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Abstract

We investigate the computational power of multi-agent systems of autonomous point robots oper-
ating in the Euclidean plane. In particular, we compare four previously established models using
pattern formation problems. In the first, the Oblot model, robots are oblivious and do not
have persistent memory. They cannot communicate and have to base their movement entirely on
the observed locations of the other robots. In the Lumi model, the robots are enhanced with a
light that is visible both internally and externally, providing a constant amount of both a form
of persistent memory as well as communication. In the last two models, FState and FComm,
the light is only visible internally or externally respectively, each providing one of the two aspects
this light offers: memory and communication. We investigate the relations between these models
for two synchronous scheduler models: FSync and SSync. In the first model, all robots activate
synchronously in rounds, in the second, the robots still activate in rounds, but not every robot
activates each round. We show the computational relations between these four models under
these two scheduler models when the robots are non-rigid, i.e. can be halted halfway during their
movement, and are disoriented.

Furthermore, in depth exploration of the relation between Lumi and FComm under SSync,
has revealed an additional scheduler model that is marginally stronger than SSync. For this new
scheduler model the relation between Lumi and FComm becomes the same as under FSync.
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Chapter 1

Introduction

In the field of distributed computing, autonomous mobile robots have been the topic of many
investigations. The ultimate goal for these robots is to be deployed in situations and environments
that are difficult to reach or hazardous to work in, for example inside a human body. In these
places, it is either difficult or not desirable to setup more classical infrastructure for these multi-
agent systems such as a central control mechanism. Therefore, these robots must be able to
operate and organize themselves without such facilities. Furthermore, it would be undesirable
to have a single controller. This would lead to a single point of failure, which would be hard to
solve in the circumstances these robots operate in. In contrast to these practical applications,
a lot of theoretical research has been conducted to develop a fundamental understanding of the
possibilities and capabilities of these robots. We will try to extend this research and theoretically
explore the computational capabilities of different models for multi-agent systems.

One of the most used models to research the computational capabilities of multi-agent systems
is the Oblot model, first introduced in [30]. In this model, the robots are oblivious, they forget
everything they previously did. They are anonymous and homogeneous, i.e. they are indistin-
guishable from each other and they all execute the same algorithm. Moreover, there is no direct
ability to communicate. The only information robots have to plan their movement comes from
observing their peers. We will use point robots that do not have mass. Furthermore, we will not
consider collisions, although previous research has sometimes considered fat robots and collisions,
e.g. in [5, 6].

Robots usually operate in Look -Compute-Move cycles, in which they first observe their peers,
then compute a new target location using an algorithm and lastly move towards that computed
target. The algorithm is the same for all robots. Together, robots operating under these con-
ditions can perform tasks and solve problems. Generally, these problems consist of a series of
configurations the robots need to create, such as all robots gathering on the exact same location,
or forming a uniform circle.

In the Oblot model, a robot can either always reach its target location in the Move phase,
or it can happen that it is interrupted anywhere on the path towards that target. In the first
case, the movement is called rigid, in the second it is called non-rigid. In the Look phase, a robot
plots the other robots in its own coordinate system. Each robot has its own coordinate system
and they are not necessarily the same between robots. One distinction that can be made is if the
coordinate systems of all robots have the same chirality or not.

Which robot activates when is decided by a scheduler. There are three common types of
schedulers. The first is the fully synchronous scheduler (FSync), in which the robots activate in
rounds. They operate completely synchronously and at every timestamp, every robot is in the same
phase, either Look, Compute or Move. The second is the semi synchronous scheduler (SSync),
in which the robots still operate synchronously in rounds, but not every robot will be activated
every round. These schedulers were first studied in [31]. The last scheduler is the asynchronous
scheduler (ASync), first used in [18]. Here, the robots do not have a common notion of time and
the activation of the robots is unpredictable. Other schedulers, such as bounded schedulers [9] or
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CHAPTER 1. INTRODUCTION

round-robin schedulers [8, 9], have also been studied.
Due to the limited abilities of the Oblot model, algorithms are usually difficult and oftentimes

an algorithm does not exist. An example of a difficult problem is breaking symmetry. The robots
observe the same snapshot, and therefore will always act the same. Because of this, a new model
was introduced: Lumi [7]. The idea was to enhance the robots in the Oblot model by giving
them limited memory and communicative abilities. In Lumi every robot is equipped with a light
of which the robots can set the color. The number of colors the robot can choose from is constant
and does not depend on the number of robots present. This light is persistent through cycles and
can thus not only be used to transmit a limited amount of information to other robots, but it can
also be used to remember the state the robot was in last cycle.

To fully comprehend this model and its abilities, two submodels have been created [21]. Each
of these submodels has exactly one of the abilities of Lumi: communication or persistent memory.
In the FComm model, the lights can only be observed by other robots and in the FState model,
the lights can only be observed internally. In the latter case, we will not speak about lights but
rather about the internal state.

In this thesis we will try to give a better understanding about the computational power these
four models have in relation to each other under the assumption of non-rigidity.

1.1 Related work

Since the introduction of the Oblot model in [31], much research has been done with regards to
gathering oblivious robots [1–4,12,19,24,25,28,29,31], creating a uniform circle [10,13–17,26,27],
and general pattern formation [20, 23, 31, 33] to name a few. This has been done under various
conditions such as using fat robots or robots with limited visibility.

For the Lumi model, the same problems have been studied. An overview of the results for the
gathering problem with regards to Lumi can be found here [32]. Because Lumi is an enhancement
of Oblot, one would expect it to be more powerful than Oblot. This relation has been studied
and it has been proven that Lumi is indeed more powerful than Oblot [7,8,11]. Moreover, it has
also been shown that some problems are still not solvable under this more powerful model. For
example it is still impossible for a group of Lumi robots that start at the same location with the
same colored light to spread out in a deterministic manner.

For the submodels FComm and FState not much is known yet. Algorithms for gathering two
rigid robots have been found [21], but it is not trivial to adapt these algorithms to an environment
in which robots can be halted at any moment on their route towards their target.

The computational relations between these four models have been studied for rigid robots
under SSync and FSync schedulers [22]. The results are shown in Tables 1.1a, 1.1b and 1.1c,
where MSched means model M under scheduler Sched , S stands for SSync, and F stands for
FSync. To be read from left to top, A > B means A is more powerful than B, A ≡ B means
A is computationally equivalent to B, and A ⊥ B means models A and B are computationally
incomparable. For non-rigid robots not much work has been done, but a few proofs and results can
be easily transferred over from the works on rigid robots. For example, the requirement of rigidity
can be lifted from the proof that gathering two robots to the exact same location is not possible
under the SSync scheduler in the Oblot model [31], whereas optimal algorithms are known for
this problem in the Lumi model, even for non-rigid robots [32]. Another result for rigid robots
that can be extended to non-rigid robots is that in the Lumi model, robots under an ASync
scheduler have the same computational power as under an SSync scheduler. Moreover, robots
in the Lumi model under the ASync scheduler can be shown to be more powerful than Oblot
robots under SSync schedulers [8], even when the requirement of rigidity is removed. Although
these three results have been proven for rigid robots, they stay valid when we consider non-rigid
robots.
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CHAPTER 1. INTRODUCTION

FCommF FStateF OblotF

LumiF ≡ > >

FCommF - > >

FStateF - - >

(a) Relations for FSync, rigid robots.

FCommS FStateS OblotS

LumiS > > >

FCommS - ⊥ >

FStateS - - >

(b) Relations for SSync, rigid robots.

LumiS FCommS FStateS OblotS

LumiF ≡ FCommF > > > >

FStateF ⊥ ⊥ > >

OblotF ⊥ ⊥ ⊥ >

(c) Relations between FSync and SSync.

Table 1.1: Relations between models for rigid robots, assuming common chirality [22]. To be read
from left to top. For example, the topleft cell of (b) is to be read as LumiS > FCommS .

