
to create a generative model. A generative model is more powerful than a discriminative model,
because it models the joint distribution of input and output, as well as some intermediate
latent representation, z. This results in a model for the joint distribution P(x,y, z). The latent
representation is designed to contain all information that is necessary for a good description of
an experimental output profile, and thus captures the role of hidden parameters. The generative
model allows for several novel applications, among which:

• Fast simulation of fusion data, allowing for quick prediction of fusion performance for a
wide range of parameter values.

• Convenient generation of realistic synthetic data for physics model testing and validation,
and controlled parameter space sampling for the creation of surrogate model training
datasets.

• Quantification of the uncertainty in results induced by inaccuracy of the base conditions.

1By physicists’ standards, this choice of x and y might be counter-intuitive. It is, however, standard convention
in the field of machine learning, where y generally represents a label or condition that corresponds to an input x.
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1 INTRODUCTION

• Prediction of most likely tokamak input parameters based on some given output.

• Discovery of hidden variables using the latent space.

In this work, we first present a proof-of-principle, demonstrating the modeling capabilities of
a simple variational auto-encoder (VAE) on a simulated dataset. By obtaining results in a
clean, synthetic environment, a first look into the applications of such a model can be obtained.
Subsequently, a more powerful model, the regressive disentanglement variational auto-encoder
(ReD-VAE), is introduced. This model is used on experimental data from the JET tokamak,
where we get more insight into the exciting possibilities of this generative model.

1.2 Research Questions

In the first part of this work, we implement the generative model using a conditional variational
auto-encoder. The goal here is to show that the CVAE has the modeling power to capture the
distribution of the data. This leads to the first research question:

Can a conditional variational auto-encoder be used to generate synthetic results
similarly to conventional simulation methods?

Some sub-questions are relevant here:

• What is the role of the latent variables?

• How accurate are the generated predictions?

Once success is obtained in this first part, we also want to explore the new applications that a
generative model brings to the table. After all, the goal of this project is to not only gain the
same results in a faster way, but also to gain new insights into the physics of a nuclear fusion
reactor. This leads to the second research question:

Which new applications are possible after training a generative model on a
complex, experimental dataset?

To answer the second main research question, several sub-questions have to be considered as
well:

• What generative model structure allows for the desired modeling capabilities:

– The generation of realistic output profiles, where some of the input parameters can
be unknown.

– The estimation of the variance in output profiles, for a given set of input parameters.

• How can this model be optimized to perform well for data generation?

• Can the model reproduce known trends, either via comparison to literature or to data?

• Which information is contained in the latent space, and how can this information be used
to gain insight into hidden parameters?

Master Thesis | Daan Nieuwenhuizen 2



1 INTRODUCTION

1.3 Contributions

Answering the research questions leads to the main contributions of this thesis:

• Introduction of the ReD-VAE model, a generative model specifically optimized for high-
quality data generation of experimental profiles given some input parameters.

• Providing proof-of-principle methods for different applications of generative models in
physical sciences, including:

– Generation of samples for different experimental conditions, with corresponding vari-
ance, for the optimization of tokamak performance.

– Discovery of hidden variables, relevant to the performance of the fusion reactor.

– Prediction of most likely input parameters for a set of experimental results.

This work should be viewed mainly as a proof-of-principle, where some of the possible applica-
tions of these models are highlighted. A full in-depth analysis of these methods and the new
insights that can be obtained is left for later work.

1.4 Overview

The rest of this report will start with a short introduction of the basics of nuclear fusion and
the relevant tokamak parameters in section 2. Then, in section 3, the relevant machine learning
background that is used is discussed, followed by an overview of literature related to the current
work in section 4. Section 5 introduces the ReD-VAE model, followed by a description of the
datasets in section 6. Sections 7 and 8 give experimental results for the simulated dataset and
the experimental data respectively, as well as a dive into the potential applications of the ReD-
VAE model. Section 9 discusses the strengths and weaknesses of the methods that have been
applied, and the thesis will be concluded in section 10.

Master Thesis | Daan Nieuwenhuizen 3



2 NUCLEAR FUSION BACKGROUND

2 Nuclear Fusion Background

2.1 Basics

Two promising methods of nuclear fusion, are either using a deuterium-tritium reaction, or a
reaction with two deuterium particles. Deuterium (D) and tritium (T) are both isotopes of
hydrogen, with one proton and one, respectively two neutrons. During a typical fusion reaction,
deuterium and tritium fuse to form helium and a neutron:

2
1D + 3

1T → 4
2He+ n0 (2.1)

This exothermic reaction releases a large amount of energy E = 17.59 MeV [4]. The origin of
this energy is that the resulting mass of the Helium particle and neutron is lower, compared to
the incoming deuterium and tritium particles. As per Einstein’s E = mc2, the mass difference
m is converted into energy with a multiplication factor of the speed of light, c, squared. The
fusion power that is generated on a larger scale is given by equation (2.2), where nA and nB are
the densities of the two components of the reaction [5].

Pfus = nAnB〈σvA,B〉E (2.2)

In this equation, 〈σvA,B〉 is the cross-section of the reaction, averaged over all energies for the
particles of species A and B. This cross-section can be regarded as the probability for the
reaction to happen.

For low energy particles, the fusion cross-section is negligible, as the energy in the particles is
too low to overcome the Coulomb repulsion between the particles, preventing them from fusing.
Therefore, particles with high energy (temperature) are required. As the gases are heated such
that particles obtain these temperatures, they transition to the plasma state, breaking up atoms
and molecules in the gas into electrons and ions. As the plasma is further heated, the electrons
and ions gain more energy. This is beneficial, as a higher temperature increases the cross-section
(likelihood) of a fusion reaction (up to a certain point where the cross-section decreases again)
[6]. For this reason, aside from the particle density, the particle temperatures are very important
inputs in determining the expected fusion power. This also means that for optimal fusion power,
high particle densities need to be accompanied by high particle temperatures. To achieve this,
multiple types of fusion reactors have been suggested. Of these, a tokamak reactor appears to
have the most potential.

2.2 Tokamak Reactor

2.2.1 Magnetic Fields Design

In a tokamak, the plasma is contained in a toroidal reactor. A schematic overview of such a
reactor is given in Figure 1.

Master Thesis | Daan Nieuwenhuizen 4



2 NUCLEAR FUSION BACKGROUND

Figure 1 – Schematic overview of the magnetic field design of a tokamak reactor [7].

To maintain high temperatures, the plasma cannot be in contact with the reactor walls. To
avoid excessive temperature loss, the plasma is confined by magnetic fields. The toroidal field
coils induce a toroidal magnetic field Bt. The central solenoid induces an electrical current Ip in
the plasma, as well as a poloidal magnetic field. The combination of these toroidal and poloidal
fields makes it so that the charged particles follow helical trajectories around the torus.

In Figure 2 a schematic cross-section of the tokamak reactor is given. A few important concepts
are highlighted in this image, which serves to illustrate the shaping of the magnetic surfaces.
The most important magnetic surface here is the last closed flux surface (LCFS), or separatrix,
which is the last surface where the flux lines form a closed loop. Let Rmax and Rmin be the
maximum and minimum major tokamak radius of the LCFS and let Zmax and Zmin be the
maximum and minimum height of the LCFS. The minor radius a of the plasma is then defined
as

a =
Rmax −Rmin

2
(2.3)

which leads to the definition of the elongation κ as

κ =
Zmax − Zmin

2a
(2.4)

The geometric major radius is then the middle of the LCFS, given by:

Rgeo =
Rmax +Rmin

2
(2.5)

Master Thesis | Daan Nieuwenhuizen 5



2 NUCLEAR FUSION BACKGROUND

Figure 2 – Cross-section of the tokamak reactor, showing the plasma shaping parameters. Image
adapted from [8].

Now, let Rupper and Rlower be the major radii of the highest and lowest points in the LCFS.
The upper and lower triangularities δu and δl are then defined as follows:

δu =
Rgeo −Rupper

a
(2.6)

δl =
Rgeo −Rlower

a
(2.7)

The LCFS field lines collide with the divertor plates in the inner and outer strike point. These
points are characterized by their radial coordinate R and height Z.

In this work, radial profiles for electron temperature, electron density, and ion temperature are
provided. The radial profiles are given with respect to the normalized radius ρ, defined as in
equation (2.8). Here, ψt is the toroidal magnetic flux associated with the radial point, and
ψLCFS is the toroidal flux through the area of the separatrix.

ρ =

√
ψt

ψLCFS
(2.8)

Master Thesis | Daan Nieuwenhuizen 6



2 NUCLEAR FUSION BACKGROUND

This square-root expression can be considered a normalized radius because the magnetic flux
generally increases with the squared radius.

In this work, only plasma profiles in the core region inside the LCFS are considered. Because
plasma transport in this region is much faster along magnetic field lines than perpendicular to
them, it is assumed that the plasma parameters exhibit both axisymmetry, as well as poloidal
symmetry. Consequently, the profiles have only radial dependence. Therefore, a one-dimensional
profile is enough to describe the entire reactor for a given point in time. The analysis of two-
dimensional profiles outside the LCFS region, which includes the plasma-wall interaction, is out
of the scope of this work.

The parameters that have been discussed can be adjusted in a control room, in order to contain
as many particles in the plasma as possible while it’s being heated. There are multiple methods
of heating the plasma, which will be discussed next.

2.2.2 Plasma Heating

Three forms of plasma heating are relevant in this thesis.

Ohmic Heating Ohmic heating (Pohm) is the heating due to the electrical current Ip in the
plasma. In any electrical conductor, running a current through a material generates heat, due to
the resistance of that material. This also holds in the case of plasmas. The Ohmic heating can
be calculated by using the local Ohmic current density johm(ρ), as given in equation (2.9).

Pohm =

∫
η(ρ)j2ohm(ρ) dV (2.9)

Here, η(ρ) is the resistivity of the plasma and the integration is done over the entire volume V
within the LCFS. To do this calculation, this volume is approximated as a cylinder with length
2πR0, where R0 is the major radius of the torus. Since poloidal symmetry is assumed, the
integral then reduces to equation (2.10).

Pohm = 4π2R0

∫ 1

0
η(ρ)j2ohm(ρ)ρ dρ (2.10)

Because of the discrete nature of the used data, the integral is in this work approximated by a
summation:

Pohm ≈ 4π2R0

∑
i

η(ρi)j
2
ohm(ρi)ρi ∆ρ (2.11)

Where the summation is over all radial points ρi within the LCFS, and ∆ρ is the distance between
two of these points. The plasma resistivity η(ρ) is approximated by the Spitzer resistivity [9],
given by equation (2.12).

η =

√
2

12π3/2
Zeffe

1/2m
1/2
e ln Λ

ε20T
3/2
e

F (Zeff ) (2.12)
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2 NUCLEAR FUSION BACKGROUND

In this equation, Zeff is the effective charge, which is a radial profile in the plasma, e is the
elementary electron charge, me is the electron mass, ε0 is the vacuum permittivity and Te is the
electron temperature in electronvolts (eV), again a radial profile. Furthermore, we use

F (Z) ≈ 1 + 1.198Z + 0.222Z2

1 + 2.966Z + 0.753Z2
≈ 1.96 (2.13)

for Z = 1, and ln Λ is the Coulomb logarithm, given by equation (2.14) [10].

ln Λ = 15.2− 1

2
ln(ne · 10−20) + ln(Te · 10−3) (2.14)

In this equation, ne is the density of electrons in m−3.

Because plasma resistivity drops as the plasma temperatures increase, as seen in (2.12), Ohmic
heating is mainly effective as an initial heat source [11]. To further heat the plasma past a
certain temperature, other heating methods will also be necessary.

Neutral Beam Injection In Neutral Beam Injection (NBI), beams of neutral particles are shot
into the plasma [12]. The beams consist of high-energy atoms. Once inside the plasma, these
atoms collide with the plasma particles, transferring their energy into the plasma, thus heating
the plasma. The power that is supplied in this manner is indicated as PNBI .

Ion Cyclotron Resonance Heating The final form of heating discussed here is Ion Cyclotron
Resonance Heating (ICRH). Mainly the majority ions are heated, rather than the electrons
[13]. The ions are heated by applying an electromagnetic wave to the plasma, at a resonance
frequency of the majority ion species. The power that is supplied to the plasma in this method
will be referred to as PICRH .

All these forms of heating contribute to the energy in the plasma. The confinement time is a
measure for how well this energy is retained in the plasma, which will be discussed next.

2.2.3 Confinement Time

The confinement time is a measure of how long stored energy remains in a plasma when all
heating sources are stopped. To estimate the confinement time, the thermal stored energy W is
calculated. This consists of a volumetric integral over the density of charged particles, multiplied
by their temperatures. Since poloidal symmetry is assumed, only the radial part of the integral
remains. The thermal stored energy W is given in equation (2.15), where the integral is again
approximated by a sum for discrete intervals.

