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Explainable AI (XAI) aims to provide interpretations for predictions made by learn-
ing machines, such as Deep Neural Networks, in order to make machines more
transparent for the user and furthermore trustworthy for applications, e.g. in safety-
critical areas. So far, however, no methods for explaining the decision-making pro-
cess of Bayesian Neural Networks have been conceived. In contrast with standard
MAP-trained Neural Networks, within the Bayesian framework weights follow a
distribution that extends standard single explanation scores and heatmaps to distri-
butions thereof. In the following work, a new framework is proposed, that allows
to convert any arbitrary explanation method for Neural Networks into an explana-
tion method for Bayesian Neural Networks. Furthermore, the proposed method is
even applicable in a non-bayesian scenario and enables the researches to carve out
uncertainties associated with a model explanation and subsequently gauge the ap-
propriate level of explanation confidence for a user. The effectiveness and usefulness
of our approach are demonstrated extensively in various experiments, both qualita-
tively and quantitatively.

HTTPS://WWW.TU.BERLIN
https://www.eecs.tu-berlin.de/menue/fakultaet_iv/?no_cache=1




ix

Acknowledgements
I would first like to thank my thesis advisor Dr. Marina M.-C. Höhne for all the

help and guidance throughout this research project. This work was possible mainly
because of Marina’s great ideas, continuous support, motivation, and organizational
skills. Her immense knowledge and connections in the scientific community helped
me all the time of the research and I could not imagine a better advisor and mentor
for my Master’s thesis.

I would also like to thank Dr. Shinichi Nakajima and Prof. Dr. Marius Kloft
for their invaluable help throughout the project. I was very lucky to work with two
great experts in the Machine Learning community and constantly learn from them. I
am very grateful for their insightful comments and encouragement that steered this
work in the right direction. Their contribution and guidance allowed me to widen
this research from various perspectives.

I would like to thank Dr. Sebastian Lapuschkin for his suggestions on XAI in
general. I would like to specially thank Luis Augusto Weber Mercado for designing
and producing the overview graphic and Matthias Kirchler for fruitful discussions.

Finally, I want to express my very profound gratitude to Prof. Dr. Klaus-Robert
Müller for his support and advice towards this Master’s thesis.

Kirill BYKOV





xi

Contents

Declaration of Authorship iii

Abstract vii

Acknowledgements ix

1 Introduction 1

2 Background 5
2.1 Deep Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Artificial neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . 8

2.2 Explaining Deep Neural Networks . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Global explanation methods . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Local explanation methods . . . . . . . . . . . . . . . . . . . . . 11
2.2.3 Layer-wise Relevance Propagation (LRP) . . . . . . . . . . . . . 13

2.3 Bayesian Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 Variational Inference . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.2 Laplace approximation . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Explaining Bayesian Neural Networks 21
3.1 Distribution of relevance maps . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Mean LRP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 B-LRP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.1 B-LRP + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 Bayesian Strategies Clustering (BSC) . . . . . . . . . . . . . . . . . . . . 24
3.5 Explaining non-Bayesian Neural Networks with Bayesian principles . 26

4 Experiments 27
4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.1 Quantative evaluation metric . . . . . . . . . . . . . . . . . . . . 27
Pixel-flipping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Bayesian pixel-flipping . . . . . . . . . . . . . . . . . . . . . . . . 28
Pixel perturbation polices . . . . . . . . . . . . . . . . . . . . . . 28

4.1.2 Visualization parameters . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Bayes by Backprop: MNIST . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.1 Visual Inspection . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.2 Quantitative evaluation . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.3 Bayesian Strategies Clustering . . . . . . . . . . . . . . . . . . . 32

4.3 MC Dropout: Imagenet . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3.1 Visual inspection . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3.2 Quantitative evaluation . . . . . . . . . . . . . . . . . . . . . . . 34



xii

4.3.3 Bayesian Strategies Clustering . . . . . . . . . . . . . . . . . . . 36
4.4 Confirming the Clever Hans Effect with B-LRP . . . . . . . . . . . . . . 37
4.5 Noisy KFAC: Application of B-LRP to other explanation methods . . . 39

5 Concluding discussion 43
5.1 Bayesian Explanation Pipeline . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

A Bayes by Backprop: MNIST 47

B MC Dropout: Imagenet 51

C Noisy KFAC: Application of B-LRP to other explanation methods 53

Bibliography 55



xiii

List of Figures

1.1 Exponential growth in publications related to a XAI . . . . . . . . . . . 2

2.1 Illustrations of the natural neural architecture and artificial neuron . . 6
2.2 Illustration of ANN with five layers . . . . . . . . . . . . . . . . . . . . 7
2.3 Illustration of LeNet-5 architecture . . . . . . . . . . . . . . . . . . . . . 9
2.4 Illustration of several input samples that maximise activation of net-

work’s output neurons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Illustration of possible different objectives in AM algorithm . . . . . . 10
2.6 Comparison between LIME and SHAP explanation methods . . . . . . 12
2.7 Comparison between model-aware explanation methods . . . . . . . . 13
2.8 Illustration of LRP redistribution procedure . . . . . . . . . . . . . . . . 14
2.9 Illustration of LRP Composite method . . . . . . . . . . . . . . . . . . . 15
2.10 Comparison between point estimate and bayesian neural network . . . 16
2.11 Illustration of the Dropout Procedure . . . . . . . . . . . . . . . . . . . 18

3.1 Illustration of relevance maps sampled from a posterior distribution . 22
3.2 Overview of the proposed B-LRP procedure . . . . . . . . . . . . . . . . 23
3.3 Illustration for B-LRP method explanations for VGG-16 image classi-

fication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4 Illustration for B-LRP+ method explanations for VGG-16 image clas-

sification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1 Illustration of 3 different perturbation policies, used to evaluate per-
formance of explainability methods in our work . . . . . . . . . . . . . 29

4.2 Demonstration of different colormaps . . . . . . . . . . . . . . . . . . . 30
4.3 Visualisation of B-LRP method for MNIST example . . . . . . . . . . . 31
4.4 Visualisation of B-LRP+ method for MNIST example . . . . . . . . . . 31
4.5 Bayesian pixel-flipping performance comparison on MNIST . . . . . . 32
4.6 Illustration of B-LRP and BSC explanations for MNIST example . . . . 33
4.7 Eigenvalues distribution in BSC MNIST example . . . . . . . . . . . . . 34
4.8 t-SNE visualisation of relevance maps in BSC MNIST example . . . . . 34
4.9 Visualisation of B-LRP method for Imagenet example . . . . . . . . . . 35
4.10 Visualisation of B-LRP+ method for Imagenet example . . . . . . . . . 35
4.11 Pixel-flipping performance comparison on Imagenet . . . . . . . . . . . 36
4.12 Illustration of BSC method on Imagenet: example 1 . . . . . . . . . . . 38
4.13 Illustration of BSC method on Imagenet: example 2 . . . . . . . . . . . 38
4.14 Illustration of Clever Hans effect with B-LRP, ex.1 . . . . . . . . . . . . 39
4.15 Illustration of Clever Hans effect with B-LRP, ex.2 . . . . . . . . . . . . 39
4.16 Application of B-LRP for different explainability methods on LeNet

Bayesian Network for class "deer" . . . . . . . . . . . . . . . . . . . . . 40
4.17 Application of B-LRP for different explainability methods on LeNet

Bayesian Network for class "bird" . . . . . . . . . . . . . . . . . . . . . . 40



xiv

4.18 Application of B-LRP for different explainability methods on LeNet
Bayesian Network for class "horse" . . . . . . . . . . . . . . . . . . . . . 41

4.19 Illustration of the invariant behaviour of GB explanations toward per-
centile operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1 BNNs Explanation pipeline illustration . . . . . . . . . . . . . . . . . . 43

A.1 Illustration of B-LRP explanations for LeNet, Bayes by Backprop, MNIST 47
A.2 Illustration of B-LRP+ explanations for LeNet, Bayes by Backprop,

MNIST. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
A.3 Illustration of random samples of relevance maps from Cluster 1 in

BSC example, MNIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
A.4 Illustration of random samples of relevance maps from Cluster 2 in

BSC example, MNIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

B.1 Illustration of B-LRP explanations for VGG-16, Imagenet . . . . . . . . 51

C.1 Application of B-LRP for different explainability methods for class
"bird" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

C.2 Application of B-LRP for different explainability methods for class
"plane" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53



xv

List of Tables

4.1 Bayesian pixel-flipping AUC scores for MNIST . . . . . . . . . . . . . . 32
4.2 Pixel-flipping AUC scores for Imagenet . . . . . . . . . . . . . . . . . . 37





xvii

List of Abbreviations

AI Artificial Intelligence
AM Activation Maximisation
AUC Area Under the Curve
BDL Bayesian Deep Learning
BNN Bayesian Neural Network
B-LRP Bayesian - Layer-wise Relevance Propagation
BSC Bayesian Strategies Clustering
CNN Convolutional Neural Network
CV Computer Vision
DL Deep Learning
DNN Deep Neural Network
GB Guided Backprop
IG Integrated Gradients
LRP Layer-wise Relevance Propagation
MLE Maximum Likelihood Estimation
MSE Mean Squared Error
MLP Multi- Layer Perceptron
NLP Natural Language Processing
RL Reinforcement Learning
SC Spectral Clustering
XAI Explainable Artificial Intelligence





1

Chapter 1

Introduction

Artificial Intelligence (AI) remains to be one of the most important technological
breakthroughs over the past decade. In 2017, Andrew Ng, one of the world’s most
famous and influential computer scientists, called AI the new electricity, stating
that AI will disrupt all industries the same way the invention of electrical power
transformed everything a century ago [8]. From new and emerging technology, AI-
powered systems became an integral part of contemporary society and, usage of
such technologies is already decisive for companies in diverse areas.

Current advances in AI are tied to developments in the field of Deep Learning
(DL). Deep neural networks (DNNs) can learn highly complex, non-linear predic-
tors. Over the last years, DNNs have achieved remarkable results in many appli-
cations in different fields, such as computer vision (CV), natural language process-
ing (NLP), and reinforcement learning (RL). However, while DNNs learn powerful
representations and achieve state-of-the-art results, in contrast to linear learning ma-
chines they are unable to directly reveal their prediction strategy to the user.

Given the powerful but often opaque nature, DNNs are often considered as a
‘black-box’: effectiveness of these systems in the real world is highly restricted by
the machine’s current inability to explain their decisions and actions to a regular hu-
man user. In various areas of applications, such as safety-critical areas, transparency
and insight are mandatory, thus, despite showing great performance in the test en-
vironment, DNNs could not be used.

Addressing the concerns among the research community about the necessity to
understand the decision-making process of powerful, yet opaque, systems, the field
of Explainable AI (XAI) has emerged, establishing techniques to explain predictions
made by nonlinear learning machines. This field aims to produce explainable AI
models — models that achieve high performance on the assigned tasks and enable
humans to understand the decision-making behavior of these machines.

In 2018, global research and advisory firm Gartner has identified XAI in the list of
the most promising technologies in the field of AI [94]. The rising trend of contribu-
tions to the field of XAI could be observed in Figure 1.1. Current advancements may
be associated with a general shift in the Machine Learning community towards the
Responsible Artificial Intelligence — methodology for implementation of AI-powered
systems for real-life applications with fairness, model explainability, and account-
ability at its core [10]. This tendency shares its rationale with an increasing number
of cases related to unethical usage of AI. In particular, hidden discrimination has
been, and, unfortunately, remains one of the biggest and unresolved problems in the
field of AI. For example, in 2018, Amazon found out that AI that was used for scor-
ing potential candidates for recruitment purposes had a bias against women: the
system taught itself that male candidates were more preferable [5]. Another famous
example of "machine bias" is assessment software known as COMPAS: it was being
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database [10].

used to forecast which criminals are most likely to re-offend and was proved to have
a racial bias against black defendants [37].

Recent advances in the field of XAI introduced a collection of novel methods
with the aim of explaining DNNs behavior. However, those methods are specific
to a Neural Networks that are trained in a maximum likelihood estimation (MLE)
setting. Furthermore, despite the growing interest towards Explainable AI, there
has not been found an appropriate way to interpret the Bayesian Deep Neural Net-
works — a popular class of models that unifies the probabilistic framework with
deep learning.

In this work, we develop a novel pipeline for explaining the decision-making
process of Bayesian Deep Neural Networks. The described approach can be applied
to any explanation method for Neural Networks — be it model-agnostic or model-
aware — and to any (approximate) inference procedure of BNNs. Moreover, in our
work we discuss how the proposed method can be applied for the creation of better
explanations for a non-bayesian model throughout bayesianization procedure.

The main contributions of this paper are as follows:

• We propose a new methodology that can leverage any existing local explana-
tion method for neural networks to an explanation method for BNNs.

• We study our approach in detail for a particular explanation method—layer-
wise relevance propagation (LRP) [11]—thus proposing the first concrete ex-
planation method of BNNs–called B-LRP, and it’s enhancement — B-LRP+.

• B-LRP and B-LRP+ provide us with a novel manner of explanation since it
outputs a distribution, which can be exploited in interesting ways:

1. By considering percentiles of the explanation distribution, we can instan-
tiate more cautious or risky explanations than standard LRP. Thereby the
choice of the percentile governs the risk.

2. We can visually describe areas of certainty and uncertainty of explana-
tions within any example (e.g., image).
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3. B-LRP reveals the varying importance of multiple prediction strategies
used by the learner.

• Although showcased here for LRP, our proposed methodology for explaining
neural networks under uncertainty can in principle be applied to any explana-
tion method for neural networks.

