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Abstract

ASML is the world’s leading provider of lithography systems for the semiconductor industry,
manufacturing complex machines that are critical to the production of integrated circuits or chips.
Miniaturization of microprocessors is connected to growing complexity of lithography systems,
imposing greater challenges on their design, prognostics and diagnostics. The ASML Research
department plays an important role in investigating original concepts and applications that drive
technological breakthroughs. Current ASML research focuses on probing data-driven techniques
that unravel the structure of the internal dynamics of lithography systems, in order to gain novel
insights into system behavior. Applying causal inference techniques such as the information-
theoretic transfer entropy on time series data generated by lithography systems is a promising
way to deal with this task.

This thesis investigates transfer entropy in the case of non-stationary time series, including
a theoretical analysis as well as practical estimation and insights. A concrete mathematical sys-
tem is studied, satisfying the additional condition of increment stationarity. Exact results are
derived, succeeded by the examination of a transfer entropy estimator in this system. Provided a
moderate amount of data are available, the estimator closely approximates the theoretical trans-
fer entropy values, however bias correction is required. This thesis also develops and executes a
benchmark study for the objective comparison of different causal inference methods in time series
data. Methods are qualitatively classified based on a set of important properties compiled, while
their performance and running times are carefully evaluated. Methods assessed generally exhibit
satisfactory performance, with the information-theoretic techniques tested ranking at the top.

Keywords: information theory, transfer entropy, causal inference, Granger causality, time series,
stationarity, random walk, dynamical systems
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Chapter 1

Introduction

1.1 Introduction to ASML

ASML is the world’s leading provider of lithography systems for the semiconductor industry, man-
ufacturing complex machines that are critical to the production of integrated circuits or chips.
ASML was founded in 1984 by Philips and Advanced Semiconductor Materials International with
the aim of developing lithography systems for the growing semiconductor market. It is a multina-
tional company with over 60 locations in 16 countries worldwide, on aggregate employing more
than 24,000 people.

Technology

A lithography system uses light to print tiny patterns on silicon, an essential step in the mass
production of computer chips. Light is projected through a blueprint of the pattern to be printed,
and is subsequently focused onto a photosensitive silicon wafer. After the pattern is printed, the
wafer is slightly moved and another copy is made. This process is repeated to fully cover the wafer
in patterns, comprising one layer of the wafer’s chips.

The wavelength of the light used dictates the type of the lithography system: ASML is the
world’s sole manufacturer of lithography systems employing Extreme Ultraviolet Light (EUV)
with a wavelength of 13.5 nanometers (comparable to that of an X-ray) offering significant im-
provements compared to the older Deep Ultraviolet (DUV) lithography systems that are also in
ASML production. A DUV system is shown in Figure 1.1.

Essential to ASML technology are the metrology solutions developed to rapidly measure ima-
ging performance on wafers. Relevant data are fed back to the system in real-time, safeguarding the
production performance of lithography systems. Inspection tools help in detecting and analyzing
defects that are located among billions of printed patterns. Moreover, ASML develops pioneer-
ing software that aids the manufacturing process - elevating lithography systems from high-tech
hardware to a hybrid of high-tech hardware and advanced software.

Research at ASML

Lithography systems are among the most complex systems manufactured today and ASML’s Re-
search department plays an important role in investigating novel concepts and applications to drive
technological breakthroughs. Within the Technology corporate function, the Research department
aims at creating, developing and demonstrating technology solutions that further explore, extend
and improve existing ASML technology roadmaps. After providing proof of concept, Research
results are transferred to other ASML corporate functions such as Development and Engineering
or System Engineering. This Master’s thesis was conducted within the Software & Data Science
team of the Research department.

Estimation of Transfer Entropy 1



CHAPTER 1. INTRODUCTION

Figure 1.1: The latest DUV lithography system NXT:2000i as seen on the website of ASML

1.2 Project description

Miniaturization of microprocessors goes hand in hand with growing complexity of lithography sys-
tems. The underlying physical mechanisms become increasingly complicated to fully understand,
imposing greater challenges on the design, prognosis and diagnosis of such systems.

Lithography systems are characterized by highly nonlinear dynamics observed over a large
parameter space across multiple time scales. Critical requirements include position control with
nanometer precision and temperature control with milli-Kelvin accuracy even during rapid accel-
eration of system modules.

Correlation studies as well as model-based approaches may prove inadequate to capture non-
linear causal dependencies in such complex systems, as correlation cannot prove causation and
prior model assumptions are often invalid. Model-free approaches such as the Information Theory
based Transfer Entropy do not rely on assumptions regarding underlying physical mechanisms,
but inevitably come with high computational costs.

In current ASML research, transfer entropy is used to identify causal interactions between time
series from ASML (sub-)systems, in order to gain better understanding of the system’s physical
behavior. New insights are key to enable reliable diagnostics and predictive maintenance or overall
system performance optimization through effective design improvements.

Investigating the hypothesis that transfer entropy is a viable measure of causality in lithography
systems, this thesis addresses the following research questions:

• ASML lithography system time series are often non-stationary, featuring e.g. drifts or de-
grading processes. However, current transfer entropy estimators typically assume stationar-
ity of input data. How to estimate transfer entropy in non-stationary time series?

• A wide range of causal inference methods has been proposed over the years, coming from
a diverse group of mathematical theories. Each of these methods has its own merits and
limitations considering different criteria of causal inference. Which characteristics can be
used to classify causal inference methods, and which criteria can be used to compare and
contrast their performance? Although transfer entropy has demonstrated to be a promising
measure of causality in ASML lithography systems, it is important to benchmark its per-
formance against other causal inference methods. How to develop and what are the results
of a benchmark study featuring several causal inference methods, including transfer entropy?

2 Estimation of Transfer Entropy
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1.3 Report outline

Succeeding the current chapter, a theoretical introduction featuring the mathematical background
and details relevant to the project comprises Chapter 2. Chapter 3 contains a discussion of
estimators in Information Theory, thereby setting up a comprehensive study of transfer entropy in
a non-stationary setting presented in Chapter 4 that pertains to the first research question. The
report subsequently shifts to the second research question, commencing with a discussion of data
in Chapter 5. A benchmark framework corresponding to the second research question is developed
in Chapter 6 and its results are presented and discussed in Chapter 7. The report finishes with
Chapter 8 where conclusions are drawn, results are summarized and further research questions are
formulated.

Estimation of Transfer Entropy 3





Chapter 2

Theoretical Background

This chapter contains a comprehensive discussion of the relevant mathematical theory that is used
in this project. It introduces the mathematical fields of information theory and causal inference as
well as specific topics in the field of stochastic processes and time series. Supplementary knowledge
relating to the contents of this chapter is given in Appendix A.

2.1 Information theory

The field of information theory was pioneered by C. Shannon in his landmark article Shannon
(1948), where a mathematical treatment of communication was presented and relevant terms such
as the entropy of a random variable were introduced. The following are based on Cover and
Thomas (2006), one of the main references for information theory, as well as Bossomaier et al.
(2016).

2.1.1 Shannon entropy

Consider a discrete random variable X and its image X that contains its (countable) values. Let
pX(x) = P (X = x) be the probability mass function of X. The information content of an x ∈ X
is defined as

h(x) = − log pX(x) (2.1)

The entropy of a random variable is then the average information content of the variable, and it
can be thought of as the average information or uncertainty of this random variable. Formally,

Definition 2.1.1 (Shannon Entropy). The Shannon entropy of a discrete random variable X with
a probability mass function pX is defined as

H(X) = −
∑
x∈X

pX(x) log pX(x) (2.2)

The selection of the logarithmic function in defining the above can be rigorously derived starting
from a general entropy form and stipulating an axiom (see Appendix A).

In the following, the subscript in pX may be omitted given that the variable we refer to is clear.
When a logarithm with base 2 is used, entropy is measured in bits. In his original formulation,
Shannon used natural logarithms. In that case, entropy is measured in nats. Throughout the
report, log denotes the natural logarithm, and other bases are explicitly denoted with a subscript.

Example 2.1.2. Consider a random variable following a discrete uniform distribution over 32
outcomes, i.e. X ∼ U({1, 32}). The entropy of this random variable is

H(X) = −
32∑
i=1

p(i) log2 p(i) = −
32∑
i=1

1

32
log2

1

32
= log2 32 = 5 bits. (2.3)

Estimation of Transfer Entropy 5



CHAPTER 2. THEORETICAL BACKGROUND

Shannon’s original article pertains to the mathematical formalization of communication. Within
this context, entropy is defined as a means to studying the communication of a source with
a destination through a channel. While the field of signal processing that intertwines Shannon’s
theory of communication is out of scope for this project, a short remark is now given on interpreting
the above example from the perspective of data compression.

Intuitively, to be able to identify an outcome of this variable, a label that can take 32 different
values is needed. A five-dimensional binary vector (that is, a 5-bit string) is therefore enough, as it
can be used to encode 25 = 32 different values. This is not coincidental; there is a deep connection
between the entropy of a random variable and the length of codes that are able to describe them
(Cover and Thomas, 2006, Chapter 5).

Entropy can be naturally extended to two (or more) random variables by simply considering
them as a single random vector.

Definition 2.1.3 (Joint Entropy). The joint entropy of two discrete random variables X and Y
is

H(X,Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) log p(x, y) (2.4)

Joint entropy is measuring the uncertainty included in the random vector (X,Y ).

A key quantity to define is conditional entropy : the uncertainty left in a random variable after
we have taken into account some context.

Following the idea of the definition of conditional expectation, first the conditional entropy of
X given that Y = y is defined. This is done by utilizing the conditional probability mass function
p(x|y):

H(X|y) = −
∑
x∈X

p(x|y) log p(x|y) (2.5)

Note that H(X|y) is a function of y. To get the conditional entropy of X given Y we then simply
average over y:

Definition 2.1.4 (Conditional Entropy). The conditional entropy of X given Y , where X and Y
are discrete random variables is given by:

H(X|Y ) =
∑
y∈Y

p(y)H(X|y) = −
∑
y∈Y

p(y)
∑
x∈X

p(x|y) log p(x|y) (2.6)

A useful result that connects joint and conditional entropy is the following chain rule:

Theorem 2.1.5 (Chain Rule). For two discrete random variables the following holds:

H(X,Y ) = H(X) +H(Y |X) (2.7)

Shannon entropy can be extended to the case of continuous random variables. In that case, it is
known as differential entropy.

Theorem 2.1.6 (Differential Entropy). The differential entropy h(X) of a continuous random
variable X with probability density function f is defined as

h(X) = −
∫
A

f(x) log f(x)dx (2.8)

where A is the support of the density f of X, namely A = {x ∈ X : f(x) > 0}

Note that the integral need not necessarily exist, and contrary to the discrete case, it can be
negative.
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Example 2.1.7. As an example, the differential entropy of a normally distributed random variable
is calculated below: Let X ∼ N (0, σ2). The density of this random variable is:

ϕ(x) =
1√

2πσ2
exp

(
− x2

2σ2

)
, x ∈ R (2.9)

Then,

h(X) = −
∫
R
ϕ(x) logϕ(x)dx

= −
∫
R
ϕ(x)

[
− x2

2σ2
− log(

√
2πσ2)

]
dx

=
E[X2]

2σ2
+

1

2
log(2πσ2)

=
1

2
+

1

2
log(2πσ2)

=
1

2
log e+

1

2
log(2πσ2)

=
1

2
log(2πeσ2) nats.

(2.10)

To derive the differential entropy in bits, the base of the logarithm is changed from e to 2:

h(X) =
1

2
log2 2πeσ2 bits. (2.11)

Just like its discrete counterpart H, differential entropy h can be extended to joint and conditional
differential entropy in a similar way. The chain rule for differential entropy also exists. The same
holds for mutual information, a discussion of which from the discrete perspective follows.

Note that for any given dataset, the calculation of entropy and other relevant information
theoretic quantities simply involves the estimation of probability functions. Therefore, when in-
formation theory techniques are employed for the study of a dataset, no concrete assumptions
about the relations between the variables in the form of a model are needed. In that sense inform-
ation theory methods are model-free.

At the same time, the absence of model assumptions combined with a potential high-dimensionality
of information-theoretic quantities imposes significant difficulty to their estimation; this is the sub-
ject of Chapter 3.

2.1.2 Mutual information

Intuitively, H(X) is the uncertainty in X, while H(X|Y ) is the uncertainty that remains in X
after observing Y . It is also sensible to be interested in the reduction of uncertainty in X due to
the knowledge of Y .

This is exactly the notion of mutual information: the amount of information that is shared
between two random variables X and Y . Mutual information is a measure of their statistical
dependence, a generalized version of the correlation coefficient to the non-linear case.

Definition 2.1.8 (Mutual Information). The mutual information of two discrete random variables
X and Y , is given by:

I(X;Y ) = H(X)−H(X|Y ) (2.12)

Taking into account (2.7), it is easily seen that H(X)−H(X|Y ) = H(Y )−H(Y |X), which makes
mutual information symmetric in X and Y .

Expanding the above definition by substituting the analytical formulas for entropy and condi-
tional entropy, mutual information admits a convenient form, that can also be expressed via the
Kullback-Leibler divergence measure:
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Definition 2.1.9 (K-L Divergence). Given two discrete random variables defined on the same
probability space with respective probability mass functions p and q. If q(x) = 0 implies p(x) = 0
∀x ∈ X , then the Kullback-Leibler (K-L) divergence is defined as

D(p||q) =
∑
x∈X

p(x) log
p(x)

q(x)
(2.13)

with the convention 0 log 0
0 = 0 and D(p||q) = +∞ if ∃ x ∈ X : q(x) = 0 and p(x) > 0.

The Kullback-Leibler divergence is not symmetric, nor does it satisfy the triangle inequality.
However, it can be loosely thought of as the distance between the probability distributions p and
q. This is also encouraged by the following result that we prove in Appendix A:

Theorem 2.1.10. Let p and q be two probability mass functions defined on the same probability
space. Then

D(p||q) ≥ 0 (2.14)

with equality if and only if p(x) = q(x) for all x.

Now, for the random variables X and Y , mutual information is the distance (in the Kullback-
Leibler sense) of the joint probability function p(X,Y )(x, y) from the product of the marginal
probability functions pX(x)pY (y) which we denote with pX × pY in the K-L operator.

I(X;Y ) = D(p(X,Y )||pX × pY ) =
∑
x∈X

∑
y∈Y

p(X,Y )(x, y) log
p(X,Y )(x, y)

pX(x)pY (y)
(2.15)

The above results yield a characterization of independence through mutual information. Indeed,
for random variables X and Y , using the expression (2.15) and theorem (2.1.10) we infer that
I(X;Y ) = 0 if and only if p(X,Y )(x, y) = pX(x)pY (y), that is, if and only if, X and Y are
independent. The following corollary is thus proven:

Corollary 2.1.11. The random variables X and Y are independent if and only if I(X;Y ) = 0

In that sense, mutual information quantifies the distance of X and Y from independence, justifying
its interpretation as a measure of dependence. Another interesting corollary follows from Theorem
2.1.10. In Example 2.1.2 we calculated the Shannon entropy for a discrete uniform random variable
X with an image X . Its Shannon entropy was found to be equal to 5 which is equal to log2 32,
while 32 was the cardinality of X . This was not a coincidence; we will now prove that this value
was the maximum possible entropy for a discrete probability distribution defined over X .

Corollary 2.1.12. Let X be a discrete random variable, and X be its image with a finite car-
dinality |X |. Then, H(X) ≤ log

(
|X |
)
, with equality if and only if X has the discrete uniform

distribution over X .

Proof. Let u(x) = 1
|X | be the probability mass function of the discrete uniform distribution over

X , and let p be an arbitrary probability mass function of X. We write:

D(p||u) =
∑
x∈X

p(x) log
p(x)

u(x)
=
∑
x∈X

p(x) log p(x)−
∑
x∈X

p(x) log
( 1

|X |
)

= log
(
|X |
)
−H(X) (2.16)

From Theorem 2.1.10 we get that log
(
|X |
)
− H(X) ≥ 0. The result follows by observing that

log
(
|X |
)

is the entropy of the discrete uniform distribution over X . This can be easily proven
through a direct calculation such as the one featured in example 2.1.2.

Since mutual information is directly defined through (conditional) entropy, extending mutual
information to conditional mutual information is straightforward:
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Definition 2.1.13 (Conditional Mutual Information). Let X,Y, Z be discrete random variables.
The conditional mutual information of X and Y given Z is

I(X;Y |Z) = H(X|Z)−H(X|Y, Z) (2.17)

The conditional mutual information of the random variables X and Y conditioned on Z is the
information that is shared between X and Y in the context of Z.

If mutual information being zero characterized the independence of X and Y , conditional
mutual information being zero characterizes the conditional independence of X and Y given Z.

2.1.3 Transfer entropy

Mutual information quantifies the information that is shared between two static random variables.
However, in applications as well as in research, it is very often the case where time-dynamic
processes are considered, and data from multiple sources are registered over time.

The extension of the idea behind mutual information to the time-dynamic case, was conceptu-
alized within the context of information theory as the quantification of the information transfer
between different time series.

Attempting to formalize a measure for the transfer of information from a time series Yt (the
source) to a time series Xt (the target), T. Schreiber proposed the notion of transfer entropy in
Schreiber (2000).

Throughout the report, transfer entropy (TE) is considered in discrete time. This is also the
case for the overwhelming majority of literature. Recent advances on continuous time transfer
entropy exist (Spinney et al. (2017), Cooper and Edgar (2019)) but they are out of scope for this
project.

To define TE following the original formulation of Schreiber, first a Markovian assumption has
to be made. We thus define:

Definition 2.1.14 (Markov chain of order m). A discrete time stochastic process {Xt}t∈N is a
Markov chain of order m when, for any t > m, the following property holds:

P (Xt = xt|Xt−1 = xt−1, ..., X1 = x1) = P (Xt = xt|Xt−1 = xt−1, ..., Xt−m = xt−m) (2.18)

That is, the future of such a process only depends on its past m states. As noted above, TE will
always be considered in discrete time; in the following, the terms Markov process and Markov
chain are therefore used interchangeably.

To define TE, it is assumed that the source Yt is a Markov process of order `, and the target Xt

is a Markov process of order k. Therefore, the future state of the source and target only depends
on their past ` and k states respectively. Note that Xt is allowed to depend on the future of Yt
and information might still be getting transferred from Yt to Xt; in fact, this is what TE aspires
to investigate.

Remark. Notice here the implicit assumption that the future value of the target Xt depends only
on its past states or on both its past states and the past states of the source Yt - there is no third
process Zt interfering with the target Gencaga et al. (2015). This constraint is removed with the
introduction of conditional transfer entropy.

Before proceeding with transfer entropy the notion of embedding vectors is first defined.

Definition 2.1.15 (Embedding Vector). Let {Ut}t∈Z be a time series. The embedding vector

U
(d,τ)
t is the following random vector of past states of Ut:

U
(d,τ)
t = (Ut, Ut−τ , Ut−2τ , ..., Ut−(d−1)τ ) (2.19)

The embedding vector notation U
(d,τ)
t can be simplified to U

(d)
t when τ = 1, which yields the em-

bedding vector (Ut, Ut−1, Ut−2, ..., Ut−(d−1)). In literature, the parameter d is called the embedding
dimension and τ is called the embedding delay.

Now, transfer entropy can be defined.

Estimation of Transfer Entropy 9



CHAPTER 2. THEORETICAL BACKGROUND

Definition 2.1.16 (Transfer Entropy). At time t, the transfer entropy from the `th order Markov
process Yt (the source) to the kth order Markov process Xt (the target) is defined as follows:

T
(k,`)
Y→X(t) = I(Xt;Y

(`)
t−1|X

(k)
t−1) (2.20)

Note that in (2.20), k and ` are both embedding dimensions and are still denoted with the super-
script (k, `) since the embedding delay τ = 1 and is therefore omitted. Furthermore, for stationary
processes (see Section 2.3) the time index t can be omitted.

Remark. The introduction of embedding vectors given the Markovian assumption of (2.20) may
appear as mere notational convenience. Indeed, the Markovian context formulated here is naturally

associated with the embedding vectors Y
(`)
t−1, X

(k)
t−1 since they capture the memory of each process.

However, for the general case and in real data where a similar Markovian assumption might be
invalid, the discussion of embedding vectors is much deeper - and interconnected with the theory
of dynamical systems Takens (1981), Kantz and Schreiber (2006). We therefore note that the
Markovian assumption that is made here mostly serves simplification purposes - all definitions
and results of this section still hold without it.

According to the mutual information interpretation discussed before, transfer entropy is the in-
formation that is shared between the current state of the target and the past states of the source,
in the context of the target’s own past. Note that TE is not symmetric in X and Y . Thus, it is
appropriate for capturing the directed information transfer between two processes. This notion of
directionality is also of paramount importance to the causal interpretation of TE that follows.

Transfer entropy is therefore a form of conditional mutual information. Using (2.7) and (2.17),
it can be simplified to a combination of joint and marginal entropies:

T
(k,`)
Y→X(t) = I(Xt;Y

(`)
t−1|X

(k)
t−1)

= H(Xt|X(k)
t−1)−H(Xt|X(k)

t−1, Y
(`)
t−1)

= H(Xt, X
(k)
t−1)−H(X

(k)
t−1)−H(Xt, X

(k)
t−1, Y

(`)
t−1) +H(X

(k)
t−1, Y

(`)
t−1)

(2.21)

Besides the interpretation of TE stemming from the conditional mutual information definition
(2.20) given above, the second equality of (2.21) provides another interpretation of TE in terms
of conditional entropy. Recall that conditional entropy H(X|Y ) is the uncertainty left in X after
accounting for Y , or in other words, the degree of uncertainty of X resolved by Y . Therefore, TE
may equivalently be understood as the degree of uncertainty of X resolved by the past of Y over
and above the degree of uncertainty of X resolved by its own past.

Since TE is a form of conditional mutual information, conditioning on a third process Z = Zt
when examining the information transfer Y → X from source Y to target X is trivially done by
simply adding Z in the conditional part of (2.20).

This enables the definition of conditional transfer entropy.

Definition 2.1.17 (Conditional transfer entropy). At time t, the conditional transfer entropy
from the `th order Markov process Yt to the kth order Markov process Xt given the mth order
Markov process Zt is defined as:

T
(k,`,m)
Y→X|Z(t) = I(Xt;Y

(`)
t−1|X

(k)
t−1, Z

(m)
t−1 ) (2.22)

In his original formulation, Schreiber gives an equivalent analytic definition for TE which we
prove in Appendix A as a theorem. In the following, the letter p is used to denote different

probability mass functions, to avoid overloading notation. For example, p(x
(k)
t−1) = p

X
(k)
t−1

(x
(k)
t−1),

while p(xt, x
(k)
t−1, y

(`)
t−1) = p

(Xt,X
(k)
t−1,Y

(`)
t−1)

(xt, x
(k)
t−1, y

(`)
t−1)

Theorem 2.1.18 (Transfer Entropy - Analytic). As defined in (2.20), transfer entropy admits
the following analytic form:

T
(k,`)
Y→X(t) =

∑
xt,x

(k)
t−1,y

(l)
t−1

p(xt, x
(k)
t−1, y

(`)
t−1) log

p(xt|x(k)
t−1, y

(`)
t−1)

p(xt|x(k)
t−1)

(2.23)
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To better interpret the analytic form of transfer entropy, we can decompose (2.23) into:

T
(k,`)
Y→X(t) =

∑
x
(k)
t−1,y

(`)
t−1

p(x
(k)
t−1, y

(`)
t−1)

∑
xt

p(xt|x(k)
t−1, y

(`)
t−1) log

p(xt|x(k)
t−1, y

(`)
t−1)

p(xt|x(k)
t−1)

(2.24)

Note that the inner sum is the K-L divergence between the distributions Xt|(X(k)
t−1, Y

(l)
t−1) and

Xt|X(k)
t−1, i.e. the deviation of the target Xt from independence from (the past of) a source Yt

in the context of the target’s own past. Then, TE is this K-L divergence averaged over the

distribution of the past states (X
(k)
t−1, Y

(l)
t−1).

Recalling that any K-L divergence is non-negative (Theorem 2.1.10) makes transfer entropy
a non-negative measure of directed information transfer. Moreover, combining the fact that con-
ditional mutual information characterizes the notion of conditional independence (see comments
below (2.17)), and the analytic form of TE (2.23), it can be seen that TE also characterizes a
specific conditional independence relation between the source and the target:

T
(k,l)
Y→X(t) = 0 ⇐⇒ (2.25)

I(Xt;Y
(`)
t−1|X

(k)
t−1) = 0 ⇐⇒ (2.26)

p(xt|x(k)
t−1, y

(l)
t−1) = p(xt|x(k)

t−1) ⇐⇒ (2.27)

(xt ⊥⊥ y(`)
t−1) | x(k)

t−1 (2.28)

That is, the transfer entropy from source Y to target X being zero is equivalent with the present
of the target being independent of the source’s past in the context of the target’s own past.

Since its introduction, TE has attracted significant attention of both practitioners and re-
searchers in a variety of scientific fields ranging from neuroscience to finance and engineering (e.g.
Vicente et al. (2010), Papana et al. (2015), Bauer et al. (2007)).

The prominence of TE is largely due to a very specific quality it carries as a measure of directed
information transfer: a causal interpretation. Transfer entropy therefore establishes a connection
between Information Theory and Causal Inference. This statement and the concepts involved are
elaborated in the following section, and a succinct presentation of the causal inference theory that
is relevant to this project is given.

2.2 Causal inference

Inferring the relationship between a cause and its effect is among the most fundamental questions in
science. In fact, it traditionally exceeded the scientific domain; historically, the study of causality
has been a subject of philosophical debate De Pierris and Friedman (2018).

Specifically, while the philosophical study of causal reasoning dates back to Aristotle Falcon
(2019), it was not until the 20th century when the foundations of causality as a scientific discipline
were established.

During the first half of the 20th century, the work of Sewall Wright in structural equation
modelling Wright (1921), of Ronald Fisher in the design of experiments Fisher (1949), or of
Bradford Hill in randomized clinical trials Hill (1965), were some of the cornerstones that inspired
the development of causal inference, in an effort to advance science from association to causation.
Modern theories of causality emerged in the late 20th century. Notable examples include the
potential outcomes framework Rubin (1974) (and its independent precursor Neyman (1923)), the
theory of structural causal models Pearl (2000), and the sufficient cause model Rothman (1976).
For a unified causal language as proposed in Pearl (2000), the notion of an intervention in a system
is of fundamental importance.

For the goals of the project, the focus is on causal inference methods that study causal relations
between time-dynamic processes, or, alternatively, aim to unveil the causal structure of a time-
dynamic dataset with interacting variables. As we will see below, in this context, causality is
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generally assigned a specific meaning, and intervening in a system is not required for inferring
causation. These remarks clearly indicate the subset of causality theory to be examined: causal
inference in the analysis of time series.