1.2 Results

We investigate the computational relations between the four models Oblot, FComm, FState,
and Lumi specifically under the FSync and SSync schedulers and expand upon the work of [22].
First we consider problems that only contain a single robot in Chapter 3 and we show how the
models relate to each other in this scenario. Next, we analyze problems for more than one robot
in Chapter 4. We do this by subdividing the relations per scheduler. The proofs shown are valid
for rigid robots as well as non-rigid robots. Moreover, they hold when we consider robots with
the same chirality or robots where the chirality may differ. As it turns out, the relations already
established for rigid robots with the same chirality shown in Tables 1.1a and 1.1b are the same
if we consider non-rigid robots. It is still unknown if the same holds for the relations between
a model under FSync on the one hand and a model under SSync on the other (Table 1.1c).
The relations are also the same if we consider robots with the same chirality or robots where the
chirality is different. The fact that LumiF is computationally equivalent to FCommF and the fact
that Lumi is more powerful than Oblot under both SSync and FSync could be extended from
previous work using already established formation problems. To prove the other relations, we
constructed new problems. Furthermore, we investigate the relation between Lumi and FComm
deeper. Under FSync, these two models are computationally equivalent, but under SSync, there
is a strict dominance of Lumi over FComm. We show the point between SSync and FSync
where this strict dominance of Lumi over FComm turns into an equivalence in Chapter 5.
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Chapter 2

Preliminaries

The models considered in this thesis all consider a group of point robots. The robots operate in
the Euclidean plane R2. In this plane they can move freely, and collisions are not considered.
The robots are identical and can therefore not be distinguished from one another. They execute
the same algorithm. The speed of the robots may vary and may not even be homogeneous while
moving. Every robot has its own coordinate system. These are not necessarily consistent with
each other, hence the chirality, unit distance and rotation may vary. The robots are equipped with
sensors that allow a robot to observe the locations of its peers in their local coordinate systems.
A robot will always observe itself at the origin of these coordinate systems. A robot is able to
observe its peers at any moment and place, its vision is never impaired. The robots operate in
fixed Look -Compute-Move cycles. At any point in time, every robot is in one of 4 phases, which
it cycles through in order.

Look The robot observes its peers. This observation is an instantaneous snapshot containing the
locations of all other robots within the local coordinate system of the observing robot. The
observing robot will always put itself at the origin.

Compute The robot executes the algorithm and computes a target location and a path from the
current location to this target location. This path can be a straight line or some curve. The
input for the algorithm is the snapshot from the preceding Look phase.

Move The robot moves towards the target location calculated in the Compute phase along the
computed path.

Sleep The robot does nothing and is not active. It is possible for a robot to skip this phase and
immediately go to the next Look phase.

Whenever a robot is not in the Sleep phase, it is active. The robots cycle through these 4
phases in order based on a schedule defined by the scheduler. The scheduler acts as an adversary
to the robots and decides when each robot goes into the next phase of the Look -Compute-Move
cycle. In the literature, three main schedulers are considered, see Figure 2.1.

The first is the FSync scheduler. In these schedules, all robots go through all phases syn-
chronously and at every moment in time, all robots are in the same phase. We say that the robots
operate in rounds. Every round is one full cycle through the 4 phases. An example of an FSync
schedule is shown in Figure 2.1a. The second scheduler is the SSync scheduler. This is a less
strict version of FSync, where all active robots are still operating synchronously, but it is not
required for every robot to be active every round. An example of an SSync schedule is shown
in Figure 2.1b. The last scheduler is the ASync scheduler. In these schedules, the robots can
activate at any point in time and there is no guarantee about synchronous behaviour at all. An
example can be seen in Figure 2.1c. Note that this can create schedules in which a robot takes a
snapshot in the Look phase, while other robots are moving. This means that as soon as the robot
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Look Compute Move Sleep

(a) An example of a FSync schedule.

Look Compute Move Sleep

(b) An example of an SSync schedule.

Look Move SleepCompute

(c) An example of an ASync schedule.

Figure 2.1: An example of the three main scheduler models. Each row is the schedule for a single
robot. Time flows from left to right.

starts moving, its computation has been done with information that can be outdated. The only
requirement for all these schedules is that they are fair, i.e. at any point in time, every robot will
activate infinitely often in the future.

There are a couple of variations on these basic rules that will be considered here. First of all, the
literature distinguishes between cases where the robots can detect dense points, or multiplicities,
and cases where the robots are not able to detect these points. A dense point is a point where there
are two or more robots on the exact same location. We will assume strict multiplicity detection
here, meaning the snapshot will always contain all n robots and it will be a multiset. The next
variation is whether or not the handedness of the internal coordinate systems of the robots is the
same or not. If they are the same for every robot we say there is a common chirality, if they are
not all the same, we say there is no common chirality. The last variation is in the Move phase. If
a robot will always reach its target location, we will call the movement (and in extent the robot)
rigid. In this case, the scheduler is not allowed to schedule the next phase if the robot has not yet
reach its target. In synchronous schedulers, this means that all robots extend their Move phase
until the last robot has reached its target. If the robot may be interrupted on its path, we call
the robots non-rigid. To let non-rigid robots always make progress, they will always move at least
some distance δ, unknown to the robots. If the distance a robot wants to move is less than δ, the
robot will always reach its target.

Comparison of scheduler models for distributed systems of luminous robots 5
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2.1 Models

In the literature, various models have been defined based on the rules listed above. The first is
the Oblot model. In this model, the robots have no means to communicate. Furthermore, they
are oblivious. When a robot ends its Move phase, its memory is wiped such that it does not have
any knowledge of previous activations or computations.

An extension of this model is the Lumi model. Robots have a single light of which they can
set the color. This color is picked from a finite colorset C, which usually includes the special color
Off. All robots start with their light set to the color Off. If |C| = 1, the light is not used and this
model is equivalent to Oblot. The robots can set the color of the light at the start of the Move
phase. The color of this light is persistent over cycles. This means it is not reset in between two
cycles, as opposed to other memory, which is still wiped after each Move phase. It can be observed
by all robots, including the owner of the light. The snapshot in the Look phase now becomes a
multiset of pairs (location, color).

In some situations, it might be useful to describe a robot r as not having a single light, but
having ` > 1 lights instead, each with its own finite colorset C`. This is equivalent to r having a
single light that can choose from

∏`
i=1 |Ci| different colors.

This light functions as a limited form of both communication and memory. Two models have
been designed that each offer one of these capabilities. The first is FComm. In this model the
lights are only externally visible, meaning the colors of the lights can only be observed by robots
other than the owner of the light. Each robot can communicate to the other robots, but at the
end of each cycle, the robot forgets what it communicated. A snapshot in this model is the same
as a snapshot in the Lumi model where the color of the observing robot is omitted.

In the second model, FState, the color of the light can only be observed by the owner of the
light. It is a persistent variable that can be set by the robot. In this case we also speak about the
state of the robot. The colors are referred to as states. The robots have no means to communicate.
A snapshot in this model is the same as a snapshot in the Oblot model, with the addition of the
current state of the robot.

2.2 Problems

In the literature, no real consensus has been reached yet about what is considered to be a problem.
Take for example the following definition.

Definition 2.1 (Oscillating points [8]). Two robots, x and y, initially in distinct locations,
alternately come closer and move further from each other. More precisely, let d(t) denote the
distance of the two robots at time t. The Oscillating points problem requires the two robots,
starting from an arbitrary distance d(t0) > 0 at timestamp 0, to move so that there exists a
monotonically increasing infinite sequence of time instants t0, t1, t2, t3, · · · such that:

1. if d(t2i+1) < d(t2i) then ∀h′, h′′ ∈ [t2i, t2i+1] if h′ < h′′ then d(h′′) ≤ d(h′); and

2. if d(t2i) > d(t2i−1) then ∀h′, h′′ ∈ [t2i−1, t2i] if h′ < h′′ then t d(h′′) ≥ d(h′).

In this problem, we need to treat with care in how we approach these time instants. Take
for example robots in SSync. We could easily assume that this problem requires the robots to
alternate distances every other round of the scheduler. However, defined in this way, the problem
does have knowledge about the inner workings of the robots, namely about the rounds. Problems
defined with this kind of extra knowledge are a subclass of the set of problems defined without
this knowledge. Therefore, any result proven using problems from this subclass only holds as long
as we consider only problems from this subclass. Because we want to prove results for the more
general case, we will not use any problems defined using extra knowledge. This includes knowledge
about the color of the lights. We do not allow a problem to specify what color the lights should
have and leave this solely up to the algorithm.

6 Comparison of scheduler models for distributed systems of luminous robots



CHAPTER 2. PRELIMINARIES

A problem is therefore only defined as a finite or infinite sequence of configurations for the
robots to form. If the sequence is finite, the problem may require termination, meaning that the
robots should stay in the last configuration and not move anymore. Moreover, in between every
two configurations in this sequence, the problem declares a (possibly empty) set of configurations
that should be avoided. The goal of the robots is now to form the sequence of configurations in
order, while not forming any of the forbidden configurations. A configuration is a set of pointsets,
usually defined by a predicate. These predicates should have the same evaluation under trans-
formations such as translation, scaling and rotation. Therefore, although each robot has its own
coordinate system, they all will evaluate the predicate the same. An example would be a regular
hexagon. As soon as robots form a regular hexagon, every robot can acknowledge this, regard-
less of its coordinate system. Moreover, a configuration can have an extra requirement based
on a previous configuration in the sequence. For example, if some configuration in the sequence
requires the robots to form a regular hexagon, later in the sequence the problem might have a
configuration that requires the robots to not only form a regular hexagon, but the exact same one.
The robots might not always be able to evaluate this and enforcing this requirement is the task
of the algorithm. We will only use the synchronous scheduler models (FSync and SSync). In
those models, a configuration will only be considered to be formed if the locations of the robots
fulfill the requirements at the end of a round of the scheduler, i.e. as soon as all robots finish their
Move phase. Note that for non-rigid robots, it is still forbidden for robots to even pass through
a forbidden configuration while moving, as the scheduler always has the option to halt the robots
in exactly this configuration. Even if the robots would pass through this forbidden configuration
at different timestamps during their Move phase, the scheduler could still interrupt the robots
in such a way that a forbidden configuration could be formed. A problem can therefore only be
solved by a specific algorithm, if there is no option for the scheduler to halt the robots in such a
way that they would form a forbidden configuration.

