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Abstract

As more and more events play out on a global scale, the need for good visualization of geograph-
ical data rises. Speckmann and Verbeek [31] introduced a novel type of thematic map called
necklace maps. They also present an algorithm that computes suitable symbols given a necklace.
Thus far, no algorithms exist that generate the necklaces. In this thesis we develop algorithms
that generate suitable necklaces for necklace maps. Our algorithms produce two types of neck-
laces: circular necklaces and star-shaped necklaces. A suitable circular necklace satisfies a few
quality criteria: (1) The underlying map should be recognizable. (2) It should be easy to relate
the data to the corresponding regions. (3) The necklace should be as small as possible while sur-
rounding the regions. For star-shaped necklaces, we additionally identify the following quality
criterion: (4) The necklace should follow the shape of the set of regions it surrounds closely.

Our algorithms take as input a set of polygons that represent the regions of the map. For
circular necklaces we first approximate the regions as a set of colored points, and then compute
the smallest disk that contains at least some number of points of a certain color, for every color.
Our algorithm finds this disk in expected O(n2 logn) time, where n is the total number of points.
For star-shaped necklaces we first compute the union of all polygons. Then, we compute a small
set of feature points, using the medial axis, that describe the shape of the continent. Finally,
we draw a cubic Bézier spline through the feature points. We then interpolate between circular
necklaces and star-shaped necklaces. The algorithms are experimentally evaluated on different
maps. In general the results are visually pleasing.
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Chapter 1

Introduction

In this day and age, society is driven by data. As more and more events play out on a global scale,
the need for good visualization of geographical data rises. A good example is the COVID-19
pandemic during which all sorts of maps were used to visualize the spread of the virus. These
maps visualize data that have a non-negative numeric value for every region on the map. One
such type of map is the proportional symbol map, see Figure 1.1(a). A proportional symbol map
is a type of thematic map, that is, a map that shows a particular theme using geography as a
reference. It uses symbols of varying size to represent data values. These symbols are scaled
such that the size of the symbol is proportional to the data value of the region it belongs to.
The symbols are typically disks or squares, but any shape is possible. Proportional symbol maps
look good when there are not too many regions or when small regions have a small data value
associated with them. However, as the number of regions increases, the map becomes cluttered
and difficult to parse. Symbols can also occlude regions entirely—in Figure 1.1(a) the Benelux is
not visible anymore. To solve these issues, Speckmann and Verbeek [31] presented a new type of
thematic map called necklace maps. The general idea of necklace maps, see Figure 1.1, is to place
symbols of varying size—also called beads—along a curve called the necklace. The beads of the
necklace display data values associated with the regions, similar to proportional symbol maps.
This necklace goes along the outside of the map. By placing symbols on the necklace instead
of directly on the regions, less of the map will be occluded. However, this makes it harder to
associate the symbols to their corresponding regions.
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Figure 1.1: Total number of COVID-19 cases per 1 million population as of June 11th, 2020. Left
a proportional symbol map, right a necklace map with a circular necklace denoted by the black
line.
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CHAPTER 1. INTRODUCTION

An advantage of necklace maps compared to proportional symbol maps is that the symbols
in necklace maps are still discernible even if small regions have a large data value. For example,
the proportional symbol map in Figure 1.1(a) contains overlapping symbols which make it hard
to read; the necklace map in Figure 1.1(b) does not have this problem. Another advantage is
that the linear ordering of the beads along the necklace makes it easier for the reader to compare
data values. A challenge for necklace maps is that it should be easy to associate symbols to their
corresponding regions. A specific styling can help mitigate this issue: We give the beads the
same color as the corresponding region, and we place the name of the region on the beads. A
good necklace is also important. It is easier to associate a symbol to its corresponding region if
the symbol lies close to the region. In order to place all symbols close to their corresponding
regions, we need a necklace that closely surrounds the regions. However, this necklace should
also not lie too close to the regions, because then the symbols might occlude the regions.

Speckmann and Verbeek present an algorithm [32] that, given a necklace, computes optimal
symbols with relation to a a few quality criteria: (1) It should be easy to associate the symbols
to their corresponding regions. (2) The symbols should be disjoint. (3) The symbols should be
maximal in size. (4) The symbols should be suitably ordered along the necklace. This algorithm
also works with multiple, disjoint or nested, necklaces. Their algorithm does not generate neck-
laces, nor does any algorithm currently exist that generates necklaces. However, we do want to
be able to generate necklaces automatically. This problem is challenging because we need some-
thing precise to optimize for, while human intuition on what makes a necklace good, is vague
and unclear. Besides the size and the location of the necklace, the shape also plays a significant
role. Circles are perhaps the most visually pleasing shape for necklaces. However, where a circu-
lar necklace looks good on one map, it might not work so well for another map, see for example
Figure 1.2. In this figure the circular necklace leaves a significant amount of empty space in the
bottom left quadrant and can make a symbol corresponding to Nigeria lie far away from Nigeria
itself. Here we should use a necklace that follows the shape of the continent more closely.

NG

(a)

NG

(b)

Figure 1.2: (a) A circular necklace is shown which leaves a significant amount of empty space in
the bottom left quadrant of the necklace. (b) A freeform necklace, which is better suited for this
map.

The goal of this thesis is to develop an algorithm that generates suitable necklaces with rela-
tion to a few quality criteria. We consider two types of necklaces: one where the necklace must
be a circle, and one where the necklace can take a freeform shape. For this we split the algorithm
into two separate parts. Algorithm CircularNecklace produces a suitable circular necklace,
and algorithm FreeformNecklace produces a suitable freeform necklace.
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CHAPTER 1. INTRODUCTION

What makes a necklace suitable is captured in the following quality criteria.

• Recognizability – Because necklace maps aim to solve, among others, the problem of oc-
clusion that proportional symbol maps have, the underlying map should not be occluded
too much. One should be able to easily relate the data to the corresponding regions, but
for that the regions need to be recognizable. Therefore, occlusion is allowed but important
borders should be visible. Hence, generally we want the necklace to surround all regions.

• Position – It should be easy to associate the symbols to their corresponding regions. The
algorithm by Speckmann and Verbeek [32] places the symbols as well as possible for any
given necklace. However, a good necklace helps as well, as shown in Figure 1.2.

• Size – The necklace should be as small as possible. Assuming the necklace surrounds the
regions, this allows balance between the size of the symbols and the size of the regions. It
also makes the symbols lie closer to the regions, which makes the map easier to read.

For freeform necklaces, we additionally identify the following quality criterion.

• Shape – The necklace should follow the shape of the set of regions it surrounds closely.
Again, the goal is to allow the reader to easily associate the symbols to their corresponding
regions.

1.1 Problem Statement

We want to compute a suitable necklace for a given input map. We formalize the problem as
follows. Let {P1, ..., Pm} be a set of m polygons which represent the regions of the input map.
A polygon is a shape described by a finite number of straight line segments that form a closed
circuit. The line segments are called edges and the points connecting the edges are vertices.
A simple polygon is a polygon that does not have holes and does not intersect itself. A convex
polygon is a simple polygon in which every line segment between two points on the boundary
lies completely within the polygon. We split the problem into two parts: compute a suitable
circular necklace, and, compute a good freeform necklace. We will now describe the output,
requirements, and modeling for CircularNecklace and FreeformNecklace.

Circular necklaces. The output of CircularNecklace is a circle, which we model as a tuple
(p,r) where p is the center of the circle and r is the radius of the circle. One of the quality criteria
for circular necklaces is that occlusion is allowed, but the underlying map should not be occluded
too much. Occlusion is caused by the symbols. In Figure 1.3 part of a necklace is shown together
with its annulus. An annulus is a region bounded by two concentric circles. The annulus of a
necklace is the region in which the symbols lie. Since the annulus of the necklace is determined
when constructing the symbols—which happens in the algorithm by Speckmann and Verbeek—
we do not have access to it at this stage. Hence, in order to capture occlusion, we should place the
necklace in such a way that the annulus of the necklace will not occlude the regions too much. We
can solve this by placing the necklace around all regions. However, placing the necklace around
all regions might result in a necklace that is too large. Hence we allow some overlap between the
interior of the necklace and the regions. Since a smaller region is more easily occluded by the
annulus than a larger region, we should be able to specify how much of a region the necklace is
allowed to overlap. To this end we model the amount of overlap between the necklace and the
regions as proper fractions, that is, a fraction that lies between 0 and 1. Every region in the map
is assigned a fraction that dictates what fraction of the area should lie within the circle. For a
polygon Pi and its assigned fraction 0 ≤ xi ≤ 1, at least xi times the area of Pi should lie within
the circle. This model allows us to give large regions a small fraction and small regions a large
fraction. We can also give a region the fraction 0, then the region does not have to lie within
the circle. We use this flexibility to improve readability, by, for example, placing Iceland outside
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(a) (b)

Figure 1.3: (a) An annulus (dashed lines) together with a necklace (solid line). (b) The width of
the annulus represents the maximum size a symbol can have.

of the necklace and giving Russia a smaller fraction, see Figure 1.4. We optimize the radius of
the circle by making it as small as possible while satisfying the fractions of each polygon. This
satisfies our third quality criterion. Finding the smallest disk that satisfies the fractions for all
polygons, is a challenging problem. The objective is to find that smallest disk that contains at
least some fraction of the area of a certain polygon, for every polygon. To reduce complexity, we
transform the problem into an optimization problem on a set of colored points. We transform
each polygon into a set of points that represents the area of the polygon well. How exactly we
pick this set of points can be read in Chapter 2. Every set of points representing each polygon is
given its own color. For a set of n colored points of m different colors, the optimization problem
is then to find the smallest disk that contains at least some number of points—according to the
fractions—of a certain color, for every color. We solve this problem in Chapter 3.

Figure 1.4: A circular necklace. Iceland has been excluded and just a small fraction of the area
of Russia lies within the necklace.

Freeform necklaces. The output of FreeformNecklace is modeled as a set of connected Bézier
curves called a Bézier spline. Bézier curves are parametric equations that were originally intro-
duced by Paul de Casteljau [9].

A requirement from the algorithm that places symbols on the necklace by Speckmann and
Verbeek [32], is that the necklace should be a star-shaped curve, that is, a curve within which
there exists a point that can see the whole curve. This curve should be smooth. In particular, it
should be a C1-continuous curve, that is, a curve of which the first derivative is continuous, thus
no sharp bends may occur in the curve, see Figure 1.5. From this point onward, we will refer to
freeform necklaces as star-shaped necklaces.

To satisfy the additional quality criterion for star-shaped necklaces, we should be able to cap-
ture the global shape of the set of regions. We do this by modeling the global shape of the polygon
as a set of points called feature points. These feature points are placed in strategic positions on
the border of the set of regions. We can apply offsets to the feature points in order to change the
amount of overlap the necklace has with the regions. How we construct the set of feature points
and use them to compute a suitable Bézier spline can be read in Chapter 4.
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(a) (b)

Figure 1.5: (a) A continuous curve containing a sharp bend, making it C0-continuous. (b) A
(smooth) continuous curve with a continuous derivative, making it C1-continuous.