• We propose a Bayesian Strategies Clustering (BSC) method — a semi-automated
technique for discovering primal strategies in local behavior of Bayesian Neu-
ral Networks

The validity of the above findings is studied and demonstrated in various exper-
iments. Qualitative and quantitative experiments nicely underline the usefulness of
the B-LRP and B-LRP+ methods, which we additionally provide as an open-source
PyTorch implementation1.

Thesis structure

This work is structured as follows: Chapter 2 introduces the basic concepts of Deep
Neural Networks, Explainability algorithms, and Bayesian Deep Learning. Chap-
ter 3 is dedicated towards the description of proposed methods: Mean LRP, B-LRP
and BSC. In Chapter 4 we demonstrate the usefulness of proposed methods on sev-
eral examples for different BNNs. Finally, in Chapter 5 we conclude our work and
formulate the main insights that were obtained throughout the research.

1https://github.com/lapalap/B-LRP

https://github.com/lapalap/B-LRP
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Chapter 2

Background

In this section, basic concepts of Artificial Neural Networks (ANNs), Deep Neural
Networks (DNNs), and, in particular, Convolutional Neural Networks (CNNs) are
described. We discuss the main approaches for interpreting the decision-making
process of DNNs with a brief introduction to the most popular methods. The Layer-
wise Relevance Propagation (LRP) algorithm is explained in detail, being a founda-
tion of the proposed methods in Chapter 3. Finally, we describe the theory behind
Bayesian Neural Networks (BNNs) and their differences to Neural Networks trained
in a standard fashion.

2.1 Deep Neural Networks

Deep Neural Networks (DNNs) have arguably achieved great success in the last
years and remain to be responsible for the majority of recent advances in the field
of AI. Driven by both, the exponential growth in available data and computational
resources, DNNs won numerous contests in pattern recognition and machine learn-
ing, achieving state-of-the-art status in different tasks, such as Computer Vision (CV)
[114, 102, 100], Natural Language Processing (NLP) [19, 91, 79, 117] and Reinforce-
ment Learning (RL) [18, 95]. Although current Deep Learning research is far away
from achieving an Artificial General Intelligence [27], there are already domains
where DNNs surpass human performance, like game-playing or image recognition
[31, 104, 58].

The history of Neural Network research goes back to the middle of the last cen-
tury, to the works of McCulloch and Pitts [64], who created an initial computational
model for neural networks, followed by the invention of a novel learning mecha-
nism by Hebb [32], that later became known as Hebbian learning. Some researchers
[87] claim that the ideas of Neural Networks can be traced back to the literature
even earlier since early supervised NNs can be considered as variants of linear re-
gression methods, that were described by mathematicians at the beginning of the
19-th century [54, 24, 25]. The initial wave of excitement came after the invention
of Rosenblatt’s perceptron algorithm in 1958 [82], which was seen as a fundamental
cornerstone in the field of Neural Networks research. The next great achievement in
the field of NNs was the invention of a Backpropagation algorithm, which was first
described in the work of Linnainmaa in 1970 [56] and later popularised in a work of
Rumelhart and Hinton in 1986 [83]. This discovery opened a way for practical train-
ing of multi-layer networks, greatly increasing the scope of the possible application
of Neural Networks and their performance. Unfortunately, lack of computational
power and training data was a bottleneck for the development of NNs at that time
and the interest of the research community in Neural Networks has shifted to other
methods, such as SVMs [16]. In 2012, after the first convolutional neural network
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(CNN) AlexNet [48] won the annual Imagenet challenge [17], neural networks re-
ceived comprehensive community recognition. Advances in computing power of
modern machines, in particular the development of fast GPUs, coupled with the
availability of large amounts of data made NN overwhelmingly popular across re-
searchers and engineers. This marked the new milestone in AI research and sparkled
the so-called ’AI-revolution’ which continues to this day.

2.1.1 Artificial neuron

The original idea of Artificial Neural Networks (ANNs) was to mimic biological
learning mechanisms of a brain. Human nervous system contains cells, neurons, that
are connected to one another with the use of axons and dendrites. Human brain learns
new information by changing the strength between synapses — connections between
axons and dendrites [3]. ANNs simulate this mechanism with own computational
units — artificial neurons. Figure 2.1 illustrates the similarities between natural and
artificial neurons. Each artificial neuron makes a particular computation based on
other units it is connected to, that described in two steps: pre-activation and activation.
Let m be the number of input signals x = [x1, x2..., xm]

1. Pre-activation: in the first step we compute the product between the inputs x
and the weights w and adding the bias term b :

g(x) =
m

∑
i=1

xiwi + b.

2. Activation: the output of artificial neuron is computed by passing the pre-
activation through nonlinear activation function σ:

f (x) = σ(g(x)).

On practice popular activation functions are Sigmoid function, Rectified linear
unit (ReLU) function and Hyperbolic tangent function [110].

Biological neuron Artificial neuron

FIGURE 2.1: Comparison between natural neural architecture and ar-
tificial neuron: LEFT: schematic illustration of the biological neuron
[111], RIGHT: diagram of a McCulloch-Pitts artificial neuron model

[112].

2.1.2 Artificial Neural Networks

The neurons in ANNs are usually organized in layers: in each layer, neurons take
as input values only from the immediately preceding layer and output values to
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neurons in the following layer. The first layer that receives the original data as an
input is called input layer and the layer that produces the final result is called output
layer. All layers between input and output layers are called hidden layers, as the
result of the performed computations is not visible to the user. A Deep Neural Network
(DNN) is an artificial neural network (ANN) with multiple layers between the input
and output layers.

Different patterns of connections between layers are possible: for example in
Fully Connected (FC) layers, each neuron in one layer connecting to every neuron in
the next layer. Other popular types include pooling [14], where a cluster of neurons
outputs to a single neuron in the next layer. In this work, we will work with a feed-
forward NN, where successive layers feed into one another in the forward direction
from input to output. In other words in feed-forward NN connections of all neurons
form a directed acyclic graph. Figure 2.2 illustrates feed-forward fully-connected
NN.

FIGURE 2.2: Schematic illustration of ANN with with five hidden
layers. Black nodes illustrate the input, each white node represents
an artificial neuron. Arrows are the parameters (weights) indicating

the strength of connection between neurons [65].

ANN could be viewed as a function, that maps a point from a (high-dimensional)
input domain X to an output domain Y :

f : X ×W → Y ,

whereW is a subspace of parameters for the particular network architecture. Usu-
ally, X corresponds to the space of d dimensional real-valued vectors Rd. In image
classification setting, the network produces real-valued output Y ∈ Rk, where k is
the number of classes, and the resulting vector represents the "scores" of input be-
longing to each of the k classes. Often, these scores are further normalized (e.g., with
a SoftMax function), and the final decision is made by verifying whether the output
is above a certain threshold or larger than the output of other functions represent-
ing the remaining classes. The function output can be interpreted as the amount of
evidence that the model allocates to each class for the current sample [86].

ANNs are constructed with a building blocks of layers: let L > 0 be the number
of layers in the network, where zeroth layer corresponds to an input and L-th layer
is the output of the network. We denote σ(1), σ(2), ..., σ(L) to activation functions in
different layers. Let x(l) denote the output l-th layer, and so x(0) = x.

The prediction rule could be represented as follows:
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x(1) = σ(1)
(

W(0)x + b(0)
)

,

x(2) = σ(2)
(

W(1)x(1) + b(1)
)

,

. . .

x(L) = σ(L)
(

W(L−1)x(L−1) + b(L−1)
)

,

f (x, W) = W(L)x(L−1) + b(L) .

In the standard (frequentist) setting of NN learning, a MLE or MAP estimate
of the parameters is found through the minimisation of a non-convex loss function
L(x, y) w.r.t. network weights. Minimization of this function is performed through
backpropagation [83], where the output of the model is computed for the current pa-
rameter settings, using the chain rule partial derivatives w.r.t parameters are found
and then used to update each parameter by gradient descend:

W ←W − α
∂L(x, y)

∂W
.

2.1.3 Convolutional Neural Networks

Convolutional Neural Network (CNN) is a particular type of a Deep Learning model,
most commonly used for Computer Vision tasks. The architecture of these models
was inspired by the works of Hubel and Wiesel’s about receptive fields in the visual
cortex of the cat’s brain [38]. Their work showed that specific parts of the visual field
of the animal activate particular neurons in the brain: individual neurons respond
to stimuli only in a special region of the visual field known as the Receptive Field.
Such fields overlap with each other, covering the whole visual field of an animal.
Inspired by their work, in 1980 Fukushima et al. [22] introduces two special layers
that became founding blocks of CNN: convolutional layer and pooling layer.

• Convolutional layer: the motivation for this layer is to extract features from
input by preserving the spatial relationship between the pixels. A rectangu-
lar receptive field with a weight matrix of fixed size, a filter, slides over the
input (image), and for each position produces an element-wise multiplication
between filter and values, that lie in the receptive field. The results of the mul-
tiplication are summed and saved to the output matrix.

• Pooling layer: (or downsampling layer) is used to reduce the dimension of
the feature maps, previously computed by convolutional layers. Such a unit
usually calculates aggregates over the sliding window (patch) of fixed size,
such as average, as was originally proposed by Fukushima [22], or taking a
maximum value over the window [107].

Fukushima’s ideas were later generalized in the LeNet-5, one of the earliest CNN
for handwritten and machine-printed character recognition [52]. Figure 2.3 illus-
trates LeNet-5 architecture. The network was trained by a backpropagation algo-
rithm and was applied for identifying handwritten zip code numbers [52]. Modern
CNN architectures for image classification incorporate the ideas from the LeNet-5,
utilizing the convolutions, pooling, and fully-connection structure.
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FIGURE 2.3: Visualisation of LeNet 5 CNN architecture applied for a
handwritten digits classification task [15].

2.2 Explaining Deep Neural Networks

Deep Neural Networks perform very well at representation learning — they are able
to map features from (usually) high-dimensional input to an output [28, 67]. Yet, as
modern Neural Networks become more and more complex, it is very hard to explain
what particular features have been learned and what particular attributes influenced
the decision-making process of a learning machine.

In general, XAI methods could be divided into two main categories: global and
local explanation methods.

2.2.1 Global explanation methods

Global explanation methods interpret the decision-making process of DNNs across
a population: they can highlight and describe the inner mechanisms of complex
learning machines, that thereby helps to increase their transparency. One popular
global explainability method is Activation Maximisation (AM) [21].

In a CNN, convolutional layers learn specific filters so that activation is maxi-
mized when a similar pattern is found in the input. The intuition behind the AM
method is quite simple: we try to explain a hidden unit by looking for a particular
input that maximizes its activation. This input is not searched for in the original
dataset, instead, this task is viewed as an optimization problem and we try to arti-
ficially generate a pattern, which a particular hidden unit reflects with the highest
activation.

Let hij(x, W) be the activation of a given unit i from a given layer j in the network;
where x is an input sample and W represents all parameters (weights and biases) of
a trained neural network, that we aim to explain. In AM method we are looking for
a particular simulated sample x∗, such as:

x∗ = arg max
x s.t. ||x||=ρ

hij(x, W).

For this non-convex optimization problem, the local minimum could be found
using simple gradient-based methods.
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FIGURE 2.4: Input samples that maximize activation of output neu-
rons in the CaffeNet deep neural network, which has learned to clas-

sify different types of ImageNet images [75].

More recent research, such as [74, 75], continues with improving the qualitative
state of the art of Activation Maximization. Figure 2.4 illustrates several of synthe-
sized input. AM algorithm allows users to identify the ’prototypical’ cases for the
output quantity and aim for a general description of the Machine Learning model.

Global explanations with AM algorithm are not bounded to be used only for ex-
plaining the output of the last layer [76]. An important question that arises is: what
exactly do we want to explain? For individual features, we can maximize the activa-
tion of one neuron, to understand, what was learned by a particular unit. However,
it is also possible to explain the layer as a whole (DeepDream algorithm [72]), class
logits, or the probability of a class. Figure 2.5 illustrates different approaches for AM
algorithm for different objectives.

FIGURE 2.5: Examples of different objectives being maximized in AM
algorithm [76]. Depending on the goal of the user, that is to explain
a particular neuron, layer, or the prediction itself, different objective

functions are be maximized.
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2.2.2 Local explanation methods

Global explanation methods are useful for knowledge discovery, however, they do
not provide explanations given a particular data example. Usually, researchers and
practitioners are interested in local explanations: given a particular input x, they
expect from an algorithm to explain the decision-making process on a particular
example. In general, local explanation methods attribute relevances to each of d fea-
tures of input x to visualize and emphasize which components of input are the most
important regarding a given prediction. As a result, explanation methods usually
create relevance maps (also known as saliency maps) for each datapoint [11, 103, 88,
70].

To ease future description of various local explainability methods we define a
relevance attribution function.

Definition 1 (Relevance Attribution) A function R(·, ·) that maps an input vector x ∈
Rd and a vector of network’s parameters W ∈ W to a real-valued vector of relevances
R(x, W) ∈ Rd is called a relevance attribution function.

Existing methods for local explanation can be categorised into model-agnostic and
model-aware methods.

Model-agnostic methods

Model-agnostic methods are based on the idea of separating the interpretations from
the machine learning model. Usually, these methods explain the black-box model
by detecting changes in the predictions of the learning machine, while perturbing
the input is a specific way. The main advantage over model-aware methods is that
model-agnostic methods do not depend on any specific architecture of the model,
which makes them flexible and easy to use.

