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Abstract

Autonomous systems continue to improve at specialized tasks allowing for a higher
quality of life for many individuals. Intelligent robots have historically assumed tasks
that would otherwise be arduous, vacuous, or even dangerous for humans. Specifically
designed for distinct tasks, these machines do not grow tired over time and have effi-
ciency and accuracy rates not typically achievable by humans. Personal safety appears
to be a field that could benefit from the inclusion of robotic systems, especially in po-
lice and military operations. Adding Unmanned Aerial Vehicles (UAVs) to the special
forces teams, or other similar operations, allows for a unique opportunity to minimize
the danger of field operators during their missions. Special Forces operations are often
conducted in confined, indoor environments where mobility and visibility are limited.
Concurrently with the stressful nature of their tasks, safety-focused tactical gear nega-
tively impacts vision, mobility, and cognitive load. The goal of this thesis is to reduce
the cognitive load of users through proper system design and integration.

Since Special Forces groups heavily rely on voice communication, a drone with
speech recognition has been designed and tested in a virtual environment. The goal was
to discover meaningful insights on user interaction that would lead to the improvement
of the user interface (UI) for a drone communicating back with the operative about its
tasks. Users tested three types of UIs and qualitative and quantitative information has
been analyzed to evaluate which UI is the best candidate for pursuing future research
and implementation. These results are expected to be useful in the creation of an opti-
mal UI that mitigates user cognitive load, improves both operative and agent behavior
(accuracy of tasks), and ultimately mission success. This combination will advance
the field of human-robot interaction and allow for mixed human-robot teams. Three
reputable user testing frameworks were utilized including the NASA-TLX, PVT, and
SAGAT. This thesis was conducted with the Distributed Artificial Intelligence Labora-
tory (DAI-Labor) at the Technische Universität Berlin as a component of the InLaSeD
(Indoor Situation Survey for Special Units with Drones) for the German Special Forces
(SEK).

The results include the development of a voice recognizer with a custom dictionary
for special operations. A high-fidelity environment was created in Unity with commu-
nications sent to ROS to replicate agent communication behaviors and delays. Users
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evaluated three types of models including voice-only, visual-only, and multimodal user
interfaces. The outcome is that, compared to single modalities, the multimodal im-
plementation is the most robust with respect to performance and cognitive load, with
analyzable trends in situational awareness and response time. Future work will be to
further improve the multimodal user interface to continue to decrease cognitive load for
SEK operatives and improve artificial agent behavior with regard to interpretation and
decision-making behaviors.
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Zusammenfassung

Autonome Systeme verbessern sich ständig bei speziellen Aufgaben, die eine höhere
Lebensqualität für viele Menschen ermöglichen. Intelligente Roboter haben in der
Vergangenheit Aufgaben übernommen, die sonst mühsam, leer oder sogar gefährlich
für den Menschen wären. Diese Maschinen, die speziell für unterschiedliche Auf-
gaben entwickelt wurden, werden mit der Zeit nicht müde und haben eine Effizienz
und Genauigkeit, die normalerweise vom Menschen nicht erreicht werden kann. Die
persönliche Sicherheit scheint ein Bereich zu sein, der von der Einbeziehung von
Robotersystemen profitieren könnte, insbesondere bei Polizei- und Militäreinsätzen.
Die Aufnahme von unbemannten Luftfahrzeugen (UAVs) in die Spezialeinheiten oder
ähnliche Einsätze ermöglicht eine einzigartige Möglichkeit, die Gefahr für die Feldbe-
diener während ihrer Einsätze zu minimieren. Spezialeinsätze werden oft in engen,
geschlossenen Räumen durchgeführt, in denen Mobilität und Sicht eingeschränkt sind.
Gleichzeitig mit der stressigen Natur ihrer Aufgaben wirkt sich die sicherheitsorientierte
taktische Ausrüstung negativ auf das Sehen, die Mobilität und die kognitive Belastung
aus. Das Ziel dieser Arbeit ist es, die kognitive Belastung der Benutzer durch richtiges
Systemdesign und Integration zu reduzieren.

Da die Gruppen der Spezialeinheiten stark auf Sprachkommunikation angewiesen
sind, wurde eine Drohne mit Spracherkennung in einer virtuellen Umgebung entwick-
elt und getestet. Ziel war es, aussagekräftige Erkenntnisse über die Benutzerinteraktion
zu gewinnen, die zur Verbesserung der Benutzeroberfläche (UI) für eine Drohne führen
würden, die mit dem Operator über ihre Aufgaben kommuniziert. Benutzer testeten
drei Arten von Benutzeroberflächen und qualitative und quantitative Informationen wur-
den analysiert, um zu bewerten, welche Benutzeroberfläche der beste Kandidat für die
zukünftige Forschung und Implementierung ist. Diese Ergebnisse sollen bei der Erstel-
lung einer optimalen Benutzeroberfläche nützlich sein, die die kognitive Belastung des
Benutzers mildert, sowohl das operative als auch das Agentenverhalten (Genauigkeit
der Aufgaben) verbessert und letztendlich den Missionserfolg steigert. Diese Kom-
bination wird das Feld der Mensch-Roboter-Interaktion vorantreiben und gemischte
Mensch-Roboter-Teams ermöglichen. Es wurden drei renommierte Anwendertestsys-
teme verwendet, darunter NASA-TLX, PVT und SAGAT. Diese Arbeit wurde mit dem
Distributed Artificial Intelligence Laboratory (DAI-Labor) an der Technischen Univer-
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sität Berlin als Bestandteil der InLaSeD (Indoor Situation Survey for Special Units with
Drones) für die Deutschen Spezialeinheiten (SEK) durchgeführt.

Zu den Ergebnissen gehört die Entwicklung eines Spracherkenners mit einem be-
nutzerdefinierten Dictionary für spezielle Operationen. In Unity wurde eine High-
Fidelity-Umgebung mit an ROS gesendeten Kommunikationen geschaffen, um das
Kommunikationsverhalten und die Verzögerungen der Agenten zu replizieren. Die
Benutzer bewerteten drei Arten von Modellen, darunter sprachbasierte, visuelle und
multimodale Benutzeroberflächen. Das Ergebnis ist, dass im Vergleich zu einzelnen
Modalitäten, die multimodale Implementierung ist die robusteste in Bezug auf Leistung
und kognitive Belastung, mit analysierbaren Trends in der situativen Wahrnehmung und
Reaktionszeit. Zukünftige Arbeiten werden darin bestehen, die multimodale Benutzer-
oberfläche weiter zu verbessern, um die kognitive Belastung für SEK-Mitarbeiter weiter
zu verringern und das Verhalten künstlicher Agenten in Bezug auf Interpretations- und
Entscheidungsverhalten zu verbessern.
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Chapter 1

Introduction

Autonomous systems continue to improve at specialized tasks allowing for a higher
quality of life for many individuals. Intelligent robots have historically assumed tasks
that would otherwise be arduous, vacuous, or even dangerous for humans. Specifically
designed for distinct tasks, these machines do not grow tired over time and have effi-
ciency and accuracy rates not typically achievable by humans (i.e., the manufacturing
of vehicles or throughput of products on an assembly line). However, these events are
usually “behind the scenes,” as little-to-no human interaction is required. Recently,
autonomous systems are proposed to coalesce and proliferate everyday activities via au-
tonomous driving, product distribution, and tasks that require repetitive actions that do
not require critical thinking. Intuitively, personal safety appears to be a field that could
benefit from the inclusion of robotic systems as safety concerns nearly everyone.

Throughout the world, safety is a major concern for people and is a major factor
of Quality of Life (QoL). In Germany alone, 23% of urban denizens report feeling un-
safe due to crime in 2016 [EU, 2016]. There is a major need for improving the QoL
for citizens, especially in urban areas. In general, police forces are responsible for the
reduction of crime. Special forces units are called in whenever there are high-profile
missions containing dangerous criminals (homicides, hostage situations, counterterror-
ism, etc.). In these situations, there is a high level of risk for the operatives that can result
in permanent physical and mental damage or death. Another complication is that these
operatives must wear additional protective gear. This gear blocks their ability to func-
tion ideally, as the total weight of a loadout can be upwards of 50kg and helmets/flak
jackets restrict mobility. Fig. 1.1 shows an example of the heavy gear that SEK oper-
atives wear [Moll, 2017]. To combat these limitations, mixed human-robot teams can
be assembled, sending in robots in to assess certain dangers (reconnaissance), structural
damage, and even first contact with the perpetrator. Ideally, the robot would be able
to communicate with the police officer the location and status of the person of inter-
est. This could increase the likelihood that the perpetrator is apprehended successfully
and without harm, as operatives may injury or kill the suspect if startled. In short, au-
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tonomous robots could improve the personal safety of civilians, officers, and suspects
simultaneously.

Figure 1.1: Image of the Brandenburg SEK Force.

While certain aspects of autonomous systems currently prevent their widespread
use in urban environments (privacy concerns, resources, technological feasibility, etc.),
there are additional niche areas that can immediately benefit from mixed human-robot
teams for safety outside of police work. These topics include firefighters, disaster
relief, item retrieval, contraband and explosives disarmament, as well as other envi-
ronments in which the presence of a robot would reduce the risk of danger for hu-
man operators. In terms of interoperability and scalability, human-robot system de-
sign can deliberately create commonalities that function across multiple systems with
a standardized framework and approach. Robotic systems require the fulfillment of-
functional requirements while also being distributed systems, concurrently sharing re-
sources and information in real-time to optimize performance, reliability, and coordina-
tion [Brugali and Fayad, 2002].

Within the fields of autonomous systems and human-robot interaction, there is are
seemingly endless opportunities. In the case of mixed human-robot teams, proper per-
ception and cognition (for the robot) and safety-distance away from the user (Personal-
Space Model [Torta et al., 2013]) is being analyzed with parametric models based on
commonalities in user experience and comfort. Decision-making operations are cur-
rently in development for autonomous agents for reactive-adaptive hybrid behavior-
based planning (ROS Hybrid Behavior Planner (RHBP) [Hrabia et al., 2017]). In fact,
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simple navigation and interaction with robots is not a trivial task that cannot be solved
solely with intuition. Each of these use cases can benefit from a Simulator created in
Virtual Reality. Mass physical implementations are costly and prone to changes, making
virtual environments ideal for simulation and validation [Mizuchi and Inamura, 2017].
However, most current simulated environments lack fidelity and realism which can lead
to mismatches in the predicted behavior as compared to the actual behavior for robots,
humans, and systems [Novikova et al., 2015].

3



Chapter 2

Motivation

This section describes the motivation, approach, and structure of the thesis.

2.1 Motivation
Drones can provide flexibility in various domains include package delivery (medicine,
supplies, etc.), aerial reconnaissance, and communication arrays. Drones have an ad-
vantage over ground-based mobile and fixed robots, as they can take off vertically, are
not susceptible to obstructions or slippage in the environment, and have more degrees
of freedom in movement. Furthermore, they can move quite quickly at the cost of ad-
ditional noise and energy consumption. Drones would make excellent companions for
police field operations as they can scan environments for civilians, criminals, structural
damage, or hazards. Drones are also replaceable whereas human life is not. Drones
could also lead to improving mission success as a ”first respondent” on a scene, pre-
venting human errors that occur when an officer or operative is caught by surprise (un-
intentionally eliminating a suspect).