1.2 Related Work

Thematic maps. There exist many types of thematic maps for visualizing per-region data. The
choropleth map [40] is perhaps the most frequently used type of thematic map used to display
geospatial data. Choropleth maps make it very easy to relate data to the corresponding regions—
the regions are simply colored or shaded. However, this benefit comes with a few downsides.
Unless a legend is used, it is hard to compare the data value of two differently shaded regions.
Large regions also tend to be overemphasized and their shading might suggest that the data is
uniformly distributed throughout the region. A choropleth map works better when the regions
are similar in size.

Another popular type of thematic maps is the cartogram. This type of map distorts the re-
gions such that the area of the region is proportional to the data value corresponding to that
region. Cartograms are good at showing large discrepancies between regions, however, it may
become difficult to compare small regions, depending on the variance between the data values.
Algorithms that compute cartograms have existed for some time [10, 34, 37].

A third popular type of thematic maps is the proportional symbol map—also called graduated
symbol map. Proportional symbol maps make use of symbols placed on regions of which the
size is proportional to the data value of that region. This makes it easy to associate symbols
with regions. It also conveys quantities better than choropleth maps. A downside is that these
symbols may overlap when there are many small regions, making the map hard to read. Large
symbols can also occlude small regions. Cabello et al. explore how overlapping symbols should
be stacked to achieve optimal readability [7].

Necklace maps. Necklace maps are a novel type of thematic maps introduced by Speckmann
and Verbeek [31]. As we touched on before, necklace maps place symbols on a curve around
the regions called the necklace. Necklace maps solve the problem of occlusion that proportional
symbol maps have. However, by placing the symbol on a curve, the ability to associate symbols
to their corresponding regions is hindered. The algorithms [32] by Speckmann and Verbeek
compute, given a necklace, a necklace map with optimally placed symbols, where optimal refers
to a few quality criteria the authors define: (1) It should be easy to associate the symbols to
their corresponding regions. (2) The symbols should be disjoint. (3) The symbols should be
maximal in size. (4) The symbols should be suitably ordered along the necklace. Every symbol
has a corresponding feasible interval on the necklace which specifies acceptable positions for
that symbol. The authors first compute feasible intervals on the necklace, they then optimize the
symbol sizes, and finally they optimize the symbol placements. They also extend their algorithm
to work with nested necklaces and with multiple disjoint necklaces.

Smallest enclosing disk. Since we would like to solve a problem on colored points, we first
explore the problem space of enclosing points using a circle. Problems related to finding the
smallest disk containing some number of points have been studied for quite some time. In 1983
Megiddo presented an algorithm that finds the smallest circle containing a set of n points in R

2

in O(n) time [24]. In 1993 Efrat et al. [12] presented an algorithm that solves the Smallest k-
enclosing disk problem. In this problem the objective is to find the smallest disk that contains
at least k points from a set of n points. They solve this problem in O(nk log2n) time using O(nk)
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CHAPTER 1. INTRODUCTION

storage. In 1995 Matoušek improved upon this bound and presented a randomized algorithm
that finds the minimal disk that encloses at least k points in expected O(n logn + nk) time [21].
More recently, Har-Peled et al. improved upon the algorithm of Matoušek and presented a ran-
domized algorithm that runs in O(nk) expected time [18].

A different kind of problem, in which we introduce colors, is the problem of finding the
Smallest Color-Spanning disk. This problem is about finding the disk with smallest radius that
contains at least one point of each of the m colors in total. It can be found using the upper
envelope of m Voronoi surfaces. A Voronoi diagram of a set of points in R

2—called sites—is
a partition of the plane into Voronoi cells such that all points in a cell have the same nearest
site. The Voronoi surface of a Voronoi diagram is the set {(p,d(p)) | p ∈ R

2} ⊆ R
3, where d(p)

is the minimum distance from p to any site of the Voronoi diagram. The upper envelope of m
Voronoi surfaces can be computed inO(nm logn) time and has complexity Θ(nm) [20]. Abellanas
et al. present an algorithm that computes the farthest color Voronoi diagram, from which the
smallest color-spanning disk can be computed, inO(n2α(m) logm) time [1], where α is the inverse
Ackermann function.

The Exact Colored k-enclosing disk problem is a combination of the problems described
above. In this problem the objective is to find a disk that encloses exactly some amount of points
of a certain color, for every color. This problem has recently been studied by Barba et al. [4]. The
algorithm presented by Barba et al. makes use of higher order Voronoi diagrams, specifically
a kth order Voronoi diagram, to find such a disk. A kth order Voronoi diagram is a special type
of Voronoi diagram where every cell consists of points that have the same k nearest sites. Their
algorithm runs in O(KVD(n,k)) time where KVD(n,k) denotes the time required to construct the
kth order Voronoi diagram. An efficient algorithm for computing a kth order Voronoi diagram is
presented by Agarwal et al. Their algorithm runs in O(k(n− k) logn+ n log3n) expected time [2].
Barba et al. also extend this problem to the Smallest Exact Colored k-enclosing disk problem
and mention that the smallest disk can be found with at most an O(k) increase in running time
by computing the smallest enclosing disk of the k nearest neighbors for every candidate Voronoi
cell. The problem we would like to solve, the Smallest Colored k Enclosing Disk problem, is
closely related. We want to find the smallest disk that contains at least some number of points of
a certain color, for every color. This problem is similar to the problem that Barba et al. solved,
however, we do not require an exact number of points.

Curved schematization. We want to draw curves around continents. Hence, we first explore
the problem space of drawing curves with relation to geography. The process of schematization is
to greatly reduce detail of maps beyond what is necessary to achieve its goal. A well-known
example are the metro maps. Curved schematization aims to schematize maps using curves.
Fink et al. [13] use cubic Bézier curves to draw metro maps automatically. A cubic Bézier curve is
a curve given by a cubic polynomial and is drawn using four control points. Mi et al. [25] provide
a computational method for the abstract depiction of 2D shapes in terms of parts. Curved schem-
atiztaion has been explored by Van Goethem et al. [36]. Their algorithm transforms polygons into
a schematic representation using circular arcs. In another paper, Van Goethem et al. [35] present
a framework for topology-preserving curved schematization.

1.3 Contribution and Organization

The remainder of the thesis is structured in the following way. In Chapter 2 we transform poly-
gons into representative sets of colored points in order to transform a problem on polygons into
a problem on sets of colored points. In Chapter 3 we explore various algorithmic ideas and we
present an algorithm that finds the smallest disk containing at least some number of points of a
certain color, for every color. In Chapter 4 we present a method to compute suitable star-shaped
necklaces using Bézier curves. Finally, we experimentally evaluate our algorithms and models in
Chapter 5. The experiments show that our results are visually pleasing.
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Chapter 2

Discretizing Polygons

In this chapter we discuss how we can transform a polygon into a strategically chosen set of
points that captures the area of the polygon well. This set of points should be chosen in such a
way that we also capture small features such as protrusions and jagged edges. One way to do this,
see Figure 2.1, would be to overlay the polygon with a very fine grid of high enough resolution.
However, one can imagine that we require a very fine grid in order to capture these small features.
This may require many points. In Figure 2.1(a) mainland Greece is shown. In Figure 2.1(b) we
overlay this region with a dense grid of points. However, as we show in Figure 2.1(c), even a
dense grid might not represent the area of the polygon well. Thus an even finer grid is required.
Moreover, the inner region of Figure 2.1(b) contains many points that are superfluous. As we
have seen in Chapter 1, algorithms for colored points are inefficient for large numbers of points,
and hence using a small number points is desirable. This brings us to the problem statement for
this chapter: How can we sample a small set of points from a polygon and prove that this sample
represents the area polygon well enough? More precisely, we require that a disk that covers 1/2 of
the points sampled from a polygon, covers between 1/2−ε and 1/2+ε of the area of the polygon,
for an error bound ε. We are interested in how many points we should sample to satisfy these
error bounds.

We would like to approximate the area of a polygon P using a small set of points. Suppose
P is a set of points that perfectly captures the area of P—imagine a grid of points in P whose
density approaches infinity. We can then use P as a proxy for the area of P . This allows us to
approximate the area of P by approximating P using a subset A of P . Then, if A captures P well,
A will also capture the area of P well. A suitable set A can be constructed using the notion of an
ε-approximation.

(a) (b) (c)

Figure 2.1: (a) Mainland Greece. This polygon has many jagged edges and thin protrusions. We
need a very fine grid in order to capture all the features. (b) A fine grid overlaid on mainland
Greece. (c) This area of Greece—Chalkidiki—is not captured well, even for our fine grid. The
blue points are the only points that lie within the polygon.

Generating Optimal Curves for Necklace Maps 7



CHAPTER 2. DISCRETIZING POLYGONS

2.1 ε-Approximations

An ε-approximation, introduced by Vapnik and Chervonenkis [39], of a set of points P is a subset
A of P that captures P with respect to a set of geometric objects, such as disks. The value of ε is
the error we are willing to accept: If some disk covers 1/2 of the points of A, then that disk covers
between 1/2 − ε and 1/2 + ε of the points of P and vice versa. Haussler and Welzl introduced a
useful set of notations [19] to describe the notion of ε-nets, a notion related to ε-approximations.
We use their notations when defining ε-approximations. Let X be a set of points and let R be a
family of subsets of X called ranges. A range space S is a pair (X,R). For some finite subset P of
X, R|P is the projection of R onto P , which is defined as

R|P := {P ∩R | R ∈ R}

P is shattered by R if R|P is equal to the powerset of P , that is, the set of all subsets of P . The
Vapnik–Chervonenkis (VC) dimension of (X,R) is the cardinality of the largest subset of X that can
be shattered by R. The notion of VC dimension was first introduced by Vapnik and Chervon-
enkis [39] and is used in statistical learning theory (see for example [38]) and computational
geometry.

The VC dimension of disks. Consider the range space S = (R2,D) with D being the family of
all disks in R

2. Let P = {p1,p2,p3} ⊆R
2. The powerset of P is

{∅, {p1}, {p2}, {p3}, {p1,p2}, {p1,p3}, {p2,p3}, {p1,p2,p3}}

Clearly we can cover {p1,p2,p3} with one disk. We can cover any combination of two points of
P by the three disks shown in Figure 2.2(a). Lastly, we can cover every point of P separately by
placing a disk around every point. We can also cover the empty set. We conclude that any set P
with at most three points can be shattered by D.

Let Q = {q1,q2,q3,q4} ⊆ R
2. We can distinguish between two cases: either three points lie on

the convex hull of Q, or all four points lie on the convex hull of Q. In the first case any disk that
covers the three points on the convex hull, also covers the fourth point. In the second case, four
points lie on the convex hull. Let q1,q2,q3,q4 be four points ordered along the boundary of the
convex hull. We can either cover {q1,q3}, or {q2,q4} with a disk, but not both at the same time.