Several popular model-agnostic methods include:

• LIME

Lime stands for Local Interpretable Model-Agnostic Explanations [80]. This
method aims to create an explanation for a particular input by approximating
the model locally with an interpretable one, such as linear model with regular-
isation [20], decision tree [84] or random forest [55]. To train a new learner, the
original input is perturbed around its neighborhood, and changes in model
behavior are recorded. Perturbed data points are weighted by their distance
to an original input, and a new, interpretable model is trained on new data
and associated with its predictions, thus creating a locally faithful approxima-
tion of the original model — a model, that can predict how the original learner
behaves in the vicinity of the input.

• SHAP

SHAP is short for SHapley Additive exPlanations: a game-theoretic approach
for machine learning explanations [59]. The method is based on the idea that
a prediction of a learning machine can be explained by assuming that each
feature from the input is a "player" where the prediction is the payout [69].
To distribute relevances ("payout") between input features, Shapley values, a
method from coalitional game theory, is used [90].
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Original
Image

LIME
explanation

SHAP
explanation

FIGURE 2.6: Comparison between LIME and SHAP explanation
methods of image classification predictions made by VGG-16 Neural
Network [96] pretrained on Imagenet dataset. From LEFT to RIGHT:
original image, LIME explanation for class "castle", SHAP explana-
tion of same class. LIME explanation is usually represented by a mask
applied to the original input, that highlights what part of the image
influenced the prediction the most. SHAP method creates standard
relevance map, that attributes positive scores (red) to the features
contributing to the prediction, and negative scores (blue) that were

considered as evidence against the prediction.

Model-aware methods

In contrast with model-agnostic methods, model-aware (also known as model-specific)
explainability algorithms use the underlying structure of the learner and explicitly
work with computational graphs. While these methods require to be specifically
crafted for different types of learning machines, model-aware methods usually use
less computational resources and produce more accurate explanations.

Popular model-aware methods are:

• Input � Gradient

This method is considered to be a baseline approach for computing the rele-
vance maps: it multiplies an input x with the gradient with respect to input,
denoted x� ∂ f

∂x [40]. This method addresses the “gradient saturation” problem
in explanations, and reduce visual diffusion [2, 93].

• Integrated gradients

Integrated Gradients (IG) is an axiomatic local explanation algorithm that also
addresses the "gradient saturation" problem. It assigns the relevance score to
each feature by approximation of the integral of gradients of the model’s out-
put with respect to a scaled version of the input. [99]. Relevance attribution
function, in this case, can be defined as

R (x, W) = (x− x̄)
∫ 1

0

∂ f (x + α(x− x̄))
∂x

dα,

where x̄ is a baseline that represents the absence of a feature in the input.

• Guided Backprop
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Guided Backprop (GB) attributes relevance using guided backpropagation: the
gradient of the target output with respect to the input, but negative gradient
entries are set to zero while backpropagated through the ReLU functions [97].

Input
Gradient

Integrated
Gradients

Guided
Backprop

FIGURE 2.7: Comparison between model-aware explanation meth-
ods of image classification predictions made by a VGG Neural Net-
work [96] on the same "castle" image as in Figure 2.6. From LEFT
to RIGHT: Input � Gradient explanation, Integrated Gradients and

Guided Backprop.

2.2.3 Layer-wise Relevance Propagation (LRP)

In this work, we focus on a particular explanation method — Layer-wise Relevance
Propagation (LRP). LRP is a computationally cheap and simple approach that is based
on the idea of backpropagating the relevance from the output through the layers of
the network.

Layer-wise Relevance Propagation (LRP) [11] is a model-aware explanation tech-
nique that can be applied for feed-forward neural networks and it can be used for
different types of inputs, such as images, videos, or text [7, 9]. Intuitively, the core
idea underlying the LRP algorithm is that it uses the network weights and the neu-
ral activations created by the forward-pass to propagate the output back through
the network until the input layer is reached. This propagation procedure is sub-
ject to a conservation rule — analogous to Kirchoff’s conservation laws in electrical
circuits [71] — on each step of backpropagation of the relevances from the output
layer toward the input, the sum of relevances should remain the same. In each layer,
LRP redistributes the relevance of the output node to the input node, proportionally
to the contribution of each input neuron. Figure 2.8 illustrates LRP redistribution
procedure.

The backpropagation of relevances from the output layer to the input features
can be done in several ways. In the following, we present four different backprop-
agation rules that could be found in the LRP literature. Let the feed-forward neural
network consist of L > 0 consecutive layers, where 0 is the input and layer L-th layer
is a network’s output. i and j be the neurons at layers l and l + 1, respectfully.

• LRP-0 [11]
The standard LRP-0 rule distributes the relevance in proportion to the contri-
butions of each input to the neuron activation. Backpropagation of a relevance
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FIGURE 2.8: Illustration of the relevance redistribution procedure in
LRP algorithm [71]. Redistribution procedure resembles the Kirch-
hoff’s first law: each neuron redistributes to the lower levels value of

relevance, that it received from the higher levels.

R(l)
i for the l-th layer from the output layer towards the input is achieved by

recursively applying the following rule:

R(l)
i = ∑

j

z(l+1)
ij

∑i′ z
(l+1)
i′ j

R(l+1)
j ,

where z(l+1)
ij = x(l)i w(l,l+1)

ij is the activation of the (l + 1)-th layer computed

in the forward pass and {w(l,l+1)
ij } are the learned weight parameters of the

network between l-th and (l + 1)-th layers.

While the motivation behind this rule is quite simple and intuitive, it can be
shown [93, 6] that explanations, produced by this method are genuinely equiv-
alent to Input�Gradient. However, this explainability method can suffer from
noisy gradients, that can occur during backpropagation.

• LRP-ε [11]
An enhancement of the basic LRP-0 rule consists of adding a small positive
number ε > 0 ∈ R in the denominator:

R(l)
i = ∑

j

z(l+1)
ij

ε + ∑i′ z
(l+1)
i′ j

R(l+1)
j .

The idea behind the augmented procedure is that for small values ∑i′ z
(l+1)
i′ j ,

relevances can take unbounded values. Thus, this unboundedness can be over-
come by introducing a predefined stabilizer ε > 0.

• LRP-γ [71]
LRP-γ rule is another improvement to the standard LRP-0 rule. The main idea
is to favor the effect of contributions made by positive weights over the con-
tribution of the negative ones. The parameter γ ≥ 0 is set to enhance positive
contributions:

R(l)
i = ∑

j

x(l)i

(
w(l,l+1)

ij + γw(l,l+1)+
ij

)
∑i′ x

(l)
i′

(
w(l,l+1)

i′ j + γw(l,l+1)+
i′ j

)R(l+1)
j .
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• LRP-CMP [71]
In our work, we use the best practice LRP rule, namely LRP-CMP (Composite)
rule, which was recently published by Kohlbrenner et al. [45, 86] and LRP-ε
rule [11]. LRP-CMP uses a combination of different basic LRP rules, i.e., LRP-0
rule, LRP-ε rule, and LRP-γ [11] for different layer types of the deep neural
network and thus acts as an enhanced combination of those. The particular
implementation of the LRP-CMP rule for the VGG-16 Neural Network and
comparison with other LRP rules is illustrated in Figure 2.9.

FIGURE 2.9: Illustration of LRP CMP rule: Top row: original image
("castle"), LRP-0 explanation, LRP-ε explanation, LRP-γ explanation,
Bottom row: left — LRP CMP explanation of class "castle", right —

illustration for which layers what LRP rules were used [71].

2.3 Bayesian Neural Networks

From a statistical perspective, DNNs are usually trained using the Maximum Like-
lihood principle, aiming to find a set of parameters (weights) that maximizes regu-
larized maximum likelihood:

Ŵ = argmaxW log p(W | Dtr). (2.1)

This procedure is sometimes called maximum a-posteriori (MAP) optimization, as it in-
volves maximizing a posterior [113]. The most commonly used loss functions and
regularizers fit into this framework, such as categorical cross-entropy for classifi-
cation tasks or MSE for regression. Although this procedure is efficient since net-
works learn only a fixed set of weights, vanilla networks suffer from the inability
of specifying uncertainties on the learned weights and subsequently on the predic-
tion. Predictions produced by NN have biases which, in the case of MAP, cannot
be trivially distinguished from being due to the nature of data or due to the model
[13]. In contrast, Bayesian neural networks (BNNs) estimate the posterior distribu-
tion of weights, and thus, provide uncertainty information on the prediction which
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can provide probabilistic guarantees on predictions. Figure 2.10 illustrates the dif-
ference between standard and Bayesian Neural Networks. Particularly, in critical
real-world applications of deep learning—for instance, medicine [30, 35, 44] and au-
tonomous driving [46, 109]—where predictions are to be highly precise and wrong
predictions could easily be fatal, the availability of uncertainties of predictions can
be of fundamental advantage.

[26, 106] describe the history and origins of BNNs. The study of BNNs dates back
to the 1990s, mainly to the work of Tishby et. al [101]. It was shown that by specify-
ing the prior distribution of weights of a neural network, by using the Bayes Rule the
approximate posterior can be found, however, no practical means for inference were
provided. Other notable works [33, 61] contributed in many ways to a drastic devel-
opment of the field of Bayesian Neural Networks. Another wave of interest from a
scientific community came after the so-called AI-revolution of 2012: with the pop-
ularity of the Deep Learning field of Bayesian Deep Learning has emerged roughly
in 2014 [106]. Nowadays, collinearly with the progress in the field of DL, Bayesian
Neural Networks continue to gain more and more popularity among practitioners
across a wide spectrum of different fields.

Point-estimate NN Bayesian NN

FIGURE 2.10: Standard point estimate NN (LEFT) and BNN with
learned probability distribution over the weights (RIGHT) [39].

Let f (·; W) : Rd → Rk be a feed-forward neural network with the weight pa-
rameter W ⊂ W . Given a training dataset Dtr = {xn, yn}N

n=1, Bayesian learning
(approximately) learns the posterior distribution

p (W|Dtr) =
p(Dtr|W)p(W)∫

W p(Dtr|W)p(W)dW
, (2.2)

where p(W) is the prior distribution of the weight parameter. After training, the
output for a given test sample x is predicted by the distribution:

p(y|x,Dtr) =
∫
W

p(y| f (x; W))p(W|Dtr)dW. (2.3)

Since the denominator of the posterior, shown in Eq. (2.2), is intractable for neural
networks, many approximation methods have been proposed, e.g., Laplace approx-
imation [81], variational inference [29, 77], MC dropout [23], variational dropout
[41, 68], and MCMC sampling [108]. Such approximation methods support efficient
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sampling from the approximate posterior, which allows us to obtain output samples
from the predictive distribution, given in Eq. (2.3), for uncertainty evaluation along
with prediction for a test sample x. Classical non-bayesian training procedure could
be also seen as performing approximate Bayesian inference, using the approximate
posterior p(W|Dtr) ≈ δ(W = Ŵ), where δ is the Dirac delta function.

In the following sections, we will briefly describe popular posterior approxima-
tion methods that were used in the following work.

2.3.1 Variational Inference

Modern approaches to delevelop efficient Bayesian inference algorithms mosltly
perform variational inference: given the training data Dtr, the variational inference
aims on approximating the posterior distribution of the parameters p(W|Dtr) with
a variation distribution, q(W|Dtr, φ) [78], that is restricted to belong to a family of
distributions of simpler form (for example, family of Gaussian distributions). Pa-
rameters φ are optimized in order to minimize predefined dissimilarity measure be-
tween p(W|Dtr) and q(W|Dtr, φ). Usually, Kullback-Leibler divergence [49] is used
as a dissimilarity function between distributions.

KL(q || p) =
∫

q(W | Dtr, φ) log
q(W | Dtr, φ)

p(W | Dtr)
dW.

Unfortunately, p(W | Dtr) is usually not tractable. To counter that problem,
evidence lower bound (ELBO) is introduced:

ELBO(φ) =
∫

q(W | Dtr, φ) log
p(W)∏N

i=1 p(yi | f (xi; W))

q(W | Dtr, φ)
dW

It could be shown [116] that log evidence p(D) could be viewed as:

log p(D) = ELBO(φ) + KL(q || p)

As the log p(D) is fixed with respect to variational distribution q(W|Dtr, φ), max-
imization of evidence lower bound (ELBO) is equivalent to minimization of KL(q ||
p). By appropriate choice of variational distribution, ElBO becomes tractable to com-
pute. The resulting maximization problem ELBO(φ) → maxφ can be solved using
stochastic gradient descent.

Popular variational inference methodds for training BNNs includde:

• Bayes by Backprop [12]

One of the first major breakthroughs in the field of BNN was Bayes by Backprop
algorithm [12]. The method is is a variational inference method that utilises
the Local Reparametrisation Trick [42]. As the name implies, a variational distri-
bution that maximizes ELBO is learned by a backpropagation. Weights uncer-
tainties that were afforded by Bayes by Backprop trained networks were used
successfully in different applications [57, 36]. Throughout this work, we will
be using the Bayes by Backprop trained CNNs, described in [92].

• MC Dropout [23]

Originally, the Dropout method [98] was proposed as a regularisation tech-
nique that counters the problem of over-fitting in NNs by randomly dropping
hidden units with pre-defined probability p during the training phase. This
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approach restricts hidden units to co-adapt too much: dropout procedure pre-
vents any neuron in the NN to excessively rely on the output of some other
particular neuron, driving it to connect to the population behavior of its in-
puts. In a testing phase, the whole network is used for a prediction, thus giving
a deterministic result. Figure 2.11 is illustrating the dropout procedure. This
approach was shown to effectively reduce over-fitting, improve the generaliza-
tion of the learning machine, and yield remarkable improvements in different
tasks such as ImageNet classification [34].