To pursue this topic in-depth with respect to being able to operate such a drone,
this Master’s Thesis was conducted with the Distributed Artificial Intelligence Labora-
tory (DAI-Labor) at the Technische Universität Berlin. This thesis is a component of
the Indoor-Lageerkundung für Spezialeinheiten mit Drohnen (InLaSeD) (Indoor Situ-
ation Survey for Special Units with Drones) project for the needs of the Brandenburg
Spezialeinsatzkommandos (SEK) (Special Deployment Commandos), a German Special
Forces group [Bundesministerium für Bildung und Forschung, 2019]. Special Forces
operations are often conducted in confined, indoor environments where mobility and
visibility are limited. The SEK is a special-operations, counter-terrorism, and high-risk
unit handling critical missions including hostage sieges, building raids, and surveillance
([Traumberuf, 2019]).

Concurrently with the stressful nature of their tasks, safety-focused tactical gear
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negatively impacts vision, mobility, and cognitive load. Cognitive load here is defined as
the distribution and utilization of cognitive resources that impact personal performance,
response time, situational awareness, working memory, and personal stress. The focus
of this thesis is to evaluate how adding using a drone in a mixed human-robot team might
impact the operator cognitively. Following this analysis, artificial agent performance
can be optimized based on user behavior.

Adding Unmanned Aerial Vehicles (UAVs) to the SEK teams, or other similar oper-
ations, allows for a unique opportunity to minimize the danger of field operators during
their missions. While certain military groups, like the United States Marine Corps
(USMC), have been experimenting with drones (Drohne) during operations, these have
largely been outdoors and a safe distance from the target with the drone acting as a spot-
ter ([Rogoway, 2018]). The InLaSeD project will have additional challenges in which
autonomous drones act as support members in mixed human-robot teams, providing
information on target identification/classification, environmental hazards (smoke, fire),
mapping and structural layout.

2.2 Approach and Goals
Since Special Forces groups heavily rely on voice communication, a drone with speech
recognition has been designed and tested in a virtual environment. The goal was to
discover meaningful insights on user interaction that would lead to the improvement
of the UI for the drone communicating back with the operative about its tasks. Users
tested three types of UIs and qualitative and quantitative information has been analyzed
to evaluate which UI is the best candidate for pursuing future research and eventually
implementation. These results are expected to be useful in the creation of an optimal UI
that mitigates user cognitive load, improves both operative and agent behavior (accuracy
of tasks), and ultimately mission success. This combination will advance the field of
human-robot interaction and allow for mixed human-robot teams.

2.3 Structure of the Thesis
This thesis is structured as follows. In Chapter 3, some related background aspects
that are considered fundamental to the research are discussed. Chapter 4 discusses the
research questions and approach. In Chapter 5, the details of the experimental designs
are covered with Chapter 6 detailing some additional design and testing aspects used
to guide design decisions for the final version of the implementation. Chapter 7 covers
the user testing aspects of the project. Evaluation results are discussed in Chapter 8.
Chapter 9 contains the conclusion. Chapter 9.3 gives additional related information for
data analysis, modeling, and the administered user test.
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Chapter 3

Background

This Chapter contains the three main aspects of the thesis including the speech recog-
nition, User Interface (UI) design, and cognitive load. Speech recognition is split into
two primary domains. The UI design is approached based on multiple sensory channels
and focuses on how to approach a feasible implementation. Cognitive load aspects are
considered on how to evaluate if a UI design and ultimately, mission evaluations, are
impacted by the designed UI and artificial agent teammate.

3.1 Speech Recognition
Controlling a drone via voice commands required several steps. First, Automatic Speech
Recognition (ASR) must be implemented. Since the drone will only be required to
recognize and respond to a small set of words or phrases, creating a custom dictionary
is ideal and directly impacts the memory size of the data set. A small voculary results
in more accurate interpretations when proper heuristics are implemented. Next, the
interpretations needed to be processed and the drone’s behavior needs to reflect the
spoken dialog. Since the SEK is operating in dynamic and dangerous environments,
this process needs to happen with high accuracy, precision, and little delay as possible.

ASR has two main approaches in implementation: either using Hidden Markov
Models (HMM) or Deep-Learning (DL). Each implementation has a number of trade-
offs and the manner of the implementation determines which approach is, in some sense,
optimal. HMMs are typically easier to understand and implement (fewer parameters)
at the cost of accuracy [Receveur and Fingscheidt, 2014]. Creating HMMs for ASR
requires five steps: Feature Extraction, an Acoustic Model, a Lexicon Model, a Lan-
guage Model and then a Decoder (usually the Forward-Backward or Viterbi algorithms)
[Maas, 2017]. HMMs are good for problems that have a small number of states (gram-
mar, words) and could allow for the drone to perform entirely offline [Ward, 2017].
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There is already a large library of existing solutions and implementations utilizing the
CMUSphinx API [CMU-Sphinx, 2019].

DL methods, usually with Convolutional Neural Networks (CNN) or Recurrent Neu-
ral Networks (RNN) (or combination CNN-RNN encoder/decoder, [Wang et al., 2016]),
allow for higher accuracy in results given proper parameter tuning and a large enough
dataset [Song, 2015]. DL implementations, on the other hand, require that a network
is trained with large amounts of data and the model be upload directly to the drone
(or a microcontroller interface). In general, even using only an RNN will outperform
an HMM [Graves et al., 2006]. However, DL implementations require dedicated and
stable network communication and real-time processing cannot handle latency when
making important decisions.. Network communication can be expensive with respect to
bandwidth and energy (increased power consumption). As the focus was to create, im-
plement, and simulate a speech recognition model useful for evaluating user cognitive
load, an offline method was employed (via PocketSphinx).

Text-to-Speech and Speech-to-Text are two methods of machine translation. Intu-
itively, these technologies are mappings to shift from one domain to the other. These
are common in modern ASR technologies (like Alexa and Siri) for providing the user
with a confirmation of audio commands.

3.2 User Interface Design
Once the drone can properly be given instructions via ASR, it is important that the
drone is able to communicate back to the user in a meaningful manner. The main user-
experience related criteria that are being pursued in this project is a “seamless, natural
integration of a drone into a mixed human-robot team.” This means that the drone needs
to be able to communicate effectively (quickly, clearly, and without ambiguity). As
such, there are very few approaches that would be sufficient in an environment that
places a great deal of stress on the user. Haptic feedback (tactile vibrations) is likely
not a good approach, as they can be easily misunderstood (and rely on the user being
trained to interpret the message [Cho and Proctor, 2003]). A speech response from the
drone may be problematic, as it requires that the user is primed for listening to the
confirmation of the planned tasked [Dyson, 2008]. During stress, the cognitive ability
of the user will degrade [Broadbent, 1958]. This means that long response might be
forgotten, misunderstood, or not properly heard [Engle, 2002]. Any of these events
would require that the user ask the drone to repeat the flight plan or resend instructions.
These are issues that exist even in human-human interactions, so it would be highly
advantageous if a robotic system could mitigate or alleviate these issues through design.

An alternative to tactile and audio feedback is visual feedback. This will improve
the response time of the user and mitigate errors due to multimodal bottlenecks in in-
formation processing [Sommer et al., 2001]. One approach would be to put LEDs on
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the drone that signal certain sequences of commands. Again, in this case, the operator
needs to be trained to interpret these responses from the drone. Furthermore, once the
drone is out of the line-of-sight, the drone will not be able to effectively communicate
with visual commands. Therefore, a UI within a Mixed Reality device (i.e., HoloLens)
can also be utilized. The UI can be designed in a mixed-reality format that displays,
with written words or intuitive icons, the flight/task plan of the drone. It is hypothesized
that this will mitigate the forgetfulness of the user due to the high cognitive load. The UI
should be designed in a manner that will not obstruct the vision of the user. This allows
the user to maintain situational awareness and analyze UI feedback without introducing
additional risks. Regardless, both audio and visual solutions need to be approached as
often times theory and reality do not match in real-world implementations. User behav-
ior is not trivial and many environmental factors, previous experiences, and unknown
variables lead to trends and tendencies in demonstrated behavior.

In general, humans are able to ”fuse” signals from multiple sensory sources with
an overall decrease in cognitive load. Simultaneously fusing multiple channels for sen-
sory inputs is known as multimodal integration [Kipp et al., 2005]. For this thesis, mul-
timodal integration is a combination of audial and visual information in the form of
confirmations.

3.3 Cognitive Load and Testing
Many different tests have been created to evaluate the cognitive performance of individ-
uals during various conditions. Situational Awareness (SA) is limited by available re-
sources in memory capacity and computation during decision-making [Endsley, 1995].
Cognitive Load is the concept that users have a finite amount of cognitive resources
that are distributed between multiple channels and memory locations. When cogni-
tive resources are limited or have been depleted, users begin to make errors in accu-
racy or decision making as a result. Users may fail to notice important details in their
environment, have delays in reaction time, or experience diminishes in memory. Situa-
tional awareness can be approximated using the Situation Awareness Global Assessment
Technique (SAGAT). Cognitive load (and SA) can be evaluated with two types of tests:
qualitative and quantitative. A common qualitative test is the NASA Task Load Index
(NASA-TXL) which allows users to access their perceived stress and workload levels
while completing other tasks. Subjects report their perceived performance after tasks
are given for problem-solving or split-attention tasks with a Self-Reporting Test (SRT)
[Chandler and Sweller, 1991].

For qualitative experiments, attention and working memory are common metrics.
The Operation Span Task (OSPAN) is used to measure the Working Memory (WM) ca-
pacity of users [Turner and Engle, 1989]. This is completed by giving the user an item
to remember and then interjecting with random simple mathematics problems, after
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which they are asked to recall the item. In the case of drone operations, a set of direc-
tions could be provided as the “item.” The Attentional Blink test is used to measure the
response time and accuracy of a user when two items are displayed for brief periods of
time with a short (variable) delay between objects [Nieuwenstein et al., 2009]. NASA
has employed the Psychomotor Vigilance Task to measure the cognitive performance
of astronauts during space missions (NASA Extreme Environment Mission Operation
NEEMO [Dinges, 2019a]) and aboard the International Space Station (ISS). This test
measures the response time for the user to click a button after an image has been dis-
played on a screen (faster is better).
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Chapter 4

Objectives

This Chapter discusses the objectives and research questions intended to be derived
from evaluating a voice-controlled drone and user cognitive load in a virtual simulator.
Furthermore, the general approach and process engineering are described.

4.1 Objectives
Each Research Question (RQ) was approached and completed with the mindset that
this is not a final, shippable product, i.e., this is a prototype/mock-up. In reality, the
foundation and framework need to be available in the form of a robust proof-of-concept
that can be adaptable for specific needs of the stakeholders that follow (e.g., the SEK
will likely want to change specific details prior to mass implementation, as well as future
researchers within the DAI-Labor).