2.2.1 Granger causality

Introducing any method for causal inference implicitly presumes the existence of a concrete defin-
ition of causality. For time series analysis, the central notion of causality is the one formalized in
Granger (1969) inspired by the ideas of Wiener (1956).

Since the introduction of Granger causality (GC), researchers have introduced other notions
of causality in the context of time series, by extending Granger causality or adapting the ideas
of other causal inference frameworks to time series Eichler (2012). It is however without a doubt
that GC has been the most influential and popular causality concept for time series and a concise
overview of it follows.

The intuition behind GC is an improvement in prediction, as envisioned in Wiener (1956):

“For two simultaneously measured signals, if we can predict the first signal better by using the
past information from the second one than by using the information without it, then we call the
second signal causal to the first one.”

Granger formalized this concept, postulating the following:

• the cause precedes the effect

• the cause contains information about the effect that is unique, and is in no other variable

According to Granger, a consequence of these two statements is that the causal variable helps
in forecasting the effect variable after other data has been first used Granger (2004). While the
first statement above is commonly accepted throughout causal inference, the second statement is
more subtle as it requires the information provided by X about Y to be unique and separated
from all other possible sources of information Eichler (2012). These statements enabled Granger
to consider two information “sets”, relating to a time series Y = Yt:

• I∗(t) is the set of “all information in the universe up to time t”

• I∗−Y (t) contains the same information except for the values of series Y up to time t.

From the discussion above, it is now expected that if Y causes X the conditional distributions of
Xt+1 given the two information sets I∗(t), I∗−Y (t) differ from each other.

In other words, Y is said to cause X if Granger (1980):

P
(
Xt+1 ∈ A

∣∣∣I∗(t)) 6= P
(
Xt+1 ∈ A

∣∣∣I∗−Y (t)
)

(2.29)

Otherwise, if the two probability distributions above are equal, Y does not cause X. Granger
causality is then formulated as a statistical hypothesis, with the null hypothesis being equality of
distributions and therefore no causation.

While intuitive, (2.29) is more of a concept than a rigorous definition. It is clear that the
aforementioned sets I∗(t), I∗−Y (t) are not well-defined. Granger himself notes Granger (1980):

“The ultimate objective is to produce an operational definition, which this is certainly not, by
adding sufficient limitations.”

For mathematical rigor, a specific implementation of this idea is required. Indeed, testing this
hypothesis can be done in a variety of ways, from a parametric or non-parametric standpoint, and
multivariate extensions have been proposed. Each implementation features its own theory and
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results coming from the wider framework it belongs to (see Hlavackova-Schindler et al. (2007) and
references therein).

In his initial formulation, Granger implemented this idea within the framework of linear
(auto)regression. Consider the following two nested models where εt, ε̃t are the model residuals:

Xt =

q∑
i=1

aiXt−i + εt (2.30)

Xt =

q∑
i=1

aiXt−i +

q∑
i=1

biYt−i + ε̃t (2.31)

There are now two approaches in this context for inferring Granger causality from source Y to
target X, which are roughly equivalent (Bossomaier et al., 2016, Chapter 4):

First, Y is inferred to causeX whenever the full model that includes Y yields a better prediction
of X compared to the reduced model that does not. Standard linear prediction theory Hamilton
(1994) suggests measuring this by comparing the variances of the residuals ε̃t, εt of the models
through their ratio. Following Geweke (1982), the corresponding test statistic is:

FY→X = log
V ar(εt)

V ar(ε̃t)
(2.32)

The second approach is based on maximum likelihood (see Section 2.4.3). Geweke (1982) notes
that, if the residuals εt, ε̃t are normal, FY→X is the log-likelihood ratio test statistic for the model
(2.31) under the null hypothesis

H0 : b1 = b2 = ... = bq = 0 (2.33)

Recalling (2.29), note that H0 is equivalent with no Granger causation, since failing to reject H0

is equivalent with the two information sets I∗(t) and I∗−Y (t) being equal.

The estimation of the parameters of the model, including the variance of the residuals, can
be achieved through a standard ordinary least squares approach (see Section 2.4.2). Then, the
estimator of the test statistic F̂Y→X can be calculated.

Since var(εt) ≥ var(ε̃t), it holds that FY→X ≥ 0. Geweke (1982) utilizes large-sample theory to
characterize the distribution of the estimator F̂Y→X as a χ2 distribution under the null hypothesis
FY→X = 0, and a non-central χ2 distribution under the alternative FY→X > 0. Assuming enough
data, the appropriate χ2 distribution is subsequently used to infer about the hypothesis.

An interesting extension to GC was given in Geweke (1984). There, conditional Granger
causality is introduced. Using the same linear regression framework as before, the time series
Z = Zt is also introduced, which can be thought of as the side information in a system. The models
(2.30), (2.31) are subsequently expanded by adding the side information Z as an explanatory
variable:

Xt =

q∑
i=1

aiXt−i +

q∑
i=1

ciZt−i + εt (2.34)

Xt =

q∑
i=1

aiXt−i +

q∑
i=1

ciZt−i +

q∑
i=1

biYt−i + ε̃t (2.35)

Then, the existence of conditional Granger causality Y → X|Z is tested as before:

FY→X|Z = log
var(εt)

var(ε̃t)
(2.36)
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2.2.2 Transfer entropy and causality

In this section, the connection between transfer entropy and Granger causality is established and
discussed. This is partially achieved through the example of normally distributed variables.

From the discussions before, subtle similarities between transfer entropy and Granger causal-
ity already appear. For example, both notions disregard in their definition one of the essential
requirements for establishing any causal relation in the traditional sense: that of interventions.

Moreover (see Wiener’s original idea in Section 2.2.1), GC is defined in terms of prediction
improvement: a Granger-causal relation from Y to X is the degree to which Y predicts the future
of X beyond the degree to which X already predicts its own future.

On the other hand (see discussion below (2.21)), TE is defined in terms of resolution of uncer-
tainty: the transfer entropy from Y to X is the degree to which Y disambiguates the future of X
beyond the degree to which X already disambiguates its own future Barnett et al. (2009).

Barnett et al. (2009) established a rigorous connection between TE and GC by proving the
following result, concentrating on the conditional case as formulated in (2.22) and (2.36):

Theorem 2.2.1. Let FY→X|Z as in (2.36). For three jointly Gaussian and stationary time series1

Xt, Yt, Zt it holds that

FY→X|Z = 2TY→X|Z (2.37)

Furthermore, it was later proved by Serès et al. (2016) that inequality still holds even without the
normality assumption:

Theorem 2.2.2. For three jointly distributed and stationary time series Xt, Yt, Zt it holds that

FY→X|Z ≤ 2TY→X|Z (2.38)

The connection between TE and GC is further extended (within the autoregressive framework)
to various generalized Gaussian/exponential distributions Schindlerova (2011) and ultimately to
a general class of Markov models in a maximum likelihood framework Barnett and Bossomaier
(2012). For a more elaborate presentation of the relationship between TE and GC, we refer to
(Bossomaier et al., 2016, Section 4.4).

Information Transfer and Causality

At a certain point, results such as those presented in Section 2.2.2 may lead to confusion regarding
the differences between transfer entropy and Granger causality. Moreover, the interpretation of
transfer entropy as a non-linear and non-parametric extension of Granger causality that is popular
in the scientific community might exacerbate this problem.

Section 2.2.1 elaborates on what causality actually means, in the context of Granger causality.
It is therefore clear that causality in the Granger sense is essentially an improvement in prediction,
or a predictive transfer. This notion of causality might differ from more traditional causality
theories (e.g. Pearl (2000)); but it is intuitive, able to implemented simply through linear models
and therefore convenient for practical purposes.

If TE is thought of as an extension of GC (because of results such as those presented in
this section), intuitively one might think that the causal content of GC is also extended to TE;
making TE a general tool for capturing causality in the predictive transfer sense. This perspective
considered by itself can be precarious, as it disregards the theoretical framework that TE ultimately
comes from: information theory.

Moreover, besides the predictive transfer sense, causal inference in general is fundamentally
associated with causal effects. In this sense, causality refers to the source having a direct influence
in the (next state of) the target, and changes in the target being driven by changes in the source.

As seen in its introductory Section 2.1.3, TE is fundamentally a measure that quantifies the
directed information transfer from a source to a target.

1Defined in Section 2.3
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The question now is whether the concept of information transfer is closer to that of predictive
transfer (as seen in Granger causality) or causal effect (in the “direct influence” sense). It is thus
important to disambiguate the relation of information transfer and causality.

Lizier et al. (2008) state that the relation of these concepts has not been made clear, leading
to researchers frequently misusing them by utilizing one to infer about another or even directly
equating them. They furthermore argue that the concepts of predictive transfer and causal effect
are distinct. Among the two, they assert that the notion of information transfer is closer to
that of predictive transfer, and therefore TE is indeed a sensible quantification of causality in the
predictive transfer sense. For an information theoretic treatment of causality in the sense of causal
effects and direct influences, they propose the measure of information flow that was introduced
in Ay and Polani (2008) as a more fitting quantification of that notion.

The theoretical presentation of TE concludes with referring to its shortcomings. In an insightful
paper, James et al. (2015) demonstrate inherent limitations of TE stemming from the nature of
mutual information that have led to misinterpretations. Under specific conditions, TE might
overestimate the information flow, or completely miss it. This relates to how information can be
decomposed Williams and Beer (2010), and is an active area of research Finn and Lizier (2020).

2.3 Time series

This section includes key notions from the field of time series that are of central importance to
the project. Theoretical concepts as well as important examples of time series are presented. This
section is largely based on Brockwell and Davis (2009) and Brockwell and Davis (2010).

2.3.1 Stationarity in time series

Stationarity is an important concept that is assumed for many time series analysis methods.
However, in real data, stationarity is not always encountered, and non-stationary patterns can
contain information that is of utmost importance. This section therefore introduces the concept
of stationarity for time series.

Definition 2.3.1 (Autocovariance function). For a time series {Xt, t ∈ Z} such that V ar(Xt) <
∞ for each t ∈ T , the autocovariance function γX(·, ·) of Xt is defined as:

γX(t, s) = Cov(Xt, Xs) = E
[
(Xt − E[Xt])(Xs − E[Xs])

]
, t, s ∈ Z (2.39)

Definition 2.3.2 (Weak Stationarity). The time series {Xt, t ∈ Z} is weakly stationary if

• E
[
|Xt|2

]
< +∞ for all t ∈ Z

• E[Xt] = m, for all t ∈ Z where m ∈ R

• γX(t, s) = γX(t+ h, s+ h) for all t, s, h ∈ Z

So, a weakly stationary time series has a finite second moment everywhere, a constant first moment
everywhere, and its autocovariance function is invariant under translations. In literature, weak
stationarity is also known as covariance stationarity, second order stationarity, or stationarity in
the wide sense. For simplicity, throughout the report, the use of the term “stationarity” alone will
refer to weak stationarity, and strict stationarity as defined below will be always made explicit.

It is easy to see that the stationarity property implies that γX(t, s) = γX(t−s, 0). It is therefore
convenient to redefine the autocovariance function for stationary time series as a function of one
variable (the length of the time interval t− s considered):

γX(h) ≡ γX(h, 0) = Cov(Xt+h, Xt) (2.40)

In that case, the autocorrelation function can also be defined similarly:

ρX(h) =
γX(h)

γX(0)
(2.41)
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Definition 2.3.3 (Strict Stationarity). The time series {Xt, t ∈ Z} is strictly stationary if, for
any k ∈ N and t1, ..., tk, h ∈ Z the following random vectors have the same distribution:

(Xt1 , ..., Xtk)
d
= (Xt1+h, ..., Xtk+h) (2.42)

In other words, if the time series Xt is strictly stationary the distribution of any random vector is
invariant under time translations.

It is intuitively expected that strict stationarity implies weak stationarity. This is not exactly
right as a time series can be strictly stationary with an infinite second moment, and thus not
weakly stationary. But if finiteness is assumed for the second moment of a strictly stationary
process, then weak stationary is indeed implied.

Theorem 2.3.4. A strictly stationary time series {Xt, t ∈ Z} with E
[
|Xt|2

]
<∞ for all t ∈ Z is

weakly stationary.

Proof. The proof can be found in Appendix A.

Weak stationarity does not imply strict stationarity in general, and an example of that is also
given in Appendix A. There is, however, an important case where that happens: Gaussian time
series. Since they are essential for the project, a short introduction to them is given in the next
section.

2.3.2 Important examples

In this section, a variety of examples of important time series is introduced. Different concepts of
noise, the random walk, the autoregressive process as well as Gaussian time series are introduced.

IID noise

A first trivial example of a time series is the i.i.d. noise.

Definition 2.3.5 (i.i.d. noise). Let Xt be a sequence of independent and identically distributed
random variables, with mean zero and variance σ2. This time series is referred to as i.i.d noise.

Provided that E[X2] = σ2 <∞, i.i.d. noise is stationary, with

γX(t+ h, t) =

{
σ2 if h = 0

0 if h 6= 0
(2.43)

Random Walk

The random walk is obtained by considering the partial sums of i.i.d noise.

Definition 2.3.6 (Random Walk). A random walk with zero mean is obtained by defining S0 = 0
and letting

St = X1 +X2 + ...+Xt, for t = 1, 2, ... (2.44)

where Xt are i.i.d random variables.

It holds that E[St] = 0, E[S2
t ] = tσ2 <∞ for all t and for h ≥ 0,

γs(t+ h, t) = Cov(St+h, St) = Cov(St +Xt+1 + ...+Xt+h, St) = Cov(St, St) = tσ2 (2.45)

Since γs(t+ h, t) depends on t, the random walk St is not stationary.
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White Noise

A time series with uncorrelated zero mean random variables is referred to as white noise.

Definition 2.3.7 (White noise). The time series Xt is called white noise if E[Xt] = 0 and
Cov(Xt, Xs) = 0 for t 6= s.

White noise is clearly stationary, having the same autocovariance function with i.i.d noise. It also
holds that every i.i.d noise is white noise, but not conversely.

AR(1)

A very important example of time series is the autoregressive process of order 1, written shortly
as AR(1).

Definition 2.3.8. A first-order autoregressive process Xt is defined recursively as follows:

Xt = ϕXt−1 + Zt (2.46)

where |ϕ| < 1, Zt is a white noise process with variance σ2 and Zt is uncorrelated with Xs, for
each s < t. Here, t ∈ I where I = N or I = Z.

For the condition for φ we refer to (Brockwell and Davis, 2009, p.81). The index t of an AR(1)
process Xt may be defined over Z or N. In the following, we will contrast these two approaches.
The concepts of stability and stationarity for AR(1) processes warrant separate treatments. For
this purpose we introduce the lag operator.

Definition 2.3.9. (Lag operator) Let {Xt}t∈Z be a time series, k ∈ Z. The lag operator Lk is
defined as:

LkXt = Xt−k (2.47)

In the case were k = 1, the lag operator maps a value of the time series to the one before it, and
the term backshift operator B is preferred. Applying the operator (I −B) (where I is the identity
operator) to a time series Xt is of particular importance.

Definition 2.3.10. Let {Xt}t∈Z be a time series. The first difference operator ∆ is defined as:

∆Xt = (I −B)Xt = Xt −Xt−1 (2.48)

The time series {∆Xt}t∈Z comprises the (lag-one) increments of Xt. In case {∆Xt}t∈Z is sta-
tionary we then say that {Xt}t∈Z has stationary increments.

This definition is directly extended for d ∈ N to d-order differencing via ∆dXt := (I −B)dXt.
Then, an AR(1) process is rewritten as:

Xt = ϕXt−1 + Zt ⇐⇒ (2.49)

(I − ϕB)Xt = Zt ⇐⇒ (2.50)

Obtaining an explicit expression for Xt is now achieved by inverting the operator (I − ϕB). This
happens if and only if |ϕ| < 1, in which case (I − ϕB)−1 =

∑∞
i=0 ϕ

iBi. This is what we refer to
as the stability condition for AR(1) processes; this condition for ϕ was part of the Definition 2.3.8
to ensure that Xt has this representation.

Remark. An informal explanation of why this holds is given by the geometric series, where the
inverse of the number 1− r is equal to

∑∞
i=0 r

i if and only if |r| < 1. For the analogous result in
function spaces that is needed here, we refer to Brockwell and Davis (2009)[Example 3.1.2].
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Thus,

Xt = (I − ϕB)−1Zt =

∞∑
i=0

ϕiBiZt =


∑∞
i=0 ϕ

iZt−i , if t ∈ Z∑t
i=0 ϕ

iZt−i , if t ∈ {0, 1, 2, ...}
(2.51)

Let h ∈ Z and note:

Xt+h =

∞∑
i=0

ϕiZt+h−i =

h−1∑
i=0

ϕiZt+h−i +

∞∑
i=h

ϕiZt+h−i (2.52)

=

h−1∑
i=0

ϕiZt+h−i +

∞∑
j=0

ϕj+hZt−j =

h−1∑
i=0

ϕiZt+h−i + ϕh
∞∑
j=0

ϕjZt−j (2.53)

=

h−1∑
i=0

ϕiZt+h−i + ϕhXt (2.54)

Computing the autocovariance function yields:

γX(h) = Cov(Xt+h, Xt) = Cov
( h−1∑
i=0

ϕiZt+h−i + ϕhXt, Xt

)
(2.55)

= Cov
( h−1∑
i=0

ϕiZt+h−i, Xt

)
+ Cov

(
ϕhXt, Xt

)
=

h−1∑
i=0

Cov
(
ϕiZt+h−i, Xt

)
+ Cov

(
ϕhXt, Xt

)
(2.56)

= 0 + ϕhCov(Xt, Xt) = ϕhV ar(Xt) (2.57)

The variance can be computed from (2.51):

V ar(Xt) = V ar
(∑

i

ϕiZt−i
)

=
∑
i

(ϕi)2V ar
(
Zt−i

)
=
∑
i

(ϕ2)iσ2 = σ2
∑
i

(ϕ2)i (2.58)

=


σ2

1− ϕ2
, if t ∈ Z

σ2 1− (ϕt+1)2

1− ϕ2
, if t ∈ {0, 1, 2, ...}

(2.59)

We then conclude

γX(h) =


ϕh

σ2

1− ϕ2
, if t ∈ Z

ϕhσ2 (1− (ϕt+1)2)

1− ϕ2
, if t ∈ {0, 1, 2, ...}

(2.60)

Hence we infer that, for the case where the index is defined over N (i.e. the process starts from
0), the dependence of the autocovariance function on t implies that the process is always non-
stationary. Therefore, in order to allow for the possibility of stationarity when studying an AR(1)
process, we will consider time indices over all integers, i.e. “starting” from −∞. This can still
be combined with interpreting the t parameter as time, by assuming that the index was defined
over all integers but we only observed its values from t = 0. In that case, X0 is a random variable
(Kirchgässner and Wolters, 2007, Section 2.1). The AR(1) system is then stationary if and only
if |ϕ| < 1. Notice that for these AR(1) models, stability and stationarity conditions coincide.

18 Estimation of Transfer Entropy



CHAPTER 2. THEORETICAL BACKGROUND

Gaussian Time Series

In defining Gaussian time series, the multivariate normal distribution should be introduced and
discussed first. A comprehensive presentation of multivariate normality is therefore included in
Appendix A. We thus proceed with defining Gaussian time series:

Definition 2.3.11. A time series {Xt}t∈Z is a Gaussian time series if any finite vector of random
variables (Xt1 , ..., Xtk) is multivariate normally distributed.

For the goals of the project, a great advantage offered by Gaussian time series is their flexibil-
ity, since due to their multivariate normal structure, Gaussian time series are fully specified by
their mean µ(t) = E[Xt] and autocovariance function κ(s, t) = Cov(Xs, Xt). Their stationarity
properties also depend on them.

Moreover, for Gaussian time series weak stationarity implies strict stationarity. Indeed, if a
Gaussian time series is weakly stationary, then for all n = 1, 2, ... and for all h, t1, t2, ..., tn ∈ Z the
random vectors (Xt1 , ..., Xtn) and (Xt1+h, ..., Xtn+h) have the same mean and covariance matrix,
and hence the same (multivariate normal) distribution. In fact, since Gaussian processes have a
finite variance everywhere, strict and weak stationarity are fully equivalent for them.

Gaussian time series are important in time series analysis, as they allow for convenient prob-
abilistic calculations. This is also the case for entropy and other information theoretic quantities,
to be studied later.

2.4 Estimation techniques

In this chapter, the focus so far has mostly been on probabilistic aspects of the theories involved.
In this section the focus shifts towards estimation: several well-known estimation techniques that
are relevant to the project are shortly presented.

2.4.1 Density estimation

This section is devoted to the estimation of probability densities. Before introducing the theory,
it is important to disambiguate the notation and terminology that is used - for the discrete and
continuous case. Recall that Shannon entropy H(X) is associated with discrete random variables
and probability mass functions, while differential entropy h(X) is associated with continuous
random variables and probability densities.

Entropy estimation is of central importance to this project, and from the above discussion we
note that Shannon entropy estimation entails estimating functions of probability mass functions
while differential entropy estimation requires the estimation of probability densities. Generally,
the discrete case is more convenient as we can directly estimate pX(x) by simply calculating the
corresponding relevant frequencies in our data. In the continuous case, a standard approach to
density estimation is kernel density estimators Silverman (1986). An overview is given below,
starting from an intuitive and well-known method inspired by the discrete case: the histogram.

Kernel density estimation

A widely used density estimator is the histogram. Let X1, . . . , Xn be a random sample from a
distribution function F with continuous derivative F ′ = f .

Definition 2.4.1 (Empirical distribution function). For a set A ⊆ R, the empirical distribution
function Pn is defined as follows:

Pn(A) =
1

n

n∑
i=1

1A (2.61)

So, the empirical distribution function gives the number of elements in the sample that belong to
the set A, divided by the (current) sample size. When, for an arbitrary t ∈ R, A = (−∞, t) the
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empirical distribution function is a natural estimator for the distribution function F , and possesses
various favorable properties (van der Vaart, 1998, Section 19.1).

Let I be a compact interval on R and suppose that the intervals I1, . . . , Ik form a partition of
I, i.e.

I = I1 ∪ . . . ∪ Ik, Ii ∩ Ij = ∅ if i 6= j.

Definition 2.4.2 (Histogram). The histogram of X1, . . . , Xn with respect to the partition I1, . . . , Ik
is defined as

Hn(x) =

k∑
j=1

Pn(Ij)1Ij (x)

|Ij |
(2.62)

where |Ij | denotes the length of the interval Ij.

It is clear that the histogram is a stepwise constant function. Two major disadvantages of the
histogram that impact its capabilities as a density estimator are:

• the stepwise constant nature of the histogram

• the fact that the histogram heavily depends on the choice of the partition

It is because of this phenomenon that histograms are not recommended as a density estimator. A
natural way to improve on histograms is to get rid of the fixed partition by putting an interval
around each point. If h > 0 is fixed, then

N̂n(x) =
Pn((x− h, x+ h))

2h
(2.63)

is called the naive density estimator and was introduced in 1951 by Fix and Hodges (reprinted in
Fix and Hodges (1989)). The motivation for the naive estimator is that

P (x− h < X < x+ h) =

∫ x+h

x−h
f(t) dt ≈ 2h f(x). (2.64)

It is intuitively clear from (2.64) that the bias of N̂n decreases as h tends to 0. However, if h tends

to 0, then one is using less and less observations, and hence the variance of N̂n increases. The
optimal value of h is a compromise between the bias and the variance.

The naive estimator is a special case of the following class of density estimators. Let K be a
kernel function, that is a non-negative function such that∫ ∞

−∞
K(x) dx = 1. (2.65)

Definition 2.4.3 (Kernel estimator). The kernel estimator with kernel K and bandwidth h is
defined by

f̂n(x) =
1

n

n∑
i=1

1

h
K

(
x−Xi

h

)
(2.66)

Thus, the kernel indicates the weight that each observation receives in estimating the unknown
density. All kernel estimators are densities, and the naive estimator is a kernel estimator with
kernel

K(x) =

{
1
2 if |x| < 1

0 otherwise.

Examples of popular kernels in research and applications are given in Table 2.1. Avoiding to
fix the bandwidth h, a nearest neighbor density estimator may be utilized. As we will later see,
nearest neighbor estimation is particularly important for Information Theory.
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Definition 2.4.4 (kNN density estimation). The k-nearest neighbor kernel estimator with kernel
K is defined by

f̂n(x) =
1

n

n∑
i=1

1

dk(x)
K

(
x−Xi

dk(x)

)
(2.67)

where dk(x) is the distance of x from its kth nearest neighbor in the dataset.

Kernel name Gaussian Naive/Rectangular Triangular Epanechnikov

Function
1√
2π

e−
1
2 x

2 1

2
I(−1,1)(x) (1− |x|) I(−1,1)(x)

3

4
(1− x2) I(−1,1)(x)

Table 2.1: Popular kernels for density estimation

2.4.2 Least squares estimation

Least squares estimation is a general parametric method for deriving point estimators of population
parameters. One of its main applications, is the estimation of the parameters of a model that best
fit a dataset. The fit of a model to a dataset is measured by its residuals, i.e. the difference between
the actual value of the response variable and the value that the model predicts. By minimizing
the sum of squared residuals of the model this procedure calculates the optimal model parameters.

Least squares methods fall into two categories: linear and non-linear. Since the inclusion of
least squares theory in this section is motivated by the importance of Granger causality (which
was traditionally implemented within linear regression) we concentrate on linear least squares.

Similarly, linear least squares methods consist of several variants, such as ordinary, weighted
or generalized linear least squares methods. Here we focus on the simplest of these methods:
ordinary (linear) least squares.

Ordinary Least squares

Consider the datapoints (xi1, yi), ..., (xim, yi), i = 1, ..., n, and m ≤ n, where Xi are the independ-
ent variables and Y is the dependent variable. We want to find the best fitting straight line which,
given a set of values of the independent variables Xi, returns a value of the dependent variable Y .

yi = θ1xi1 + θ2xi2 + ...+ θmxim (2.68)

Definition 2.4.5 (OLS). The ordinary least squares estimates θ̂1, θ̂2, ..., θ̂m are defined to be the
values of θ1, θ2, ..., θm that minimize the sum of squared residuals of the model

S(θ1, ..., θm) =

n∑
i=1

(yi − θ1xi1 − ...− θmxim)2 (2.69)

Treating this as a minimization problem, and setting the partial derivatives of S with respect to
θ1, ..., θm equal to zero shows that the vector θ̂ = (θ̂1, ..., θ̂m)T that minimizes (2.69) is the solution
of the normal equations

XTXθ̂ = XT y (2.70)

where X is the n x m matrix X = [x(1), ..., x(m)] and x(i) is the column vector x(i) = (xi1, ..., xim)T .
The solution of this equation is unique iff XTX is non-singular (a condition that is equivalent with
X having full rank), in which case

θ̂ ≡ (θ̂1, ..., θ̂m) = (XTX)−1XT y (2.71)
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2.4.3 Maximum likelihood estimation

Maximum likelihood is another general parametric approach for the estimation of population
parameters.