The time or number of rounds it takes the robots to form each configuration in the sequence
of configurations cannot be restricted by the problem definition. We will therefore interpret the
problem description of the Oscillating points problem as follows. The timestamps t0, t1, · · · ,
are at the end of a scheduler round. Furthermore, in between these timestamps, there could be
any number of scheduler rounds.

2.3 Relation between models

We will use MSched to capture model M ∈ {Oblot,FState,FComm,Lumi} under scheduler
Sched ∈ {FSync,SSync,ASync}. We will use shorthand F , S, and A to express FSync,
SSync, and ASync respectively. We will use P ∈ MSched to express that there exists a team of
robots that can solve problem P in model M under scheduler Sched . This means that problem P
is solvable in MSched .

We define the following relations between two models X and Y .

• X is computationally not less powerful, or at least as powerful as Y (X ≥ Y ), if ∀P ∈ Y we
have P ∈ X. All problems solvable in Y are also solvable in X. This usually follows from
the definition of the models.

• X is computationally strictly more powerful than Y (X > Y ), if X ≥ Y and ∃P ∈ X such
that P 6∈ Y . Model X can solve every problem Y can solve, and moreover there exists at
least one problem that is solvable by X but not by Y .

• X is computationally equivalent to Y (X ≡ Y ), if X ≥ Y and Y ≥ X. Both models can
solve exactly the same problems.

• X is computationally incomparable to Y (X ⊥ Y ), if ∃P1 ∈ X such that P1 6∈ Y , and
∃P2 ∈ Y such that P2 6∈ X. Both models X and Y can solve a problem that the other model
cannot solve.

Comparison of scheduler models for distributed systems of luminous robots 7
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Because of their definitions, we can immediately conclude that any problem that is solvable in
some model M under SSync is also solvable under the same model M under FSync. This holds
because any FSync schedule is also an SSync schedule. Similarly, any problem that is solvable
in Oblot, will also be solvable in Lumi by the same algorithm by just not using the light. The
following relations all follow immediately from the definitions of the models and schedulers in the
same way:

• MF ≥MS ≥MA for every model M ∈ {Oblot,FState,FComm,Lumi}.

• LumiSched ≥ FStateSched ≥ OblotSched for every scheduler Sched ∈ {FSync,SSync,ASync}.

• LumiSched ≥ FCommSched ≥ OblotSched for every scheduler Sched ∈ {FSync,SSync,ASync}.

8 Comparison of scheduler models for distributed systems of luminous robots



Chapter 3

A single robot

In the next chapters, we will explore the computational relationships between Lumi, FState,
FComm and Oblot under the various schedulers. Because of the distributed nature of these
models, usually problems for these models require at least 2 robots. However, when there is
only a single robot, the relations are different. To the best of our knowledge, this has not been
researched before. To give a complete overview of the relations, we will in this chapter show first
that when only a single robot is considered, schedulers and rigidity do not really matter anymore.
Furthermore, we show that Lumi is equivalent to FState, FComm is equivalent to Oblot and
the first two are computationally more powerful than the last two.

When only a single robot is considered, there are no differences between schedulers. Any
schedule fulfills the requirements to be an FSync schedule. Every snapshot taken by the robot
will be the same, since a robot always puts itself at the origin. This means that even if the robot is
non-rigid and will be interrupted, it will wake up and its snapshot will be the same as if it was not
interrupted. Problems defined for a single robot cannot set a single target for that robot. Defining
a problem in this way requires extra knowledge about the coordinate system of the robot, such
as rotation and unit distance, which we do not allow. Problems defined for a single robot can
therefore only require infinite movement, which can be done by a non-rigid robot, or they define
that the robot should stay still forever, which can also be done by a non-rigid robot. Therefore,
it does not matter if the robot is rigid or not.

It is trivial to see that FComm becomes equivalent to Oblot, because lights are only external
in FComm and there are no other robots to see the color, this information gets lost. Lumi becomes
equivalent to FState, as for Lumi the communicative abilities are lost and the only feature that
remains, is the memory.

Lemma 3.1. FComm ≡ Oblot and Lumi ≡ FState.

The following problem is used to show the difference between these models when there is only
a single robot.

Definition 3.2 (Step). Let the single robot be r. The Step problem requires r to reach a
location that is not its starting location. From then on, it is not allowed to move again.

Lemma 3.3. Step ∈ FState, using 2 states.

Proof. An algorithm is shown that will solve this problem using the two colors Off and Stop. On
wake up, the robot detects it is in the initial Off state and moves a little bit. The robot changes
its state to Stop. If the robot wakes up in state Stop, it does not move. Thus a single robot in
FState can solve Step. This also works in the non-rigid scenario, as the robot is guaranteed to
move at least a little bit, changing its location.

Lemma 3.4. Step 6∈ Oblot.

Comparison of scheduler models for distributed systems of luminous robots 9



CHAPTER 3. A SINGLE ROBOT

Proof. With only one robot, that robot will always have the same snapshot every Look phase.
Therefore, the action taken by the robot will be the same every activation. The robot can choose
to either move or stay still. In the first case, the robot will move every round and never stop. In
the second case, the robot will stop on its initial location. Both will not solve the problem. This
is also true in the non-rigid scenario. Therefore there does not exist an algorithm that would solve
the problem in Oblot.

From these lemmas, we can directly conclude the following.

Theorem 3.5. For a single robot, Lumi is computationally equivalent to FState. Both are
computationally strictly more powerful than FComm. FComm is computationally equivalent to
Oblot. Hence Lumi ≡ FState > FComm ≡ Oblot.

Proof. The equivalences follow from Lemma 3.1. Lemmas 3.3 and 3.4 show there exists a problem
solvable in FState but not in Oblot. Together with FState ≥ Oblot by definition, the
theorem follows.
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Chapter 4

General relations

In this chapter we will focus on the computational relationships between the four described models
under FSync and SSync. These are already known for rigid robots when there is a common
chirality Table 1.1 [22]. The problems used to show these relations usually require robots to reach
some location and they will not hold for non-rigid robots anymore. We will prove that the same
relations hold when the robots are non-rigid as when they are rigid. Furthermore, we will prove
that the relations are the same when we consider a situation where the chirality is not the same
for every robot.

4.1 SSync

We will first investigate the relations under the SSync scheduler, which lets the robots operate
in rounds, but not every robot activates every round. However, we will prove all the impossibility
results using models under the FSync scheduler. Any FSync schedule is also a valid SSync
schedule. Therefore, if a problem is not solvable under FSync, there is also at least one SSync
schedule for which the same problem is not solvable, namely the FSync schedule. Therefore any
problem that is impossible under FSync for a specific model will also be impossible under SSync
for the same model, this also proves the impossibility under SSync. In this way we can later use
the same results when investigating FSync.

4.1.1 Oblot vs FComm/FState

First the relations between OblotS on the one hand and FCommS and FStateS on the other
will be shown. A classic example of a problem not solvable in OblotS would be the following [31].

Definition 4.1 (Rendezvous [31]). Let 2 robots initially be on distinct locations. They now
need to gather in the exact same location and stay there infinitely.

Although algorithms have been found that solve this problem in FCommS and FStateS under
the assumption of rigid robots [21], to this date no research has been done to find out whether
or not Rendezvous is solvable in FCommS and/or FStateS using non-rigid robots. We use the
following problem instead to make the distinction. This problem relies on the fact that in Oblot
it is not possible to break symmetry once the robots reach a fully symmetric configuration, whereas
both FComm and FState robots can set their lights prior to reaching this configuration to prevent
total symmetry.

Definition 4.2 (N-GON Round-Trip). Take n > 2 robots that start in an initial configuration
that can be constructed as follows: Take a regular n-gon. Take one arbitrary vertex a of this n-
gon. Put a robot at every vertex except at a. Also place a robot at the center. From this starting
location, the robots should first create a regular n-gon and then reach the starting location again,
see Figure 4.1.
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a

2

1

Figure 4.1: N-GON Round-Trip. The supporting regular polygon is shown.

Lemma 4.3. N-GON round-Trip 6∈ OblotF .

Proof. To reach a contradiction, assume there exists an algorithm A that would solve this problem.
This algorithm would at some point have the robots create a regular n-gon. As soon as the robots
reach this configuration, there is no way for the robots to find out which vertex was empty in the
starting configuration. Therefore they cannot recreate the starting configuration and A would not
solve the problem.