W =

∫
3

2
nee (Te + Ti) ρ dρ (2.15)

≈ 3

2

∑
i

ne(ρi) e (Te(ρi) + Ti(ρi)) ρi ∆ρ (2.16)
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2 NUCLEAR FUSION BACKGROUND

Where Ti is the ion temperature in eV and e is the elementary charge. Applying more heating
is an easy way of getting more energy in a plasma. This is however not a result that we are
interested in, our interest rather lies in how much of this energy is actually retained in the
plasma. In order to get an estimate for this, the thermal stored energy is often scaled with the
input power, to obtain the confinement time τ .

τ =
W

Pohm + PNBI + PICRH
(2.17)

To optimize the performance of a tokamak reactor, we seek to maximize the confinement time.
This is very much dependent on the state that the plasma is in. Generally, plasmas are in
L-mode. Once a required input power threshold is passed, the plasma can undergo a sudden
transition to H-mode, where confinement times are typically two to three times longer [14]. An
H-mode plasma is characterized by the formation of an edge pedestal region in the temperature
and density profiles. A pedestal is a sharp increase in the radial profile for a quantity. An
example of a plasma with a pedestal region is given in Figure 3. Here, a sharp change in
electron temperature in the edge region between ρ = 0.9 and ρ = 1.0 is observed. This sudden
increase in the edge region leads to higher temperatures overall, and thus a higher confinement
time.

Figure 3 – Example of the electron temperature profile for an H-mode plasma. In the edge region,
between ρ = 0.9 and ρ = 1.0, a pedestal is formed.

In order to obtain estimates of the expected confinement time for a fusion reactor, empirical
scaling laws have been composed. In H-mode, a widely used scaling law is given by equation
(2.18), known as the ITERH-98P(y,2) scaling law [15].

τ98y2 = 0.0562I0.93p B0.15
t ne

0.41P−0.69M0.19R1.97
0 κ0.78ε0.58 (2.18)

Here,ne is the radially averaged electron density, P is the absorbed power and M is the hydrogen
isotope mass in atomic mass units (2u for deuterium, 3u for tritium). The other parameters
are specific to the tokamak, where κ is the elongation of the LCFS and ε is the inverse aspect
ratio a/R0. These values are approximated as constants, because this work only uses JET data
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2 NUCLEAR FUSION BACKGROUND

where R0 and ε are fixed, and κ has a limited range in practice. For the analysis presented in
this work, the values R0 ≈ 2.96, κ ≈ 1.68 and ε ≈ 0.33 are used [16].

In L-mode, a slightly different scaling law, known as ITERL-96P(th), is used [17]. This L-mode
scaling law is given in Equation 2.19.

τ96th = 0.23I0.96p B0.03
t ne

0.40P−0.73M0.20R1.83
0 κ0.64ε−0.06 (2.19)

These scaling laws can be used to validate findings in our models. In both scaling laws, Ip is
given in MA, the average density in 1019 m−3 and the absorbed power in MW. In this work,
the absorbed power is approximated as simply being PNBI + PICRH . As the confinement time
and expected fusion power are dependent on the particle densities, the amount of gas in the
reactor has a substantial effect on tokamak performance. The amount of particles in the reactor
is controlled by two variables: the gas input rate gr, giving the number of particles that are
injected per second, and the total amount of particles that are injected, gd.

2.3 Tokamak Simulation

As mentioned earlier, simulation software is used to predict tokamak performance for different
parameter values. Current simulation of tokamak fusion is carried out using JETTO [18]. This
simulation suite, used to calculate the plasma evolution, uses Runge-Kutta and finite difference
methods to solve ordinary and partial differential equations. This results in multi-physics simu-
lation, with self-consistent determination of turbulence, collisional transport, radiation, heating
and particle sources, and the evolution of one-dimensional temperature and density profiles.
These simulations can take days to make a full plasma evaluation, depending on the desired
complexity.

To increase the speed of calculations, quasi-linear gyrokinetic models are used, such as Qua-
LiKiz [19]. Furthermore, neural networks can be used as surrogate models that accelerate the
bottleneck physics, speeding up the calculation considerably [3].
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3 Machine Learning Background

3.1 Generative Model

As mentioned in section 1, the aim of this project is to implement a generative model. Given
some conditions y and output x, a regressive model will model the probability distribution
P(x | y). A generative model describes how data is generated. To do that, a generative model
will try to learn the joint probability P(x,y) of the training set. This represents a powerful
model, as this allows for several applications not feasible for discriminative models.

One such application is to use the joint probability as is. By sampling from this joint probability,
data can be generated for a random combination of x and y, that is realistic according to the
training data. However, by statistical inference, the conditional probabilities can be calculated
as well, not only P(x | y), but also P(y | x).

These distributions lead to many usages. In addition to this, because probability distributions
are used, rather than point-wise predictions, estimates of the uncertainty in the predictions
can be obtained. This is important because we want to know how certain a model is of its
predictions. Otherwise, it’s hard to draw decisive conclusions from an output. The uncertainty
in a certain prediction can also be an indication of the stability of the output for a given set of
conditions.

3.2 Latent Variable Model

The generative model that is implemented in this work, is a latent variable model. In a la-
tent variable model, complex outputs x are assumed to be determined by a smaller number of
variables, called latent variables. In the generative model, these latent variables play an impor-
tant role. Graphical models for both the generative process as well as the inference process are
given in Figure 4. In a graphical model, an arrow indicates a dependence. These simple graphs
thus indicate that x and z are dependent on one another, the direction being dependent on the
process that we are in.

(a) Generative (b) Inference

Figure 4 – Graphical model when only the latent space is included.
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The latent variables are a surrogate for every variable that we cannot (or haven’t) measure
accurately. Generally, there are also variables that we do know, or for which we want to examine
the effect of changing its value. In this case, these conditions y can be added to the model. This
will be discussed in Section 3.3.3.

3.3 Variational Auto-Encoder

In this work, a generative network is implemented by making use of a variational auto-encoder
(VAE), that was first introduced in [20]. A VAE is a probabilistic version of a regular auto-
encoder, which will be discussed first.

3.3.1 Auto-Encoder

An auto-encoder is a set of two connected neural networks, an encoder and a decoder. The
encoder takes an input x. In this work, the input will be a radial profile for tokamak quantities
of interest, such as ion temperature Ti, or electron density ne. The encoder will convert the
input to a point z in a latent space.

In the next step, z serves as the input for the decoder. The decoder operation is inverse to that
of the encoder and provides a reconstruction of the input x̂. During training, the goal is to
minimize the difference between x and x̂. This requires optimization of both the encoder and
the decoder.

A schematic overview of an auto-encoder is given in Figure 5.

Figure 5 – Schematic overview of an auto-encoder. The encoder and decoder are implemented using
neural networks.

3.3.2 VAE

A VAE is similar to an auto-encoder, but with a probabilistic touch. Instead of the encoder
giving a point estimate z in the latent space, the encoder outputs two vectors µ and σ. These
give an estimated mean and standard deviation for each of the latent variables. In doing this,
we try to approximate the true posterior p(z | x) with an approximate posterior qφ(z | x). The
approximate posterior is implemented as a neural network with trainable parameters φ. The
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decoder then takes a sample from this distribution as an input, and again gives a reconstruction
of the original input.

Figure 6 – Schematic overview of a variational auto-encoder. The encoder and decoder are imple-
mented using neural networks.

The latent space is designed to follow a fixed prior distribution p(z). Generally, this is chosen
to be a multinomial standard Gaussian. The loss function restricts the posterior to be close
to the prior, as discussed below. Because the approximate distribution of the latent space is
then known, a sample can be taken from this multinomial Gaussian. If this sample is fed to the
decoder, a new, unseen data-point will be created. This is where a VAE can take on a generative
role. This is schematically depicted in Figure 7. Note that the encoder does not play a part in
this process.

Figure 7 – Schematic overview of the generative process where a VAE is used to generate a new
datapoint.

VAE Loss Function. The standard loss function of a VAE consists of two main terms, see
equation (3.1). The first term is some distance measure d between the reconstruction and the
original input. This should be minimized, in order to produce good reconstructions. The second
term is used to restrict the latent space to the chosen prior distribution. Usually, this is the
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KL-divergence [21] between the fixed prior and the approximate posterior that is found by the
model.

LVAE(x) = d(x, x̂) +KL(qφ(z | x) || p(z)) (3.1)

These two terms counteract each other. To make optimal reconstructions, the highest amount
of information in the latent space is of course desirable. However, inserting information into the
latent space requires the approximate posterior to further deviate from the prior, resulting a
larger KL-divergence. Careful balancing of these two losses is still a relevant research subject,
as this has a large influence on model performance [22, 23].

When a standard Gaussian prior is used, as is often the case in VAE design, the KL-divergence
in equation (3.1) can be written in a closed form. This closed form is given in equation (3.2),
and the derivation can be found in Appendix C.

KL(qφ(z|x) || N (0, 1)) =
µ2q + σ2q

2
− 1

2
− log(σq) (3.2)

Here µq and σq are the mean and standard deviation of the approximate posterior in one dimen-
sion. For a multi-dimensional latent space, a summation is required over all dimensions.

Reparameterization Trick A neural network cannot be trained directly through a stochastic
node, as no gradient can be taken for a stochastic node. Usually, the latent distribution that
the encoder outputs is a normal distribution with mean µ and standard deviation σ, i.e. z ∼
N (µ, σ2). Directly taking a sample here would not allow taking the gradients that are needed
for neural network training.

To solve this problem in VAE training, the reparameterization trick is implemented [20]. By
reparametrization of z to z = µ+σε, where ε ∼ N (0, 1) is a Gaussian noise factor, deterministic
nodes for µ and σ can be used, which can be optimized by using backpropagation.

3.3.3 Conditional VAE

A ‘vanilla’ VAE can generate new samples by sampling from the latent space, but if no restric-
tions are enforced on this data-point, it will be nothing more than a random sample. Although
this could provide information about what might be high-probability behavior of the machine,
little information is obtained about what specific settings for the tokamak reactor have as an
effect on the data, and this limits the potential of the model.

To gain some more control over what the properties of the newly generated sample are, a
conditional VAE (CVAE) can be implemented. In this implementation, the decoder is extended
to allow for the input of conditions, aside from the input from the latent space. The latent
space will then still contain relevant information regarding other sources of variation, that are
not known as conditions, but the sample that is generated should be forced to have properties
related to the given conditions. Graphically, this is given in Figure 8.
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(a) Generative (b) Inference

Figure 8 – Graphical model for conditional VAE.

In such a model, new samples can be generated for some given condition y by supplying the
decoder with both y and a sample from the prior of the latent space. The models used in this
project are based on the concept of a CVAE. However, for the applications to experimental data
in this work, a more powerful model is required, which will be described extensively in section
5.
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4 Related Work

In literature, several publications can be found that bear some resemblance to the current
project. Studies directly related to the current work are described in [24] and [25]. Here, two
deep learning applications to JET tokamak data are presented. The first is the application of
neural networks to form a surrogate model for plasma tomography, to speed up the processing
of sensor data. For the second application, variational auto-encoders are used, but with a
very different purpose than the applications in this work. The writers use a VAE for anomaly
detection, to find patterns in the data leading to plasma disruptions. Because the VAE has
trouble reconstructing these unusual patterns of the anomalies, a high reconstruction error is
found between the reconstruction and the original data. This can be coupled to an anomaly
score, that can indicate the disruptive patterns. These anomalous samples can then be further
investigated.

Because VAEs have been shown to be effective for anomaly detection [26], this type of application
is not uncommon in the physical sciences. VAEs were, for example, applied to find anomalous
samples of particle collisions in CERN [27]. Such an anomaly would indicate a collision that
shows behavior not modeled in the current standard model for particle physics, therefore indi-
cating a potential value of studying this sample. Although the cited work uses similar modeling
methods by using a VAE, the goals of the work presented in this thesis are very different from
this type of anomaly detection. These articles make very little use of the generative capabilities
of the model, which is what a large part of the focus will be on in this project.

For these generative capabilities, generative adversarial networks (GANs) are often used. This
is another implementation to model a generative process [28]. In [29], a comparison between
using GANs and VAEs for generative applications is presented, where the generative models
are used to generate synthetic images of galaxies. The goal of this is to gain insight into dark
energy and dark matter, by measuring the gravitational lensing induced by these galaxies. To
do this, a conditional variational auto-encoder is used to generate new images, based on certain
parameters of interest, such as brightness. This more closely relates to the work presented here,
as the generation of synthetic data is also one of the main goals of this project.