Suppose for contradiction that there exist two disks D1,D2 that cover {q1,q3} and {q2,q4} sep-
arately. Then edges q1q3 and q2q4 are in the Delaunay graph of Q [5, Theorem 7.4(ii)]. The
Delaunay graph of a planar point set is a plane graph [5, Theorem 9.5], that is, a graph in which
no edges cross. This contradicts with the fact that two crossing edges, q1q3 and q2q4, are in the
Delaunay graph of Q. Thus there do not exist two disks D1, D2 that cover {q1,q3} and {q2,q4}

p1

p2

p3

(a)

q1

q2

q3q4

(b)

q1

q2

q3

q4

(c)

Figure 2.2: (a) A set of 3 points of which every pair can be covered separately. (b) A set of 4
points. We can not find a disk that covers just {q1,q2,q3}. (c) A set of 4 points. We can not find a
disk that covers just {q1,q3}
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CHAPTER 2. DISCRETIZING POLYGONS

separately—see Figure 2.2(c) for an example of this case. Since sets containing four points can
not be shattered, we conclude that the VC dimension of (R2,D) is three.

ε-approximations. We use definitions from the book by Mustafa and Varadarajan [26]. Let
S = (X,R) be a range space, let P be a finite subset of X, and let A ⊆ P be a uniformly random
sample of P . A range R ∈ R is well-represented in A if | |R ∩ P ||P | −

|R ∩ A|
|A| | ≤ ε. This implies that if

R intersects 1/2 of the points of A, it also intersects between 1/2 − ε and 1/2 + ε of the points of
P . A is an ε-approximation for R if and only if every R ∈ R is well-represented in A. Parameter
0 < ε ≤ 1 denotes the maximum error between the actual fraction and the approximated fraction
of the number of points intersected by a range. For ε = 1, any nonempty set A ⊆ P is an ε-
approximation for R. Vapnik and Chervonenkis proved the following theorem.

Theorem 2.1 ([39]). Let (X,R) be a range space of VC dimension d. For a finite set of points P ⊂ X, ε >
0, δ ≤ 1 there exists a sufficiently large constant c such that for a random sample A of P of cardinality
at least

c

ε2 (d log
d
ε

+ log
1
δ

)

is an ε-approximation of P for R with probability at least 1− δ.

Thus for δ < 1 there exists an ε-approximation for R of size

O(
d

ε2 log
d
ε

+
1
ε2 log

1
δ

)

Remarkably, the bound on the size of ε-approximations does not depend on the size of P . This
allows us to sample a constant number of points from a polygon, regardless of the size of that
polygon. In theory, this theorem dictates that we should pick a large number of points, even for
small values of c—in the hundreds for ε = 0.1, c = 1, δ = 0.5. In practice however, we will pick a
much smaller number of points.

Note that Theorem 2.1 requires a finite set of points P . However, in theory one could sample
an infinite number of points from a polygon. We sample directly from the polygon by sampling
as if we work in the limit of the size of the grid. However, a computer only has limited precision,
thus a random number generator provides discrete finite numbers. Hence, in practice we satisfy
Theorem 2.1 since we can only sample a finite number of points from the polygon.

2.2 Sampling Points

In this section we will show how we can sample points from a polygon. In order to do that we
first show how one can sample a point from a triangle. We then extend this to an entire polygon.
We sample a uniformly random point from a triangle 4ABC—see Figure 2.3—as follows. We
generate two random numbers x,y from U [0,1] where U [0,1] is a uniform distribution of real

numbers between 0 and 1. We then define our random point p as p = x ·
−−→
AB + y ·

−−→
AC . If A+p lies

inside of 4ABC, then A+ p is our randomly sampled point. Otherwise, A+ p falls inside triangle
4BCD, the triangle which forms a parallelogram together with 4ABC—Figure 2.3(b)—and can
be mapped back onto triangle 4ABC. We do this by starting from D and then subtracting p, that

is, A+
−−→
AB +

−−→
AC − p.

Generating Optimal Curves for Necklace Maps 9



CHAPTER 2. DISCRETIZING POLYGONS

A B

C

x

y p

(a)

A B

D

x′

y′ p′ p′′

C D

(b)

Figure 2.3: (a) A triangle 4ABC together with a sampled point p which is obtained by computing

A+x ·
−−→
AB +y ·

−−→
AC . (b) The parallelogram created by mirroring and flipping 4ABC, together with

a sampled point p′′ . Since p′′ lies in 4BCD, we project p′′ back onto 4ABC as p′ .

Let P be a simple polygon. We triangulate P in O(n logn) time, where n is the number of
vertices of P , using the algorithm from Garey et al. [14]. Let T be a triangulation of P , see
Figure 2.4(a). Let area(x) denote the area of some geometric shape x. We compute area(P ) by
summing up the areas of all triangles of the triangulation. For every triangle Ti ∈ T we define
probi as area(Ti) / area(P ), i.e. the proportion of the area of Ti relative to the area of P .

Sampling points from P then proceeds as follows. For every Ti ∈ T we define an interval
of length probi . We shift every interval by placing them consecutively on a number of line of
real numbers from 0 to 1. For example, T1 : [0,0.35), T2 : [0.35,0.75), T3 : [0.75,1]. We then
generate an uniformly random number x from U [0,1] and pick the triangle for which the shifted
interval contains x. In theory, this procedure is repeated until we have a high enough probability
of our sample being an ε-approximation of P—dictated by Theorem 2.1. In practice however,
we sample between 15–25 points, as this is accurate enough for our use case, as we observe in
Chapter 5.

P

(a)

P

(b)

Figure 2.4: (a) A triangulation of a simple polygon P . (b) P overlaid with 200 uniform random
points sampled from P .
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Chapter 3

Enclosing Colored Points

In this chapter we present an algorithm on a set of colored points that computes the smallest
radius disk that contains at least some number of points of a certain color, for every color. We
present an algorithm that solves the problem in O(n2 logn) time.

Given a set P = {p1, ...,pn} of points in R
2, each having a color between 1 and m, and a set of

constraints {c1, ..., cm}, ci ∈Z+ we would like to find the smallest disk d∗ with radius r∗ that covers
at least ci points of color i for every i, where r∗ is as small as possible. Let color : P → {1, ...,m} be
a function that maps points to colors. We denote k as the sum of all constraints: k = c1 + ...+ cm.
Let D(p,r) denote the disk centered around p of radius r. Let C(p,r) denote the circle centered
around p of radius r. We require that for every color, at least one point of that color appears in P ,
thus m ≤ n. Lastly, we assume general position, that is, no three points lie on a straight line, and
no four points lie on a circle.

We will refer to this problem as the Smallest colored k-enclosing disk problem or SCkED
problem for short. To get an idea of the time complexity of the SCkED problem, we first take
a look at the 1D version of the problem. We present an algorithm that solves the 1D version of
the problem in O(n logn) time. Then, we present a brute force algorithm that solves the SCkED
problem in O(n4) time, which shows that this problem is not NP-hard. We then present two
simple 2-approximation algorithms to show that this problem can be solved with relative ease if
we accept a suboptimal solution. We then formulate the SCkED problem as an LP-type problem.
However, we conclude that this does not result in a running time that is at least as good as
O(n2 logn). Finally, we present an algorithm that solves the SCkED problem in O(n2 logn) time.

3.1 Smallest Colored k Enclosing Interval

The Smallest Colored k Enclosing Interval (SCkEI) problem is similar to the SCkED, however,
the points are 1-dimensional. We are interested in computing the interval with shortest length
that contains at least ci points of color i, for every i. The smallest interval is defined as an
interval Ii,j , 1 ≤ i ≤ j ≤ n, specified by points pi and pj that denote the left boundary and the
right boundary respectively, such that pj − pi is as small as possible and Ii,j contains at least
ci points of color i, for every i. The interval should enclose at least k points with several color
constraints but, since we optimize for the smallest length, the actual number of points it contains
does not matter. We show that this interval can be found in O(n) time if the input is sorted and
O(n logn) time if the input is unsorted.

Algorithm. We solve the problem by using a two pointer technique. A step-by-step visual ex-
ample can be found in Figure 3.1. Using two pointers i, j we keep track of candidate intervals:
intervals which contain the required number of points for every color. Of these candidate inter-
vals we are looking for the interval of minimum length. We keep track of the counts for each
color using a vector X of length m, and we keep track of how many color constraints have been
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p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12

I1,6

(a)
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12

I1,9

(b)
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12

I2,9

(c)
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12

I5,10

(d)
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12

I7,12

(e)

Figure 3.1: Let P = {p1, ...,p12}. We require that the interval contains at least two points of a
certain color, for every color. (a) We first find the first interval that contains every color at least
twice, I1,6. (b) The algorithm then attempts to shrink the interval, however this is only possible
whenever another blue point is added to the interval. Thus we extend the interval to I1,9. (c) The
interval shrinks to I2,9. We can not shrink further because of the number of violet points in I2,9.
(d) The algorithm finds point p10 which allows the interval to shrink to I5,10. (e) At point p12 we
shrink the interval to I7,12. Of the shown intervals, I7,12 is the smallest.

fulfilled using a counter s. We use X and s as follows. Let I be an arbitrary interval. Suppose we
extend I by one point p of color i. We then increment X[i]. If X[i] = ci , then we increment s. If
s = m, then I fulfills all color constraints. Similarly, suppose we shrink I by one point p of color
i. Then we decrement X[i]. If X[i] = ci −1, then we decrement s. Hence, in O(1) time we are able
to extend and shrink an interval I by one point while keeping track of the colors present in I .

We start with Ii,j , i = j = 1 and increment j until I1,j contains a sufficient number of points
such that all color constraints have been fulfilled. This is the first candidate interval and it is
then stored as Imin← (1, j). The algorithm then enters the main loop where at every iteration one
of the following events can happen.

1. If Ii+1,j fulfills all color constraints, we set Ii+1,j as the new candidate interval and update
X and s accordingly. We then check if Ii+1,j is smaller than Imin. If that is the case we set
Imin← (i + 1, j),

2. Else we set Ii,j+1 as the new candidate interval and update X and s accordingly.

The loop terminates if j > n.

Time complexity. The first candidate interval can be found inO(1) time per step. We simply in-
crement a counter whenever a color constraint has been fulfilled, and check whether this counter
has reached m. Since j ≤ n, this interval can be found in O(n) time.
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CHAPTER 3. ENCLOSING COLORED POINTS

The main loop of the algorithm is executed at most 2n times. This is because at every iteration
either i is incremented or j is incremented and we have that 1 ≤ i ≤ j ≤ n. Event 1 takesO(1) time
to execute since we only have to decrement one counter and check one color constraint. Event 2
takes O(1) time to execute since we only have to increment one element of X. Hence the main
loop of the algorithm consists of at most 2n O(1) operations.

We conclude that the algorithm runs in O(n) time if the input is sorted and, since we have to
sort the input first, in O(n logn) time if the input is unsorted.

Correctness. In the algorithm event 1 takes precedence over event 2: We only extend the cur-
rent interval to the right if it can not be made smaller from the left. Thus for every 1 ≤ j ≤ n we
compute an i with 1 ≤ i ≤ j such that Ii,j is a small as possible and fulfills all color constraints.
One of these intervals must be the optimal solution and, at some point during execution, will
have been stored as Imin in event 1.