FIGURE 2.11: Illsutration of a dropout procedure: LEFT: standard
NN, RIGHT: NN with applied dropout [1].

The dropout process can be interpreted as multiplicative noise on the param-
eter. Therefore, it was shown [23] that dropout training can be seen as varia-
tional inference with the variational distribution restricted to two-component
mixture distributions. MC dropout can be performed simply by turning on
the dropout procedure in the test phase and taking the output random sam-
ples as the prediction from networks with the weight parameter sampled from
the approximate posterior.

• Noisy KFAC [118]

Noisy KFAC is another variational inference method for BNNs. It is based on
the idea of using natural gradient ascend [4] with adaptive weight noise to
maximize evidence lower bound (ELBO). For natural gradient computation, it
is necessary to obtain Fisher matrix F, and as modern neural networks may
contain millions of parameters, storing the exact matrix is impractical. Au-
thors use the Kronecker-Factored Approximate Curvature (K-FAC) [63] as an
efficient way for approximating the Fisher matrix, used to perform efficient
approximate for the natural gradient.

2.3.2 Laplace approximation

Standard NNs have gained popularity and wide-spread adoption by performing
MAP inference that only yields point estimates for the mode of the posterior dis-
tribution. However, the Laplace approximation allows to locally approximate the
posterior by taking the second-order Taylor expansion around the mode:
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log p(W | Dtr) ≈ log p(W | Dtr)−
1
2
(W − Ŵ)T H̄(W − Ŵ),

where H̄ = E(H) i.e. average Hessian of a negative log posterior. Assuming that
H̄ is positive semi definitive, it was shown [61, 81] posterior distribution over the
weights could be approximated as follows:

p(W | Dtr) ∼ N(Ŵ, H̄−1). (2.4)

Thus, by computing the average Hessian we are able to approximate the pos-
terior around the mode with a Normal distribution. However, it is unfeasible to
compute or invert the Hessian matrix w.r.t. all of the weights altogether, so differ-
ent approximations methods were proposed, such as diagonal and tri-diagonal ap-
proximations. The recent developments in second-order optimization showed that
Kronecker-factored Approximate Curvature (K-FAC) [63] can be used effectively to
approximate the Hessian, even for complex DNN with hundreds of thousands of pa-
rameters [81]. Approximation of Hessian does not require re-training the network,
thus by performing the Laplace approximation it is possible to transform any MAP
trained NN into the BNN.
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Chapter 3

Explaining Bayesian Neural
Networks

Bayesian Neural Networks is an important class of learning machines that combine
the neural network design with stochastic modeling. The main advantage of BNNs
over the standard DNNs lies in their ability to generate the distribution of the param-
eters that it has learned from the data and also to produce probabilistic guarantees
on its predictions. Yet, to our knowledge, no method explains the decision-making
process of such machines. In this chapter we introduce several novel methods for
local explanations of the behavior of BNNs for the image classification problem: we
start with the simple and intuitive method called Mean LRP and continue with more
advanced methods like B-LRP and its enhancement B-LRP+. Finally, we describe
the semi-autonomous method for finding different major strategies in the decision-
making process — Bayesian Strategies Clustering (BSC) method.

3.1 Distribution of relevance maps

Previously, we defined the relevance map of an input x by R(x; W) ∈ Rd. The rele-
vance depends on the learned parameter value W, and for a fixed input x, R(x, W)
is a deterministic mapping. In BNN weights are not fixed and follow a posterior
distribution, therefore, we can naturally consider the distribution of the relevance
maps induced by the BNN

Given the posterior distribution of W ∼ p(W|Dtr), we can define the distribution
of relevance as

p(R|x,Dtr) =
∫

R(x, W)p(W|Dtr)dW. (3.1)

Relevance samples can be obtained by computing the relevance for posterior pa-
rameter samples:

R(x; W) ∼ p(R|x,Dtr) if W ∼ p(W|Dtr). (3.2)

Under the assumption of the correctness of the chosen explainability mapping
R (i.e chosen explainability algorithm indeed explains the prediction of the neural
network), the decision-making process of a Bayesian Neural Network could be ex-
plained by just visually looking over some number of samples from the relevance
distribution. Figure 3.1 illustrates several relevance maps, sampled from the pos-
terior distribution. Unfortunately, in real-world applications of BNNs, it is just not
practical to look over a huge number of relevance heatmaps just per one particular
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data point. Thus, aggregation methods over the samples should be introduced to
ease the explanation of BNNs.

Relevance maps samples

FIGURE 3.1: Several examples of LRP-CMP relevance maps that were
sampled from the posterior distribution of VGG-16 CNN with MC
Dropout, explaining the "castle" image. We can observe that castle
itself was attributed positive relevance on each sample, however, it is
noticeable that the relevance of a lamppost in the top-middle part of

the image changes significantly from one sample to another.

3.2 Mean LRP

The method called Mean LRP is a simple and straightforward approach for explain-
ing the BNNs: the Mean LRP method computes a relevance map for the network
with weights set to the mean of the posterior distribution over its parameters:

MeanLRP(x; W) = R(x; W̄). (3.3)

We use the Mean LRP method as a baseline for the comparison of the efficiency
of the other proposed methods.

3.3 B-LRP

Limitations of the Mean LRP is quite evident — this method does not use any infor-
mation about the posterior distribution of weights. The next step would be an aggre-
gation over the relevance maps distribution. Our proposal, which we call Bayesian
LRP (B-LRP; illustrated in Figure 3.2), is to treat the relevance of a BNN as a random
variable that follows Eq.(3.1), and use it to explain the network, with uncertainty
information taken into account. Let {Rm}M

m=1 be samples from the relevance distri-
bution, obtained by Eq.(3.2). Then we define our B-LRP as follows:

B-LRPα(x; W) = Pα ({Rm}) , (3.4)

where Pα({Rm}) is an operator computing the entry-wise (pixel-wise) percentile
from the set {Rm} of random samples.

B-LRP reveals the features where the explanation is uncertain: for small values
of α, for instance, α = 5 the fact that a feature has a positive relevance on B-LRP ex-
planation suggests that this attribute has positive relevance in 1− α = 95 percent of
all computed relevance maps — this means there is strong evidence that this feature
is relevant to the models’ decision. Similarly, with high values of α we can find most
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FIGURE 3.2: Overview of the proposed B-LRP procedure. For a given
input, standard LRP generates from a trained neural network an ex-
planation as a heatmap. Our B-LRP considers a Bayesian neural
network (shown to the left), which induces a distribution over neu-
ral networks. Subsequently, applying LRP evokes a distribution of
heatmaps (shown to the right). The variation in this distribution in-
forms us about the (un)certainty in explanations. B-LRP considers a
percentile of the heatmap distribution, leading to more cautious or

risky explanations, depending on the chosen percentile.

certain features with negative relevances. Figure 3.3 illustrates B-LRP explanations
for the "castle" image for VGG-16 CNN.

= 5 = 25
B-LRP

= 50 = 75 = 95

FIGURE 3.3: B-LRP explanations for different parameter α for "castle"
image. We can observe from B-LRP, α = 5 that in 95% of explanations
castle on the image was attributed positive relevance, in contrast to
other objects like the lampost or the car in the bottom-left part of the
image. On the other hand, B-LRP, α = 95 demonstrates that at least
5% of explanations view the lamppost and a car as contributing to-

wards the prediction.

A particular choice of the parameter α used in the B-LRP method should be
guided by the application scenario: small values (0− 25) of α are more favorable,
for example, in use-cases when the main goal is to analyze where explanations are
certain about positive relevances of features, while large values (75− 100) are more
suitable for the cases when it is important to understand if the particular feature was
attributed with a positive relevance in at least some (small) subset of explanations.
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In practice, the use of several different α parameters could help to better understand
the decision-making process of a BNN. For a general practitioner, we propose to
use the following set of alpha’s values: [5, 25, 50, 75, 95] — by visualizing the follow-
ing percentiles of a marginalized distribution, it is possible to detect the features, in
which the explanation algorithm is certain about their impact on the prediction.

3.3.1 B-LRP +

B-LRP+ is the enhancement to a B-LRP method, that only visualizes features which
impact to a prediction is certain. B-LRP+ with parameter α ∈ [0, 50] is defined as
follows:

B-LRP+α(x; W) = 1Pα({Rm})>0 �Pα ({Rm}) + 1P100−α({Rm})<0 �P100−α ({Rm}) ,

where Pα({Rm}) is an operator computing the entry-wise (pixel-wise) percentile
from the set {Rm} of random samples and � is the element-wise product.

The formula for B-LRP+ is quite intuitive: we visualize only features with "reele-
vance certainty" equal to a (100− α) — features that in (100− α) percent of the sam-
ples showed the same contribution: positive or negative, towards the prediction. In
the first term, we take features with only positive relevance from α percentile: that
means that the explainability algorithm is certain that these attributes have a posi-
tive impact on the prediction in (100− α) percent of the samples. The second term
in the formula is following a similar idea, but for negative relevances. In the end,
we achieve that only features, in which the explainability algorithm is confident in
(100− α) percent of the cases, are visualized. Figure 3.4 illustrates B-LRP+ visuali-
sations for different parameters α.

= 5
B-LRP+

= 15 = 25

FIGURE 3.4: B-LRP+ explanations for "castle" image for VGG-16 net-
work with MC Dropout. For B-LRP+ α = 5 we can see that lamppost
is deleted from an explanation — explanation consist only with at-
tributes that 95% of their distribution in maintaining the same sign.

3.4 Bayesian Strategies Clustering (BSC)

The limitation both of B-LRP and B-LRP+ methods is that produced explanations
are aggregations over the marginalized distributions of individual features — that
means that both methods discard the information about correlation and intercon-
nection between relevances in one saliency map. Thus, that leads to the fact that
resulting explanations might not correspond to any of the existing strategies.
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We propose a method called Bayesian Strategies Clustering (BSC) that aims to ex-
plain the decision-making of a BNN by investigating the "prime" strategies (rele-
vance maps) of a learning machine. To decompose the behavior of BNN into groups
of inter-similar saliency maps we perform clustering of the sampled relevance maps.
While our method does not restrict a user in choosing an algorithm for clustering,
we propose to use the SpRAy (Spectral Relevance Analysis) clustering method. This
method was initially introduced in [51] to solve a similar problem — process-wide
spectrum of learned decision behaviors and detect unexpected or undesirable ones
in a semi-automated manner. After the main clusters are found, the decision-making
process could be explained by a collection of feature-wise averages over relevance
maps in each cluster. Moreover, the number of saliency maps in each cluster (nor-
malized by the number of sampled relevance maps) could identify the "strength" of
each strategy.

Originally, the SpRAy method was used to investigate the typical traits in the
decision-making process over the large collection of relevance maps, that were ob-
tained from different data points from the source dataset. This approach resembles
our initial problem: in contrast to an original setting of a SpRAy method, we want
to exhibit and understand typical as well as atypical behavior in the BNN decision-
making process. Similarly, we have a collection of relevance maps that we want to
cluster in several groups, and the only difference from the initial setting is that all of
these maps are obtained from one data point, instead of whole the dataset.

For image classification problem BSC employs SpRAy algorithm as follows [51]:

1. Relevance maps sampling

A collection {Ri}N
i=1 of relevance maps is sampled from the posterior distribu-

tion.

2. Preprocessing of the relevance maps.

All relevance maps are normalized using the MinMax normalization proce-
dure. If needed, all relevance maps should be made uniform in shape and
size, for future clustering.

To speed up the clustering process and to produce more robust results we pro-
pose to use downsampling methods on the collection of samples. While the
user is free to choose any dimensionality reduction method, we propose to use
the Average Pooling method in order to achieve visually different strategies in
different clusters.

3. Spectral Cluster (SC) analysis on pre-processed relevance maps.

Pre-processed relevance maps are clustered by Spectral Clustering method.
For affinity matrix, necessary for SC method, matrix based on k-nearest-neighborhood
relationships is used. In more detail, affinity matrix M =

(
mij
)

i,j=1,...,N , mea-
suring the similarity mij ≥ 0 between all N samples Ri and Rj of a source
dataset is constructed in a following way:

mij =

{
1 if Ri is among the k nearest neighbors of Rj

0 else

Since this rule is asymmetric, symmetric affinity is created matrix M by tak-
ing mij = max(mij, mji). Authors of the original paper highlight that similar
clustering results were obtained using the Euclidean distance, only with only
small differences in eigenvalue spectra.
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Laplacian L is computed from M as follows :

di = ∑
j

mij.

D = diag [d1, d2, ..., dN ] .

L = D−M.

Matrix D is a diagonal matrix, which entities describe the measure of connec-
tivity of a particular sample i with D being a diagonal matrix with entries dii
describing the degree (of connectivity) of a sample i [51].

4. Identification of interesting clusters by eigengap analysis

By performing an eigenvalue decomposition on the Laplacian L, eigenvalues
λ1, λ2, ..., λN are obtained. The number of eigenvalues λi = 0 identifies the
number of (completely) disjoint clusters within the analyzed set of data.

The final step of SpRAy is label assignment, which can then be performed us-
ing an (arbitrary) clustering method: in our work we use k-means clustering
on the N eigenvectors. The number of clusters can be obtained by eigengap
analysis [105]: it can be identified by eigenvalues close to zero as opposed to
exactly zero, followed by an eigengap — rapid increase in the difference be-
tween two eigenvalues in the sequence |λi+1λi| [51].