Each research question was broken down into work packages. Each implementation
will be given clear objectives and criteria for evaluation. Some work packages had a
slight overlap related to tuning, implementation, and iterative design. The end results
are intended for the interoperability between distributed systems, applicable to many
projects.

4.1.1 RQ1: Human-Robot Communication
RQ1: How should the drone send confirmations to the operator to minimize ambiguity,
human errors, and temporal descrepancies?

After viewing the field demonstration and discussion with the SEK, it is evident
controlling the drone via voice commands is preferred. The SEK operatives primarily
utilize speech (through headsets) for communication (local and global). While gestures,
positioning, and other non-verbal communication methods are employed (i.e., patting
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and tapping) this is based on proximity (locality) and the situation. Furthermore, as
local communication is based on quick confirmations, it does not appear to impact the
overall goal. Thus, the drone will still have its core mission criteria that are independent
of these non-verbal interactions.

Once the drone has received its orders, it should begin to complete its tasks. How-
ever, it is currently not clear how the drone will communicate with the operator that it
has correctly interpreted the task. Consider the following task given to a drone: “go
forward to an open doorway, enter the room, scan the area, proceed into any additional
room on the right side.” It is possible that the drone correctly begins its task and enters
the first room but did not properly interpret the sequence afterward. If the drone is able
to confirm the sequence with the operator, proper navigation can be ensured (at least
on the command level). The operator should be able to properly confirm the sequence,
make any necessary changes, and then send a “confirm” command. The drone should
also be able to send confirmations once each individual command has been completed
if desired (i.e., passing through a waypoint).

In designing Natural User Interfaces (NUIs), research has shown that gesture-based
interfaces are less natural for communication than voice interfaces [Israel et al., 2009],
[Norman, 2010]. Tangilble User Interfaces (TUIs) are meant to translate intuitive ges-
tures in to appropriate physical output based on the behavior of the user, similar to
“pinching” a screen on a smart device to make an object smaller [Ishii, 2008]. How-
ever, these are typically “learned” behaviors that become “intuitive” after a prolonged
experience with similar UIs [Fitzmaurice et al., 2002]. Due to the high criticality of
missions and adherence to safety, any additional ambiguity related to NUI/TUI would
impact mission performance due to the technology level of these UIs. Audial and visual
interfaces can decrease ambiguity if properly designed which is why they will be the
emphasis. The first logical step of RQ1 was to determine which of these two channels,
audial, visual, or a combination, were preferred prior to users prior to a finalized, real-
world implementation. A user study was conducted evaluating preference, subjective
load, and qualitative factors for different sensory channels and UIs.

4.1.2 RQ2: Operator Cognitive Load
RQ2: What are the negative effects (response time delay, accuracy, situational aware-
ness) on the operator’s cognitive load during operation?

Automatic Speech Recognition (ASR) models are not perfect. The middleware
might not properly understand the commands of the user which greatly impacts the mis-
sion’s objectives due to a loss of time for correction and operator frustration/distraction.
A user study was required in which the user completes some simple tasks simultane-
ously as validating the drone’s confirmation. The concept here is that a drone could
mistakenly report incorrect information to the operator which could lead to mission
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failure while compromising the operator. For quantitative evaluation, several tests from
the cognitive science field have been employed to measure Situational Awareness (SA)
capacity (while under pressure, is the operator able to properly acknowledge objects,
hazards, enemies, and allies in the field?) and Response Time during events requiring a
high cognitive load and split-attention. The results and analysis will infer the user’s situ-
ational awareness and confirmation accuracy. The user will be asked to give commands
to the drone and listen for the confirmation while completing other tasks. Quantita-
tive results were calculated and compared while receiving audial confirmations (Voice-
Only), visual confirmation (Visual-Only), and a multimodal implementation (both Voice
and Visual confirmations).

4.2 Approach
Based on the literature and considerations stated in the previous sections, the goal was
to enable a drone to accept user commands, accurately follow the commands, and send
a confirmation to the user (for review). Prior to selecting the deliverable form for the
drone UI, qualitative (user preferences, perceived cognitive load) and quantitative (reac-
tion times, accuracy of memory) were needed to be derived from user study results. A
custom library/dictionary was created for ASR and validated in ROS. ROS then commu-
nicates these commands to the drone (SST) and the drone’s behavior follows correctly.
A UI for visual representations of the confirmation (text-based) was created in Unity
for the HTC Vive Pro but was also designed to work on any Virtual-Reality or Mixed-
Reality platform.

4.3 Process Engineering
RQ1 and RQ2 were approached simultaneously. The first aspect is to implement a
library/dictionary for Automated Speech Recognition (ASR) that can allow for com-
mands to be sent to a drone (either simulated or actually sent to a drone via ROS). Next,
a Speech-to-Text (STT) library was designed for machine translation into ROS for the
real-time validation and verification of commands. In the physical implementation, the
STT commands would be sent directly to the drone for demonstrating the simulation
results on a live drone.

For cognitive evaluation alone, it is might have been better to focus on a Text-to-
Speech (TTS) model. Utilizing a terminal, TTS commands could be manually typed
and sent to the user’s device to evaluate their hit/miss rate for confirming the drone’s
response. This would mitigate any errors that would be caused by utilizing ASR (control
variable). TTS commands would be sent to the user’s headset during a cognitive test.
For an MR solution, STT would allow for commands to be translated and sent to the
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device’s UI in the form of words or icons that represent words (i.e., a right arrow for
“right”). However, this approach would not have provided insights into the response
time of the speech recognizer since all communication would have taken place within
the VR simulator.

The NASA-TXL was used for measuring perceived cognitive load while asking
users to make a preference for receiving audial or visual confirmations. The SAGAT
was implemented to analyze the situational awareness of users. For quantitative tasks,
it was intended to use the Inquisit Laboratory program with the PVT test to get immedi-
ate (and accurate) results [Millisecond, 2019]. However, Unity was unable to interface
directly with Inquisit Laboratory so a simulated test was created within the virtual envi-
ronment (see Sec. 7.3.3). Both tests are regularly used by NASA to evaluate astronauts
during space missions and after Extravehicular Activities (EVAs). The original plan was
to evaluate three use cases for the experiment: one without any drone commands (base-
line), one with audial drone confirmations, and one with visual drone confirmations.
The goal is to have the users complete the tasks of the PVT (button click) while measur-
ing their response times and accuracy and documenting their accuracy for confirming
correct drone command sequences (hit). However, the final implementation consisted
of receiving confirmations from the drone based on visual-only (UI), voice-only, and a
multimodal implementation (visual and voice confirmations combined). The decision
to add a multimodal implementation came from considering that humans can receive
information on multiple sensory channels simultaneously and multimodal communica-
tions are more robust than single channel signals [Krakauer et al., 2010]. Furthermore,
using multimodal implementations has shown to reduce user cognitive load and improve
working memory for split-attention tasks [Mousavi et al., 1995].
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Chapter 5

Experiment Design

This Chapter describes that design of the ASR and simulation environment. The primary
theme of designing the experiments and environments has been high-fidelity model cre-
ation. Discrepancies between real-world implementation and virtual simulation arise
whenever user testing in virtual environments is not properly extrapolated to real-world
situations. Therefore, a high level of realism and immersion (a sense of ”being there”,
[Witmer and Slater, 1999]) was pursued. Another reason for pursuing highly realis-
tic (high-quality) environments is that users tend to make decisions in simulation that
more closely represents actual responses in the real-world [Fox et al., 2009]. Similarly,
highly-detailed environments are not required for immersion but they more accurately
reflect the reactive behavior of users [Haans and IJsselsteijn, 2012].

Unity was used to create high-fidelity user scenarios. Unity was chosen due to its
ability to create highly realistic environments and is commonly used in the creation of
high-end virtual reality simulators and video games. The Scenes (scenarios) for con-
ducting user testing a voice controlled drone could have been created entirely in Unity
with integration to the Google Cloud Platform (GCP). However, to create a realistic
prototype, ROS was used along with Unity to reflect communication delays and system
behavior for sending commands to an actual robot. It was posited that the results of a
Unity-only implementation would been vastly different than an implementation utilzing
communication to external devices and would provide merely negligible insights for
real applications.

The following sections include information regarding the speech recognizer design
including the corpus, language model, keyword spotting, and grammar. Furthermore,
ROS integration and virtual environment design are discussed.
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5.1 Automatic Speech Recognition
For a drone that can respond to voice commands, ASR is the most crucial applica-
tion in the project. ASR can be approached with “offline” HMMs or “online” with
Cloud-based, DL solutions. SEK operatives usually work in an offline mode in which
connectivity to the internet/Cloud is highly limited or unavailable. This decreases secu-
rity risks (frequency scanning) and potential failures due to network instability. Offline
methods are commonly employed by high-security and high-risk industries (military,
space, etc.). This limits the methods in which an ASR can be constructed as most ASR
technologies utilize the internet/Cloud (e.g., Alexa). There are primarily two options
that can be pursued including using an offline, HMM-based speech recognizer (like
Sphinx) or communication with a mobile embedded platform to act as a mobile GCS.
If the vocabulary/grammar is small enough then continuous-listening Sphinx-based ap-
proaches are optimal. For large vocabularies that require a large overhead of resources
(processing), embedded platforms are able to remotely run trained models capable of
properly classifying the vocabulary. However, embedded platforms require additional
energy, add weight and responsibilty to the operative (they must carry and protect the
device), and add a communication channel between the operative and the drone.

5.1.1 PocketSphinx
The dictionary and key phrases for commands can be relatively small. Furthermore,
utilizing an embedded platform as a mobile Ground Control Station (GCS) requires ad-
ditional load on the operator (recall up to 50kg of base tactical gear) and the embedded
platform needs to be protected. These factors lead to PocketSphinx being selected for
implementation. Furthermore, PocketSphinx is capable of real-time classification and
prediction in “continuous mode”. This means that the recognizer is constantly running.
A notable benefit that emerges from using continuous mode to overtrain a model is that
the accuracy of a single user is optimized. For the highest possible accuracy, many
hours of recordings can be saved from a single user. However, this effectively leads to
overfitting for a single individual and leads to poor results for other operators. This is
not necessarily an issue if one individual is responsible for all commands sent to the
drone, similar to how a Capsule Communication Officer (CAPCOM) is the only autho-
rized communicator for pilots and astronauts. However, classical scenarios consider the
case in which the CAPCOM is out of harm’s way (not in a combat scenario). In the
event the drone operator is unable to send commands to a drone, it would be necessary
for another operator to be able to be in control. Similarly, operatives might be in dif-
ficult locations and be able to directly observe the drone while having a desire to send
commands based on the current scenario. Continuous mode provides robustness when
considering multiple operators.
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5.1.1.1 Corpus & Language Model

The corpus (also known as a vocabulary) was designed based on potential commands
that could be given to the drone relative to desired movements with an emphasis on spa-
tial information. Temporal commands were also created though they appear to be less
useful. For simplicity, the traverse axis (z-axis) was not controllable by the operator
via voice commands for users (though it was still encoded for future use by operators).
Similarly, rotational movements can be controlled via adjusting the yaw but the roll and
pitch are not adjustable (or appropriate for most UAVs). Movements consist of two pri-
mary types: linear and angular. Linear movements include the drone moving forward,
backward, left, and right (relative to the operator). Similarly, angular movements are ini-
tialized via the keyword rotate followed by left or right. Next, available integer values
are dependent on the type of movement, i.e., five is relative to forward whereas ninety
is related to rotate right. Finally, measurement values were added to reduce ambiguity
for the drone and the user including meters, degrees, and seconds.