There is also a lot of work being done using GANs, rather than VAEs, especially (but not
exclusively) in the field of particle physics [30, 31, 32, 33]. However, we opted to not use these
methods, for several reasons. Firstly, due to the inherent generator-discriminator adversarial
structure of the GAN, they are hard to train [34, 35]. Secondly, the interpretability of the
GAN is very low, as well as difficult disentanglement of the latent spaces [22, 36]. Finally, the
GAN architecture lacks an explicit inference structure. Since these concepts are fundamentally
valuable to this research, the VAE was deemed more promising.

Another application in physical sciences is the usage of machine learning, and specifically neural
networks, for statistical inference [37, 38]. Autoregressive models are a viable option here [39],
but generative models can also be applied in this setting. VAE structures, or similar, have been
adjusted to perform well in these inference tasks [40, 41, 42]. Although not the main focus of
this work, we will touch upon statistical inference to determine system parameters, using the
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same VAE structure that is used for the other applications discussed in this thesis.

To the best of my knowledge, the work reported on here constitutes the first application of
generative models aimed at generating tokamak fusion samples. However, there are other ap-
plications of neural networks in this domain. This generally comprises methods where neural
networks are used to speed up a single part of the simulation process [43, 3]. This is in stark
contrast to the methods that are presented in this work, where the generative model is used
stand-alone, in a purely data-driven approach, that allows direct simulation of tokamak fusion
output profiles.
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5 Methodology

5.1 Model Structure

In [44], the Domain Invariant Variational Auto-encoder (DIVA) model is introduced, which uses
three separate latent spaces, that all contain different information regarding the sample that is
chosen. This model has been adjusted, to obtain a VAE with multiple separate latent spaces.
For each of the k conditions yi in the set of conditions y, a low-dimensional (d = 3) latent
space zyi is constructed, while one high-dimensional (d = 32) latent space zx is used to encode
the remaining information. This space should thus not contain information that is linked to
the given conditions, but rather to the unknown, hidden variables. The conditional information
is disentangled into the zyi spaces using auxiliary regression networks. Therefore, we call this
model the Regressive Disentanglement VAE (ReD-VAE). A graphical abstraction of the model
is given in Figure 9.

(a) Generative model (b) Inference model

Figure 9 – Graphical model for the ReD-VAE model with multiple separate latent spaces. The
half-coloring of the conditions indicates that these are used in semi-supervised fashion. The dashed
arrows indicate the auxiliary regression networks.

In the inference process, neural networks qφx(zx | x) and qφy(zy | x) approximate the posteriors
for zx and zy, with trainable parameters φx and φy respectively. The values for zx and zy
are then sampled from these approximate distributions. In the actual implementation, there
are separate networks for each condition yi in y, but for readability and conciseness, they are
all summarized in one term here, just like all conditional latent spaces are summarized into
one zy. Following the estimation of zy, a prediction is made of y, using auxiliary regression
neural networks ŷωy(zy), with trainable parameters ωy. These regression neural networks force
information regarding a condition yi to be contained in the latent space for that condition.

During the generative process, the standard Gaussian priors p(zx) and p(zy) for each of the
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latent spaces can be sampled, or if a condition yi is known, the conditional prior pθy(zy | y)
can be employed to obtain an estimate of zy. These conditional priors are implemented as
neural networks with trainable parameters θy. Then, a prediction x̂ can be generated, using a
decoder neural network x̂θx(zx, zy), with trainable parameters θx. As a final step, a Gaussian
moving filter is applied to smooth out the decoder output. This Gaussian filter has a kernel
with standard deviation σ = 3.

5.2 Loss and Training

The model is trained in a semi-supervised fashion, where both labeled (supervised) and unlabeled
(unsupervised) data is used during training [45]. This has two main advantages:

• The size of the used datasets can be increased. As there is no restriction to using data for
which all conditions are known, other samples where this information is missing can also
be included in training data.

• Using unsupervised training provides more regularization on the zy latent spaces. This
regularization will force the zy latent spaces to more closely follow a standard Gaussian
prior, enabling us to sample from these spaces. This will be further explained later in this
section.

The semi-supervised learning is implemented on a per-epoch basis. All samples where some
condition yi is missing are always used as unsupervised training data. Furthermore, in each
epoch, a random selection of the supervised training data is also used in unsupervised fashion
during that epoch. The size of this selection can be adjusted by a parameter rss, where rss is the
ratio of the size unsupervised selection over the size of all supervised training data. A supervised
ratio of rss = 0.5 was found to perform best, as further demonstrated in Section 8.2. Each epoch
is then split into two phases, where first all supervised samples are used for training, followed by
all unsupervised samples. For the next epoch, a new selection of unsupervised samples is made,
and the cycle repeats.

5.2.1 Supervised Training

The loss function for supervised training is composed of five components and is given in Equation
(5.1).

Lsup(x, y) = α1 Eqφx (zx|x),qφy (zy|x) [mse(x, x̂θx(zx, zy)] (5.1a)

+ α2 Eqφy (zy|x)
[
mse(y, ŷωy(zy)

]
(5.1b)

+ β1 KL (qφx(zx | x) || p(zx)) (5.1c)

+ β2 KL
(
qφy(zy | x) || pθy(zy | y)

)
(5.1d)

+ γ Ep(zx),pθy (zy|y) [mse(x, x̂θx(zx, zy))] (5.1e)

All expectations in this loss function are approximated by Monte Carlo sampling. The term given
by (5.1a) is the reconstruction loss, where the mean squared error is taken of the reconstruction
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that is output by the decoder with the original profiles x. (5.1b) gives the regression loss for
the auxiliary networks. Increasing the weight α2 ensures that information in y is captured in
the conditional zy spaces. (5.1c) and (5.1d) give the regularizing KL-divergences. The first is
the KL-divergence with the standard Gaussian prior for the non-conditional latent space zx,
the second is the KL-divergence with a conditional prior for the conditional latent space zy.
This second term is important in training for both the encoder for zy and the conditional prior
pθy(zy | y).

The final term in the loss function (5.1e) is not usually present in VAE models, but was added in
the ReD-VAE specifically for the generative goals that this model has. Since a lot of interest goes
towards using the model to generate new profiles based on given conditions, this functionality is
explicitly added to the loss function. Here, the expectation is taken over the standard Gaussian
prior p(zx) for the non-conditional latent space zx, and the conditional prior pθy(zy | y). This
is in contrast with the reconstruction term in (5.1a), where the expectation is taken over the
approximate posteriors that are output by the encoder networks. This new way of taking the
expectation, only allows the model to use the information from y to generate a new profile,
while zx can only give the variation that is not due to the conditions y, which is exactly the
type of behavior that is desired from such a model. The effectiveness of adding this term will
be further demonstrated in Section 8.1.

To make sure that the model sufficiently uses both latent spaces, while still providing good
predictions and reconstructions, the five loss weight parameters α1, α2, β1, β2 and γ need to be
carefully balanced. For example, if β1 is too large, the model can opt to use only zy, or this can be
detrimental to the reconstruction quality. The balancing of the loss parameters should be done
very carefully and is critical in the performance of the model. For this project, hyperparameter
searches were performed to try and approximate an optimal balance, for which details are given
in Appendix A.2.5. In recent work, there have been suggestions to automate this process of
parameter optimization, either via heuristics or through machine learning of the parameters
[46, 47, 48]. Similar developments for this model could lead to potential improvements to ReD-
VAE in the future.

5.2.2 Unsupervised Training

The loss function for unsupervised training is given in Equation (5.2).

Lunsup(x) = α1 Eqφx (zx|x),qφy (zy|x) [mse(x, x̂θx(zx, zy)] (5.2a)

+ β1 KL (qφx(zx | x) || p(zx)) (5.2b)

+ β2 KL
(
qφy(zy | x) || p(zy)

)
(5.2c)

Because the training labels are not available during unsupervised training, the auxiliary classifier
networks can not be trained during this phase. Furthermore, the conditional prior distributions
cannot be used. Instead of these conditional priors, the standard Gaussian prior is used dur-
ing unsupervised training, specifically for the KL-divergence in (5.2c). This invokes a desired
regularization on these latent spaces, as this indirectly also affects the conditional prior, in the
subsequent supervised training phase. This regularization is needed to allow for sampling of the
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latent space, when the goal is to generate data where one or more conditions are unknown. The
reason for this is that the conditional latent spaces are only forced to adhere to the standard
Gaussian prior in this unsupervised step. During the supervised step, the KL-divergence is taken
with the conditional prior, but since this conditional prior is implemented as a neural network
without any further restrictions, this leaves the latent space with too much freedom. This will
be further demonstrated in Section 8.2.

All neural networks are implemented in Tensorflow/Keras [49]. Further details on implementa-
tion and architectures of all models are given in Appendix A.

5.3 Model Evaluation

In order to evaluate the performance of the model, the quality of conditional generation is
considered. To do this, the KL-divergence is estimated between the predicted distribution
pmodel(x | y) with the distribution that we expect based on the dataset, pdata(x | y).

To get an estimate of the model predicted distribution pmodel(x | ym) for a sample m with
conditions ym, we first feed the conditions to the conditional encoders to obtain the distribution
pθy(zy | ym). Then, a number of samples ns is taken from this distribution. This is usually set
at ns = 100, as this amount leads to consistent results that can still be generated quickly. Now,
since this is conditional generation rather than reconstruction, there is no estimate of what zx
is for these samples, but this variation in zx will rather give a variation in the decoded samples
that can be attributed to unknown variables. To obtain this variation, ns samples are taken
from the prior distribution p(zx) = N (0,1). Together with the zy samples these are fed into the
decoder to get ns predictions for x. For these predictions, a normal distribution is assumed for
each radial point, and then the mean µmodel and standard deviation σmodel for each radial point
are used as parameters for this normal distribution. This gives the resulting pmodel(x | ym), for
each of the radial points.

As an estimate of the distribution pdata(x | ym) belonging to the conditions ym is desired, using
only the sample m is not sufficient, as more data is needed for these conditions to get an estimate
of the mean and variance. As there generally is only one sample with a specific set of conditions
in the dataset, we need to use samples that have conditions that are similar to those of the
sample m. Another sample n is considered similar if for all conditions ym,i in ym, the value of
yn,i is within a certain threshold t, multiplied by the range in training data for this condition,
according to condition (5.3).

|ym,i − yn,i| < t · (max
j
yj,i −min

j
yj,i) ∀ ym,i ∈ ym (5.3)

Then, only when the amount of samples that are found to be similar exceeds a minimum value
nmin, this sample m is considered in the model evaluation. This requirement is used to further
guarantee the quality of the estimated distribution, as no good estimate can be made when only
presented with very few samples. The data distribution pdata(x | ym) is found by taking the
mean µdata and standard deviation σdata of all similar samples, again assuming normality.
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If the requirement for a minimal number of similar samples is met, the KL-divergence is calcu-
lated between the two distributions, according to equation (5.4).

KL(pmodel(x | ym) || pdata(x | ym)) =

∫
pmodel(x | ym) log

(
pmodel(x | ym)

pdata(x | ym)

)
dx (5.4)

Under the assumption of normality for the distributions, this reduces to equation (5.5). A full
derivation of this result is given in Appendix C.

KL(pmodel(x | ym) || pdata(x | ym)) =
(µmodel − µdata)2 + σ2model

2σ2data
− 1

2
+ log

(
σdata
σmodel

)
(5.5)

The value for the KL-divergence, averaged over the radius and all samples m is then used, where
we aim to minimize this value. During training, it was found that only using the KL-divergence
favors models that provide standard deviations that are too small. To remedy this, the inverse
KL-divergence, where the roles of pmodel and pdata are interchanged, is also used. Minimizing
the sum of the KL-divergence and the inverse KL-divergence, also known as the symmetrised
KL-divergence, results in the desired optimization behaviour. The symmetrised KL-divergence
is denoted as KLsum in the rest of this work.

For the optimization procedures in this thesis, a value of t = 0.03 was used for the threshold,
along with nmin = 5 as a minimum requirement. This value for nmin is too low to robustly
determine whether the assumption of normality is valid. However, increasing nmin to values
where such an analysis is possible, would lead to very few samples qualifying for the evaluation,
without raising t to a much higher value. This is undesired, as this value for the threshold
should be as low as possible to consider two samples similar. Even though it’s not possible to
confirm the assumption of normality here, the model evaluation metric should still give valuable
information here, as it does give a quantifiable metric for how well the mean and standard
deviations of the two distributions match.
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6 Data

6.1 Simulation

The first dataset that is used is part of the dataset that is described extensively in [50]. This
is a small dataset, consisting of 43 samples. A specific JET discharge (#92436) is simulated
using a JETTO + QuaLiKiz [19] integrated model from time t = t0 to t = tf . Each simulation
contains results for a large number of tokamak quantities, giving the radial profile from ρ = 0
to ρ = 1 at each timepoint. Both time and radius are discretized into 100 points. The samples
are generated by Monte Carlo sampling of the boundary conditions. The boundary condition is
a fixed value at ρ = 0.85, for each of the quantities of interest.