From this it also follows that N-GON round-Trip 6∈ OblotS .

Lemma 4.4. N-GON round-Trip ∈ FStateS , with 4 states.

Proof. The proof is constructive. The robots start in a state Off. As soon as they wake up, the
robots can uniquely identify the regular polygon. The robots at the vertices immediately go to a
state Stop, indicating that they should never move again. The robot in the center moves towards
the empty vertex on the polygon and sets its state to Move out, such that if it gets interrupted
by the scheduler, the robot recognizes that the second pattern has not yet been formed. As soon
as the robot reaches the empty vertex, possibly after multiple rounds of activation, it switches to
a state Move in and goes back to the center. Again, if the scheduler interrupts the robot, it still
knows it was heading to the center. It is possible for the robots on the polygon to wake up for the
first time only after the regular polygon has been formed. However, these robots know that they
do not have to go to the center because their state is Off, and not Move out.

Lemma 4.5. N-GON round-Trip ∈ FCommS , with 3 colors.

Proof. The proof is constructive. The robots start with their lights off. As soon as they wake
up, the robots can uniquely identify the regular polygon. The robot in the center, let us call this
robot r, sets its light to color Don’t move. Every robot that now sees another robot with light
Don’t move will not move. If r has not yet been active, they can still detect that they are on the
regular polygon and they will stay there. Now if r gets activated, it will move outwards because it
is the only robot that does not see another robot with color Don’t move. Even if r gets interrupted
during its movement, it will keep moving outwards.

As soon as r reaches the polygon, it will wait for at least one other robot to complete a
cycle. The robots that now see a regular polygon and a robot with color Don’t move, will switch
their light to Polygon formed, while not moving. Now robot r sees at least 1 robot with color
Polygon formed and no robots with color Don’t move, therefore it knows that the second pattern
has been formed and that it can move. Therefore, it can move to the center of the polygon,
creating the third pattern. Even if it gets interrupted, it sees the same colors and as a result it
will continue its journey to the center. Robots on the polygon will not move, because they still
see another robot with Don’t move.

Robot r will be the only robot that moves. The robots on the polygon always see a robot in the
center or at least on robot on the polygon with color Don’t move, indicating that they should not
move. It is not possible for the middle configuration to be skipped, because r will only move back
to the center as soon as it sees another robot with color Polygon formed. This can only happen
after the second configuration has been formed.
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From these lemmas, we can conclude the following.

Theorem 4.6.

1. FCommS is computationally strictly more powerful than OblotS. Hence FCommS >
OblotS.

2. FStateS is computationally strictly more powerful than OblotS. Hence FStateS >
OblotS.

Proof.

1. Lemmas 4.3 and 4.5 show there exists a problem solvable in FCommS but not in OblotS .
Together with FCommS ≥ OblotS by definition, the theorem follows.

2. Lemmas 4.3 and 4.4 show there exists a problem solvable in FStateS but not in OblotS .
Together with FStateS ≥ OblotS by definition, the theorem follows.

4.1.2 FComm vs FState

For the relation between FCommS and FStateS , we already introduced a problem in Defini-
tion 3.2: Step. However, we do not want to allow single robot problems as the relations are
completely different in that scenario. One might think that extending this problem to two robots
might give the same result. However, this is not true as the extended problem is solvable in
FCommS .

Definition 4.7 (2 Robot Step). Let 2 robots initially start on distinct locations. The 2 Robot
Step problem requires both of these 2 robots to reach a location that is not their respective
starting location. From then on, they are not allowed to move again.

Lemma 4.8. 2 Robot Step ∈ FCommS , using 3 colors.

Proof. The proof is constructive. Let each robot start with a color Not moved. As soon as a robot
wakes up it will move and change its color to I moved. If it sees the other robot already has its
color at I moved, it puts its color to You moved instead of I moved, indicating to the other robot
that it has activated at least once and thus moved, and at the same time indicating that this robot
has moved. As soon as a robot sees its partner in You moved, it will not move anymore, and only
change its own light to You moved. To prevent the robots ending on their starting location, the
move steps will only be directly away from each other. They will eventually both reach You moved
and they will not move anymore.

This algorithm will be correct if both robots eventually reach color You moved at the same
time and keep that color each activation. It is impossible for a robot to reach Not moved after the
first time it has activated. The only time a robot r2 that has color You moved will change its color
to something else is when the other robot r1 would have color Not moved. This is not possible
because r2 only did go to You moved because r1 had either color I moved or You moved, indicating
it has activated at least once and will therefore never have Not moved again. This means that as
soon as a robot has color You moved, it will keep this color each activation. Because both robots
will have You moved eventually and because the robots cannot get another color as soon as they
do so, the algorithm is correct.

Note that the robots will possibly move a couple of times before they reach their final location.
This is allowed by the problem. We could create a problem where this behaviour is not allowed,
but it would require the problem to be described in terms of the inner workings of the robots,
which we do not allow.

It is easy to see that it also holds that 2 Robot Step ∈ FStateS , using the same algorithm
as for Step (Lemma 3.3). Because 2 Robot Step ∈ FCommS and 2 Robot Step ∈ FStateS ,
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(a) The movement for Repelling points

r

(b) Robot r is not allowed to go closer than half the
initial distance.

Figure 4.2: Repelling points, note the dense point on the left.

this does not give the separation between FState and FComm. However, it does show the dif-
ference in relations when we consider problems defined for a single robot or problems defined for
multiple robots.

Nevertheless, there are other problems that result in this separation. The first will be solvable
in FState, but not in FComm and relies on the fact that if a single robot activates twice in
FComm, it will not have had the time to communicate.

Definition 4.9 (Repelling points). Consider 3 robots such that 2 are on the same location
and the third robot r is on a different location. Let distance d(i) be the distance between r and
the dense point after round i, such that d(0) is the starting distance. Now r needs to first move
towards the dense point such that at some round i, it holds that d(i) < d(0). Next, r needs
to move away from the dense point such that at some round j > i, it holds that d(j) > d(i).
All configurations in which the distance is less than half the starting distance are not allowed,
so d(k) ≥ 1

2d(0) must hold for all k. All configurations in which any robot other than r has moved
are also not allowed. This is visualized in Figure 4.2.

Lemma 4.10. Repelling points ∈ FStateS , using 2 states.

Proof. The proof shows an algorithm that would solve the problem. All robots can uniquely
identify their role at all times because of the dense point. As soon as r wakes up, it switches its
color from the initial color to Moved in and moves towards the other two robots for less than half
the distance, satisfying the first condition. As soon as r wakes up with color Moved in, it will detect
that it has already moved inwards and it will move outwards, solving the second configuration.

Lemma 4.11. Repelling points 6∈ FCommS .

Proof. To reach a contradiction, assume an algorithm A exists that would solve this problem
under any SSync schedule, but specifically under schedule S. We will now create another SSync
schedule S′ for which algorithm A would not solve Repelling points.

Because A solves the problem under S, robot r will have to move towards the dense point for
some fraction of their distance at some round i. Let S′ be the same as S up until round i. Now for
some finite number of rounds, S′ will only let r activate. If r is the only robot that activates for a
couple of rounds, the other robots will not have been activated to communicate and tell r that it
has moved. Because it is impossible for r to obtain this information on its own, this results in r
moving in the same direction for the same fraction of the remaining distance as long as no other
robot gets activated. Robot r will keep moving inwards every round for a fixed fraction of the
distance, because the target point is always calculated relative to the other robots in the snapshot.
If the target point would be calculated based on the unit distance of the coordinate system of r, it
could be possible that r will come too close to the dense point in the first round. Because of the
assumption that A solves the problem, this is not possible. Therefore r will try to move for the
same fraction every time it activates. It could be that r is interrupted during this movement, but
the next activation it will still compute a target location that is a fixed fraction of the remaining
distance away.

Eventually, after moving inwards for a finite number of rounds x, the distance d(i + x) will
be less than half the starting distance d(0). Therefore, if S′ lets only r be active for x rounds,
d(i+x) < 1

2d(0). This is an invalid configuration and Repelling points would not be solved by
A under S′. Schedule S′ is still a fair schedule, because x is a finite number of rounds. Therefore,

14 Comparison of scheduler models for distributed systems of luminous robots



CHAPTER 4. GENERAL RELATIONS

a

b

(a) First configuration

a

b

(b) Second configuration

b

a
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the 2 robots at b

Figure 4.3: An example of the N-GON problem for n = 6 robot. The supporting regular n-gon
is also drawn.

the other robots will eventually get activated again. Repelling points is not solvable by A
under S′, which is a valid SSync schedule. This contradicts the assumption that A would solve
the problem under any SSync schedule. As a result, a valid algorithm that solves Repelling
points in FComm under an SSync scheduler does not exist.

Lemma 4.10 and Lemma 4.11 show that there exists a problem solvable in FStateS , but not
in FCommS . The opposite also holds.

