
 Eindhoven University of Technology

MASTER

GO!GAN
Grasping Objects with Generative Adversarial Networks

Losada de la Rosa, Fran J.

Award date:
2020

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/8303151c-faac-4cec-a84b-9447f555bbc1

GO!GAN: Grasping
Objects with Generative

Adversarial Networks

Master Thesis

Francisco Jose Losada de la Rosa

Department of Mathematics and Computer Science
Architecture of Information Systems Research Group

Supervisors:
Joaquin Vanschoren

Mike Holenderski
Nico van Engelenhoven

Eindhoven, August 2020

Preface

The author would like to acknowledge the support, help and flexibility given by my supervisors,
both from Greenhouse Labs Research (Tim Deynen and Nico van Engelenhoven) and Eindhoven
University of Technology (Joaquin Vanschoren), to develop this Master Thesis.

Also, the unconditional and continuous support from my girlfriend with whom I have shared these
last lock-down months on the COVID-19 pandemic, my family, friends and Greenhouse interns.

GO!GAN: Grasping Objects with Generative Adversarial Networks iii

Contents

Contents v

List of Figures vii

1 Introduction 1

2 Problem Statement 3

3 Preliminaries 5
3.1 Convolutional Neural Networks . 5

3.1.1 Convolution . 5
3.1.2 Transpose Convolution . 6
3.1.3 Activation Function . 6

3.2 Generative Models . 7
3.2.1 Variational Autoencoders . 7
3.2.2 Generative Adversarial Networks . 7
3.2.3 Loss Functions in GANs . 8
3.2.4 Evaluation Metrics in GANs . 10
3.2.5 Non-convergence: Mode Collapse . 11

4 Related work 12
4.1 Conditional GAN frameworks . 12

4.1.1 Low-dimensional images . 12
4.1.2 High-dimensional images . 14

4.2 Segmentation masks for pose manipulation . 15
4.2.1 Paired training . 15
4.2.2 Unpaired training . 17

4.3 Object pose manipulation . 17
4.4 Introducing new elements in the image . 18
4.5 Limitations of the state of the art . 19

5 Methodology 21
5.1 Architecture . 21

5.1.1 Generator . 21
5.1.2 Discriminator . 21
5.1.3 Auxiliary classification network . 22

5.2 Conditional Mask . 23
5.3 Loss Function . 24

GO!GAN: Grasping Objects with Generative Adversarial Networks v

CONTENTS

6 Experimental setup 26
6.1 Dataset . 26
6.2 Model Measures . 28

6.2.1 Quantitative: SSIM . 28
6.2.2 Qualitative: Visual Validation . 28

6.3 Baseline Methods . 29
6.3.1 Loss baseline . 29
6.3.2 Mask baseline . 29

7 Experiments and results 30
7.1 Experiment 1. RGB object conditional mask . 30
7.2 Experiment 2. Evaluate the performance of the proposed model loss function . . . 33

7.2.1 Pix2Pix baseline examples . 34
7.2.2 GO!GAN model examples . 36

8 Conclusions 39

Bibliography 41

Appendix 45

A Mode Collapse 45

B Object/Hand foreground baselines 47

C Additional generated samples 48

vi GO!GAN: Grasping Objects with Generative Adversarial Networks

List of Figures

2.1 Decomposition of the hand-object grasp attending to the 2D interaction between
the hand and the object. 3

2.2 General overview of the model inputs and output. 4

3.1 ReLU and LeakyReLU activation functions. 6

4.1 Pix2Pix Architecture . 12
4.2 Pix2Pix examples. Left pair: segmentation mask transformation.Right pair: in-

painting transformation . 13
4.3 The skip-connections of the U-net are one of the key characteristics than distinguish

this autoencoder from a conventional one. Image source [16] 13
4.4 PatchGAN discriminator networ. Image source [24] 14
4.5 Pix2PixHD Generator architecture. Composed by embedded generators which re-

fine and upsample the generated image. Each of them has a discriminator associated
that assures a good image quality in every step. Image source [35] 14

4.6 PG2 network . 15
4.7 GestureGAN Architecture. The discriminator input is composed by triplets of

images instead of the pairs seen in the previous works. 16
4.8 Cycle-GAN network. Each generator has a discriminator associated that encourages

the network to learn. 17
4.9 Object-centric Network. Image source [32] . 18

5.1 Overall Network Architecture . 22
5.2 The model conditional mask is an RGB image of the object to grasp. The model is

expected to learn to place in the foreground the object parts that shadow the hand
(blue) and object parts shadowed by the hand (green)). 23

5.3 Examples of two monochromatic masks that fail to learn the hand-object grasp. . 23

6.1 Each sample comes in three different compositions. 27
6.2 Bottle sub-categories. 27
6.3 Weak baselines for hand-object grasp generation. White for correct rendering, green

and blue for incorrect rendering . 29

7.1 Mask 1. From left to right: object mask, source image, generated image, SSIM
difference map. The network does not know the object appearance. 31

7.2 Mask 2. From left to right: object mask, source image, generated image, SSIM
difference map. The network knows the hand-object grasp that is provided by the
mask. 31

7.3 Mask 3. From left to right: object mask, source image, generated image, SSIM
difference map. In an early training stage the object mask draws the object on the
image foreground covering the hand fingers. 32

GO!GAN: Grasping Objects with Generative Adversarial Networks vii

LIST OF FIGURES

7.4 Mask 3. From left to right: object mask, source image, generated image, SSIM
difference map. After the training, object mask draws the object being aware of
the hand grasp, keeping the fingers in the foreground. 32

7.5 SSIM Measure comparison over the three Segmentation Masks. 32
7.6 SSIM Measure comparison with the use of the different generator losses proposed. 33
7.7 Pix2Pix grasp generation. Example 1. 34
7.8 Pix2Pix grasp generation. Example 2. 35
7.9 GO!GAN grasp generation. Example 1 . 36
7.10 GO!GAN grasp generation. Example 2. 37
7.11 From left to right: object mask, source image, generated image, SSIM difference

map. Grasp artifacts in the hand parts that shadow the object. 38
7.12 From left to right: object mask, source image, generated image, SSIM difference

map. The hand parts that should be shadowed by the object are not. 38
7.13 From left to right: object mask, source image, generated image, SSIM difference

map. Grasp failure, keeping the object in the foreground. 38

A.1 Adversarial loss behaviour when mode collapse happens. 45
A.2 Mode collapse example 1 . 46
A.3 Mode collapse example 2 . 46

B.1 Additional baselines for hand-object grasp generation. White for correct rendering,
green and blue for incorrect rendering. 47

viii GO!GAN: Grasping Objects with Generative Adversarial Networks

Chapter 1

Introduction

Image editing encompasses the process of altering images, and has been an active and interdiscip-
linary research topic from several decades. Images constitute the core element in different fields
like marketing, television, arts, and more recently computer vision. Graphic software programs
such as vector graphics editors and raster graphics have been the primary tools with which users
manipulate, alter and enhance images.

In the last decades, the advances in Artificial Intelligence (AI), with improved neural networks
together with increased computing power, has led to strong improvements in the field of computer
vision. Computer vision aims to gain a high-level understanding of digital images and video,
seeking to understand and automate tasks that were exclusive to the graphic software programs.
In this context, generative models are attracting the attention of the research community and
the last decade has experienced an important upturn since the Generative Adversarial Networks
(GANs) appeared in 2014, which researchers as Yann Lecun claim to be the most interesting
machine learning idea of the decade.

GANs were first used for image generation, as a way to infer an artistic component to an AI. Soon,
GAN applications expanded to fields like image inpainting, future state prediction, style transfer
and superresolution. The use of conditional GANs opened the door to learning specific image
transformations, with strong enough capabilities to generate what are known as “Deep Fakes”,
in which a person in an image or video is edited in a way that looks like real content when it is
actually fake. In the realm of “Deep Fakes”, most of the existing applications transform existing
components of the image into different shapes or positions. As so, mouth position can be modified
so the person seems to be speaking, or the body position can be changed into different postures.

Introducing new objects into the image is one of the next challenges to be faced by generative
models. It is especially challenging because 2D images lack the third dimensional depth informa-
tion, finding it hard to render new objects in a spatially coherent way. In this study, we focus on
the rendering of new objects that will be held by a previously existing hand in the source image.
The research question of this study can be formulated as follows:

“How do we infer a hand-object grasp generation in a 2D image framework?”

The main contributions of this work are the following:

• Design a modeling framework to learn hand-object grasps adapting the Pix2Pix architecture.

• Define an evaluation metric to asses the quality of the generated images.

• Engineer the model loss to obtain better qualitative and quantitative results.

GO!GAN: Grasping Objects with Generative Adversarial Networks 1

Chapter 2

Problem Statement

A grasp is the act of taking, holding or seizing firmly an object with our hands. It is a human
primitive act that humans acquire in early stages of their life. We are born with the “palmar grasp
reflex”, one of our primitive reflexes that makes baby’s fingers close and grasp an object placed in
the infant’s hand. Over the years, we develop this grasp capacity to be able to hold any kind of
object shape, adapting our hand to the object characteristics. A grasp is, inevitably, a 3D action
that requires our hand to understand the object to be held.

When dealing with images, there are 2D and 3D images that refer to the actual dimensions of
information contained in the image. A 2D image is “flat”, meaning that only the horizontal and
vertical (X and Y) dimensions exist, and if turned to the side becomes a line. A 3D image adds
a the third depth (Z) dimension, which allows the image to be rotated and visualized from any
perspective.

Dealing with grasps in 2D is then, a challenging task that requires us to reformulate the act of
grasping and understand it without depth information. To decompose the problem, we take a
closer look the example of a hand grasping a bottle. We can clearly identify the two key elements
that are part of the equation, that is: the hand and the object. A key point is that not all the
hand is visible, and not all of the object is visible. We can identify four differentiated parts in the
grasp 2.1. The parts of the hand and object which occupy a spatial position in the image in which
do not shadow each other (purple, white) and the parts of the hand that occupy the same spatial
position, and thus shadow each other being on the foreground or background (green, blue).

(a) Hand-object grasp (b) Hand-object interaction parts

Visible hand parts
Visible object parts
Shadowed hand parts
Shadowed object parts

Figure 2.1: Decomposition of the hand-object grasp attending to the 2D interaction between the
hand and the object.

GO!GAN: Grasping Objects with Generative Adversarial Networks 3

CHAPTER 2. PROBLEM STATEMENT

The core of the model learning lies in the shadowed parts of both hand and object. Our model
will have two inputs, and will have one output 2.2. One of the inputs will be the hand without
holding the object, and the output will be the hand holding the object. As we will see in the
literature review section, conditional masks are used in generative models to provide information
tailored to the task we are trying to solve, this will be our second input. As we will see in more
detail in sections 5 and 7, if the mask provides too much information like what parts of the object
should be shadowed, the model will not learn the grasp. On the other side, and if we provide too
little information, for example, no information about the object appearance, the model will not
be able to learn how to represent it.