3.2 Smallest Colored k Enclosing Disk

We now move to the 2D version, in which we look for the smallest disk that contains at least
ci points of color i for every i. To get a feel for the complexity of this problem, we present a
brute force algorithm and show that it runs in O(n4) time. This shows that the problem is poly-
nomial time solvable. Afterwards we look at two 2-approximation algorithms. Approximation
algorithms seek to compute some result of which the value lies within some constant factor of
the optimal solution. Thus a 2-approximation algorithm produces a disk of which the radius is
at most twice at large as the radius of the smallest disk. We present two 2-approximation al-
gorithms to show that this problem can be solved with relative ease if we accept a suboptimal
solution.

Brute force. A smallest disk is defined by either two or three points. We divide P into
(n

3
)

subsets of size 3 and
(n

2
)

subsets of size 2. For every subset Pi with 1 ≤ i ≤
(n

3
)

+
(n

2
)

we compute a
diskDi defined by the points of Pi . We then compute all points of P that lie withinDi and check if
the color constrains can be fulfilled with those points. We return the disk with minimum radius
that fulfills all color constraints. Computing all points that lie within some disk Di takes O(n)
time. There are

(n
3
)

+
(n

2
)

= O(n3) of such disks. Hence, in O(n4) time we can find the disk with
minimum radius that fulfills all color constraints.

2-approximation in O(n(n/k)2) time. Har-Paled et al. present a 2-approximation algorithm
that approximates the radius of the smallest k-enclosing disk of a set of n points in O(n(n/k)2)
time [18]. We modify their algorithm to work for a set of n colored points, while maintaining the
same time complexity. Har-Paled et al. subdivide the plane into O(n/k) vertical and horizontal
strips that each contain at most k/4 points. They compute these strips in O(n log(n/k)) time
using median selection together with recursion. Since O(n/k) horizontal lines cross with O(n/k)
vertical lines, there areO((n/k)2) intersections between these strips. They prove that the smallest
k-enclosing disk contains at least one such intersection point. For every intersection x, they use
median selection to find the kth point ordered by increasing distance from x in O(n) time. Let
r∗x denote the distance from this point to x. Then, they repeat this process for every intersection
x, and take the smallest r∗x. Since the smallest k-enclosing disk contains at least one intersection
point, this smallest value is a 2-approximation of r∗.

In order to modify the algorithm to work for a set of colored points, we only have to modify
the step where Har-Paled et al. find the smallest k-enclosing disk centered at an intersection x.
Let P1, ..., Pm be the partitioning of P by color, thus |P1|+ ...+ |Pm| = |P | = n. For every 1 ≤ i ≤m we
apply median selection on Pi to find the cith point of color i, ordered by distance from x. The
distance from this point to x is the radius of the disk centered at x that contains at least ci points of
color i. The total running time to compute all smallest disks centered at x isO(|P1|)+ ...+O(|Pm|) =
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O(n). Of these disks we should take the largest disk, as that is the disk that contains at least
ci points of color i, for every i. The rest of the algorithm of Har-Paled et al. is unchanged: By
returning the smallest of the disks found at every intersection, we find a disk that fulfills all color
constraints and has a radius that is at most twice as large as the optimal radius.

2-approximation in O(n2) time. We iterate over all points of P . For every point p ∈ P we com-
pute the smallest disk centered at p that fulfills all color constraints. Computing this smallest
disk can be done in O(n) time in the same manner as described in the previous algorithm. We
then take the smallest of these disks. The smallest disk must contain at least one point of P . In
the best case the center of the smallest disk is located exactly at some point of P . In that case this
algorithm will find the optimal solution. In the worst case all points of P lie on the boundary of
the smallest disk. In this case the smallest disk found has a radius that is twice the size of the
optimal radius. We spend O(n) time per point, hence this algorithm takes O(n2) time.

3.3 LP-type

In this section we explore the possibilities of using the abstract framework for solving LP-type
problems by Sharir and Welzl [30]. However, in order for this approach to be feasible, we should
be able to solve the SCkED problem for a set of points of at most four colors in O(n2) time. We
currently do not see a way to achieve this running time. Hence, a faster algorithm can be found
in Section 3.4. Nonetheless, it is interesting to look at the possibilities of interpreting the SCkED
problem as an LP-type problem.

LP-type problems have as input a finite set of points P called constraints, and a function
f : 2P → F where 2P is the powerset of P and F is a totally ordered set of values. This function is
required to satisfy two axioms:

1. For every two sets A,B:
A ⊆ B ⊆ P =⇒ f (A) ≤ f (B)

2. For every two sets A,B and every element p ∈ P :

A ⊆ B ⊆ P , p ∈ P , f (A) = f (B) < f (A ∪ {p}) =⇒ f (B) < f (B ∪ {p})

A typical LP-type problem is the smallest enclosing circle problem. Let P be a set of points in
R

2. The objective is to find the smallest circle that encloses all points. Let f (P ) be the radius
of the smallest enclosing circle of P . We show that the two axioms hold for this problem. Let
A ⊆ B ⊆ P be two subsets of P . The first axiom is satisfied because clearly the smallest enclosing
circle of A can not be larger than the smallest enclosing circle of B, thus f (A) ≤ f (B). Let p ∈ P
be an arbitrary point and let f (A) = f (B). Since f (A) < f (A ∪ {p}), point p lies outside of the
smallest enclosing circle of A. Since f (A) = f (B) and A ⊆ B, the smallest enclosing circles of A
and B must be identical. Hence we have that p also lies outside of the smallest enclosing circle of
B thus f (B) < f (B ∪ {p}).

In LP-type problems a basis B is defined as a set of constraints where, for all B′ ⊂ B, we have
that f (B′) < f (B) [30]. The combinatorial dimension d is the maximum cardinality of a basis. In
LP-type problems we start off with an initial base B0 and build from there. A constraint h ∈ P
violates basis B if f (B ∪ {h}) > f (B), which implies that h < B.

We specify two primitive operations dictated by the LP-type framework:

• Violation test – Given a basis B and constraint h ∈ P is it true that f (B ∪ {h}) > f (B)?

• Basis construction – Given a basis B and constraint h ∈ P compute some basis of B ∪ {h}.

For the smallest enclosing circle problem, a basis contains at most three points. Thus we perform
the violation test in O(1) time simply by testing if a point h lies within the circle defined by the
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at most three points of B. We construct a basis B of a set of at most four points by searching for
its smallest enclosing circle. We can do this by testing all combinations of two or three points. of
which there are at most

(4
3
)

+
(4
2
)

= 10. Thus we perform the basis construction operation in O(1)
time.

Randomized algorithms are known that solve LP-type problems inO(dmT +t(d)E logm) time.
Where T is the running time of the violation test, E is the running time of the basis construction,
t(d) is exponential or subexponential in d, andm is the number of constraints [22, 17]. Using this
algorithm we solve the smallest enclosing disk problem for a set of m points in expected O(m)
time.

Point constraints. To solve the SCkED problem, a logical strategy would be to color the points
and reuse the proofs of the axioms for the smallest enclosing disk problem. However, we show
that this approach does not work. Let the input P be a set of colored points and let f (P ) be the
radius of the SCkED of P . In Figure 3.2 we show that the first axiom does not hold. Let A and B
be sets containing points of two colors. As shown in Figure 3.2, we can build sets A and B such
that A ⊆ B and f (A) > f (B), violating the first axiom.

A B

Figure 3.2: In this figure A and B are sets of colored points. We would like to find the smallest
disk that contains at least two orange points and at least one blue point. We have that A ⊆ B,
however clearly f (A) > f (B).

Constraints as color classes. An approach that does satisfy the axioms is to treat color classes
of points as constraints. For a color class Pi of points of color i, we say that Pi is covered by some
disk d if at least ci points of Pi lie within d. Let P be the set of color classes and let f (P ) be the
radius of the smallest disk that covers every color class in P . We prove that the axioms hold for
this combination of input set and function.

Proof. Let F and G be two sets of classes of points. Since F ⊆ G, any disk that is valid for G, is
also valid for F . Thus f (F ) ≤ f (G), satisfying the first axiom.

In order to prove the second axiom let H ∈ P be a color class, let F and G be two sets of
classes of points with F ⊆ G. Suppose that f (G) = f (F ) < f (F ∪ {H}). Then H must be a color
class that lies (partly) outside of the SCkED of F . Since F ⊆ G and f (G) = f (F ) the SCkED of F
and G must be identical. Hence we have that H also lies (partly) outside of the SCkED of G thus
f (G) < f (G ∪ {H}).

The SCkED is always defined by at most three different colors. Thus if we have a set of four
or more color classes, at least one of the classes will not partake in determining the size of the
SCkED. Hence, for this problem the combinatorial dimension is three. Constructing the initial
base is a problem equivalent to the Smallest k-enclosing disk problem. This problem can be
solved in O(nk) expected time [18].

The violation test can be formulated as follows: Given three color classes that together de-
termine a disk D(B), do at least cH of the points of H lie within D(B)? If that is not the case then
D(B) has to be expanded meaning f (B ∪ {H}) > f (B). The total number of points contained in
H and the color classes of B is at most n. If we are given D(B) then we iterate over all points in
H and count the points that lie within D(B). Hence, in at most |H | = O(n) steps we perform the
violation test.
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As part of the basis construction operation, we have to compute the SCkED of a set of points
of at most four colors. Recall that it takes O(dmT + t(d)E logm) to solve an LP-type problem,
where m translates to the number of colors. In Section 3.4 we present an algorithm that solves
the SCkED problem in expectedO(n2 logn) time. Hence, in order to achieve a better running time
of, say,O(n2 logm), the basis construction should run inO(n2) time. However, the constant (four)
number of colors does not help us here. We do not see a way to solve the SCkED problem for a
set of points of at most four colors inO(n2) time. In the next section we present an algorithm that
solves the SCkED problem in O(n2 logn) expected time. We could use this as a basis construction
algorithm, but this would result in a running time of O(n2 logn logm). It would be faster to
directly run the O(n2 logn) algorithm on the input.

3.4 A Sweep Algorithm

We draw inspiration from the algorithms by Efrat et al. [12] and Matoušek [21] in order to build
an efficient algorithm that solves the Smallest Colored k-Enclosing Disk problem. In this sec-
tion we present a randomized algorithm that runs in O(n2 logn) expected time. The general idea
of this algorithm is to compute, for a point p ∈ P , the smallest colored k-enclosing disk of which
p lies on the boundary. We denote the radius of this disk as r∗p. The key idea is that we are able
to test in O(n logn) time and for an arbitrary radius r, if r < r∗p. This allows us to find r∗p in O(n2)
time. We then use the same test in a randomized approach to find the smallest r∗q, for q ∈ P in
O(n2 logn) time.

3.4.1 Definitions

For some p ∈ P and some radius r, I(p,r) ⊆ P denotes the set of points of P that lie within a
distance of 2r from p. Let d∗p be the smallest disk that fulfills all color constraints, for which p
lies on the boundary. Let r∗p be its radius. Let r0 ≥ r∗ be some upperbound of r∗. Let cdepth(p,r)
(which stands for color depth) of some point p with radius r be a vector of length m that contains
for every color i the number of points of color i that lie inD(p,r). We say that a color depth fulfills
the color constraints if cdepth(p,r)[i] ≥ ci for 1 ≤ i ≤ m. Using the definition of r∗p Matoušek [21]
redefines r∗ as

r∗ = min
p∈P

r∗p

We have that |I(p,r0)| = O(n) for r0 ≥ r∗. The reason why the algorithm of Matoušek [21] is
able to run in O(n logn + nk) time is because the author is able to find a value r0 ≥ r∗ such that
|I(p,r0)| =O(k). We argue that such an r0 might not exist in our problem setting.