Commands were also created for system initialization (takeoff ), shutdown, landing,
pivot (rotate 180 degrees), and activate (activation word). Discussion regarding action
activation is in Sec. 6.1. The sentence structure is discussed more in Sec. 5.1.1.2
. Example sentences include Activate Forward Five Meters and Activate Rotate Right
Ninety Degrees.

Only acceptable sentences were implemented in the Language Model (LM). An
LM is a probability distribution over sequences of words. Sphinx Knowledge Base
Tool (Version 3) was used to build a set of lexical and language modeling files for the
PocketSphinx decoder. The ARPA format was utilized with a fixed discount mass of
0.5. The backoffs were computed using the ratio method and the model based on a
corpus of 79 sentences and 31 words. For optimization, all models were converted to
.bin to improve decoder initialization time and memory allocation, both of which are
critical for real-time embedded systems and critical mission performance.

5.1.1.2 Keyword Spotting & Grammar

The first solution was to replace words that had a similar phonetic structure with a syn-
onymical (and familiar) replacement word (i.e., instead of “turn” the word ”rotate” was
utilized). The second improvement was to increase the number of syllables for words
which decreases the overall ambiguity (i.e., instead of “no” the word “negative” was
utilized). Third, some words from the NATO phonetic alphabet were implemented (i.e.,
instead of “five” the phonetically similar “fife” was used which also lead to improved
results from non-primary English speakers). The fourth improvement was to use Key-
word Spotting (KWS). KWS allows for the model to emphasize discrete keywords (or
in this case, keyphrases) as acceptable inputs. Essentially, the model is seeking out ap-
propriate keyphrases during continuous operation. The fifth improvement was to utilize
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grammar within the model. Typically, ASR grammars are similar to spoken language,
i.e., 〈 subject 〉 - 〈 particle 〉 - 〈 verb 〉 - 〈 particle 〉... etc. However, grammar was utilized
to explicitly enforce only a particular pattern of words that could be accepted.

Effectively, this pattern is in the form of:
〈 activation 〉 - 〈 direction 〉 - 〈 integer 〉 - 〈 measurement 〉

An example of utilizing grammar is:
〈 rotate 〉 = rotate (right | left) 〈 number 〉 + (degrees);

Data was collected from two users over the course of two hours each. Initially,
the speech commands were poorly recognized, as was the ”confirmation” word. Com-
bining these different methods greatly increase the accuracy of the speech recognizer
from approximately 50% to 98% and from 30% to 95% for command recognition and
confirmation, respectively, for subsequent testing sessions. This data was calculated by
recording the total number of correct responses from the PocketSphinx terminal (i.e.,
19/20 correct confirmations within a session yields 95% accuracy). With proper train-
ing for pronunciation and timing, the results are 100% accurate (for the native speaking
designer).

5.2 ROS Integration
This section discusses the different phases of integration in the Robot Operating System
(ROS).

5.2.1 System Architecture
This section contains the general system architecture for the VR implementation. The
architecture can be seen in Fig. 5.1. Currently, both Unity SteamVR (for rendering the
HTC Vive) works poorly in Linux-based systems. C# is a native Windows language
that is used for a majority of the scripting in Unity and is directly integrated (“Unity-
integrated”). Similarly, ROS development has been primarily in Linux. While a “ROS
for Windows” development kit has been developed as a part of the Azure/Windows IoT
Platform, many of the ROS distributions (i.e., Kinetic) have limited functionality or
package support.

ROSBridge is a communication package for accessing and communicating with
ROS on machines that do not have access to ROS innately (i.e., Windows OS)
[Crick et al., 2017]. ROSBridge utilizes the WebSocket communication protocol and
was utilized to send/receive commands (small data) related to the drone. SocioIntel-
liGenesis (uni-)Verse (SIGVerse) was developed by the SocioIntelliGenesis group at
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National Institute of Informatics to communicate large data generated by VR applica-
tions in Unity to ROS environments [Inamura et al., 2011]. SIGVerse is based on the
previously widely-used Open Architecture Humanoid Robotics Platform (OpenHRP)
from the Advanced Institute of Science and Technology (AIST) [Hirukawa et al., 2003].
Both SIGVerse and OpenHRP are integrated software platforms for robot simulations
and software developments that utilize dynamic simulations via control programs and
with respect to the original robot models. These platforms incorporate the user directly.

Figure 5.1: System Architecture.

SIGVerse can use the BSON format to send and receive binary data. Effectively,
small data related to the robot’s joint states, commanded velocity, and speech com-
mands were sent over ROSBridge directly, while larger data (like image data containing
the depth or RGB features) are sent over SIGVerse. SIGVerse was used for the simu-
lated RGB and depth cameras (Intel RealSense) via the ROS RealSense package. Pock-
etSphinx was configured to work with BIN files. The approach was to make an efficient
communication structure that has a small memory footprint. Drones have limited pro-
cessing power and memory storage, and thus, optimizations are crucial to mission per-
formance. Without a proper system architecture, either the drone will not meet real-time
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deadlines or it will allocate too many of its resources to tasks that could be completed
by the host computer (an emulated GCS).

ROSBridge and SIGVerse have dedicated servers initialized on ROS with their own
launch files. The HMD sends raw voice data directly to the speech recognizer and to
the Unity environment. Unity sends the motion tracking, controller inputs, and voice
confirmation back to the HMD. Unity C# scripts are used to control the laser pointer,
teleportation, and other user components, as well as the robot components for move-
ment. The Python script is responsible for translating the voice commands into a format
that ROS and Unity can use with PocketSphinx.

5.3 Virtual Reality Environment
This section describes the design of the virtual reality environment and integration with
hardware for real-world implementation.

5.3.1 Environment Design
SEK operatives often conduct missions within narrow, multi-level indoor areas. An
open-source environment Asset package was utilized [Strong, 2019]. The lobby level
of a building was constructed to match real-world scenarios. There is a hallway along
with a stairwell and an additional room (not currently accessible by the user). Dynamic
lighting and shadow effects were added for increased realism and immersion. The en-
vironment (elevators, doors) can be interacted with as well. Furthermore, the “physi-
cal” environment (walls) were constructed to include physical properties (box colliders)
such that they are not simply silhouettes (meaning the drone can collide with the en-
vironment). Each item was scaled to match the height of the user within the virtual
environment. Environment images can be seen in the Appendix (Sec. 9.3). Fig. 9.3,
9.4, and 9.5 display examples of the created environment. The initial user scene can be
seen in Fig. 9.6 and the lobby interior can be seen in Fig. 9.7.

5.3.2 Operative Design
In an attempt to create a highly immersive environment meeting the criteria for a high-
fidelity model, operatives were constructed with realistic textures, movements (anima-
tions), weaponry, and attire. The operatives have been scaled to be approximately 1.9m
in height to match the height of the average SEK Operative. Tactical poses (crouch-
ing, idle, etc.) were modeled including gestures that imply the operative is actively
observing the environment. Weapons like the HK MP5A3 (Maschinenpistole 5) were
also modeled based on standard-issue SEK hardware. Materials for operatives were ac-
quired via SketchFab were converted to the AutoDesk .fbx format and edited in Blender
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to match the attire, pose, and joint behavior of SEK operatives. Open-source combat
animations were acquired from Adobe Mixamo and rigged to the character models in
Blender. Examples of the characters can be seen in Fig. 9.15 in Sec. 9.3.

5.3.3 Drone Design
A high-fidelity custom drone was also constructed as the SEK (and other stakeholders)
will be using custom drones in implementation (Fig. 9.16 in Sec. 9.3 shows various
views of the custom drone). Custom sound effects were added based on the location
of the drone from the user (motor loudness changes proportionally) and based on the
applied acceleration (motor speed changes proportionally). For additional realism, the
drone makes “sparks” whenever it interacts with the environment as well as a “destruc-
tion” parameter which makes it no longer operable (though this feature is was not used
in user testing as it adds uncontrolled variables and instantaneous reset is unrealistic).
An example of collision detection and response can be seen in Fig. 9.8 in Sec. 9.3.

5.3.4 Head-Mounted Display Design
Designing Heads-Up Displays (HUD) is not a trivial task. HUDs need to readily provide
important information without being distracting. Head-Mounted Displays (HMD), like
virtual reality headsets, are a subset of HUDs that have additional criteria for practical
usage. These criteria include the Interpupillary distance (IPD), binocular overlap, dis-
tance focusing, and resolution. The IPD varies between users but is generally adjustable
in high-end VR headsets. Distance focusing and resolution depend on Depth Cues and
the Field of View (FOV) of objects. Poorly designed UIs increase the rate at which
users acquire a nauseogenic ailment known as virtual reality sickness. VR sickness is
due to mismatches between the vestibular system and the visual data [Shah, 2018]. UI
elements that have a movement delay (lag) or ”choppy” movements rapidly cause dis-
comfort. All UI elements were designed with the specifications and behavior of the
HTC Vive Pro headset and Unity game engine.

5.3.4.1 UI Elements Color Selection

UI elements must be designed utilizing colors that are easily noticeable and distinguish-
able. Colors that are difficult to perceive go unnoticed. Schrödinger’s “ideal colors” are
colors that have a spectral reflectance of values at exactly 0 or 1 [Schrödinger, 1920].
Colors change based on a gradient making very few color candidates for the criteria.
Furthermore, the perception of these depends on the environmental conditions in which
they are viewed, with a wavelength of λ = 555 (often called “safety green”, the color
of cyclist jackets) as the most visible during the daytime.
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Unfortunately, simply making colors that meet the luminosity criteria is not suf-
ficient. Users have gained an “intuition” for the meaning of various colors based on
previous exposure (e.g., “green” means “go”, “red” means “stop”). Another aspect in
considering the user experience for viewing UIs considers “aesthetics,” as some colors
are considered unappealing or even repulsive. This point is more critical than intuition
alone can suggest, as every major company uses colors to influence purchases; from
colors that envoke desires to eat at a fast-food restaurant to the mandatory usage of
repulsive hues for tobacco products in some countries like Australia [Jalil et al., 2012].

With these trade-offs in mind, the colors for the UI elements (clickable buttons and
the waypoint goals) were designed to be green for the immediate task, yellow for the
next task, and red for the task has been completed. Additionally, the UI button was also
changed to black to prevent the user from interacting with a disabled button (see Sec.
7.3.3).