Figure 2.2: General overview of the model inputs and output.

The challenge being tackled works under very specific input conditions. To be able to learn the
grasp, both hand and object must be in a position that allows the grasp. This means that there
are two underlying challenges to this setting, and that need to be solved in our framework to work:

• Hand pose manipulation: The hand pose needs to be transformed to a grasp position in
which the integration with the object grasp makes sense.

• Object pose manipulation: The object in the image needs to be in a specific shape and
position.

4 GO!GAN: Grasping Objects with Generative Adversarial Networks

Chapter 3

Preliminaries

In this section we introduce convolutional neural networks, providing enough background on this
deep learning approach that will be used throughout the work. Then we deep dive into generative
models, and particularly into Generative Adversarial Networks, that will be the base of our model
and whose details need to be understood for the further design decisions to be made.

3.1 Convolutional Neural Networks

Images are high dimensional data structures in which different low, medium and high-level features
are present. A first approach to deal with this data would be to flatten the image matrix into
an array vector and use it as input to a neural network. The problem is that this approach fails
to capture the spatial and temporal dependencies existing in the image, loosing a lot of valuable
information needed in classification tasks.

The best way to capture all the dependencies exiting in an image, going from the low-level to the
high-level features, is the use of convolutional neural networks (CNN).

3.1.1 Convolution

In a convolution layer, there are the following key elements:

• Kernel: 2D square that usually has the shape of 3x3 or 4x4 pixels. The kernel traverses the
input image from the top left to the button right.

• Filter: Operation that is done with the pixels contained in the kernel and that results in one
value contained in a neuron. That neuron is said that covers the receptive field of the pixels
involved in the operation

• Stride: Value that indicates how many pixels does the kernel move to perform the next filter
operation.

• Padding: By nature, the act of convoluting generates a lower dimensional image. A technique
to avoid this is to populate the borders of the image with 0s in a way that the output
dimension stays the same.

The kernel moves from the top right to the bottom left of the image until all the image
is completed. The iterative process of moving the kernel throughout the image applying the
filter operation with a certain stride and padding can be mathematically expressed as a matrix
multiplication. To do that, we need to create the convolution matrix first. The convolution matrix
represents in a matrix the moves of the kernel throughout the image. Each row is a flattened version

GO!GAN: Grasping Objects with Generative Adversarial Networks 5

CHAPTER 3. PRELIMINARIES

of the image that is polulated with 0s if the kernel is not in the position and with the kernel values
if the kernel is placed there.

If we have a 3x3 image and a 2x2 kernel with stride one, the kernel moves 4 times, which means
that the convolution matrix has four rows. Each row has 9 columns that represent each of the
pixels of the 3x3 image, resulting in a (4x9) matrix. If we flatten the image as a (9x1) matrix.
Now we can multiply the (4x9) convolution matrix with the (9x1) flatten image, getting a flatten
(4x1) version of the 2x2 image resulting from the convolution.

In a 256x256 image, if the kernel size is 3x3, the receptive field that covers each of the filter neurons
is very small. For this reason, the first convolutional layers capture low-level features of the input
image. Following with this example, and with a configuration that reduces the size of the image
by a factor of two, a second convolution layer of 3x3 on the 128x128 resulting image would have a
receptive field on the 256x256 original image of 9x9, and medium-level features would be captured.
This process goes on until the highest level features are gotten, which allows for example to classify
an image by category.

3.1.2 Transpose Convolution

Transpose convolutions are used as an up-sampling technique to go from low-dimensional images
to bigger ones. Contrary to other data-independent techniques in which the up-sampling method
is predefined, transpose convolutions are able to learn from data, making them widely used in
deep learning image generation.

Following with the example previously used for convolution, we have the result of the convolution
(2x2) and the shape of the image that resulted in that value (3x3). If we built the convolution
matrix as explained before, we get a (4x9) matrix. We cannot multiply a (4x9) matrix with the
flatten image (4x1). The solution is to transpose the convolution matrix so its shape becomes
(9x4) and multiply it by the (4x1) flatten image, resulting in a (9x1) flatten version of the (3x3)
image before convolution we were looking for.

3.1.3 Activation Function

In a neural network forward pass, a neuron calculates a weighted sum of its input (neuron value
multiplied by neuron weight) and adds the bias term. Once that value is obtained, the activation
function takes the decision of what the output will be.

The ReLU activation 3.1 function truncates negative values to 0 and lets positive values pass
unaltered. ReLU, however, often faces what is known as the “dying Relu” problem [11], in which
neurons get stuck in a value that ReLU will always output 0, and does not allow the flow back
of the gradients through the network. This problem is especially significant when training GANs,
since the generator needs to receive the gradients from the discriminator in order to learn. Leaky
ReLu 3.1 adds a small slope for negative values, which fixes the “dying Relu” problem.

Figure 3.1: ReLU and LeakyReLU activation functions.

6 GO!GAN: Grasping Objects with Generative Adversarial Networks

CHAPTER 3. PRELIMINARIES

3.2 Generative Models

Generative models attempt to learn the data distribution of a training set. When modelling
high-dimensional data such as images or audio, the model learns a low-dimensional distribution
representation which is as similar as possible to the true data distribution.

Deep Generative Models make use of neural networks to learn those data feature representa-
tions. Variational Autoencoders (VAEs) and Generative Adversarial Networks (GANs) are two
approaches used in this area.

3.2.1 Variational Autoencoders

VAEs are composed of two main components, an encoder and a decoder. The encoder performs a
dimensionality reduction of the input data, limiting the features (pixels in the case of images) that
describe it. This process of gradually encoding the input to a low-level representation or latent
space is a lossy compression, meaning that the original data dimension can not be recovered back.
The VAEs decoder does the reverse task, going from the encoded latent space to gradually get
again to a high-level representation.

Autoencoders can be trained to minimize a loss function between the input and output images, and
so learning the best encoding-decoder scheme. VAEs, contrarily to vanilla autoencoders, generate
latent spaces, which are continuous by design, allowing random sampling and interpolation. This
feature allows the decoder not only to replicate existing images, but to randomly sample from the
latent space, or generate variations on an input image.

3.2.2 Generative Adversarial Networks

Generative Adversarial Networks [13] were introduced by Ian Goodfellow in 2014, and soon started
to be used in images with deep convolutional neural networks [25]. This new technique is inspired
by games theory approach by which two networks, generator and discriminator, compete between
each other. The objective is to achieve what in game theory is known as ’Nash equilibrium’
by which both networks would keep improving indefinitely by competing among each other. The
generator network captures the data distribution and generates and image out of that distribution,
and then the discriminator network estimates the probability that the sample comes from the
training data rather than from the generator. The generator learns how to make synthetic images
look more real trying to mislead the discriminator, while the discriminator tries to keep classifying
correctly not getting fooled by the generator.

In the vanilla GAN, Gaussian noise is fed to the generator, which after training will have learnt
the data distribution of the training data. This initial configuration presents some limitations,
such as the possibility of learning only one data distribution per dataset.

Conditional Generative Adversarial Networks

As a straightforward extension of this framework, the creation of a conditional model of GANs was
presented months later and named CGAN [22]. It solved the unconditioned previous model by the
addition of class labels for the data generation. These class labels were added to the random noise
input received by the generator, acting as conditioning information that allows us to introduce a
desired behaviour in the generated image. The generator operates in a way that learns a mapping
from an observed image x and random noise vector z, to y, G : {x,z} −→ y, while the discriminator
operates as a binary classifier. A new broad sub-field in GANs was born, which we will refer to
as conditional image synthesis, being the task of generating images conditioned on certain input
data. (Note that the term image-to-image translation is also commonly used, but we avoid to use
it here due to the possibility of using image-to-image mappings using GANs unconditionally.)

GO!GAN: Grasping Objects with Generative Adversarial Networks 7

CHAPTER 3. PRELIMINARIES

3.2.3 Loss Functions in GANs

Cross-entropy loss

Also known as log loss, it is used for classification tasks, and measures the performance of a model
whose output is a probability vector that represents predicted probabilities of all classes to classify,
summing up to 1. This can be achieved by having the last layer activated by a softmax function
for example. When we compute this loss to classify an image of class A, the loss does not penalize
if the model gives a high probability to class B. Instead, it penalizes more the low probability
given to class A by the model. In other words, the loss penalizes more if the probability given to
the correct class is lower.

CE = −
∑
x

p(x) ∗ log10 q(x) (3.1)

Where p(x) = probability of class x in target, q(x) = probability of class x in prediction

As the loss only pays attention to the predicted probability, the other terms do not need to be
calculated as they will always be zero. This can be done if the our target is a one-hot vector, by
calculating only the loss for the hot class. This is known as categorical cross-entropy loss.

CCE = − log10 q(x) (3.2)

For binary cross-entropy, we have two classes, zero and one. The output is a predicted value
that is shirked between zero and one by using a sigmoid activation function. So, in order to keep
using the loss as before, we one-hot encode the two classes (1,0) and (0,1) and transform the
predicted value to a probability vector, assigning to the other class the probability of one minus
the prediction. The first and second term of the formula cancels out if the target is zero or one
respectively.

BCE = −(p(x) ∗ log10 q(x) + (1− p(x)) ∗ (1− log10 q(x))) (3.3)

MAE and MSE loss

Mean Absolute Error, also known as L1 loss, is used for regression models. It is the sum of the
absolute differences between the target and predicted variable.

MAE = (
1

n
)

n∑
i=1

|yi − xi| (3.4)

If, instead of the absolute differences, we compute the squared distances, then it becomes the
Mean Square Error (MSE) or L2 loss. The mean difference between both resides in how they
deal with outlier values. As L1 loss simply takes an average of differences, it is robust against
outliers as they will not greatly affect the whole average. On the other hand, L2 loss squares those
differences, hence making outliers have a much bigger impact on the final loss value.

MSE = (
1

n
)

n∑
i=1

(yi − xi)2 (3.5)

Adversarial Loss

To understand how the adversarial loss works, we need to take a step back to the BCE loss defined
in 3.2.3. The discriminator acts as a binary classifier that aims to classify real images as real, and
fake images as fake. When a real image comes into the discriminator (p(x) = 1), the second term
cancels out. In the same way, when a fake image generated by the generator comes in (p(x) = 0),
the first term cancels out

8 GO!GAN: Grasping Objects with Generative Adversarial Networks

CHAPTER 3. PRELIMINARIES

BCE(D(x), 1) = log10G(x) (3.6)

BCE(G(z), 0) = log10(1−D(G(z)) (3.7)

Thus, the objective of the discriminator is to maximize these two functions.

L(D) = max[log10G(x) + log10(1−D(G(z))] (3.8)

The generator is competing against the discriminator, trying to minimize the above equation.