In this project, we only consider the ion temperature Ti, the electron temperature Te and the
electron density ne, as these are the relevant quantities to compute the stored energy according
to equation (2.15). Because of this, these are also the only boundary conditions that are used.
For the first part, the interest lies in (semi-)steady-state solutions, so only the radial profiles
for t = tf are extracted from the original datasets. This results in a set of 43 samples, where
each sample contains a radial profile of 100 data points for Ti, Te, and ne, as well as three
corresponding values for the boundary conditions. In preprocessing, the data is scaled using a
min-max scaler, that maps the values linearly to the range [0, 1].

6.2 Experimental

The experimental dataset is extracted from a database of JET reactor data, on which Gaussian
process regression was applied, as described in [50]. As experimental profiles, the electron
temperature Te, the electron density ne, the ion temperature Ti, the ohmic current density johm
and the effective charge Zeff are extracted, all having dimensionality 101.

The database contains 13109 samples. This number is filtered down to 11612 samples, by only
choosing samples that adhere to all of the following conditions:

• Experimental profiles Te, ne and Ti are all available.

• Peak Te is smaller than 20 keV.

• Te and Ti profiles don’t have more than 2 maxima or minima, not including endpoints.

• ne profile doesn’t have more than 4 maxima or minima, not including endpoints.

• Core Te is greater than 500 eV.

• ne profiles don’t have a constant value for more than 4 consecutive radial points.

• Ohmic heating power is positive but smaller than 50 MW.

These requirements filter out all data that looks to be coming from broken sensors.

In Table 1, all experimental parameters that are extracted are given. These take the role of the
conditions y.
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Name Symbol Amount Missing

Toroidal magnetic field Bt 0
Plasma current Ip 0

NBI input power PNBI 0
ICRH input power PICRH 0
Main isotope mass M 0
Upper triangularity δu 0
Lower triangularity δl 0
Total gas input rate gr 5312

Total gas dosage gd 5312
Inner strike point radial coordinate Ri 2200
Inner strike point height coordinate Zi 2200
Outer strike point radial coordinate Ro 2197
Outer strike point height coordinate Zo 2197

Table 1 – Control room parameters that have been extracted, along with their symbols used and
the number of times this data is missing for a sample.

It is assumed that if either input power parameter is missing, this means that this form of input
power was not applied during this shot, and the power is thus simply 0. This leads to the 0 for
amount missing for both these control room parameters in Table 1.

For all samples, some more information was also extracted from the database, which is not used
as conditioning in the model, but is needed for some of the results presented in this work. This
includes the following information:

• Whether a sample is predicted to be in H-mode or L-mode, based on some heuristics.

• The phase of a sample (ramp-up, ramp-down or flat-top current).

• The Ohmic heating power, calculated from the applied plasma current.

In preprocessing, the conditions are scaled using a min-max scaler. For the experimental profiles,
a robust scaler is used. This removes the median from the data and scales by the interquartile
range, and is more robust to potential outliers that remain in the dataset after filtering.

The dataset was split into a training and testing set, where the testing set comprises 20% of the
samples for which all conditions are available. This choice was made as full flexibility regarding
the conditions is desired when testing, so it’s important to have all data available. From the
testing set, 100 samples are used as a validation dataset, for which the model hyperparameters
have been optimized.

Most of the experiments are performed with a model that is trained on experimental profiles
for Te, ne, and Ti. However, for some of the experiments, a model is used that also outputs
predictions for johm and Zeff . This is trained on a subset of the data, with the following
additional constraints:
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• johm and Zeff profiles are both available.

• Peak johm is smaller than 3 · 105 Am−2.

This further reduces the size of the dataset to 10729 samples, where 5042 are missing gas input
data, 1862 are missing inner strike point coordinates and 1859 are missing outer strike point
coordinates.
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7 Experiments on Simulated Data

7.1 Model Without Conditions

7.1.1 Reconstructions

First, a regular VAE is trained on the data, without any conditioning. To make sure the model
remains interpretative, a low-dimensional latent space is used with dimensionality dl = 5.

Reconstructions of unseen testing data are given in Figure 10. To estimate the variance induced
by the latent space estimations not being fixed points, 100 reconstructions were made. The
mean, 95%-confidence interval on the mean, and the 95%-prediction interval of the samples are
all indicated in the figure.

(a) Closest reconstruction of testing data.

(b) Most separated reconstruction of testing data.

Figure 10 – VAE reconstruction of simulated testing data.

The best reconstruction in the testing data has an average relative error of 0.022. For the worst
reconstruction, this value is 0.030, so the reconstruction quality is overall very good. When
a reconstruction comes with a larger relative error, this might appear to indicate bad model
quality, but this is not necessarily true. Of course, the goal of the VAE (a generative model) is
not to reconstruct original data, but rather to generate new samples. If a perfect reconstruction
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is desired, it makes no sense to output a mean and standard deviation for the latent space,
rather than a fixed point estimate, as this only introduces more variability. It is the influence
of the KL-divergence term in the loss that causes a reconstruction to not always be as accurate
as possible.

7.1.2 New Data Generation

By sampling from the latent space, new samples can be generated. Since no conditioning is
used here, the variability in these new samples is representative of the variability in the training
dataset. Some summary statistics of these samples are presented in Figure 11.

Figure 11 – Mean, confidence interval and prediction interval of newly generated samples using a
VAE.

Since these samples are generated without any conditions applied to them, the prediction interval
here is mostly just a representation of the variance in the original dataset. This correspondence
is almost exact, as can be seen in Figure 12. Although this does not give any new information
regarding the data, this does show that the VAE effectively captures the properties of the dataset.
In this regard, this is a confirmation that the model is working as intended.

Figure 12 – Comparison of the mean and standard deviation of VAE-generated samples with the
same summary statistics in the original dataset. A close to perfect correspondence is observed,
indicating that the model correctly captures the properties of the dataset.
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For more useful generated samples, some conditioning needs to be applied, which will be dis-
cussed in Section 7.2. However, the latent space can already be used for further investiga-
tion.

7.1.3 Investigation of Latent Space

To gain insight into the behavior of the latent space, the encoder can be used to place each
sample in the latent space. Firstly, it can be confirmed whether or not the weight of the KL-
divergence is large enough, by executing a Kolmogorov-Smirnoff test for normality for each of
the latent dimensions. The results of these tests are given in Table 2. Based on a significance
level α = 0.05, there is no reason to assume that normality is violated. Therefore, this confirms
that the influence of the KL-divergence is strong enough.

Table 2 – Kolmogorov-Smirnoff test results for normality. Based on these tests, there is no evidence
to assume that the latent dimensions are not distributed normally.

Latent dimension p-value

1 0.30
2 0.08
3 0.74
4 0.18
5 0.16

By taking two of the five latent dimensions, a scatter plot can be made of the latent predictions
that the encoder makes for each sample2. This is shown in Figure 13, where in each of the
subfigures another boundary condition is used for the coloring.

Figure 13 – Latent mean predictions of the encoder for the training data. By coloring the data-
points according to their boundary conditions, correlations between these quantities and the latent
variables can be discovered.

This shows that, apart from a few exceptions, samples with similar conditions are mapped close

2The encoder actually outputs a distribution, i.e. a mean and standard deviation from which a sample can be
taken. To keep results consistent, the mean is plotted here, rather than a sample from this distribution.
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to each other in the latent space. Low Te seems to correspond to a low value of z1, while z2 seems
to positively correlate with Ti and negatively with ne. To further quantify these relationships,
a correlation matrix can be created. This correlation matrix is given in Figure 14.

Figure 14 – Correlation matrix of the boundary conditions with the latent variables. The Pearson
correlation coefficient is used. Especially the first two latent dimensions correlate strongly with the
boundary conditions, indicating that these conditions are important for a description of the data.

This matrix confirms the hypotheses of a strong correlation between z1 and Te, and of a posi-
tive correlation between z2 and Ti and a negative correlation between z2 and ne. These strong
correlations indicate that these boundary conditions contain important information for the re-
construction of the experimental profiles. This was to be expected, as this dataset was created
by simulating profiles while varying the boundary conditions. However, the fact that the model
recognizes this importance, shows that this can be used as a tool to find out which parameters
are potentially relevant or irrelevant, once it is applied to a more extensive dataset.

7.2 Conditional Model

To be able to have more influence on what type of samples is generated by the VAE, the
conditional VAE can be used. The boundary conditions can be added to the model as distinct
conditions. Of course, other parameters could also be added, but the choice for the boundary
conditions was made here because those are the most important difference between different
samples.

First, experiments will be presented where only one of the boundary conditions is added to the
model (Te, specifically). Thereafter, boundary conditions for each of the quantities of interest
will be added, and a comparison of the results is given.

7.2.1 One Condition

Reconstructions By supplying the decoder with more direct information in the form of bound-
ary conditions, the quality of reconstructions improves. For the vanilla VAE, the average mag-
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Figure 15 – CVAE reconstruction, using the boundary condition of Te as a condition for the model.
This increases accuracy of the reconstruction.

nitude of the relative error on the testing set was 0.0262. In this case, this value decreases to
0.0192.

A reconstruction using the CVAE is given in Figure 15. We observe that the smallest standard
deviation is found in the reconstructions of Te. This was also the relevant boundary condition
that was given as input to the model, so by adding this condition the variability in that profile
is decreased most.

Conditional Generation Using the conditioning, predicted output profiles for a single boundary
condition can be made. In this experiment, the model is given the Te boundary condition of a
testing sample. Then, a prediction of the full profiles is made using the model. A result of this
is given in Figure 16. This is for the same sample as the profiles in 15. Again, one hundred
samples were taken from the latent prior to obtain an estimate for the variance.

Figure 16 – Prediction of the profiles only giving the boundary condition of Te to the model.

Because in this sample generation procedure no information is obtained from the encoder, but
samples are taken directly from the latent prior, the standard deviation increases compared to
the reconstructions given earlier, where latent information was used. Note also, that in this case,
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the profiles are not necessarily expected to match perfectly. Because the model only has limited
information, the true profile is rather expected to be somewhere in the prediction interval with
high probability.

Latent Space Adding conditions influences the latent space. Because the conditioning al-
ready gives the model information regarding the Te boundary condition, this information should
no longer be present in the latent space, due to the KL-divergence regulating the amount of
information here. The correlation matrix of boundary conditions with the latent variables is
given in Figure 17. This shows that, indeed, all correlation with Te disappears from the latent
space.

Figure 17 – Correlation matrix of the boundary conditions with the latent variables. The Pearson
correlation coefficient is used. Because the Te boundary condition was given to the model, this is no
longer modeled in the latent space, and correlations with this boundary condition are much smaller.

7.2.2 Full Conditions

Now, the model architecture remains generally the same, but in addition to the boundary
condition of Te, the conditions for Ti and ne are also passed to the CVAE. This has consequences
for data generation and the latent space behavior.

Reconstructions Again, by giving more information to the model, reconstructions are im-
proved. The same sample as given in Figure 15 was reconstructed using this model, the results
are presented in Figure 18. Using all conditions leads to high-quality reconstructions.
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Figure 18 – Reconstruction of a testing sample. Because all boundary conditions were passed as
input to the model, the variance of the predictions is very low. The reconstruction is almost exact.

Because all conditions were given, the model has a lot of information and there are few hid-
den factors. Therefore, the variance in the reconstructions decreases. A comparison of the
reconstruction quality for all these models is given in Table 3.

Model Mean relative error magnitude

Vanilla VAE 0.0262
CVAE on Te 0.0192
Full CVAE 0.0121

Table 3 – Comparison of reconstruction quality for different amounts of conditioning. Increased
information for the model in the form of conditions leads to better reconstructions.

Latent Space Collapse The simulation dataset on which these experiments are performed
is very small. Furthermore, the different samples are created by sampling different boundary
conditions, without changing other parameters. This means that by supplying the full set of
boundary conditions, there is no longer any hidden information for the latent space to represent.
Because of this and because of the regularization of the KL-divergence, the model opts to not
use the latent space, and base predictions purely on the conditioning. This results in the encoder
output being the same for all samples and dimensions: a standard Gaussian. By predicting a
latent mean of 0 and standard deviation of 1, the model fully adheres to the standard normal
prior, thus minimizing the KL-divergence. This phenomenon is known as the collapsing of the
latent space.