Once clustering has been performed, "prime" strategies can be identified as the
pixel-wise mean over each of the clusters. Optionally, clusters and average cluster
strategies could be visualized by t-SNE [60] to compute a two-dimensional embed-
ding of the relevance maps. As a measure of the importance of each strategy, the
number of samples in the corresponding cluster could be taken.

3.5 Explaining non-Bayesian Neural Networks with Bayesian
principles

Naturally, proposed methods can be applied only to the Bayesian Neural Networks.
However, some approximate Bayesian learning can be performed as post-processing
applied to pre-trained non-Bayesian networks, such as MC Dropout (Chapter 2.3.1)
or Laplace approximation (Chapter 2.3.2), which can broaden the applicability of
Bayesian LRP. These post-processing procedures for "Bayesianizing" non-Bayesian
learning machines do not only broaden the applicability in terms of models but also
offer another use of Bayesian LRP.

Specifically, we can view standard LRP as a statistic method that behaves simi-
larly to the median and mean. From this view, one can assess the reliability/uncertainty
of standard LRP by using Bayesian LRP. In this manner, BNNs can make the uncer-
tainty of explanation apparent for any existing explanation method and even for
non-Bayesian learning machines. We study the application of proposed method for
a non-bayesian network in more detail in Chapter 4.3.
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Chapter 4

Experiments

This chapter is devoted to a practical examination of the proposed explainability
methods for BNNs in an image classification setting. We demonstrate the useful-
ness of our proposed B-LRP and B-LRP+ methods along with the BSC method on
different datasets and models. For quantitative evaluation of the performance of the
methods, we introduce a Bayesian pixel-flipping method — a simple enhancement
of the standard pixel-flipping technique, adjusted for a Bayesian setting. We discuss
different pixel perturbation policies that were employed along with the specifics of
the visualization of saliency maps.

4.1 Methodology

4.1.1 Quantative evaluation metric

Pixel-flipping

Usually, for a quantitative evaluation of local explanation methods in a standard
non-bayesian setting the pixel-flipping method is employed [85] — a practical tech-
nique to quantify the goodness of an explanation with respect to a specific decision
of a trained model. Given the relevance map (e.g., in the form of heatmap) , at first,
the pixels of the input image x are ranked in descending order of their relevance
scores, i.e., pixels with higher relevance scores are ranked first. Then, the original
pixel values are iteratively perturbed (e.g., set to zero or replaced with random val-
ues), according to the ranking. Namely, the pixel with k-th highest relevance score is
perturbed at the k-th iteration. The prediction score (output of the trained model for
the perturbed input) is evaluated and recorded at each step. Thus, the pixel-flipping
algorithm yields the decaying curve, which illustrates the performance of the expla-
nation on the particular image: the steeper the prediction score drops the better is
relevance map in terms of explaining the decision-making process of NN.

Typically, pixel-flipping curves are computed over a set of images and the result-
ing curve is obtained by averaging. It is later visualized as a function of k, where k
corresponds to the percentage of flipped pixels. For a quantitative measure to com-
pare algorithms, one can take Area Under the Curve (AUC) metric: the smaller AUC
is, the better algorithm is in explaining.

The pixel-flipping procedure is summarized in Algorithm 1.
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Algorithm 1 Pixel-Flipping [85]

Require: x – input image, R – relevance map, f – trained model.
Ensure: scores – the sequence of decaying prediction scores.

scores←[]
for p in argsort(-R): do

Perturb the pixel xp.
scores.append( f (x, W)).

end for
return scores

Bayesian pixel-flipping

In contrast with standard NNs, Bayesian Neural Networks induce the distribution
of predictions, rather than a point estimate. Thus, adjustment to a pixel-flipping
algorithm is needed. In the Bayesian case, we evaluate changes in the mean of the
prediction distribution – each time pixel is perturbed, we sample the posterior and
average over T prediction scores, where T is a parameter of the method.

Algorithm 2 Bayesian Pixel-Flipping

Require: x – input image, R – relevance map, f – trained model, T – number of
samples for averaging the prediction.

Ensure: scores – the sequence of decaying prediction scores.
scores←[]
for p in argsort(-R): do

Perturb the pixel xp.
Initialise score← 0.
for i = 1 to T: do

Sample Wi ∼ p(W|Dtr).
score← score + f (x,Wi)

T .
end for
scores.append(score).

end for
return scores

Pixel perturbation polices

An important part of the pixel-flipping algorithm is the pixel perturbation proce-
dure. By perturbing pixels we aim to delete information from the image, however,
an ideal method deletes information without introducing spurious structures. More-
over, it neither should disrupt image statistics nor move the corrupted image far
away from the data manifold [85].

To conduct a correct quantitative evaluation of proposed methods we employ 3
different methods, each with own motivation:

• Random choice: pixel is replaced by a randomly chosen neighbor from the
original image. The neighborhood is a rectangular window with a predeter-
mined width of l.

This type of perturbation policy sustains original distribution in RGB values
while destroying local patterns.
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• Gaussian blur: original image is blurred and the pixel is replaced with a
blurred pixel from the original image. For blurring, Gaussian blur is used [89].

This perturbation policy modifies the values of the pixel, yet does not intro-
duce visual artifacts.

• Combination of random choice and blurring: again, the original image is
blurred and the pixel is replaced with a randomly chosen blurred pixel from
the neighborhood in the original image.

This method combines both described above methods and modifies the pixel’s
values while destroying local patterns.

Figure 4.1 illustrates perturbation policies that were used during the quantitative
evaluation of the performance of explainability methods.

(a) (b) (c)

FIGURE 4.1: Images, illustrating different perturbation policies after
pixel-flipping of 25% of pixels based on LRP CMP explanation. From
LEFT to RIGHT: (a) — random choice policy, (b) — Gaussian blur

policy, (c) — composite policy.

4.1.2 Visualization parameters

For visualization, each relevance map is normalised using the MinMax transforma-
tion [11], which maps positive relevances to [0, 1] and negative relevances [−1, 0].
Namely, the positive relevances are divided by the maximal positive relevance over
the pixels, and the negative relevances are divided by the absolute value of the min-
imal negative relevance over the pixels.

Normalized relevance maps are visualized using ’seismic’ colormap1, which at-
tributes red tones to pixels with positive relevances and blue tones to the pixels with
negative relevances.

Quite often researchers are not interested in particular relevances of attributes,
but the order of attributes in terms of importance to a prediction. For example, the
pixel-flipping algorithm uses only the ranking of features by descending relevances.
In our work, we use a specific type of visualization — rank map. On a rank map, only
k percent of pixels with the highest relevance are visualized.

Firgure 4.2 illustrates 2 colormaps, used for the visual examples.

1https://matplotlib.org/3.1.0/tutorials/colors/colormaps.html

https://matplotlib.org/3.1.0/tutorials/colors/colormaps.html
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FIGURE 4.2: LRP CMP visualisation of castle image, LEFT — standard
"seismic" relevance map, RIGHT — rank map with top 10% of pixels

with highest relevance.

4.2 Bayes by Backprop: MNIST

In our first experiment, we will examine the performance of proposed explanation
methods with Bayesian Neural Network trained by Bayes by Backpropagation [92].
Standard LeNet neural network architecture [53] was used for training on MNIST
handwritten digit dataset, using the choice of parameters from [92]2. For explana-
tions, LRP-ε rule (ε = 10−9) was used as a relevance attribution function.

4.2.1 Visual Inspection

The B-LRP method allows us to access statistics of the relevance map’s distribution.
Figure 4.3 illustrates explanations, produced by B-LRP for 3 different images, with
1000 relevance maps sampled from the posterior per each image. On this figure, we
observe that for α = 95 positive relevances are attributed across almost the whole
digit, in comparison with the Mean LRP. With α = 5, we can notice that positive
relevances are attributed to a smaller fraction of pixel — those are the features that
BNN considers to be contributing towards the true class in 95% of all cases.

B-LRP+ aims to visualize parts of the input, the contribution of which is certain
for the model. Figure 4.4 compares explanations produced with different parameter
α. Positive relevances at B-LRP+ α = 5 illustrate regions, that contributed positively
to a true class in 95% of all samples from the posterior.

More illustrations, both for B-LRP and B-LRP+ could be found in the Appendix
A.

4.2.2 Quantitative evaluation

Evaluation of the performance of each described method is done by conducting the
Bayesian pixel-flipping on 500 images, randomly sampled from the MNIST test-set.
The model score on each step of Bayesian pixel-flipping is evaluated T = 100 times.
Parameters for perturbation methods were chosen as follows: we employ 2 Random
Choice policies with different window size: l = [7, 13] for methods one and two

2Code for training the BNN could be found at https://github.com/kumar-shridhar/
PyTorch-BayesianCNN

https://github.com/kumar-shridhar/PyTorch-BayesianCNN
https://github.com/kumar-shridhar/PyTorch-BayesianCNN
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FIGURE 4.3: Comparison between Mean LRP method (Left) and dif-
ferent parameters for B-LRP (Right).

FIGURE 4.4: Comparison between Mean LRP method (Left) and dif-
ferent parameters for B-LRP+ (Right)

respectfully, Gaussian blur with σ = 4 and Composite method that combines the
Random Choice method one and Gaussian blur.

Figure 4.5 illustrates average pixel-flipping curves for all 4 methods for the first
25% of pixels. As expected in all methods, the explainability algorithms perform
better than random relevance map. Visually, we can assess that the B-LRP with
α = [75, 95] are outperforming other methods. This is expected behavior, as from
Figure 4.3 we observed, that for B-LRP α = 95, positive relevance covers almost
the whole digit. Visual evaluation of the performance of explainability methods is
confirmed by the AUC performance, the results for which could be found in Table
4.1.
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FIGURE 4.5: Bayesian pixel-flipping performance comparison be-
tween different B-LRP, B-LRP+ and Basleline LRP (Mean LRP) on

MNIST.

Method
Random
choice 1

Random
choice 2

Gaussian
blur

Composite

Random 0.8213 0.7924 0.8451 0.8446
Mean LRP 0.2183 0.1686 0.1612 0.1608

B-LRP α = 5 0.4731 0.3872 0.3482 0.3442
B-LRP α = 25 0.2792 0.2218 0.1667 0.1655
B-LRP α = 50 0.1923 0.1438 0.1202 0.1191
B-LRP α = 75 0.1389 0.1234 0.1199 0.1182
B-LRP α = 95 0.1292 0.1317 0.1454 0.1446

B-LRP + α = 5 0.4691 0.3978 0.3479 0.345
B-LRP + α = 15 0.3622 0.2651 0.2163 0.2128
B-LRP + α = 25 0.2796 0.2163 0.1664 0.1644

TABLE 4.1: AUC scores for different explainability methods (rows)
in MNIST experiment for 4 different perturbation policies. Lower is

better.

4.2.3 Bayesian Strategies Clustering

We demonstrate the usefulness of the described BSC (Chapter 3.4) method on a par-
ticular example, describing all the steps that need to be performed to obtain the
final explanation. Figure 4.6 illustrates the resulting explanation of BNN by the BSC
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method.

Bayesian Strategies Clustering

FIGURE 4.6: Illustration of explanations, computed by B-LRP and
BSC methods. First row corresponds to the B-LRP explanations of
the image, in the latter part of the image are "prime" strategies —
pixel-wise average of relevance maps inside of clusters, coupled with
a t-SNE visualisation of relevance maps distribution with highlighted

(blue) cluster.

To perform Bayesian Strategies Clustering, N = 2000 relevance maps were sam-
pled from the posterior distribution. As described in Chapter (Chapter 3.4), collec-
tion of relevance samples {Ri}N

i=1 was down-sampled with Average Pool operation
with kernel size of 2. For affinity matrix, parameter k in k-nearest Neighbour algo-
rithm was chosen be 100.

The number of clusters is determined by eigengap analysis (Chapter 3.4). Figure
4.7 illustrates the distribution of 50 smallest eigenvalues: we observe that there is
an eigengap between the second and third eigenvalue, thus the number of clusters
was set to 2. Figure 4.8 demonstrates t-SNE two-dimensional visualization of the
collection of downsampled relevance maps.

From Figure 4.6 we can observe the differences in the "prime" strategies: the dif-
ferences in relevance attribution are clearly visible at the top of the digit. Illustrations
of the relevance maps from different clusters could be found in the Appendix A, in
Figures A.3 and A.3, for Cluster 1 and 2, respectfully.

4.3 MC Dropout: Imagenet

Next, we demonstrate the usefulness of the proposed methods for explaining the
decision making in a non-bayesian case. In this experiment, widely used VGG16
network [96] pre-trained on the Imagenet dataset is employed with MC Dropout,
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and LRP-CMP (Chapter 2.2.3) explainability method is used as relevance attribution
function.

For the evaluation of the performance of the proposed methods, a small subset
of Imagenet, consisting of 5 classes: "castle", "lemon", "llama", "wine" and "tiger cat",
1000 random images per each class were downloaded 3.

4.3.1 Visual inspection

Figure 4.9 illustrates the result of the B-LPR procedure. Similar to the previous ex-
periments, from B-LRP α = 5, we can extract the main features, that contributed
towards true prediction: for example, for the first "llama" image we can observe that
95% of all strategies that were sampled using the information about the nose and
ears of the animal to make a correct prediction. In the case of B-LRP α = 95, we
can observe what features were used at least in 5% of the samples — we observe
that for each of three images, the network "looked" at all main features of the class.
We notice that in α = 95 the whole head of the llama was attributed with positive
relevance, in contrast, to Mean LRP and B-LRP with lower α. More visualizations
for B-LRP method could be found in the Appendix B.