L(G) = min[log10G(x) + log10(1−D(G(z))] (3.9)

Putting together the objective functions of both generator and discriminator, the final GAN
objective is:

L = minGmaxD[log10G(x) + log10(1−D(G(z)))] (3.10)

In this original setting, the mini-max loss game proved to saturate the generator loss in the
early stages of the training [13]. This made it necessary to re-frame the idea in a way that both the
generator and discriminator had to maximize a loss function. To do this, the generator technique
is changed, and instead of minimizing the discriminator objective, it maximizes the chances that
the discriminator classifies a fake image as true.

The discriminator acts a binary classifier which tries to maximize the binary cross entropy loss, also
known as log loss. The generator learns to generate samples that have a low predicted probability
of being fake. This means minimizing the probability that the discriminator classifies synthetic
images as synthetic.

Other adversarial loss configurations have appeared since then. The Least Squares GAN loss [20]
proposes the use of a mean squared error or L2 loss in both generator and discriminator. This
loss gives a higher penalty to large errors, which in practice helps to fight the vanishing gradient
problem. Wasserstein GAN loss [1] proposes a new loss function based on calculating the distance
between synthetic and real images with the Earth-Mover’s distance. This loss function, created
specifically for the GANs framework, provides useful gradients, allowing for the continued training
of the models.

Additional Generator Losses

The standalone adversarial training can, in theory, allow the generator to learn the data distribu-
tion of the data it has been trained with. Many GANs settings pursue not the generation of new
images per se, but to learn a specific transformation. This means that some characteristics of the
input image should be kept after passing through the generator, and the adversarial loss can not
guarantee that the learned function will map the input to the desired output. To further reduce
the space of possible mapping functions, additional loss functions need to be used.

Cycle-consistency loss. A way to reduce the mapping function space learnt by the generator
network is to ensure that the function is cycle-consistent. This loss was proposed for training with
an unpaired dataset [16], but has also shown good results when using it for a paired dataset con-
figuration [33]. This loss proved to be effective in transformations involving colors or textures like
style-transfer or photograph enhancement, but performs poorly when the transformation implies
big changes in the image. The original cycle-gan was done using two generators, where one learnt
a transformation and the second the backward transformation. StarGAN [9] simplified the con-
figuration to a single generator and discriminator, being able to learn both forward and backward
transformations with the same generator.

GO!GAN: Grasping Objects with Generative Adversarial Networks 9

CHAPTER 3. PRELIMINARIES

Reconstruction loss. Another way to narrow this function space is to minimize the L1 or L2
loss between the generated image and the ground truth. In order to alleviate the channel pollution
when using this loss, a channel-wise calculation has shown to be effective [33].

Perceptual loss. This builds further on the idea of the reconstruction loss. Instead of directly
encouraging the generated image to match the ground truth, we encourage a match on the feature
representations of encoded versions of it. To do that, we create an external CNN network and
make a forward pass of both the generated and ground truth image [17]. Specific latent spaces of
different layers are selected from the two images and the L1/L2 loss is computed, trying in every
interaction to reduce it.

3.2.4 Evaluation Metrics in GANs

Different measures have been proposed to evaluate and compare GANs. Yet, there is no consensus
as to which measure best captures the strengths and limitations of models and the search for a
fair comparison measure is still going on.

From a strictly theoretical point of view, the adversarial training implies that only one of the two
networks will finally succeed.

• Generator: Will succeed if the discriminator, acting as a binary classifier, achieves a 50
percent accuracy in classifying real and synthetic images. This is the accuracy of a random
guess, and means that the generator has learnt a data distribution that generates images
indistinguishable for the discriminator.

• Discriminator: Will succeed if it achieves a 100 percent accuracy, being able to correctly
classify between the real and the synthetic images generated by the generator.

The training process, on the other hand, aims to keep the balance between both networks.
If one of them achieves its final goal, the other one will not be able to improve, so we tend to
keep a balance between them. A very good discriminator will always classify correctly, and the
loss function information that the generator receives will not contain valuable insights and the
generator will never learn how to improve its images. A very good generator will always fool the
discriminator, so it will not be eager to generate better images, and the final results of the image
will have bad quality, as the discriminator was easily fooled.

Even if we evaluate from the basis that the training process has been balanced, there will always
be a bias factor coming into the equation. Depending on how good the discriminator operates, its
ability to distinguish between real and fake images will greatly vary. The learnt data distribution
of the generator may produce good enough images to fool the discriminator, but fail to have
a photo-realistic results in terms of image quality. This happens because the data distribution
aimed to be learnt has very high dimension and there are many optimal solutions that can fool
the discriminator, but there is no direct relation between them and a high quality image. This
is why the adversarial loss is often combined with other complementary losses that constrain the
learnt data distribution. To overcome those uncertainties, two main groups of evaluation metrics
[4] are used to evaluate GANs.

• Quantitative measures: Mainly “model agnostic” in that the generator is only used for the
image generation. They provide an objective criteria, but sometimes may not correspond
to how humans perceive and judge generated images. In conditional GANs, some measures
extracted from the image quality assessment literature like Mean square Error (MSE), Peak
Signal-to-Noise ratio (PSNR) and Structural Similarity (SSIM) [36] are widely used [39] [33].

• Qualitative measures: Visual examination of generated samples by humans is one of the
most common and intuitive methods to rate GANs. Despite its convenience, it also has

10 GO!GAN: Grasping Objects with Generative Adversarial Networks

CHAPTER 3. PRELIMINARIES

several drawbacks. It is an expensive process and the evaluation may be biased depending
on the human inspectors used. For the evaluation of conditional GANs, perceptual measures
are widely used [16] [35] by doing A/B tests with tools like Amazon Mechanical Turk.

The Mean Square Error, is a pixel-wise measure calculated by averaging the squared difference
between a ground truth image and the generated one. As it does not take into consideration the
peak of intensity of the pixel values, images with different encoding values cannot be objectively
compared using MSE. This drawback is handled by PSNR, that takes into account the maximum
possible pixel value (e.g. 255 for an 8 bit representation). Both measures are pixel-wise, which
means they do not quantify the image similarity in terms of structure.

PSNR = 10 ∗ log10

MAX2

MSE
(3.11)

Where MAX is the maximum possible pixel value of the image.

The SSIM measure [36] was proposed to overcome the limitations of both MSE and PSNR. It
is based on visible structures in the image and compares not only pixel-wise, but also the pixel
neighbours using luminance, contrast and structure quantities. It aims to imitate the human
perception, discounting aspects of the image which may not be relevant and a more reliable
measure of perceptual similarity.

SSIM(x, y) =
(2µxµy + C1) + (2σxy + C2)(
µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2

) (3.12)

For every NxN pixels window, where µx/y stands for average, σx/y stands for variance, σxy stands
for co-variance.

3.2.5 Non-convergence: Mode Collapse

Mode Collapse, also known as the Helvetica scenario, is the most common non-convergence prob-
lem encountered in GANs training [12]. This occurs when the equilibrium between generator and
discriminator breaks, causing one of them outperform the other. In mode collapse, it happens that
the generator maps several different input values to the same output point. Although complete
mode collapse is rare, a partial mode collapse with outputs containing the same colors, textures
or shapes is common.

It can be identified by visual examination of the generated samples or by reviewing the line plots
of the model losses. When the discriminator loss improves to values close to zero, the generator
is unable to generate real-like images that fool the discriminator. This causes the generator loss
to oscillate over time between high and low values.

GO!GAN: Grasping Objects with Generative Adversarial Networks 11

Chapter 4

Related work

In this section we explain several state-of-the-art methods for conditional GANs that will constitute
the core of our model components. We also explore the more specific research being done with the
use of segmentation masks for human pose manipulation, novel object pose generation, and finally
in the introduction of new elements in an image, which is the closest field to our hand-object grasp
generation challenge.

4.1 Conditional GAN frameworks

Conditional GANs allow to introduce desired behaviour by introducing into the generator what
is known as a mask. The mask contains the information that the generator will use to generate
the image, it is thus conditioned by it. Masks can be numeric labels, text, and most commonly,
images.

4.1.1 Low-dimensional images

Conditional GANs rely on a the use of conditioning information to be able to learn a broad range of
transformations. Pix2pix [16] stands as a common framework when using images as the condition,
which is also known as image-to-image transformation. Its mayor contributions are the use of
specific generator and discriminator architectures that demonstrate the best performance when
dealing with this kind of problems. It also proposed GAN objective that can be used as a baseline
and combined with other more problem-specific losses.

In 4.1, a target mask is introduced into the generator, which uses the information contained in it
to generate the desired output. The discriminator then has the task of classifying as real or fake,
pairs of images composed by the target images and target mask and generated image and target
mask respectively.

Figure 4.1: Pix2Pix Architecture

12 GO!GAN: Grasping Objects with Generative Adversarial Networks

CHAPTER 4. RELATED WORK

If we observe the example of the segmentation mask labels for buildings 4.2, what the generator
network is learning is a transformation that will output a photo-realistic building out of the
different components in the mask. The same happens with black and white images to color 4.2,
the generator is learning the transformation of impainting the image in a realistic way. The idea
behind is that despite the GAN is still the same in terms of architecture, the underlying idea
behind shifts from image generation to image transformation. We frame the input image of the
generator to a set of desired constrains in order to learn a specific transformation. In the next
related work papers, we will revise the different novel ways of learning them, and the two most
important mechanisms that researchers have to focus on, the loss function and the conditional
mask.

Figure 4.2: Pix2Pix examples. Left pair: segmentation mask transformation.Right pair:
inpainting transformation

U-net

The generator architecture presents a “U-Net” shape autoencoder [27] with skipping connections
between the encoder and decoder layers 4.3. This information is shared directly without the
decoder without suffering the shrinking and consequent loss of information of passing through the
encoder layers until arriving to the bottleneck layer. This is especially beneficial in image-to-image
translation in which a big amount of low-level information needs to be kept to achieve sharper
and more realistic results.

Figure 4.3: The skip-connections of the U-net are one of the key characteristics than distinguish
this autoencoder from a conventional one. Image source [16]

The U-net is composed of convolutional blocks with LeakyRelu activation function, in which
the number of filters consecutively double that of the previous layer. After the first convolution
layer, the following blocks also contain a batch normalization layer that makes the samples output
zero mean and unit variance and that has proven effective for stabilizing the training process [15].

PatchGAN

The PatchGAN discriminator maps the input image into a one dimensional NxN output. Each of
the values of that output map to a patch or receptive field of the original input image, and it is
classified into real or fake. A receptive field size of 70x70 was proven to be the best trade-off. A
smaller receptive field was proven to tiling artifacts, while a bigger one does not offer better visual
results [16]. This configuration allows the use of fewer parameters and a faster training.