Definition 2.4.6 (Maximum Likelihood function). Consider a random variable X and a paramet-
ric form for its density f(x; θ1, ..., θr) where θ1, ..., θr are unknown population parameters. Given
an i.i.d sample X1, .., Xn the likelihood function is defined as:

L(θ1, ..., θr;X1, ..., Xn) =

n∏
i=1

f(Xi; θ1, ..., θr) (2.72)

The likelihood function L(θ1, ..., θr;X1, ..., Xn) is thought of as a function of the unknown para-

meters θ1, ..., θr only. The maximum likelihood estimators (MLE’s) θ̂1, ..., θ̂r of θ1, ..., θr are the
values that maximize the likelihood function L(θ1, ..., θr;X1, ..., Xn).

This optimization problem is frequently transformed by working with the logarithm of (2.72)
(when it is defined) and therefore transforming the product to a sum. In that case the resulting

function is known as the log-likelihood function, and the MLE’s θ̂1, ..., θ̂r of θ1, ..., θr are the solution
of the following maximization problem:

max
θ̃1,...,θ̃r

[
logL(θ1, ..., θr;X1, ..., Xn)

]
= max
θ̃1,...,θ̃r

n∑
i=1

log
[
f(Xi; θ̃1, ..., θ̃r)

]
(2.73)

Due to the logarithm being a monotonic function, the value that maximizes (2.73) is the same with
the value that maximizes (2.72). This can again be treated as a maximization problem, although
a closed-form solution for the problem will rarely be attainable - and numerical techniques are
employed. Maximum likelihood estimators possess a variety of favorable asymptotic properties.

Likelihood-ratio test

The MLE framework is closely related to hypothesis testing, since a null hypothesis is frequently
expressed by theorizing that the parameters θ = (θ1, ..., θr) of a model belong to a subset Θ0 of the
parameter space Θ, while the alternative hypothesis assumes them to belong to its complement
Θ \ Θ0. This hypothesis can subsequently be tested through the log-likelihood ratio test statistic
that is given by

λ = −2 log

[
supθ∈Θ0

L(θ)

supθ∈Θ L(θ)

]
(2.74)
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Chapter 3

Estimating Entropy

Following the establishment of various probabilistic aspects of information theory before, we now
turn to estimation. Even if entropy was introduced by Shannon in 1948, the estimation of entropy
and other information theoretic quantities is still a vibrant field of research. There are several
survey papers documenting different approaches and advances for estimation in information theory
such as Beirlant et al. (1997), Paninski (2003) and Hlavackova-Schindler et al. (2007). A modern
presentation that is relevant to transfer entropy specifics is featured in Bossomaier et al. (2016),
which is what we generally follow in this chapter.

3.1 Entropy estimators

It is clear that if an i.i.d sample X1, ..., Xn is assumed, then any technique that estimates the
probability function pX of X is also an entropy estimator - by simply substituting the estimator
in the definition of entropy. These estimators of entropy are the first to be discussed.

3.1.1 Plug-in estimators

Considering the discrete case, recall the definition of Shannon entropy of a random variable X:

H(X) = −
∑
x∈X

pX(x) log pX(x) (3.1)

An estimator for Shannon entropy can indeed be immediately provided through the estimation of
the corresponding probability mass function. This can be conveniently accomplished as described
in the beginning of Section 2.4.1. Specifically, for a given set of M bins (that are fixed and chosen
independently from the sample) we consider the relative amount of values from the sample that
fell in each of them.

Definition 3.1.1 (Shannon entropy plug-in estimator). Let x1, . . . , xN an i.i.d sample of a discrete
random variable X. The plug-in estimator of its Shannon entropy H(X) is defined as

Ĥ(X) = −
M∑
i=1

p̂j log p̂j (3.2)

where M is the number of bins, p̂j =
nj
N for nj samples in bin j from N samples in total, and

0 log 0 = 0.

We hence estimate Shannon entropy by substituting or plugging-in each estimate p̂j in the place
of pj . This plug-in estimator was extensively studied in Antos and Kontoyiannis (2001). With
regards to its bias, it holds that the plug-in estimator underestimates the entropy:
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Theorem 3.1.2. The bias of the plug-in Shannon entropy estimator is bounded by:

− log

(
1 +

M − 1

N

)
≤ B(Ĥ(X)) := E[Ĥ(X)]−H(X) ≤ 0 (3.3)

The lower bound is tight for N/M → 0 and the upper bound is tight for N/M → +∞.

The proof of Theorem 3.1.2 follows from the non-negativity of a K-L divergence obtained through
a variant of the delta method Doob (1935), combined with a result on the upper bound of K-L
divergences Gibbs and Su (2002) and Jensen’s inequality Paninski (2003). Aiming to compensate
this underestimation, Miller (1955) proposed a simple bias correction for the plug-in estimator:

Definition 3.1.3 (Bias correction, Miller). The compensated Shannon entropy plug-in estimator
of Miller is defined as:

Ĥc(X) = Ĥ(X) +
M − 1

N
(3.4)

where M and N are defined as in (3.1.1)

Antos and Kontoyiannis (2001) also derived a bound for the variance of the plug-in estimator as
well as a concentration inequality both using McDiarmid’s inequality McDiarmid (1989):

Theorem 3.1.4 (Variance upper bound). As defined in (3.1.1), an upper bound for the variance

of Ĥ(X) is

V ar(Ĥ(X)) ≤ (logN)2

N
=: vmax (3.5)

Theorem 3.1.5. Let 0 < ε < 1, vmax defined as in (3.1.4). The following inequality holds for the

Shannon plug-in estimator Ĥ(X):

P (|Ĥ(X)− E[Ĥ(X)]| > ε) ≤ 2 exp

{
− ε2

2vmax

}
(3.6)

Here, the probability that the error of the plug-in estimate is greater than a threshold ε decays
exponentially as ε increases. In other words, it is less likely that the plug-in estimate Ĥ(X) is

going to be far away from its mean E[Ĥ(X)], i.e. the values that we generally observe for Ĥ(X)
are highly concentrated around a mean.

The above results are used in Paninski (2003) to arrive at the bias-variance trade-off for the
plug-in entropy estimator. When N/M → +∞ their ratio takes the following form:

V ar(Ĥ(X))

(B(Ĥ(X)))2
=
N(logM)2

M2
(3.7)

We thus observe a linear dependence of the variance/bias ratio on the sample size N , and (since
log2M grows much slower than M2) an inverse quadratic dependence on M . Hence, bias will be
generally dominating the estimates when the number of bins M is large, unless the sample size N
is huge.

Accounting for this trade-off as well as correcting for small samples Bonachela et al. (2008),
propose the following balanced estimator for Shannon entropy:

Definition 3.1.6 (Shannon entropy balanced estimator). A bias-variance balanced estimator for
Shannon entropy is given by:

Ĥbal(X) =
1

N + 2

M∑
i=1

(ni + 1)

N+2∑
j=ni+2

1

j

 (3.8)

Where, as before, M is the number of bins, N is the sample size, and ni is the number of occur-
rences of X in bin i.
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Remark. The straightforward idea of counting relevant frequencies in data (alongside potential
bias corrections) to estimate the required probabilities can be applied not only to Shannon entropy,
but as long as data are discrete, to mutual information and transfer entropy. This is a simple and
fast technique. From now on, the interest is on estimating information theory quantities in the
more complicated continuous case.

Following similar ideas, we can proceed with the continuous case and estimate the differential
entropy h of a continuous random variable X with density f .

By estimating the density f we likewise obtain a plug-in estimate for differential entropy. This
can be achieved via kernel density estimation as described in Section 2.4.1. The first such estimator
was given, for a real random variable X, in Dmitriev and Tarasenko (1974). Given a continuous
sample X1, . . . , Xn, it was proposed to estimate the differential entropy h of X by:

ĥn(X) = −
∫
An

f̂n(x) log f̂n(x)dx (3.9)

Here, An is a symmetric real interval and f̂n(x) is a kernel density estimator. Properties of
this estimator were studied in Mokkadem (1989) and it was extended to the multivariate case in
Joe (1989). Moreover, Grassberger (1988) notes that kernel density based plug-in estimators for
differential entropy still contain bias, and tries to correct for it.

The difficulty of evaluating integrals in higher dimensions alongside bias issues indicate that,
while convenient, plug-in estimators for differential entropy are of limited use. In the following
section, we thus turn to alternative differential entropy estimation methods.

3.1.2 Other estimators

In this section, we discuss two popular estimators of differential entropy. Other important estim-
ators for mutual information and transfer entropy that are presented later are based on them.

Digamma estimator

We start by defining the digamma estimator of differential entropy in the case of real random
variables. To do so, the digamma function ψ has to be defined first. Throughout the rest of the
chapter, the digamma function will be encountered often, so besides a definition we also provide
a few complementary remarks.

Definition 3.1.7 (Digamma function). The digamma function ψ : R → R is defined as the
derivative of the logarithm of the gamma function Γ:

ψ(x) =
d

dx
log(Γ(x)) =

Γ′(x)

Γ(x)
(3.10)

Utilizing the following well known recursive formula for the gamma function:

Γ(x+ 1) = xΓ(x) (3.11)

we can deduce a similar recursive formula for the digamma function. Differentiating (3.11) with
respect to x, dividing by Γ(x+ 1) and re-using (3.11) we get:

Γ′(x+ 1)

Γ(x+ 1)
=

Γ′(x)

Γ(x)
+

1

x
⇐⇒ (3.12)

d

dx
log(Γ(x+ 1)) =

d

dx
log(Γ(x)) +

1

x
⇐⇒ (3.13)

ψ(x+ 1) = ψ(x) +
1

x
(3.14)
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When x is considered over the set of natural numbers, the above result establishes a connection
of the digamma values to the harmonic numbers Hn. The following corollary thus also aids our
intuition about how the digamma values progress:

Corollary 3.1.8. For n ∈ {1, 2, 3, . . .} the digamma function satisfies

ψ(n) = Hn−1 − C (3.15)

where Hn =
∑n
k=1

1
k is the nth harmonic number, H0 := 0, and C is the Euler-Mascheroni

constant: C = limn→+∞ (Hn − log n) = 0.57721...

Returning to differential entropy estimation, we are now able to define the digamma estimator.

Definition 3.1.9 (Digamma estimator). Let x1, x2, . . . , xN be an i.i.d real sample of a random
variable X. Then, the digamma estimator for the differential entropy h(X) is

ĥ(X) = −ψ(1) + ψ(N) +
1

N − 1

N−1∑
i=1

log
(
x(i+1) − x(i)

)
(3.16)

where x(j) denotes the the jth order statistic, i.e. the jth smallest value of the sample.

Kozachenko-Leonenko (K-L) estimator

An important multivariate extension to the digamma estimator was given in Kozachenko and Le-
onenko (1987). This was achieved by replacing the distances x(i+ 1)−x(i) between the increasing
consecutive points x(i), x(i+ 1) with nearest-neighbor distances in metric spaces. Here, we restrict
the presentation to Euclidean spaces. The Kozachenko-Leonenko estimator of differential entropy
is defined as:

Definition 3.1.10 (K-L estimator of differential entropy). Let x1, ..., xN be an i.i.d sample of the
random variable X, with X ⊆ (Rd, || · ||). Then, the Kozachenko-Leonenko (K-L) estimator of the
differential entropy h(X) is given by

ĥ(X) = −ψ(k) + ψ(N) + log cd +
d

N

N∑
i=1

log ε(i) (3.17)

where cd is the volume of the unit ball of the space (Rd, || · ||), k is an arbitrary natural number
and ε(i) is twice the distance from xi to its kth nearest neighbor in the dataset.

Note that the choice of the norm || · || will impact the estimation Table 3.1 summarizes the
differences between selecting the maximum vs the Euclidean norm (see Gao et al. (2015) for a
discussion of norm selection impact in the KSG estimator). In practice k = 4 is recommended as
a robust choice for kNN estimation, although this also depends on the sample size.

Norm Definition Volume of B(0, 1)

Maximum ||x||∞ := maxi=1,...,d{xi} cd = 1

Euclidean ||x||2 :=
(∑d

i=1 x
2
i

)1/2

cd = πd/2

Γ(1+d/2)

Table 3.1: The unit ball volume in Rd for two different norms.
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3.2 Mutual information estimators

Having already presented estimators for entropy, we now consider the estimation of mutual in-
formation. In Section 3.1 we saw two different categories of entropy estimators. Each category
approaches the problem of estimating entropy differently: plug-in estimators directly estimate the
probability functions involved, while the digamma and Kozachenko-Leonenko estimators are based
on particular geometric features of the samples.

Plug-in estimators

Recalling that I(X;Y ) = H(X) + H(Y ) −H(X,Y ) we observe that marginal and joint entropy
estimators, immediately yield a mutual information estimator, while using the analytic expression
for MI via the K-L divergence we infer that (multivariate) density estimators also yield a mutual
information estimator. Thus, the ideas depicted in Section 3.1 can be extrapolated to mutual
information estimation.

In particular, Moon et al. (1995) studies kernel density estimators for mutual information by
simply using kernel density estimators for the three probability density functions involved. Such
estimators are biased, so the need to correct for it remains (e.g. as in Grassberger (1988) for
entropy). However, simultaneous bias correction for individual kernel estimates might prove to
have a more adverse effect in the estimate than the bias itself, as noted in Kaiser and Schreiber
(2002), and therefore a higher level of complexity for such naive mutual information estimation is
introduced.

This is the reason digamma estimators are preferred - and the importance of the multivariate
extension provided by the Kozachenko-Leonenko (K-L) estimator is further illustrated by the
multivariate nature of mutual information. Starting from the K-L estimator, Kraskov et al. (2003)
introduced the KSG estimator (named after the authors Kraskov, Stögbauer and Grassberger) that
today constitutes the state-of-the-art for MI estimation.

The KSG estimator

Considering the mutual information representation I(X;Y ) = H(X) + H(Y ) − H(X,Y ) we
note that the K-L estimator may be immediately used for estimating both marginal entrop-
ies H(X), H(Y ). For the joint entropy term H(X,Y ) we consider the joint random variable
Z = (X,Y ) that exists in the joint space X ×Y equipped with the maximum norm || · ||∞. There-
fore, in Definition 3.1.10, d is replaced by dZ = dX + dY , cd is replaced by cdX cdY and xi is
replaced by zi = (xi, yi). This leads to the following K-L estimate for h(X,Y ), where ε(i) is twice
the distance from zi = (xi, yi) to its kth neighbor:

ĥ(X,Y ) = ψ(k)− ψ(N)− log cdX cdY −
dX + dY

N

N∑
i=1

log ε(i) (3.18)

An MI estimator is then directly obtained by substituting all three K-L estimates:

Î(X;Y ) = ĥ(X) + ĥ(Y )− ĥ(X,Y ) (3.19)

A subtle yet important detail in the above procedure is whether the same number k of nearest
neighbors shall be used for all three estimations. Kraskov et al. (2003) noted that doing so
will hinder the performance of the estimator and introduced two slightly different MI estimators
circumventing this issue. Both estimators rely on not using the same number k of neighbors on
the joint and marginal spaces.

Definition 3.2.1 (First KSG MI estimator). Let X,Y two continuous random variables. The
first KSG estimator of the mutual information I(X;Y ) is

I(1) = ψ(k) + ψ(N)− 1

N

N∑
i=1

ψ(nx(i) + 1)− 1

N

N∑
i=1

ψ(ny(i) + 1) (3.20)
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where, k is an arbitrary natural number, εk(i) is the distance of zi to its kth nearest neighbor in
the joint X ×Y space, N is the amount of samples zi = (xi, yi) in the joint space and nx(i), ny(i)
are the number of points strictly within a distance εk(i) in the marginal spaces X ,Y respectively.

The distance threshold εk(i) for the counting that was performed in nx(i) and ny(i) in the first
KSG estimator was based on the kth nearest neighbor distance on the joint space. Changing this
from the joint space to each marginal space yields the second KSG estimator. So, we replace
nx(i), ny(i) by the number of points in the respective marginal spaces that are located at most
εx(i), εy(i) away from xi, yi respectively where distances εx(i), εy(i) of zi = (xi, yi) from its kth

nearest neighbor are based on the norm of the marginal spaces. The second KSG estimator is:

I(2) = ψ(k) + ψ(N)− 1

k
− 1

N

N∑
i=1

ψ(nx(i))− 1

N

N∑
i=1

ψ(ny(i)) (3.21)

3.3 Transfer entropy estimators

Recalling (2.21), transfer entropy is defined as conditional mutual information. It can be sub-
sequently expanded to a linear combination of (joint) entropy terms:

T
(k,`)
Y→X(t) = h(Xt, X

(k)
t−1)− h(X

(k)
t−1)− h(Xt, X

(k)
t−1, Y

(`)
t−1) + h(X

(k)
t−1, Y

(`)
t−1) (3.22)

Similarly to how the KSG method utilized appropriate K-L estimators for each entropy term arising
in the definition of mutual information, an analogous KSG method can be used to estimate each
term of (3.22), and therefore estimate transfer entropy. The important condition to consider when
doing so is choosing appropriate numbers for each nearest neighbor estimation, in the spirit of the
KSG estimators described before.

Generally, the discussion at the beginning of Section 3.2 regarding the use of entropy estimators
for estimating mutual information applies here too. This can be seen if we also consider the
equivalent analytic form of TE:

T
(k,`)
Y→X(t) =

∑
xt,x

(k)
t−1,y

(l)
t−1

p(xt, x
(k)
t−1, y

(`)
t−1) log

p(xt|x(k)
t−1, y

(`)
t−1)

p(xt|x(k)
t−1)

(3.23)

Clearly, plug-in estimators such as the kernel density estimators discussed before can be employed
in estimating TE via its analytic form. However, following the equivalent discussion for MI estim-
ation, we immediately infer that such approaches will have major drawbacks: high dimensionality
was among the main reasons of rejecting kernel density estimators for MI. TE is much more com-
plicated than MI in that regard, reaching arbitrarily high dimensions depending on the choice of
the embedding parameters. We therefore restrict our attention to alternative approaches.

KSG estimator

Imitating the KSG method, we apply a K-L estimator based on mth nearest neighbor of each point

in the joint space Xt×X (k)
t−1×Y

(`)
t−1 that is again equipped with the maximum norm. If ε(i) is twice

the max-norm distance of the ith point to its mth nearest neighbor in the joint space, we then

denote by n1(i) the neighbor count of the ith point strictly within norm ε(i) in the X (k)
t−1 marginal

space, and by n2(i) and n3(i) the respective neighbor counts of the ith point strictly within ε(i)

in the smaller joint spaces Xt ×X (k)
t−1 and X (k)

t−1 × Y
(`)
t−1 (that are also equipped with max-norms).

The first KSG estimator defined above subsequently leads to the following estimator for TE:

Definition 3.3.1 (KSG estimator for TE). For two time series Xt, Yt, t ∈ Z, the first KSG
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estimator for the transfer entropy T̂
(k,`)
Y→X(t) is given by

T̂
(k,`)
Y→X(t) = I(1)(Xt;Y

(`)
t−1|X

(k)
t−1) (3.24)

= ψ(m)− 1

N

N∑
i=1

[
ψ(n2(i))− ψ(n3(i)) + ψ(n1(i))

]
(3.25)

where m is an arbitrary natural number, and n1(i), n2(i), n3(i) are defined above.

Similarly, the second KSG estimator for MI yields the second KSG estimator for TE:

T̂
(k,`)
Y→X(t) = I(2)(Xt;Y

(`)
t−1|X

(k)
t−1) (3.26)

= ψ(m)− 2

m
+

1

N

N∑
i=1

[
ψ(n1(i))− ψ(n2(i)) +

1

n2(i)
− ψ(n3(i)) +

1

n3(i)

]
(3.27)

Since conditional transfer entropy TY→X|Z simply adds a second component to the conditional

part of the corresponding conditional mutual information I(Xt;Y
(`)
t−1|X

(k)
t−1, Z

(m)
t−1 ), the above ideas

are trivially extended for estimating conditional TE.

3.4 The non-stationary case

All the estimators of the information theoretic quantities we presented so far rely on strong prob-
abilistic assumptions for the data: for instance, the K-L estimator (as well as the KSG estimator
that is based in it) assume i.i.d data, a condition that implies (strict) stationarity in the context
of time series. In reality, this assumption is frequently invalidated. Dealing with non-stationarity
within Information Theory is an important open question Vu et al. (2008). In this section, we thus
review several approaches aimed at dealing with non-stationary data mostly from the perspective
of TE estimation.

3.4.1 Data transformations

A very convenient method for resolving non-stationarity throughout the analysis of time series is
data transformations. This is a popular workaround that aims to manipulate a non-stationary
dataset in such a way that it becomes stationary and to subsequently apply methods that assume
stationarity to them (such as the KSG estimator in our context). It is, however, not a panacea;
as (Kantz and Schreiber, 2006, Chapter 13) note, only under very specific conditions such data
transformations will maintain a theoretical connection to the original dataset.

Differencing & Log transform

The lag operator and first order differencing defined in (2.3.10) already supply a useful trans-
formation method. Considering the time series of the consecutive differences of data may already
remove non-stationarities, especially if they are concentrated on the mean of the time series, e.g.
in the form of a drift, while higher order differencing will magnify this effect.

Moreover, for time series with positive values, a logarithmic transformation is regarded as
helpful in alleviating non-stationarities on the variance of data.

3.4.2 Other methods

This section features alternative methods that aim to deal with the problem of estimation in in-
formation theory in the case of non-stationary data. This is achieved by a non-trivial manipulation
of data or by making extra assumptions regarding the context.
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Symbolic Transfer Entropy

Symbolic transfer entropy (STE) was introduced in Staniek and Lehnertz (2008) for the bivariate
case. While this is a theoretical quantity that is distinct from transfer entropy, its main advantage
compared to regular TE is related to estimation, so it is shortly introduced in this chapter. It
is based on the idea of permutation entropy introduced in Bandt and Pompe (2002). It rank-
transforms the data, and technically it can be categorized as another data transformation method.
Since STE and its multivariate version have been popular in TE literature (e.g. Ku et al. (2011),
Kowalski et al. (2010)) it is separately presented from other common data transformation methods
shown before.

Let Xt, Yt, t ∈ Z be two univariate time series, and consider their embedding vectors at an
arbitrary time t:

X
(τ1,d1)
t = (Xt, Xt−τ1 , ..., Xt−(d1−1)τ1) (3.28)

Y
(τ2,d2)
t = (Yt, Yt−τ2 , ..., Xt−(d2−1)τ2) (3.29)

For this t, arrange in ascending order all d1, d2 values of the embedding vectors of X,Y respectively,
using the same ordering as the one already present in the vectors in case of ties. Thus, consider:

Xt−(rt,1−1)τ1 ≤ Xt−(rt,2−1)τ1 ≤ ... ≤ Xt−(rt,d1−1)τ1 (3.30)

Yt−(qt,1−1)τ2 ≤ Yt−(qt,2−1)τ2 ≤ ... ≤ Yt−(qt,d2−1)τ2 (3.31)

where the {rt,j , j = 1, ..., d1} are all different, rt,j ∈ {1, ..., d1} and the equivalent properties for
qt,j apply.

Subsequently, define two symbols as:

X̂t := (rt,1, rt,2, ..., rt,d1) (3.32)

Ŷt := (qt,1, qt,2, ..., qt,d2) (3.33)

For example, the three-dimensional embeddings (3, 4, 5) and (50, 60, 99) are assigned the same
symbol (1, 2, 3) (same temporal ordering) while a different symbol is assigned to (10, 8, 14). Note
that both symbols defined above belong to the set of possible permutations of the sets {1, ..., d1}
and {1, ..., d2}, i.e. in a discrete set with d1! and d2! elements respectively. This holds for any
time point t, provided that the embedding dimensions are kept constant. By therefore considering
multiple time points t, and deriving symbols for both the target and source at each timepoint,
relative frequencies of symbols can be computed. Then, symbolic TE is defined as follows:

Definition 3.4.1 (Symbolic TE). Given two univariate time series Xt, Yt, t ∈ Z, the symbolic
transfer entropy from Y to X is defined as

TSY→X =
∑

x̂t+δ,x̂t,ŷt

p(x̂t+δ, x̂t, ŷt) log
p(x̂t+δ|x̂t, ŷt)
p(x̂t+δ|x̂t)

(3.34)

where x̂t+δ, x̂t, ŷt are symbols as defined in (3.32), (3.33) and δ is a time step yielding a future
value of the target.

From the discussion above, despite originally assuming continuous data, we are able to estimate all
probabilities involved in the definition of STE by calculating the relative frequency of all symbol
combinations. After its introduction in Staniek and Lehnertz (2008) a conditional extension to
STE was studied in Papana et al. (2015).

As a data transformation method, STE transforms the data to their ranks, and solely uses
them to make inferences: the relation of the STE and TE resembles that of the Wilcoxon rank
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sum test and t-test, the former being an application of the later on the ranks of the data. Using
the ranks of the data as a proxy for their statistical dependence (an idea dating back to Spearman
(1904)) essentially allows us to consider the relative magnitude ordering of each time series, and
not the time series itself. Papana et al. (2015) note that this property makes it suitable for non-
stationary data. However, as Wibral et al. (2013) point out, this approach implicitly assumes that
all relevant information in the data lies in the ordinal relationship between values, an assumption
that can potentially be misleading.

Multiple realizations of a time series

The fundamental issue with TE estimation in non-stationary data stems from the fact that the
probability functions we seek to estimate are no longer time-invariant.

Wollstadt et al. (2014) (based on prior results by Gomez-Herrero et al. (2010)) indirectly
propose a solution to this problem, in the case where multiple realizations of the time series
involved can be obtained. This is inspired by the field of neuroscience, where multiple realizations
of the same processes can be retrieved through repeated experiments. They thus propose to utilize
the potential multi-trial nature of the data and estimate information theoretic quantities at each
time point by searching for neighbors across all realizations and pooling them. The neighbor
search occurs in consecutive overlapping time windows of fixed size. The size of each window for
nearest neighbor search is thus a free parameter; for rapidly changing time series, a smaller size
should be used and more realizations will be required.

While promising, this method is based on the assumption of the possibility of repeated exper-
iments which is largely incompatible with the context of the project, and it is not pursued.

3.4.3 Stationary increments

While direct methods dealing with non-stationarity in the fully general case remain largely elusive,
interesting advances exist when more assumptions are made. In a recent paper, Granero-Belinchón
et al. (2019) develop a framework for the estimation of information theoretic quantities of non-
stationary processes with stationary increments.

For a non-stationary time series Xt, the authors consider the differential entropy at time t. Due
to non-stationarity, entropy is now time-dynamic and changes at each time point, since densities
change over time as well.

Definition 3.4.2. At time t, the differential entropy of the non-stationary time series Xt, t ∈ Z
is:

ht(X) := h(Xt) = −
∫
pXt(x) log pXt(x)dx (3.35)

where pXt is the density of Xt.