Definition 4.12 (N-GON). Let n > 3 robots, start in an initial configuration that can be
constructed as follows: Start with a regular n-gon. Take two arbitrary vertices a and b. Put a
robot at every vertex of the n-gon, except for vertices a and b. Put a robot at the exact center and
a robot on the ray from the center to b such that the distance to the center is twice the distance
from b to the center. An example is shown in Figure 4.3a.

From this starting configuration, the robots must first form a regular n-gon (Figure 4.3b) after
which the robots must form a regular n-gon with no robot at location a and two robots at location
b (Figure 4.3c). Between the second and third configuration, no configuration is allowed in which
robots have moved that are not on location a in the second configuration.

Lemma 4.13. N-GON 6∈ FStateF .

Proof. To reach a contradiction, assume that there exists an algorithm A that would solve this
problem. At some point, the robots following A have to create the regular n-gon. Now the robots
are in a completely symmetric configuration and although the robot at location a can remember
that it has to move, there is no way to distinguish the other robots and determine which of the
other robots was previously outside of the n-gon and is currently at b, using only a constant amount
of memory. It would be possible if the robots could count the amount of robots, for example by
saying remembering that it was the third counterclockwise robot. However, this would take a
logarithmic amount of information, and the robots can only use a constant amount of colors. The
robot at location b does know that there is a robot that should move towards b, but it has no means
of communicating this information as it is not allowed to move anymore. Therefore, the robots
cannot create the third pattern and there exists no algorithm that would solve the problem.

Lemma 4.14. N-GON ∈ FCommS , using 3 colors.

Proof. The proof shows an algorithm that solves the problem. Let all robots start with color Off.
The robot in the center and the one outside the n-gon can uniquely identify their own location
and the original n-gon. As soon as they wake up, the center robot ra sets its light to color A, while
the outside robot rb sets its light to color B. They can go to their respective location, forming
the second configuration. Now every robot that sees another robot with color A will stay still,
while the single robot ra that does not see this color will move to the single robot rb with color B,
creating the third pattern. Intermediate configurations may occur when interrupted. However, ra
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will move outwards as long as it is on the line segment from the center to a and it will move to
the robot with color B when it is on the polygon or on the line segment from a to b. In between
configuration 2 and 3, the only robot that is allowed to move is this single robot, so even if it gets
interrupted, it will still be a valid configuration.

From these two problems, we can conclude the following.

Theorem 4.15. FCommS is computationally incomparable with FStateS. Hence FCommS ⊥
FStateS.

Proof. This follows from Lemmas 4.10 and 4.11 which show there exists a problem solvable in
FStateS but not in FCommS , and Lemmas 4.13 and 4.14 showing the opposite: there exists a
problem solvable in FCommS but not in FStateS .

Furthermore, from Lemma 4.14 it follows that N-GON ∈ LumiS and from Lemma 4.10 it
follows that Repelling points ∈ LumiS . This also concludes the relations for LumiS with
regards to FStateS and FCommS .

Theorem 4.16.

1. LumiS is computationally strictly more powerful than FStateS. Hence LumiS > FStateS.

2. LumiS is computationally strictly more powerful than FCommS. Hence LumiS > FCommS.

Proof.

1. LumiS ≥ FStateS holds by definition. N-GON ∈ LumiS follows from Lemma 4.14. This
problem is not solvable in FStateS (Lemma 4.13).

2. LumiS ≥ FCommS holds by definition. Repelling points ∈ LumiS (Lemma 4.10), but
Repelling points 6∈ FCommS (Lemma 4.11).

It also follows that LumiS > OblotS . This was already known for rigid robots [8] and that
proof would also hold for non-rigid robots.

4.2 FSync

For FSync schedules, where the robots get activated in rounds and every round every robot is
active, a lot of the same problems and lemmas can be used to show the computational relations
between the models. First of all, we can show that the relations between FCommF , FStateF

and OblotF are the same as for SSync. From Lemma 4.3, Lemma 4.4 and Lemma 4.5 the same
relations as for SSync can be concluded.

Theorem 4.17.

1. FCommF is computationally strictly more powerful than OblotF . Hence FCommF >
OblotF .

2. FStateF is computationally strictly more powerful than OblotF . Hence FStateF >
OblotF .

Proof.

1. Lemmas 4.3 and 4.5 show there exists a problem solvable in FCommF but not in OblotF .
FCommF ≥ OblotF holds by definition. Together, they prove the theorem.

2. Lemmas 4.3 and 4.4 show there exists a problem solvable in FStateF but not in OblotF .
FStateF ≥ OblotF holds by definition. Together, they prove the theorem.
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For rigid robots, it is known that LumiF ≡ FCommF [22]. This proof simulates LumiF robots
using FCommF robots. This is done by letting the FCommF robots communicate their own
colors to the other robots, which the other robots can then communicate back. For this proof,
the assumption of rigid robots can be lifted without any problem because this communication can
still happen if the robots are non-rigid.

Theorem 4.18. LumiF is computationally equivalent to FCommF . Hence LumiF ≡ FCommF .

The other relations for LumiF can now be deducted.

Theorem 4.19. LumiF is computationally strictly more powerful than FStateF . Hence LumiF >
FStateF .

Proof. LumiF ≥ FStateF holds by definition. From Lemma 4.14 it follows that N-GON ∈
LumiF . This problem is not solvable in FStateF (Lemma 4.13).

Again we can also conclude LumiF > OblotF . However, this was already known [22] for rigid
robots and this result would still hold for non-rigid robots.

Due to the equivalence we can also list the relations for FCommF .

Theorem 4.20.

1. FCommF is computationally strictly more powerful than FStateF . Hence FCommF >
FStateF .

2. FCommF is computationally strictly more powerful than OblotF . Hence FCommF >
OblotF .

Proof.

1. Theorem 4.18 shows LumiF ≡ FCommF . Theorem 4.19 shows LumiF > FStateF . To-
gether this proves the statement.

2. LumiF > OblotF as proven by [22] for rigid robots. This result still holds for non-rigid
robots. Due to the equivalence with FCommF (Theorem 4.18), this result also holds for
FCommF .

The relations for rigid robots for models under the FSync and SSync schedulers where already
known when there is a common chirality. The proofs here work for both rigid robots as well as
for non-rigid robots. Moreover, they also hold when there is no common chirality. Therefore,
Tables 1.1a and 1.1b also give an overview of the relations between these four models under
synchronous schedulers under any of these variations.

4.3 FSync vs SSync

For rigid robots, the distinction between FSync and SSync was made using the Center of
Gravity Expansion problem.

Definition 4.21 (Center of Gravity Expansion [22]). Let R bet a set of robots. The
Center of Gravity Expansion problem requires each robot ri ∈ R to move from its initial
location (xi, yi) directly to (f(xi, cx), f(yi, cy)), where f(a, b) = b2a− bc and (cx, cy) is the center
of gravity of the initial configuration.

For rigid robots, this problem is solvable in any model under FSync, but not by any model
under SSync, because in SSync as soon as a robot moves, it is impossible to maintain information
about the original center of gravity. However, this is possible in FSync, because all robots move
at the same time and reach a new configuration in which the center of gravity is the same as in the
old configuration. When switching to non-rigid robots, this problem does not give the distinction
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anymore between FSync and SSync. In FSync robots can now be interrupted and create a
configuration in which the center of gravity is not equal anymore to the center of gravity in the
previous configuration. The only difference between the two models is now that in FSync, all
robots will move at least a little bit every round, while in SSync some robots can stay still. We
have not been able to find a problem solvable in any model under FSync using non-rigid robots
that is unsolvable under SSync, nor have we been able to prove that all problems solvable in
FSync for non-rigid robots are also solvable in SSync. Therefore, this is still an open problem
for future work.
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Lumi vs FComm

Under the FSync scheduler, Lumi and FComm are computationally equivalent, see Theorem 4.18.
The difference between Lumi and FComm is that in FComm robots do not have access to the color
of their own light, while in Lumi they do. Hence, to simulate any algorithm A designed for Lumi
robots using FComm robots, the FComm robots somehow need to be able to get information
about the color of their own light. This is done using two activation rounds. A specific light with
two values is used to let the robots know in which of the two rounds the robots currently are.
In the first round, robots look at each other, see the state every robot is in and set their light
accordingly. In the second round, robots can use this information to calculate the color of their
own light. The information the FComm robots now have is equal to the information Lumi robots
have. Therefore the FComm robots can execute the same algorithm in the second round [22].
This works because every round, every robot is active. Moreover, as soon as a robot changes its
state in the second round, the next round robots are active to process this state change and send it
back. This is not true for robots under the SSync scheduler. Because if a single robot is the only
robot that is activated in two consecutive rounds, this robot will not be able to gain knowledge
about its internal state as no other robots have been active to communicate with. This raises the
question what the minimal scheduler requirements are to still be able to gain knowledge about the
robot’s own internal state. As it turns out, it is sufficient to disallow any two consecutive rounds
i and i+ 1 when in round i only a single robot r is active and r is also active in round i+ 1.