5.3.4.2 UI Elements Positioning

Three main factors were considered when positioning the UI elements. First, hav-
ing a smaller FOV can decrease VR sickness [Fernandes and Feiner, 2016]. Second,
UI elements need to track the HMD’s movement in real-time to prevent VR sickness
[Buker et al., 2012]. Third, elements should not occlude much of the user’s view, as the
user must be able to see threats, allies, and objects in the environment with the minimum
amount of visual information transmitted to the user [van der Horst, 2004].

The FOV was limited to 110◦ to prevent VR sickness (up to 134.48◦ possible with
the HTC Vive Pro) [Mizuchi and Inamura, 2018]. In user beta testing, two users were
able to wear the HMD for upwards of an hour, totally more than six hours each, without
experiencing VR sickness.

5.3.5 Hardware Integration
The Unity environment was build as a VR game on an HTC Vive Pro systems via
SteamVR and the Windows Mixed Reality plugin. Two Vive controllers are available
for interacting with the environment (firing the controller). Two Base Station 2.0 mod-
ules were used to ensure proper tracking and rendering of the environment for the user.
For interactable objects, a “laser pointer” was created with the ability to “fire” when
hitting a trigger button. The bottom trigger of the Vive Controller was chosen for this
task as it is the most intuitive for “shooting.” A teleportation environment was given to
the user to allow free movement throughout each scene for an added sense of realism.
Initially, only teleportation beckons were implemented as the general Unity community
(forum board) does not recommend allowing users too much freedom. Teleportation
beckons allow for users to travel only to pre-selected spaces with confined mobility.
The teleportation environment spans the entire map.
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5.4 Physical Environment
The physical environment for user testing was the RoboCup Laboratory at TU Berlin.
The room dimensions are approximately 4x6m2 and the userspace configured for the
HTC Vive is 2x2m2.
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Chapter 6

Proto-Typing

This Chapter includes additional design, testing, simulation, and integration aspects
taken over the course of the thesis. These components were useful and used to influence
the final design of the system and have be maintained for documentation purposes. This
includes speech command testing, Gazebo and RViz simulation, AR.Drone integration,
and some augmented/mixed reality aspect.

6.1 User Experience
On the user experience side, a few improvements needed to be made as well. For exam-
ple, the default voice from the pyttsx (Python Text-To-Speech) library was not optimally
intelligible for all users. A small survey and test were conducted using the keyphrases
designed in Sec. 5.1.1.1. A less robotic, female voice with British pronunciation (com-
monly learned throughout the EU and East Asia) was considered to be the most pleasant
and intelligible.

An activation phrase was also added to prevent the speech recognizer (and drone)
from responding to unintended commands. Operators might discuss (via headset) gen-
eral tactics and the drone might prematurely engage in operations (this happened empiri-
cally during testing). This can lead to mission failure and endanger the user. The current
activation word is ”activate” and must be used prior to any string of commands. This
ensures proper usage. Furthermore, utilizing a small dictionary (less than 200 words) in
continuous mode results in an issue in the calculated confidence values for the predic-
tor. Essentially, “recognized word”, even if incorrect, always return a confidence of one
(100%). By enforcing that confidence only applies to complete sentences paired with
the activation function, the actual confidence value is higher (less ambiguity). Sphinx-
based models can only accurately predict the confidence values for trained models and
for systems the do not use continuous mode (i.e., pre-recorded .wav files).
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6.2 Speech Command Testing
Upon completion of the PocketSphinx implementation, a ROS Node was created to
publish the results of the decoder (Recognizer). Additionally, a subscriber for the Rec-
ognizer node was created to recognize and confirm specific keyphrases and publishes
standard ROS messages and odometry/trajectory (Command). A launch file with the
default TurtleBot was used to test and evaluate speech commands in a low-fidelity envi-
ronment (low-poly Gazebo [Koenig and Howard, 2004]). This testing allowed for con-
firmation of the coordinate system, timing profiles (delay/jitter), and analysis of the
coordinate transformations.

6.3 Gazebo & RViz Simulation
Beginning with a low-resource environment for Gazebo, testing was conducted to en-
sure the proper behavior of the drones. Initially, acquiring proper operation with the
TurtleBot allowed for an extension for drones. TurtleBot is a common mobile simulated
robot used in ROS, Gazebo, and Morse for designing navigation and movement profiles
for simulated robots. Afterward, two drones were created: an AR.Drone 2.0 and a “Cus-
tom” drone. Parrot has an official SDK for AR. Drones in ROS (extending upon the core
Hector drone architecture). Effectively, both use the AR.Drone Autonomy library for
command translation (ROStopics). Prior to integrating the Speech Recognizer nodes, a
Teleoperation (teleop) node was created for usage with the keyboard and a PlayStation
3 controller via the ROS Joystick package and a simple Qt GUI [Patil et al., 2017]. Fur-
thermore, voice commands that were implemented for the simulated AR.Drone launch
file was also used on a physical AR.Drone 2.0 via an extension of the AR.Drone Au-
tonomy package, known as the TUM Simulator [Lugo and Zeil, 2013]. This setup was
later needed when integrating the Speech Recognizer in Unity via ROSBridge and SIG-
Verse for debugging (as it was not clear if publishers/subscribers are properly sending
commands to Unity). The validation environment’s system architecture varies from the
system architecture shown above and can be seen in Appendix D.

Upon integration with Unity via ROSBridge and SIGVerse, RViz was used to
map the environment correctly. Mapping was conducted via a Simultaneous Map-
ping and Localization (SLAM) approach by adding a virtual LiDAR scanner to the
AR.Drone model and simultaneously launching a teleop node while the drone was scan-
ning in Unity. The TUM Simulator also supports a Parallel Tracking and Mapping
algorithm for multi-agent drone systems, making it suitable for the InLaSeD project
[Klein and Murray, 2007]. The results of mapping were used in designing the environ-
mental space and test for collisions (i.e., walls and objects) for usage in the HTC Vive,
as users would be able to both teleport to a location (typically implying static positions)
and allow them to move within a set of boundaries without being able to warp through
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walls.

6.4 AR.Drone 2.0 Integration
Commands were sent to the drone based on the transform messages from the TUM Sim-
ulator that are compatible with the physical operation of the drone as well as a simulated
AR.Drone 2.0. This allowed for additional command testing that is impossible with the
TurtleBot (traversal commands like /takeoff ). It was discovered that linear movements
do not translate 1:1 as 1m of movement sent by the Twist messages was approximately
.5m on the simulated drone and even less on the physical drone. Unfortunately, it was
discovered that this discrepancy was non-linear and thus, an offset did not suffice for ad-
justing the traversed distance withing the virtual environment. For the physical drone,
some characteristics of the environment are responsible as the lift/drag created by the
drone influence the distance that it moves. Since there is no control system or filtering
process (i.e., a PID or Kalman filter), the linear movements sent the drone are static.
Effectively, the drone’s movement is highly susceptible to drift depending on the dis-
tance from the floor, operator, or object, as well as conditions like open windows or
doors. In future InLaSeD projects, special handling of the drone’s precise position must
be taken as some sensors (like GPS) will not be effective in updating the pose of the
drone as (i.e., GPS is ineffective in the indoor environments). An example of a physical
AR.Drone 2.0 being used with the HTC Vive can be seen in Fig. 6.1. Using a live drone
during testing can be dangerous and lead to personal injury, especially when the view of
the user is obstructed by an HMD. Therefore, a live drone was not used during the user
testing phase. The system architecture for the prototyping/physical design can be found
in Fig. 9.2 in Sec. 9.3.

6.5 Augmented & Mixed Reality
The front camera of the HTC Vive was also fed into the Unity environment to pro-
tect the user, as well as provide an augmented reality environment. The boundary was
necessary for one user as the immersive environment would captivate them and they
“believed they were really in the environment”, causing them to walk at a faster-than-
average speed. This is dangerous for both the operator and the hardware within the real
environment. However, allowing the user to be able to walk around as freely as possible
greatly improves the immersion and realism of the scenario and results in more authen-
tic user behavior [Jacob et al., 2008]. An example of the mixed-reality layout can be
seen in Fig. 6.2. Note that the boundaries only appear if the user is leaving the designed
userspace (Sec. 5.4).
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Figure 6.1: Image of Drone Integration with VR.

Figure 6.2: Image of the Virtual Environment with Boundaries for the Real Environ-
ment.
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Chapter 7

User Testing

This section details the aspects of user testing including an initial survey, goals, meth-
ods, scenarios (Scenes), and missions. The initial survey was conducted in order to find
the best approach to designing an optimal UI for users. Scenes are the VR simulation
scenarios containing different UIs for testing modalities. The missions validate the cri-
teria for evaluating the UI with quantitative and qualitative data. The testing methods
are meant to measure quantitative user performance metrics including response time,
accuracy, and completion speed. Qualitative results focus on the preference of the user
with respect to the type/number of modalities. The testing methods for evaluating user
performance and cognitive load include the NASA-TLX, an augmented PVT (A-PVT),
and the SAGAT. The goal of user testing is to find a model the balances between user
preference (qualitative) and user performance (quantitative).

7.1 Initial Survey
Prior to preparing the tests described in subsequent sections, nine users from the
Mensch-Maschine-Systeme (MMS, Human-Machine Systems) Group at the Technis-
che Universität Berlin were surveyed regarding their initial thoughts on the sufficient
and necessary sensory channels for interactive interfaces. They were first asked “which
sensory channels are sufficient/necessary for effective interactive interfaces?” includ-
ing visual, auditory, haptic, and multimodal channels in the general context of human-
machine systems (i.e., including autonomous vehicles). The first survey yielded the
following:

After a video demonstration of voice recognition systems for human-robot inter-
actions (chatbots, HUDs, and GUIs for autonomous vehicles), the question was asked
again. The second results show a tendency to favor multimodal integrations over single
sensory channels.

However, during testing, users demonstrated a preference for receiving voice con-
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Table 7.1: Initial Survey on Sufficient and Necessary Sensory Channels taken in the
MMS Department at TU Berlin.

Channel/Participant P01 P02 P03 P04 P05 P06 P07 P08 P09

Sound * * * * *
Visual
Haptic *

Multimodal * * *

Table 7.2: Follow-up Survey on Sufficient and Necessary Sensory Channels taken in the
MMS Department at TU Berlin.

Channel/Participant P01 P02 P03 P04 P05 P06 P07 P08 P09

Sound * *
Visual
Haptic

Multimodal * * * * * * *

firmations while considering the visual UI as supplemental. In all cases, users reported
a dislike for receiving only visual confirmations. Multimodal tests demonstrated users
would view the voice confirmation with more authority than the visual confirmation
(See Sec. 8.2). Based on the results of the survey and a discussion with researchers in
the MMS department, it was decided to add a multimodal implementation for testing
and scenario creation.

7.2 Missions
This section details the requirements for missions. Missions were created to give users
tasks within a high-fidelity environment. Defining the requirements and goals of the
missions allowed for properly designing Scenes. All missions are conducted in paral-
lel with the two primary missions having equal priority and importance (reaching the
goal and deactivating the target button). Users were instructed to focus on achieving
these goals. The sub-mission was an additional component for testing the situational
awareness and working memory of the users.