Because the predicted mean and standard deviation are the same for all samples, the latent space
effectively does not contain any information. These values are only barely used for reconstruction
by the model: sampling from the latent space while keeping the conditions constant does not
result in very different reconstructions, but just results in a small variance estimate. However,
the model can still be used to make predictions of the profiles for given conditions.
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Conditional Generation By using the full conditional model, data can be generated where all
the boundary conditions are known. An example of such a generated data point is given in
Figure 19. This was the sample in the testing set for which the correspondence between the
data and the generated prediction was the worst.

Figure 19 – Generated sample, compared to a sample from the testing set with the same conditions.
This generation has the worst correspondence from all testing samples. The collapse of the latent
space makes it so that the CI and PI have negligible sizes.

Even though this is the worst sample in the testing set with regards to correspondence, the
model predictions are still very good. Over all test samples, the average magnitude of the
relative error is only 1.38%, showing very good performance in predicting experimental outputs.
It is important to note here that, just like in the generation experiment in section 7.2.1, the
latent prior was sampled one hundred times to get an estimate of the confidence and prediction
intervals. However, due to the latent space collapse, this sampling procedure has very little
effect, leading to negligible intervals, as all generations are almost the same.

Now that it has been confirmed that reliable predictions can be made, the CVAE model can be
used to make predictions for dependencies on the boundary conditions. Some of these can be
used to compare with literature to confirm correctness. Such an example is given in Figure 20.
A similar dependency is given in Figure 9 in [51].
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Figure 20 – Behavior of Ti, Te and ne at ρ = 0.41 for changing ratios of boundary condition
temperatures, with corresponding standard deviations according to variation of the ne boundary
condition.

The profiles were generated for a boundary electron temperature Te,bc = 1100 eV and varying
boundary ion temperature in order to find results for different ratios. Because the electron
density boundary condition is unknown, some variance is expected. This is found by taking 100
samples from a fitted normal distribution to the electron density boundary condition distribution
in the data. Then for these 100 samples, the profiles are recreated, giving a mean and standard
deviation.

Qualitatively, similar behavior is found as in [51], where more density peaking is observed with
increasing Ti,bc/Te,bc. This indicates that the model learns these implicit patterns in the data,
even when supplied with only a small training dataset. A quantitative agreement between this
result and the literature is not expected, as there are many differences between the applied
settings.

Figure 21 shows another trend prediction. Here, the ratios of core temperature to boundary
condition temperature are shown, plotted against the different boundary conditions for the tem-
peratures. For three fixed ratios, a model prediction of the behavior is presented. Furthermore,
the training data is given, as well as predictions for these specific training data points.

Master Thesis | Daan Nieuwenhuizen 34



7 EXPERIMENTS ON SIMULATED DATA

Figure 21 – Dependencies of peak electron and ion temperatures on the boundary conditions. For
some fixed ratios of Ti,bc/Te,bc, predictions are included to show the behavior for specific sets of
conditions. Also, the training data, as well as predictions for these specific training data points are
plotted. The correspondence between these two is generally good.

The training data and model predictions correspond for almost all samples. It’s also seen that
the profiles that are made for fixed boundary condition ratios, follow patterns that are visible
in the data. For example, the figure shows that peak Te temperature ratio is mostly dependent
on the boundary temperature for Te, and not so much on Ti, as the fixed-ratio lines all follow
roughly the same curve. For Ti peaking, there does appear to be some dependency on the
electron temperature.

By using these methods, these dependencies can be examined, perhaps leading to new insights.
These insights will mainly be valuable when using experimental data, rather than the synthetic
dataset on which this was trained. Therefore, the following section will discuss the experiments
on the experimental JET data, using the more powerful ReD-VAE model.

Extrapolation Some extrapolation is possible using the CVAE, but when going far outside
of the training data range, the model’s predictive capabilities diminish. If conditions are fed
that lie far outside of the training range, unrealistic profiles are created, with sharp gradients.
Therefore, when making any conclusions based on data generated by these models, one has to
take care that the training range allows for these conclusions.
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8 Experiments on JET Data

In this section, the experiments will be discussed where the experimental JET tokamak data
is used as training and testing data. For this, more modeling power is required than in the
previous section, so the extensive ReD-VAE model described in section 5 is used here.

8.1 Conditional Generation Loss

First, the positive effect is demonstrated of the addition of a term for the conditional generation
to the loss. As discussed in section 5.2.1, the following loss term is added to the overall loss:

Ep(zx),pθy (zy|y) [mse(x, x̂θx(zx, zy))]

This term is weighted by a factor γ, and effectively minimizes the mean squared error between
a set of profiles x and the prediction x̂ when the model is only supplied with the corresponding
conditions y.

In Figure 22, the value of the model evaluation metric is given for multiple values of the weighting
factor γ. The mean and standard deviation in the Figure were determined by training 11 models
for each value of γ. Once the value for γ passes a transition region around γ = 50, the model
performs substantially better. In the transition region, a bifurcation is observed where a model
either performs well or poorly, with nothing in between, leading to a large standard deviation.
For larger values of γ, the gradient diminishes, but the effect in the region under γ = 200 is
substantial. We therefore conclude that the addition of the conditional generation loss term has
a positive effect on model performance.

Figure 22 – Progression of the summed KL-divergence that is used as model evaluation metric, for
different values of the conditional reconstruction loss weight γ. This shows that increasing γ past
some threshold around γ = 50 drastically increases model performance.
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8.2 Semi-supervised Training

As the model is trained in a semi-supervised fashion, both supervised and unsupervised samples
contribute to the training. The number of unsupervised samples during an epoch is determined
by two factors: Firstly, the unsupervised dataset consists of all samples where data is missing
for one or more of the conditions in y. Secondly, from all remaining samples, a fraction rss is
taken, that is also used in an unsupervised fashion.

Training with unsupervised samples has two advantages. The first advantage is that more data
can be used during training, as there is no restriction on having all data regarding the conditions
for a sample. This increases the number of available samples from 5,184 to 11,612 for our dataset.
The second advantage is an increased regularization of the conditional latent spaces. This is
demonstrated in Figure 23.

(a) Fully-supervised (b) Semi-supervised (rss = 0.5)

Figure 23 – Side-by-side comparison of latent spaces that were trained in fully-supervised or semi-
supervised fashion. Coloring indicates the scaled value of the relevant condition, toroidal magnetic
field. In the fully-supervised case, there is too little regularization of this latent space, which makes
the encoders diverge from the standard Gaussian prior, which prohibits effective sampling of this
latent space if the relevant condition is unknown.

In the fully-supervised case, the regularization of this space is lacking. The model is not con-
stricted to follow the standard Gaussian prior, but only the conditional prior that is implemented
using a neural network. As this provides the model with too much freedom, a very non-regular
shape is found in the latent space, that diverges a lot from the standard Gaussian prior. This
means that a large part of the latent space does not obtain a well-defined meaning, as these
parts are not used by the encoder or decoder during training. Therefore, when generating data
where this condition is non-fixed, taking a sample from the standard Gaussian prior does not
yield valid results, as the posterior distribution does not match this prior. However, in the
semi-supervised case, the latent space restriction is working much better. The latent space now
follows a standard Gaussian sphere much more closely. Therefore, the prior can be used to
sample from this latent space. Even though there is more regularization here, there is still a
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strong correlation between latent values and condition values, which are indicated by the col-
oring. This means that the auxiliary regression networks can still work correctly, despite the
extra regularization.

To further quantify the differences between fully supervised and semi-supervised training, Kolmogorov-
Smirnov tests were performed on the latent space. For this test, the latent space predictions of
each dimension were compared with a standard Gaussian. Under the null hypothesis, the dis-
tribution of samples in the latent space resembles the standard normal distribution. Figure 24
shows the p-values for these tests.

(a) Fully supervised. (b) Semi-supervised.

Figure 24 – p-values for Kolmogorov-Smirnov tests to test equality of the sample distribution in
latent space and a standard normal distribution. For fully supervised training, p-values are close to
zero for almost all dimensions.

For the model that was trained fully supervised, almost all p-values are very close to zero,
indicating that the distribution in latent space is very much different from the standard normal
distribution. The consequence of this is that samples from the standard Gaussian prior do not
accurately represent the distribution in the latent space. For the semi-supervised setting, the
p-values are much higher. Only for three of the 39 dimensions, the p-value is smaller than 0.05.
With 39 independent tests, the p-value would be expected to be under 0.05 approximately two
times, even if the null hypothesis of equality of distributions is true. We therefore conclude that,
with semi-supervised training, the latent space distribution does resemble the standard normal
prior, while it clearly does not for a model that was trained fully supervised.

The value of the rss parameter also has a substantial influence on model performance. In
Figure 25 the effect of changing this ratio is presented.
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Figure 25 – Model performance for increasing values of rss. Very low of very high values decrease
performance. A minimum is found for rss = 0.5.

The figure shows that neither high values, nor low values of rss lead to very good model per-
formance. For the low values, this is due to the lack of regularization discussed earlier. For
the high values, not enough supervised data is used to train the conditional priors. The model
performs best for a ratio rss = 0.5. Therefore, this value was used during training to obtain the
results that are presented in the rest of this document. This leads to a model with an average
KLsum metric of 1.82 for the entire testing set.

8.3 Conditional Generation

Now that the model hyperparameters have been set, the model can be used for conditional data
generation. To do this, a set of conditions y is taken, which are used in the conditional priors.
These provide a mean and standard deviation for each dimension in each conditional latent
space, from which we take ns samples. ns samples are also taken from the standard Gaussian
prior for the zx latent space. Both of these are fed into the decoder to create ns radial profiles
for Te, ne, and Ti, from which the mean and standard deviation are determined. ns profiles are
taken to get an accurate estimate of the mean and standard deviations. ns = 100 is used, as
this gives stable results.

An example of such generation is given in Figure 26, where a sample (x,y) is used. In this
figure, multiple things are presented. Firstly, Te, ne and Ti profiles (x) of the original sample
are given in blue. Secondly, the mean and standard deviation that are predicted by the VAE
are shown in orange. Thirdly, the mean and standard deviation that are expected based on
the dataset are given in green. These are constructed by finding samples in the dataset that
have conditions similar to y, where ‘similar’ is defined by condition (5.3). This also means that
the evaluation metric discussed in Section 5.3 is effectively the sum of the normal and inverse
KL-divergences between the orange and green distributions.
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Figure 26 – Example of conditional generation using the generative model. The mean and standard
deviation that are predicted by the VAE are shown, as well as those that are expected based on the
dataset. The conditions for this sample are: Ip = 1.05 MA, Bt = 1.070 T, PNBI = 0 W, PICRH = 0
W, M = 1 u, δu = 0.228, δl = 0.276, gr = 1.71 · 1020 s−1, gd = 1.21 · 1023, Ri = 2.39 m, Ro = 2.91
m, Zi = −1.73 m, Zo = −1.73 m.

In the case of this sample, the predictions for Te and Ti are very close to what’s expected for
the dataset. The predictions for ne are, however, slightly off. In an ideal scenario, the original
data point can be regarded as a sample from the predicted distribution. This means that the
amount of samples within one standard deviation from the mean should be around 68%, and
95% should be within 2 standard deviations. For the testing dataset, a count was made of how
many samples are within these boundaries. As small deviations from this are still acceptable, the
requirement is set that a sample is counted as correct when more than 60% of the radial points
are within the predicted distribution. This 60% might appear as a very loose restriction, but
under this restriction, the Te profile in Figure 26 is already rejected, even though the predictions
for this profile match the desired distribution quite closely. Table 4 lists the result for this count,
where the ‘all’ quantity indicates the amount of samples where the requirement is met for all
quantities.

Table 4 – Frequencies at which a sample is within one or two predicted standard deviations from
the predicted mean.

Quantity Within µ± σ Within µ± 2σ

Te 38.0% 79.3%
ne 40.4% 77.0%
Ti 36.4% 76.9%
all 14.9% 58.9%

The percentages are somewhat lower than in the ideal scenario. This could partly be due to the
60% restriction that was imposed being too strict, as for example the Te profile in Figure 26
could also be acceptable, even though only around 55% of the sample is actually within one
predicted standard deviation from the predicted mean. Therefore, this sample is actually too
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far off to be counted as a good sample, even though the prediction is very close. However,
decreasing the requirement further below 60% would quickly mean that samples can be counted
as being within one standard deviation, even though a majority of the sample isn’t. Those cases
should be avoided, so the threshold was set at 60%.

Still, even though the percentages in Table 4 are not perfect, general performance is very good.
The predictions can be used to get an estimate of expected tokamak behavior for a given set of
conditions, and the trends in tokamak performance as a function of certain conditions can be
investigated, which will be demonstrated in the following section.