Throughout the work, delay embedding vectors proved useful in studying TE. For the non-

stationary time series Xt, given the embedding X
(m,τ)
t we write its time-dependent entropy:

h
(m,τ)
t (X) := h(X

(m,τ)
t ) = −

∫
p
X

(m,τ)
t

(x
(m,τ)
t ) log

(
p
X

(m,τ)
t

(x
(m,τ)
t )

)
dx

(m,τ)
t (3.36)

Subsequently, define the time-increments of size τ for process Xt as

δτXt := Xt − LτXt = Xt −Xt−τ (3.37)

Then, consider the embedding vector

X̃
(m,τ)
t := (Xt, δτXt, δτXt−τ , ..., δτXt−(m−2)τ ) (3.38)

Granero-Belinchón et al. (2019) note that the following result holds:
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Theorem 3.4.3. Let Xt, t ∈ Z be a time series, and consider the following embedding vectors:

X
(m,τ)
t = (Xt, Xt−τ , ..., Xt−(m−1)τ ) and X̃

(m,τ)
t as defined in (3.38). For the differential entropy

h, it holds that

h(X
(m,τ)
t ) = h(X̃

(m,τ)
t ) (3.39)

The proof of this theorem is based on noting that X̃
(m,τ)
t is a linear transformation of X

(m,τ)
t

therefore the corollary of Theorem 8.6.4 of (Cover and Thomas, 2006, p. 254) applies.
It is then observed that for processes with stationary increments δτXt, the marginal distribution

of any Xt may be time-dependent, but the marginal distribution of any increment δτXt is not.
According to the authors, the above suggest that the (problematic for estimation) time-dependence

of h(X
(m,τ)
t ) mainly originates from the first component of the embedding vector Xt.

A time-averaged density is then defined, to be used in estimating the entropy of a non-stationary
process with stationary increments. A practical framework for its estimation is also proposed.

Definition 3.4.4 (Time-averaged density). Let Xt, t ∈ Z be a non-stationary time series with
stationary increments, and [t0, t0 + T ] be a time interval of length T starting at point t0. The

time-averaged probability density function of the embedding vector X
(m,τ)
t of Xt is

p
T,t0,X

(m,τ)
t

(x
(m,τ)
t ) :=

1

T

∫ t0+T

t0

p
X

(m,τ)
t

(x
(m,τ)
t )dt (3.40)

Thus, for a given embedding, this time-averaged density only depends on the starting time t0 and
on the length T of the time interval.

In practice, it is proposed to approximate the time-averaged density p
T,t0,X

(m,τ)
t

with the

histogram (see Definition 2.4.2) p̂T,t0 of all data points X
(m,τ)
t , available in that particular time

interval, t ∈ [t0, t0 + T ].
The time-averaged density introduced will be used to estimate the entropy of an embedding

X
(m,τ)
t . The authors argue that when this is happening in the case of non-stationary processes

with stationary increments, the entropy estimator will not depend on the starting time t0 of the
interval chosen, but only on its length T .

An ersatz entropy of X
(m,τ)
t is hence defined based on the time-averaged density p

T,t0,X
(m,τ)
t

Definition 3.4.5 (Ersatz entropy). For a non-stationary time series X = Xt, t ∈ Z with station-

ary increments, a time interval [t0, t0 + T ] and an embedding X
(m,τ)
t such that t ∈ [t0, t0 + T ], the

ersatz entropy of X is defined as

h
(m,τ)

T (X) := −
∫
p
T,t0,X

(m,τ)
t

(x
(m,τ)
t ) log

[
p
T,t0,X

(m,τ)
t

(x
(m,τ)
t )

]
dx

(m,τ)
t (3.41)

depending, for a given embedding, only on the interval length T .

Estimating the time-averaged density with the histogram described above, we arrive at an entropy
estimator for an embedded non-stationary time series Xt with stationary increments. The ersatz

entropy h
(m,τ)

T (X) can be interpreted as the average uncertainty of the vector X
(m,τ)
t in an interval

of length T .

3.5 Significance testing

As we have seen in Section 2.1.3, TE quantifies a specific conditional independence relation between
the source and the target. So, in theory, provided that no directed relationship exists, the TE
from a source Y to a target X would be zero. In practice, we estimate TE from data. This would
generally result in a non-zero measurement, even if there is no directed relationship. Therefore,
the essential question is not the value of TE itself, but whether this value is significantly bigger
than 0.
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Sketching the idea, first a null hypothesis H0 that there is no directed relationship from Y to
X is formed. To test whether the estimated TE value suggests rejecting this hypothesis in favor of
the alternative hypothesis that a directed relationship exists, the distribution of the TE statistic
under the null hypothesis should be known. Then, the corresponding p-value for sampling the
actual TE measurement from this distribution can be computed, allowing us to reject the null
hypothesis if this probability is lower than an arbitrary threshold.

So, given a dataset, we should consider how can we derive the distribution of TE values under
the null hypothesis that no directed relationship from Y to X exists.

To do so, for an estimated TE value T̂
(k,`)
Y→X we consider the distribution of surrogate meas-

urements T̂
(k,`)
Y s→X under H0. The notation Y s represents surrogate time series for Y that are

generated under H0. These have the same statistical properties with Y , but any potential direc-
ted relationship with X is destroyed.

Except for very specific cases Barnett and Bossomaier (2012), Lizier (2014), the complexity of
the TE statistic prohibits the knowledge of its surrogate measurements distribution. This has led
researchers to approximate the distribution with re-sampling methods. Depending on the context,
the surrogate measurement distribution can be properly approximated in the following ways:

• By shuffling (or redrawing) the y
(`)
t−1 among the set of {xt, x(k)

t−1, y
(`)
t−1} tuples

• By rotating the time series Y (assuming stationarity)

• By swapping values for the source Y between different realizations Yi given multiple realiz-
ations are available.

After surrogates are created, we estimate all surrogate transfer entropies T̂
(k,`)
Y s→X , obtaining a

distribution for these values. By evaluating whether the initial TE estimate T̂
(k,`)
Y→X is bigger than

an appropriate percentile of this distribution we are able to infer on the null hypothesis H0.
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Chapter 4

A Random Walk System

Since the estimation of transfer entropy in the non-stationary case is the research goal, two pre-
requisites are necessary: first, exact values for TE in a non-stationary context; and second, TE
estimators to be tried. Provided these are available, it is possible to compare the estimates to the
exact values of TE as well as to each other.

While TE has been a popular notion both in applications and research, studies featuring
exact theoretical results for TE are scarcely found in literature, and the ones that exist pertain
to stationary systems. Investigating TE in a non-stationary setting is therefore an important
question, as theoretical results will enhance our theoretical understanding of TE, simultaneously
enabling the possibility to evaluate TE estimators in a non-stationary context.

This chapter features a study of a specific non-stationary system including theoretical deriva-
tions and estimation of TE as well as practical insights. It starts from a stationary system that
was recently studied in a relevant paper - and extrapolates results to the non-stationary case.

4.1 A stationary AR(1) system

Possibly the first study of transfer entropy featuring exact derivations was presented in Kaiser
and Schreiber (2002). Simple systems were studied and solved analytically, such as binary Markov
chains and Gaussian processes. Linear Gaussian systems were also analytically studied in Nichols
et al. (2005) and more recently, in Novelli et al. (2019) where the authors provide exact results for
TE in the context of a stationary vector autoregressive Gaussian process with linear interactions.
Finally, Hahs and Pethel (2013) studied two different systems of coupled autoregressive processes.
The work featured in this last paper is the main influence for the work performed in this project;
the methodology of this paper is hence presented first.

Among the papers cited above, two kinds of assumptions the authors make can be discerned:
a Gaussian assumption and a stationarity assumption. While the first is greatly important as
the differential entropy of a (multivariate) normal distribution admits a convenient closed formula
essential for analytic results, the stationarity assumption is related to its general utility in time
series analysis and estimation. Starting from the stationary system Hahs and Pethel (2013) study,
we will relax the second assumption, leading us to a non-stationary system to be studied.

We begin with the differential entropy of a multivariate normal random variable. For the
theoretical background of multivariate normality, refer to Appendix A.

Theorem 4.1.1 (Multivariate normal entropy). Let X be a k-dimensional multivariate normal
random variable, X ∼ N (µ,C) where µ is the mean vector and C is the covariance matrix of X.
The differential entropy of X is given by the formula

h(X) =
1

2
log
[
(2πe)k detC

]
(4.1)
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Note that the entropy of such a variable only depends on its dimensionality and covariance struc-
ture; it is not influenced by the mean.

Hahs and Pethel (2013) study the following coupled system:

Xt = aXt−1 + Zt

Yt = bXt +Wt

(4.2)

where |a| < 1, b ∈ R+ and t ∈ {0, 1, 2, ...}. Here, Zt,Wt are i.i.d noise processes normally
distributed with zero means and variances σ2

Z , σ
2
W respectively. To allow for stationarity, both

processes are assumed to “start” from t = −∞ but are only observed from t = 0 onwards (see
discussion in Section 2.3.2). The following independence relations are also assumed:

Zt ⊥⊥ Xs, for s < t (4.3)

Wt ⊥⊥ Xs, for any t, s (4.4)

Zt ⊥⊥Ws, for any t, s (4.5)

This system represents a basic model, where Xt is a hidden time series of a quantity we would
ideally want to measure, but are only able to observe through the noisy process Yt. Indeed, at
time t, the value of Yt is approximately equal to the value of Xt up to some noise stemming from
the i.i.d noise process Wt and a fixed coefficient (denoting the coupling strength) that is multiplied
with the value of Xt. This is a flexible model that can be used in a variety of applications; within
the context of ASML, Xt can be thought of as an underlying quantity we only observe through a
sensor Yt. We will investigate potential insights from this applied perspective later in the chapter.

4.1.1 Stationarity

Correlating the form of the system with the preliminaries presented in Chapter 2, we observe that
the recursive equation defining Xt essentially defines an AR(1) process, with i.i.d noise (instead
of white). We have seen that stationarity (and stability) in this case is ensured iff |a| < 1. Here,
the structure is more complicated: a bivariate time series Ut = (Xt, Yt) is present, so stationarity
must also be investigated jointly for Ut.

It is therefore clear that extensions of some time series concepts presented in Chapter 2 are
required. We will focus on the bivariate case, following (Brockwell and Davis, 2010, Chapter 7).

Definition 4.1.2. Let Ut = (Xt, Yt), t ∈ Z be a bivariate time series.

• The mean vector µ and the covariance matrix Γ of Ut are defined as:

µt := E[Ut] =

[
E[Xt]
E[Yt]

]
(4.6)

Γ(t+ h, t) := Cov(Ut+h, Ut) =

[
Cov(Xt+h, Xt) Cov(Xt+h, Yt)
Cov(Yt+h, Xt) Cov(Yt+h, Yt)

]
(4.7)

• Ut is said to be (weakly) stationary if µt and Γ(t+ h, t) are, for each h, independent of t, in
which case the notation µ and Γ(h) is used.

These definitions allow us to extend the definition of a white noise process, that was important
for AR(1) systems in the univariate case.

Definition 4.1.3. The bivariate time series Ut, t ∈ Z is called white noise with mean 0 and
covariance matrix Σ if Ut is stationary with µ = 0 and

Γ(h) =

{
Σ , if h = 0

0 , otherwise
(4.8)
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From the above, a bivariate AR(1) process can be defined. Following the remarks in Section 2.3.2,
the process is assumed to start at −∞ but its values are only observed from t = 0 and on.

Definition 4.1.4. A bivariate time series Ut, t ∈ Z is a vector autoregressive process of order 1
(VAR(1)) if for every t

Ut = ΦUt−1 + Vt (4.9)

where Φ is a 2× 2 real matrix and Vt is white noise with mean 0 and covariance matrix Σ.

In the corresponding discussion for the univariate AR(1) process, we showed how stability and
stationarity conditions coincide in requiring |a| < 1 for the coefficient of the AR(1) process. The
analogous result for the bivariate case pertains to the eigenvalues of matrix Φ.

Theorem 4.1.5. As defined above, the bivariate VAR(1) process is stationary if and only if the
eigenvalues of matrix Φ are less than 1 in absolute value, i.e. iff

det(I − zΦ) 6= 0, for all z ∈ C such that |z| ≤ 1 (4.10)

Now, the joint stationarity of the system (4.2) can be investigated. We first note that this model
contains two i.i.d noises. Since i.i.d noise is also white noise, given that the model satisfies the
requirements of Definition 4.1.4, it may be called a VAR(1) model.

First, we note that system (4.2) can be expressed in the form of Definition 4.1.4 as follows:

[
Xt

Yt

]
=

[
a 0
ba 0

] [
Xt−1

Yt−1

]
+

[
Zt

bZt +Wt

]
(4.11)

If we prove that this process is VAR(1), due to the lower triangular form of matrix Φ we would
immediately obtain a condition characterizing the stationarity of this model: |a| < 1. The con-
dition for stationarity of this bivariate system would therefore coincide with the univariate case.
Proving the following result also proves that system (4.2) is VAR(1). The proof is straightforward
and we include it in Appendix A.

Theorem 4.1.6.

Vt =

[
Zt

bZt +Wt

]
is a white noise process. (4.12)

In conclusion, stationarity for the model under consideration holds if and only if |a| < 1. Hahs and
Pethel (2013) omit the above stationarity proof and directly assume this condition for a. They
therefore investigate a stationary system.

4.1.2 Compensated transfer entropy

A subtle detail exists in system (4.2). Notice that, at time t, the value of Yt depends (up to the
noise Wt−1 and coupling strength b) on the corresponding value Xt of process X on the same
timepoint t. This means that the information flowing from process X to process Y does so with
no delay; this is what we refer to as instantaneous causation. For simplicity, we thus assume
that the sensor is able to report the value of the underlying process immediately. As it was
originally defined, TE will not be able to deal with this property of this system: at time t the
source embedding vector starts considering the flow of information from the source to the target at
time t− 1. Here, the important transfer of information that TE should encapsulate is happening
instantly, and the original definition of TE will miss the interaction taking place at present time.

To deal with this peculiarity, Hahs and Pethel (2013) augment the source embedding vector for
TE in order to include the present time as well. They use the name information transfer instead
of transfer entropy to differentiate between the two slightly different notions. So, instead of:

T
(`,k)
X→Y (t) = I(Yt;X

(k)
t−1|Y

(`)
t−1) (4.13)
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they instead consider the “information transfer”

IT
(`,k)
X→Y (t) = I(Yt;X

(k+1)
t |Y (`)

t−1) (4.14)

In a publication that preceded the work of Hahs and Pethel by a month, Faes et al. (2013b)
study the same problem of instantaneous causality and TE as their main subject. Interestingly
enough, the solution they propose is essentially the same: the source embedding vector is likewise
augmented with the current state. They however choose the name compensated transfer entropy
(cTE) to describe this quantity. The term “information transfer” is hence not going to be used;
in what follows, cT denotes the compensated transfer entropy in a system.

Definition 4.1.7 (Compensated TE). At time t, the compensated transfer entropy from processs
Xt to process Yt is defined as follows:

cT
(`,k)
X→Y (t) := I(Yt;X

(k+1)
t |Y (`)

t−1) (4.15)

From the conditional mutual information definition of TE and the chain rule, we derive:

cT
(`,k)
X→Y (t) := I(Yt;X

(k+1)
t |Y (`)

t−1) (4.16)

= h(Yt|Y (`)
t−1)− h(Yt|Y (`)

t−1, X
(k+1)
t ) (4.17)

= h(Yt, Y
(`)
t−1)− h(Y

(`)
t−1)− h(Yt, Y

(`)
t−1, X

(k+1)
t ) + h(Y

(`)
t−1, X

(k+1)
t ) (4.18)

4.1.3 Approach and limitations

Hahs and Pethel compute exact cTE values over arbitrary embeddings as in (4.15). To do so, they
start from an analytic computation for cTX→Y over a single time lag t− 1→ t, i.e. for k = ` = 1
in (4.15):

cT
(1,1)
X→Y (t) = I(Yt;X

(2)
t |Y

(1)
t−1) (4.19)

= h(Yt, Y
(1)
t−1)− h(Y

(1)
t−1)− h(Yt, Y

(1)
t−1, X

(2)
t ) + h(Y

(1)
t−1, X

(2)
t ) (4.20)

= h(Yt, Yt−1)− h(Yt−1)− h(Yt, Yt−1, Xt, Xt−1) + h(Yt−1, Xt, Xt−1) (4.21)

This cTE is fully specified by the covariance matrix of the random vector [Xt, Yt, Xt−1, Yt−1]T .
There are three reasons for this:

1. Due to the assumptions made, the random vector [Xt, Yt, Xt−1, Yt−1]T is multivariate normal

2. All random variables listed in (4.21) are elements (“subsets”) of the aforementioned random
vector hence still (multivariate) normal (see relevant property in Appendix A)

3. The entropy of a (multivariate) normal random variable (4.1) depends on the covariance
matrix and its dimension only

After deriving the value of the above cTE, the important step in the approach of Hahs and Pethel
is based on the fact that, because the system is stationary, the aforementioned covariance matrix
(and therefore the cTE too) does not depend on the time t. This allows the utilization of this
covariance matrix as a building block for more general covariance matrices enabling the calculation
of cTE over arbitrary embedding vectors. This is achieved through a recursive approach.

However, for a non-stationary system, this is no longer possible - since the covariance matrix
will be changing over time. Moreover, while the second and third points listed above are clear,
the fact that this specific random vector is multivariate normal has to be proven.

In the next section, a non-stationary system is introduced and studied; it is a limiting case
of model (4.2) on the boundary of its parameter space. As a similar recursive approach is in-
feasible, we resort to explicit derivations of the quantities needed. We also prove the normality
of the random vector mentioned before. This is omitted in Hahs and Pethel (2013). Then, a
simple extension of this non-stationary system is studied, and its implications in the findings are
investigated.
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4.2 Non-stationary extension

Recall the VAR(1) model that was studied in previous section:

Xt = aXt−1 + Zt

Yt = bXt +Wt

(4.22)

Based on VAR(1) theory, stationarity of this system was found to be equivalent with the condition
|a| < 1. We will now consider the case where a = 1. The system is then non-stationary and it
takes the form:

Xt = Xt−1 + Zt

Yt = bXt +Wt

(4.23)

where t ∈ {0, 1, 2, ...}, X0 = Y0 = 0, and processes Zt,Wt are i.i.d normal noises with mean 0 and
variances σ2

Z , σ
2
W respectively. Independence assumptions are as before:

Zt ⊥⊥ Xs, for s < t (4.24)

Wt ⊥⊥ Xs, for any t, s (4.25)

Zt ⊥⊥Ws, for any t, s (4.26)

We start by investigating the distribution of the random variables comprising this system, and
then examine the stationarity of its increments.

4.2.1 Distribution

Rewriting the equation for Xt we obtain

Xt = Xt−1 + Zt (4.27)

= Xt−2 + Zt−1 + Zt (4.28)

= Xt−3 + Zt−2 + Zt−1 + Zt (4.29)

= ... (4.30)

= X0 + Z1 + ...+ Zt (4.31)

Therefore,

Xt =

t∑
k=1

Zk (4.32)

Hence, the process Xt is a random walk, as defined in Chapter 2. Since the process Zt is i.i.d
normal noise we are able to calculate the distribution of Xt. For fixed t, we have

Zt ∼ N (0, σ2
Z) (4.33)

Also, {Z1, ..., Zt} are independent, therefore (sum of independent normals)

Xt =

t∑
k=1

Zk ∼ N (0, tσ2
Z) (4.34)

As noted in the corresponding section, random walks are non-stationary, with an autocovariance
function γ(t+ h, t) = tσ2

Z . Utilizing these results we may also obtain the distribution of Yt:
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Xt ∼ N (0, tσ2
Z) =⇒ bXt ∼ N (0, b2tσ2

Z) (4.35)

Due to the independence of Wt and Xt we then get

bXt +Wt = Yt ∼ N (0, σ2
W + b2tσ2

Z) (4.36)

To conclude, both processesXt and Yt of the model are, for a fixed time t, normal random variables.
Their marginal non-stationarity can also be observed by the dependence of their distribution on
time. Then, we define the joint process:

Ut =

[
Xt

Yt

]
(4.37)

At time t, the bivariate random variable Ut has mean vector

µt =

[
E[Xt]
E[Yt]

]
(4.38)

and covariance matrix

Σt =

[
V ar(Xt) Cov(Xt, Yt)
Cov(Yt, Xt) V ar(Yt)

]
(4.39)

Both quantities can be easily computed explicitly. For the general case, we are interested in an
arbitrary embedding of the joint process Ut:

U
(d)
t = (Ut, Ut−1, ..., Ut−(d−1)) (4.40)

So, at time t, the multivariate random variable we will consider is

U
(d)
t =



Xt

Yt
Xt−1

Yt−1

...
Xt−(d−1)

Yt−(d−1)


(4.41)

This multivariate random variable has a mean vector µt and covariance matrix Σt that are similarly
defined as in the bivariate case. We already saw that all elements of this random vector are

marginally (univariate) normal. We will now prove that the embedding U
(d)
t follows a multivariate

normal distribution.

Theorem 4.2.1. The random vector U
(d)
t follows a multivariate normal distribution.

Proof. The proof revolves around noting that U
(d)
t can be decomposed as a product of a real matrix

and a normally distributed random vector. Then, because multivariate normality is preserved

under affine transformations (see Appendix A) the embedding U
(d)
t will also be multivariate normal

with a specific mean and covariance matrix that can be computed from the decomposition. We
write:
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

Xt

Yt
Xt−1

Yt−1

...
Xt−(d−1)

Yt−(d−1)


=



1 1 . . . 1 . . . 1 1 0 0 . . . 0 . . . 0 0
b b . . . b . . . b b 1 0 . . . 0 . . . 0 0
0 1 . . . 1 . . . 1 1 0 0 . . . 0 . . . 0 0
0 b . . . b . . . b b 0 1 . . . 0 . . . 0 0
...

...
...

...
...

...
...

...
...

...
0 0 . . . 1 . . . 1 1 0 0 . . . 0 . . . 0 0
0 0 . . . b . . . b b 0 0 . . . 1 . . . 0 0





Zt
Zt−1

...
Zt−(d−1)

...
Z2

Z1

Wt

Wt−1

...
Wt−(d−1)

...
W2

W1


Therefore we have decomposed the embedding as:

U
(d)
t = A · L (4.42)

where A is a 2d × 2t real matrix and L is a 2t-dimensional random vector. Due to the i.i.d
assumptions of the model, the random vector L follows a multivariate normal distribution:

L ∼ N (



0
...
0
0
...
0


,



σ2
Z

. . .

σ2
Z

σ2
W

. . .

σ2
W


) (4.43)

Hence, U
(d)
t = A · L has the following multivariate normal distribution:

U
(d)
t ∼ N (0, AΣAT ) (4.44)

where 0 is the d-dimensional zero vector and Σ is the covariance matrix of L listed above.

The covariance matrix AΣAT is computed:


tσ2
Z btσ2

Z (t− 1)σ2
Z b(t− 1)σ2

Z ... (t− (d− 1))σ2
Z b(t− (d− 1))σ2

Z

btσ2
Z b2tσ2

Z + σ2
W b(t− 1)σ2

Z b2(t− 1)σ2
Z ... b(t− (d− 1))σ2

Z b2(t− (d− 1))σ2
Z

(t− 1)σ2
Z b(t− 1)σ2

Z (t− 1)σ2
Z b(t− 1)σ2

Z ... (t− (d− 1))σ2
Z b(t− (d− 1))σ2

Z

b(t− 1)σ2
Z b2(t− 1)σ2

Z b(t− 1)σ2
Z b2(t− 1)σ2

Z + σ2
W ... b(t− (d− 1))σ2

Z b2(t− (d− 1))σ2
Z

...
...

...
...

...
...

(t− (d− 1))σ2
Z b(t− (d− 1))σ2

Z (t− (d− 1))σ2
Z b(t− (d− 1))σ2

Z ... (t− (d− 1))σ2
Z b(t− (d− 1))σ2

Z

b(t− (d− 1))σ2
Z b2(t− (d− 1))σ2

Z b(t− (d− 1))σ2
Z b2(t− (d− 1))σ2

Z ... b(t− (d− 1))σ2
Z b2(t− (d− 1))σ2

Z + σ2
W


(4.45)

Given the model parameters b, σ2
Z , σ

2
W , the embedding dimension d numerically specifies the co-

variance matrix AΣAT of the multivariate normal variable U
(d)
t . Recalling that the differential

entropy of such a variable only depends on its dimension and covariance matrix, we note that
the embedding dimension d also numerically specifies each entropy term featured in (4.21) and
therefore the cTE too. A concrete example is studied in Section 4.3.1.
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4.2.2 Stationarity of increments

From the discussion of stationarity for the initial system we already saw that choosing a = 1
implies the non-stationarity of the bivariate system (4.23). Minding the estimator discussed in
Section 3.4.3 we then focus on the stationarity of the increments of the system - recall Definitions
2.3.10 and 4.1.2.

We wish to prove the increment stationarity of the marginal processes Xt, Yt and joint process

Ut. In Section 4.3 we will be focusing on the 2-dimensional embedding of the joint process U
(2)
t =

[Xt, Yt, Xt−1, Yt−1]T so stationarity of increments will be proven here for this 4-dimensional time
series. This implies that any subvector of this embedding also has stationary increments, including,
among others, the marginal and joint processes Xt, Yt, Ut. We shortly elaborate on this statement

below. The increments of U
(2)
t are formed:

(I −B)U
(2)
t = U

(2)
t − U (2)

t−1 =


∆Xt

∆Yt
∆Xt−1

∆Yt−1

 =


Xt −Xt−1

Yt − Yt−1

Xt−1 −Xt−2

Yt−1 − Yt−2

 =


Zt

bZt +Wt −Wt−1

Zt−1

bZt−1 +Wt−1 −Wt−2


(4.46)

Stationarity of this multivariate time series is assessed as before. First, the mean vector is

µ =


E[Zt]

E[bZt +Wt −Wt−1]
E[Zt−1]

E[bZt−1 +Wt−1 −Wt−2]

 =


0
0
0
0

 (4.47)

and is therefore trivially independent of time t. The same should hold for the 4 × 4 covariance
matrix Γ(t + h, t). For brevity, we use the first difference operator ∆ and refer to (4.46) for the
actual random variables under consideration:


Cov(∆Xt+h,∆Xt) Cov(∆Xt+h,∆Yt) Cov(∆Xt+h,∆Xt−1) Cov(∆Xt+h,∆Yt−1)
Cov(∆Yt+h,∆Xt) Cov(∆Yt+h,∆Yt) Cov(∆Yt+h,∆Xt−1) Cov(∆Yt+h,∆Yt−1)
Cov(∆Xt−1+h,∆Xt) Cov(∆Xt−1+h,∆Yt) Cov(∆Xt−1+h,∆Xt−1) Cov(∆Xt−1+h,∆Yt−1)
Cov(∆Yt−1+h,∆Xt) Cov(∆Yt−1+h,∆Yt) Cov(∆Yt−1+h,∆Xt−1) Cov(∆Yt−1+h,∆Yt−1)


(4.48)

Using the bilinear property of the covariance and recalling the independence assumptions of the
model, we note that all covariances comprising the covariance matrix are, for an arbitrary h, either
0 or a function of the variances σ2

Z , σ
2
W that does not depend on time. As an example, we calculate:

Cov(∆Xt−1+h,∆Yt) = Cov(Zt+h−1, bZt +Wt −Wt−1) = bCov(Zt+h−1, Zt) =

{
bσ2
Z if h = 1

0 otherwise

(4.49)

We thus conclude that the time series (I −B)U
(2)
t is stationary, i.e. the 2-dimensional embedding

U
(2)
t of the joint process Ut has stationary increments. Observing that the mean vector and

covariance matrix of any subvector of U
(2)
t = [Xt, Yt, Xt−1, Yt−1]T is a subvector of µ and a

submatrix of Γ(t + h, t) respectively, we note that they will also be independent of time. This

proves that any subvector of U
(2)
t (including the marginal and joint time series Xt, Yt, Ut) also has

stationary increments. This remark will be useful in Section 4.3.3.