Definition 5.1 (StricterSSync). Let this scheduler be exactly the same as the normal SSync
scheduler, but disallow any schedules which have two consecutive rounds i and i+ 1 such that in
round i some robot r is the only active robot and r is also active in round i+ 1. An example of a
non-valid schedule is shown in Figure 5.1.

We will prove that under the StricterSSync scheduler robots in the FComm model can gain
knowledge about their internal state and solve the same problems as Lumi robots. As for FSync,

Look Compute Move Sleep

r

i i+1

Figure 5.1: An example of a schedule that would NOT be allowed by StricterSSync. Robot r
and the two rounds i and i+ 1 are shown.
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the FComm robots need to be able to get information about the color of their own light. To do
this, we propose the procedure FCommToLumi(A). The main difference with the procedure used
under FSync is that under FSync the robots have a guarantee that every robot operates at the
same time. Therefore, in this new procedure, the robots need to synchronize in some way.

5.1 Procedure

This procedure FCommToLumi(A) takes a deterministic algorithm A designed for Lumi robots
under StricterSSync and simulates it using FComm robots under StricterSSync. We will
assume that during the execution of A there will be no multiplicities. Initially, let us also assume
all robots have the same chirality and no robot is present at the center of gravity. These last two
assumptions will later be lifted, the assumption about no multiplicities will not be lifted. Now a
circular ordering on the robots can be defined as follows. Calculate the center of gravity and order
the locations of the robots around it in an anticlockwise manner. In the case that two robots are
collinear with the center of gravity, we call them coradial. When coradial robots are present, the
order can be defined by letting a robot closer to the center of gravity precede a robot further away.
This order implies that any robot r has two neighbouring robots. One of them is the predecessor
pred(r) and one the successor succ(r). This information will be used by FCommToLumi. The
robots will calculate their predecessor and successor and transmit the color of their neighbours’
lights back. Because there is a constant number of neighbours, each robot only has to transmit a
constant amount of extra information.

Recall that the FComm robots need information about the color of their own light to simu-
late Lumi robots. Let us call the light used by algorithm A the lumi-light. The way in which
FCommToLumi gives a robot access to the information about the color of its own light, is by
letting a robot do nothing until another robot has seen the color and has communicated it back.
To this purpose, various extra lights are added to each FComm robot. Recall that this is equival-
ent to a robot having only a single light. For clarity of presentation, we will speak of each robot
having multiple lights. Each FComm robot has the following lights.

lumi-light This light is the light originally used by algorithm A designed for Lumi robots. Both
its purpose and colors are the same as in algorithm A. The number of colors that this light
can be is still the same, let us call this number c.

copy-lumi-light Every robot has two of these lights, corresponding to the two neighbours defined
by the circular ordering. The purpose is to communicate the color of the lumi-light to the
neighbours. It can choose from the same set of colors as the lumi-light. If a robot knows that
every single copy-lumi-light has been set properly, the copy-lumi-lights of neighbours can be
used to deduce the color of the robot’s own lumi-light in the following way.

Let x.copy-lumi-lights be the set of colors of the copy-lumi-lights of robot x and let x.lumi-light
be the single element set containing the color of the lumi-light of robot x. Now if r takes the
set of copy-lumi-lights of its predecessor, it can find its own color by removing the color of
the lumi-light of the other neighbour of its predecessor.

r.color = pred(r).copy-lumi-lights \ pred(pred(r)).lumi-light

Where “\” is the difference between two sets. An example of this calculation is shown in
Figure 5.2.

In the case there are only 2 robots, this calculation refers to the color of the robot’s own
lumi-light. Take in this case pred(pred(r)).lumi-light to be the empty set. The rest of the
procedure will be exactly the same, regardless of the amount of robots.

state-light This light is used to synchronize the robots in FCommToLumi. It can be one of 5
states: Copy, DoneCopy, Trying, Finished, and Reset. Initially it is set to Copy.
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a b

c

d

{e, b} {a, c}

{b, d}

{c, e}

e
{d, a}

Figure 5.2: An example of how a robot can calculate its own color light. The circular ordering is
visible with an arrow. For each of the 5 robots the color of the lumi-light is listed (a, b, c, d, or e),
as well as the two colors of the copy-lumi-lights in order (first predecessor, then successor). For
the robot with color of the lumi-light b, the calculation is as follows: {e, b} \ e = b.

execute-light The purpose of this light is to ensure fairness of the simulated schedule. Without
it, we could not guarantee that at every point in time, every robot will be able to do a
step in Lumi algorithm A eventually. Its set of colors consists of NotExecuted, Executed and
AllExecuted. It is initially set to NotExecuted.

copy-execute-light A robot cannot see the status of its own execute-light. To let every robot
still have access to this information, the same approach is used as for the lumi-light. Every
robot has two copy-execute-lights, corresponding to the two neighbours of a robot. Now if
the colors are correctly copied, information about a robot’s own execute-light can be deduced
from neighbouring copy-execute-lights in the same way as copy-lumi-lights are used to find
information about a robot’s lumi-light.

Together, this means that every robot has a total of 1 + 2 + 1 + 1 + 2 = 7 lights, with a total
number of c · c2 · 5 · 3 · 32 = 135c3 possible color combinations. This is a constant number as long
as c is constant and does not depend on the number of robots. The robots do not know in which
state (color of state-light) they currently are. They have to deduce this from the state-light of the
other robots. An overview of the state transitions is shown in Figure 5.3. The transitions possible
are shown in Table 5.1. The first column lists the states that a robot observes. The second column
lists a possible extra requirement on the execute-light. Together these two columns define which
transition to take. The third column is only added as reference and states the possible states a
robot can be in when it decides to take the corresponding transition. The fourth column defines
which new state a robot taking that transition will go to. The last column lists a possible extra
action the robot will do. This can be setting the execute-light, doing a copy procedure which will
be explained later, or executing a step in A. Take for example transition (12). A robot wakes up
and the multiset of observed state lights contains only Reset and Trying. This robot will go to
Reset and set its execute-light to NotExecuted.

The simulation can be subdivided into phases. In the first phase the robots copy the lights of
their neighbours by using the copy-lumi-lights and copy-execute-lights. In the second phase some
robots execute a step in Lumi algorithm A. This is now possible because they can calculate the
color of their own lumi-light by looking at their neighbours. In the third phase the robots go back
to their starting states such that they can start this cycle over again.

This is the normal behaviour of the algorithm and we will call it an execute-cycle. Every one
of these execute-cycles starts and ends with the robots in the following states. Either all n robots
are in state Copy, or n − 1 robots are in state Copy and the remaining robot is in either state
Finished or Trying.

At the start of the first phase, at some point a robot will wake up and see all other robots in
state Copy. It knows that lights need to be copied and it will go to DoneCopy, copying the lights
of its neighbours. This corresponds to transition (1) in Table 5.1. The copying is done by first
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Copy DoneCopy Trying

Finished

Reset

(a) Transitions between states.

NotExecuted Executed

AllExecuted

(b) Transitions between execute
states.

Figure 5.3: Transitions for the states and execution states. Robots might skip a state and imme-
diately go to the next in some situations. Moreover, robots do not know their own state and have
to deduce this information from the other robots.

calculating the predecessor and successor. Next, the two copy-lumi-lights are set to the same color
as the lumi-light of the corresponding neighbour. The two copy-execute-lights are set to the same
color as the execute-light of the corresponding neighbour.

Now as long as robots wake up and still see another robot in state Copy, they will do this copy
procedure (transition (2)). This goes on until at some point a robot wakes up and sees all other
robots with the state-light set to DoneCopy. To indicate to all other robots that every robot has
copied the lights of its neighbours, this robot goes to Trying (transition (3)). However, it could
be that this robot itself was still in Copy. Therefore it still has to do the copy procedure. Now
all robots see at least one other robot with state Trying, thus knowing they already copied the
lights and also go to state Trying (transition (4)). The second phase will start as soon as either all
robots are in state Trying, or n− 1 robots are in state Trying and 1 robot is in state DoneCopy.

In the second phase, some robots will execute a step in algorithm A. At some point at the
start of this phase, one or more robots will wake up and see every other robots in state Trying.
These robots will now execute a step in A (transition (5)). They have all the information to
do so, because no lumi-light has changed since all robots copied it at the end of the first phase.
Therefore, the robot can interpret the color of its own light based on the lights of its neighbours.
These robots go to Finished. This phase ends with some subset of the robots in state Finished,
and the other robots in state Trying.