8.4 Trend Prediction

8.4.1 Experimental Output Profiles

By using the conditional prediction, a clear understanding can be obtained of how the conditions
directly influence the experimental output profiles. To do this, one of the conditions is uniformly
varied over a range of values. For each of the values, ns samples are taken from the conditional
prior output. For the other conditions, there are two options: in the first option, the condition
retains a fixed value. The conditional prior neural networks are then employed to get a predicted
zy distribution, from which ns samples are taken. The second option is to keep the condition
non-fixed, or unknown. Instead of sampling the conditional prior, the normal prior for the latent
space is sampled. As there is no information regarding the values of zx, the normal prior for
this latent space is also sampled ns times. The concatenation of all of these latent samples is
then fed to the decoder. From this, an estimate for the mean and standard deviation of the
experimental output profiles is obtained.

The result for varying Ip is given in Figure 27. Here, Ip is ranged from the minimum to the
maximum value in the dataset, and all other conditions have a constant value, given in Table 5.
These are conditions under which mostly H-mode samples are expected.

Figure 27 – Changes in output profiles for varying plasma current. All other conditions have fixed
values. 100 samples were taken to get an estimate of the mean and standard deviation.
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The plot shows that increasing plasma current leads to increased temperatures, as would be
expected based on domain knowledge. An increased electron density is also observed for higher
plasma currents. Although the density is expected to increase with plasma current, the increase
in predicted densities can also be partly due to a correlation between the gas input and the
plasma current, which leads to the model overestimating the effect of changing the plasma
current. These types of correlations in the training data can reduce the reliability of model
predictions.

Figure 27 can be compared to a setting where the other conditions are unknown, and the normal
prior is sampled to obtain different values for the zy latent variables. This result is displayed in
Figure 28.

Figure 28 – Changes in output profiles for varying plasma current, when the other conditions
are unknown, and the normal prior is used to get latent samples. This can lead to unrealistic
combinations of conditions, giving irregularly shaped output profiles.

The thing that stands out most is the irregularly shaped prediction for Ip = 3.79 MA. This is
due to the very high plasma current involved. When randomly sampling the other conditions,
this leads to unrealistic combinations of conditions, as a high plasma current strongly correlates
with a high toroidal magnetic field and input power. The model does not handle this unrealistic
combination very well, which leads to spiky profiles and big standard deviations. This shows
some of the limitations of ReD-VAE: extrapolating into areas far outside the hypercube of
training conditions will lead to unrealistic reconstructions.

For the other profiles in Figure 28 some differences are observed, when compared to Figure 27.
The profiles generally have lower values, and the pedestal is less clearly visible. The reason
for this is that, when sampling randomly from the unknown conditions, L-mode profiles will
generally be created. As most of the training data are L-mode samples, this is the ‘default’
behavior of the output. For the large plasma currents, we do see that a pedestal starts forming,
but without the other fixed conditions, the energy in the tokamak will generally be much lower
than in Figure 28.

The behavior that is observed corresponds to what is expected based on domain knowledge,
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as a first sign of correct model performance. However, interest also lies in the quality of the
predictions of the performance of the machine, for which the stored energy and confinement
time are considered.

8.4.2 Stored Energy

To predict trends for varying conditions, again, a choice can be made to either keep the other
conditions fixed or variable. In the figures here, other conditions are fixed at values that stimulate
H-mode plasmas. These fixed values are given in Table 5.

Condition Value

Bt 3.19 T
Ip 3.45 MA
PNBI 22.2 MW
PICRH 3.12 MW
M 2 u
δu 0.172
δl 0.334
gr 1.51 · 1022

gd 1.17 · 1023

Ri 2.42 m
Zi −1.58 m
Ro 2.77 m
Zo −1.67 m

Table 5 – Control room parameters used for trend prediction. These values stimulate H-mode
plasmas.

To find the dependence of stored energy on one of the conditions, that condition is uniformly
varied from its minimum value in the dataset to the maximum value, while the others remain at
the value given in Table 5. The conditional generation procedure is then used to obtain profiles
for Te, ne and Ti, from which an estimate of the stored energy can be calculated, using equation
(2.15). In Figure 29 these trends are given for the plasma current, toroidal magnetic field, NBI
power, and gas input rate.

Figure 29a shows that for the most part, the predicted trend matches the data well. Note that
it is not expected that the error-bars, indicating the standard deviation of the stored energy,
match the distribution in the data, as all but one condition are fixed here. The trend is generally
on the high end of the distribution in the data, which again is expected since fixed conditions
are used that promote high stored energy. For low plasma current, the trend diverges from the
one in the data. This is due to the data-points for these low plasma currents only being L-mode
samples. The correlation of plasma current with the other condition also makes it such that the
combination of conditions used for these points is not present in the data. In Figure 29c the
trend predicted by the generative model again closely follows the trend that is seen in the data,
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(a) Plasma current. (b) Toroidal magnetic field.

(c) NBI Power (d) Gas input rate

Figure 29 – Comparison of stored energy trend predicted by the generative model with the dataset,
for four different conditions. Error-bars indicate the standard deviation of the stored energy. Good
agreement between data and model predictions is observed.
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indicating that the model adequately incorporates the effects of changing conditions.

In Figure 29b the trend diverges much further from the data. At first sight, this might hint to-
wards a bad model, but this behavior is actually what is expected. According to the scaling laws
discussed in section 2.2.3, there is very little dependence of stored energy on the magnetic fields
expected. The reason for this apparent correlation in the data is due to the strong correlation
of magnetic field with plasma current. The fact that the model diverges from the data (for the
most part), indicates that it is able to disentangle the effects caused directly by the changing
magnetic field, and the correlation with plasma current.

The final condition is shown in Figure 29d. For high gas rates, there is very little data, making
it hard to confirm the trend with data. However, it is interesting to see that for this set of
conditions, the model indicates that a low gas rate is expected to provide the highest stored
energy. Such a result can be relevant when tokamak operators need to decide which gas rate
to use for a given set of other conditions. Here lies one of the concrete applications of these
trend predictions: for the parameters for which there is no good theoretical model to find the
best stored energy, the generative model can be used to get an indication of what could work
well, in a much faster and cheaper way than using other simulation software or trying multiple
experiments. However, to really predict model performance, the confinement time is important,
rather than just the stored energy. Therefore, this will be discussed next.

8.4.3 Confinement Time

Using a ReD-VAE instance that’s trained to also output experimental profiles for johm and
Zeff , predictions for the Ohmic heating can be made using equations (2.9) to (2.14). For all
of the data points in the dataset, a prediction for the confinement time is made using this
derivation, by sampling from the zx space and using the conditional priors for the conditional
latent spaces. A comparison between the predicted confinement time and the confinement time
that was calculated from the data is given in Figure 30.
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Figure 30 – Confinement time calculated from the predicted profiles against confinement time
calculated from the profiles in the data. For low confinement times, the agreement is excellent, while
for higher confinement times the predicted confinement time tends to underestimate those obtained
from the data.

For low confinement times, excellent agreement is observed. For very high confinement times,
the ReD-VAE generally under-estimates the confinement time. The average magnitude of the
error is 0.037, the average relative error is 18%. This is good enough to use the predictions
sensibly, especially for confinement times on the lower side.

The scaling laws for the confinement time can now be used to validate the model predictions. To
do this, one condition is varied, the others are kept at a fixed value. The fixed values are again
the values from Table 5. These values should give mostly H-mode samples, so the comparison
is made to the scaling law given in equation (2.18). Some of the conditions are used in this
scaling law, as well as the average electron density. As the electron density is an output of the
ReD-VAE model, the average density can be calculated and used in the scaling law. The results
are plotted as confinement time against yαii ne

0.41, where yi is the varied condition and αi is the
relevant exponent in equation (2.18). As all other factors in the scaling law are constant, this
should result in a linear plot, and linear regression can be used to find the predicted scaling law.
The results for Ip and Bt are given in Figures 31 and 32 respectively.
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Figure 31 – Comparison of the scaling law for the plasma current by linear regression on ReD-VAE
predictions (blue) with the ITERH-98P(y,2) scaling law (green). Excellent agreement between the
scaling law and ReD-VAE predictions is observed.

Figure 32 – Comparison of the scaling law for the toroidal magnetic field that by linear regression
on ReD-VAE predictions (blue) with the ITERH-98P(y,2) scaling law (green). The model somewhat
overestimates the expected scaling here, but the slopes are still very similar.
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These figures both show a good agreement of predictions with the previously developed empirical
scaling law. Especially for the plasma current, the predictions closely follow the ITERH-98P(y,2)
scaling law. Here, based on equation (2.18), a slope of 0.0224 is expected. Using the linear
regression model on ReD-VAE outputs, a slope of 0.0249 is found. This shows an incredible
agreement between model predictions and empirical results from literature.

For the toroidal magnetic field, the model predictions are somewhat higher than the scaling
law, but the values are still close and the slopes are similar. The scaling-law-based approximate
slope expectation is 0.0597, and based on linear regression 0.0401 is found. However, because
only a small range of values is covered on the horizontal scale in Figure 32, this difference in
slopes does not lead to a big difference in predicted confinement times. Therefore, this is still
an acceptable agreement, considering that some approximations were made in the calculation of
the confinement time, as well as in the calculation of the scaling law, which is an experimental
approximation in itself.

The fact that sensible predictions for confinement time can be made using ReD-VAE, for pa-
rameters where the scaling laws are known, suggests that this could also be done for other
parameters, where theory or scaling laws do not provide these estimates. This could be one of
the main applications of the generative model, where generated data is used to quickly optimize
tokamak parameters for optimal fusion properties.

Focus is now shifted from generative applications to other applications, using the inference
capabilities of the model. These applications will be described next.

8.5 Condition Regression

The ReD-VAE structure, as described in section 5, involves auxiliary regression networks. Dur-
ing training, these auxiliary regression networks predict the value of a condition yi from the
corresponding conditional latent space representation zyi. This is what forces the conditional
latent spaces to disentangle the conditional information. An additional benefit of this structure
is that the auxiliary networks can be used during inference as well. Given a sample x, the
encoders can be used to obtain the latent representation in zyi, and after this, the auxiliary
network can predict the condition yi. Such an application can be useful for missing data im-
putation, where the experimental profiles are available, but the value of the conditions is, for
whatever reason, unknown.

Table 6 gives the results for this regression. In the table, the median absolute error is provided.
Because of the difference in the order of magnitude between the conditions, the median absolute
error is also provided relative to the maximum value of the condition. The magnitude of the
relative error to the predicted condition could not be provided as the conditions often have a
value of 0, leading to infinite relative errors.
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Table 6 – Median regression error and median regression error relative to the maximum absolute
value for each of the conditions.

Condition Median Error Relative to max

Bt 0.416 T 12.0%
Ip 0.236 MA 6.23%
PNBI 1.68 MW 6.37%
PICRH 0.586 MW 7.36%
M 0.476 u 15.9%
δu 0.0388 6.71%
δl 0.0359 7.39%
gr 4.02 · 1021 s−1 1.76%
gd 5.09 · 1022 4.86%
Ri 7.01 mm 0.282%
Zi 52.9 mm 3.05%
Ro 56.3 mm 1.91%
Zo 33.0 mm 1.90%

Since the errors are generally quite small in comparison to the order of magnitude of the relevant
condition, using these regression networks can be a viable method for missing data imputation.
However, the KL-regularization of the latent spaces actively counter-acts the quality of these
predictions. An unbalanced model, with very little KL-divergence, can make much better pre-
dictions of the input parameters, at the cost of the quality of generated samples. The result for
the unbalanced model is presented in appendix B. This shows the importance of balancing the
loss weight parameters for specific applications.

8.6 Discovery of Hidden Variables

The zx latent space that is not connected to the conditions should contain all information that
is relevant for data reconstruction and generation that is not contained in the conditional zy
spaces. This means that any hidden variable, not included as a condition, should turn up in the
zx space.

To further investigate these hidden variables, predictions are made using the encoders for the
zx representation for all training data. On this latent representation, which is 32 dimensional, a
k-means clustering algorithm [52] is performed, with two clusters, to find the two main groups
of samples in the dataset. Our expectation is that the two main groups are the H- and L-
mode samples, so a comparison is made between the clusters and the H-mode label from the
dataset, where a value 1 represents H-mode and 0 is L-mode. In Figure 33 the results are
given, where the 32 dimensional zx space is plotted in 2 dimensions by using a t-SNE reduction
algorithm [53].
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Figure 33 – Comparison of clusters in t-SNE reduction of zx latent space with the H/L-mode
samples. This shows that the clustering algorithm largely finds the H/L groups in the samples, with
a match of 86.3%.