GO!GAN: Grasping Objects with Generative Adversarial Networks 13

CHAPTER 4. RELATED WORK

Figure 4.4: PatchGAN discriminator networ. Image source [24]

The discriminator architecture follows the same scheme as the “U-net” generator. In each
transpose convolutional layer, the number of filters doubles while the image shape shrinks by a
factor of two. Every block has a batch normalization, but the last one before the output layer
does not.

4.1.2 High-dimensional images

The framework used in Pix2Pix with the U-net generator and PatchGAN discriminator has a
limitation in terms of the resolution of generated images. It is intended to work with low resolution
images (Eg. 128x128 or 256x256) but fails when dealing with higher resolution images. With
Pix2Pix as a baseline, researchers from the same team proposed a solution to improve photorealism
and resolution. First, a low-resolution image generation is learnt by the encoder-decoder generator.
Once it has learned, we append to both sides a bigger convolutional block and train it as a whole
to generate higher resolution. This type of generator, named “Coarse-to-fine generator” can be
consequently increased in resolution by appending extra layers until the desired size is acquired.

Figure 4.5: Pix2PixHD Generator architecture. Composed by embedded generators which refine
and upsample the generated image. Each of them has a discriminator associated that assures a

good image quality in every step. Image source [35]

This incremental resolution learning implies a change in the discriminator strategy. As the
final image has a high resolution, keeping the PatchGAN previously used with a 70x70 receptive
field would require a deeper network or larger convolutional layers. This is not convenient as it can
potentially cause overfitting and demands a larger memory footprint for training. Alternatively,
the use of several discriminators evaluating the quality of each of the different resolution images
generated proves to be a better solution. All discriminators have an identical architecture, and they
evaluate different aspects of the final image. The discriminator evaluating the lowest resolution
image will have the finest receptive field and takes care of the small details. The discriminators

14 GO!GAN: Grasping Objects with Generative Adversarial Networks

CHAPTER 4. RELATED WORK

evaluating higher resolution stages will have a broader receptive field and will evaluate a more
global view of the image, assuring global consistency.

4.2 Segmentation masks for pose manipulation

In this section we review the works that focus on pose manipulation. We will make a distinction
based on the training procedure, which divide them in paired and unpaired training.

In paired training, each source image has a specific target image associated, and requires a dataset
of the shape (source image, target image). Once an image is generated out of a source image, it
is compared with its paired target image to calculate the losses. Unpaired training, on the other
hand, resembles to an “unsupervised” way of training GANs. There is the target set of images
that share a specific characteristic, for example Van Gogh painting style, and a source set that
do not have that style. The generated image can be compared with any target image, as they all
share the Van Gogh style.

4.2.1 Paired training

In the last years, several works have proposed solutions based on the use of segmentation masks
to learn how to transform target person images to novel poses. The generator receives as input
both target image and a conditional mask containing information on the new desired pose, and
the outcome is new transformed image.

Pose Guided Person Image Generation (PG2) [19] tackles it in a two-step process in which a first
coarse result is refined to keep the target person general appearance 4.6. A segmentation pose
mask is created for each image with the use of a pose estimation model [6]. Each training sample
is composed of 2 human poses and its pose masks. Image A and mask B go into the generator,
and try to reconstruct image B. The generator focuses on learning the pose transformation, but
fails to retain finer image details, causing a blurry output. To create a sharper image, a second
generator inputs both target image and coarse output and learns a difference map of both of them
that is later added to the coarse result.

Figure 4.6: PG2 network

Another novelty introduced is the use of a pose mask loss function. This mask loss consists of
giving an additional weight in the area of the image of the segmentation mask when calculating
the L1 loss. By doing this, the network gets more penalized when generating a big loss in the
mask area and leads to better results as shown in the experiment 7.2 carried out.

Synthesizing Images of Humans in Unseen Poses [31] does a similar task as PG2, but with a differ-
ent approach. The pose mask is generated by the use of a first generator. Then, the background
and foreground are generated separately to later join them with the use of the pose mask. In

GO!GAN: Grasping Objects with Generative Adversarial Networks 15

CHAPTER 4. RELATED WORK

addition to the adversarial loss, the pose generation makes use of a reconstruction loss 4.1 that is
computed using a VGG-19 network, and proves to achieve better generation results.

Lperceptual(G) = ‖V GG(y)− V GG(G(x,My))‖1 (4.1)

where VGG is the VGG-19 network.

This approach is shared by other works like Dance Dance Generation: Motion Transfer for Internet
Videos [39]. Specially interesting are the different loss functions used in the pose generation. Up to
four different losses are used simultaneously. There is the adversarial loss, then the perceptual loss
is used twice, one with a VGG-19 network and another with a pose estimation network. Finally,
a feature matching loss [35] loss aims to stabilize the training as the generator has to produce
natural statistics at multiple scales.

When there are multiple losses guiding the learning, the weight that you give to each of them
becomes extremely important. In their experiments, the best combination found was a factor of
one for the adversarial loss, and a factor of ten for the other three. This configuration is interesting
in the sense that the importance of the discriminator gets reduced. This goes in consonance with
other works [33] that we will analyze next.

GestureGAN [33] proposes a solution to learn how to transform hand poses into novel poses by
the use of segmentation masks. It follows the same concept idea as the body pose papers presented
above, but with the difference that it is a one-step process.

In order to achieve good results in a one-step process 4.7, the generator makes use of four different
losses. A modified version of the reconstruction loss calculated channel-wise (three in the case
of an RGB channel) solves the problem of the “channel-pollution” present in PG2 [19], which
removes the need for a second step to refine the output image. It also uses the cycle-consistency
loss. The adding of those two losses was mentioned to be very important to achieve significant
improvement of the model performance. In terms of weight loss, the optimal configuration is
in line with DanceDanceGAN [39]. It gives a low weight to the adversarial loss with a value of
1, while giving high weights to the reconstruction loss and cycle-loss with values of 100 and 10
respectively.

Another interesting twist is the discriminator input 4.7. To the previously seen configurations
in which the real and the fake input was composed by the target mask and target or generated
image, the source image is added, forming a triplet instead of a pair.

Figure 4.7: GestureGAN Architecture. The discriminator input is composed by triplets of
images instead of the pairs seen in the previous works.

16 GO!GAN: Grasping Objects with Generative Adversarial Networks

CHAPTER 4. RELATED WORK

4.2.2 Unpaired training

One of the limitations when training conditional GANs is the need for paired data to train the
model. For example, in the pose transformations mentioned before, a couple of images of the
same person in different poses are needed. CycleGAN [15] addresses this limitation by learning
transformations without the need of paired dataset, just with the use of unpaired images.

CycleGAN requires two GANs training in parallel. The first generator learns how to go from
the source to the target image, and the second generator learns how to go backwards 4.8. In the
learning process, the cycle-consistency loss constrains the learnt transformation of the generators
to a solution that ensures that when a target image goes through both generators, the original
image is reconstructed back.

Figure 4.8: Cycle-GAN network. Each generator has a discriminator associated that encourages
the network to learn.

This approach achieves great results in transformations that involve color or texture changes,
like applying a specific painter style to an image, but performs worse when the task requires
geometric changes in the image. In terms of computation time, the need to train two GANs
doubles the resources needed. Other proposed versions of unpaired training have demonstrated
good performance with the use of a single GAN, in which the generator learns both forward and
backward transformation [9]. Also, the cycle-consistency loss proved to be effective when using it
with paired datasets [33].

4.3 Object pose manipulation

Objects present in 2D images are difficult to manipulate because of the absence of a third dimen-
sion. This third dimension gives the depth information of the objects and is key to perform any
transformation. Overcoming this limitation is an ongoing field of research that is being addressed
from different perspectives.

One of the current lines of research aim to recreate a 3D scene representation out of a 2D object.
With this approach, you can rotate the object into a novel view and go back to the 2D image.

• DeepVoxels [30] builds this 3D representation by combining the feature information of the
2D object images with the use of a pinhole camera model. The model achieves a high level
of detail, but it requires a training set of 479 2D poses, uniformly distributed.

• 3D-GAN [37]. The training samples are both 2D and 3D samples of different objects in
Shapenet [8]. In the 3D-VAE-GAN version of the paper, a 2D image inputs an autoencoder
and the feature representation of the object is learned in the encoder to later generate the

GO!GAN: Grasping Objects with Generative Adversarial Networks 17

CHAPTER 4. RELATED WORK

3D representation when going through the decoder. This work, standalone, does not solve
the rendering back of the 2D image in a novel view, but it does half of the job.

Another line of research is the generation of novel viewpoints of objects going directly from 2D
to 2D. GANs are often used. Although is currently limited to object rotations in different angles,
only a single input image of the object is required.

• VariGAN [38] generates multi-view images of a target image of a person. It uses a conditional
setting in which different positions are learned by the use of different word labels like “side”
or “back”. A coarse image is generated, which is later refined by a second network.

• IterGAN [11] uses an iterative approach in which multiple intermediate objects are gener-
ated, each of them with a small rotation angle until the target angle is achieved. In each
interaction, an intermediate discriminator loss is introduced, guiding the rotation and en-
suring consistency throughout the process.

4.4 Introducing new elements in the image

The conditional GAN models analyzed so far all have something in common. They learn to apply
a transformation that modifies the already existing elements of the image. In other words, the
transformations do not introduce any object which was not present beforehand. Introducing a
new element in an existing image is a challenging task that is currently taking its first steps with
the use of GANs. Among the challenges faced when dealing with this technique, we can cite:

• Providing the spatial information to generate the object in a specific place and rotation angle
of the target image.

• Understanding the spatial 3D depth of a 2D image to be able to generate the object in a
context-aware way.

During the last months, two papers have been published which try to answer these challenges.

‘Object-Centric Image Generation from Layouts’ [32] relies on the use of rectangular layouts
with its correspondent image class. Previous works have used layouts that include pixel-level
information about the different classes to generate, but failed when several layouts overlap each
other [2] [31]. To overcome this limitation, the work proposes to use scene-graphs that depict
positional relationships from the given spatial layouts 4.9, leveraging them to learn relationships
between objects.

With this concept, they create a new loss function that aims to increase the layout fidelity of the
generated images. They build a module that extracts the scene-graphs from the layouts, and then
encode it to obtain the global graph features. Those features are compared with the generated
image after going through an encoder to get the same dimension as the graph features.

Figure 4.9: Object-centric Network. Image source [32]

18 GO!GAN: Grasping Objects with Generative Adversarial Networks

CHAPTER 4. RELATED WORK

The second key point is how the GAN learns what the different layout object classes must
look like. In this case, the data distribution of each of the classes is learned by the generator.
To evaluate the quality of the different generated objects, the paper uses an auxiliary classifier
as in the AC-GAN framework [23]. This configuration makes use of two discriminators. One
evaluates individually the different objects generated in their layout rectangles, while the second
one evaluates the overall image.