Figure 4.10 demonstrates B-LRP+ explanations for the same images. We observe
the same traits but in different visualizations: parts, where BNN is uncertain —
features from the image that have not been consistently attributed to being positive
or negative, are deleted from an explanation. For example, we see that for the llama
image, the network is certain about negative relevances from the bottom-center part
of the image and positive relevance from the nose and ears of the animal.

4.3.2 Quantitative evaluation

In this experiment we employ a standard pixel-flipping method for evaluation of the
performance of explainability methods — thus, we can compare the performance of
the proposed methods for the non-bayesian case. In case of MC Dropout, the Mean
LRP method is jut equivalent to the standard explanation for the network, due to the

3To download a subset of Imagenet dataset, following library was used: https://github.com/
mf1024/ImageNet-Datasets-Downloader.

https://github.com/mf1024/ImageNet-Datasets-Downloader
https://github.com/mf1024/ImageNet-Datasets-Downloader
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FIGURE 4.9: Comparison between different B-LRP methods (Right)
and Mean LRP (Left) for 3 different random images from Imagenet
dataset. From top to bottom: "llama", "tiger cat", "lemons". We can ob-
serve that in contrast to the Mean LRP, B-LRP with α = 95 attributes
positive relevance over the whole area, where the main features of the
true class are distributed: llama’s head, cat’s head and all the lemons.

15 25

FIGURE 4.10: Comparison between different parameters for B-LRP+
methods (RIGHT) and Mean LRP (LEFT) for 3 different random im-

ages from Imagenet dataset.

fact that the weights in dropout trained networks are the mean of the posterior for
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MC Dropout [23].
Figure 4.11 illustrates the performance of each explainability method in pixel-

flipping evaluation for 100 randomly sampled images with 50% perturbed pixels.
Same perturbation policies as in the previous example were used. For all pixel per-
turbation policies, we observe similar behavior for all methods for the first 20% of
pixels. However, after we crossing the 20 percent threshold, we witness that B-LRP
with higher α performs better than others, in particular for α = 95. This is supported
by an AUC results from Table 4.2: best performance is shown by the B-LRP α = 95
and α = 75 methods.
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FIGURE 4.11: Pixel-flipping comparison of various methods with 4
different pixel perturbation policies.

4.3.3 Bayesian Strategies Clustering

In the same fashion as in the previous example, we demonstrate the effectiveness of
the BSC method on two particular examples. For this experiment, we omit clustering
details and concentrate only on the obtained results and their analysis. For both
examples, Average Pooling with kernel size of 16 was used as pre-processing for the
relevance maps and parameter k for computing the affinity matrix was set to 100.

Figure 4.12 illustrates B-LRP and BSC explanations for the "lemon" class. From
B-LRP we can already observe that some of the relevance maps highlight lemon in
the bottom-left corner of the image differently in terms of its contribution towards
the true prediction: this area has negative relevance in B-LRP α = 5, close to zero
relevance for α = 50 and slight positive relevance at α = 95. BSC method finds 6
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Method
Random
choice 1

Random
choice 2

Gaussian
blur

Composite

Random 0.9478 0.6938 0.913 0.8391
Mean LRP 0.2637 0.2996 0.3419 0.3322

B-LRP α = 5 0.3176 0.359 0.3763 0.3604
B-LRP α = 25 0.2672 0.3153 0.351 0.3292
B-LRP α = 50 0.2483 0.2874 0.3345 0.3201
B-LRP α = 75 0.2499 0.2758 0.3298 0.3004
B-LRP α = 95 0.2341 0.2598 0.3228 0.2921

B-LRP + α = 5 0.3196 0.3566 0.3761 0.3684
B-LRP + α = 15 0.2851 0.3279 0.361 0.3428
B-LRP + α = 25 0.2733 0.3156 0.351 0.3307

TABLE 4.2: AUC scores for different explainability methods (rows) in
Imagenet experiment for 4 different perturbation policies. Lower is

better.

different clusters of strategies for this image. From the mean pixel-wise strategy for
each cluster, we observe two strategies clusters that stand out: cluster 4 and cluster
5. Strategies found in cluster 4 all attribute negative relevances toward the lemon in
the bottom-right part of the image, while strategies from cluster 5 share the common
trait of attributing negative relevances near the biggest lemon.

Figure 4.13 illustrates another example of B-LRP and BSC explanations. We,
again, observe the same situation where the lemon in the bottom-left part of the
image is not recognized by some samples. With BSC we can identify the cluster
of relevance maps (and the corresponding weights of the network) that consider
this lemon to have a negative relevance regarding the true prediction of the class
"lemon".

4.4 Confirming the Clever Hans Effect with B-LRP

In the following experiment, we revisit the work of Lapuschkin et al. [50, 51] on the
clever Hans effect. A clever Hans strategy denotes a problematic solution strategy that
provides the right answer for the wrong reason: the classic example being the one of
the horse Hans, which was able to correctly provide answers to simple computation
questions while actually not doing math but rather reading its master4. A modern
machine-learning example is an artifact or a watermark in the data that happens to
be present in one class, i.e., there is a random artifactual correlation that the model
systematically and erroneously harvests [50, 51].

We conduct a similar experiment training5 a VGG16 DNN on the Pascal VOC
2007 challenge dataset experiment as in [50, 51]. The B-LRP explanations with re-
spect to the class horse are illustrated in Figures 4.14 and 4.15. We indeed observe
the fact that the watermark in the bottom left corner of the image occurs with a high
relevance on both images in the 5-th percentile explanation. In other words, 95%
of the samples of relevance maps consider this feature to highly contribute to the
class "horse". Given this finding, we can now say for sure that the clever Hans is re-
ally clever, in the sense that the classification is based on the information from the

4https://en.wikipedia.org/wiki/Clever_Hans
5Code for training could be found at https://github.com/lapalap/B-LRP.

https://en.wikipedia.org/wiki/Clever_Hans
https://github.com/lapalap/B-LRP
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Bayesian Strategies Clustering

FIGURE 4.12: Illustration of B-LRP (TOP) and BSC (BOTTOM) expla-
nations for class "lemon". Description of BSC explanations (BOTTOM):
each column represents a cluster that was found with SpRAy. First
row visualizes the pixel-wise average relevance map in each cluster,
the second row highlight (blue) strategies inside of each cluster in the
t-SNE two-dimensional visualization of the sampled relevance maps.

Bayesian Strategies Clustering

FIGURE 4.13: Illustration of B-LRP (TOP) and BSC (BOTTOM) expla-
nations for class "lemon".
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FIGURE 4.14: B-LRP explanations with respect to a "horse" class. B-
LRP helps the user to distinguish between random artifacts on the

explanations and systematic behaviour of a learning machine.

FIGURE 4.15: B-LRP explanations with respect to a "horse" class. An
interesting observation is that for B-LRP α = 5 learning machine is

over-fitting not on the whole watermark, but only on the left part.

learned artifact. With B-LRP we can distinguish between systematic behavior and
just an explainability artifact.

Hence, B-LRP enables us to confirm the clever Hans effect in our network, in the
sense that the classifier draws information from artifacts that exist in the training
(and also in validation and test) data set.

4.5 Noisy KFAC: Application of B-LRP to other explanation
methods

This section is devoted to an investigation, how the proposed B-LRP method could
be applied for other local explainability methods. For this experiment, we employ
VGG-like CNN6 trained on CIFAR-10 dataset [47] by the Noisy KFAC variational
inference method [118]7.

In this experiment, we visually assess the performance of local explainability
methods, introduced in Chapter 2.2.2. For visualization, we employ a rank map — to
compare different algorithms and their performance we will visualize only the top
20% percent of pixels for each explanation. We compare baseline methods — explain-
ability methods that employed mean of the posterior of the parameter distribution,
with pixel-wise percentiles, for percentile α = [75, 95]. Percentiles for each method
are obtained by sampling each explainability method for 500 times for each image.

6Exact architecture of the NN and parameters used for the training procedure could be found at
https://github.com/lapalap/B-LRP.

7Code for training could be found at https://github.com/team-approx-Bayes/dl-with-bayes

https://github.com/lapalap/B-LRP
https://github.com/team-approx-Bayes/dl-with-bayes


40 Chapter 4. Experiments

FIGURE 4.16: Application of B-LRP method for different inter-
pretability methods for class "deer". First row corresponds to a base-
line explanations, Second and Third rows (framed in red) correspond
to a pixel-wise percetile with parameter α equal to [75, 95] , respect-
fully. While top 20% of most important pixels in baseline explanations
for each method distributed sparsely, for percentiles we see how most

important pixels becoming dense around the deer.

FIGURE 4.17: Application of B-LRP method for different inter-
pretability methods for class "bird" (ostrich). Again, same as in Figure
4.16 we observe that higher percentiles for each method correspond
to the fact that the top 20% of most important pixels are covering the
bird heard on the image, while the baseline methods distribute the

most important pixels almost uniformly over the image.

Figures 4.16, 4.17 and 4.18 demonstrate the interesting behavior of how the usage
of percentiles affects the most important pixels on the produced explanations. We
observe, that for baseline methods — methods that explain the mean of the poste-
rior distribution, 20% of the most important pixels are distributed rather uniformly
across the image. On the other hand, after sampling the relevance maps from the
posterior and performing a pixel-wise percentile operation, we observe that most
important pixels cover the area of the original object. This again proves that per-
centile operations by the B-LRP methods apply to any local explainability method
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FIGURE 4.18: Application of B-LRP method for different inter-
pretability methods for class "horse". Visually we observe the differ-
ence in most important pixels for each method before and after taking
the high (α = [75, 95]) percentile from pixel-wise relevance distribu-

tion

for producing better explanations for BNNs. More illustrations could be found in
Appendix C.

Another noticeable fact is that for Guided Backprop (GB) method [97] most im-
portant pixels do not change by using a percentile operation. In other words, ex-
planations that are computed by the GB algorithm for each sample of weights from
the posterior do not differ from each other. Figure 4.19 illustrates (in a "seismic" col-
ormap, Chapter 4.1.2) that the GB algorithm is not changing its explanations after
applying the percentile operator. The main reason for this behavior is described in
[2] — resulting explanations of GB method do not change after all the weights of a
trained network are randomly sampled.

FIGURE 4.19: Demonstration of the invariant behaviour of Guided
Backprop towards the percentile operation. From LEFT to RIGHT:
Original image of a "horse", Baseline GB explanation, 5-th, 50-th and
95-th pixel-wise percentile of GB explanation distribution, respect-

fully.
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Chapter 5

Concluding discussion

In this final chapter, we will discuss the main advantages, as well as limitations of the
proposed explanation methods, namely Mean LRP, B-LRP, and BSC. We will discuss
the best-practice for explaining the decision-making process of BNNs, using these
methods. In the end, we will analyze several ideas that naturally follow from this
work that can be explored in the future.

5.1 Bayesian Explanation Pipeline

In our work, we proposed a novel framework for explaining and interpreting the
decision-making process of Bayesian Neural Networks. Our approach includes 3
main steps, illustrated at Figure 5.1.

Mean LRP

Bayesian Explanation Pipeline

B-LRP BSC

FIGURE 5.1: Schematic illustration of the BNNs Explanation pipeline:
each figure illustrates the schematic t-SNE visualisation of relevance
maps, sampled from the posterior distribution with stars illustrating

the results of explainability procedure.

• Mean LRP

The Mean LRP is the baseline method for the explanation of the decision-
making process of BNN and might be considered as a starting point for inves-
tigation in the model behavior. Being the simplest of all described explanation
methods, it does not use any information about the posterior distribution of
the parameters of a Network and just creates an explanation for a mean of the
posterior.
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While for some cases, for example for BNN with small variance over the weights,
this type of explanation might be sufficient, unfortunately, it might not work
for any BNN. For example, recently introduced Variance Networks [73] have a
zero-mean posterior, thus Mean LRP won’t work in this situation.

• B-LRP

Introduced in this paper B-LRP method is a new way of explaining the decision
making process of BNNs. B-LRP allows to not only inspect the most relevant
pixels for a decision but also their (un)certainties – a formidable starting point
for obtaining novel insight into the behavior of Bayesian learning models.

In our work, we showed that with a high parameter α, B-LRP is explaining the
behavior of the network better, in comparison with the Mean LRP. By choos-
ing between different parameters, user can understand the rationale behind
the network: with small parameters of α we can observe what features that are
considered to be contributing towards the prediction are common for all sam-
pled strategies, while with high parameter α we can understand all collection
of features, that at least small fraction of strategies considers to have positive
relevance. By choosing parameter α users can instantiate between more cau-
tious or risky explanations, depending on the objective in mind.

Trivially, the computational complexity of B-LRP is linear to the number of
posterior samples, and even 100 samples turned out to be sufficient for stably
assessing the explanation uncertainty on a coarse grain in our experiments.
However, more fine-grained percentiles (e.g., 1st percentile and lower) would
require more samples to be drawn.

• Bayesian Strategies Clustering

BSC method produces an alternative explanation to the decision-making pro-
cess of BNNs, in comparison with other proposed methods. It is based on
the clusterization of saliency maps, that were sampled from the posterior dis-
tribution. By choosing preferable parameters it is possible to decompose the
decision-making process into a small set of ’prime’ strategies, with each strat-
egy being assigned the score of importance — the number of relevance maps in
each cluster. This method allows users to see what particular traits are shared
between the strategies. On the other hand, the BSC method can be applied
to identify anomalies in the BNNs strategies: for example, this could be used
for investigation of the Clever Hans effect in the models or hidden bias in the
decision-making process of BNN.