Let Gr the subdivision of the plane into square cells of width r. Let depth(r) be the number
of points a disk of radius r can contain and let gdepth(r) be the maximum number of points
contained in a single grid cell of Gr . Matoušek [21] proves the following lemma:

Lemma 3.1 ([21]). gdepth(r) ≤ depth(r) =O(gdepth(r))

Matoušek presents an algorithm that finds a value r0 ≥ r∗ such that gdepth(r0) = k and k ≤
depth(r0) =O(k) [21]. By giving a counterexample, we show that such an r0 might not exist in our
problem setting.

Suppose P = {p1, ...,pn} and color(p1) = 1, color(p2) = 2, color(pi) = 3 for 3 ≤ i ≤ n. We would
like to cover at least one point of all three colors, thus k = 3. Suppose that the boundary of the
SCkED passes through two points: p1 and p2, as illustrated in Figure 3.3. We define two grid
cells A and B of width r∗. The remaining points, p3, ...,pn, lie in cell A. Cell A contains n−1 points
which, by Lemma 3.1, implies that n− 1 ≤ depth(r∗) = O(n). We conclude that any disk of radius
r0 ≥ r∗ may contain O(n) points, thus |I(p,r0)| =O(n).
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A

r∗

B

p1 p2

{p3, ...,pn}

Figure 3.3: Two cells of Gr∗ . We would like to cover at least one point of every color. In this
setting k = 3, grid cell A contains n− 1 points, thus gdepth(r∗) = n− 1.

3.4.2 Testing whether r < r∗p

Matoušek [21] introduces a test that determines whether r < r∗p, for a given r and for any p ∈ P . In
this section we modify this test to work for a set P of colored points. This test is also illustrated
in Figure 3.4(a). In this figure arcs of C(p,r) are labeled with the corresponding color depth.

We compute the intersections of C(q,r) with C(p,r) for all q ∈ I(p,r). There are O(n) of such
intersections. We sort these intersections by their clockwise order on C(p,r). Afterwards, we
compute the color depth of the rightmost point of C(p,r). We then perform a walk along the
boundary of C(p,r), updating the color depth at every intersection. At every arc of C(p,r), a disk
of radius r can be constructed centered somewhere on that arc, that contains colors described by
the color depth of the arc. As an example, in Figure 3.4(a) a disk d of radius r is shown that is
centered on an arc of C(p,r) that is labeled by [2,0]. This means that two points of color 1 and
no points of color 2 lie within d. If at no arc the color depth fulfills all color constraints, then at
no point we are able to construct a disk that fulfills all color constraints. We then conclude that
r < r∗p, otherwise we conclude that r ≥ r∗p.

We sort the intersections in O(n logn) time. Computing the color depth of the rightmost
point is done in O(n) time by checking in which circles the rightmost point lies. We maintain a
counter that keeps track of how many color constraints are fulfilled. If a color constraint becomes
fulfilled at a certain intersection, then the counter is incremented. If a color constraint becomes
unfulfilled, the counter is decremented. Instead of checking if all color constraints are fulfilled,
we check if the counter has reached a value of m. At every intersection one color is updated.
Note that intersections may overlap, for example when three circles have a common intersection
point. We handle overlapping intersections seperately. Thus the total running time of this test is
O(n logn).

p q3

q1

q2

r
[1,0]

[1,1]

[2,0]

[1,0]

d

(a)

p

q1 q2r12

(b)

Figure 3.4: P = {p,q1,q2,q3}. We want to include at least two blue points and at least one orange
point. (a) Arcs on C(p,r) are visualized by alternating black and gray curves. At no point in the
walk along the boundary of C(p,r) are all color constraints fulfilled. Hence we conclude that
r < r∗p. (b) C(p,r), C(q1, r), C(q2, r) share an intersection point.
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3.4.3 Computing r∗p
We use the previous test in an algorithm inspired by the technique of parametric search. Paramet-
ric search is a technique that allows us to transform a decision algorithm into an optimization
algorithm. The technique was invented by Nimrod Megiddo [23]. We require a decision problem
P (r) that is monotone in r, that is, if P (r1) is true, then P (r2) is true, for all r2 ≥ r1. In our case
this decision problem is: Given a radius r, is there disk of radius r with p on its boundary, that
fulfills all color constraints? We are looking for the smallest r that allows for the existence of
such a disk.

For a given r, there is a radius r ′ < r such that, for all values r in [r ′ , r) the system of arcs on
C(p,r) remains the same. This radius r ′ is what we call a critical radius, that is, a radius where
the system of arcs on C(p,r ′) induced by C(q,r ′), q ∈ I(p,r) changes combinatorially. For a radius
r, the system of arcs changes combinatorially whenever C(p,r) touches another circle C(q,r), or
whenever C(p,r) has a common intersection point with two other circles C(qi , r), C(qj , r). We
prove the following lemma, which allows us to search for r∗p among the critical radii.

Lemma 3.2. r∗p is a critical radius.

Proof. Assume that r∗p is not a critical radius. Then there must be a critical radius r ′ < r∗p for which
the system of arcs on C(p,r ′) is the same as the system of arcs on C(p,r∗p). This implies that there
exists a disk of radius r ′ that has p on its boundary and satisfies all color constraints. Thus, by
definition, r ′ ≥ r∗p. This is a contradiction, hence r∗p must be a critical radius.

Let A = {dist(p,q) / 2 | q ∈ P } be the set of radii for which two circles touch. Let B be the set
of radii for which three circles have a common intersection point. We build B is as follows. For
three points p,qi ,qj , and a radius r, circlesC(p,r), C(qi , r), andC(qj , r) have a common intersection
point when there exists a point that has the same distance to all three circles. Let this distance
be rij . This distance is equal to the radius of the circle defined by p,qi ,qj (Figure 3.4(b)). We can
now define set B as the set of all radii of circles defined by points p,qi ,qj , for all qi ,qj . Let this set
of critical radii be denoted by Rc = A∪B. This set has cardinality O(n2), dominated by the size of
B.

Let r ′ be the median value of Rc. If r ′ < r∗p, then we discard all r ∈ Rc for which r ≤ r ′ . Similarly,
if r ′ ≥ r∗p, then we discard all r ∈ Rc for which r > r ′ . We repeat this process until there is a single
radius left in Rc. This final radius is r∗p, due to Lemma 3.2.

Median selection takes linear time with relation to the number of elements in the set. Since
we discard half of the radii after every median selection, the running time of finding r∗p is

logn∑
i=0

1
2i
·O(n2) =O(n2)

This brings us to the following lemma:

Lemma 3.3. For some p ∈ P , we can compute r∗p in O(n2) time.

3.4.4 Computing r∗

Combining Lemma 3.3 with the definition of r∗ results in a simpleO(n3) algorithm for computing
r∗, by simply computing r∗p for every p ∈ P and taking the smallest value. Using the prune and
search technique, we reduce this running time toO(n2 logn). The prune and search technique has
been introduced by Megiddo [24]. The basic idea consists of a recursive algorithm in which the
search space is repeatedly reduced by pruning a fraction of the input set at every recursion. We
can implement the pruning step as follows. Let Q be a copy of P . We select a random point p ∈Q
and compute r∗p using the points of P . We then discard all points q from Q for which r∗q ≥ r∗p, also
discarding p itself. We then recurse with P and the remainder ofQ. IfQ is empty, then r∗p was the
optimal solution. The reason why we work with two sets is that we should maintain a complete
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set of points to compute r∗p and to perform the test from Section 3.4.2. In pseudocode this routine
looks as follows.

Algorithm 1 This algorithm computes the smallest colored k-enclosing disk of a set of points P .
Function RandomElement returns a random element from the input set. The initial call of this
algorithm is Find r∗(P ,P ), with n = |P |.

1: procedure Find r∗(P ,Q)
2: p← RandomElement(Q)
3: Compute r∗p . O(n2)
4: for q ∈Q do . O(|Q|n logn)
5: Delete q from Q if r∗q ≥ r∗p . Using the test from Section 3.4.2
6: end for
7: if Q = ∅ then
8: return r∗p
9: else

10: return Find r∗(P ,Q) . O(|Q|n logn) +O(n2)
11: end if
12: end procedure

Theorem 3.4. The smallest colored k-enclosing disk can be computed in expected O(n2 logn)
time, for a set P of n colored points.

Proof. The total running time of this algorithm can be described using a function T (n,m), where
n represents the size of P and m represents the size of Q (Algorithm 1). Initially m = n, thus the
total running time of the algorithm is described by T (n,n).

If m = 1, we do not recurse and thus the running time is dominated by the running time
required to compute r∗p, which is O(n2). Otherwise, we recurse on the reduced set Q with car-
dinality at least 1 and at most m− 1, all with an equal probability of 1

m−1 . Let Xk be an indicator
random variable, which is 1 if the reduced setQ contains k elements, and 0 otherwise. Therefore,
the expected running time of Algorithm 1 as

E[T (n,m)] =

O(n2) if m = 1
O(mn logn) +O(n2) + E[

∑m−1
k=1 T (n,k) ·Xk] if m > 1

We can further reduce this expression as follows using the linearity of expectation: The expected
value of a sum of random variables is equal to the the individual expected values.

E[
m−1∑
k=1

T (n,k) ·Xk]

=
m−1∑
k=1

E[T (n,k) ·Xk] { Linearity of expectation }

=
m−1∑
k=1

E[T (n,k)] ·E[Xk] { T (n,k) and Xk are independent }

The value of E[Xk] is the probability that Xk = 1. Since the reduced set Q has cardinality at least
1 and at most m − 1, all with an equal probability, E[Xk] = 1

m−1 . This allows us to rewrite the
recurrence as follows.

E[T (n,m)] =

O(n2) if m = 1
O(mn logn) +O(n2) + 1

m−1
∑m−1
k=1 E[T (n,k)] if m > 1
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We show that E[T (n,m)] =O(mn logn+n2 logm), for m ≥ 2, by proving that

E[T (n,m)] ≤ Amn logn+Bn2 max(1, logm)

for an appropriate choice of positive constants A and B. We prove this for all m ≥ 2 using induc-
tion on m.

Base case (m = 1): By definition of T we have E[T (n,1)] ≤ Cn2, for some positive constant C. For
m = 1, we should show that Cn2 ≤ An logn + Bn2. We pick A > 0 and B ≥ C to satisfy this
inequality. Hence for A > 0, B ≥ C, and m = 1 we have that

E[T (n,1)] ≤ Amn logn+Bn2 max(1, logm)

Base case (m = 2): By definition of T we have

E[T (n,2)]

≤ Cmn logn+Dn2 +
1

m− 1

m−1∑
k=1

E[T (n,k)] { Def of T, for positive constants C and D }

= Cmn logn+Dn2 + E[T (n,1)]

≤ Cmn logn+Dn2 +En2 { Def. of T, for positive constant E }

Hence for A ≥ C, B ≥ D+E
log2 , and m = 2 we have that

E[T (n,2] ≤ Amn logn+Bn2 max(1, logm)

Induction hypothesis: E[T (n,m)] ≤ Amn logn+Bn2 max(1, logm) for positive constants A,B.