Figure 33 shows that the clustering algorithm finds the two groups of H- and L-mode samples
for a large part. Due to the inherent randomness of the latent space, there is some variance
in this, but after 100 experiments it was found that the average accuracy here is 86.1% with a
standard deviation of 0.65. This is a high accuracy, especially when taking into account that in
some cases, the original labels are incorrect, as was found during testing. Correct labels could
further increase this accuracy. To further investigate the hidden variable, a comparison of the
difference in clusters is necessary. Figure 34 shows the difference in cluster center for each of
the latent dimensions. This indicates dimension 20 as the most important dimension for these
clusters.

Figure 34 – Centers of the two clusters for each of the latent dimension. The biggest difference is
observed for dimension 20.
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To gain some insight into dimension 20, a plot can be made of the consequences of varying this
latent variable. To this end, the latent representation of a random sample is taken. Then, while
all other latent variables are kept fixed, variable 20 is uniformly varied over a range of values.
For each value, the decoder is used to generate the Te, ne and Ti profiles. The result is provided
in Figure 35, where the legend indicates the value that is used for latent dimension 20.

Figure 35 – Effect of varying latent zx variable 20 on the profiles in Te, ne and Ti. The legend gives
the value of the latent variable. This shows that when the latent value is increased past a certain
point, a sudden jump is made and a pedestal region forms in the plasma boundary.

When increasing the latent variable, we see that first there is very little difference for the first
steps: this corresponds to the plasma remaining in L-mode. Then, when the value is increased
past 2, there is a sudden jump, with an increase in temperatures and density, and a pedestal
region starts to form in the core region between ρ = 0.85 and ρ = 1. These are clear signs
corresponding to an H-mode plasma. This is further confirmed when making a scatter plot of
the representation in latent space for latent dimension 20, and coloring with the H-mode label,
as shown in Figure 36. Here, a clear boundary around zx,20 = 2 is seen, where for higher values
almost only H-mode plasmas are encountered.
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Figure 36 – Scatter plot for the latent representation in dimensions 20 and 21. For zx,20 ≥ 2, almost
all samples are H-mode plasmas.

As no information regarding H/L-mode was provided to the model, this can be regarded as a
hidden variable. This result serves as a proof-of-principle, that shows that the generative model
can be applied to find these hidden variables, by clustering on the non-conditional latent space,
and then investigating the effects of changing important latent variables.
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9 Discussion

9.1 Simulated Data

In the first part of this work, the application of a VAE to a clean, simulated dataset is presented.
It was shown that in this simple setting, the VAE works exactly as expected. The latent space
variables identify relevant information that describes the differences between the samples, i.e. the
boundary conditions. This is demonstrated by high correlation values between latent variables
and boundary conditions, with a Pearson correlation coefficient ρ up to 0.88, indicating a very
strong relation. It was also shown that sampling the prior distribution yields samples following
the distribution from the data. This shows that the VAE is suitable to model the probability
distribution of tokamak data.

Then, by adding conditions in a CVAE model, the latent space becomes more relaxed. If one
of the conditions is added, this information disappears from the latent space, as it’s no longer
necessary information, and minimizing the KL-divergence requires minimal information in the
latent space. Having one of the conditions fixed decreases the predicted standard deviation,
which is of course also the expectation. However, the limited size of the dataset makes it very
hard to validate the magnitude of this decreased standard deviation.

With full boundary conditions as additional information, full latent space collapse happens.
In the setting of this simulated dataset, the three boundary conditions give full information
regarding the sample and no variation is expected. Therefore, the latent space should not
contain any information, and the posterior for the latent space simply becomes the prior. This
also means that the decoder largely ignores the latent space, and instead only uses the conditional
information. This leads to negligible variance in the predictions for full conditions, which is
exactly what should be happening, as boundary conditions are the only source of variation in
this dataset.

Furthermore, observations were made that with full knowledge of the conditions, accurate pre-
dictions can be made of the expected profiles. With a relative error magnitude of only 1.38%
on average on unseen testing data, these predictions are very reliable. These predictions can
then be used to gain some insight into the behavior of the output profiles for changing boundary
conditions. Qualitatively, this behavior is similar to what was found in other literature, but
quantitative comparisons are hard to make, because of the limited size of this dataset and there-
fore the limited amount of generalization that can be expected. Another limitation of the model
is in the extrapolation of the conditions. Once far outside of the training range, the predictions
become unreliable.

Despite these limitations, the main goal of the first part has been achieved, and the first research
question has been answered. We have shown that predictions are of high quality, standard
deviations are modeled correctly, and that the latent space contains all necessary information
but not more than that. This paves the way towards the application of VAE models in a more
rough, experimental setting, which is what is discussed next.
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9.2 Experimental Data

The second set of experiments was performed on an experimental dataset. Because this set
has a lot more variance, both due to known and unknown factors, as well as measurement
noise, a model with more capabilities is required here. Therefore, we have introduced the ReD-
VAE model, that uses regressive networks to disentangle conditional factors into separate latent
spaces, while retaining one high-dimensional latent space to account for all of the variance due
to unknown factors. The generative capabilities of this model are improved with respect to
a normal VAE or the DIVA [44] model from which it was adapted by adding a conditional
generation loss term. Using the KLsum evaluation metric, it was irrefutably shown that this
addition has a positive effect on the generative qualities of the ReD-VAE. Similarly, the positive
effect of semi-supervised training was demonstrated for this model.

Using the model optimized with these parameters, conditional predictions can be made. Here,
the variance from the resulting posterior predictions, as well as from the zx latent prior, should
provide an estimate of the variance that is expected for a given set of experimental conditions.
As there is information that is unknown to the model, the mean of the conditional prediction
is not expected to correspond exactly with the testing sample that it’s compared to. Rather,
the testing sample should be a sample of the distribution that is predicted by the ReD-VAE
model. Under this assumption, around 68% of the samples should be within one standard
deviation from the predicted mean, with 95% being in two standard deviations. The frequencies
of this that were found, however, are only around 40% and 78%, respectively. This could be
due to the counting being too strict, as we showed that there are samples that still appear
quite good, but are for some part outside of the standard deviation, and thus will not be
counted. It is hard to quantify the quality of the generation with an intuitive measure, as our
main quantification, the summed KL-divergence, is far from intuitive. However, the quality of
the generated samples is good enough that insights can be obtained into how the experimental
profiles change, when varying the conditions. The ReD-VAE model thus provides a new, powerful
method to infer experimental results, based on machine conditions, including the impact of
hidden variables. Within the boundaries of existing data-sets (as extrapolation capabilities are
limited), the method facilitates convenient data-driven experimental design.

In principle, this can also be done by multi-physics modeling, like JETTO and other physics-
based models, as long as all physics is included and accurate. However, this is only the case for
a sub-section of the plasma. For the core region, within the pedestal, modeling is accurate but
can take a few days. This can be accelerated by using machine learning for surrogate models,
but the ReD-VAE predictions are still faster than that. Additionally, ReD-VAE modeling can
provide insight on aspects that are less well modeled by theory, such as the pedestal region
and the impact of gas input and strike point parameters. Integrated modeling for this can take
weeks for a single case, with still many assumptions made. Nonetheless, theory-based modeling
can extrapolate better to new regimes, hence a combination of the two approaches would be
beneficial.

When predicting the stored energy W , the model generally seems to follow a curve similar to the
distribution of the data. For one of the conditions, the toroidal magnetic field Bt, a divergence
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from this data trend was observed. As the stored energy is expected to be almost constant for
varying Bt, this divergence shows that the model is able to largely disentangle the effects of
changing magnetic field and plasma current. The apparent distribution in the data is suspected
to mostly originate from the correlation of Bt with Ip, and the fact that the model diverges
from this, by instead predicting a constant trend, shows this disentanglement. However, we
have also seen that the model can overestimate the increase of electron density for increasing
plasma current, due to a correlation between the plasma current and gas input parameters in the
training data. Adjusting biases in the training data to account for correlations could improve
the disentanglement of these effects.

The main comparison with literature, through empirical scaling laws, and the main testament
to the workings of the ReD-VAE structure, is made by training a model that also predicts johm
and Zeff . By having these extra outputs, predictions for the confinement time can be made,
which can be compared with known scaling laws for the confinement time. The agreement
between predictions and theory is remarkably good. When varying the plasma current, almost
exact correspondence with the expectations from the scaling law was found. Variation of the
magnetic field strength also yields good results, but the correspondence is somewhat farther
off. Overall, this shows that the ReD-VAE is able to pick up on confinement time trends in the
data. This model was trained in a completely ‘physics-unaware’ method, as no knowledge of
background physics was used during training. The fact that it still identifies correct trends for the
confinement time, shows the power of these generative models. This also suggests that sensible
predictions can be made for other variables, for which the theory might not be available.

After investigating the generative properties of the ReD-VAE model, some of the additional
usages that this generative model supplies are discussed. First of all, the application of using
the auxiliary regression networks to perform inference on the conditions was demonstrated.
By supplying the auxiliary networks with the output from the encoders, an estimate for the
conditions that were used to create the sample can be obtained. The quality of these predictions
is different for each condition, but for most of them, a good estimate can be given. However,
the KL-divergence regularization on the latent spaces makes this regression much harder. A
very unbalanced model, with little KL divergence, can produce much better regression results,
as is shown in Table 7 in Appendix B. Here, very accurate predictions can be made, as there is
much more freedom in the latent space to separate samples. However, this makes the generative
properties of the model much worse, as shown in Table 8. As most of the focus in this thesis is on
generative properties, optimization was performed with regard to the KLsum metric. However, if
a model is desired that is particularly good at conditional inference, another optimization method
could be better. Careful balancing of all qualities of the model is one of the most difficult parts
of using this model, and this is one of the areas where there might be improvements possible,
as will be discussed later.

The focus was then shifted from the conditional zy spaces to the non-conditional zx space. This
space should contain the relevant information that is not directly related to the conditions that
are used. The expectation is that two main clusters are found in this space, with H- and L-mode
plasmas separated, as this causes the largest difference between the samples. The plasma mode
is considered a hidden parameter, as this was not included in the model training data. By using
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a k-means clustering algorithm, these two groups can be found in an unsupervised way with an
accuracy of around 86%. This shows that the model can be applied to find hidden parameters,
by analysis of the zx space. By finding the latent dimension in which the clusters differ most,
and reconstructing profiles for different values of this specific latent parameter, the effect of the
H-mode transition can be clearly reconstructed, with increased experimental output values, and
pedestal regions in the profiles. Again, by using a differently balanced model, a higher accuracy
could be obtained, at the cost of other performances. An accuracy of up to 93% has been
observed.

All in all, a lot of possible applications were demonstrated using the ReD-VAE model, mainly
in the sense of a proof-of-principle. Further work will be required to gain in-depth knowledge
of the specific applications, where the loss parameter balancing plays a big role. If one specific
application is desired from the generative model, it should be balanced in such a way as to
optimize this specific application. This optimization procedure could be improved, as brute-
force hyperparameter searches are very time-consuming. In recent work, suggestions are made
to automate the optimization of loss parameters for regular VAEs [46, 47, 48]. These methods
were not directly applicable for the ReD-VAE structure, but a similar approach could be very
helpful in speeding up one of the most tedious parts of the process. This could help make the
model generalize more easily, as now, for example, when adding the outputs of johm and Zeff ,
some re-optimization was needed for the model. If this could happen automatically, it would be
easier to apply in different situations.

Some benefits could also be obtained by downsampling the experimental data in preprocessing.
The experimental profiles used here have a resolution of 101 points. A lower resolution can still
be sufficient to convey the relevant information of these profiles. Downsampling in preprocessing
could potentially lead to faster training and better optimization.

When, in future work, the ReD-VAE structure is further used, some attention should also be
paid to the dataset on which it is trained. The dataset used in this work contains only stable
plasmas. However, it is very possible that for certain sets of conditions, the plasma becomes
unstable and actually cannot be sustained. The dataset strongly biases the model, in the sense
that in the context of this ReD-VAE model, unstable plasmas do not exist, as those were never
shown, and therefore a prediction for such a plasma will never be made. This could lead to
unrealistic predictions. If the model is trained on a dataset that contains all experimental
findings, rather than only successful ones, the predictions would be more reliable. This could
also enable research possibilities investigating what causes these disrupted plasmas.

It was also observed that, for conditional generation, the model performs best in parts of the
condition-space that are densely populated. Training appears to work best if the model is
supplied with as many samples as possible, so large datasets are preferable for all future work.
Large datasets could further improve results, as of course variances can only be modeled to
the extent that they are represented in the data. Also, strong correlations between different
conditions can make it difficult to disentangle the effects of these conditions. Extending datasets
with more samples to reduce these correlations can help with this.