The second paper, ‘Wish You Were Here: Context-Aware Human Generation’ [10] addresses the
challenge of inserting humans into existing images in which other people are present. The idea
is to create a segmentation mask in which different colors represent different body parts, and to
place that segmentation mask in a way that is context-aware of the other people of the image.

This context-aware segmentation mask is generated in a first phase, they named ‘Essence Gen-
eration Network’. It is an encoder-decoder network in which the segmentation masks of all the
people of an image are present except one, which has to be generated as an output.

Once the desired segmentation mask is added, it is combined with the target person image to
generate that person in the new pose. As input of the second network, the different body parts
of the target person are introduced (face, hair, torso), extracted with a segmentation model. This
information gets compressed through the encoder, and in the following decoder layers, the desired
segmentation mask pose is added to the input. This procedure allows the network to learn the
mask in tandem with the person rendering, avoiding the “pasting” effect that occurred in previous
works [3]. The third network refines the coarse results for the faces to make them look more
human-like. A key aspect is a perceptual loss to make the face generation closer to the feature
layers obtained when going through a VGG network specially pre-trained on a face dataset [5].

4.5 Limitations of the state of the art

We have reviewed the most relevant papers in relation to our research direction. Different generator
and discriminator architectures for conditional GANs have become a good starting point with
pix2pix as a good solution for low-resolution image generation, while pix2pixHD addresses the
need for higher-resolution results. We have also analyzed the different segmentation masks that
are unique for each kind of transformation. Also, a review of the importance of the different loss
functions and the novel ways to engineer the learning process of GANS has been done. Finally,
we have dived into the work related to 3D manipulations of 2D objects and the introduction of
new elements in a coherent way into 2D images.

We can now take make conclusions about the viability of the proposed framework, which, as
explained in the problem statement, is constrained by the specific inputs of our model. It requires
the hand and the object in a spatial position that allows the grasp.

• Hand pose manipulation. Most of the ongoing research in conditional GANs pivots around
the idea of transforming existing elements present in the target image. Transforming the
hand pose in order to get a specific desired pose has been recently addressed by GestureGAN.
It uses a hand pose mask in order to generate that pose in the wild. Hence, the research
questions related to the first challenge have already been solved by the community.

• Object pose manipulation. This is an active research challenge, which is already being
addressed in two main ways. The first is to recreate 3D representations out of 2D objects,
to later re-render them with a novel view. The DeepVoxels approach requires a high number
of 2D image samples, and the research question of “How to learn a 3D representation out
of a few samples of 2D images?” has not been answered yet. The 3D-GAN approach, even
though it uses few samples, results in far from photorealistic images, and only solves half of

GO!GAN: Grasping Objects with Generative Adversarial Networks 19

CHAPTER 4. RELATED WORK

the problem (2D to 3D). The second one is to use GANs to render novel views directly 2D
to 2D. Only object rotations [38] and people rotations [11] have been addressed.

Finally, we can also appreciate that the hand-object grasp generation is a challenge that has not
been tackled yet. The closest work is “Wish you were here GAN” [10], but differs in the sense
that the humans generated did not have occluded areas or close interaction with other persons in
the image. There is also ongoing research on how to introduce new elements into an image [32],
which is in line with the hand-object grasp challenge, as the introduced objects also need to be
coherent with the other image components.

The existence of similar lines of study like Conditional GANs with target masks and how to
introduce new elements into an image will give us the basis on which we will build our research.

20 GO!GAN: Grasping Objects with Generative Adversarial Networks

Chapter 5

Methodology

As explained in 2, we want to create a model capable of learning how to generate hand-object
grasps. The model will receive as inputs the hand together with a conditional mask with the
information about the object. With the use of different objective losses, the model will aim to
learn the grasp.

In the following section, we discuss the chosen model architecture in the field of conditional GANs.
We also discuss the two main design elements that will characterize our model and constitute the
core of a conditional GAN, i.e., the conditional mask and the loss function.

5.1 Architecture

The architecture used for this study is inspired by the Pix2Pix framework, and motivated both
by the size of the dataset images most widely used in the GANs literature, together with the
state-of-the-art in conditional GANs.

As seen in 4.1.1, the images with size 256x256 or smaller fall under the realm of low-dimensional
images. This image size is used in the Pix2Pix architecture in which the transformation does
not require several enhancement steps as in the high-dimensional Pix2PixHD architecture. These
image sizes require of lower computational expenses, and are often used for research purposes.
Also, several recent papers have used the Pix2Pix architecture in the last year [7] [33], proving
that it is still considered as the reference for low-resolution conditional GANs.

5.1.1 Generator

The generator is a “U-net” shape encoder-decoder architecture (See 4.1.1). It inputs both RGB
images of the hand and mask of the object, that are concatenated together at a channel level,
making six 256x256 channels. The input shrinks through the encoder with convolutional operations
until it arrives at a bottleneck layer. Each of the layers has skipped connections that connect
directly to the equivalent decoder layer. The decoder part is equivalent to the encoder but does
transpose convolutional operations to upsample the bottleneck layer and combines it with the
information coming from the skip connections of the encoder. The final output is the generated
three-channel 256x256 RGB image.

5.1.2 Discriminator

The discriminator used is a PatchGAN discriminator (See 4.1.1) with a receptive field size of
70x70, which proved to be the best trade-off for 256x256 images. It inputs a concatenation of two
RGB images and outputs a one-dimensional 30x30 matrix in which each value represents a 70x70
patch of the input image concatenation.

GO!GAN: Grasping Objects with Generative Adversarial Networks 21

CHAPTER 5. METHODOLOGY

5.1.3 Auxiliary classification network

We use an auxiliary VGG19 classification network trained on Imagenet [28]. Five feature rep-
resentations of intermediate layers of the VGG19 network are extracted for every input image
entering the network, and used afterwards to calculate the perceptual loss 5.3, which does not
intervene in the adversarial training.

More precisely, the slices are feature representations of sizes 256, 128, 64, 32 and 16 of the ori-
ginal input image, which correspond to the 2nd, 7th, 12th, 21st, and 30th layer of the VGG-19
Torchvision implementation that follows the original implementation [29].

The overall network architecture proposed for this work, and that will be used to perform the
upcoming experiments, can be represented as:

Figure 5.1: Overall Network Architecture

22 GO!GAN: Grasping Objects with Generative Adversarial Networks

CHAPTER 5. METHODOLOGY

5.2 Conditional Mask

The conditional mask used for our model needs to provide information tailored to the task we
are trying to solve. The input image is the hand without the object, and the output must be the
same image with the hand grasping the object. We are aiming to learn the hand-object grasp
generation, and this implies learning the shadowed parts of the hand and the object during the
grasp.

As seen in previous works, the conditional masks are often monochromatic, especially when dealing
with inferring a new pose. The source image they aimed to modify was already present in the
image, thus did not need extra information about its appearance. This changes in our work, as
we introduce a new object in the scene that is not present in the source and the model does not
know about.

The mask to be used in our methodology is an RGB mask of the object on a black background,
placed in the correct spatial position for the grasp 5.2. This configuration expects the model to
learn to place the object in conjunction with the hand, learning the parts that both hand and
object shadow between each other.

Figure 5.2: The model conditional mask is an RGB image of the object to grasp. The model is
expected to learn to place in the foreground the object parts that shadow the hand (blue) and

object parts shadowed by the hand (green)).

With a monochromatic mask of the object, the model would fail to render the real object
appearance. This happens because the mask specifies the spatial position and shape of the object,
and even though the model sees some training samples of the target object it is not able to learn the
object pose manipulation. If we also provide information about the object parts to be shadowed
by the object, we expect the image generation results to be better. In other words, the more
information about the grasp is given by the mask, the less has to be learned by the model and
thus the better performs.

]

Figure 5.3: Examples of two monochromatic masks that fail to learn the hand-object grasp.

GO!GAN: Grasping Objects with Generative Adversarial Networks 23

CHAPTER 5. METHODOLOGY

5.3 Loss Function

To ease the understanding of the upcoming formulas, the naming convention uses ‘G’ and ‘D’
for generator and discriminator, ‘x’ for the source image that inputs the generator, ‘M’ for the
conditional mask, and ‘y’ for the target image we aim to generate.

In every GAN framework, there is an adversarial loss that the generator network uses to try to
fool the discriminator. With the chosen architecture, the discriminator is not just a single binary
classifier, but a patch classifier that classifies each of the patches as fake or real, restricting the
attention to the structure of local image patches. A BCE loss is used for each of the patches and
averaged.

The duplets that the discriminator has to classify as real or fake are composed by concatenation
of the generator target mask, and respectively the target image and generated image:

realDuplet = (TargetMask, TargetImage) (5.1)

fakeDuplet = (TargetMask,G(x,My)) (5.2)

Hence, the adversarial loss can be represented as:

Ladv(D) = LBCE(realDuplet, 1) + (fakeDuplet, 0) (5.3)

where BCE is the binary cross-entropy loss.

In the generator, instead of maximising the discriminator loss, we try to minimize the BCE
error of a fake duplet being classified as true, which is the opposite of what the discriminator is
trying to do.

Ladv(G) = LBCE(fakeDuplet, 1) (5.4)

In this research, the input image closely resembles a lot to the ground truth. As explained
before, apart from the object area, the rest should remain unchanged. The generator shrinks the
image, and despite the skip connections between the encoder and decoder, we need to train the
GAN in a way that is encouraged to learn to reconstruct those areas that should not vary. This
is done by adding extra losses in the generator network. Those losses aim to reduce the distance
between the ground-truth and generated image.

To achieve this, the first loss we use is the L1 loss proposed in the Pix2Pix framework. With the
high-frequency correctness modeled by the PatchGAN, the use of L1 loss is enough to model the
low frequencies and L2 loss was not added because it generated blurry results. This blurriness has
been solved by calculating the L2 loss channel-wise [33] and so we also include the L2 loss in our
work. To give an added weight to the loss in the area containing the object, we use a mask loss
[19] that doubles the L1 and the L2 loss for the object.

Ll1,l2(G) = ‖(y −G(x,My)) ∗ (1 +My)‖1,2 (5.5)

where ‖1,2 is the L1 and L2 loss, and My is the target mask.

The perceptual loss has proven to be effective in similar conditional GAN works [35] [39] [33]. We
use an auxiliary VGG19 network and we reduce the loss between feature maps of different layers
between the ground truth and generated image. The use of this loss stabilizes the training process
as the generator is encouraged to produce natural statistics at multiple scales.

24 GO!GAN: Grasping Objects with Generative Adversarial Networks

CHAPTER 5. METHODOLOGY

Lperceptual(G) = ‖V GG(y)− V GG(G(x,My))‖1 (5.6)

where VGG is the VGG-19 network.

Finally, we also experiment with the use of the cycle-consistency loss. Our interest on this loss
resides in two factors. First, it acts as an additional constraint to force the learned transformation
to be cycle-consistent. Second, the backward transformation implies going from an image with
an object to the same without the object, that could be an interesting approach for afterwards
introducing a new object different from the one that was being grasped in the ground truth image.
We use a a configuration with a single generator and discriminator [9].