In the third phase, the robots try to reach the starting configuration of the first phase again.
All robots that wake up see at least one robot in Finished, except in one specific situation. If
in the second phase only one robot activated, this is the only robot in Finished and the other
robots are all in Trying. If this robot would now activate again, it would see only other robots in
state Trying and it would try to exeecute again. This would cause problems, as the lights are not
correctly copied at this point. However, it is not allowed for this robot to be active again under
StricterSSync. Therefore, all robots that wake up now see at least one other robot in state
Finished. These robots go back to Copy (transition (9)). Next, all robots see robots both in state
Trying and Copy. This situation informs them that some robots have activated and that they
need to go back to Copy (transitions (10) and (11)). This goes on until at one point either all n
robots are in Copy, or n − 1 robots are in Copy and the last robot is still in Finished or Trying.
This is the starting situation and the first phase will start again.

These three phases would make sure that the robots will continually be able to perform some
steps in the algorithm A. However, it could be the case that every second phase, the same robots
activate and perform a step in A. This would not make for a fair schedule. To combat this, the
execute-light is used. If a robot executes a step in A in the second phase, it sets its execute-light
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to Executed, signalling it has already executed a step in A (transition (5)). This information is
copied in the first phase, so that next time the robots are all in state Trying, every robot knows
the color of its own execute-light. It will only execute a step in A if it has not already done so.
Otherwise it will just stay in Trying and let another robot go (transition (6)). This ensures that
robots all get a turn to execute a step in A.

At one point every robot has executed a step in A and every execute-light will be set to Executed.
To reset these lights a special cycle is used: the reset-cycle. The first phase is the same as for an
execute-cycle as the robots do not know yet that all robots have executed. As soon as they reach
the start of the second phase, the robots recognize that they all have executed and the robots
first set the execute-light to AllExecuted (transition (7)). At some point some robots will wake
up and see that all other robots have set their execute-light to the new color. These robots will
go to Reset and reset their own execute-light to NotExecuted (transition (8)). Now they wait in
Reset until every robot recognizes this and also goes to Reset, resetting their lights (transition
(12)). In the end, all robots (except possibly one) are in Reset and have reset their light. Now
the robots that wake up see every other robot in Reset and they will go to Copy (transition (14)).
These robots still need to reset their light, as we do not know if they were the last robot still in
Trying. After this, robots that wake up will see both robots in Copy and in Reset and they will
also go to Copy (transition (13)). At one point all robots are back in Copy while all having their
execute-light reset. It could be the case that there is still one robot in Reset, but as soon as that
robot activates, it will start an execute-cycle again by going to DoneCopy.

Every Look -Compute-Move cycle in Lumi algorithm A corresponds to either an execute-cycle,
or a reset-cycle followed by an execute-cycle in the FComm algorithm.
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Observed
state-light

Own execute-light/
observed execute-light

Inferred own color New State Action

(1) Copy Copy, DoneCopy,
Finished, Reset,
Trying

DoneCopy Copy neighbour
lights

(2) Copy,
DoneCopy

Copy, DoneCopy DoneCopy Copy neighbour
lights

(3) DoneCopy Copy, DoneCopy Trying Copy neighbour
lights

(4) DoneCopy,
Trying

DoneCopy, Trying Trying

(5) Trying NotExecuted/
does not matter

DoneCopy, Trying Finished Execute light to
Executed and ex-
ecute a step in
A

(6) Trying Executed, AllExecuted/
> 1 NotExecuted

DoneCopy, Trying Trying

(7) Trying Executed, AllExecuted/
no NotExecuted, not
all AllExecuted

DoneCopy, Trying Trying Execute light to
AllExecuted

(8) Trying all robots in Trying
have AllExecuted

Trying Reset Execute light to
NotExecuted

(9) Trying,
Finished

Trying, Finished Copy

(10) Copy,
Trying,
Finished

Copy, Trying,
Finished

Copy

(11) Copy, Trying Copy, Trying Copy
(12) Reset,

Trying
Reset, Trying Reset Execute light to

NotExecuted
(13) Copy, Reset Copy, Reset, Trying Copy Execute light to

NotExecuted
(14) Reset Copy, Reset, Trying Copy Execute light to

NotExecuted

Table 5.1: A list of all transitions possible. The first column consists of the set of state-light colors
that a robot observes. The second column differentiates between some transitions based on the
execute-light. It first states the color of the robots own execute-light, which can be inferred from
its neighbours and then the observed execute-light of other robots. The third column is not used
in the algorithm, but is only added as reference. It states in which states the robot could be
before executing the transition. The fourth column is the new state after the transition. The last
column indicates a possible extra action that occurs while performing the transition. This could be
copying the colors of the neighbouring lumi-light and execute-light or setting its own execute-light
to a different color.

24 Comparison of scheduler models for distributed systems of luminous robots



CHAPTER 5. Lumi VS FComm

5.2 Correctness

To prove correctness of FCommToLumi, we will first prove that every execute-cycle corresponds
to some activation of Lumi robots executing A under SSync. To do this, we take two teams of
robots. The first, RLumi , performs algorithm A under SSync. The second team, RFComm , per-
forms FCommToLumi(A) under StricterSSync. Both teams start in the exact same starting
configuration C0. The lights of the RFComm robots form a valid initial state for the execute-cycle,
i.e. all n robots are in state Copy, or n − 1 robots are in state Copy and the remaining robot is
in either state Finished or Trying. Every robot in RFComm has a counterpart in RLumi , which is
the robot on the same location. This creates pairs of robots. Every pair of robots starts with the
same color for the lumi-light. Now RFComm executes the three phases of an execute-cycle such that
these robots end up in some configuration C1.

Lemma 5.2. After execution of phase one of the execute-cycle, the lumi-light of every robot will
have the same color as its RLumi counterpart, every RFComm robot has done the copy procedure,
and they are all in state Trying, except possibly one robot, which could still be in state DoneCopy.

Proof. During phase one of the execute-cycle the lumi-light of the robots will stay the same.
Because the light has the same color as its RLumi counterpart at the start, the colors will still
be the same at the end of phase one. Every robot, except possibly one, will go from Copy to
DoneCopy, and do the copy procedure. The single robot that may skip DoneCopy and go to
Trying immediately, will still do the copy procedure. Therefore every robot has set all its copy
lights correctly. Every robot still in DoneCopy will take the transition to Trying such that in the
end, all robots except possibly one are in Trying. If not all of them are in Trying, the last robot
will still be in DoneCopy.

Lemma 5.3. After execution of phase two of the execute-cycle, there exists a valid SSync activ-
ation for RLumi such that after this activation, they form C1 and the color of the light of every
robot in RLumi is the same as the color of the lumi-light of its RFComm counterpart.

Proof. At the start of the second phase, all copy lights (copy-lumi-lights and copy-execute-lights)
are set correctly, because in the first phase all robots have executed the copy procedure and the
lumi-light and execute-light have not changed color since. Therefore each robot can calculate the
color of its own lumi-light and its own execute-light. Let S be the subset of RFComm robots that
activate now and go to Finished. The RFComm robots form C1 after this activation and have
possibly a different color of their lumi-light. Both the forming of C1 and the changing of the
lumi-light is determined by algorithm A. At the start of this phase, the positions of all RFComm

robots are equal to the positions of the RLumi robots. Furthermore, the lumi-light of every RFComm

robot has the same color as the light of its RLumi counterpart. Therefore, if we take S′ to be
the counterparts of S in RLumi and let these robots activate, they will calculate the same target
positions and same changes of light. This is true because both sets of robots calculate according
to A and the input is the same. If robots in S got halted during their movement, we also halt
their counterpart in S′ at the same position. This interruption is valid, because the interruption
of the robot in S is valid and its counterpart in S′ will have travelled the same distance. This
activation of S′ together with those interruptions is a valid SSync activation. Moreover, both
teams of robots now form C1 and the colors of the lumi-light of every RFComm robot is the same
as the color of the light of its counterpart in RLumi .

Lemma 5.4. After execution of phase three of the execute-cycle, the RFComm robots still form
C1, have not changed their lumi-light and are now either all in state Copy, or all in state Copy
except one, which could be in Finished or Trying.

Proof. In the third phase, neither the color of the lumi-light nor the position of any RFComm robot
changes. Therefore they will stay the same, assuming they were the same at the beginning of the
phase. Some robots will be in Trying and some will be in Finished. The robots that activate will
take a transition to Copy. Now every robot that activates takes a transition to Copy, until all of
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them are in Copy, or all of the robots are in Copy with the last one still being in either Finished
or Trying.

Lemma 5.5. For every execute-cycle of RFComm , there exists a valid SSync activation for RLumi

such that after this activation, both teams of robots form the same configuration and the color of
the light of every robot in RLumi is the same as the color of the lumi-light of its RFComm counterpart.