7.2.1 Mission: Reach the Goal via Voice Commands
Controlling the drone via voice commands by inexperienced users is challenging. In or-
der to evaluate the effectiveness of a voice-operated drone combined with user cognitive
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load, a simple navigation game was created. The navigation game provides guidance
and direction for deciding appropriate voice commands for meeting objectives. Three
waypoints were created in which the drone must navigate through in sequential order
for completion. The direction that the drone enters the waypoint does not matter though
there is an optimal path to pass through all waypoints efficiently.

The first/next immediate waypoint is green in color. The waypoint following the
“current waypoint” is initially yellow but changes to green when it is the current goal
for the drone (i.e. the previous waypoint has been completed). After passing through a
waypoint, the waypoint will turn red to demonstrate that it is disabled. The user must
utilize voice commands to send the drone through all checkpoints to complete the game
and end the scene.

7.2.2 Mission: Quickly Deactivate the “Target”
“Targets” are buttons built into the HMD that are initially green and become red (and
then black) upon activation. The button is a UI element with text that states “Shoot
on Green.” Activation is caused by a laser pointer highlighting the button and the user
“shooting” the interactable button with the Vive controller’s trigger. There is a random
timer between five and twenty seconds before the button can be reactivated. A random
timer was created such that users cannot predict when the button will trigger (based on
the PVT, see Sec. 7.3.3). The response time of deactivating the button was recorded and
used for the augmented PVT. Users can subjectively report how well they think they
performed when attempting the mission for qualitative analysis of both the NASA-TLX
and PVT.

7.2.3 Sub-Mission: Observe the Environment
In addition to the two primary missions, users were asked to observe the environment
during the test and attempt to remember various objects that they saw with as much
detail as possible. These details include the type and location of a particular object.
These objects include the number and positions of other operatives, the locations of the
waypoints, type and location of environmental effects, and any ”objects of interest” that
were notable. The objects of interest were robots that were added to the scene sim-
ply to see if the user noticed out-of-place objects while having other priorities. Users
were specifically told that observing the environment was secondary to the two previ-
ously mentioned missions. The motivation behind this sub-mission was to analyze the
situational awareness and working memory of the user under a high cognitive load in
complex scenes.
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7.3 Testing Methods
The section contains various user testing methods. The NASA-TLX was used to gain
insight into the subjective, self-reported evaluation of their personal performances. The
SAGAT was employed to evaluate the user’s situational awareness under high cognitive
load while also hoping to gain insight into the impacts on working memory. The PVT
and SRT were used to evaluate the response time of users for a task to acquire additional
information regarding the impacts cognitive load throughout the missions.

7.3.1 NASA - Task Load Index
The NASA-TLX was used to evaluate user load for each Scene. The NASA-TLX con-
sists of six questions:

• How mentally demanding was the task?

• How physically demanding was the task?

• How hurried or rushed was the pace of the task?

• How successful were you in accomplishing what you were asked to do?

• How hard did you have to work in order to accomplish your level of performance?

• How insecure, discouraged, irritated, stressed, and annoyed were you?

Users respond subjectively on a scale from 1 to 10 with 1 being very low and 10
being very high. Other than the self-reported ”successfulness,” it is desired to have
users respond with lower values. Lower values for these metrics imply users consciously
experienced a lower cognitive load during the task.

7.3.2 Situation Awareness Global Assessment Technique
The Situation Awareness Global Assessment Technique (SAGAT) was utilized to as-
sess user Situational Awareness (SA) throughout the testing. The concept is to analyze
whether users had varying SA depending on the sensory channel receiving the notifi-
cation for confirmation. The following questions are some examples that were asked
during the initial testing:

• How many operatives were in the scene?

• How many targets did you shoot?

• How many shots did you fire (with a range)?
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However, these questions did not yield meaningful information and were improved
to be more specific. For example, users were unaware of how many “shots” they made
with the laser pointer or even how many button activations they attempted. Therefore,
the questions were improved based on environmental effects. “Objects of Interest” were
added to the virtual environment including environmental effects (fire, water, and elec-
tricity) that replicate structural damage that can occur during missions (e.g., explosions,
broken water mains, and live wires. Images of the environmental effects can be found
in Sec. 9.3 “Out of Place” objects were added to each scene as well. These objects were
robots of a different type, size, location, and color. Each Object of Interest varied be-
tween different versions of the test but maintained a fixed location to prevent variation
that would lead to different results.

• How many operatives were in the scene?

• Where were the waypoints (coordinates)?

• What environmental effects (fire, water, etc.) were present?

• Where were the environmental effects (coordinates)?

• What and where was the “Out of Place” object? (object, coordinates)

7.3.3 Augmented Psychomotor Vigilance Task
The Psychomotor Vigilance Task (PVT) was simulated by having the user shoot tar-
gets in between sending/confirming voice commands. Since the PVT is usually as a
click test after a mission, the ”augmented” aspect here is that the PVT is conducted
during the mission to analyze the Response Time of the users while currently being im-
pacted by a high cognitive load. “The PVT Self Test has wide application to any group
that must operate remotely at high levels of alertness, such as first responders, Home-
land Security personnel, flight crews, special military operations, police, and firefight-
ers [Dinges, 2019b].” This makes the test ideal in evaluating subjects for high cognitive
load tasks in safety-critical environments. The response time of the user is measured and
compared between various sensory channels based on the scenes. Furthermore, when
cognitive load is at the highest due to the drone misinterpreting the user’s commands or
changes in the immediate environment, users would occasionally neglect to activate the
button.

7.4 Scenes
This section details the layout of the scenarios (Scenes) based on the needs of acheiv-
ing proper data for the previously mentioned tests. Three types of scenes were created
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for simulation including voice-only confirmations, visual-only confirmations, and multi-
modal confirmations. A demonstration scene was also created so that users could learn
how to navigate the environment. Users spent between five and ten minutes within the
demonstration environment to learn the basic controls of the drone, movements and ac-
tions for the user, and general layout. The demonstration environment did not contain
any waypoints, operatives, environmental elements, or objects of interest. The HMD
UI elements were designed to be highly visible, simplistic (non-distracting), and with
spatially small elements.

Throughout user testing, users were not reminded of tasks such as clicking the but-
ton or observing their environment. “The most important problem associated with this
technique is that halting the simulation and prompting the [pilot] for information con-
cerning particular aspects of the Situation is likely to disturb the very phenomena the
investigator wishes to observe” [Sarter and Woods, 1995]. While this led to two results
in which the users did not complete the PVT tasks, it was inherently better for observing
user behavior within the simulator.

7.4.1 Simulator: Voice-Only Confirmation
The Voice-Only simulator does not have any visual UI confirmations. Fig. 7.1 shows an
image of the user’s view with a marked environmental effect (electricity), operative, and
waypoint example. Fig. 7.2 shows the placement of the various objects for the SAGAT.
The placement was designed to require a minimum of five rotations and to have a goal
completion time of 210 seconds.

Figure 7.1: Example of User View with various objects.

32



Figure 7.2: Top-down view of the Voice-Only Simulator with markers.

7.4.2 Simulator: Visual-Only Confirmation
The Visual-Only simulator does not have any audial UI confirmations. Fig. 7.3 and
Fig. 7.4 show images of the user’s view with a marked Object of Interest (O.O.I.) (robot),
visual UI example, and button activation/deactive/busy/ready states. Fig. 7.5 shows
the placement of the various objects for the SAGAT. The placement was designed to
require minimum of three rotations (using the “backward” command) and to have a
goal completion time of 180 seconds.
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Figure 7.3: Example of User View with ”Ready” Buttons.

Figure 7.4: Example of User View with ”Busy” Buttons.

7.4.3 Simulator: Multimodal Confirmation
The Multimodal simulator has both visual and audial UI confirmations. Fig. 7.1 shows
an image of the user’s view with a marked environmental effect (electricity), operative,
and waypoint example. Fig. 7.6 shows the placement of the various objects for the
SAGAT. The placement was designed to require minimum of five rotations and to have
a goal completion time of 240 seconds.

Users were given an simplified version of the map with coordinates to place marker
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Figure 7.5: Top-down view of the Visual-Only Simulator with markers.

Figure 7.6: Top-down view of the Multimodal Simulator with markers.

positions during their User Survey (Fig. 7.7). The full user survey can be found in
Sec. 9.3 in the Appendix.
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Figure 7.7: Example of Empty Coordinate Map for User Survey.
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Chapter 8

Evaluation

This Chapter describes the results of the three primary tests (NASA-TLX, A-PVT, and
SAGAT) along with a comparison of the quantitative and qualitative results of the users.
This is followed by a discussion regarding additional insights that arrived during testing
that will be useful for future designs and implementation.

8.1 Results
There are six subsections for results. The first three are the direct results of the pro-
posed tests. The fourth subsection attempts to determine how accurate users were at
self-reporting to evaluate the importance of subjective qualities in the final implementa-
tion. With respect to meeting functional requirements, user preferences are often consid-
ered quality requirements or non-functional requirements as they are more challenging
to validate scientifically and can vary between users. However, in the case of UIs for
mixed human-robot systems, the results indicate that proper system behavior and ulti-
mately, mission success, will be influenced by user preferences. The fifth subsection
investigates whether or not trends can be derived based on the scoring results over time.
Finally, the sixth results section describes the overall scoring results and is used for
recommending the modality approach for future implementations.

8.1.1 NASA-TLX Results
This section lists the results of the Self-Reporting Test (SRT) of the NASA-TLX. Fig. 8.1
details the Voice-Only Simulation, Fig. 8.2 details the Visual-Only Simulation, and
Fig. 8.3 details the results of the Multimodal Simulation. The median values are also
displayed for each user to provide insights in the general feelings toward the metric. A
total of six questions were asked (Sec. 7.3.1).

37



Figure 8.1: Results of Voice-Only Simulation.

Figure 8.2: Results of Visual-Only Simulation.
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Figure 8.3: Results of Multimodal Simulation.
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8.1.2 A-PVT Results
This section contains the results for the A-PVT. Sec. 9.3 contains the recorded values
for the response time and total success button deactivations (hit). Fig. 8.4 shows the
final scoring with the defined metrics. Fig. 9.17 shows the results of the pre-PVT test
though they were not used in the final analysis (please see Sec. 9.3 for details).

Since the order of the scene player impacts user performance, an Order Factor was
created. The Order Factor is the penalty for preventing bias related to increased expe-
rience and exposure within simulation environments. The deduction is 5% per Scene
played. Table 8.1 shows the number of scenes that occurred in a particular order (chosen
randomly) along with the factor for being in that order.

Table 8.1: Order of Occurence and Order Factor for Scenes.