Step (m+ 1, m ≥ 2):

E[T (n,m+ 1)]

≤ C(m+ 1)n logn+Dn2 +
1
m

m∑
k=1

E[T (n,k)] { Def. of T , C,D > 0 }

≤ C(m+ 1)n logn+Dn2 +
1
m

m∑
k=1

(Akn logn+Bn2 max(1, logk)) { IH }

= C(m+ 1)n logn+Dn2 +
An logn
m

m∑
k=1

k +
Bn2

m

m∑
k=1

max(1, logk)

= C(m+ 1)n logn+Dn2 +
A(m+ 1)n logn

2
+
Bn2

m

m∑
k=1

max(1, logk) {
m∑
k=1

k =
m(m+ 1)

2
}

= C(m+ 1)n logn+Dn2 +
A(m+ 1)n logn

2
+
Bn2

m

1 +
m∑
k=1

logk


= C(m+ 1)n logn+Dn2 +

A(m+ 1)n logn
2

+
Bn2

m
+
Bn2

m

m∑
k=1

logk
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We compute the appropriate value for A as follows.

C(m+ 1)n logn+
A(m+ 1)n logn

2
≤ A(m+ 1)n logn

⇔ C(m+ 1)n logn ≤
A(m+ 1)n logn

2

⇔ C(m+ 1) ≤ A(m+ 1)
2

⇔ C ≤ A
2

We then compute the appropriate value for B as follows.

Dn2 +
Bn2

m
+
Bn2

m

m∑
k=1

logk

≤Dn2 +
Bn2

m
+
Bn2

m

(⌈m
2

⌉
logm+

⌊m
2

⌋
log

m
2

)
=Dn2 +

Bn2

m
+
Bn2

m

(⌈m
2

⌉
logm+

⌊m
2

⌋
logm−

⌊m
2

⌋
log2

)
=Dn2 +

Bn2

m
+
Bn2

m

(
m logm−

⌊m
2

⌋)
=Dn2 +

Bn2

m
+Bn2 logm−

⌊m
2

⌋Bn2

m

≤Dn2 +
Bn2

m
+Bn2 logm− Bn

2

3
{
⌊m

2

⌋
/m ≥ 1

3
for m ≥ 2 }

Dn2 +
Bn2

m
+Bn2 logm− Bn

2

3
≤ Bn2 log(m+ 1)

⇔D +
B
m

+B logm− B
3
≤ B log(m+ 1)

⇔D ≤ B log(m+ 1)− B
m
−B logm+

B
3

⇔D ≤ B(log(m+ 1)− 1
m
− logm+

1
3

)

⇐D ≤ B
3

{ log(m+ 1) ≥ logm+
1
m

for m ≥ 1 }

Hence, for A ≥ 2C, B ≥ 3D, and for all m ≥ 3 we have that

E[T (n,m)] = Cmn logn+Dn2 +
1

m− 1

m−1∑
k=1

E[T (n,k)] ≤ Amn logn+Bn2 max(1, logm)

We combine this with the base cases to get E[T (n,m)] =O(mn logn) +O(n2 logm) for all m ≥ 1. In
our algorithm, m = n initially, and hence we conclude that the expected total running time of the
algorithm is

E[T (n,n)] =O(n2 logn)
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Chapter 4

Star-Shaped Necklaces

As we have discussed in Chapter 1, necklaces do not always have to be circles. A necklace that
follows the shape of the map more closely, is often preferred. An example is the continent of
Africa, see Figure 4.1: it would look better if, instead of a circle, we draw a star-shaped necklace
around the continent. For this we should take the global shape of the map into account. In this
chapter we first model the global shape as a set of feature points—points that describe the im-
portant features of the continent. Then, we draw Bézier curves through every pair of consecutive
feature points in order to build the necklace. Finally, we show how we can represent a circle
using Bézier curves and use that to interpolate between circular necklaces and star-shaped neck-
laces. We allow interpolation between circular necklaces and star-shaped necklaces to improve
flexibility. As we will see in Chapter 5, the most suitable is usually a star-shaped curve that has
been slightly interpolated towards a circle.

NG

(a)

NG

(b)

Figure 4.1: (a) A circular necklace is shown which leaves a significant amount of empty space in
the bottom left quadrant of the necklace. (b) A star-shaped necklace, which is better suited for
this map.

4.1 Computing the Feature Points

In order to compute a star-shaped necklace for a set of regions, which are represented by poly-
gons P1, ..., Pm, we first compute the union of the regions. We do this by recursively combining
polygons that share a border, into a single polygon. In the end we obtain a set of polygons
that do not share a border—think of mainland Africa and Madagascar as two separate polygons.
Our main goal is to capture the shape of the polygon. Since a star-shaped necklace should only
roughly follow the continent it surrounds, it suffices to model the global shape as a small set of
points derived from the medial axis, see Figure 4.2. The medial axis was introduced by Blum [6]
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P

(a) (b) (c)

Figure 4.2: (a) A concave polygon with its medial axis shown in red. Every point on the medial
axis is the center of some circle that touches the boundary of the polygon in at least two places.
The gray edges would be in the Voronoi diagram of line segments, but are not part of the me-
dial axis. (b) The medial axis of France. (c) A pruned medial axis of France together with the
corresponding feature points.

in the field of biology, who introduced it as the topological skeleton. The medial axis of polygon P
is defined as the set of points with more than one closest point on the boundary of P . Intuitively,
one can draw a circle centered on every point of the medial axis that touches the boundary of
the polygon in at least two places. The medial axis is related to the Voronoi diagram. In fact, the
medial axis of a polygon P is a subset of the Voronoi diagram of line segments of P . The Voronoi
diagram of line segments is a partition of the plane into cells such that every point in a cell has
the same nearest line segment. For a simple polygon the medial axis can be computed in linear
time [8]. For convex polygons, the medial axis consists of just straight line segments, whereas for
concave polygons the medial axis contains curved line segments.

The medial axisM of a polygon P is a tree whose leaves coincide with vertices of P . We use the
leaves ofM as the set of feature points. When the boundary of P is noisy,M can get very large. In
order to capture only the most important features of the polygon, we remove branches from the
tree which do not contribute as much to the shape of the continent as other branches. The process
of removing branches from a tree is called pruning. Various methods for pruning the medial axis
have been explored in the past [29]. Bai and Letecki [3] present a method for pruning the medial
axis that optimizes for shape reconstruction, that is, their pruning method tries to conserve the
shape of the polygon as well as possible. Because our main goal is modeling the shape of the
polygon, we use their method to prune the medial axis. Bai and Letecki iteratively remove the
end-branch with the smallest relevance for shape reconstruction, see Figure 4.3. An end-branch
b is a branch between a leaf of the medial axis and its closest parent, denoted by parent(b). The
maximum inscribed circle of a node in M is the largest circle centered on that that node that lies
completely within P . The end-branch with the smallest relevance for shape reconstruction is the
end-branch that contributes least to the area of P . The area that an end-branch b contributes is
the area internal of P bounded by the maximum inscribed circle of parent(b).

b

Figure 4.3: An end-branch b shown in blue. The black point represents parent(b). The gray
shaded area is the area b contributes.
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In Section 4.2 we will draw a Bézier spline through the feature points. In Chapter 1 we
discussed how the star-shaped necklace should be a smooth shape. In order to achieve additional
visual smoothness, we require the Bézier curves to be similar in length. The curves should also
not be too short. Since we draw Bézier curves through the feature points, the length of the
Bézier curves is tied to the number of feature points, which in turn is tied to the number of end-
branches in the medial axis. Thus we should repeatedly prune end-branches until there are only
a few feature points left. In order to enforce these constraints we define a user-defined parameter
γ ≥ 0. We want the distance between any pair of consecutive feature points to be at least γ . After
every pruning step, we compute the minimum distance between any pair of consecutive feature
points. If this distance is larger than γ , we perform another pruning step. We repeat this process
until the distances between every pair of consecutive feature points are at least γ .

4.2 The Necklace

Bézier curves are parametric equations that were originally introduced by Paul de Casteljau [9].
They are defined by a set of control points. A Bézier curve defined by two control points is called
a linear Bézier curve and is used to draw straight lines. In Figure 4.4 quadratic and cubic curves
are shown. A quadratic Bézier curve is defined by three control points and is used to draw shapes
that look like parabola. A cubic Bézier is defined by four control points and may contain turns.
Since our necklace may require turns, we use cubic Bézier curves. The general idea is that we
chain Bézier curves together trough the feature points to form a single star-shapedC1-continuous
curve. This curve can be open or closed depending on whether or not we connect the first and
the last Bézier curve using another Bézier curve. Various levels of continuity can be enforced.
A Bézier spline is always at least C0-continuous, that is, the spline contains no holes. A Bézier
spline is C1-continuous (smooth) when its derivative is continuous. Two Bézier curves form a
C1-continuous spline when they are connected and the third control point of the first curve lines
up with the second control point of the second curve—see Figure 4.4(b).

(a)

A

B

C

(b)

Figure 4.4: (a) A quadratic curve. (b) Two cubic curves joined through point B. Because A and C
lie on a straight line through B, this curve is C1-continuous.

We use the feature points described in the previous section as start and endpoints for Bézier
curves. We will now formally define the necklace in terms of Bézier curves. The following
explanation has also been visualized in Figure 4.5(a) and Figure 4.5(b). Let n be the number
of feature points. For every pair of two consecutive feature points Fi ,Fi+1, with 1 ≤ i ≤ n and
n + 1 ≡ 1, we create Bézier curves Ci for all i and set Fi and Fi+1 as the first and fourth control
points of Ci respectively. For a Bézier curve Ci let Pi,j with 1 ≤ j ≤ 4, denote the jth control point
of curve Ci . The control points are ordered along the spline in counterclockwise direction. We
have that Pi,4 = Fi+1 = Pi+1,1. To make two Bézier curves, Ci ,Ci+1, C1-continuous at point Fi+1 we
place Pi,3 and Pi+1,2 on a straight line through Fi+1.

We should specify the distance between Pi,3 and Fi+1, and between Pi+1,2 and Fi+1. We choose
to make this distance dependent on the distance between the feature points multiplied by a
factor. Experiments show that 0.25 is a good value for this factor. We set the the distance between
Pi,3 and Fi+1 to 0.25 · d(Fi ,Fi+1), and the distance between Pi+1,2 and Fi+1 to 0.25 · d(Fi+1,Fi+2).
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Figure 4.5: (a) The angle of the tangent at F2 is the angle between F1 and F3. The distance
between P1,2 and F1, and the distance between P1,3 and F2 is 0.25 · d(F1,F2). (b) A C1-continuous
Bézier spline. Colored segments denote the individual Bézier curves. The feature points and
some control points are labeled. (c) The transformation of the Bézier spline into a circle.

Finally, we set angle of the tangent at feature point Fi to be the angle between Fi−1 and Fi+1,
see Figure 4.5(a). This constitutes the information required to draw the star-shaped necklace
through the feature points. In the next section we show how we interpolate between a star-
shaped curve through the feature points, and a circle.