Remark. Focusing on the bivariate time series Ut, we essentially showed that it can be transformed
from non-stationary to stationary through one application of the differencing operator ∆. In time
series literature, this is referred to as Ut being an integrated time series of order 1. Integration
is related to the similar concept of co-integration that was introduced in a highly influential paper
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by Engle and Granger (1987). In (Brockwell and Davis, 2010, Section 7.7) the same system we
study is investigated from a time series analysis perspective, featuring comments on co-integration
and an alternative proof for stationarity of increments.

4.2.3 Adding a deterministic drift

An immediate extension of the results obtained so far is provided by considering the case of a
random walk with a drift.

Definition 4.2.2. A time series St, t ∈ {0, 1, ...} with S0 = 0 is called a random walk with a drift
µ if

St = µ+ St−1 + Zt, for t = 1, 2, .. (4.50)

where µ ∈ R is constant and Zt is i.i.d noise.

The random walk with a drift admits a similar form to the random walk by successive substitution:

St = µ+ St−1 + Zt = 2µ+ St−2 + Zt + Zt−1 = ... = tµ+

t∑
k=1

Zk (4.51)

The sole difference with the regular random walk is thus the linear term tµ. Because of this term,
for a given t, the mean of the random variable St is no longer 0:

E[St] = E[tµ] + E
[ t∑
k=1

Zk
]

= tµ+

t∑
k=1

E[Zk] = tµ (4.52)

but since the new term is deterministic the autocovariance is not affected:

γs(t+h, t) = Cov(St+h, St) = Cov
(
(t+h)µ+St+Zt+1+...+Zt+h, St

)
= Cov(St, St) = tσ2 (4.53)

This remark already indicates that the results for TE may not change. As we already discussed,
TE depends on joint entropies that for a multivariate normal variable depend on its dimension
and covariance matrix only. We elaborate on this statement here, following the same ideas as
before. We consider the extended model:

Xt = µ+Xt−1 + Zt (4.54)

= tµ+

t∑
k=1

Zk (4.55)

Yt = bXt +Wt (4.56)

= btµ+ b

t∑
k=1

Zk +Wt (4.57)

The assumptions regarding Zt,Wt and independence relations are as before. For fixed t we infer:

Xt ∼ N (tµ, tσ2) (4.58)

Yt ∼ N (btµ, b2tσ2
Z + σ2

W ) (4.59)

Then, the distribution of an embedding U
(d)
t of the bivariate process Ut = [Xt, Yt]

T can be com-
puted. We note that the only difference of the current model with the previous one is the existence
of the deterministic terms tµ and btµ in the equations of Xt and Yt respectively. Hence, we observe

Estimation of Transfer Entropy 43



CHAPTER 4. A RANDOM WALK SYSTEM

that the decomposition A · L, where A and L are as in (4.42) can be trivially extended to yield

U
(d)
t by adding the following deterministic vector to it:

D =



tµ
btµ

(t− 1)µ
b(t− 1)µ

...(
t− (d− 1)

)
µ

b
(
t− (d− 1)

)
µ


(4.60)

That is, for fixed t, the new decomposition is

U
(d)
t = A · L+D (4.61)

where A,L are as in (4.42) and D is as defined above. As an affine transformation of the mul-
tivariate normal vector L (that has the same covariance matrix Σ as before), the distribution of

U
(d)
t is multivariate normal with parameters:

U
(d)
t ∼ N (D,AΣAT ) (4.62)

Since the covariance matrix of the current embedding vector remained the same, we infer that TE
will also stay the same.

4.3 Transfer entropy insights

The theoretical analysis has now concluded, and the attention is shifted to practical aspects. In
this section, an explicit formula for the cTE is derived, and its asymptotic behavior is examined.
Exact results are subsequently obtained and insights on the behavior of the cTE are retrieved
through sensitivity analysis. Finally, cTE is estimated, and the estimates are compared to the
theoretical values. Various visualizations are included in the section to aid understanding and
illuminate insights.

4.3.1 Explicit formula and asymptotic behavior

Building upon the results derived so far, a concrete cTE calculation is now presented. An exact
formula for cTE is obtained, and its asymptotic behavior is examined. The following cTE is
considered:

cT
(1,1)
X→Y (t) = h(Yt, Yt−1)− h(Yt−1)− h(Yt, Yt−1, Xt, Xt−1) + h(Yt−1, Xt, Xt−1) (4.63)

The corresponding embedding of the joint process is

U
(2)
t =


Xt

Yt
Xt−1

Yt−1

 (4.64)

U
(2)
t is normal with covariance matrix AΣAT where A is the following 4× (t+ 2) matrix

A =


1 1 ... 1 1 0 0
b b ... b b 1 0
0 1 ... 1 1 0 0
0 b ... b b 0 1

 (4.65)
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and Σ is the following (t+ 2)× (t+ 2) diagonal matrix:

Σ =


σ2
Z

. . .

σ2
Z

σ2
W

σ2
W

 (4.66)

The end result AΣAT is the 4× 4 matrix

M := AΣAT =


tσ2
Z btσ2

Z (t− 1)σ2
Z b(t− 1)σ2

Z

btσ2
Z b2tσ2

Z + σ2
W b(t− 1)σ2

Z b2(t− 1)σ2
Z

(t− 1)σ2
Z b(t− 1)σ2

Z (t− 1)σ2
Z b(t− 1)σ2

Z

b(t− 1)σ2
Z b2(t− 1)σ2

Z b(t− 1)σ2
Z b2(t− 1)σ2

Z + σ2
W

 (4.67)

whose (i, j) element is the covariance of the ith element of U
(2)
t with its jth element. The main

diagonal contains the variances of Xt, Xt−1, Yt, Yt−1 which we could already compute from the
autocovariance functions of each marginal process.

The matrix AΣAT illustrates the dependence of the covariance structure of the model (and
therefore of its cTE) to time. To calculate the cTE we introduce some notation.

Definition 4.3.1. Let A be a m×n matrix and k ≤ n,m. Given a set of distinct indices i1, ..., ik
we will denote the matrix that only consists of the (i1, ..., ik) columns and rows of A as A(i1,...,ik).

For instance, we are interested in computing the differential entropy h(Yt, Yt−1). This is a bivariate
normal random variable and its covariance matrix is retrieved from (4.67) by considering the
elements on each intersection of the second and fourth rows and columns of matrix M , i.e. by
considering the 2× 2 matrix

M(2,4) =

[
b2tσ2

Z + σ2
W b2(t− 1)σ2

Z

b2(t− 1)σ2
Z b2(t− 1)σ2

Z + σ2
W

]
(4.68)

Each entropy term of (4.63) is then calculated considering formula (4.1) thus yielding the cTE:

cT
(1,1)
X→Y (t) = h(Yt, Yt−1)− h(Yt−1)− h(Xt, Yt, Xt−1, Yt−1) + h(Xt, Xt−1, Yt−1) (4.69)

=
1

2
log
[
(2πe)2 detM(2,4)

]
− 1

2
log
[
(2πe)1 detM(4)

]
(4.70)

− 1

2
log
[
(2πe)4 detM

]
+

1

2
log
[
(2πe)3 detM(1,3,4)

]
(4.71)

=
1

2
log

[
2πe

detM(2,4)

detM(4)

]
− 1

2
log

[
2πe

detM

detM(1,3,4)

]
(4.72)

=
1

2
log

[
detM(2,4) detM(1,3,4)

detM(4) detM

]
(4.73)

Note that since the “matrix” M(4) refers to the single element included in the intersection of the
fourth row and the fourth column, M(4) is actually the number b2(t − 1)σ2

Z + σ2
W (the variance

of the random variable Yt−1), and the notation detM(4) is superfluous; we however keep it for
homogeneity reasons. Specifying the three parameters included in matrix M we then use formula

(4.74) to derive the cT
(1,1)
X→Y as a function of time t. We may subsequently compute the determinants

and substitute them in the above formula to derive a more explicit formula:

cT
(1,1)
X→Y (t) =

1

2
log

[
b4σ4

Z(t− 1) + b2σ2
Wσ

2
Z(2t− 1) + σ4

W

b2σ2
Zσ

2
W (t− 1) + σ4

W

]
(4.74)
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The limit to infinity is also calculated:

lim
t→+∞

cT
(1,1)
X→Y (t) = lim

t→+∞

1

2
log

[
b4σ4

Z(t− 1) + b2σ2
Wσ

2
Z(2t− 1) + σ4

W

b2σ2
Zσ

2
W (t− 1) + σ4

W

]
(4.75)

= lim
t→+∞

1

2
log

[
b4σ4

Z + b2σ2
Wσ

2
Z

2t−1
t−1 +

σ4
W

t−1

b2σ2
Zσ

2
W +

σ4
W

t−1

]
(4.76)

=
1

2
log

[
b4σ4

Z + 2b2σ2
Wσ

2
Z

b2σ2
Zσ

2
W

]
(4.77)

=
1

2
log

[
b2
σ2
Z

σ2
W

+ 2

]
(4.78)

Thus, assuming that b, σ2
Z , σ

2
W ∈ R+, the cTE of this system converges to a constant. The

(asymptotic) dependence of the information transfer magnitude on the fixed system parameters
b, σ2

Z , σ
2
W is given by (4.78). Practical insights from this result are discussed in the next section.

4.3.2 Exact results and sensitivity analysis

In this section, we select the following parameter values: σ2
Z = 0.5, σ2

W = 1 and b = 0.8. We are

thus able to explicitly calculate the cTE of the embedding U
(2)
t utilizing formula (4.74). The cTE

is visualized as a function of time in Figure 4.1.

Figure 4.1: The compensated transfer entropy theoretical value for model (4.23) with σ2
Z =

0.5, σ2
W = 1 and b = 0.8. The cTE is a function of time given by formula (4.74).

Referring to Figure 4.1, note that the convergence of the cTE is clear. The limit is conveniently
computed from (4.78):

lim
t→+∞

cT
(1,1)
X→Y (t) =

1

2
log

[
b2
σ2
Z

σ2
W

+ 2

]
=

1

2
log

[
0.82 0.5

1
+ 2

]
=

1

2
log(2.32) = 0.421 nats. (4.79)

Sensitivity Analysis

Recall that Xt can be thought of as a hidden time series of a quantity we wish to measure, while Yt
is the observation of Xt we are able to get through a sensor. Then, σ2

Z is related to the variance of
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Xt, σ
2
W is the variance of the noise of Yt, i.e. how noisy the sensor Yt is, and b is a fixed coefficient

of the values of Xt in the equation of Yt.
The cTE from X to Y is the information transfer (in nats) from the hidden process to its

sensor. Intuitively, this should be kept high; it may therefore serve as an evaluation metric for
sensor Yt. For this particular system, the cTE converges fast as time progresses, and sensitivity
analysis is thus performed on its limit.

We begin with investigating the effect of sensor noise on information transfer. We fix σ2
Z = b = 1

and vary σ2
W on the interval (0, 10). The cTE is plotted as a function of σ2

W in Figure 4.2.

Figure 4.2: The effect of an increasing sensor noise on cTE. As the sensor becomes more noisy,
the flow of information deteriorates.

A rapid descent is observed. When the system parameters b, σ2
W , σ

2
Z are positive real numbers, the

asymptotic transfer of information quickly drops as the sensor noise increases (while staying finite).
After having taken t→ +∞ in (4.74), caution is required if limits of other system parameters are
considered - the order of taking the limits is important and they generally cannot be interchanged.

We now study the effect of b on the cTE. Later in the report, we will be referring to such
coefficients as the coupling strength of a causal interaction. Variances σ2

Z , σ
2
W are fixed to 1 and

coefficient b is varied in (0, 10). The corresponding graph is included in Figure 4.3.

Figure 4.3: Increasing the coupling coefficient b, the information flow to the sensor increases.
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Since the coefficient b appears as a square in the cTE formula, for very small values (where the
sensor is reducing the correct hidden process value) the flow of information is small, however as b
transitions to bigger values (where the sensor is magnifying the correct hidden process value and
thus minimizing the effect of its own noise on its value) cTE is increased.

In the following, we will concentrate on the case where the coupling coefficient b = 1, and the
system is fully determined by the variances σ2

Z , σ
2
W of the noise terms. From formula (4.78) it is

then clear that the deciding quantity for the limit of information flow in this system is actually

the ratio of variances
σ2
Z

σ2
W

. Varying this ratio on the interval (0, 10), Figure 4.4 shows that the

increase in information transfer from Xt to Yt is indeed logarithmic.

Figure 4.4: Increasing the variances ratio implies a logarithmic increase in information flow.

We conclude this analysis by varying both variances σ2
Z , σ

2
W at the same time, and visualizing the

cTE for each combination in (0, 10)× (0, 10). This 3D graph is shown in Figure 4.5.

Figure 4.5: Varying both variances on the same interval as before, we obtain a 3-dimensional
graph displaying how cTE changes. Observe the sharp drop in information transfer as the sensor
noise increases, which is even sharper when the hidden process variability is small (smaller than
the sensor noise). After the initial drop, cTE resembles a slightly inclined plane.
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4.3.3 Estimator performance

A specific realization of the model is now generated. It is visualized in Figure 4.6.

Figure 4.6: A realization of model (4.23) with the same parameters as in Figure 4.1. Process Yt
is a noisy observation of Xt.

We will use this realization of the system to estimate the cTE whose exact values and limit are
already known. We are then able to assess the performance of the estimator we choose for this
system: the estimator presented in Section 3.4.3 will be implemented for each entropy term in the
expression for cTE (4.63). As shown in Section 4.2.2, each entropy term refers to a non-stationary
time series with stationary increments, so this estimator is a suitable fit.

As we saw in Figure 4.1, the exact cTE is a function of time, albeit quickly convergent to a
constant value. Therefore, creating a large time window to estimate the cTE on, we will first
compare the single estimate obtained with the limiting value of the cTE.

We select the time window [150, 450]. Referring to Figure 4.6 a significant portion of this
window contains a non-stationary pattern in the form of drifts.

In Section 3.4.3 it is proposed to estimate the time-averaged density (3.40) of the window
[150, 450] with the histogram of all data points available in that time interval: the entropy estimate
of that time window is then the entropy of that histogram. For the purposes of the project, the
following multivariate density estimator was used instead Lizier (2014):

f̂n(x) =
1

n

n∑
i=1

Θ (||x−Xi||∞ − h) (4.80)

Here, Θ is the step kernel Θ(x > 0) = 0, Θ(x ≤ 0) = 1, and || · ||∞ is the maximum norm. We
note that such an estimate might require further calibration with respect to its bias; potential bias
correction for estimates is however not considered in this study.

Each cTE term h(Yt, Yt−1), h(Yt−1), h(Yt, Yt−1, Xt, Xt−1), h(Yt−1, Xt, Xt−1) is thus separately
estimated using this estimator in the time window [150, 450], i.e. with T = 300. All estimates are
in nats, to match the cTE theoretical values. We obtain:

ĥ(Yt, Yt−1) = 4.448 (4.81)

ĥ(Yt−1) = 2.709 (4.82)

ĥ(Yt, Yt−1, Xt, Xt−1) = 6.637 (4.83)

ĥ(Yt−1, Xt, Xt−1) = 5.303 (4.84)
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The cTE estimate for this particular time window therefore is:

ĉT
(1,1)(150,450)

X→Y = 4.448− 2.709− 6.637 + 5.303 = 0.405 (4.85)

In this particular case, the estimator performs well, approaching the theoretical limit 0.421. This
is despite the naivety of separately estimating four different entropy terms; dealing with this
difficulty in a sophisticated way was the main breakthrough of the KSG estimator.

According to the stationary increments estimator, each estimated entropy term should only
depend on the length T of the time window [t0, t0 + T ] we consider. In the following, the above
are systematically utilized to derive pointwise estimates for cTE based on the data generated.

We are interested in estimating the cTE values shown in Figure 4.1. Thus, we begin by
fixing the starting timepoint t0 = 0 and consider the increasing time windows [t0, t0 + T ] for
T ∈ {1, ..., N − 1}, where N is the sample size of the data generated from the system. So, we
consider the (discrete) increasing time windows {0, 1}, {0, 1, 2}, ..., {0, ..., N − 1}. At every time
window, we use all data available (e.g. X0, X1, X2, Y0, Y1, Y2 for {0, 1, 2}) to get a cTE estimate
as described above. Thus, we map all time windows {0, ..., k} for k ∈ {1, ..., T} to a cTE estimate.
This is the pointwise cTE estimate at time k, to be compared to the corresponding exact cTE
value. For the specific model realization shown in Figure 4.6, Figure 4.7 contains the exact and
the estimated cTE values overtime.

Figure 4.7: The exact cTE values and the estimated cTE plotted together.

The window size chosen for cTE estimation appears to be very important. While initially the
estimator significantly overestimates the correct value, when a moderate amount of data have been
made available, the estimates closely approach the corresponding exact value. It is important to
note that once a moderate window size is reached the estimates stop improving, even showing
a slow diverging behavior. This was also the case in other realizations, further illustrating the
importance of a balanced window size for getting good estimates and the importance of correcting
the estimates derived for bias.
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Data

This chapter presents the data that are used for the purposes of developing a benchmark framework
for causal inference methods, referring to the second research question of the project. There are
two different kinds of data included, simulated data and real data. In selecting any dataset to
include in the project, knowing its causal structure is naturally very important - since only then
we are able to evaluate the performance of any causal inference method. For simulated data, the
corresponding causal structure can be inferred by the equations that generate the dataset.

5.1 Preliminaries

Benchmarking the performance of different causal inference methods in time series data is a task
that was recently undertaken by many researchers, e.g. Runge et al. (2019a), Siggiridou et al.
(2019), Papana et al. (2013), Krakovská et al. (2018), Kořenek and Hlinka (2018). Studying these
papers, the researchers frequently utilize the following datasets to evaluate causal inference models
on: vector autoregressive (VAR) systems, coupled logistic maps, Rössler systems, Lorenz systems,
and Hénon Maps. Each dataset features its own theory, utility and causal structure.

The simulated dataset used for the analysis that follows is a multivariate adaptation of the
Hénon Map. Historically, the introduction of the Lorenz system inspired the introduction of the
Hénon Map so the former is discussed first.

Lorenz system

Among the systems mentioned above, the Lorenz system particularly stands out. It is a determ-
inistic system consisting of three coupled ordinary differential equations. The following are based
on Lorenz (1963) and Sparrow (1982).

Definition 5.1.1 (Lorenz system). The Lorentz system is defined as the following set of coupled
ordinary differential equations:

dx

dt
= σ(y − x) (5.1)

dy

dt
= x(ρ− z)− y (5.2)

dz

dt
= xy − βz (5.3)

with the initial conditions (x(0), y(0), z(0)) = (x∗, y∗, z∗) ∈ R3, where σ, ρ, β, t > 0.

Lorenz introduced the above system as a simplification of the convective motion of a fluid. As
a mathematical object, it possesses several extraordinary properties. To motivate the discussion,
Figure (5.1) features a solution of the system for specific parameter values.
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Figure 5.1: A numerically computed solution of the Lorenz system where σ = 10, ρ = 28, β = 8/3

For arbitrarily big t, the solution appears to be “trapped” in the general shape that is seen.
Moreover, while the general form of the graph appears to be independent of the system’s initial
conditions, its numerical details are highly dependent on both the initial conditions of the system
and the values of the parameters. In particular, the exact sequence of the values (x(t), y(t), z(t))
(i.e. how the solution traverses its graph) is extremely sensitive to changes in the initial conditions
of the system. That is, no matter how close (in R3) two initial conditions are, the solutions of the
same Lorenz system produced by them will ultimately have no connection, evolving independently
from one another. This indicates that, in reality, making distant predictions of how such systems
will develop will not be possible (Broer and Takens, 2011, p. 49).

Remark. Lorenz, who was also a meteorologist, attributed the inaccuracy of long-term weather
prediction to a similar sensitive dependence of the Earth’s atmosphere on initial conditions. Il-
lustrating this thesis, he used the example of the wing beat of a butterfly potentially “causing” a
tornado as demonstration of a minuscule change in the initial conditions of a system leading to a
significantly different future for it; a paradigm now known as the “butterfly effect” Lorenz (1995).

Furthermore, recall that the system introduced in 5.1.1 is fully deterministic; there are no random
variables involved, yet the system behaves in a “chaotic” and unpredictable way. Combining the
above results and observations, we infer that it might be possible to model a highly complicated
system through a simple deterministic system of low dimension - such as the one introduced by
Lorenz. Achieving a highly complex structure with relatively simple means can be advantageous
and therefore explains the popularity of Lorenz systems across many scientific fields, as well as
the reason why researchers frequently choose to evaluate causality methods on them.

Causal graphs

Generally, by looking at the equations that define a multivariate coupled system such as the one
in 5.1.1, we can infer a corresponding graph capturing the relations between variables. This graph
contains one node for each variable of the system, and a directed edge from variable X to variable
Y if and only if the equation where Y is defined depends on X. Thinking of the equation that
defines a variable X as modelling the causal mechanism between this variable and the rest, we
may call this graph causal, and interpret any system of such equations as a causal model carrying
a specific causal structure Rubenstein et al. (2018).
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For the example of the Lorenz system defined in 5.1.1, we observe the following relations
between the variables:

• From 5.1, we see that (the derivative of) variable x depends on variables x and y

• From 5.2, we see that (the derivative of) variable y depends on variables x, y and z

• From 5.3, we see that (the derivative of) variable z depends on variables x, y and z

Note that in all three equations that define the (derivative of) each variable we also find the
variables themselves. Thus, the variables of the Lorenz system are also self-dependent. From the
perspective of causality this might be informally referred to as self-causation. The above remarks
are now conveniently summarized in the Lorenz causal graph:

Figure 5.2: The Lorenz causal graph

Remark. Note that, due to a directed edge from variable X to variable Y existing in the causal
graph if and only if the equation where Y is defined depends on X, directed edges in a causal
graph exclusively signify direct causation. In the above example, the path Z → Y → X exists, and
therefore Z is causing X, albeit in an indirect way (i.e. through Y ). Therefore, the directed edge
Z → X is not included in the graph.

Hénon Map

In the Lorenz system, the dependence of each variable on the rest is formulated through the deriv-
ative of the variable, and not through the variable itself. This differential equation modelling might
be fruitful in modelling physical phenomena, but it is not necessarily needed for the purposes of
causal inference. A different mathematical object, named the Hénon map Hénon (1976), provides
similar utility to the Lorenz system, without requiring to be defined in terms of derivatives.

Definition 5.1.2 (Hénon Map). The Hénon map is the following set of coupled equations that
are defined recursively as:

xt+1 = 1− ax2
t + yt (5.4)

yt+1 = bxt (5.5)

where the system is initialized from (x0, y0) = (x∗, y∗) ∈ R2, the parameters a, b ∈ R, and t ∈ N.

The Hénon map was originally introduced with the aim of finding a system, which is as simple
as possible while retaining similar properties to the Lorenz system - hence alleviating the large
computational obstacles that a system of coupled differential equations posed at the time, and
simplifying theoretical analysis.
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The parameter values for a, b that are traditionally studied are a = 1.4 and b = 0.3. This
parameter selection leads to the classical Hénon map - which indeed exhibits chaotic behavior
similar to the Lorenz system Gonchenko et al. (2005).

Recall that solutions of Lorenz systems become “trapped” in a shape of the form (5.1). This
also holds for the Hénon map, as its values quickly end up traversing a shape such as the one
featured in (5.3). This graph possesses similar properties to the corresponding graph derived by
solving the Lorenz system Gonchenko et al. (2013).

Specifically, the evolution of the Hénon map depicted in figure (5.3) was proven to never
tend to a periodic pattern Benedicks and Carleson (1991), which has implications regarding its
predictability (Broer and Takens, 2011, Chapter 2) - hence imitating a characterizing property
of the Lorenz system. In the case of Lorenz systems, the convergence of a solution happens
independently of the initial conditions. This is not the case for Hénon maps. In fact, depending
on the initial values (x∗, y∗), the Hénon map will either end up traversing such a shape, or diverge
to infinity. Potential diverging behavior can be easily discerned from (5.4), as initializing large
values for x∗ will lead to the quadratic term x2

t dominating the system, leading to divergence.

Figure 5.3: Plot of the first 40,000 iterations of the classical Hénon Map for (x0, y0) = (0.35, 0.65) =(
(1− b)/2, (1 + b)/2

)
Generalized Hénon map

For the purposes of the project, simulating a (mathematically simple) deterministic system that
exhibits highly convoluted behavior is important, and the Hénon map is a great candidate. How-
ever, the original Hénon map formulation defined in (5.4) comprised a bivariate system. From a
causal inference standpoint, a multivariate extension of the Hénon map is clearly needed, since in
a bivariate setting only two possible causal relations between the variables exist.

This multivariate extension, called the generalized Hénon map was initially given in Baier and
Klein (1990). This system consists of the following K variables, defined through the equations:

Definition 5.1.3 (Generalized Hénon Map). The generalized Hénon map is defined as the fol-
lowing set of K recursive equations:

xi,t+1 = a− x2
K−1,t − bxK,t for i = 1

xi,t+1 = xi−1,t for i = 2, ...,K

where the system is initialized from vector (x∗1, x
∗
2, ..., x

∗
K) ∈ RK . Here, 2 ≤ K ∈ N, a, b ∈ R,

0 < |b| < 1 and t ∈ N.
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While important for our goals, this extension is rather limited. This can be seen by investigating
the causal graph (Figure 5.4) of this system.

Figure 5.4: The generalized Hénon map causal graph for K = 6

Indeed, the equations defining the generalized Hénon map indicate a very simplistic causal struc-
ture (cyclical, one-directional, no self-causation) that is not satisfactory for accommodating the
degree of complexity needed.