In comparison with B-LRP, this method is more computationally complex,
mainly due to the clusterization procedure. While the suggested Specral Clus-
tering method is able to produce high-quality clusterings for the small-sized
collections of relevance maps, its applications for large collections is limited
by its computational complexity of O(n3) [115]. One interesting line of future
research would be to use different clusterization algorithms as well as different
dimensionality reduction techniques for pre-processing relevance maps before
clustering.

5.2 Future work

Several ideas follow as a logical continuation of this research:
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• Practical application of BSC method

We illustrated several examples of explanations done with the BSC method.
While our experiments serve as proof for the usefulness of the described method,
it would be interesting to see the performance of the BSC method in real-life
applications. For instance, as BNN is vastly used in medical applications, it
would be compelling to how the proposed method can determine "prime"
strategies in such applications as MRI cancer detection or X-Ray pneumonia
classification. In the same way, as was demonstrated in our work, BSC might
help to find some differences between strategies or detect over-fitted / degen-
erate strategies.

• Usage of different clustering algorithm in BSC

Another possible research direction is to analyze different clustering meth-
ods for the relevance distribution. The SpRAy method is based on a Spectral
Clustering, that suffers from such issues like computational complexity for big
datasets. It might be interesting to research to compare different clustering
algorithms and how they perform to identify ’prime’ strategies.

Another fascinating line of research is to try to cluster relevance maps with
modern DL clustering techniques [66, 43]: clustering would be performed not
the relevance maps themselves but on a semantic representation thereof. This
way strategies would be grouped not by some pixel-wise distance metric, but
by a distance in a semantic sense: for example, relevance maps would be clus-
tered by how they allocate relevance to specific objects in the image.

5.3 Conclusion

In this work we proposed a novel pipeline for explaining model behavior, that is
based on three different methods: Mean LRP, B-LRP, and BSC. All of the proposed
methods make up an informative explanation framework that allows users to under-
stand the decision-making behavior of the BNN in detail. Moreover, this framework
is not limited by Bayesian Networks nor by a particular explanation method: we
demonstrate the application of this method in a case of a non-bayesian network as
well as its application to other local explanation methods.

We believe that this work closes the gap in XAI related to the explanation of
Bayesian Neural Networks. Moreover, the novel possibility to quantify uncertainty
in explanations and to be able to set the appropriate risk level in an application will
be helpful in practice. Gaining a better understanding of trained Neural Networks
is beneficial to users aiming for safe, verifiable, and trustworthy AI.
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Appendix A

Bayes by Backprop: MNIST

FIGURE A.1: Illustration of B-LRP explanations for LeNet, Bayes by
Backprop, MNIST.
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FIGURE A.2: Illustration of B-LRP+ explanations for LeNet, Bayes by
Backprop, MNIST.
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FIGURE A.3: Illustration of random samples of relevance maps from
Cluster 1 in BSC example, MNIST.
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FIGURE A.4: Illustration of random samples of relevance maps from
Cluster 2 in BSC example, MNIST.
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Appendix B

MC Dropout: Imagenet

FIGURE B.1: Illustration of B-LRP explanations for VGG-16, Ima-
genet.
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Appendix C

Noisy KFAC: Application of B-LRP
to other explanation methods

FIGURE C.1: Application of B-LRP for different explainability meth-
ods for class "bird".

FIGURE C.2: Application of B-LRP for different explainability meth-
ods for class "plane".





55

Bibliography

[1] Aashay Sachdeva. Experimentation with Variational Dropout -Do Subnetworks
exist inside a Neural Network? [Online; accessed 29-July-2020]. 2020. URL: https:
//medium.com/@aashay96/experimentation-with-variational-dropout-
do-subnetworks-exist-inside-a-neural-network-e482cbbea7dd.

[2] Julius Adebayo et al. “Sanity checks for saliency maps”. In: Advances in Neural
Information Processing Systems. 2018, pp. 9505–9515.

[3] Charu C. Aggarwal. “An Introduction to Neural Networks”. In: Neural Net-
works and Deep Learning: A Textbook. Cham: Springer International Publishing,
2018, pp. 1–52. ISBN: 978-3-319-94463-0. DOI: 10.1007/978-3-319-94463-
0_1. URL: https://doi.org/10.1007/978-3-319-94463-0_1.

[4] Shun-ichi Amari. “Neural learning in structured parameter spaces-natural
Riemannian gradient”. In: Advances in neural information processing systems.
1997, pp. 127–133.

[5] Amazon scraps secret AI recruiting tool that showed bias against women. https:
//www.reuters.com/article/us-amazon-com-jobs-automation-insight/
amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-
women-idUSKCN1MK08G.

[6] Marco Ancona et al. “Towards better understanding of gradient-based attri-
bution methods for deep neural networks”. In: arXiv preprint arXiv:1711.06104
(2017).

[7] Christopher J Anders et al. “Understanding patch-based learning of video
data by explaining predictions”. In: Explainable AI: Interpreting, Explaining and
Visualizing Deep Learning. Springer, 2019, pp. 297–309.

[8] Andrew Ng: Why AI Is the New Electricity. https://www.gsb.stanford.edu/
insights/andrew-ng-why-ai-new-electricity.

[9] Leila Arras et al. “" What is relevant in a text document?": An interpretable
machine learning approach”. In: PloS one 12.8 (2017), e0181142.

[10] Alejandro Barredo Arrieta et al. “Explainable Artificial Intelligence (XAI):
Concepts, taxonomies, opportunities and challenges toward responsible AI”.
In: Information Fusion 58 (2020), pp. 82–115.

[11] Sebastian Bach et al. “On pixel-wise explanations for non-linear classifier de-
cisions by layer-wise relevance propagation”. In: PloS one 10.7 (2015).

[12] Charles Blundell et al. “Weight uncertainty in neural networks”. In: arXiv
preprint arXiv:1505.05424 (2015).

[13] Tom Charnock, Laurence Perreault-Levasseur, and François Lanusse. “Bayesian
Neural Networks”. In: arXiv preprint arXiv:2006.01490 (2020).

[14] Dan Ciregan, Ueli Meier, and Jürgen Schmidhuber. “Multi-column deep neu-
ral networks for image classification”. In: 2012 IEEE conference on computer
vision and pattern recognition. IEEE. 2012, pp. 3642–3649.

https://medium.com/@aashay96/experimentation-with-variational-dropout-do-subnetworks-exist-inside-a-neural-network-e482cbbea7dd
https://medium.com/@aashay96/experimentation-with-variational-dropout-do-subnetworks-exist-inside-a-neural-network-e482cbbea7dd
https://medium.com/@aashay96/experimentation-with-variational-dropout-do-subnetworks-exist-inside-a-neural-network-e482cbbea7dd
https://doi.org/10.1007/978-3-319-94463-0_1
https://doi.org/10.1007/978-3-319-94463-0_1
https://doi.org/10.1007/978-3-319-94463-0_1
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://www.gsb.stanford.edu/insights/andrew-ng-why-ai-new-electricity
https://www.gsb.stanford.edu/insights/andrew-ng-why-ai-new-electricity


56 Bibliography

[15] Convolutional Neural Networks (LeNet). https://d2l.ai/chapter_convolutional-
neural-networks/lenet.html. Accessed: 2020-07-23.

[16] Corinna Cortes and Vladimir Vapnik. “Support-vector networks”. In: Ma-
chine learning 20.3 (1995), pp. 273–297.

[17] Jia Deng et al. “Imagenet: A large-scale hierarchical image database”. In: 2009
IEEE conference on computer vision and pattern recognition. Ieee. 2009, pp. 248–
255.

[18] Adrien Ecoffet et al. “Go-explore: a new approach for hard-exploration prob-
lems”. In: arXiv preprint arXiv:1901.10995 (2019).

[19] Sergey Edunov et al. “Understanding back-translation at scale”. In: arXiv
preprint arXiv:1808.09381 (2018).

[20] Bradley Efron et al. “Least angle regression”. In: The Annals of statistics 32.2
(2004), pp. 407–499.

[21] Dumitru Erhan et al. “Visualizing higher-layer features of a deep network”.
In: University of Montreal 1341.3 (2009), p. 1.

[22] Kunihiko Fukushima and Sei Miyake. “Neocognitron: A self-organizing neu-
ral network model for a mechanism of visual pattern recognition”. In: Com-
petition and cooperation in neural nets. Springer, 1982, pp. 267–285.

[23] Y. Gal and Z. Ghahramani. “Dropout as a Bayesian Approximation: Repre-
senting Model Uncertainty in Deep Learning”. In: Proceedings of ICML. 2016.

[24] Carl Friedrich Gauss. Theoria motus corporum coelestium in sectionibus conicis
solem ambientium. Vol. 7. Perthes et Besser, 1809.

[25] CF Gauss. “Theoria combinationis observationum erroribus minimis obnox-
iae: pars prior.[Translated (1995) by GW Stewart as Theory of the Combina-
tion of Observations Least Subject to Error. SIAM, Philadelphia.]” In: Gill, P.,
Murray, W., Saunders, M., Tomlin, T. and Wright (1821).

[26] Ethan Goan and Clinton Fookes. “Bayesian Neural Networks: An Introduc-
tion and Survey”. In: Case Studies in Applied Bayesian Data Science. Springer,
2020, pp. 45–87.

[27] Ben Goertzel and Cassio Pennachin. Artificial general intelligence. Vol. 2. Springer,
2007.

[28] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT
press, 2016.

[29] A. Graves. “Practical variational inference for neural networks”. In: Advances
in NIPS. 2011.

[30] Miriam Hägele et al. “Resolving challenges in deep learning-based analyses
of histopathological images using explanation methods”. In: Scientific reports
10.1 (2020), pp. 1–12.

[31] Kaiming He et al. “Delving deep into rectifiers: Surpassing human-level per-
formance on imagenet classification”. In: Proceedings of the IEEE international
conference on computer vision. 2015, pp. 1026–1034.

[32] Donald Olding Hebb. The organization of behavior: a neuropsychological theory.
J. Wiley; Chapman & Hall, 1949.

[33] Geoffrey E Hinton and Drew Van Camp. “Keeping the neural networks sim-
ple by minimizing the description length of the weights”. In: Proceedings of
the sixth annual conference on Computational learning theory. 1993, pp. 5–13.

https://d2l.ai/chapter_convolutional-neural-networks/lenet.html
https://d2l.ai/chapter_convolutional-neural-networks/lenet.html


Bibliography 57

[34] Geoffrey E Hinton et al. “Improving neural networks by preventing co-adaptation
of feature detectors”. In: arXiv preprint arXiv:1207.0580 (2012).

[35] Andreas Holzinger et al. “Causability and explainability of artificial intelli-
gence in medicine”. In: Wiley Interdisciplinary Reviews: Data Mining and Knowl-
edge Discovery 9.4 (2019), e1312.

[36] Rein Houthooft et al. “Vime: Variational information maximizing exploration”.
In: Advances in Neural Information Processing Systems. 2016, pp. 1109–1117.

[37] How We Analyzed the COMPAS Recidivism Algorithm. https://www.propublica.
org/article/how-we-analyzed-the-compas-recidivism-algorithm.

[38] David H Hubel and Torsten N Wiesel. “Receptive fields of single neurones in
the cat’s striate cortex”. In: The Journal of physiology 148.3 (1959), p. 574.

[39] Laurent Valentin Jospin et al. “Hands-on Bayesian Neural Networks–a Tuto-
rial for Deep Learning Users”. In: arXiv preprint arXiv:2007.06823 (2020).

[40] Pieter-Jan Kindermans et al. “Investigating the influence of noise and distrac-
tors on the interpretation of neural networks”. In: arXiv preprint arXiv:1611.07270
(2016).

[41] D. P. Kingma, T. Salimans, and M. Welling. “Variational Dropout and the Lo-
cal Reparameterization Trick”. In: Advances in NIPS. 2015.

[42] Durk P Kingma, Tim Salimans, and Max Welling. “Variational dropout and
the local reparameterization trick”. In: Advances in neural information process-
ing systems. 2015, pp. 2575–2583.

[43] B Ravi Kiran, Dilip Mathew Thomas, and Ranjith Parakkal. “An overview of
deep learning based methods for unsupervised and semi-supervised anomaly
detection in videos”. In: Journal of Imaging 4.2 (2018), p. 36.

[44] Frederick Klauschen et al. “Scoring of tumor-infiltrating lymphocytes: From
visual estimation to machine learning”. In: Seminars in cancer biology. Vol. 52.
Elsevier. 2018, pp. 151–157.

[45] Maximilian Kohlbrenner et al. “Towards best practice in explaining neural
network decisions with LRP”. In: arXiv preprint arXiv:1910.09840 (2019).

[46] Jeamin Koo et al. “Why did my car just do that? Explaining semi-autonomous
driving actions to improve driver understanding, trust, and performance”.
In: International Journal on Interactive Design and Manufacturing (IJIDeM) 9.4
(2015), pp. 269–275.

[47] Alex Krizhevsky, Geoffrey Hinton, et al. “Learning multiple layers of features
from tiny images”. In: (2009).

[48] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classifi-
cation with deep convolutional neural networks”. In: Advances in neural infor-
mation processing systems. 2012, pp. 1097–1105.

[49] Solomon Kullback and Richard A Leibler. “On information and sufficiency”.
In: The annals of mathematical statistics 22.1 (1951), pp. 79–86.

