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I Abstract

In this thesis we look at quantum algorithms for computing binary elliptic curve
discrete logarithms. Elliptic curve cryptography relies on the hardness of the
elliptic curve discrete logarithm, but quantum computers can break it in poly-
nomial time. We give quantum algorithms for binary finite field operations, with
the purpose of giving concrete estimates of the hardness of the binary elliptic
curve discrete logarithm problem on quantum computers. These algorithms in-
clude translating a recent optimized classical inversion algorithm to a quantum
setting, resulting in a low number of qubits required for division. They also in-
clude a new Karatsuba-based multiplication algorithm, which is optimal (for any
Karatsuba-based multiplication algorithm) in space and number of Toffoli gates.

The number of logical qubits required for solving the binary elliptic curve
discrete logarithm is reduced to 7n+blog(n)c+9. This is at least 2n qubits lower
than comparable previous work. The number of Toffoli gates required is 48n3 +
8nlog(3)+1 + 352n2 log(n) + 512n2 + O(nlog(3)) and the number of CNOT gates
O(n3) with exact numbers given in this thesis for elliptic curves currently used
for cryptography. While the Toffoli and CNOT gate count is high, the number
of qubits required is minimal for the given division algorithm and coordinate
system.
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1 Introduction

Current cryptographic systems used on the internet rely on Diffie-Hellman key
exchange, a way to exchange secret keys over a public channel. One of the most
common Diffie-Hellman variants uses operations on elliptic curves (ECC). The
key-exchange schemes rely on problems that are hard to solve with a classical
computer. However, a quantum computer has advantages against these problems
and can solve them exponentially faster.

Real quantum computers are becoming increasingly powerful. While still be-
ing relatively small compared to classical computers, a time will soon (in the
next few decades) come where quantum computers can threaten computer se-
curity. This thesis looks at a specific instance of a currently used cryptographic
system and makes estimates how large a quantum computer would have to be
to quickly break it.

1.1 Previous work

When looking at previous work, we compare the resources for elliptic curve
operations against both a paper by Amento, Rötteler and Steinwandt [1] which
looks at the same cryptographic system (binary ECC) and a paper by Rötteler,
Naehrig, Svore and Lauter [20] which looks at a different case (prime field ECC).
Both make optimizations in a single area, in both cases division, as well as
providing an overview of techniques. These papers differ in their cost metrics:
the paper on binary ECC uses depth (runtime) as its singular metric, making
sacrifices in the space that this thesis is not making. The second paper, on prime
field ECC, uses space and gate count as its primary metrics, which is the same as
this thesis, further detailed in Section 3.5. As such, we are using some strategies
which that paper also uses, modifying and improving where possible for the
specific case of binary ECC.

Binary ECC uses, among other steps, a multiplication of binary polynomials.
For this specific part, we base our space-efficient variant on classic space-efficient
algorithms. Roche [19] describes a classic time-efficient multiplier for polynomials
in O(log n) space, later expanded by Cheng [5] to also work for integers. With
this as a basis we can implement a quantum Karatsuba-based multiplier with as
little space as possible.

Another important step is division of binary polynomials. The division algo-
rithm in [20] uses a method based on greatest common divisor algorithms, which
is common for division in finite fields. A recent (2019) paper by Bernstein and
Yang [4] shows how to do finite field division in constant classical time, which
makes it very suitable for translation to quantum computing. The division in
[1] uses exponentiation and multiplication to get the inverse finite field element,
using a strategy from Itoh and Tsuji from 1988 [11] which we will also show how
to implement on quantum computers.

1.2 Our contributions

This thesis makes 3 primary contributions:
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– A complete overview of quantum point addition on binary elliptic curves
with a concrete count of space and time: 7n+blog(n)c+9 qubits and 48n3 +
8nlog(3)+1 + 352n2 log(n) + 512n2 +O(nlog(3)) Toffoli gates.

– An improved Karatsuba multiplier. Previous instances of binary quantum
Karatsuba multiplication traded space for time or time for space. The al-
gorithm in this thesis has minimal space and the same number of quantum
bit multiplications (Toffoli gates) as bit multiplications in classical Karat-
suba. The algorithm can use some refining in the number of CNOT gates,
but is optimal for our purposes. I have made this contribution available as
a standalone paper, which is currently available on arXiv preprint [25].

– A concrete comparison of Fermat’s little theorem-based division algorithms
versus extended greatest common divisor-based algorithms (also known as
Euclid’s algorithm). This includes a quantum implementation of Bernstein
and Yang’s recent gcd-based variant that runs in constant, low classical time.