4.3 Interpolation

We want to be able to smoothly transition between a circular necklace and a star-shaped necklace.
This means that we should first convert a circle into a cubic Bézier spline in such a way that the
star-shaped necklace and the circular necklace both contain the same number of Bézier curves.
Let (p,r) be the representation of the circular necklace, where p = (xc, yc) is the center of the circle
and r is the radius of the circle.

Transforming a star-shaped spline into a circular spline. In order to create a circular spline
through the feature points, we should first move the feature points into a circular configuration.
We do this by unrolling and scaling the star-shaped necklace we created in the previous section.
Unrolling is done as follows. We compute the total length ls of the star-shaped necklace and we
compute the circumference lc = 2πr of the desired circle. This gives us a scaling factor lc / ls. We
multiply the length of every Bézier curve of the star-shaped necklace by lc / ls. Let l1, ..., ln with
l1 + ... + ln = lc be the scaled lengths of curves C1, ...,Cn. For every feature point Fi , let Gi be the
point that is Fi transformed to lie on a circle. The objective is to compute Gi , for all i. Let α1
be the angle between F1 and p. We find G1 by computing G1 = (xc + r · cosα1, yc + r · sinα1). We
project the rest of the feature points to (p,r) as follows. Let α1,2 = l1/r be the angle obtained by
moving a distance l1 along a circle with radius r, see Figure 4.5(c). It is the angle between G1,
and the point that will become G2. To compute G2, we should know the angle between p and G2.
This angle is α2 = α1 +α1,2. From this follows that G2 = (xc + r · cosα2, yc + r · sinα2). We repeat
this process for all feature points to form G1, ...,Gn.

The feature points, that now lie in a circular configuration, represent first and fourth control
points of curves in our set of Bézier curves. We should now add second and third control points in
such a way that the resulting Bézier spline is a circle. It is impossible to form an exact circular arc
using Bézier curves. Goldapp [16] presents various ways to approximate circular arcs using cubic
polynomials. The approximation turns out to have sixth order accuracy. Riškus [28] presents a
practical method to approximate arbitrary circular arcs using cubic Bézier curves. This method
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depends on a magic number k. When the circular arc is the upper right arc of a circle, then

k = 0.55228...

Then, for the unit circle, the corresponding control points are (1,0), (1, k), (k,1), (0,1). Riškus
generalizes this for arbitrary circular arcs and for a circle with an arbitrary center and radius.
The method by Riškus is as follows. Let P1 = (x1, y1), P4 = (x4, y4) be the first and last control
point of a Bézier curve, let p = (xc, yc) be the center of the desired circle. Then:

xa = x1 − xc
ya = y1 − yc
xb = x4 − xc
yb = y4 − yc
q1 = x2

a + y2
a

q2 = q1 + xa · xb + ya · yb

k =
4
3

(
√

2 · q1 · q2 − q2) / (xa · yb − xb · ya)

x2 = xc + xa − k · ya
y2 = yc + ya + k · xa
x3 = xc + xb + k · yb
y3 = yc + yb − k · xb

The remaining control points P2, P3 are

P2 = (x2, y2)

P3 = (x3, y3)

By performing this computation for every pair of consecutive circular feature points Gi ,Gi+1
we create a circular spline. Applying this computation on the curves in Figure 4.5(a) results in
the circle shown in Figure 4.5(b). We then linearly interpolate the following properties of the
star-shaped spline and the circular spline.

• The positions of the start and endpoints of the Bézier curves.

• The angles of the tangents at the start and endpoints of the Bézier curves.

• The distances between the intermediary control points and the start and endpoints of the
Bézier curves.

In Chapter 5 we perform experiments with various interpolation factors. We also show how
different circles affect the outcome of the interpolation.
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Chapter 5

Experimental Evaluation

In this chapter we experimentally evaluate our algorithms on real maps. Our pipeline works as
follows.

1. We convert every polygon of the input map to a set of colored points using the algorithm
from Chapter 2. In general we sample every polygon using 20 points, unless mentioned
otherwise.

2. We find the smallest disk that contains some fraction of the points of a certain color, for
every color, using the algorithm from Chapter 3. In general we use the fraction 1/2, how-
ever, in Section 5.1 we will experiment with varying fractions based on the area of the re-
gion. For circular necklaces our pipeline stops here. For star-shaped necklaces we continue
to step 3.

3. We compute the feature points of the largest polygon of the union of the set of polygons of
the input map using the algorithm from Chapter 4.

4. We compute a star-shaped necklace by drawing a Bézier curve through every pair of con-
secutive feature points using the procedure from Chapter 4. We can then make a choice:

(a) We interpolate between the circle found in step 2, and the star-shaped necklace found
in step 4.

(b) We interpolate between the smallest enclosing circle of the feature points fount in step
3, and the star-shaped necklace found in step 4.

We give an overview of the experiments we perform. For circular necklaces we first look at a
couple of different maps and generate a single circular necklaces for those maps using various
fractions for the regions. We then propose a method that sets the fractions according to the area
of the regions. We also experiment with ignoring certain regions when computing the necklace.
We then experiment with cutting the necklaces for maps in which the area of the regions differs
significantly. Finally, we experiment with generating multiple necklaces for a single map.

For star-shaped necklaces we experiment on South America and Africa. We experiment with
various interpolation factors and we try out various circles that are used in the interpolation. We
also take a look at offsetting the necklaces using Minkowski sums.

Most of the maps are retrieved from the Natural Earth dataset [11], except for the map of the
Netherlands, which is hand-drawn. The following Natural Earth maps are used:

• Map ne 110m admin 0 countries is used to generate all maps that show individual coun-
tries.

• Map ne 110m admin 1 states provinces is used to generate the map of the USA.
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Hardware and software. The experiments are run on an AMD Ryzen 3600 processor. A pro-
totype of the algorithm that generates circular necklaces has been implemented in Python 3. It
takes one second to generate a circular necklace for 240 points (= 14 countries). It takes four
seconds to generate a necklace for 400 points, and it takes fifteen seconds to generate a necklace
for 760 points. Note that this program runs just on a single core. By using a faster language
(e.g. C++) and parallelism, we suspect that the running time could be greatly improved.

For star-shaped necklaces, most of the algorithm has been automated. Using pyclipper [27]
and GeoPandas [15], we create the union of the set of input polygons and, optionally, inflated ver-
sions of the polygons. The medial axis is computed using JavaScript library by Steenkamp [33].
The medial axis is then re-imported into Python 3, where we compute the feature points and the
cubic Bézier curves. Once all the parts are chained together, the running time of computing a
star-shaped necklace is a few seconds at most, depending on the number of vertices that make
up the map. Our code can be found on github.com/Thobro/Necklaces.

5.1 Circular Necklaces

In Figure 5.1 two examples are shown. Both of these examples have been generated by assigning
the fraction 1/2 to every region. Even though South America has a specific elongated shape, a
circle fits nicely. Since only two countries lie in the southern part of this continent the reader will
still be able to associate the symbols with their corresponding regions. For Europe, the necklace is
suboptimal: Russia takes up too much of the necklace and Iceland causes the necklace to contain
too much water. We will first propose a method that weakens the area requirements for larger
polygons.

(a) (b)

Figure 5.1: Every country is assigned the fraction 1/2. (a) South America (b) Europe.

Inverted inclusion. We can make better necklaces by weakening the area requirements for
larger regions. We propose a method we call inverted inclusion. The results of this method can be
seen in Figure 5.2. In this figure dashed curves are necklaces generated by assigning every region
the fraction 1/2, and solid curves are necklaces generated using inverted inclusion. Inverted
inclusion works by giving the largest region a fraction of f1, and giving the smallest region a
fraction of f2 ≥ f1. Every other region is assigned a fraction between f1 and f2 dependent on its
area. For example, a polygon that is halfway between the largest region and the smallest region
in terms of area is assigned the fraction (f1 + f2) / 2. We say that we apply inverted inclusion
in the range of [f1, f2]. Experiments show that inverted inclusion in [1/8, 1/2] works well. A
downside of this method is that the area requirement can only drop in steps of 1/n, where n is
the number of points sampled per region. If enough points are sampled, this should not pose
a problem. Another downside is that we do not take the shape of the regions into account. For

30 Generating Optimal Curves for Necklace Maps

https://github.com/Thobro/Necklaces


CHAPTER 5. EXPERIMENTAL EVALUATION

example, even though Chile (Figure 5.2(a)) seems like a large region visually, inverted inclusion
in [1/8, 1/2] gives this region a fraction of 2/5. Inverted inclusion works particularly well when
a large region determines the size of the circle, as is the case for Europe—see Figure 5.2(b). In
most other cases, inverted occlusion does not produce noticeable difference.

(a) (b)

(c) (d)

(e) (f)

Figure 5.2: Six examples. Countries are sampled using 40 points. The dashed curves represent
necklaces found by giving every region a fraction of 1/2. The solid curves represent necklaces
found using inverted inclusion in the range of [1/8, 1/2]. (a) South America. (b) Europe. (c) East,
South, and Central Asia. (d) The Netherlands. (e) For Africa, using inverted inclusion does not
make a difference. (f) The Middle East.
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Necklace as the the inner circle of the annulus. In this thesis we have often referred to the
curve we generate as the necklace. However we should allow some freedom in what the curve
actually represents. Depending on the size of the symbols, a symbol can completely occlude
a region. We can see this in Figure 5.3(a), where Groningen has a relatively large data value
associated to it which makes the symbol occlude the region. To solve this problem we interpret
the curve we generate as the inner circle of the annulus created by the symbols and the necklace,
as shown in Figure 5.3(b). Note that the symbols are generally not given, and hence we can not
decide whether or not we should interpret the curve as the inner circle of the annulus, or as
the necklace itself. One could implement a post processing step to the algorithm that generates
the symbols. If there are symbols that completely occlude a region, then the symbols should
be scaled down in size, or, the radius of the necklace should be increased. We could also add a
user-defined parameter that allows the end user to change the radius of the necklace.

Groningen

(a) (b)

Figure 5.3: The Netherlands with arbitrary beads. (a) We use the generated circle as the necklace.
(b) We use the generated circle as the inner circle of the annulus (denoted by the dashed lines).

Discarding regions. In Figure 5.4 Southeast Asia is shown. In this figure the country of East
Timor makes the necklace unnecessarily large. Hence, we provide an algorithm that repeatedly
discards regions that lie on the boundary of the circle. The objective is to find the smallest disk
d that contains at most a fraction fw of the water, and satisfies a maximum number of region
fractions. We do this by modeling the water as a set of points of color w called water points.
This set of points is sampled using the techniques from Chapter 2. We require that the number
of water points that lie in d is at most cw = fw ·w, where w is the number of water points. We
provide a heuristic approach to satisfy this constraint. We start with d = d∗, where d∗ is the
smallest colored k-enclosing disk. We then iteratively discard the region that gives the largest
decrease in the number of water points that lie in d. This means that we have to repeatedly
execute the algorithm from Chapter 3 on a shrinking set of regions until no more than cw points
of color w lie in d. At every iteration, the region we discard is one of the at most three regions
that determine d. Thus, the total running time of this greedy algorithm is O(mn2 logn), where n
is the total number of points we sample from the map and m is the number of regions.
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East Timor
(a) (b)

(c) (d)

Figure 5.4: Southeast Asia. Inverted inclusion in the range of [1/8, 1/2]. (a) Including all coun-
tries. (b) Excluding East Timor. (c, d) Both necklaces with arbitrary beads shown.