Proof. Lemma 5.2 shows that the RFComm robots can reach the start of the second phase and that
at that point all robots have done the copy procedure. The location of the robots nor the color of
the lumi-light has changed. Lemma 5.3 shows that there is a valid SSync activation for RLumi that
will result in the RLumi robots creating the same configuration as the RFComm robots. Moreover,
the color of the lumi-light of every robot in RFComm is the same as the color of its counterpart in
RLumi . Lastly, Lemma 5.4 proves the robots can reach the starting state of the next execute-cycle.
Together, these three lemmas show that each execute-cycle of the RFComm robots corresponds to
a valid SSync activation for the RLumi robots.

Lemma 5.5 also holds if the FComm robots perform a reset-cycle first and then an execute-
cycle, because a reset-cycle does not change the location or the lumi-light of a robot.

Lemma 5.6. Between two reset-cycles, every robot executes a step in A exactly once.

Proof. First we will prove that a robot performs at most one step in A in between reset-cycles.
For this purpose, assume that a robot r executes a step in A for the second time since the last
reset-cycle. This means that the color of its execute-light is NotExecuted (discovered by looking
at its neighbours). However, the first time r executed a step in A, the execute-light was set to
Executed. Only an execution in A or a reset-cycle change the color of the execute-light of the
robots. Therefore either r has not yet executed a step in A or a reset-cycle has happened since
the last execution. Both contradict the assumption and therefore every robot executes at most 1
step in A in between two reset-cycles.

To prove that some robot r performs at least one execution step in A in between reset-cycles,
assume that a new reset-cycle will happen while r has not executed a step in A yet. Because a
new reset-cycle will happen, the execute-light of r is set to Executed. At the end of the previous
reset-cycle the execute-light of r was NotExecuted. Therefore, the execute-light of r must have
changed. However, the only time the execute-light of r could have changed was if it executed a
step in A, contradicting the assumption.

Because every robot performs at least 1 and at most 1 step in A in between two reset-cycles,
we can conclude that every robot executes a step in A exactly once between two reset-cycles.

Because every robot executes a step in A exactly once in between two reset-cycles, this simu-
lation creates a fair Lumi schedule.

Lemma 5.7. Lumi robots under SSync can be simulated using FComm robots under the
StricterSSync scheduler using 135c3 colors, when there are no multiplicities, there is never
a robot at the center of gravity and the robots have the same chirality.

Proof. If the conversion from any FComm schedule to a Lumi schedule by FCommToLumi(A)
gives a correct and fair schedule, this lemma holds. Every execute-cycle or reset-cycle followed
by an execute-cycle performed by the FComm robots corresponds to a valid activation for the
Lumi robots as stated by Lemma 5.5. Using this as an induction step and the fact that the robots
start in the same location as the base case, it follows by induction that the conversion gives a
correct schedule. Lemma 5.6 shows every robot activates exactly once in between two reset-cycles.
Because there are an infinite number of reset-cycles, this shows the created schedule is fair.

We will now lift both the assumption about a robot at the center of gravity and robots having
the same chirality. To solve the problem when there is a robot at the center of gravity, we simply
add one more copy-lumi-light to all robots and say that this central robot is a neighbour of every
other robot, while the central robot itself does not have any neighbours. If there is no central
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CoG

(a) Neighbouring relationships for coradial robots.

CoG

(b) Maximum number of neighbours is 5 when there
are three coradial sets of robots next to each other.
Possibly 6 with a robot at the CoG.

Figure 5.4: Neighbouring relations when there are coradial robots.

robot, this extra copy light will be set to a special color Not used during the copy procedure.
Adding this light adds an extra factor c + 1 to the number of colors needed per robot. We also
add an extra copy-execute-light to every robot, adding a factor 3 + 1 = 4 to the number of colors
per robot.

The solution would also still work when the chirality is not the same for every robot. There
will be no notion of order, but every robot will still have 2 neighbours (3 when a robot is at the
center of gravity). Robots will still be able to find out the color of their own lumi-light by doing
the same calculation, but including both neighbours. For coradial robots, we let the outermost
robots have the same neighbours as it would have if there was no coradiallity plus the one that
it is coradial with, see Figure 5.4. This leads to a constant maximum of 6 neighbours. Again, if
that many neighbours do not exist, the lights will be set to Not used. Every robot can now still
deduce its color if the copy-lights are set correctly, while only using a constant number of lights,
each with a constant number of colors. Each copy-lumi-light now can have one of c + 1 colors.
Again we do the same for the copy-execute-lights, adding a factor 4 per neighbour. This results in
the total number of colors being c · (c+ 1)6 · 5 · 3 · 46 = 61440c(c+ 1)6.

Naturally, Lumi ≥ FComm for StricterSSync schedules. We have also shown that LumiS

robots can be simulated using FComm robots under the StricterSSync scheduler. We will
now extend FCommToLumi even further to let the FComm robots simulate Lumi robots under
StricterSSync. The only time a schedule will be created that does not adhere to StricterSSync
is in the following scenario. Let r be the last robot that has not executed a step in A since the
last reset-cycle. Now r will be the only robot that executes a step in A in the second phase. After
this cycle finishes, the next cycle will be a reset-cycle and all robots will reset their execute-light.
In the next execute-cycle, r can execute a step in A again, violating StricterSSync.

To avoid this situation, we add a new light to every robot, the last-executed-light. This light
can be either On or Off. The robots need to know the status of their own last-executed-light. To
do apply for this, we use the same solution as before. We add one copy-last-executed-light to each
robot, which will copy the status of the last-executed-light of its neighbours. If any neighbours have
their last-executed-light to On, the copy-last-executed-light will also be set to On. This copying
will be done in the first phase of every cycle, as with all other copying lights. Now a robot r will
set its last-executed-light to On whenever the above described scenario happens: Every robot has
its execute-light set to Executed, except for r. Robot r will now execute, go to Finished. It will
furthermore set its last-executed-light to On. The last-executed-light will be set to Off whenever r
wants to go to Copy and its neighbours indicate the the last-executed-light of r is set to On.

Now whenever r was the only robot to execute before the reset-cycle, r will know this in the
next cycle and will not execute a step in A. All robots will then go back to Copy, finishing the
cycle. When r goes back to Copy, it will set its last-executed-light back to Off. This will be copied
by the other robots and r will be able to execute again next cycle.
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Adding these 2 extra lights to each robot, each with 2 colors, adds a factor of 4 to the number
of colors. This brings the number of colors to 245760c(c + 1)6. This number could possibly be
lowered, because a robot always has at least two neighbours. This would eliminate the need for an
extra color Not used for 4 of the copy-lumi-lights and copy-execute-lights per robot. Furthermore,
not all combinations of lights are valid. For example, a robot will never be in state DoneCopy,
while having its execute-light set to AllExecuted. However, this will be left for future work. As a
result, we have the following.

Lemma 5.8. Lumi robots under StricterSSync can be simulated using FComm robots under
StricterSSync using 245760c(c+ 1)6 colors, when there are no multiplicities.

Using Lemma 5.8 and the fact that the opposite holds by definition under any scheduler:
Lumi ≥ FComm, we have the following.

Theorem 5.9. Lumi ≡ FComm for non-rigid robots under StricterSSync, when there are no
multiplicities.

Note that in FSync, Lumi ≡ FComm and in SSync Lumi > FComm. StricterSSync is
a scheduler with weaker restrictions than FSync but stronger restrictions than SSync for which
the two models are still computationally equivalent. Although we did not prove it here, we think
that StricterSSync is the weakest scheduler for which this equivalence holds.
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Discussion

In this thesis we have investigated the computational relations between the four models Oblot,
FState, FComm, and Lumi under the two synchronous schedulers FSync and SSync. We did
this for both non-rigid robots as well as for rigid robots and for robots that have a common chirality
as well as robots that lack such common notion of orientation. For these relations, there are still a
lot of open problems. The first is how models under FSync relate to models under SSync, as we
were not able to show these relations for non-rigid robots or for robots without a common chirality.
Furthermore, when considering a relation between two models under the same scheduler, we only
considered them both to be either rigid or non-rigid. It would be interesting to see the relations
when we compare one model with rigid robots to another with non-rigid robots. The same holds
for a common chirality. Lastly, we only considered models under the two synchronous schedulers
SSync and FSync. The relations concerning models under the asynchronous scheduler ASync,
where robots do not activate in rounds and there is no common notion of time, have not yet been
investigated.

Furthermore, we have shown a scheduler with weaker restrictions than FSync but stronger
restrictions than SSync for which the two models Lumi and FComm are computationally equi-
valent. Note that for the proof of this equivalence, we assumed that there are no multiplicities.
It is not trivial to adapt this simulation procedure to one that is able to handle multiplicities and
this is left for future work. This stands in contrast to some of the other relations between models,
for which we used problems that do include multiplicities. Moreover, it is still an open problem if
the proposed new scheduler is the weakest scheduler for which this equivalence between Lumi and
FComm holds. Lastly, in the simulation procedure the focus was not on the minimum number of
colors. Therefore, it could very well be possible that a procedure with a lower number of colors is
viable. This holds for all algorithms presented in this thesis.
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