This is why the approach presented in Siggiridou et al. (2019) is followed. In this paper, a set
of K modified Hénon equations is listed (originally studied in Schiff et al. (1996)), leading to a
more involved causal structure to be picked up by any causal inference method. The definition of
this system follows.

Definition 5.1.4 (Generalized Hénon maps for causal inference). The generalized Hénon map to
be used for causal inference is defined via the following K equations:

xi,t = 1.4− x2
i,t−1 + 0.3xi,t−2, for i = 1,K,

xi,t = 1.4− (0.5C (xi−1,t−1 + xi+1,t−1) + (1− C)xi,t−1)
2

+ 0.3xi,t−2, for i = 2, . . . ,K − 1

where the system is initialized from vector
(
(x∗1,0, x

∗
1,1), (x∗2,0, x

∗
2,1), ..., (x∗K,0, x

∗
K,1)

)
∈
(
R2
)K

, 3 ≤
K ∈ N, t ∈ N and C ∈ (0, 1)

Notice that the classical values a = 1.4 and b = 0.3 are used. In this definition, the parameter C
denotes the coupling strength, i.e. how “strong” each causal relation is. This is conceptualized as
a coefficient in front of the causal variables - with larger values of C indicating a tightly coupled
system with a clearer causal structure.

Similarly to the original bivariate Hénon map, we choose to uniformly sample all initial values
of the system from the interval (0, 1). Following Kugiumtzis (2013), the coupling strength C is
empirically restricted to the interval (0, 0.8]. We finally consider the corresponding causal graph
of this system, for the case K = 10.

Figure 5.5: The modified generalized Hénon map causal graph for K = 10
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5.2 The Hénon map

A dataset with K = 10 variables and n = 1000 observations each is generated from equations
(5.1.4) at a uniform and constant sampling rate with coupling strength C = 0.5. The system is
initialized from the point

(
(x∗0,0, x

∗
0,1), (x∗1,0, x

∗
1,1), ..., (x∗9,0, x

∗
9,1)
)

that is uniformly sampled from
(0, 1)10. Each variable is a time series, and the time series are causally related as shown in Figure
5.5.

For the study that follows, this dataset will be re-generated with different variable numbers,
coupling strengths and initial conditions. Similarly to the Lorenz system, minute changes in the
initial conditions of the system will lead to significantly different time series but the system will
retain its macroscopic features. Varying the coupling strength C will affect the level of influence
that variables have on each other and will therefore alter the “difficulty” causal inference methods
will deal with. The aforementioned instance of the dataset is chosen here only for visualization
and exploration purposes. The Hénon Map dataset is visualized in Figure 5.6.

Figure 5.6: 10 time series of the Hénon map plotted over the same axis

The dataset appears to exhibit intense oscillations. Hypothesizing about any causal relation
between its variables by simply examining the above plots is not possible. To further explore the
dataset, a correlation matrix of the variables is shown in Figure (5.7).

Since the main diagonal consists of correlations of each variable with itself, it is equal to 1. The
general pattern observed in the correlation matrix is the existence of positive correlations between
successive variables. A part of the causal truth is therefore transferred here, which is mostly at-
tributed to the multitude of linear relations existing between the variables in (5.1.4). Nevertheless,
due to the correlation coefficient being a symmetric measure, a notion of directionality between
two variables can not be derived.

Moreover, correlation strength of successive variables varies. Variables 3 and 4 correlate mod-
erately, while a strong correlation is detected between variables 7 and 8, potentially confound-
ing inferences. Notice that positive correlations also exist between non-successive variables, e.g.
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Figure 5.7: Pearson’s ρ correlation coefficient for every pair of variables in the Hénon Map dataset.

between variable 3 and 5. This is due to indirect causation, illustrated by the dependence of the
equation defining variable 5 on variable 4, which in turn depends on variable 3, i.e. by the existence
of the path 3→ 4→ 5 in the causal graph of the system. Many causal inference methods account
for indirect causation, in which case the causal relation 3→ 5 should be deemed insignificant.

5.3 Real data

The following ASML dataset will also be used for benchmarking the performance of causal inference
methods. It consists of three univariate time series named P1, P2, P3 shown in Figure 5.8.

Figure 5.8: Real data consisting of three time series
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All three time series consist of 2689 datapoints sampled at a uniform and constant frequency. The
causal relations between these three time series are known by design. It is important to note that
there exist unobserved variables influencing this dataset, something that will generally compromise
causal inferences. This is normally the case in real data, therefore benchmarking causal inference
methods in such a dataset is realistic. A causal inference method might be able to remedy the
effect or hypothesize the existence of such exogenous variables. The causal structure of the system
is visualized in the corresponding causal graph included in Figure 5.9.

Figure 5.9: Real data causal structure. In reality, this is a subgraph of the full causal structure
graph, as the existence of at least one time series influencing both P2 and P3 was confirmed by
domain experts. However, this is not observed.

Moreover, all three time series exhibit stationary behavior, with the exception of an interval where
a large drop in the values of P2 and P3 occurs. In Chapter 6 we will see that many causal inference
methods assume stationary data; for the purposes of the benchmark study, we will consequently
focus on the stationary time interval [650, 1400]. Stationarity of the time series within this interval
is also substantiated by the execution of an augmented Dickey-Fuller test Said and Dickey (1984)
that rejects the presence of a unit root for all time series.

Figure 5.10: The data window to be used in the study is highlighted in red
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Benchmark Framework

This chapter introduces a benchmark framework for the study, evaluation, and comparison between
different causal inference methods in time series analysis. The framework consists of three main
components: data used (also discussed in Chapter 5), methods selected, and finally, the perform-
ance evaluation and comparison between these methods. In this chapter, the overall structure and
methodological details of the framework are presented, alongside a comprehensive discussion of
each method used. Details regarding the performance evaluation and comparison are also part of
this chapter; however the full results, the insights derived from them, and their interpretation are
included in Chapter 7.

As it was also noted in Chapter 5, several similar frameworks have been recently developed
(e.g. Runge et al. (2019a), Siggiridou et al. (2019), Papana et al. (2013), Krakovská et al. (2018),
Kořenek and Hlinka (2018), Nauta et al. (2019)). Each study investigates a variable number
of methods over multiple datasets with known causal structure via performance measures. For
the development of the current framework, the overall methodology used in each of these papers
was consulted. While simultaneously minding the particular interests of ASML, this led to the
framework structure proposed and outlined in this chapter. Overall, the approach developed for
this project is mostly influenced by Siggiridou et al. (2019) and Nauta et al. (2019).

6.1 Goal

As it was mentioned before, in this project, the focus is on unveiling the causal structure of a
dataset (in contrast to deriving insights related to causal effects, or counterfactual questions).
Here, we elaborate on the meaning of this task. So, the goal of the benchmark study is set.

A general question, not only of causal inference, but of multivariate data analysis in general,
is the following: Given a dataset with M variables, is it possible to infer a graph with M nodes,
where edges indicate that two variables are “related”?

From the perspective of the project, variables are time-dynamic and “relations” are causal. A
specific notion of causality according to Granger was described in Chapter 2. While this is the
most popular causality notion for time series, we note that not all methods included in the study
are precisely based in it (e.g. recall the subtle details presented for TE on Section 2.2.2). When
causality is assigned a significantly different meaning within a method, we shortly elaborate on it
in the same section where the method is presented.

Inspired by terminology used in neurosciences (Friston (2011), Sporns (2010)), Bossomaier
et al. (2016) use the term effective network inference to describe the task of retrieving a directed
graph encoding time-lagged causal interactions between the variables from a given dataset. This
is contrasted to structural or functional network inference, the former relying on interventional
techniques to infer physical causality Pearl (2000), Ay and Polani (2008) and the latter being
based on correlation analyses.

From the discussion of what causality generally refers to in this project, it is evident that
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the goal of this benchmark study is to perform effective network inference in data consisting of
interacting time-series. All causal inference methods presented here attempt to deal with this
task. This is visually explained in Figure 6.1.

Figure 6.1: Effective network inference: in the directed graph, each directed edge denotes a time-
lagged causal interaction.

As a familiar example, transfer entropy has been successfully used for effective network inference
in a variety of fields, and is moreover recognised by researchers as a natural option for such a task.
This is related to its theoretical background, as shown in Chapter 2: recall that TE is measuring
a directed relationship between variables in terms of the uncertainty of a target that is resolved
by a source, a notion that is associated with Granger causality.

However, TE is not the only method designated for this task. In fact, within Information
Theory only, there exist similar notions aiming at solving the same problem Massey (1990), Vlachos
and Kugiumtzis (2010). Of course, the search for other methods need not be constrained to
Information Theory, and multiple methods from diverse theoretical backgrounds exist. Selecting,
evaluating, and comparing the performance of several methods in a homogenized and objective
manner, while minding the methodological details is therefore the goal of this benchmark study.

6.2 Data

So far, preliminary knowledge was provided and exploratory data analysis was performed in data
to be used in Chapter 5. This section features specific details of the data used from the perspective
of this benchmark study. We first summarize the properties of data used in the following table.

Hénon Map Real Data

Data continuous continuous
Number of variables arbitrary 3
Data points 1000 2689
Time index discrete discrete
Stationarity yes partly

Table 6.1: Summary of data properties

6.2.1 Hénon map

In Chapter 5, we simulated a generalized Hénon map dataset with a causal structure as shown
in Figure 5.5. A change in the initial conditions that span the dataset results in significantly
different time series, allowing us to generate different datasets by simply randomizing the initial
conditions. Nevertheless, the causal structure of the dataset will remain the same, thus enabling
the possibility of objective comparison of causal inference methods over these datasets.
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The goal here is to iterate all causal inference methods presented below over an arbitrary number
of different Hénon datasets. Recall that each Hénon dataset has three free parameters:

• The coupling strength C

• The number of variables M

• The number of datapoints each variable has N

To introduce proper variety, four different Hénon map data categories are introduced, varying the
first two parameters listed above:

• H1: A set of high dimensional datasets (M = 20) of high coupling strength (C = 0.5)

• H2: A set of low dimensional datasets (M = 5) of high coupling strength (C = 0.5)

• H3: A set of high dimensional datasets (M = 20) of low coupling strength (C = 0.25)

• H4: A set of low dimensional datasets (M = 5) of low coupling strength (C = 0.25)

For the low dimensional categories H2 and H4, 20 different Hénon datasets are generated by
randomizing the initial conditions of the system. Each dataset contains N = 1000 points, sampled
at a constant and uniform sampling rate. Methods are subsequently iterated over all these 20 +
20 datasets. For the high dimensional categories H1 and H3, due to restrictions imposed by
computational resources, 5 different Hénon datasets are generated as before only. Methods are
subsequently iterated over all these 5 + 5 datasets.

The performance of each method at every iteration is then evaluated using the metric presented
in Section 6.4 and its average value is calculated (both per category and overall by considering
the arithmetic mean of the category averages). In parallel with benchmarking performance, the
running time of each iteration is recorded, and its median value per category is reported. Averaging
the median runtime over all categories, a single runtime per method is also reported.

6.2.2 Real data

As it was already mentioned in Chapter 5 only a specific time window of the real dataset is going to
be used. This follows not only after requiring stationarity of data, but after the advice of a domain
expert to also avoid 0 values in variable P1 as they are abnormal. As a result, 750 datapoints are
left in the dataset and we therefore choose to run each method over all 750 datapoints only once.
Equivalently to simulated data, the performance of each method is then evaluated and its running
time is registered.

6.3 Methods outline

A wide variety of causal inference methods in time series exists in literature. For this project, two
criteria regarding the inclusion of a method in the benchmark are deemed important:

• Method diversity

• Relevance to the context of ASML

With regards to the first criterion, we note that a similar framework may be developed consisting
of techniques coming from e.g. Information Theory only, or techniques that are solely based on
different implementations of Granger Causality. For this project, this is not the intended level
of granularity; causal inference in time series does not have a long history either as a scientific
discipline or in the industry. Therefore, the search for methods should remain broad enough, and
no such constraints should be imposed on it.
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Secondly, the company-specific context matters. Since every method to be considered comes
from a specific theory, the advantages and limitations of the underlying theory are conveyed
to the methods themselves. For example, methods that are based on Information Theory offer
high flexibility as they do not assume a model for describing the data, but their estimation is
generally challenging and computationally expensive. Thus, slow yet general methods and fast yet
limited methods should both be studied. As another example, at ASML, a huge number of time
series are registered over extraordinarily different time scales, ranging from nanoseconds to days.
Instantaneous causation might considerably confound causal inferences, especially in the case of
methods based on Granger Causality: interactions might happen so fast that the cause appears
to no longer precede the effect in data, and the first axiom Granger assumed is violated. Thus,
methods that are able to deal with instantaneous causality should also be included in the study.

Taking into account the above, the following 7 methods were selected for inclusion in the study.
The following table summarizes them, and it also lists the theoretical background they belong to
as well as the main reference for each with regards to the specific implementation used.

Abbr. Method Background Ref.

MTE Transfer entropy Information Theory Wollstadt et al. (2019)
PMIME Partial MI on mixed embeddings Information Theory Kugiumtzis (2013)
MVGC Multivariate Granger causality Granger Causality Barnett and Seth (2014)
PDC Partial directed coherence Granger Causality Baccala et al. (2007)
PCMCI PC algorithm with momentary CI PC algorithm Runge et al. (2019b)
CCM Convergent cross mapping Dynamical Systems Clark et al. (2015)
TCDF Attention-based CNNs Neural Networks Nauta et al. (2019)

Each method is later going to be presented separately in the current chapter. Details on how they
were applied within the study and important properties will also be discussed.

6.4 Evaluation

Evaluating a causal inference method will happen over two axes. First, a list of relevant qualitative
properties for causal inference methods is given below. During the presentation of each method,
each property is discussed. The results are then summarized in Table 6.2. This section features
a discussion of each property; they are all pertaining to causal inference questions, caveats and
important things to consider while inferring causality.

The second axis for the evaluation of a causal inference method is related to measuring its
quantitative performance. This is done via evaluation metrics that are also used in binary classi-
fication. This connection is also elaborated in the current section.

6.4.1 Qualitative properties and classification

Depending on the domain of application the selection of a method for inferring causality from a
temporal dataset might range from incompatible to a suitable fit. Bielczyk et al. (2017) compile
a similar list of important properties for causality methods from the perspective of brain sciences.
For the context of this project, the following properties are important; they can also be used to
characterize and classify the methods presented later.

Delay Discovery

As it can be noted from e.g. the equations that span the Hénon dataset, a delay between a cause
and its effect may exist in a dataset. It is important to know, whether a method can retrieve this
and relevant details.
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Self-causation

A time series might be, at least partially, causing itself. For an example in the context of Granger
causality, if a time series is useful in predicting itself as indicated by a good model fit of e.g. an
autoregressive model then this time series can be thought of as “causing” itself. Self-causation
is denoted by an edge starting from a node and ending on the same node in the causal graph a
method retrieves. This might not be of central importance in inferring the causal structure of a
dataset however some methods are able to detect it.

Instantaneous causality

Instanteneous causality exists in a dataset if the cause and the effect are reported at the same
time, i.e. if the causal delay is 0. Ideally, the cause preceding the effect is a sound assumption to
make. In practice however, due to computational limitations and erroneous sampling frequencies,
instantaneous causality may arise.

(Unobserved) confounders and indirect causation

A formal definition of a confounder within structural causal models is given in Pearl (2000). Here,
we call variable X a confounder of variables Y and Z whenever X is causing both Y and Z.
This results in spurious correlations arising between Y and Z and is amongst the fundamental
challenges in causality. In the figure below, X is a confounder for Y and Z.

Figure 6.2: X is a confounder for Y and Z

Distinguishing direct from indirect causal effects is also of fundamental importance. A method
should only report direct causal relations. In the figure below, X is causing Z indirectly, so the
edge X → Z should not be part of the directed graph a method retrieves.

Figure 6.3: X is indirectly causing Z. The relation X → Z should not be detected.

An especially challenging case is when a confounder is not included in the dataset. This signific-
antly increases the difficulty of excluding spurious associations from causal analysis. A method
might be able to (at least) hypothesize the existence of unobserved confounders.

Polyadic relations

When using a directed graph where nodes are variables of a dataset and edges are interactions
between the variables to model the structure of a system, a subtle assumption is made. Interactions
between variables are assumed to be dyadic: that is, when the relationX → Y is inferred, causation
of Y is uniquely the result of X, and not the result of a potential synergy between X and other
variables that leads them to only jointly cause Z, i.e. the result of a polyadic relation. Such
higher-order dependencies cannot be represented in a graph, unless additional nodes are used.
Whether a method infers dyadic or polyadic relations is therefore an important property.
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Figure 6.4: Causation of Z may be the result of a synergy (polyadic relation) between X and Y .
X and Y considered separately might not be causing Z.

Non-linear relations

Non-linear patterns are frequently encountered in data as well as in the way variables interact.
Depending on the assumption a method makes, it might not be able to capture non-linear relations
within a dataset. This should be considered when selecting a method.

Computational complexity and network size

From a practical standpoint, the computational complexity of any method is key. The effect that
an increase in the number of variables of a dataset has in the running time of a method is also
very important. This might be related to subtle details of how a method estimates or calculates
required quantities that might be adversely affected by high-dimensionality.

If the theoretical complexity of a method is available, it will be mentioned in the section
where the method is presented. In any case, running times will be reported in Chapter 7 and
computational complexity will be discussed there.

Bivariate / Multivariate data

A method might be suitable for application over an arbitrary number of variables simultaneously,
or it might be designated for bivariate inferences each time. Bivariate methods may suffer from
issues caused by confounders, but they are generally faster.

Discrete / Continuous data

Discrete data are generally more convenient to work with, in terms of e.g. estimation or speed.
Whether a method is designed for discrete or continuous data should be acknowledged.

Stationarity

As it has been demonstrated so far in the report, time series analysis methods are very frequently
assuming stationary data. Depending on the application context, a method internally accounting
for potential non-stationary patterns might be considerably advantageous.

In addition to discussing the above properties, the following table reports whether certain prop-
erties hold for the data we consider.

Hénon Map Real Data

Self-causation yes yes
Confounders observed observed & hidden
Type of relations non-linear unknown
Causal delays 1-2 unknown

6.4.2 Quantitative performance evaluation

Referring to Figure 6.1, we note that at a mathematical level, given a temporal dataset, a causal
inference method returns a directed graph. The important information this graph should convey
is which directed edges exist. So, assume that we have M variables (time series) X1, ..., XM .
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A causal inference method associates a binary value (existence/absence) to all directed pairs of
variables we can create (there are M2 such pairs). The evaluation of methods will happen by
simply investigating the directed graph skeleton.

This remark, shows the direction for evaluating such causal inference methods: we should
evaluate how “well” a method maps all possible directed variable pairs to 0 or 1. The advantage
that a benchmark study carries, is the fact that we are aware of the causal mechanism that
generated the data we gave to a method. That is, the causal ground truth directed graph that
spanned the data is available (see Section 5.1 for details on how this graph is obtained).

To summarize, we therefore expand the context visualized in Figure 6.1 with another directed
graph, constituting the ground truth that was used to generate the data.

Figure 6.5: Data are generated from a system with known causal structure. Then they are provided
to a causal inference method. Ideally, the method would return the initial directed graph.

Subsequently, note that any unweighted directed graph can be fully represented by its (binary)
adjacency matrix. Thus, once we obtain the directed graph a causal inference method estimates,
we may simply compare the adjacency matrix of this graph, with the corresponding ground truth
adjacency matrix. Concatenating each row of both matrices, we obtain two binary vectors to be
compared.

What was essentially described above, is the treatment of the evaluation of a causal inference
method as the evaluation of a binary classifier over the set of all directed variable pairs of a
dataset. The relevant literature of binary classification evaluation metrics can then be consulted
to select the quantitative metric desired. A short description of such metrics is given here, followed
by a discussion regarding metric selection.

Confusion Matrix

The confusion matrix contains the four fundamental quantities needed for binary classification.

• True Positives: number of 1’s (existent edges) classified as 1 (existent)

• False Positives: number of 0’s (absent edges) classified as 1 (existent)

• True Negatives: number of 0’s (absent edges) classified as 0 (absent)

• False Negative: number of 1’s (existent edges) classified as 0 (absent)

So, the confusion matrix is the following 2× 2 matrix:

confusion matrix =

(
TP FP
TN FN

)
(6.1)

Sensitivity

Sensitivity, otherwise known as recall or true positive rate measures the proportion of actually
existent edges correctly identified as such:

TPR =
TP

TP + FN
(6.2)
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Specificity

Specificity, also known as true negative rate, measures the proportion of actually absent edges
that are correctly identified as such:

TNR =
TN

TN + FP
(6.3)

F1 score

The F1 score is given by:

F1 =
2TP

2TP + FP + FN
(6.4)

Matthews correlation coefficient

Finally, the correlation coefficient of Matthews (MCC) is the following:

MCC =
TP · TN− FP · FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(6.5)

Discussion

While all metrics discussed above are informative in their own way, in order to later rank the
performance of methods a specific metric should be used. Reviewing the literature of binary clas-
sification metrics as well as minding the specific context of the project, the correlation coefficient
of Matthews is chosen as the main evaluation metric to be reported for each method.

The MCC was first introduced in Matthews (1975). A main advantage of MCC is the fact
that it includes all 4 elements of the confusion matrix in its calculation. This is to be contrasted
to the F1 score, which does not account for the performance of the method with respect to true
negatives. MCC is easily understood, since its values vary between −1 and 1 (comparably to
other correlation coefficients) with larger values indicating better performance. It was designed as
a correlation measure between the actual and the predicted values the method yields.

MCC was evaluated as a performance metric in Powers (2011) and it is generally regarded as
one of the best measures to summarize the confusion matrix with a single number. It favorably
compares to the F1 score Chicco and Jurman (2020) also being appropriate for imbalanced data
Boughorbel et al. (2017). The F1 score is only going to be reported for the real dataset, as
disregarding true negatives allows for better comparisons in that particular case.

6.5 Methods

All methods included in the benchmark study are presented in this section. The focus is on
concisely summarizing each method and commenting on its implementation details. This entails
the experimental design as well as choices on the parameters chosen for each method. We also
consider all properties that were included in Section 6.4 and discuss whether they apply to each
method. This culminates in Table 6.2 where these properties are summarized for all methods,
consequently proposing a classification scheme for causal inference methods in time series. We
begin with (multivariate) transfer entropy.

6.5.1 MTE

As we saw in Chapter 3, the estimation of transfer entropy can be challenging. When this is com-
bined with large and potentially high-dimensional datasets, where interactions between variables
occur and should be therefore accounted for when inferring causality, we may expect significant
computational challenges in employing transfer entropy for the analysis of a dataset.
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Thankfully, since TE has found successful applications in a wide variety of practical settings,
there have been notable advances through specific algorithms that aim to reduce the computational
load. The algorithm that is used to estimate TE and analyze a dataset with it, is based on Faes
et al. (2011) and Lizier and Rubinov (2012). Wollstadt et al. (2019) implemented this algorithm
to perform effective network inference with TE.

Method Presentation

Assume a dataset consisting of M time series/variables X =
(
X

(1)
t , ..., X

(M)
t

)
(in discrete time). In

order to infer a directed network as described in Section 6.1 with TE, a brute force approach would
serially consider each variable of the dataset X(j) as the target, and then estimate the transfer
entropy from all potential sources X(i) of the dataset, one at the time, through appropriately
selected embedding vectors for the target and each source.

Subsequently, we could test the significance of the estimates and retrieve all significant causal
relations X(i) → X(j). However, in a multivariate setting interactions between time series might
exist. Therefore, when examining any transfer entropy, such interactions must be taken into
consideration by conditioning them out. So, for each target X(j) and source X(i) we would
compute the transfer entropy of the following conditional relation:

(X(i) → X(j))|(X \ {X(i), X(j)}) (6.6)

We would likewise estimate these transfer entropies and assess their significance by utilizing meth-
ods described in Chapter 3. Then, in theory, the full directed network is retrieved.

In practice, it is clear that such a brute force approach would be intractable. Besides considering
all possible directed pairs (X(i), X(j)), the addition of all other variables on the conditional part
of transfer entropy creates high-dimensional quantities that are very challenging to estimate.

The main idea of the algorithm used is to restrict the conditioning set by finding a set of
“relevant” sources for each target. The algorithm iteratively builds this set (starting from the null
set) through a greedy approach, while extensively testing for significance.

Experimental Design

The multivariate transfer entropy algorithm presented in Wollstadt et al. (2019) was used. The
required (conditional) mutual information quantities were estimated using the KSG estimator.
The “relevant” source variables for each target were selected from the last 3 values of each source.

Qualitative properties

The algorithm used is able to discover causal delays, doing so by locating the relevant variable
that maximizes a mutual information statistic. It does not report self-causal relations, while
it can be adjusted to infer instantaneous causations. As a multivariate method, it is able to
recognize (non-hidden) confounders, and distinguish direct from indirect relations. As a model-
free information theory based method, it is very robust to non-linear patterns in the data. It
is of course able to accommodate an arbitrary number of discrete or continuous variables, and
a bivariate (unconditional) TE implementation is also offered within the same implementation.
Stationarity is assumed, since it is required by the KSG estimator used. TE is only able to detect
dyadic relations (see Section 2.2.2), however a partial information decomposition analysis Williams
and Beer (2010) is provided.

For this particular code implementation, the authors provide the theoretical complexity of the
algorithm, stating that the number of calculations required scales with O(M2 ·d ·` ·S), where M is
the number of variables, d is the average in-degree of the inferred network, ` is the maximum (user-
defined) temporal depth search for each source, and S is the number of the surrogate calculations
that are used for significance testing. We observe that the dimensionality of the dataset is the
most significant factor in the speed of the method, a frequent problem in information theory and
TE in particular Runge et al. (2012).
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6.5.2 PMIME

The second information theory method considered is named PMIME, an acronym for Partial
Mutual Information from Mixed Embedding. It was proposed in Kugiumtzis (2013) as a measure
to perform effective network inference in multivariate time series. PMIME builds upon the MIME
method proposed in Vlachos and Kugiumtzis (2010) for bivariate analyses, extending it to the
multivariate case.

Method Presentation

Similarly to transfer entropy, PMIME is a method based on conditional mutual information. It
was designed to alleviate several problems plaguing transfer entropy, such as issues stemming
from potentially high-dimensional data, the need to wisely select the embedding parameters as
well as intricacies related to significance testing of estimates. By circumventing these problems,
PMIME aims to have significantly smaller computational complexity and a more straightforward
implementation.

Consider M time series {Xt, Yt, Z
(1)
t , Z

(2)
t , ..., Z

(M−2)
t }. The notation was chosen as such to

easily denote the conditional relation we are interested in:

X → Y |Z (6.7)

where Z = (Z(1), Z(2), ..., Z(M−2)). Vlachos and Kugiumtzis (2010) introduced a non-uniform
embedding scheme for time series that bypasses the selection of embedding parameters via the use
of information criteria regarding the past, current and future states of the time series. This allowed
the authors to derive a measure for the strength of a bivariate directional coupling X → Y (having
a similar meaning to TEX→Y ), termed Mutual Information from Mixed Embedding (MIME).