Lcycle(G) = ‖x−G(G(x,My),Mx)‖1 (5.7)

where Mx is the source mask.

This four losses will be controlling the training process of the network. Four lambda hyper-
parameters will set the weight of each of the losses in the generator. The final generator loss goes
as follows:

L(G) = λadv ∗ Ladv(D) + λl1,l2 ∗ Ll1,l2(D) + λperceptual ∗ Lperceptual(D) + λcycle ∗ Lcycle(D) (5.8)

where λ is the loss weight.

GO!GAN: Grasping Objects with Generative Adversarial Networks 25

Chapter 6

Experimental setup

In this section we will introduce the dataset used in this study, discuss the different evaluation
metrics used to measure the quality of our model, and expose the baselines to compare the per-
formance of our design decisions.

6.1 Dataset

The datasets available to evaluate our method are constrained by several requirements that makes
them hard to find. Firstly, they need to be having a lot of hands holding different objects: this
images constitutes the target image that we want to obtain. Secondly, for each ground truth, we
need paired images that do not contain the object held by the ground truth. What is more, that
image without the object needs to have the hand in the same grasp position as the ground truth.
This is because what our model learns is the interaction between hand and object to generate the
grasp, but does not perform hand or pose manipulation that are part of the open research fields
explained in 4.5.

The only dataset that we could find that fits these requirements is the Object Manipulation
(ObMan) dataset. ObMan is a large-scale synthetic image dataset of hands grasping objects.
This dataset was generated in 2019 for use the paper Learning joint reconstruction of hands and
manipulated objects [14] that learns to estimate a 3D pose of a hand and an object being held in
a 2D image. The good results obtained when using the model trained on the ObMan dataset with
real images demonstrate the transferability of ObMan-trained models, validating the quality and
usefulness of the proposed dataset. The main elements used in the image generation are:

• Objects: Eight kinds of object categories (bottles, bowls, cans, jars, knives, cell phones,
cameras and remote controls) which add up a total of 2772 different individual object models
that compose the ShapeNet [8] dataset.

• Grasps: The object grasps were generated using GraspIt [21], a grasp simulation and visu-
alization tool that allows us to create and analyze grasps of a given 3D model with a given
articulated hand model. The hand model used a modified version of MANO [26] to compose
a set of 16 rigid parts, 3 parts for the phalanges of each finger and one for the hand palm.

• Body Pose: The hand model is integrated with the full body model SMLP [18] to render
realistic images of embodied hands.

• Textures: The body textures were obtained from the body scans used in SURREAL [34].
Seventeen hand textures were generated by combining body textures and matched to the
closest skin color body model, due to the numerous missing values that the scans had in
that area.

26 GO!GAN: Grasping Objects with Generative Adversarial Networks

CHAPTER 6. EXPERIMENTAL SETUP

The dataset is composed of two-hundred thousand images. The images are in a 256x256 RGB
format. Each image comes in three different compositions, the complete image with the object and
the hand and the hand and object standalone 7.10. Each image also comes with a metadata file
with information about the object and hand depth for 3D representation, hand joints and vertices
in 2D and 3D, hand poses, object references from ShapeNet and hand grasp quality from GraspIt
among other information. All this metadata allows to visualize interesting information that will
be useful for engineering the mask that our solution will implement.

(a) Image sample with object (b) Image sample without object (c) Image sample without hand

Figure 6.1: Each sample comes in three different compositions.

Data Preparation

The difference in shape of the different objects in the dataset implies different hand grasps. Also,
the big size of the dataset with two hundred thousand images requires significant computational
resources very big. Because of this, for our experiments we have decided to use a subset of
the ObMan dataset containing 350 different objects contained within the bottle category. These
constitute a total of 33.278 images that we divide in train, validation and test set by creating
subsets split in a stratified fashion, meaning that we keep the distribution of classes between the
subsets balanced. We will use the training set to train the model and the validation set evaluate
our experiments.

Figure 6.2: Bottle sub-categories.

To prepare the conditional mask, we make use of the metadata of the dataset to turn to black
every pixel of the object images in which the object is not present. We will do this for both the
source image (hand without object) and target image (hand with object).

The training process requires the dataset to be paired. We thus need to prepare the data to

GO!GAN: Grasping Objects with Generative Adversarial Networks 27

CHAPTER 6. EXPERIMENTAL SETUP

generate cuatriplets of the shape 256x1024 including the source image, target image, source mask,
target mask. These samples will later be decomposed into four 256x256 images that the model
will use to compose the inputs to the generator and discriminator, as well as the loss inputs.

6.2 Model Measures

In order to assess the effectiveness of our model, we need measures that capture the quality of
our results in the most objective way possible. In order to do that, and in line with previous
works in the field, we will use two measures. First, a qualitative measure by visually inspecting
the generated image. Second, the SSIM in the hand-object section of the image.

6.2.1 Quantitative: SSIM

We use the structural similarity as a quantitative measure for our model. We perform it between
the ground truth image with the object, and the generated image from the generator output. It
provides a value between zero and one, one being the value resulting of inputting two identical
images.

Since all the generation changes occur in the area of the image of the object mask and the rest
stays invariable, the SSIM measure already achieves a very high value close to one in the early
stages of the training, when the grasp learning has not been learned yet. To make the measure
more significant, we calculate the SSIM only in a cropped square of the image containing the
object, allowing it to evaluate only the area where the changes are happening.

When calculating the SSIM, we create a difference map between the two images that reflects the
biggest dissimilarities between both images. The bigger the dissimilarity, the brighter the color
of the difference map gets. This is done channel wise, meaning that black represents a perfect
match, and white the biggest dissimilarity. This new image can be also used as a reference to
qualitatively measure the GAN learning through the training.

6.2.2 Qualitative: Visual Validation

Visual validation is a common technique to address the quality of image generation in GANs. It
is usually addressed by the use of crowdsourcing marketplaces like Amazon Mechanical Turk in
which the generated images are shown to a group of people that try to distinguish the generated
from the real ones. In this work, we will do the visual validation ourselves, trying to give an
objective analysis. For that purpose, we use of generated images, together with the difference map
created when calculating the SSIM.

28 GO!GAN: Grasping Objects with Generative Adversarial Networks

CHAPTER 6. EXPERIMENTAL SETUP

6.3 Baseline Methods

6.3.1 Loss baseline

To evaluate the performance of the objective loss of our model, we use the Pix2Pix loss proposed
in the paper [16] as a baseline. The generator loss in composed by an adversarial loss together
with an L1 loss amplified by a lambda parameter of value 100.

Lb pix2pix(G) = λadv ∗ Ladv(D) + 100 ∗ LL1(D) (6.1)

6.3.2 Mask baseline

To evaluate the performance of the proposed mask, we compare its behaviour against the two
monochromatic masks explained in the methodology section. For the monochromatic object mask
6.3a, we aim to certify the hypothesis that the model will lack the information needed to render
the object appearance. For the monochromatic object and hand mask 6.3b, to certify that hand
mask provides too much information of the grasp and thus the model does not learn the grasp but
just extracts the information from the mask.

(a) Object on foreground (b) Hand on foreground

Figure 6.3: Weak baselines for hand-object grasp generation. White for correct rendering, green
and blue for incorrect rendering

GO!GAN: Grasping Objects with Generative Adversarial Networks 29

Chapter 7

Experiments and results

In this section, we will explain the experiments performed in this research and the results obtained
using both quantitative and qualitative measures exposed in 6.2.

In the first experiment, we evaluate the performance of the proposed object mask with respect with
the baseline masks and validate the hypothesis that made us decline the use of monochromatic
masks (See 6.3.2). In the second experiment, we evaluate the performance of our loss design choices
with respect to the Pix2Pix baseline and find the best loss weight combination. Quantitatively,
GO!GAN final objective loss outperforms a 10% the baseline, and qualitatively generates more
realistic grasps with less noise and artifacts. Finally, we expose some failure grasps that GO!GAN
model fails to generate.

7.1 Experiment 1. RGB object conditional mask

As seen throughout the report, choosing the conditional mask constitutes a key design choice for
the success of the model. In this first experiment, we use the Pix2Pix model set up to evaluate
the performance of the chosen mask against two weak baselines and two monochromatic masks
that we have hypothesized that would not learn as expected.

Qualitative results show that with the use of a monochromatic object mask (mask 1), the model
fails to learn the object rendering 7.1. This can be appreciated in the generated image in which
the object appearance has the same white appearance as the object mask, suggesting that the
model does not have enough information about how the object looks like and thus fail to render
it. This goes in line with the previously analyzed work about object pose manipulation, in which
models that accurately render an object from a novel view in 2D require of many samples of the
object. The training dataset used for our model is composed of 26622 of 350 objects, that means
that on average the model only sees each object 76 times from different angle sizes which is not
enough for the model to learn the object pose view out of a monochromatic mask. Additionally,
the grasp is not properly learned, as the fingers that should be shadowed by the object are not.

30 GO!GAN: Grasping Objects with Generative Adversarial Networks

CHAPTER 7. EXPERIMENTS AND RESULTS

Figure 7.1: Mask 1. From left to right: object mask, source image, generated image, SSIM
difference map. The network does not know the object appearance.

The use of a monochromatic object and hand mask 7.2 (mask 2) provides the model more inform-
ation needed to know the hand-object grasp, more specifically the hand parts that shadow the
object, and it can be seen that it succeeds from the early stages of the training 7.2. The fact that
from the beginning the grasp is known proves that it is indeed not learning it, just extracting the
information from the conditional mask and failing the learning purpose of the model. The object
appearance is also not learned successfully, although it does perform better than in the first mask.

Figure 7.2: Mask 2. From left to right: object mask, source image, generated image, SSIM
difference map. The network knows the hand-object grasp that is provided by the mask.

Finally, observe that the use of the chosen RGB object mask (mask 3) successfully learns the
hand-object grasp. In the early steps of training 7.3, the model places the object in the foreground,
but fails to render the fingers that should shadow the object. After the training 7.4, we can see
how the hand fingers become visible, proving that the model is learning the grasp. The SSIM
difference map supports the evolution of the learning, getting less bright in the fingers area as the
model learns how to place the object in a coherent hand grasp. The fact that the fingers are still
visible in the difference map after the training suggests that although the grasp in the fingers area
has improved, it does not match the original one completely. This can be due insufficient training
time, as experiments have been run for a maximum of twenty-four hours.

GO!GAN: Grasping Objects with Generative Adversarial Networks 31

CHAPTER 7. EXPERIMENTS AND RESULTS

Figure 7.3: Mask 3. From left to right: object mask, source image, generated image, SSIM
difference map. In an early training stage the object mask draws the object on the image

foreground covering the hand fingers.