Scene First Second Third

Voice 3 2 1
Visual 1 2 3

Multimodal 2 2 2

Order Factor 1.00 0.95 0.90

In order to prevent other potential biasing in the results, several additional metrics
were created including the Miss Factor, Time Factor, and Penalty Rate. The Time Fac-
tor is a linear decrease in potential score based on the Response Time (RT) of the user.
Essentially, for every second that the A-PVT button is active, the maximum score de-
creases until 10 seconds pass and the activation is considered a miss. As a miss is highly
detrimental to the ”Mission: Quickly Deactivate the Target” (Sec. 7.2.2), it is weighted
more heavily. Table 8.2 shows the scaling chart used to calculate the miss and time fac-
tors (though the exact proportion was used in the final analysis, e.g., a weight median
response time has a time factor of 0.77).

Deviations from the Target Goal Time also occur a penalty based on the timings
created in Sec. 7.4. The Penalty Rate (Pen Rate) is based on the difference between the
Goal Completion Time of a scene and the user’s Actual Completion Time. The Penalty
Rates have been derived based on the proportion of the time that passes the Target Goal
Time, i.e., since the Visual-Only Scene was created to take less time than the Multimodal
Scene, the time to occur a penalty should be less (set at 5% per 30 seconds and scaled
to 1% per 5 seconds). The scaling is based on a 10% decrease for each fixed 33% of
time exceeded (i.e., the goal time of completing the Visual-Only Scene is three minutes
and if the user requires four minutes to complete the scene their score drops 10%). The
Penalty Rates for the scenes can be seen in Table 8.3.

Fig. 8.4 shows the final scoring with the metrics and penalties for each user and
scene. A hit is only counted if the button is deactivated within ten seconds of becoming
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Table 8.2: A-PVT: Miss and Hit Factors based on Response Time and Weighted Hit
Percentage.

Wgt Hit % Miss Factor Response Time Time Factor

1.00 1.00 0.00 1.00
0.90 0.85 1.00 0.90
0.80 0.70 2.00 0.80
0.70 0.55 3.00 0.70
0.60 0.40 4.00 0.60
0.50 0.25 5.00 0.50
0.40 0.10 6.00 0.40
0.30 fail 7.00 0.30

- - 8.00 0.20
- - 9.00 0.10
- - 10.00 0.01

Table 8.3: A-PVT: Penalty Rates based on Time Differences between Average Comple-
tion Times and Target Goal Times.

Scene Goal Time [s] Average Time [s] Time Difference [s] Penalty Rate

Voice 210 375 -165 1% / 7sec
Visual 180 408 -228 1% / 6sec

Multimodal 240 401 -161 1% / 8sec

active. The count value is the number of times the button was considered active during
a scene. The Weighted Median Response Time (Wgt Med RT) is an adjusted value that
omits the response time from misses to prevent skewing. The Time Factor is based
on a linear deduction of points related to the optimal response time (0 seconds). The
Weighted Hit % (Wgt Hit %) is the value in which misses greater than 20 seconds
(RT > 20) add an additional miss value to the count. This value was chosen as the
maximum random timer value is 20 seconds. The Penalty Count (Pen Count) is the
number of Pen Rate occurrences based on the total time exceeded. The Penalty Factor
(Pen Factor) is the normalized value ((100 − Pencount)/100) to keep the factor value
bounded between 0 and 1. The Score is the average of the four Factors to normalize the
final value between 0 and 1. Scores can have a maximum value of 1 (good) with values
approaching zero indicating a poor score.
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Figure 8.4: A-PVT Results: Metrics and Scoring.

8.1.3 SAGAT Results
This section contains the data values and analysis for the SAGAT. Fig. 9.21, Fig. 9.23,
and Fig. 9.24 show user results for reporting the Number and Position of Operatives,
Environmental Elements, and Objects of Interest (O.O.I.), in each scene, respectively.
Fig. 9.22 shows the results of users recalling the locations of the Waypoints. Fig. 8.5
shows the final Score based on a normalized Base Score multiplied with the Order Fac-
tor (same as the previous Order Factor). The Base Score is calculated based on the
following formula:

Base =
2× Σ(Corrfind) + Σ(Corrpos)

k

where Corrfind (Corr Find %)is the proportion of objects correctly found, Corrpos
(Corr Pos %) is the proportion of locations correctly recalled, and k is the total number
of values and is used to normalize value of the final results between 0 and 1. Correctly
identifying the number of operatives, environmental effects, and O.O.I. were given dou-
ble the weight as they are critically more important to discover (and report). Knowing
the precise location is also beneficial for reporting but is usually held with lower regard
than what was seen. Furthermore, this scoring mitigates ”double punishment” as users
that were unable to detect certain field objects are not going to be able to report their
locations either.
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Figure 8.5: SAGAT Results: Metrics and Scoring.

8.1.4 Ranking Results and Comparison
The motivation behind this section is to evaluate whether or not the NASA-TXL was an
effective measure for subjective responses in self-report. This is crucial when attempting
to determine what weight or priority user preference should be regarding when design-
ing the final system. Previously, all of the Scores were normalized to provide a means
of comparison between the results of tests, modalities, and users. Fig. fig:SA06c shows
the three scores for the A-PVT, SAGAT, and NASA-TXL SRT. The values of the SRT
(between 1 and 10) have been normalized to be between 0 and 1. The average scores
(Ave Score) between the Score A-PVT and Score SAGAT have be calculated. The result
is subtracted from the TXL-SRT score that users self-reported to acquire the difference
(Diff SRT). Values close to zero imply that the user was relatively good at self-reporting,
as can be seen with 4/6 of the users being within, on average, 10% of their estimated
score. Negative values indicate that the user over-estimated their performance whereas
positive values indicate users under-estimated their performance.

Fig. 8.7) demonstrates another metric calculated for estimating the accuracy of the
NASA-TLX with respect to Rank. Based on the users’ TXLs (Rank TXL), the users were
ranked based on the values reported (with 1 meaning best performance). These values
were then compared to their individual average rankings (Ave Rank) for the Score A-PVT
and Score SAGAT. The Rank TXL was then subjected from the Ave Rank (Ave - TXL).
This value is used as a Step (from mathematics notation) to demonstrate within how
many steps the rank of the user was from their reported NASA-TLX values. Overall,
users were able to correctly assess their own performance quite well (except for one user
that over-estimated their performance. Fig. 8.8 shows that 22% of self-reported ranks
were exactly correct, with 56% of results being within one place of comparable ranks.
11% of results are within two steps and the final 11% are within four steps (both from
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Figure 8.6: Cumulative Scoring and Difference.

the same user).
As a result, it appears that users are quite adept at reporting their own performance

based on subjective cognitive load. Therefore, user preference should be taken into
account and accommodated when designing UIs for mixed human-robot teams.
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Figure 8.7: Comparing Average Scores with Self-Reported Scores.

Figure 8.8: Relative Accuracy of User Self-Reporting.

8.1.5 Trend Analysis
This section seeks to investigate trends between different modalities with respect to the
A-PVT and SAGAT scores overtime. The scores used are the same as previously derived
in Sec. 8.1.2 and Sec. 8.1.3. Fig. 8.9

For the A-PVT results over time (Fig. 8.9), an exponential trendline shows Multi-
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modal R-Squared score is approximately is approximately 0.85. Linear trendlines show
that Visual-Only R-Squared score is approximately 0.39 and the Voice-Only R-Squared
score is approximately 0.05. These are weak values and do not confidently predict
trends (though the general can be seen graphically).

Figure 8.9: A-PVT Score versus Total Time.
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For the SAGAT results over time (Fig. 8.10), an exponential trendline shows Mul-
timodal R-Squared score is approximately 0.89 and the Visual-Only R-Squared score
is 0.85. A linear trendline was used for the Voice-Only R-Squared score resulting in a
value of 0.41 (not very reliable).

Figure 8.10: SAGAT Score versus Total Time.
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Finally, both the A-PVT (quantitative) and SAGAT (qualitative) results are com-
pared (Fig. 8.9). Using an exponential trendline, the Multimodal R-Squared score is
approximately 0.90 and the Visual-Only R-Squared score is approximately 0.88. Both
of these values are considered accurate and indicate clear trends in performance over
time when both quantitative and qualitative results are compared. A linear trendline
shows that the Voice-Only R-Squared score is again only approximately 0.05, making
the results unreliable.

Figure 8.11: Average Score versus Total Time.
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8.1.6 Scoring Results
With the previous scores/results considered, enough information is available to make
future design decisions. Table 8.4 lists the overall scores for each model compared
with the users’ reported preference after the experiment. The recommendation is to use
a multimodal approach to UI design in future implementations. Furthermore, it was
found that there are distinguishable trends in the multimodal implementation that were
not as well defined in the voice-only and visual-only models.

Table 8.4: Scoring results for NASA-TLX, A-PVT, and SAGAT.

Test / Scene Voice Visual Multimodal

USER-SRT 2/6 0/6 4/6

NASA-TLX 0.77 0.83 0.73

A-PVT 0.32 0.30 0.43

SAGAT 0.74 0.75 0.70

Average 0.61 0.62 0.62
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8.2 Discussions
While six users were enough to derive some meaningful insights, results, and trends,
having more users to test the scenes would have likely been better. Therefore, having
six users is considered a limitation. Furthermore, it was hoped to be able to find more
insights on the working memory of users but these aspects are not explicit and can only
be assumed (i.e., from Fig.8.10 we might make an assumption that the working memory
of the user declines over time leading to lower SAGAT scores). However, making such
assumptions can be detrimental and therefore, working memory results have not been
further explored at this time [Lavie et al., 2004].

For the multimodal implementation, all six users gave higher precedence to the audi-
tory confirmation than the visual confirmation. Whenever a command was not properly
understood by the speech recognizer, all users would repeat the command even if the
visual UI correctly displayed the command. To investigate this, modality and contiguity
aspects of CTL were revisited. In multimodal applications, a modality effect occurs in
which information communicated auditorily leads to a reduced cognitive load and better
learning rate over visually (text) based information sources [Moreno and Mayer, 1999].

Unintentionally, the visual UI would display the text of the visual confirmation
slightly after the voice confirmation due to unforeseen lag in Unity rendering text for
UI elements. During scene creation, this was not noticeable and it was not anticipated
to have any impact on user testing. Apparently, crossmodal information that falls out-
side of a reaction time window will lead to the information not properly being fused in
a statistically optimal (Bayesian) manner [Colonius and Diederich, 2010]. Especially
in complex scenes, the modality that is registered first will be prioritized, in this case,
auditory confirmation [van Wanrooij et al., 2009], [Murai and Yotsumoto, 2018]. This
insight demonstrates that future multimodal implementations must report real-time in-
formation to the user’s UIs simultaneously or the signals will not be integrated resulting
in the leading signal taking precedence for user-level decision-making processes.

Robotic systems can also benefit from multimodal input signals. Analyzing several
cues simultaneously, like speech and gestures, would allow for the system to respond
with a higher reliability in interpretation [Karpov and Yusupov, 2018]. If the drone re-
ceives multiple valid command hypotheses or if sensors have noise, operations with
higher safety levels and the channel with the higher quality signal should be prioritized
[Rossi et al., 2013]. This allows the drone to behave optimally in various situations like
the operative engaging a target or the environment has environmental effects. Essen-
tially, multimodal inputs are necessary for both optimizing the behavior of both human
agents and adaptive, intelligent agents.