Kugiumtzis (2013) subsequently extended this measure to the aforementioned multivariate case
by first applying MIME on the joint space of X,Y, Z hence deriving a non-uniform embedding
vector W of the joint process that “best explains the evolution of the target Y ”. This vector only
contains the most “relevant” past states of all variables included, minimizing the dimension of the
problem. It is obtained through iterative augmentation, starting from the null set and locating
past variables that maximize the information gain for the future of the target, stopping when a
specified threshold is reached.

The presence of past states of X in this vector signifies that X influences the evolution of Y ,
in which case, by construction, the corresponding PMIME measure is positive. Absence of past
states of X from this vector indicates the lack of an influence, and PMIME is exactly 0. Because
of this property, significance testing is not required. PMIME is defined as the following quantity:

RX→Y |Z =
I(Y Tt ;WX

t |WY ,WZ)

I(Y Tt ;Wt)
(6.8)

Here, Y Tt is a vector containing T future values of the target, Y Tt := (Yt+1, ..., Yt+T ). Also, Wt is
the non-uniform (mixed) embedding of the joint variable space containing the most relevant past
states of all variables involved, with the sets of variables X, Y and Z that belong to Wt denoted
by WX

t , WY
t and WZ

t respectively.

Experimental Design

The number of nearest neighbors for CMI estimation was set to 4. The past window size to search
for significant CMI’s was 5, while the future values array consisted of the immediate future only
(T = 1). Following the advice of the authors a fixed threshold of 0.03 for PMIME termination
was used.
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Qualitative properties

As a multivariate algorithm based on mutual information, PMIME shares multiple properties with
multivariate TE: it can deal with non-linear data and it is able to discern (non-hidden) confounders
and distinguish direct from indirect relations. As implemented by the authors, PMIME focuses
on detection of causal relations, and not on calculation of causal delays. It will also not report
self-causal nor instantaneous or polyadic relations. Stationarity in data is assumed, and it can be
applied to an arbitrary number of discrete or continuous time series.

6.5.3 PCMCI

Earlier in the report, we saw how TE encodes a specific conditional independence relation between
time series. Conditional independence is in general very important in inferring causality. In fact,
a wide class of conditional independence (CI) algorithms are popular in causal inference Spirtes
et al. (2000). PCMCI (PC algorithm with Momentary Conditional Independence) is a recently
developed algorithm for causal inference in time series; it is based on the popular PC algorithm
broadly used in causal inference. The PC algorithm is a versatile method that can use several tests
for CI between variables, both parametric and non-parametric, each with different advantages and
disadvantages. The algorithm begins with a skeleton phase, where causal adjacencies between
variables are detected through testing for CI, followed by orientation phases where the causal
links become directed Runge (2020).

Method Presentation

The PCMCI algorithm Runge (2018) begins by applying the PC algorithm in order to identify a
set of relevant past states for each time series and then uses a momentary conditional independence
(MCI) test to evaluate whether causal relations exist within this set and the present state of all
time series.

In short, let Xt = (X
(1)
t , ..., X

(N)
t ) be N time series. The first step of the algorithm considers

the present state of each time series X
(j)
t and an embedding set of the N -dimensional vector Xt

that contains the preliminary parents (sources) of X
(j)
t :

P̂(X
(j)
t ) := (Xt−1, ..., Xt−d) (6.9)

This set of preliminary parents is iteratively thinned via a series of conditional independence tests,
and the algorithm converges if no more tests can be executed. By that point the set P̂ only includes

the true causal parents of X
(j)
t potentially alongside some false positives.

During the second step of the algorithm, the remaining variables of set P̂ are evaluated with a
MCI test and conditional independence is established. Both stages of the algorithm can be paired
with linear or non-linear and non-parametric tests.

Experimental Design

The “ParCorr” conditional independence test implementing linear partial correlation was used.
The null distribution of the test statistic was assumed to be Student’s t. The embedding dimension
for the set of preliminary parents was set to d = 3. The significance level for the first step of the
algorithm was left unspecified, and it was internally optimized for each time series by the algorithm.

Qualitative Properties

PCMCI is able to discover causal delays, potentially reporting multiple delays for each causal
relation. It also infers self-causal relations. The current software implementation does not accom-
modate instantaneous causalities, however a recent extension aims to fill this gap Runge (2020).
The absence of unobserved confounders is among the main assumptions of the method. Provided
confounders are observed, the algorithm is able to deal with them, and it also accounts for indirect
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effects. All relations detected are dyadic. Depending on the type of CI test used, the algorithm
can also deal with non-linear relations within the dataset. We deliberately chose a linear CI test,
as the non-parametric option (based on mutual information) is significantly slow. The main ad-
vantage of the linear CI test selected is its computational complexity, which is orders of magnitude
smaller compared to alternative multivariate methods. The method can deal with discrete and
continuous data, and stationarity is assumed.

6.5.4 CCM

Convergent Cross Mapping was introduced in Sugihara et al. (2012). The time series Xt and Yt are
assumed to belong to two underlying dynamical systems X and Y , respectively. Due to Takens
(1981), we are able to reconstruct (up to a diffeomorphism) the state-space of the dynamical

systems by two manifolds MX ,MY given by the delay embeddings X
(d,τ)
t , Y

(d,τ)
t . This implies

that the manifolds share certain properties with the corresponding state space. Notably, points
that are close in the original state-space are also close in the reconstructed manifold, and the
neighborhoods of any point are preserved. Causality is then detected from system X to Y (i.e.
from time series Xt to time series Yt) if the time indices of nearby points in the past data of MY

are able to identify nearby points in MX Krakovská et al. (2018).

Method Presentation

Specifically, the CCM algorithm works as follows: Let Xt, Yt time series and let X
(d,τ)
t , Y

(d,τ)
t

be embedding vectors belonging to the reconstructed manifolds MX ,MY respectively. A cross-
mapped estimate of Yt based on MX is constructed by considering the value Xt and locating its
d+1 nearest neighbors on MX . Denote the time indices of the neighbors (from nearest to farthest)
by t1, t2, ..., td+1. The time series Yt is subsequently estimated based on these indices via a locally
weighted average of the following form:

Ŷt|MX =

d+1∑
i=1

wiYti (6.10)

Using the analogous definition, cross-mapped estimates of Xt based on MY are obtained. Finally,
the cross-mappings are evaluated via the Pearson correlation coefficient between Yt and Ŷt|MX ,

and similarly between Xt and X̂t|MY . In the first case, high correlation indicates that system X
is causing system Y (i.e. time series Xt is causing time series Yt) while in the second case the
opposite applies.

In the original paper, inference on causality happens by visually inspecting the values of the
correlation coefficient, which (in case of causation) should converge to values close to 1, as the
length of the time series increases. This visual assessment does not allow for automation of the
procedure that a benchmark study requires, so other researchers developed significance tests for
the correlation values found based on surrogate time series creation (see Section 3.5), which we
also use here.

Experimental Design

In terms of parameter selection for its application, CCM is a particularly simple method, as the
embedding dimension d and delay τ are the only important choices. An embedding dimension of
3 was used, while the embedding delay was set to 1. As a bivariate method, CCM was separately
applied to each directed variable pair of the dataset impacting its computational complexity.

Qualitative Properties

CCM focuses on detection of causal interactions instead of causal delays, however a follow-up paper
Ye et al. (2015) incorporates (even instantaneous) causal delays in the method. Self-causation and
polyadic relations are not inferred, and as a bivariate method CCM may be challenged by the
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existence of (un)observed confounders within a dataset. Particular caution is required when a
strong uni-directional causal relation X → Y exists in a dataset as CCM might incorrectly infer
the opposite relation Y → X too Sugihara et al. (2012). As a nearest-neighbor based method,
CCM is robust in detecting non-linear relations, featuring discrete or continuous data.

6.5.5 MVGC

Multivariate Granger Causality is the implementation of Wiener’s idea for causality by Granger.
This was presented in Section 2.2.1, albeit for the univariate case. For the purposes of a mul-
tivariate dataset of time series, a multivariate adaptation is needed. This extension is obtained by
considering the multivariate analog of auto-regressive modelling shown in Section 2.2.1, that was
also encountered in Section 4.1.1: Vector Auto-Regressive (VAR) modelling Lütkepohl (2005).

Method Presentation

Given a multivariate time series, a VAR model of order p has the following form:

Ut =

p∑
k=1

AkUt−k + εt (6.11)

where Ut is stationary, Ak is a matrix containing the model coefficients and residuals εt are vectors.
The matrix Ak alongside the residual covariance matrix Σ are the model parameters. Important
for VAR(p) theory is the autocovariance function Γ of Ut (see Definition 4.1.2 for the bivariate
case) that relates to the parameters of the VAR model through the Yule-Walker equations:

Γk =

p∑
`=1

A`Γk−` + δk,0Σ , k ∈ Z (6.12)

Suppose that the multivariate time series Ut is split into two jointly distributed time series Xt, Yt,
i.e Ut = [Xt, Yt]

T . The VAR(p) model is then decomposed:

[
Xt

Yt

]
=

p∑
k=1

[
Axx,k Axy,k
Ayx,k Ayy,k

] [
Xt−k
Yt−k

]
+

[
εx,t
εy,t

]
(6.13)

Σ = Cov(

[
εx,t
εy,t

]
) =

[
Σxx Σxy
Σyx Σyy

]
(6.14)

To examine the causal relation Y → X the first component Xt of the decomposition is considered:

Xt =

p∑
k=1

Axx,kXt−k +

p∑
k=1

Axy,kYt−k + εx,t (6.15)

Similarly to the univariate case presented before, Y is causing X if the null hypothesis of no
causality is rejected:

H0 : Axy,1 = ... = Axy,p = 0 (6.16)

This hypothesis is tested via the multidimensional analogue of (2.32) that is

FY→X = log
det Σ′xx
det Σxx

(6.17)

where Σxx is the covariance matrix of the residual vector εx,t of the full model (6.15) while Σ′xx is
the covariance matrix of the residual vector of the nested model that assumes H0. Extensions to
the conditional case Y → X|Z are parallel to the univariate case, and results on the distribution
of F still hold.
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Experimental Design

In the specific implementation used, the user first specifies a maximum model order pmax, and
for each {1, ..., pmax} a VAR model is fitted into the data. A specific model order p is then
selected based on information criteria (AIC or BIC). Subsequently, the corresponding VAR model
parameters Ak,Σ are estimated using e.g. OLS, and the autocovariance function Γ is obtained from
them using the Yule-Walker equations. Then, for each causal relation Y → X|Z to be examined,
the corresponding VAR parameters for both the full model (6.15) and its nested alternative are
calculated using the autocovariance function and the Yule-Walker equations. An estimate for
FY→X is therefore obtained, and its significance is assessed via its (known) distribution.

For this benchmark study pmax = 10 was used, and p was selected based on the AIC. The
estimation of the model parameters was done with OLS. All directed pairs X → Y |Z were invest-
igated for significance, where Z consisted of all other time series of the dataset. The F statistic
(6.17) was used for significance of estimates, at the author’s default significance level of 0.01 while
correcting for multiple testing using the false discovery rate Benjamini and Hochberg (1995).

Qualitative Properties

MVGC does not accompany every causal relation detected with an explicit causal delay, however
the model order can provide information on the maximum causal delay found. It does not investig-
ate self-causation, nor does it infer instantaneous causality (for instantaneous GC see Kirchgässner
and Wolters (2007)). MVGC can filter out confounding effects (provided they are observed, see
Guo et al. (2008) for unobserved confounders) and it can also account for indirect causation.
MVGC investigates dyadic relations. As Barnett and Seth (2014) note, even if the VAR mod-
els used to formalize MVGC are linear, a general class of stationary processes (including many
non-linear ones) can be modelled with them provided the model order is large enough Anderson
(1971). In reality however, to avoid overfitting a dataset, the model order will remain relatively
small effectively restraining the ability of MVGC to capture non-linearities. MVGC can handle
discrete or continuous data. Stationarity is assumed, and MVGC automatically tests for it.

6.5.6 TCDF

The Temporal Causal Discovery Framework was recently introduced in Nauta et al. (2019). It
approaches causality from a neural-network standpoint. While multiple neural-network based
methods already exist broadly in causal inference Goudet et al. (2017), Kalainathan et al. (2018),
Rossi et al. (2020), TCDF is the first method designated for temporal data.

Method Presentation

Given N time series (X
(1)
t , ..., X

(N)
t ), TCDF performs causal discovery in steps. Initially, N

independent Convolutional Neural Networks (CNNs, Goodfellow et al. (2016)) are defined, where

the j-th network is independently trained to predict its target time series X
(j)
t . In doing so, it uses

the whole dataset (including X
(j)
t ). TCDF employs a specific class of CNNs called attention-based

CNNs Yin et al. (2015): these networks feature an attention mechanism that explains on which
data network j attends to when predicting its target time series. Therefore, if a network j attends

to time series X
(i)
t for predicting X

(j)
t , the method infers that X

(i)
t is a potential cause of X

(j)
t

(closely resembling the original idea of Granger causality). Subsequently, a causal validation step
is performed. During this step, TCDF relies on intervening in the dataset in order to derive true

causalities. For each potential cause X
(i)
t of time series X

(j)
t an intervened dataset is created, equal

to the original besides the values of X
(i)
t that are permuted. The same network j is re-used to

obtain a new prediction of X
(j)
t . TCDF then uses a specialized routine to compare the predictive

performance between the two cases and infer on whether X
(i)
t is a true cause of X

(j)
t .

72 Estimation of Transfer Entropy



CHAPTER 6. BENCHMARK FRAMEWORK

Experimental Design

The TCDF algorithm was applied with 1000 epochs for each network trained and kernel size 4
dictating a maximum temporal search for causal interactions of 3 lags. No hidden layers were used
in the depthwise convolution, while the rest of the parameters pertaining to training the CNNs
were defaulted to the values recommended by the authors.

Qualitatitve Properties

TCDF supplements the final step of causal validation with delay discovery. Since for the prediction
of any time series, the whole dataset is used (including the time series itself) it captures self-
causation. TCDF is able to discern instantaneous causations, and it can also deal with confounders,
being able to also hypothesize their existence if they are not observed. TCDF does not support
the detection of polyadic relations. TCDF can detect non-linear relations on discrete, continuous
and even non-stationary data.

6.5.7 PDC

Partial Directed Coherence is an extension of Granger causality to the frequency domain. As such,
it shares certain properties with GC, and it is also formalized through linear VAR models. Non-
linear variations of PDC were recently proposed (e.g. He et al. (2014)), however in this study we
focus on the traditional (linear) PDC, as it was introduced in Baccalá and Sameshima (2001), and
later extended to generalized PDC in Baccala et al. (2007). Frequency domain causality measures
are very popular in the analysis of neurophysiological signals Pereda et al. (2005), Kindlmann
and Burel (2008), Sakkalis (2011) and benchmark studies of frequency domain measures from the
perspective of neurosciences exist Wang et al. (2014), Haufe et al. (2013), Sommariva et al. (2017).

Method Presentation

Given K time series Xt = (X
(1)
t , ..., X

(K)
t ), we consider a VAR model of order p (as in the case of

MVGC). So, for time series X
(j)
t we have the following model:

X
(j)
t =

K∑
k=1

(
a

(j)
k,1X

(k)
t−1 + ...+ a

(j)
k,pX

(k)
t−p
)

+ ε
(j)
t , j = 1, ...,K (6.18)

As for MVGC, the coefficients a
(j)
i,r may be estimated by standard approaches (e.g. OLS). Then,

we consider their frequency transform:

A
(j)
i (f) =


1−

p∑
r=1

a
(j)
i,r e
−2πifr if i = j

−
p∑
r=1

a
(j)
i,r e
−2πifr if i 6= j

(6.19)

where the frequencies f are discrete. The generalized partial directed coherence at frequency f
from time series Xi to Xj is

GPDCXi→Xj |Z(f) =

1
σi,i
|A(j)
i (f)|√∑K

k=1
1

σ2
k,k
|A(k)
i (f)|2

(6.20)

GPDC quantifies the effect from Xi to Xj at frequency f normalized by the effect of Xi to every

other variable. Here, σ2
k,k is the variance of X

(k)
t and Z = X \ {Xi, Xj}. Diverging from the

methods presented before, GPDC is defined as a function of frequency. In practice, researchers
calculate the average GPDC over a set of frequencies (frequency band), and domain knowledge
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plays a role in the selection of the band for an analysis. Similarly to TE, the null hypothesis of
zero GPDC and therefore no causation is tested via the creation of surrogate time series.

Experimental Design

For each time series pair Xi, Xj the GPDC is estimated and tested for significance (at a signi-
ficance level a = 0.01), forming a binary causal adjacency matrix. The sampling frequency is 1,
sampling 512 points in low-dimensional datasets, and 128 points in high-dimensional datasets due
to computational reasons. The maximum model order is restricted to 4 in the high-dimensional
case and to 10 in the low-dimensional case. AIC is used for model selection, while the Nuttall-
Strand algorithm Schlögl (2006) is used for VAR estimation. At every frequency, the binary causal
adjacency matrix is derived. We average these matrices over all frequencies, and round up to 1 all
elements of the averaged adjacency matrix that are bigger than 0.5, while all other elements are
set to 0.

Qualitative Properties

PDC does not function on the time domain, and no causal delays are reported. It is able to infer
self-causal relations. The specific implementation used is not able to infer instantaneous causation
on the frequency domain, however an extension provided in Faes et al. (2013a) can fulfill this task.
PDC is able to account for confounders and distinguish direct from indirect causation, provided
they are observed. Relations inferred are dyadic. Equivalently to MVGC, VAR modelling can be
robust to non-linear patterns but this may be hindered by the model selection procedure. PDC
assumes stationary time series, featuring discrete or continuous data.

6.5.8 Summary of qualitative properties

Based on the list of important qualitative properties for methods performing causal inference in
time series we compiled and on whether each method investigated fulfills these properties discussed
in this chapter the following table is created. It summarizes the properties of all methods and
proposes a classification scheme for causal inference methods in time series. Properties are reported
with respect to the specific implementation used in this benchmark.

Method MTE PMIME PCMCI MVGC TCDF PDC CCM

Delay discovery 3 7 3 7 3 7 ****
Self-causation 7 7 3 7 3 3 7
Instantaneous causality 3 7 3 7 3 *** ****
Observed confounders 3 3 3 3 3 3 7
Unobserved confounders 7 7 7 7 ** 7 7
Polyadic relations 7 7 7 7 7 7 7
Non-linear data 3 3 3 * 3 * 3
Non-stationary data 7 7 7 7 3 7 7
Bivariate/Multivariate data both both both both both both bivariate
Discrete/Continuous data both both both both both both both

Table 6.2: Overview of properties for each method examined. *: Barnett and Seth (2014). **:
Nauta et al. (2019). ***: Faes et al. (2013a).****: Ye et al. (2015).
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Results

The results of the benchmark study conducted in Chapter 6 are listed here. The methods are
evaluated quantitatively, as described in Section 6.4.2. Moreover, their performances are compared,
visualized and remarks on the overall results are made. All methods were executed on an 8th

generation Intel® Core© i5-8365U CPU.

7.1 Method performance

We apply every method presented in Chapter 6 to the datasets introduced in Section 6.2 utilizing
the experimental design detailed for each method in its corresponding section. To elaborate on
the evaluation of each method in practice, we present the full results of the data group H1 for
multivariate transfer entropy. Iterating MTE over 5 such datasets and comparing the estimated
causal graph with the ground truth, we obtain the results listed in Table 7.1.

Category H1 Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Average

True positives 30 30 36 26 36
False positives 9 8 4 23 7
True negatives 335 336 340 321 337
False negatives 6 6 0 10 0
Sensitivity 0.83 0.83 1 0.72 1 0.88
Specificity 0.97 0.98 0.99 0.93 0.98 0.97
F1 score 0.80 0.81 0.95 0.61 0.91 0.82

MCC 0.78 0.79 0.94 0.57 0.91 0.80

Time (in seconds) 10845 10395 11097 11811 11460 11097

Table 7.1: Full MTE results on the first data category, rounded to two decimals. The average
MCC and the median runtime are both highlighted with bold.

This table contains all relevant performance evaluation metrics introduced in the previous chapter
for this specific method / data category combination. In the next section, for the simulated Hénon
datasets we will only present the average MCC and runtime of each method and shortly comment
on its performance. For the real dataset, the F1 score will be reported instead of the MCC, as the
latter was found to be too strict for the evaluation of a very low dimensional dataset. The results
will be subsequently summarized in Table 7.9. The next section includes a series of visualizations
of the results, their interpretation, and insights gained from them. Here, results are reported and
discussed following the order the methods were presented.
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Category H1 H2 H3 H4 Avg. Hénon Real Data

MCC (average) 0.80 0.97 0.80 0.94 0.88 0.80 (F1 score)

Time (median, seconds) 11097 795 10993 803 5922 -

Table 7.2: Summary results for MTE.

MTE

Multivariate TE performs very well on the low dimensional H2 and H4 data groups, and its
performance as well as its running time appear to be significantly impacted on higher dimensional
datasets. It is the slowest method with the average median running time over the different data
groups exceeding 1.5 hours. MTE performs equally great in the low dimensional loosely coupled
group (H4) and in the low dimensional strongly coupled one (H2). The robustness of TE in low
dimensions may be attributed to the fact that this particular implementation uses the first KSG
estimator for TE (3.20). This estimator bases the threshold for counting points in the marginal
spaces on the distance of every point to its kth nearest neighbor on the joint space, and not
marginally. As it is noted in Kraskov et al. (2003), for low dimensional data this will not be
harmful; only for high dimensional data will the second KSG estimator perform better. Noting
the significant difference in MTE performance between low and high dimensional datasets, this
remark should be taken into account in TE analyses. On real data, MTE also performed well.

PMIME

PMIME performed perfectly in all Hénon data, precisely retrieving the correct causal graph at
every iteration. Contrasting the results between the two information theory methods studied so
far, PMIME outperformed MTE both in terms of performance and speed. Indeed, a staggering
difference is noted in the computational complexities of the two methods. As remarked in Kugi-
umtzis (2013) the fact that PMIME bypasses the computationally exhausting step of significance
testing of estimates dramatically improves its speed compared to MTE. PMIME was however
challenged by the real dataset, registering a below average result.

Category H1 H2 H3 H4 Avg. Hénon Real Data

MCC (average) 1 1 1 1 1 0.50 (F1 score)

Time (median, seconds) 2075 127 2078 126 1101 -

Table 7.3: Summary results for PMIME.

PCMCI

PCMCI performed decently well on simulated data, and was among the top performing methods
in the real dataset. The main asset of this method is its computational speed, as PCMCI was the
fastest among the methods examined. An interesting observation regarding PCMCI is the fact
that it seems to actually benefit from weakly coupled data in terms of performance.

Category H1 H2 H3 H4 Avg. Hénon Real Data

MCC (average) 0.67 0.60 0.78 0.85 0.72 0.80 (F1 score)

Time (median, seconds) 25 1 21 1 12 -

Table 7.4: Summary results for PCMCI.
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MVGC

MVGC on average performed relatively well, however its performance was inconsistent and highly
impacted by different coupling strengths and dimensionalities; MVGC significantly benefited from
high dimensional data. On real data, MVGC showcased above-average performance.

Category H1 H2 H3 H4 Avg. Hénon Real Data

MCC (average) 0.84 0.29 0.72 0.53 0.70 0.67 (F1 score)

Time (median, seconds) 383 3 220 3 152 -

Table 7.5: Summary results for MVGC.

TCDF

On simulated data, TCDF also performed decently well. It attained a balance between consistent
performance over different configurations, computational speed (scaling favorably as the number
of variables increased) and general robustness in the data it can accommodate, being suitable
even for non-stationary data. On the other hand, TCDF performed badly on the real dataset,
essentially failing to detect causality.

Category H1 H2 H3 H4 Avg. Hénon Real Data

MCC (average) 0.83 0.76 0.65 0.70 0.74 0 (F1 score)

Time (median, seconds) 73 17 73 17 45 -

Table 7.6: Summary results for TCDF.

PDC

On simulated datasets, PDC was the best non-information theoretic method. It exhibited consist-
ently high performance throughout the different categories. The specific implementation used was
found to be significantly slower as the number of time series increased, which should be attributed
to inefficient coding routines. On real data, PDC displayed mediocre performance.

Category H1 H2 H3 H4 Avg. Hénon Real Data

MCC (average) 0.85 0.86 0.86 0.82 0.85 0.56 (F1 score)

Time (median, seconds) 4936 14 4866 13 2457 -

Table 7.7: Summary results for PDC.

CCM

CCM was the worst performing method in the Hénon map datasets. This may be attributed to
the fact that CCM is only able to make bivariate inferences. As a result, it is the only method
that does not account for the effects of the other variables on each causal relation it investigates.
In the low dimensional real dataset consisting of 3 variables only, CCM performed well.

An overview of the results discussed so far is included in Table 7.9. In this table, methods are
sorted based on their overall average performance (on simulated data) from the best performing
(top) to the worst performing (bottom) methods. The results presented so far are subsequently
discussed and visualized in the next section, and methods are comprehensively compared.
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Category H1 H2 H3 H4 Avg. Hénon Real Data

MCC (average) 0.36 0.41 0.28 0.44 0.37 0.80 (F1 score)

Time (median, seconds) 621 31 587 31 318 -

Table 7.8: Summary results for CCM.

Category H1 H2 H3 H4 Average Runtime Real Data (F1 score)

PMIME 1 1 1 1 1 1101 0.50
MTE 0.80 0.97 0.80 0.94 0.88 5922 0.80
PDC 0.85 0.86 0.86 0.82 0.85 2457 0.56
TCDF 0.83 0.76 0.65 0.70 0.74 45 0
PCMCI 0.67 0.60 0.78 0.85 0.72 12 0.80
MVGC 0.84 0.29 0.72 0.53 0.70 152 0.67
CCM 0.36 0.41 0.28 0.44 0.37 318 0.80

Table 7.9: Summary of all results.

7.2 Visualizations and insights

In this section, the simulated and real data are going to be treated separately. We begin with
visualizing different quantities pertaining to performance and runtime of methods in simulated
data.

Figure 7.1: The (overall) average column of Table 7.9 visualized per method.

First, Figure 7.1 contains the overall performance of each method, visualizing how the values
listed in Table 7.9 compare. We notice that the information theoretic methods register the best
performance. Both are based on mutual information: they do not make any assumptions in
modelling the relations between variables and admittedly benefit from it. PDC is the best among
the rest of the methods, and as it compares very favorably to MVGC, it demonstrates the utility of
a frequency domain transform preceding causal inferences from a VAR model. TCDF maintains
good performance and offers great robustness, while PCMCI (alongside the linear conditional
independence tests used in this project) is an ideal candidate for a preliminary analysis of any
dataset, partially due to its speed. More research and a multivariate adaptation accounting for
interactions is required to transform CCM into a good fit for the task this project undertook.
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While the barplot above allows for a simple and direct comparison between methods, it is
solely based on averages. A boxplot of all MCC values per method is thus visualized in Figure
7.2, aiding us in obtaining a more complete view of how the methods performed.