In Figure 5.5 a few experimental results are shown for Europe, for various values of cw. Of
course, a sensible choice of cw differs per map. Southeast Asia is a region that already contains a
large amount of water between the countries and thus will always require a greater value of cw
compared to, say, South America. A heuristic approach also does not always work well. Imagine
Iceland being split into two regions A and B, where A is small and further removed from the
center of d∗ than B. Our heuristic algorithm will likely never discard A, since this would result
in a circle that is only slightly smaller. This is a problem because discarding first A and then B
would result in a much smaller circle, as we have seen in Figure 5.5. A better method is required
to adequately reduce the amount of water that lies within the necklace, however, this experiment
does show the flexibility of the algorithm we presented in Chapter 3.
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(a) cw = 100 (b) cw = 25 (c) cw = 10

Figure 5.5: Excluding water points for various values of cw. Inverted inclusion in [1/2, 1/8]. The
water has been sampled using 100 points and every country has been sampled using 20 points.

Incomplete circles. In Figure 5.6 North America and Central America are shown. North Amer-
ica consists of a few large countries whereas Central America consist of small countries. In Fig-
ure 5.6(a) a necklace is shown that has been generated using inverted inclusion in [1/8,1/2].
While this method already causes Canada to lie mostly outside of the necklace, a large part of
the necklace is empty. We could use the previous method to ignore Canada when computing the
necklace but this would not solve our issue. The necklace would become too small in that case.
Instead, we solve this issue by cutting the circle into a circular arc, as shown in Figure 5.6(b). Such
an arc is a valid necklace and is better suited for this set of regions. While our current algorithms
do not generate circular arcs, one could extend the algorithm from Chapter 3 to produce circular
arcs.

(a) (b)

Figure 5.6: Northern America and Central America. (a) A combination of large and small coun-
tries does not always yield a good looking circle. (b) A small section of the circle.
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Disjoint circles. Another issue that can occur is that there may be too many regions within the
necklace. This makes it hard for the reader to associate symbols to regions that lie far away from
the necklace—in Figure 5.7 the USA is shown with a single necklace.

Figure 5.7: The USA. A problem with this map is that there are too many regions within the
necklace.

As was also proposed by Speckmann and Verbeek [31], we can partition the set of regions
into smaller sets and compute a necklace for every partition. An example of this is shown in
Figure 5.8(a). In this figure, the states of the USA are partitioned into four sets based on the
major regions of the USA the US Census Bureau considers. However, there is a high probability
that these circles overlap, as seen in Figure 5.8(a). Here we can again cut the circles into circular
arcs in order to mitigate this issue. A result is shown in Figure 5.8(b).

(a) (b)

Figure 5.8: The USA split based on the four regions the US Census Bureau considers. (a) Using
circles. (b) Using circular arcs.

5.2 Star-shaped Necklaces

For some maps a star-shaped necklace is a better option, as we have seen in the introduction.
We test our algorithm that generates star-shaped necklaces on South America and Africa. As
we will see, star-shaped necklaces work well for these continents. Let us first take a look at
South America. Recall that we have two options for interpolation between circular necklaces
and star-shaped necklaces. We can interpolate between the star-shaped necklace found using the
procedure from Chapter 4, and the smallest colored k enclosing disk found using the algorithm
from Chapter 3. We can also interpolate between the star-shaped necklace and the smallest
enclosing disk of the feature points. Let us first take a look at the first option, of which the
output can be seen in Figure 5.9.

As input we take the polygons that represent the regions of the map. We compute the cor-
responding smallest colored k-enclosing disk using the Algorithm from Chapter 3. We then
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compute the star-shaped necklace using the algorithm from Chapter 4. Finally, we interpolate
between the results of these algorithms. An interpolation factor of 0 is a circle, and an interpola-
tion factor of 1 is the generated star-shaped necklace. In Figure 5.9(a)–(d) we show the output of
these algorithms for various interpolation factors.

(a) (b) (c) (d)

Figure 5.9: South America. Interpolation between the circle generated using the algorithm from
Chapter 3, and the generated star-shaped necklace. For (a)–(d) the interpolation factors are
1, 0.75, 0.5, 0.25 respectively. Arbitrary symbols are placed to simulate how the necklace map
could look like.

In Figure 5.10 we interpolate between the generated star-shaped necklace, and the smallest
enclosing circle of the feature points. Since we use the smallest enclosing circle of the feature
points, we have that the necklace represents the shape of the continent more closely for the
various levels of interpolation. However, it can also result in a shape that is too large, as seen in
Figure 5.10(d).

(a) (b) (c) (d)

Figure 5.10: South America. Interpolation between the smallest enclosing circle of the fea-
ture points, and the generated star-shaped necklace. For (a)–(d) the interpolation factors are
1, 0.75, 0.5, 0.25 respectively. Arbitrary symbols are placed to simulate how the necklace map
could look.

In Figure 5.11 Africa is shown. For this continent the circle computed using the algorithm
from Chapter 3 is nearly identical to the smallest enclosing circle of the feature points. Hence,
we show only an interpolation using the circle computed using the algorithm from Chapter 3. In
Figure 5.11(e)–(f) the necklace leaves too much empty space, similar to Figure 5.10(d). Hence,
we conclude that a suitable interpolation factor is at least, say, 0.5.
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(a) (b) (c)

(d) (e) (f)

Figure 5.11: Africa. Interpolation between the circle generated using the algorithm from
Chapter 3, and the generated star-shaped necklace. For (a)–(f) the interpolation factors are
1, 0.8, 0.6, 0.4, 0.2, 0 respectively.

Region offsets. In Figures 5.9, 5.10, and 5.11 the necklace lies very close to the regions. This
can cause a symbol to completely occlude a region, as can be seen in Figure 5.9(a). We can solve
this problem by computing the necklace on a larger version of the input polygon, see Figure 5.12.
We first inflate the input polygon (Figure 5.12(a)). Then, we compute the feature points for this
inflated polygon and compute the corresponding star-shaped necklace (Figure 5.12(b)). Finally,
we use this necklace as a necklace for the original polygon (Figure 5.12(c)).

(a) (b) (c)

Figure 5.12: (a) A polygon in light gray, together with the inflated version of the same polygon
in dark gray. The inflated version is constructed by computing the Minkowsi sum of the polygon
with a square. (b) A necklace computed from the inflated polygon. (c) The generated necklace
used as a necklace for the original polygon. Arbitrary beads are shown.
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We compute the inflated polygon using Minkowski sums. The Minkowski sum of two sets of
points A,B is

A⊕B = {a+ b | a ∈ A,b ∈ B}

Let P be the input polygon and let S be a square of a specific width. Then the Minkowski sum of
P and S results in the polygon shown in Figure 5.12(a). Typically, polygon offsets are computed
using disks in the Minkowski sum instead of squares. However, this would produce circular arcs
in our polygon. In Figure 5.13 we see that a polygon that contains circular arcs also contains
edges in its medial axis that stop before they reach the boundary of the polygon. Since we take
feature points from edges of the medial axis that coincide with the boundary of the polygon, we
can not extract feature points from edges that are directed into a circular arc.

b

Figure 5.13: The edge denoted by b does not continue until it reaches the boundary of the poly-
gon.

The use of Minkowski sums allows us to enlarge the necklace in such a way that the beads do
not occlude the regions too much. However, a downside is that Minkowski sums can distort the
shape of the polygon. As a result, the generated necklace might not accurately capture the shape
of the continent anymore. For example, the southern tip of the inflated version of South America
(Figure 5.12(a)) causes the bottom tip of necklace to move too far to the right.

We conclude that our algorithms produce visually pleasing results. Inverted inclusion is a
technique that works well for all sorts of maps. For maps that contain many regions or for maps
in which there is a large size difference between the regions, our algorithm produces results
that are not as good. However, as we alluded to before, extensions could be developed that, for
example, cut the circular necklace into circular arcs. The star-shaped necklaces we produce work
well and are also flexible. One can simply discard individual Bézier curves from the star-shaped
spline in order to create disjoint necklaces. Computing an offset star-shaped necklace using a
Minkowski sum is not ideal as distortions can occur. Hence, for this a better method should be
used.
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Chapter 6

Conclusions

In this thesis we have presented a few methods that successfully generate good necklaces for
necklace maps. We presented an algorithm that computes a suitable circular necklace given a set
of regions. This algorithm works by first approximating the regions as a set of colored points, and
then computing the smallest disk that contains at least some number of points of a certain color,
for every color. Our algorithm finds this disk in expected O(n2 logn) time, where n is the total
number of points. We determine the color requirements by giving large regions a smaller color
requirement, and small regions a larger color requirement. We also presented an algorithm that
generates suitable star-shaped necklaces. This algorithm computes a small set of feature points
using the medial axis, that describe the shape of the continent, and then draws a cubic Bézier
spline through the feature points. To provide flexibility we presented a method that interpolates
between circular necklaces and star-shaped necklaces.

In Chapter 5 we concluded that our algorithms are flexible. Our circular necklaces allow cuts
to be made in order to form circular arc necklaces. Our algorithm can also be used to generate
multiple necklaces for a single map. For star-shaped necklaces we are able to discard individual
Bézier curves in order to form, possibly multiple, open necklaces.

Future work. The expected running time of O(n2 logn) for finding the smallest colored k-
enclosing disk, can be improved to O(n2 logm), if there was a way to solve the problem in O(n2)
time for a set of points of at most four colors. However, we are not sure if this is possible.

In our algorithm a couple of user-defined parameters have been defined. One such parameter,
γ , dictates the minimum distance between any pair of consecutive feature points. Ideally this
parameter should be chosen automatically. Another user-defined parameter determines whether
the generated curve represents the inner circle of the annulus, or the necklace itself. It is difficult
to automate this choice, as this choice depends on the size of the symbols, something which is
unknown to the algorithms.

In Chapter 5 we have seen that circular necklaces do not work well if there is a large size dif-
ference between the regions. We proposed a method that cuts the circular necklace into circular
arc necklaces. Future work should look at how to automatically make this cut. Better results
can likely be produced by developing a separate algorithm specifically for open necklaces. We
also experimented with ignoring regions when computing the necklace. While this experiment
produced good preliminary results, a more algorithmic approach to this problem is desired.

Lastly, star-shaped necklaces can lie too close to their corresponding continent. We proposed
a method that computes a star-shaped necklace for the inflated version of a continent, where
inflation is done using Minkowski sums. However, this method might introduce distortions that
cause the shape of the star-shaped necklace to misalign with the shape of the non-inflated version
of the continent. Hence, another method that offsets the feature points, could potentially provide
better results.
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[21] Jiřı́ Matoušek. On enclosing k points by a circle. Information Processing Letters, 53(4):217–
221, 1995. 6, 16, 17
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