Outside of the research questions proposed in this Master’s Thesis, a wealth of ad-
ditional insights arrived from user testing. One of the most notable is the impact of
parallax on users at a distance from the drone. If the user was more than approximately
three meters away and off-angled (between 90◦ and 180◦), the users could not reliably
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align the drone to fly through the waypoints. To obtain reliable alignment, users needed
to be orthogonal and parallel to one side of the drone. A virtual RGB camera and a
depth camera were added to the drone for the observer but not for the user. Future
HMDs should include a camera feed from the drone to reduce parallax. A camera feed
would also be beneficial in events in which the operator cannot see the drone (visual
obstruction) or if their attention is elsewhere and they are not looking at the drone.

While the environment was reported as realistic and immersive, all users demon-
strated the same behavior with regards to their personal safety distance from the drone.
Users held no minimum safety distance from the virtual drone, often colliding directly
with the drone, subconsciously knowing they were not in any danger of injury. There-
fore, even highly immersive virtual simulations cannot (currently) provide all of the
proper insights into safety-critical missions [Haans, 2014]. Had the users viewed the
drone as a dangerous device, they may have behaved differently which would have im-
pacted their testing scores. Users need immersive virtual environments in which they
can move around freely in the real-world and view objects in the virtual environment as
they would in real-life for accurate emulation [Caporusso et al., 2020].
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Chapter 9

Conclusion and Future Work

9.1 Summary
In Sec. 1 and Sec. 2, the topic and motivation for this Master’s Thesis were described.
Sec. 3 defined some important concepts and related work. Sec. 4 detailed the objectives
and research questions. Sec. 5 covered the design and set up for the experiment followed
by Sec. 6 which contains information used during the design and prototyping phase. In
Sec. 7, the missions, scenes, and user tests were discussed. Sec. 8 provided results based
on the data collected during the user testing phase.

9.2 Conclusion
The original goal was to design a UI for voice-controlled drones that would improve
user cognitive load and optimize agent behavior for mixed human-robot teams. Through
user testing, insights regarding the cognitive load including situational awareness and
performance (response time) were acquired in complex virtual environments. A speech
recognizer was created that was able to correctly control a drone and only upon explicit
activation to prevent unintended behaviors. Furthermore, a specialized library was cre-
ated to improve voice recognition and data communication was optimized to prevent
the drone from using additional resources (memory, power consumption). In this sense,
the robotic agent (drone) was optimized working with users based on speech commands.
However, the ASR was not perfectly accurate which lead to increase mission completion
time and cognitive load. Furthermore, it was discovered that implementations should
have low-latency and should consider that wireless networks are not available or de-
sirable (robustness, safety). Multimodal UI implementations should have signals and
responses that are synchronized for optimal integration which leads to a reduction in
user cognitive load.

From this Master’s Thesis, an improved UI for indoor reconnaissance drones can
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be created. It turns out that designing drones (or other agents) for mixed human-robot
teams is not a trivial task and requires careful design at each layer. Aspects as minor as
selecting the wrong color for the HMD UI elements or selecting a particular word within
a vocabulary (i.e, “turn” instead of “rotate”) can lead to vastly different results. Con-
straints and functional requirements such as offline communications completely change
the final implementation and performance of the system. This demonstrates that system
engineering and requirements engineering are absolutely crucial and may require a large
time investment and many iterations in order to get an effective system that meets the
goals of the use case.

9.3 Future Work
At this time, general guidelines can be created for designing UIs in HMDs for voice-
controlled robots. In the future, the multimodal UI will be improved and optimized
within the created Unity environments. Ideally, additional user testing would be taken in
the same form as followed in this Master’s Thesis for additional iterations to gain more
insights and improvements. A proposed UI is shown in Fig. 9.1 to include indications
on which goals have been completed as well as using icons instead of text for visual
confirmations. It is posited that icons would reduce cognitive load further by quickly
showing the user the directionality of the voice command instead of requiring the user
to read longer texts. Users could also use the Vive controller to disable targets in the
field and the response time could be calculated to imply some form of personal safety
whenever enemies are present (where delays in response time can be fatal).

Figure 9.1: An example of a proposed multimodal UI for future implementations.

Furthermore, it is intended to apply this framework to multi-agent systems consist-
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ing of multiple drones or mixed robotic teams (drones and ground robots) where the
agents have different tasks. This can easily be done by giving each agent its own activa-
tion word. It would be interesting to find how adding additional robots to the team im-
pacts the cognitive load and performance of the field operator. Agents will need to be re-
sponsible for some of their own decision-making processes, especially in environments
in which the user is not able to give valid/safe commands confidently. It is intended to
use the RHBP from DAI-Labor for the decision making processes [Hrabia et al., 2017].
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Appendices

Appendix A: Abbreviations
AIST Advanced Institute of Science and Technology
ASR Automatic Speech Recognition
CAPCOM Capsule Communication Officer
CLT Cognitive Load Theory
CNN Convolutional Neural Network
DL Deep-Learning
EVA Extravehicular activity
FOV Field of View
GCS Ground Control Station
HMD Head-Mounted Display
HMM Hidden Markov Model
HUD Heads-Up Display
InLaSeD Indoor-Lageerkundung für Spezialeinheiten mit Drohnen

(Indoor Situation Survey for Special Units with Drones)
IPD Interpupillary distance
ISS International Space Station
NASA-TLX NASA-Task Load Index
NEEMO NASA Extreme Environment Mission Operation
NATO North Atlantic Treaty Organization
OpenHRP Open Architecture Humanoid Robotics Platform
OSPAN Operation Span Task
PVT Psychomotor Vigilance Task
QoL Quality of Life
ROS Robot Operating System
RNN Recurrent Neural Network
SA Situational Awareness
SAGAT Situation Awareness Global Assessment Technique
SEK Spezialeinsatzkommandos
SIGVerse SocioIntelliGenesis (Uni-)Verse
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UAV Unmanned Aerial Vehicles
UI User Interface
USMC United States Marine Corp
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Appendix B: Specifications
This section contains the versions and models for the primary specifications.

Table 9.1: Host Machine Parameters.

Component Version
Device Acer Nitro AN515-52
OS Windows 10 Home 10.0.18362
CPU i5-8300H @ 2.39 GHz (8x)
Instruction Set x86-64 - INT64
Memory 8192MB RAM
Graphics NVIDIA GeForce GTX 1050
Graphics2 Intel UHD Graphix 630 Adapter
DirectX DirectX12

Table 9.2: Host Machine Software.

Program Version
Blender 2.80
Unity 2019.2.0f
Mixamo Browser (2019)
SteamVR 1.7.15
DirectX DirectX12
Visual Studio VS2015 Pro
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Table 9.3: Virtual Machine Parameters.

Component Version
VM Client VMware Workstation 15 Player
OS Ubuntu 16.04 LTS
CPU vCPU - ESXi (2x)
Instruction Set x86-64 - AMD64
Memory 6276MB RAM (Memory Swapping)
Graphics NVIDIA (Passthrough/Accelerate 3D graphics)
Graphics Memory 2000MB

Table 9.4: Virtual Machine Software.

Program Version
ROS Kinetic Kame
SigVerse 3.0
PocketSphinx Stack 5 pre-alpha
Gazebo 7.15.0 (Prototyping Only)

Table 9.5: Additional Hardware.

Device Model/Version
HTC Vive Pro 99HANW00100
Headset Sony MDR-ZX220BT (Prototyping Only)
PS3 Controller Sony CECHZC2U (Prototyping Only)
Drone Parrot AR.Drone 2.0 (v2.4.8) (Prototyping Only)
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Appendix C: Validation/Physical System Architecture

Figure 9.2: Validation/Physical System Architecture (Prototyping Only).
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Appendix D: Unity Models

Figure 9.3: Hallway (Unity)

Figure 9.4: Stairwell (Unity)

Figure 9.5: Control Room (Unity)
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Figure 9.6: Initial User Scene (Unity)

Figure 9.7: Lobby Interior (Unity)

Figure 9.8: Drone with Spark Effects (Unity)

67



Appendix D-2: Environmental Effects

Figure 9.9: Environmental Effect: Electricity

Figure 9.10: Environmental Effect: Water

Figure 9.11: Environmental Effect: Fire
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Appendix D-3: Objects of Interest

Figure 9.12: Objects of Interest: robotSphere

Figure 9.13: Objects of Interest: HSK

Figure 9.14: Objects of Interest: Mech
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Appendix D-4: Operator Models

Figure 9.15: Images of an Operative (model) with increasing functionality (left to right,
top to bottom).
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Appendix D-5: Drone Models

Figure 9.16: Images of Custom Drone from various perspectives (from left to right, top
to bottom: side view, top view, front view, off-angled view.
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Appendix F: A-PVT Data Analysis
This section contains the data values and analysis for the A-PVT. Fig. 9.18, Fig 9.19, and
Fig 9.20 show the response time and total success button deactivations (hit). Fig. 9.17
shows the results of the pre-PVT test.

The PVT test has a SRT component in which users report on four subjective met-
rics including their current Mental Awareness, Physical Energy, Stress, and Tiredness.
While the A-PVT did not require analysis of these values, they were collected and have
been provided for completeness. Evaluating subjective reports from the SRT requires
the test be taken several times with the same user to evaluate how changes in their re-
ported values correlates with their performance on the button click test. As user’s for
this study only have one session, it is not possible to derive meaningful results at this
time.
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Figure 9.17: Results of PVT pre-test.

Figure 9.18: TS001 and TS002 Response Times and Accuracy.
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Figure 9.19: TS003 and TS004 Response Times and Accuracy.

Figure 9.20: TS005 and TS006 Response Times and Accuracy.
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Appendix G: SAGAT Data Analysis
This section contains the data values and analysis for the SAGAT. Fig. 9.21, Fig. 9.23,
and Fig. 9.24 show user results for reporting the Number and Position of Operatives,
Environmental Elements, and Objects of Interest (O.O.I.), in each scene, respectively.
Fig. 9.22 shows the results of users recalling the locations of the Waypoints.

Figure 9.21: SAGAT Results: Number and Position of Operatives.
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Figure 9.22: SAGAT Results: Location of Waypoints.
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Figure 9.23: SAGAT Results: Number and Position of Environmental Elements.
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Figure 9.24: SAGAT Results: Number and Position of Objects of Interest.
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Appendix H: User Survey

Figure 9.25: User Test Form - Page 1.
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Figure 9.26: User Test Form - Page 2.
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Figure 9.27: User Test Form - Page 3.
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Figure 9.28: User Test Form - Page 4.
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Figure 9.29: User Test Form - Page 5.
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Figure 9.30: User Test Form - Page 6.

84



Figure 9.31: User Test Form - Page 7.
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Figure 9.32: User Test Form - Page 8.
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Figure 9.33: User Test Form - Page 9.
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Figure 9.34: User Test Form - Page 10.
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