Figure 7.2: Boxplots showing the performance dispersion of methods throughout different itera-
tions of the benchmark.

Notice that the dispersion in the performance of each method varies. A consistent method show-
casing less variant performance such as PDC or TCDF might be preferential to a faster (PCMCI)
or even better performing (MTE) method that is less stable or exhibits outlying performances.

In the presentation of results so far, we have aggregated performances over all 4 Hénon map
data categories. We can also utilize the differences between the 4 different data configurations, to
arrive at more specialized insights; the respective plots are included in Appendix B.

We proceed with a short discussion of running times of methods. Figure 7.3 contains a barplot
visualizing the average median runtime over the 4 Hénon data categories per method on a log-
arithmic scale. An additional graph pertaining to the effect an increase in dimensionality of a
dataset has on running times of each method is included in Appendix B.

Figure 7.3: Barplot of the average median running time of an iteration of each method (log scale).
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Note that the two information theoretic methods are among the slower methods, with MTE
being the slowest. In addition, as PDC was also found to be very slow with the average median
PDC iteration taking thousands of seconds, we observe a reversal of Figure 7.1 that featured the
performances of methods. The following scatterplot is very informative regarding the trade-off
between computational complexity and performance.

Figure 7.4: Scatterplot visualizing the trade-off between method speed and method performance.

According to the findings of this benchmark study we conclude that, when selecting a causal in-
ference method for the analysis of time series, speed against performance constitutes a significant
dilemma. Model-based approaches (PCMCI, GC, TCDF) are able to attain relatively good per-
formances in discovering the causal structure of a temporal dataset - and the assumptions they
make to do so may not necessarily hamper their versatility (TCDF, VAR modelling). However,
perfect or near-perfect results may not be expected; if performance is the main priority, the model-
free framework provided by information theory will, generally, provide a better fit. Depending on
the context of an application and on the end goal of a causal inference study, it may or may not
be beneficial to sacrifice performance for speed.

Concluding the chapter, we showcase the results obtained from the real dataset. Figure 7.5
contains a barplot visualizing the performance of the methods in real data.

Figure 7.5: Barplot visualizing the performance (F1 score) of each method on the real dataset.
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It should be noted that the best performing methods all retrieve a fully connected causal graph.
In this 3-dimensional dataset, this will translate to a good F1 score however the inability methods
generally showcased in detecting a true negative (i.e. lack of causation) might be indicative of
results that are not robust. Moreover, the unobserved confounder(s) that exist combined with
the very low number of time series and the relatively low amount of datapoints used for causal
discovery, constitute a tough case study.
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Chapter 8

Conclusions

8.1 Summary and conclusions

This thesis investigated two research questions. The first pertained to the study of transfer entropy
from a non-stationary perspective. The second concerned the development of a framework for the
comprehensive and objective comparison between causal inference methods in time series data.

Transfer entropy and non-stationarity

A concrete non-stationary system was introduced and studied in detail, deriving probabilistic
results and obtaining a theoretical expression for transfer entropy in it. Doing so, it extended
the results featured in the paper it was based on, and possibly provided the first exact results for
transfer entropy in a non-stationary system in literature.

This task culminated in the examination of a non-stationary estimator for transfer entropy,
that was subsequently evaluated and compared to the theoretical transfer entropy values. This
estimator was introduced in a recent paper for differential entropy, and for the purposes of the
project was successfully adapted and implemented for the transfer entropy case. A trivial extension
of the system was also considered under which the transfer entropy results proved to remain
invariant.

The asymptotic behavior of transfer entropy was also studied and its convergence was proved.
As convergence of transfer entropy was found to generally happen fast, sensitivity analysis was
performed in its limit. Due to the specific structure of the system that was studied, a connection
of the results to the concept of a sensor measuring a physical quantity was illustrated. This
enabled the examination of the impact of the characteristics of a sensor on the magnitude of the
information flow it receives from the physical process it aims to measure.

Benchmark framework for causal inference methods

After consulting the relevant literature and minding the specific context of ASML, a list of 7 meth-
ods coming from diverse backgrounds and featuring heterogeneous characteristics was proposed
to be included in the study.

In parallel, an appropriate dataset was selected for simulation, and its selection was motiv-
ated by briefly reviewing its theory. The characteristics of this dataset were varied and multiple
different yet identical in their macroscopic structure datasets were generated to evaluate the se-
lected methods on. Supplementing the simulated data, a suitable real dataset was also used in
the analysis.

A list of important qualitative properties to be reported for each method was compiled, mo-
tivated by the particular challenges real data might pose, and the procedure for quantifying the
performance of each method in the data was substantiated. The methods were serially applied on
the same datasets, and their performance and running time were obtained.
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The results of the benchmark framework were pooled in a single dataset that was used to re-
trieve informative visualizations illuminating and enabling discussion regarding how the methods
compared, the dispersion of the performance of each method and the proficiency methods show-
cased under data with varying characteristics. Insights on the computational complexity of the
methods as well as on the balance each method attains between speed and performance were also
retrieved.

Overall conclusion

With respect to the first research question, the main goal of this thesis was the estimation of
transfer entropy in non-stationary time series. As the direct estimation of transfer entropy in
the general non-stationary case without additional hypotheses remains an open question, two
assumptions were made that impacted the generality of results: first, a concrete system was
investigated, and second, it was proved to belong to the smaller class of non-stationary time series
with stationary increments. In this context, the estimator that was examined showcased relatively
good performance in estimating transfer entropy; although further improvements in terms of bias
correction are required. Being aware of the limitations discussed, we conclude that this estimator
can be considered as an option for the estimation of more involved datasets - provided stationarity
of increments holds.

Regarding the second research question, the findings of the benchmark study seem to uphold
the thesis that the model-free framework of information theory should be used if the performance
of causal inference methods is the central concern. The findings simultaneously demonstrate that
aiming for perfectly performing methods comes at a significant cost in terms of computational
complexity; a balance between the two should be attained. The qualitative classification scheme
proposed for causal inference methods and the heterogeneity observed in their properties, elucidate
the importance of carefully considering the context and the data involved in a causal inference
study before embarking on it.

8.2 Discussion and recommendations

This section contains remarks related to important details of the project. Potential shortcomings
of the approach taken are also mentioned here.

Transfer entropy and non-stationarity

Estimation of entropy terms: Based on the advice of Granero-Belinchón et al. (2019), the
TE estimator studied in Chapter 4, essentially utilizes a box-kernel density estimator for each
entropy term. While in practice it performed decently, a more thorough investigation of this
estimator is required; e.g. it has not been compared to other kernel density estimators, or other
entropy estimators in general.

Method of estimation: The estimator investigated is derived by applying the estimator of
Granero-Belinchón et al. (2019) in different entropy terms appearing on the definition of transfer
entropy. In mutual information estimation, this technique is known to adversely impact the overall
estimate Kraskov et al. (2003) as separate biases may accumulate. Despite not proving detrimental
in this study, this might generally harm the estimates.

Low embedding dimension: The system studied in Chapter 4 features a very short time
dependency on its past: only the present and immediate past states play a role. This allowed us
to study a small embedding dimension in Section 4.3. The estimator might be negatively affected
as larger embedding dimensions are considered.

Pattern of non-stationarity found: Due to the simplicity of the structure of the system
studied and the assumptions made, we formally proved that the cTE converges in time. This
is as much of an insight as a limitation: the pattern of non-stationarity found is rather trivial
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(and quickly convergent to a simple logarithmic function). An example of a more involved non-
stationary theoretical derivation for TE remains elusive.

Time index: Throughout the thesis, time is discrete. Minding the difference in time scales
over which data are registered within ASML and instantaneous causation that might arise from this
feature, continuous time TE might provide a better fit - although more theoretical developments
are required.

Benchmark framework for causal inference methods

Unobserved confounders: The presence of unobserved confounders is ubiquitous in real
datasets, and methods showcasing robustness to them are advantageous. While the real dataset
used in this project was influenced by hidden confounders, the simulated dataset did not have
any. A hidden confounder can be conveniently simulated by simply dropping a confounding time
series from the simulated dataset, and observing the difference in method performance could be
insightful.

Causal delays: The causal delays reported by a method are not considered in their evaluation.
This is to ensure a homogenized comparison, as some methods do not detect causal delays. By
appropriately extending the evaluation metric used, or by selecting a different one, this information
may also be taken into account, providing a more complete picture of how the methods performed
and compared.

Computational restrictions I: Due to restrictions in the computational power available,
methods were iterated a moderate amount of times over a few different data configurations. It
is usually the case in literature to e.g. iterate methods not over 2 different coupling strengths
(low/high) but over 10’s of different coupling strengths, hence obtaining a more precise overview
of their performance.

Computational restrictions II: Limited computational power also restricted the different
kinds of datasets included in the analysis. The Hénon map is but one of multiple frequently
used datasets for such a purpose. Coupled Lorenz systems, or data simulated from VAR models
could have also been part of the study. Recent relevant work Finn and Lizier (2020) incorporates
different network structure motifs into similar studies as well.

8.3 Potential of causal inference within ASML

An important goal within ASML is the performance of predictive maintenance in lithography
systems. A prerequisite goal however, is the development of a reliable data-driven method that
performs fault diagnosis and root cause analysis – in (close to) real time. A first step towards
this method is understanding the complex interactions happening in the system, i.e. unveiling its
structure.

Causal inference is a suitable fit for this task. As a data-driven field, a causal inference method
might reveal a non-trivial interaction occurring in a system that was not previously found due
to the complexity of the system’s interactions. Such causal insights reach beyond questions on
associations and standard statistical or machine learning methods may not be compatible with
such a task. This project studied a variety of relevant methods, exploring very diverse approaches
and illustrated their utility.

Transfer entropy in particular has been successfully applied within ASML in the past. TE
requires minimal domain knowledge in order to analyze a dataset, and its results can be con-
veniently visualized and communicated with domain experts. As this thesis also demonstrated, a
major drawback for TE is its computational complexity; this may pose a challenge in its applic-
ation within a production environment. Nevertheless, TE and its different versions are flexible,
and attempts can be made to relieve the computational load that TE carries. A relevant point is
made on the next and final section.
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8.4 Future research

There are several research questions that can be pursued as a continuation of this project:

The embedding dimensions selected for TE estimation are very important as they impact the
estimate and alter the computational load. Ideally, the embedding dimension of the target signal
should be optimized such that self-prediction is maximized, to separate information storage from
information transfer Lizier et al. (2008). Investigating how embedding dimensions impact TE
estimation results is therefore an interesting question.

The high computational demand of TE depends on both the sample size and especially on
dimensionality. Therefore, reducing the size of the dataset while retaining as much information as
possible can be greatly beneficial. In terms of reducing dimensionality, a variety of well know meth-
ods from literature could be tried, such as PCA Jolliffe and Cadima (2016) or Isomap Tenenbaum
(2000).

Once a causal graph has been established using a causal inference method, a natural next step is
to quantify a notion of how “influential” each node is in the graph. Some recent papers Streicher
and Sandrock (2019), Murin et al. (2018) have proposed using centrality measures from graph
theory to quantify this (although within structural causal models caution is required Dablander
and Hinne (2019)). On the other hand, centrality measures have been found to correlate with the
firing rate of a neuron Fletcher and Wennekers (2018), rendering them important in this specific
case. This research direction might be fruitful; in this context, controlling for edge multiplicity
might be important.

Considering the time-dynamic context, the above idea opens up more possibilities. Given a
multivariate time series dataset over the same time scale, multiple consecutive time windows may
be causally analyzed with any method presented here. This would result in a sequence of directed
graphs being derived from the dataset - and the influence metric of each node would be a time
series itself. These time series may be subsequently analyzed, e.g. using standard time series
analysis techniques Hyndman and Athanasopoulos (2018), or even clustered, using e.g. dynamic
time warping Müller (2007). Clustering similarly-behaving nodes (i.e. variables of the system)
can be promising in revealing underlying sub-systems, that may have been invisible otherwise -
simplifying the network.

This sequence of directed graphs can be further explored. Anomaly detection in dynamic
networks Ranshous et al. (2015) may be performed on it, interestingly combining causal inference
(that yields a directed graph) with the time-dynamic context (graph changing over time) and
the end goal (prognostics/diagnostics). For this direction to be sensible, a high-quality causality
method is required. The current project extensively researched that. The time-varying causal
evolution of a time series dataset was studied in Jiang et al. (2017).

With regards to non-stationary TE estimation, an alternative approach that was not considered
in this work may be based on Hegger et al. (2000). In this paper, the authors argue that if a time
series is non-stationary because of a slow drift, it may suffice for its analysis to over-embed it, i.e.
appropriately increase the embedding dimension.

The concept of copula entropy Nelsen (2007), was shown to be the same with mutual inform-
ation Ma and Sun (2008). Since then, it has been used in relation to Granger Causality Hu and
Liang (2014), and more recently for TE estimation Jian (2019) as well as in applications Hao
and Singh (2015), Sun et al. (2019). Further researching copula entropy in relation to TE could
provide another research direction.

In this project, exact results for transfer entropy were derived in a random walk system.
Aspiring to generalize these results, a time series decomposition method that contains a random
walk as one of its components may be useful. A suitable fit might be provided by the Beveridge-
Nelson decomposition Beveridge and Nelson (1981) that decomposes a non-stationary ARIMA
process to a stationary time series and a random walk.
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Appendix A

Theoretical supplements

The theoretical results that were omitted from the main text are listed here.

The choice of logarithm in Shannon entropy

The entropy of a discrete random variable is a real number. Therefore it makes sense to interpret
entropy as an expectation of a function of the random variable, say E[g(X)] where g is a suitably
chosen function. The Law of the Unconscious Statistician yields that E[g(X)] =

∑
x pX(x)g(x).

It will turn out to be convenient to use a slightly less general form through replacing g(x) by
g(pX(x)) (there is a slight loss of generality here since pX need not be an invertible function). We
will use a similar functional form for the joint entropy. We thus consider:

H(X) =
∑
x

pX(x)g(pX(x))

H(Y ) =
∑
y

pY (y)g(pY (y))

H(X,Y ) =
∑
x

∑
y

pX,Y (x, y)g(pX,Y (x, y))

We further require that the joint entropy of two independent random variables is the sum of the
entropies of the individual random variables:

H(X,Y ) = H(X) +H(Y )

Then, this requirement implies the additivity of function g:

∑
x

∑
y

pX,Y (x, y)g(pX(x) · pY (y)) =
∑
x

1 · pX(x)g(pX(x)) +
∑
y

1 · pY (y)g(pY (y))

=
∑
x

∑
y

pY (y)pX(x)g(pX(x)) +
∑
y

∑
x

pX(x)pY (y)g(pY (y))

=
∑
x

∑
y

pX,Y (x, y) (g(pX(x)) + g(pY (y))

Comparing the first and the last sum we get:

g(pX(x) · pY (y)) = g(pX(x)) + g(pY (y))
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This additive property characterizes the function g within the class of measurable functions, and
a straightforward proof of that can be given provided we make the extra assumption that g is
differentiable and defined for positive real numbers. The following argument is based on Lee Lady
(2005), while for the general proof we refer to Aczél and Daróczy (1975). Assuming the above
conditions for g we have:

If g(x · y) = g(x) + g(y), then g(1) = g(1 · 1) = g(1) + g(1), therefore g(1) = 0. Fixing an
arbitrary x > 0 we then compute the derivative:

g′(x) = lim
h→0

g(x+ h)− g(x)

h
(A.1)

= lim
h→0

g(x) + g(1 + h
x )− g(x)

h
(A.2)

= lim
h→0

g(1 + h
x )− g(1)

h
(A.3)

=
1

x
lim
u→0

g(1 + u)− g(1)

u
(A.4)

=
1

x
g′(1) (A.5)

where in (A.4) we set u = h/x. So, for an arbitrary x > 0 we have:

g(x) = g′(1) log x+ c

Re-using g(1) = 0 we obtain c = 0. Writing pX(x) instead of x we conclude:

g(pX(x)) = k log pX(x)

where k = g′(1). Since pX(x) ≤ 1 and we would want the information function g (and, equivalently,
the entropy H) to be non-negative, k = g′(1) should be chosen negative. This also implies that the
derivative g′(pX(x)) < 0, i.e. that g is decreasing: less probable outcomes yield more information.
In the main definition given in Chapter 2, k = −1. This choice serves a normalization purpose, as
in that case, the entropy of the outcome of the toss of a fair coin is 1 bit.

Proof of Theorem 2.1.10

The proof of the non-negativity of the K-L divergence is included here.

Proof. Let A = {x : p(x) > 0} be the support set of p(x). Note that because of the condition
assumed for p and q in Definition 2.1.9, p(x) > 0 implies q(x) > 0, i.e. the following are well
defined. We write:

−D(p‖q) = −
∑
x∈A

p(x) log
p(x)

q(x)
=
∑
x∈A

p(x) log
q(x)

p(x)
(A.6)

≤ log
∑
x∈A

p(x)
q(x)

p(x)
= log

∑
x∈A

q(x) (A.7)

≤ log
∑
x∈X

q(x) = log 1 = 0 (A.8)

(A.7) follows from Jensen’s inequality for concave functions: φ (
∑
aixi) ≥

∑
aiφ(xi), where φ(x) =

log(x), ai = p(x) and xi = q(x)/p(x).
Since log t is a strictly concave function of t, we have equality in (A.7) iff q(x)/p(x) is constant

everywhere, i.e. q(x) = cp(x). Therefore,
∑
x∈A q(x) = c

∑
x∈A p(x) = c.

Equality in (A.8) holds only if
∑
x∈A q(x) =

∑
x∈X q(x) = 1, which implies that c = 1. Hence,

we have D(p‖q) = 0 iff p(x) = q(x) for all x.

98 Estimation of Transfer Entropy



APPENDIX A. THEORETICAL SUPPLEMENTS

Proof of Theorem 2.1.18

The proof of the analytic expression for transfer entropy is included here.

Proof. Recall the expression of TE as a difference of conditional entropies (2.21):

T
(k,`)
Y→X(t) = H(Xt|X(k)

t−1)−H(Xt|X(k)
t−1, Y

(`)
t−1)

Then from the definition of conditional entropy (2.6), we have:

H(Xt|X(k)
t−1) = −

∑
x
(k)
t−1

p(x
(k)
t−1)

∑
xt

p(xt|x(k)
t−1) log p(xt|x(k)

t−1)

H(Xt|X(k)
t−1, Y

(`)
t−1) = −

∑
x
(k)
t−1,y

(`)
t−1

p(x
(k)
t−1, y

(`)
t−1)

∑
xt

p(xt|x(k)
t−1, y

(`)
t−1) log p(xt|x(k)

t−1, y
(`)
t−1)

We now use the definition of conditional probability p(x|y) = p(x, y)/p(y) for p(xt|x(k)
t−1) and

p(xt|x(k)
t−1, y

(`)
t−1). Then, we note that the denominator of the resulting fractions is independent of

xt, and therefore it can be taken out of the inner sum and cancel with p(x
(k)
t−1) and p(x

(k)
t−1, y

(`)
t−1)

respectively. Thus:

H(Xt|X(k)
t−1) = −

∑
x
(k)
t−1

∑
xt

p(xt, x
(k)
t−1) log p(xt|x(k)

t−1) (A.9)

= −
∑

xt,x
(k)
t−1

p(xt, x
(k)
t−1) log p(xt|x(k)

t−1) (A.10)

H(Xt|X(k)
t−1, Y

(`)
t−1) = −

∑
x
(k)
t−1,y

(`)
t−1

∑
xt

p(xt, x
(k)
t−1, y

(`)
t−1) log p(xt|x(k)

t−1, y
(`)
t−1)

= −
∑

xt,x
(k)
t−1,y

(`)
t−1

p(xt, x
(k)
t−1, y

(`)
t−1) log p(xt|x(k)

t−1, y
(`)
t−1)

The result is now given by noting:

p(xt, x
(k)
t−1) =

∑
y
(`)
t−1

p(xt, x
(k)
t−1, y

(`)
t−1)

Therefore (A.10) becomes:

H(Xt|X(k)
t−1) = −

∑
xt,x

(k)
t−1,y

(`)
t−1

p(xt, x
(k)
t−1, y

(`)
t−1) log p(xt|x(k)

t−1)

and the result follows:

T
(k,`)
Y→X(t) = −

∑
xt,x

(k)
t−1,y

(`)
t−1

p(xt, x
(k)
t−1, y

(`)
t−1) log p(xt|x(k)

t−1) +
∑

xt,x
(k)
t−1,y

(`)
t−1

p(xt, x
(k)
t−1, y

(`)
t−1) log p(xt|x(k)

t−1, y
(`)
t−1)

=
∑

xt,x
(k)
t−1,y

(l)
t−1

p(xt, x
(k)
t−1, y

(l)
t−1) log

p(xt|x(k)
t−1, y

(`)
t−1)

p(xt|x(k)
t−1)
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Proof of Theorem 2.3.4

Here we prove that a strictly stationary time series with finite variance is weakly stationary.

Proof. Setting k = 1 in (2.42) yields, for any t ∈ Z and any h ∈ Z

Xt
d
= Xt+h

For an arbitrary s ∈ Z, setting h = s − t, the above proposition proves that for any t, s ∈ Z we

have Xt
d
= Xs. Since equality in distribution implies equality of means, we get E[Xt] = m for all

t ∈ Z.
Setting k = 2 in (2.42) yields, for any t, s ∈ Z and any h ∈ Z

(Xt, Xs)
d
= (Xt+h, Xs+h) (A.11)

Due to E
[
|Xt|2

]
<∞ for all t ∈ Z, the Cauchy-Schwarz inequality implies that all covariances are

finite:
(
Cov(Xt, Xs)

)2 ≤ V ar(Xt)V ar(Xs) < +∞. Then, (A.11) implies

Cov(Xt, Xs) = Cov(Xt+h, Xs+h) ⇐⇒
γX(t, s) = γX(t+ h, s+ h)

Therefore, Xt is weakly stationary.

An example of a weakly but not strictly stationary time series is subsequently given here.

Example A.0.1. Consider a sequence of independent random variables {Xt, t ∈ Z} such that for
t odd the distribution of Xt is exponential with mean equal to one, while for t even the distribution
of Xt is normal with mean and variance equal to one:

Xt ∼

{
Exp(1) , if t is odd

N (1, 1) , if t is even

Then, E[Xt] = 1 and E[X2
t ] = 2 < +∞ for any t ∈ Z. Also, for any t, s ∈ Z

γX(t, s) = Cov(Xt, Xs) = E[XtXs]− E[Xt]E[Xs] = E[XtXs]− 1

For an arbitrary h ∈ Z:

If t = s, then Cov(Xt, Xs) = V ar(Xt) = 1 = V ar(Xt+h) = Cov(Xt+h, Xs+h)

Otherwise:

• if h is even, Xt+h
d
= Xt and Xs+h

d
= Xs. Hence, E[Xt+hXs+h]

indep.
= E[Xt+h]E[Xs+h] =

E[Xt]E[Xs]
indep.

= E[XtXs]

• If h is odd, Xt+h
d
= Xs and Xs+h

d
= Xt. Hence, E[Xt+hXs+h]

indep.
= E[Xt+h]E[Xs+h] =

E[Xs]E[Xs]
indep.

= E[XsXt]

In any case, E[XtXs] = E[Xt+hXs+h]. This implies

Cov(Xt, Xs) = Cov(Xt+h, Xs+h)

That is, Xt is weakly stationary. However, since e.g. X1 and X2 have different distributions, Xt

is not strictly stationary.
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Multivariate normal distribution theory

We then consider the definition and characteristic function of a multivariate normal random vari-
able as well as relevant properties.

Definition A.0.2. A random variable X of dimension n follows a multivariate normal distribution
with mean µ and (non-singular) covariance matrix Σ = ΣX,X , written as X ∼ N(µ,Σ) if it has
the following probability density function:

fX(x) = (2π)−
n
2 (det Σ)−

1
2 exp

[
− 1

2
(x− µ)TΣ−1(x− µ)

]
(A.12)

Theorem A.0.3. The characteristic function of a multivariate normal random variable X ∼
N(µ,Σ) admits the following form:

φX(t) = E[eit
TX ] = exp (itTµ− 1

2
tTΣt) (A.13)

Since characteristic functions characterize the probability distribution of the random variable
involved and (A.13) depends only on the mean µ and covariance matrix Σ, we infer that a mul-
tivariate normal distribution is fully specified by its mean and covariance matrix.

An important property of multivariate normality is the fact that it is preserved under affine
transformations. For the proof of the following proposition we refer to (Tong, 1990, p. 32).

Theorem A.0.4. If X ∼ N(µ,Σ) is an n-dimensional normal random variable, B is a m × n
real matrix and a is a m×1 real vector, then the random vector Y = a+BX is again multivariate
normal. Specifically:

Y ∼ N(a+Bµ,BΣBT ) (A.14)

As a corollary, any subset of a multivariate normal vector X is also multivariate normal distributed:

Corollary A.0.5. Let X ∼ N(µ,Σ) an n-dimensional normal random variable X = (X1, ..., Xn).
For any set of indices i1, ..., ik, k < n the multivariate random variable X ′ = (Xi1 , ..., Xik) is
normally distributed.

Proof of Theorem 4.1.6

Proof that, as defined in Theorem 4.1.6, time series Vt is white noise.

Proof. Referring to Definition 4.1.3 we have to prove the following:

• Vt is stationary

• The mean of Vt is zero: µt = 0

• The covariance matrix of Vt maps non-zero arguments to zero: Γ(h) = 0 if h 6= 0

The processes Zt,Wt are both i.i.d noise with zero mean therefore it is trivially seen that E[Vt] = 0
(and it also does not depend on t, a condition needed for stationarity). We then compute the
covariance matrix of Vt as defined in (4.1.2):

Γ(t+ h, t) =

[
Cov(Zt+h, Zt) Cov(Zt+h, bZt +Wt)
Cov(bZt+h +Wt+h, Zt) Cov(bZt+h +Wt+h, bZt +Wt)

]
(A.15)

Referring to the independence assumptions of the model, we note that, for h 6= 0, all covariances
refer to different and therefore independent time points. Thus, when h 6= 0 all elements of the
above matrix are 0 (and trivially independent from t). By calculating the specific covariances when
h = 0 we therefore proved that Vt is a white noise process with covariance matrix Σ = Γ(0).
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Appendix B

Additional graphs

Figure B.1: The average performance of each method on data groups H3 and H1.

Figure B.2: The average performance of each method on data groups H1 and H2.
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APPENDIX B. ADDITIONAL GRAPHS

Figure B.3: The average performance of each method on data groups H3 and H4.

Figure B.4: The difference in average median runtime between low and high dimensional datasets
for each method (log-scale).
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