Figure 7.4: Mask 3. From left to right: object mask, source image, generated image, SSIM
difference map. After the training, object mask draws the object being aware of the hand grasp,

keeping the fingers in the foreground.

From a qualitative point of view, we measure the cropped SSIM value for the three monochro-
matic masks.

Figure 7.5: SSIM Measure comparison over the three Segmentation Masks.

Mask 1 scores a 18,5 % and 13,78 % less SSIM than the mask 2 and 3 respectively. This is
in line with the previous qualitative conclusions. Because this mask does not contain hand, nor
object information, the SSIM results are the lowest of the three. The second and third mask scores
have a similar value range, with the experiment to a 4,72 % ahead of the third. With this, we can
conclude that the SSIM gives a higher importance to the hand-grasp rather than to the object
appearance. As the second mask gives the hand information, the grasp is done properly.

32 GO!GAN: Grasping Objects with Generative Adversarial Networks

CHAPTER 7. EXPERIMENTS AND RESULTS

7.2 Experiment 2. Evaluate the performance of the pro-
posed model loss function

In this experiment we evaluate the performance of our generator loss choices against the Pix2pix
baseline. We measure the SSIM with the chosen conditional mask and with the Pix2Pix loss
baseline (7.6 - Mask 3), and compare it with the addition of each of the new losses proposed in
our model, these are the channel-wise L1 and L2 loss penalizing double on the hand-object grasp
area (7.6 - L1-L2) the perceptual VGG loss (7.6 - perceptual-loss), and the cycle-consistency loss
(7.6 - cycle-loss). Additionally, we add the best loss weight combination found by adjusting the
weight parameters (7.6 - best-model).

Figure 7.6: SSIM Measure comparison with the use of the different generator losses proposed.

The use of the L1 and L2 loss penalizing double on the hand-object grasp area (7.6 - L1-L2)
obtains a 7.6% improvement over the Pix2Pix baseline, being the best performing loss of the three
additions. The use of the perceptual loss improves the results on a 4.8% (7.6 - perceptual-loss). On
the other hand, the use of the cycle-consystency loss (7.6 - cycle-loss) does not obtain a significant
improvement, even with a small decrease over the Pix2Pix baseline (7.6 - Mask 3). The use of
these additional losses help to stabilize the training, avoiding the mode collapse (See Appendix
A).

Finally, we search for the best weight loss combination trying different value combinations of λ
until finding the one that gets the best SSIM. The best runs do not contain the cycle-consistency
loss, so our final loss weight selections eliminates it. The final loss objective with the best λ values
results outperforms the baseline by a 10%, obtaining a 0.8 SSIM score:

L(G) = Ladv(D) + 100 ∗ Ll1,l2(D) + 10 ∗ Lperceptual(D) (7.1)

GO!GAN: Grasping Objects with Generative Adversarial Networks 33

CHAPTER 7. EXPERIMENTS AND RESULTS

7.2.1 Pix2Pix baseline examples

The Pix2Pix baseline model achieves a SSIM of 0.7. The use of an RGB object mask is able to
learn the grasp, as exposed in 7.1, but the qualitative results are still blurry and far from optimal.
In this section we will analyze two Pix2Pix grasp generations to prove the limitations of this
baseline.

In the first example, the model source image 7.7a and the conditional mask 7.7b input the model
to generate the target grasp 7.7d. The generated image learns the grasp 7.7c, but the quality of
the results are low, and some parts of the object that should be shadowed by the hand (green)
7.7e are not. Also, the generated image contains a high amount of noise, that result in artifacts
and blurriness. These two problems can be seen in the SSIM difference mask 7.7f.

(a) Mask (b) Source (c) Generated

(d) Target (e) Grasp parts (f) SSIM diff

Figure 7.7: Pix2Pix grasp generation. Example 1.

34 GO!GAN: Grasping Objects with Generative Adversarial Networks

CHAPTER 7. EXPERIMENTS AND RESULTS

In the second example, the model source image 7.8a and the conditional mask 7.8b input the
model to generate the target grasp 7.8d. The generated image partially learns the grasp 7.8c. The
object parts that shadow the hand 7.8e (blue) are rendered correctly, but fails in the hand parts
that shadow the object 7.8e (green). Again, the generated image contains a high amount of noise,
that result in artifacts and blurriness 7.8f.

(a) Mask (b) Source (c) Generated

(d) Target (e) Grasp parts (f) SSIM diff

Figure 7.8: Pix2Pix grasp generation. Example 2.

GO!GAN: Grasping Objects with Generative Adversarial Networks 35

CHAPTER 7. EXPERIMENTS AND RESULTS

7.2.2 GO!GAN model examples

The GO!GAN model achieves a 10% better SSIM than the Pix2Pix baseline, getting a SSIM of
0.8. The qualitative improvements are also significant. Blurriness and artifact reduction can be
observed, together with the generation of better grasps in the areas in which hand and object
shadow to each other. We will analyze in detail the image generation of two grasps (See Appendix
C for additional examples)

In the first example, the model source image 7.9a and the conditional mask 7.9b input the model
to generate the target grasp 7.9d. The model succeeds in learning the grasp, and generates an
image 7.9c that renders the hand on the foreground when the object 7.9a occupies the same spatial
coordinates as the hand of the source image 7.9b, thus learning the hand parts that shadow the
object (green) 7.9e. The SSIM difference map 7.9f between the generated and target image shows
a slight difference in the edge between the hand and the object that can be appreciated in the
7.9c image in we look closely.

(a) Mask (b) Source (c) Generated

(d) Target (e) Grasp parts (f) SSIM diff

Figure 7.9: GO!GAN grasp generation. Example 1

36 GO!GAN: Grasping Objects with Generative Adversarial Networks

CHAPTER 7. EXPERIMENTS AND RESULTS

In the second example, the model source image 7.10a and the conditional mask 7.10b input
the model to generate the target grasp 7.10d. The model succeeds to generate an image 7.10c
that renders the correct grasp, showing the hand in the foreground when the hand fingers have to
shadow the object 7.10e (green), and showing the object in the foreground when the object has to
shadow the object 7.10e (blue). The SSIM difference map 7.10f between the generated and target
image shows a difference in the fingers that should shadow the object, that can be appreciated in
the generated image 7.10c as they are a bit blurry.

(a) Mask (b) Source (c) Generated

(d) Target (e) Grasp parts (f) SSIM diff

Figure 7.10: GO!GAN grasp generation. Example 2.

GO!GAN: Grasping Objects with Generative Adversarial Networks 37

CHAPTER 7. EXPERIMENTS AND RESULTS

Failure cases

The hand-object grasp generation is not always learned properly. There are cases in which a
correct grasp comes together with shiny artifacts in the fingers 7.11. Others in which one of the
grasp areas is not properly learned. Specially challenging are the areas in which hand and object
shadow to each other. In 7.12 the fingers that should be shadowed by the object are not. In 7.13,
the object should be shadowed by the hand and it is not.

Figure 7.11: From left to right: object mask, source image, generated image, SSIM difference
map. Grasp artifacts in the hand parts that shadow the object.

Figure 7.12: From left to right: object mask, source image, generated image, SSIM difference
map. The hand parts that should be shadowed by the object are not.

Figure 7.13: From left to right: object mask, source image, generated image, SSIM difference
map. Grasp failure, keeping the object in the foreground.

38 GO!GAN: Grasping Objects with Generative Adversarial Networks

Chapter 8

Conclusions

In this research, we present a personalized conditional modeling framework which is able to learn
hand-object grasp generation in 2D images. The framework has been customized to focus on
the learning of the interaction between hand and object, which in a 2D environment implies the
learning of the parts of the hand and object that shadow each other. Under this context, our model
receives two inputs, the source hand and a conditional RGB mask of the object to be grasped,
and generates an output image with the hand grasping the aforementioned object.

We focus this research on the use of Generative Adversarial Networks, specifically using the
Pix2Pix architecture [40] as a starting point. The reasons why this architecture suits our purpose
were thoroughly discussed and each of the components of the network generator and discriminator
were explained in detail. In our implementation, we have focused on the design of a conditional
mask that better suits the learning purpose of the model, and the modified the loss function of
the generator in order to achieve better results.

In addition, we studied and explored the different evaluation metrics that better suit our model;
analyzing the obtained results from both qualitative and quantitative results. Furthermore, we
have compared our results against challenging baselines for both mask and loss function choices.
In the experiment section, we have first validated our hypothesis of using an RGB object mask
for targeting the learning towards the hand-object grasp, rejecting the use of a monochromatic
mask as seen in previous literature works. We have also validated the use of each of the generator
losses added to the model, and found the best weight combination in terms of quantitative results,
outperforming our baseline model on a 10%. Finally, we have also reviewed qualitatively the
results generated by our model, identifying its strengths and also acknowledging its weaknesses.

The hand-object grasp generation requires both hand and object to be in the same spatial position
before inputting the model. Therefore, a future line of research could be how to address these
initial starting conditions. A good starting point could be to use already existing images with hand
grasps together with segmentation models like [14] to get a target hand and object pose to be used
in our source image. This line of research has to come inevitably in hand with improvements on
the research of hand and object pose manipulation, being the second one the one that still have
bigger challenges to face.

A second future line of research is the extension of the presented model into different hand-object
grasps categories. We have validated its use in the bottles category, but the existence of an
infinite number of object shapes presents difficult challenges to face. Moreover, we have validated
the effectiveness of the model on a synthetic dataset due to the lack of real image datasets meeting
the initial input requirements. It would be interesting to test the way the model can generalize to
real image datasets. That requires the creation of new datasets for it.