[50] Sebastian Lapuschkin et al. “Analyzing classifiers: Fisher vectors and deep
neural networks”. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 2016, pp. 2912–2920.

[51] Sebastian Lapuschkin et al. “Unmasking clever hans predictors and assessing
what machines really learn”. In: Nature communications 10 (2019), p. 1096.

https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm
https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm


58 Bibliography

[52] Yann LeCun et al. “Backpropagation applied to handwritten zip code recog-
nition”. In: Neural computation 1.4 (1989), pp. 541–551.

[53] Yann LeCun et al. “Gradient-based learning applied to document recogni-
tion”. In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324.

[54] Adrien Marie Legendre. Nouvelles méthodes pour la détermination des orbites des
comètes. F. Didot, 1805.

[55] Andy Liaw, Matthew Wiener, et al. “Classification and regression by ran-
domForest”. In: R news 2.3 (2002), pp. 18–22.

[56] Seppo Linnainmaa. “The representation of the cumulative rounding error of
an algorithm as a Taylor expansion of the local rounding errors”. In: Master’s
Thesis (in Finnish), Univ. Helsinki (1970), pp. 6–7.

[57] Zachary Lipton et al. “Bbq-networks: Efficient exploration in deep reinforce-
ment learning for task-oriented dialogue systems”. In: Thirty-Second AAAI
Conference on Artificial Intelligence. 2018.

[58] Xiaodong Liu et al. “Improving multi-task deep neural networks via knowl-
edge distillation for natural language understanding”. In: arXiv preprint arXiv:1904.09482
(2019).

[59] Scott M Lundberg and Su-In Lee. “A unified approach to interpreting model
predictions”. In: Advances in neural information processing systems. 2017, pp. 4765–
4774.

[60] Laurens van der Maaten and Geoffrey Hinton. “Visualizing data using t-
SNE”. In: Journal of machine learning research 9.Nov (2008), pp. 2579–2605.

[61] David JC MacKay. “A practical Bayesian framework for backpropagation
networks”. In: Neural computation 4.3 (1992), pp. 448–472.

[62] Mario Klingemann. GPT-3 Quote. [Online; accessed 29-July-2020]. 2020. URL:
https://twitter.com/quasimondo/status/1286749705695887360?s=21.

[63] James Martens and Roger Grosse. “Optimizing neural networks with kronecker-
factored approximate curvature”. In: International conference on machine learn-
ing. 2015, pp. 2408–2417.

[64] Warren S McCulloch and Walter Pitts. “A logical calculus of the ideas imma-
nent in nervous activity”. In: The bulletin of mathematical biophysics 5.4 (1943),
pp. 115–133.

[65] Bernhard Mehlig. “Artificial neural networks”. In: arXiv preprint arXiv:1901.05639
(2019).

[66] Erxue Min et al. “A survey of clustering with deep learning: From the per-
spective of network architecture”. In: IEEE Access 6 (2018), pp. 39501–39514.

[67] Riccardo Miotto et al. “Deep learning for healthcare: review, opportunities
and challenges”. In: Briefings in bioinformatics 19.6 (2018), pp. 1236–1246.

[68] D. Molchanov, A. Ashukha, and D. Vetrov. “Variational Dropout Sparsifies
Deep Neural Networks”. In: Proceedings of ICML. 2017.

[69] Christoph Molnar. Interpretable Machine Learning. Lulu. com, 2020.

[70] Grégoire Montavon, Wojciech Samek, and Klaus-Robert Müller. “Methods
for interpreting and understanding deep neural networks”. In: Digital Signal
Processing 73 (2018), pp. 1–15.

https://twitter.com/quasimondo/status/1286749705695887360?s=21


Bibliography 59

[71] Grégoire Montavon et al. “Layer-wise relevance propagation: an overview”.
In: Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. Springer,
2019, pp. 193–209.

[72] Alexander Mordvintsev, Christopher Olah, and Mike Tyka. “Deepdream-a
code example for visualizing neural networks”. In: Google Research 2.5 (2015).

[73] Kirill Neklyudov et al. “Variance networks: When expectation does not meet
your expectations”. In: arXiv preprint arXiv:1803.03764 (2018).

[74] Anh Nguyen, Jason Yosinski, and Jeff Clune. “Multifaceted feature visual-
ization: Uncovering the different types of features learned by each neuron in
deep neural networks”. In: arXiv preprint arXiv:1602.03616 (2016).

[75] Anh Nguyen et al. “Synthesizing the preferred inputs for neurons in neu-
ral networks via deep generator networks”. In: Advances in neural information
processing systems. 2016, pp. 3387–3395.

[76] Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. Feature visualiza-
tion: How neural networks build up their understanding of images. Distill. 2018.

[77] K. Osawa et al. “Practical Deep Learning with Bayesian Principles”. In: Ad-
vances in NeurIPS. 2019.

[78] Nicholas G Polson, Vadim Sokolov, et al. “Deep learning: A Bayesian per-
spective”. In: Bayesian Analysis 12.4 (2017), pp. 1275–1304.

[79] Colin Raffel et al. “Exploring the limits of transfer learning with a unified
text-to-text transformer”. In: arXiv preprint arXiv:1910.10683 (2019).

[80] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “" Why should i
trust you?" Explaining the predictions of any classifier”. In: Proceedings of
the 22nd ACM SIGKDD international conference on knowledge discovery and data
mining. 2016, pp. 1135–1144.

[81] Hippolyt Ritter, Aleksandar Botev, and David Barber. “A scalable laplace ap-
proximation for neural networks”. In: 6th International Conference on Learning
Representations, ICLR 2018-Conference Track Proceedings. Vol. 6. International
Conference on Representation Learning. 2018.

[82] Frank Rosenblatt. “The perceptron: a probabilistic model for information stor-
age and organization in the brain.” In: Psychological review 65.6 (1958), p. 386.

[83] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. “Learning
representations by back-propagating errors”. In: nature 323.6088 (1986), pp. 533–
536.

[84] S Rasoul Safavian and David Landgrebe. “A survey of decision tree classi-
fier methodology”. In: IEEE transactions on systems, man, and cybernetics 21.3
(1991), pp. 660–674.

[85] Wojciech Samek et al. “Evaluating the visualization of what a deep neural
network has learned”. In: IEEE transactions on neural networks and learning
systems 28.11 (2016), pp. 2660–2673.

[86] Wojciech Samek et al. “Toward Interpretable Machine Learning: Transpar-
ent Deep Neural Networks and Beyond”. In: arXiv preprint arXiv:2003.07631
(2020).

[87] Jürgen Schmidhuber. “Deep learning in neural networks: An overview”. In:
Neural networks 61 (2015), pp. 85–117.



60 Bibliography

[88] Ramprasaath R Selvaraju et al. “Grad-cam: Visual explanations from deep
networks via gradient-based localization”. In: Proceedings of the IEEE interna-
tional conference on computer vision. 2017, pp. 618–626.

[89] LG Shapiro and GC Stockman. Computer Vision, March 2000. 2000.

[90] Lloyd S Shapley. “Notes on the n-Person Game—II: The Value of an n-Person
Game”. In: (1951).

[91] Mohammad Shoeybi et al. “Megatron-lm: Training multi-billion parameter
language models using gpu model parallelism”. In: arXiv preprint arXiv:1909.08053
(2019).

[92] Kumar Shridhar, Felix Laumann, and Marcus Liwicki. “A comprehensive
guide to bayesian convolutional neural network with variational inference”.
In: arXiv preprint arXiv:1901.02731 (2019).

[93] Avanti Shrikumar et al. “Not just a black box: Learning important features
through propagating activation differences”. In: arXiv preprint arXiv:1605.01713
(2016).

[94] Svetlana Sicular and Kenneth Brant. “Hype cycle for artificial intelligence,
2018”. In: Gartner (July 24, 2018)).< https://www. gartner. com/doc/3883863/hype-
cycle-artificial-intelligence (2018).

[95] David Silver et al. “Mastering chess and shogi by self-play with a general
reinforcement learning algorithm”. In: arXiv preprint arXiv:1712.01815 (2017).

[96] Karen Simonyan and Andrew Zisserman. “Very deep convolutional networks
for large-scale image recognition”. In: arXiv preprint arXiv:1409.1556 (2014).

[97] Jost Tobias Springenberg et al. “Striving for simplicity: The all convolutional
net”. In: arXiv preprint arXiv:1412.6806 (2014).

[98] Nitish Srivastava et al. “Dropout: a simple way to prevent neural networks
from overfitting”. In: The journal of machine learning research 15.1 (2014), pp. 1929–
1958.

[99] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. “Axiomatic attribution for
deep networks”. In: arXiv preprint arXiv:1703.01365 (2017).

[100] Christian Szegedy et al. “Rethinking the inception architecture for computer
vision”. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2016, pp. 2818–2826.

[101] Naftali Tishby, Esther Levin, and Sara A Solla. “Consistent inference of prob-
abilities in layered networks: Predictions and generalization”. In: Interna-
tional Joint Conference on Neural Networks. Vol. 2. 1989, pp. 403–409.

[102] Hugo Touvron et al. “Fixing the train-test resolution discrepancy: FixEffi-
cientNet”. In: arXiv preprint arXiv:2003.08237 (2020).

[103] Marina M-C Vidovic et al. “Feature importance measure for non-linear learn-
ing algorithms”. In: arXiv preprint arXiv:1611.07567 (2016).

[104] Oriol Vinyals et al. “Starcraft ii: A new challenge for reinforcement learning”.
In: arXiv preprint arXiv:1708.04782 (2017).

[105] Ulrike Von Luxburg. “A tutorial on spectral clustering”. In: Statistics and com-
puting 17.4 (2007), pp. 395–416.

[106] Hao Wang and Dit-Yan Yeung. “Towards bayesian deep learning: A survey”.
In: arXiv preprint arXiv:1604.01662 (2016).



Bibliography 61

[107] John J Weng, Narendra Ahuja, and Thomas S Huang. “Learning recognition
and segmentation of 3-D objects from 2-D images”. In: 1993 (4th) International
Conference on Computer Vision. IEEE. 1993, pp. 121–128.

[108] F. Wenzel et al. “How Good is the Bayes Posterior in Deep Neural Networks
Really?” In: arXiv:2002.02405 (2020).

[109] Gesa Wiegand et al. “I Drive-You Trust: Explaining Driving Behavior Of Au-
tonomous Cars”. In: Extended Abstracts of the 2019 CHI Conference on Human
Factors in Computing Systems. 2019, pp. 1–6.

[110] Wikipedia contributors. Activation functions — Wikipedia, The Free Encyclope-
dia. [Online; accessed 23-July-2020]. 2020. URL: https://en.wikipedia.org/
wiki/Activation_function.

[111] Wikipedia contributors. Artificial neuron — Wikipedia, The Free Encyclopedia.
[Online; accessed 29-July-2020]. 2020. URL: https://en.wikipedia.org/
wiki/Artificial_neuron.

[112] Wikipedia contributors. McCulloch-Pitts artificial neuron — Wikipedia, The Free
Encyclopedia. [Online; accessed 29-July-2020]. 2020. URL: https://en.wikipedia.
org/wiki/File:Artificial_Neuron.svg.

[113] Andrew Gordon Wilson. “The case for Bayesian deep learning”. In: arXiv
preprint arXiv:2001.10995 (2020).

[114] Qizhe Xie et al. “Self-training with noisy student improves imagenet classi-
fication”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2020, pp. 10687–10698.

[115] Donghui Yan, Ling Huang, and Michael I Jordan. “Fast approximate spectral
clustering”. In: Proceedings of the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining. 2009, pp. 907–916.

[116] Xitong Yang. Understanding the variational lower bound. 2017.

[117] Zhilin Yang et al. “Xlnet: Generalized autoregressive pretraining for language
understanding”. In: Advances in neural information processing systems. 2019,
pp. 5753–5763.

[118] Guodong Zhang et al. “Noisy natural gradient as variational inference”. In:
International Conference on Machine Learning. 2018, pp. 5852–5861.

https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Artificial_neuron
https://en.wikipedia.org/wiki/Artificial_neuron
https://en.wikipedia.org/wiki/File:Artificial_Neuron.svg
https://en.wikipedia.org/wiki/File:Artificial_Neuron.svg

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Background
	Deep Neural Networks
	Artificial neuron
	Artificial Neural Networks
	Convolutional Neural Networks

	Explaining Deep Neural Networks
	Global explanation methods
	Local explanation methods 
	Layer-wise Relevance Propagation (LRP)

	Bayesian Neural Networks
	Variational Inference
	Laplace approximation


	Explaining Bayesian Neural Networks
	Distribution of relevance maps
	Mean LRP
	B-LRP
	B-LRP +

	Bayesian Strategies Clustering (BSC)
	Explaining non-Bayesian Neural Networks with Bayesian principles

	Experiments
	Methodology
	Quantative evaluation metric
	Pixel-flipping
	Bayesian pixel-flipping
	Pixel perturbation polices

	Visualization parameters

	Bayes by Backprop: MNIST
	Visual Inspection
	Quantitative evaluation
	Bayesian Strategies Clustering

	MC Dropout: Imagenet
	Visual inspection
	Quantitative evaluation
	Bayesian Strategies Clustering

	Confirming the Clever Hans Effect with B-LRP
	Noisy KFAC: Application of B-LRP to other explanation methods

	Concluding discussion
	Bayesian Explanation Pipeline
	Future work
	Conclusion

	Bayes by Backprop: MNIST
	MC Dropout: Imagenet
	Noisy KFAC: Application of B-LRP to other explanation methods
	Bibliography