When making predictions for conditions far outside the hypercube of training conditions, non-
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reliable predictions are made. This is one of the weaknesses of the model, where large extrapo-
lation gives unreasonable results. This could be improved in future work by making the model
physics-aware for specific applications. By integrating first principles into the model, more
consistent results are expected both within and outside of the training data ranges.
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10 Outlook and Conclusion

Looking back at the first research question and its sub-questions, these were extensively answered
in the first part of the thesis. It was shown that for such a simple dataset, a CVAE has adequate
modeling power to generate realistic synthetic results, corresponding well to what is expected
from a conventional simulation suite. For a full conditional model, very accurate predictions
can be made, and when not all conditions are supplied, the latent space takes on the role of all
unknown variables.

The secondary research question was answered by the results obtained with the powerful ReD-
VAE model. The disentangled latent spaces give a lot of flexibility regarding the input to the
model. By training in a semi-supervised fashion, with the additional loss terms from the ReD-
VAE model, the model can be optimized well for the conditional generation of data, which can
be evaluated using the KLsum evaluation metric. This metric, while somewhat non-intuitive,
leads to a model that can be used to quickly generate reliable data. By comparing this with the
original dataset, and empirical scaling laws, the model was shown to be useful for a prediction
of how reactor performance can be affected by changing input parameters, for which there
might not be any theoretical alternatives. Furthermore, by using the information in the latent
space, a proof-of-principle was presented of discovering hidden parameters, with H/L-mode as
an example. The latent space information can also be used in other ways, like for inference of
the conditions.

Although the ReD-VAE can be very useful for multiple applications, there are some downsides.
With limited extrapolation possibilities, this modeling method is not reliable for predictions far
outside the range of training data. Furthermore, a biased dataset can lead to biased predictions,
as this model will always predict a stable plasma, which is not realistic. In follow-up work,
more extensive datasets could supply valuable additional information. Another improvement
could be in automatically learning the loss weight parameters, as this is the most inflexible part
of this model. Lastly, incorporating first principle physics into the model architecture could
improve extrapolation capabilities. By improving these points, or optimizing the model for
specific applications, deeper research into using ReD-VAE for a specific application is expected
to yield valuable results.

We conclude that ReD-VAE shows tremendous potential in several applications for tokamak
research. If future work automates the process of loss weight optimization, the ReD-VAE would
not only be very powerful, but also very flexible. This structure can then be applied in not only
tokamak fusion simulation, but for all sorts of experimental research, where output profiles are
generated corresponding to some set of input conditions. This makes the results in this work
valuable for a wide range of fields of research.
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A MODELS

A Models

A.1 Simulated Data

For the simulated data, a simple model suffices. The hidden structures of the encoder and
decoder that were used are the same, with two dense layers with 256 nodes and ReLU activation
function, followed by a dropout layer with a 50% drop rate.

For the encoder, this hidden block feeds into two output layers, each with five nodes, as five is
the dimensionality of the latent space that was used. One of these layers then represents the
mean in this latent space and the second represents the standard deviation3. The input to the
encoder is a concatenation of the three experimental profiles with the used conditions in the
case of a CVAE, or just the experimental profiles in the case of a vanilla VAE.

The decoder takes latent samples as input, and the hidden block feeds to a single dense out-
put layer with 300 nodes, that give predictions for each of the radial points for each of the
profiles.

The model was trained for 20,000 epochs, using Adam optimization [54]. The high amount of
epochs helped to remove some spikes in the output.

A.2 Experimental Data

The ReD-VAE model for the experimental dataset is more complex, as was described in section 5.
This model consists of four different sub-models:

• The conditional priors pθy(zy | y).

• The approximate posteriors qφx(zx | x) and qφy(zy | x).

• The decoder x̂θx(zx, zy).

• The auxiliary regression network ŷωy(zy).

The architectures for all of these sub-models will be discussed separately in the following sub-
sections. The model has a latent dimension dzy = 3 for all of the conditional latent spaces,
and dzx = 32 for the non-conditional latent space. It was trained for 5000 epochs, using Adam
optimization [54], with each epoch consisting of two phases, as described in section 5. The
full training procedure takes around six hours on the Marconi100 accelerated computing cluster
from CINECA with an IBM POWER9 AC922 CPU at 3.1 GHz and an NVIDIA Volta V100
GPU. Evaluation of a trained model can be performed in around thirty seconds locally, on an
Intel i7-10750H processor at 2.6 GHz.

3The actual output of the standard deviation layers in all VAEs discussed in this thesis is the logarithm of the
variance, as this is more numerically stable than directly outputting standard deviation during training.
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A.2.1 Conditional Priors

Figure 37 – Network architecture of a single conditional prior network.

A very shallow neural network suffices for the conditional priors. As shown in Figure 37, there are
only 2 hidden dense layers in the model, each with 32 nodes and ReLU activation function. These
lead to two output layers, one for the latent mean and one for the latent standard deviation.
Each of those layers thus has a number of nodes equal to the dimensionality of the zy space,
dzy, and a linear output function. One such network is made for each condition, and all of these
networks work in parallel.

A.2.2 Approximate Posteriors

Figure 38 – Architecture for the approximate posterior network qφy
(zy | x).

Master Thesis | Daan Nieuwenhuizen 64



A MODELS

The approximate posterior networks feature a more complex architecture, as shown in Figure 38.
For each of the input quantities, there is a convolutional block consisting of four one-dimensional
convolutional layers followed by a flattening layers. The convolutional layers have 16, 32, 32,
and 64 filters, with kernel sizes 2, 2, 2, and 4, and with 1, 1, 1, and 4 strides. The convolutional
layers have ReLU activation functions. These are concatenated into a dense block consisting of
two layers with 128 nodes and ReLU activation. Finally, these feed into two output layers for
each of the latent spaces, one for the means and one for the standard deviation.

The encoder for the non-conditional latent space has the same architecture, but with only two
output layers for the non-conditional latent space.

A.2.3 Decoder

Figure 39 – Architecture for the decoder network.

The decoder architecture is for a large part a mirror image of the encoder architecture, see
Figure 39. First, the information from all latent spaces is combined in one dense layer with 128
nodes. This is split into 5 parallel deconvolutional blocks, that are each preceded by a dense layer
with 1536 nodes. All dense layers have ReLU activation functions. These layers are followed by
five one-dimensional deconvolutional layers, with 64, 32, 32, 16, and 1 filters, and kernel sizes
equal to 4, 3, 2, 2, and 1. The first layer has a stride of 4, for the remaining layers this is 1. The
last deconvolutional layer has a linear activation function, the preceding four layers have a leaky
ReLU activation. Furthermore, these convolutional layers have L2 regularization on kernel, bias,
and activation.
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A.2.4 Regression Network

Figure 40 – Architecture for the auxiliary regression networks.

The regression networks again work in parallel, with one network for each of the conditions.
Two hidden dense layers with ReLU activation and 32 and 16 nodes feed into one output node,
with a linear activation.

A.2.5 Hyperparameter Optimization

In order to find a good model, a delicate balance is required between the different model loss
parameters α1, α2, β1, β2 and γ. Hyperparameter optimization was run in a grid of parameters
to find the best model. This optimization was performed in regard to the summed KL-divergence
model evaluation metric. For the loss parameters, the following values were used:

α1 ∈ {10, 100, 500}
α2 ∈ {10, 100, 500}
β1 ∈ {0.1β2, 0.5β2, 0.9β2}
β2 ∈ {10, 50, 100}
γ ∈ {100, 500}

The choice to scale β1 relatively to β2 is because we always want β1 to be lower than β2. This
is because β1 regulates the KL-divergence in the zx space. It should always be preferable for
the model to encode information into zx, unless it’s beneficial for the regression networks in
order to predict y. Therefore, the KL-divergence term for the zx space should be lower than the
term for zy. For γ, only high values were considered, as it was earlier shown that high values
consistently give better model performance.

This hyperparameter optimization yielded the best performance for the following set of loss
parameters: (α1, α2, β1, β2, γ) = (100, 100, 10, 100, 500). After this, the semi-supervision ratio
was optimized, by training a model for the following values:

rss ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}

This yielded the best performance for rss = 0.5.

For the model that also outputs Zeff and johm, a slightly different optimization is required. As
five experimental output profiles are generated here, rather than three, the parameters that are
related to profile generation in the loss function (i.e. α1 and γ) are multiplied by a factor 5/3.
This resulted in much better performance for the prediction of confinement time.
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B Results for an Unbalanced Model

This section presents some alternative results with an unbalanced model, where the relative
weight of the KL regularization that is applied in the ReD-VAE loss is 1000 times weaker than
in the model that was used in the rest of this work. This leads to better performance for some
tasks, but much worse performance in other applications.

Condition predictions with this model are better, as the latent space has more freedom. This
makes regression on this space easier. Results are presented Table 7.

Table 7 – Median regression error and median regression error relative to the maximum absolute
value for each of the conditions, for a model with very little KL regularization.

Condition Median Error Relative to max

Bt 0.162 T 2.97%
Ip 0.112 MA 4.67%
PNBI 0.131 MW 0.495%
PICRH 0.0139 MW 0.175%
M 0.0143 0.477%
δu 0.0213 9.69%
δl 0.0151 3.11%
gr 1.489 · 1021 0.650%
gd 2.32 · 1022 2.22%
Ri 8.44 mm 0.340%
Zi 16.3 mm 0.941%
Ro 25.2 mm 0.855%
Zo 10.6 mm 0.611%

Generative properties of this model are, however, much worse than the original model, as shown
in Table 8.

Table 8 – Frequencies for how many times a sample is within one or two predicted standard devia-
tions from the predicted mean, for a model with very little KL regularization.

Quantity Within µ± σ Within µ± 2σ

Te 1.06% 12.8%
ne 1.64% 16.2%
Ti 1.35% 13.7%
all 0.00% 1.64%
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C Derivation of KL-Divergence for Normal Distributions

Here a derivation for a simplified representation of the KL-divergence of two normal distributions
p(x), with mean and standard deviation µp and σp, and q(x), with mean and standard deviation
µq and σq, is given.

By definition, the KL-divergence is:

KL(p(x) || q(x)) =

∫
p(x) log

(
p(x)

q(x)

)
dx (C.1)

And by definition of the normal distribution:

p(x) =
1

σp
√

2π
e
− (x−µp)2

2σ2p (C.2)

For q(x) a similar form can be used. Substituting these in the logarithm term yields:

log

(
p(x)

q(x)

)
= log

 1
σp
√
2π
e
− (x−µp)2

2σ2p

1
σq
√
2π
e
− (x−µq)2

2σ2q

 (C.3)

= log

(
σq
σp

)
+ log

(
e
− (x−µp)2

2σ2p

)
− log

(
e
− (x−µq)2

2σ2q

)
(C.4)

= log

(
σq
σp

)
− (x− µp)2

2σ2p
+

(x− µq)2

2σ2q
(C.5)

Using this we can split up the integral from (C.1) and treat all parts individually.

KL(p(x) || q(x)) =

∫
p(x) log

(
σq
σp

)
dx (C.6a)

−
∫
p(x)

(x− µp)2

2σ2p
dx (C.6b)

+

∫
p(x)

(x− µq)2

2σ2q
dx (C.6c)

For the first term (C.6a):∫
p(x) log

(
σq
σp

)
dx = log

(
σq
σp

)∫
p(x) dx = log

(
σq
σp

)
(C.7)

Since for the integration of a probability density function we have:∫
p(x)dx = 1 (C.8)
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By definition of the variance:

σ2p =

∫
p(x)(x− µp)2 dx (C.9)

we have for the term in (C.6b):

−
∫
p(x)

(x− µp)2

2σ2p
dx = − 1

2σ2p

∫
p(x)(x− µp)2 dx = −

σ2p
2σ2p

= −1

2
(C.10)

The final term in (C.6c) requires some careful rewriting:∫
p(x)

(x− µq)2

2σ2q
dx =

∫
p(x)

((x− µp) + (µp − µq))2

2σ2q
dx (C.11)

=

∫
p(x)

(x− µp)2 − 2(x− µp)(µp − µq) + (µp − µq)2

2σ2q
dx (C.12)

=
1

2σ2q

∫
p(x)(x− µp)2 dx

− 2(µp − µq)
2σ2q

∫
p(x)(x− µp) dx

+
(µp − µq)2

2σ2q

∫
p(x) dx (C.13)

=
σ2p
2σ2q

+
(µp − µq)2

2σ2q
=

(µp − µq)2 + σ2p
2σ2q

(C.14)

Where, in order to obtain (C.14), (C.8) and (C.9) were used, as well as the definition of the
mean in: ∫

p(x)(x− µp) dx =

∫
p(x)x dx− µp

∫
p(x) dx = µp − µp = 0 (C.15)

By substituting the results from (C.7), (C.10) and (C.14) into (C.6) we obtain the final result
for the KL-divergence:

KL(p(x) || q(x)) =
(µp − µq)2 + σ2p

2σ2q
− 1

2
+ log

(
σq
σp

)
(C.16)
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