GO!GAN: Grasping Objects with Generative Adversarial Networks 39

Bibliography

[1] Mart́ın Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. ArXiv,
abs/1701.07875, 2017. 9

[2] Oron Ashual and L. Wolf. Specifying object attributes and relations in interactive scene
generation. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pages
4560–4568, 2019. 18

[3] Guha Balakrishnan, Amy Zhao, Adrian V. Dalca, Frédo Durand, and John V. Guttag. Syn-
thesizing images of humans in unseen poses. 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 8340–8348, 2018. 19

[4] Ali Borji. Pros and cons of gan evaluation measures. Comput. Vis. Image Underst., 179:41–65,
2019. 10

[5] Qiong Cao, Li Shen, Weidi Xie, Omkar M. Parkhi, and Andrew Zisserman. Vggface2: A
dataset for recognising faces across pose and age. 2018 13th IEEE International Conference
on Automatic Face Gesture Recognition (FG 2018), pages 67–74, 2018. 19

[6] Zhe Cao, Gines Hidalgo Martinez, Tomas Simon, Shih-En Wei, and Yaser Sheikh. Openpose:
Realtime multi-person 2d pose estimation using part affinity fields. IEEE transactions on
pattern analysis and machine intelligence, 2019. 15

[7] Caroline Chan, Shiry Ginosar, Tinghui Zhou, and Alexei A. Efros. Everybody dance now.
2019 IEEE/CVF International Conference on Computer Vision (ICCV), pages 5932–5941,
2019. 21

[8] Angel X. Chang, Thomas A. Funkhouser, Leonidas J. Guibas, Pat Hanrahan, Qi-Xing Huang,
Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and
Fisher Yu. Shapenet: An information-rich 3d model repository. ArXiv, abs/1512.03012, 2015.
17, 26

[9] Yunjey Choi, Min-Je Choi, Munyoung Kim, Jung-Woo Ha, Sunghun Kim, and Jaegul Choo.
Stargan: Unified generative adversarial networks for multi-domain image-to-image trans-
lation. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
8789–8797, 2018. 9, 17, 25

[10] Oran Gafni and L. Wolf. Wish you were here: Context-aware human generation. ArXiv,
abs/2005.10663, 2020. 19, 20

[11] Ysbrand Galama and Thomas Mensink. Itergans: Iterative gans to learn and control 3d
object transformation. Comput. Vis. Image Underst., 189, 2019. 6, 18, 20

[12] Ian J. Goodfellow. Nips 2016 tutorial: Generative adversarial networks. ArXiv,
abs/1701.00160, 2017. 11

[13] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron C. Courville, and Yoshua Bengio. Generative adversarial nets. In NIPS, 2014.
7, 9

GO!GAN: Grasping Objects with Generative Adversarial Networks 41

BIBLIOGRAPHY

[14] Yana Hasson, Gül Varol, Dimitrios Tzionas, Igor Kalevatykh, Michael J. Black, Ivan Laptev,
and Cordelia Schmid. Learning joint reconstruction of hands and manipulated objects. 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 11799–
11808, 2019. 26, 39

[15] Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu, Phillip Isola, Kate Saenko, Alexei A.
Efros, and Trevor Darrell. Cycada: Cycle-consistent adversarial domain adaptation. ArXiv,
abs/1711.03213, 2018. 13, 17

[16] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. Image-to-image transla-
tion with conditional adversarial networks. 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 5967–5976, 2016. vii, 9, 11, 12, 13, 29

[17] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style transfer
and super-resolution. In ECCV, 2016. 10

[18] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J. Black.
Smpl: a skinned multi-person linear model. ACM Trans. Graph., 34:248:1–248:16, 2015. 26

[19] Liqian Ma, Xu Jia, Qianru Sun, Bernt Schiele, Tinne Tuytelaars, and Luc Van Gool. Pose
guided person image generation. In NIPS, 2017. 15, 16, 24

[20] Xudong Mao, Qing Li, Haoran Xie, Raymond Y. K. Lau, Zhixiang Wang, and Stephen Paul
Smolley. Least squares generative adversarial networks. 2017 IEEE International Conference
on Computer Vision (ICCV), pages 2813–2821, 2017. 9

[21] Andrew T. Miller and Peter K. Allen. Graspit! a versatile simulator for robotic grasping.
IEEE Robotics Automation Magazine, 11:110–122, 2004. 26

[22] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. ArXiv,
abs/1411.1784, 2014. 7

[23] Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional image synthesis with
auxiliary classifier gans. In ICML, 2017. 19

[24] Emmanouil Panagiotou, Georgios Chochlakis, Lazaros Grammatikopoulos, and Eleni Charou.
Generating elevation surface from a single rgb remotely sensed image using deep learning.
Remote. Sens., 12:2002, 2020. vii, 14

[25] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with
deep convolutional generative adversarial networks. CoRR, abs/1511.06434, 2015. 7

[26] Javier Romero, Dimitrios Tzionas, and Michael J. Black. Embodied hands. ACM Transactions
on Graphics (TOG), 36:1 – 17, 2017. 26

[27] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. ArXiv, abs/1505.04597, 2015. 13

[28] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael S. Bernstein, Alexander C. Berg, and Li Fei-
Fei. Imagenet large scale visual recognition challenge. International Journal of Computer
Vision, 115:211–252, 2015. 22

[29] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. CoRR, abs/1409.1556, 2015. 22

[30] Vincent Sitzmann, Justus Thies, Felix Heide, Matthias Nießner, Gordon Wetzstein, and Mi-
chael Zollhöfer. Deepvoxels: Learning persistent 3d feature embeddings. 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 2432–2441, 2019.
17

42 GO!GAN: Grasping Objects with Generative Adversarial Networks

BIBLIOGRAPHY

[31] Wei Sun and Tianfu Wu. Image synthesis from reconfigurable layout and style. 2019
IEEE/CVF International Conference on Computer Vision (ICCV), pages 10530–10539, 2019.
15, 18

[32] Tristan Sylvain, Pengchuan Zhang, Yoshua Bengio, R. Devon Hjelm, and Shikhar Sharma.
Object-centric image generation from layouts. ArXiv, abs/2003.07449, 2020. vii, 18, 20

[33] Hao Tang, Wei Wang, Dan Xu, Yan Yan, and Nicu Sebe. Gesturegan for hand gesture-to-
gesture translation in the wild. Proceedings of the 26th ACM international conference on
Multimedia, 2018. 9, 10, 16, 17, 21, 24

[34] Gül Varol, Javier Romero, Xavier Martin, Naureen Mahmood, Michael J. Black, Ivan Laptev,
and Cordelia Schmid. Learning from synthetic humans. 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 4627–4635, 2017. 26

[35] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and Bryan Catan-
zaro. High-resolution image synthesis and semantic manipulation with conditional gans. 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8798–8807, 2018.
vii, 11, 14, 16, 24

[36] Zhengjiang. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality assessment:
from error visibility to structural similarity. IEEE Transactions on Image Processing, 13:600–
612, 2004. 10, 11

[37] Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman, and Joshua B. Tenenbaum. Learning
a probabilistic latent space of object shapes via 3d generative-adversarial modeling. In NIPS,
2016. 17

[38] Bo Zhao, Xiao Wu, Zhi-Qi Cheng, Hao Liu, and Jiashi Feng. Multi-view image generation
from a single-view. Proceedings of the 26th ACM international conference on Multimedia,
2018. 18, 20

[39] Yipin Zhou, Zhaowen Wang, Chen Fang, Trung Bui, and Tamara L. Berg. Dance dance
generation: Motion transfer for internet videos. 2019 IEEE/CVF International Conference
on Computer Vision Workshop (ICCVW), pages 1208–1216, 2019. 10, 16, 24

[40] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. Unpaired image-to-image
translation using cycle-consistent adversarial networks. 2017 IEEE International Conference
on Computer Vision (ICCV), pages 2242–2251, 2017. 39

GO!GAN: Grasping Objects with Generative Adversarial Networks 43

Appendix A

Mode Collapse

In the first experiments using the Pix2Pix baseline loss, we observe that sometimes the training
fails, and after some epochs with a stable SSIM improvement, the values suffer a sudden drop
and are unable to recover. In order to identify the problem, we make use of the generator and
discriminator loss plots to clarify what is happening.

Figure A.1: Adversarial loss behaviour when mode collapse happens.

In the graph above, we can see that the discriminator loss decreases very fast. This means
that the discriminator gets very good at classifying between real and fake images too early, and
the generator is not able to generate good enough images. In the epoch 68, we see that the
discriminator loss hits a minimum, and is able to perfectly classify the images. In this situation,
the adversarial loss information getting to the generator becomes useless, the generation of images
cannot improve and the training collapses.

GO!GAN: Grasping Objects with Generative Adversarial Networks 45

APPENDIX A. MODE COLLAPSE

A direct consequence is that the generator starts generating images that look alike, with similar
color and texture patterns. In our case, we can see the generation of a pattern that is repeated in
every generated image.

Figure A.2: Mode collapse example 1

Figure A.3: Mode collapse example 2

46 GO!GAN: Grasping Objects with Generative Adversarial Networks

Appendix B

Object/Hand foreground baselines

In the different parts of the hand-object grasp 2.1 presented in the problem statement 2, we saw
that there were parts in which hand and object occupied the same position of the 2D image, and
therefore one shadowed the other. We can create two additional baselines that can render correctly
three out of the four parts of the image:

• Object on foreground: We place the object directly on top of the hand image. This approach
would succeed in rendering three of the four identified grasp zones, but fail in the object
parts shadowed by the hand B.1b.

• Hand on foreground: We place the hand directly on top of the object image. This approach
would succeed in rendering three of the four identified grasp zones, but fail in the hand parts
shadowed by the hand B.1c.

(a) Hand-object (b) Object on foreground (c) Hand on foreground

Figure B.1: Additional baselines for hand-object grasp generation. White for correct rendering,
green and blue for incorrect rendering.

Both baselines with object or hand in foreground obtain high SSIM values of 0.83 and 0.89
respectively. As explained in 6.3.2, both of these baselines fail to learn one of the four areas
identified on a hand-object grasp. The fact that these baselines score a higher SSIM than the
models suggests that the SSIM does not penalise enough the situations in which the shadowed
parts of the hand or the object are incorrectly rendered. As we explained in 3.2.4, the use of a
quantitative GAN measure to evaluate the performance of the model is an active research field,
and although the SSIM measure of the object area is the one that best suits our work, it still
needs to come together with a qualitative inspection, as we see that the shadowed parts of the
hand-object grasp are not sufficiently penalized.

GO!GAN: Grasping Objects with Generative Adversarial Networks 47

Appendix C

Additional generated samples

From left to right: object mask, source image, generated image, SSIM difference map.

48 GO!GAN: Grasping Objects with Generative Adversarial Networks

APPENDIX C. ADDITIONAL GENERATED SAMPLES

GO!GAN: Grasping Objects with Generative Adversarial Networks 49

	Contents
	List of Figures
	Introduction
	Problem Statement
	Preliminaries
	Convolutional Neural Networks
	Convolution
	Transpose Convolution
	Activation Function

	Generative Models
	Variational Autoencoders
	Generative Adversarial Networks
	Loss Functions in GANs
	Evaluation Metrics in GANs
	Non-convergence: Mode Collapse

	Related work
	Conditional GAN frameworks
	Low-dimensional images
	High-dimensional images

	Segmentation masks for pose manipulation
	Paired training
	Unpaired training

	Object pose manipulation
	Introducing new elements in the image
	Limitations of the state of the art

	Methodology
	Architecture
	Generator
	Discriminator
	Auxiliary classification network

	Conditional Mask
	Loss Function

	Experimental setup
	Dataset
	Model Measures
	Quantitative: SSIM
	Qualitative: Visual Validation

	Baseline Methods
	Loss baseline
	Mask baseline

	Experiments and results
	Experiment 1. RGB object conditional mask
	Experiment 2. Evaluate the performance of the proposed model loss function
	Pix2Pix baseline examples
	GO!GAN model examples

	Conclusions
	Bibliography
	Appendix
	Mode Collapse
	Object/Hand foreground baselines
	Additional generated samples