1.3 Overview

Sections 2 and 3 consist of background on elliptic curves and quantum com-
puting respectively, while clarifying notation and goals. Section 4 details Shor’s
algorithm, the general quantum algorithm we use to solve discrete logarithm
problems. Section 5 introduces basic operations like addition and constant mul-
tiplication. Section 6 details a binary multiplication algorithm which is used in
Section 7 to achieve binary finite field multiplication with no extra space and
minimal time. Section 8 details and compares two methods to do division: a new
algorithm using extended greatest common divisor and an algorithm using Fer-
mat’s little theorem. In Section 9 we put this together to achieve point addition
on binary elliptic curves. The resulting resource count and a comparison to other
work is given in Section 10. Finally, Section 11 draws a conclusion and details
future work.

2 Binary elliptic curve discrete logarithm

This section contains a very brief introduction into binary elliptic curve cryp-
tography, the primary application of this thesis.

2.1 Elliptic curves over the reals

Standard elliptic curves are non-singular curves over R2 with an equation of the
form y2 = x3 + ax + b. A curve is non-singular if a, b ∈ R with 4a3 + 27b2 = 0
[2]. Figure 1 is an example of an elliptic curve. For our purposes singular points
on a curve are points where the curve intersects itself, or sharp corners. We can
define a group operation on this curve: when we have two different points on the
curve, P1 and P2, we can add these points together. If we draw a line through
P1 and P2 we get a third point R on the curve. We say P1 +P2 = −R, the point
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Figure 1: y2 = x3 − x+ 1

R reflected through the x-axis (every elliptic curve over R2 is symmetrical with
respect to the x-axis).

If P1 and P2 share an x-coordinate but have the opposite y-coordinate, adding
them together does not result in a point on the curve. In that case, we say that
the addition result is a new point, O, the point at infinity. It is above and below
every point, P + O = P for any P on the curve. We can also double points,
notation [2]P . Doubling uses the tangent line at the point rather than the line
through two points, with O + O = O. Curves over the reals have additional
properties we do not explore here.

2.2 Elliptic curves over a finite field

The points on a curve in a finite field (for example, the integers modulo a prime)
taken together with O form a group under point addition. In this group, each
point P has an order ord(P ), which is the smallest positive integer such that
[ord(P )]P = O. The number of points and thus the order is bounded by Hasse’s
bound [10], which states that the number of points on an elliptic curve is bounded
by the field size with a margin up to twice the square root of the field size. We
look at curves specifically over finite fields with characteristic 2.

2.3 Binary elliptic curves

Binary elliptic curves are curves over binary finite fields. We refer to the field of
2n elements as F2n or GF (2n). A binary polynomial is a polynomial with only 1
and 0 as its coefficients, for example x10 + x3 + 1. The sum of two polynomials
f(x), g(x) takes the coefficient of each term of f(x) and adds it modulo 2 to the
coefficient of the same term of g(x), for example (x10 + x3 + 1) + (x10 + x2) =
x3 + x2 + 1. Multiplication works as expected, with the final coefficients being
taken modulo 2, for example (x + 1) · (x + 1) = x2 + 1. In a binary field, we
take these polynomials modulo an irreducible polynomial m(x), where n is the
degree of m(x). For example, x3 + x mod x2 + x+ 1 = x+ 1. The finite field of
binary polynomials modulo m(x) has 2n different elements (note all polynomials
of degree less than n can be represented as n-length bitstrings), which means
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that by Hasse’s bound, the order of a point is at most 2n+2
n
2 +1 (this is smaller

than 2n+1 for n > 2) on a binary elliptic curve over F2n .
Binary elliptic curve formulas look a little different from the real case:

y2 + xy = x3 + ax2 + b

with a, b ∈ F2n and b 6= 0. As such, we have the following point addition formula
for adding P1 = (x1, y1) and P2 = (x2, y2) with x1 6= x2 to get P1 + P2 = P3 =
(x3, y3):

x3 = λ2 + λ+ x1 + x2 + a

y3 = (x2 + x3)λ+ x3 + y2

with

λ =
y1 + y2
x1 + x2

.

There are additional formulas for point doubling:

x3 = λ2 + λ+ a

y3 = x21 + (λ+ 1)x3

with
λ = x1 + y1/x1.

When x1 = x2 but y1 6= y2 (in which case y1 + y2 = x1) they are inverses, so
P3 = O

2.4 Elliptic curve Diffie-Hellman

Elliptic curve Diffie-Hellman, the primary key exchange mechanism using elliptic
curves, works as follows: Alice and Bob want to privately agree on a secret point
on a public curve while communicating in a public space. To do this, each takes a
secret integer α and β respectively. Publicly, they agree on a point P with a large
prime order. Then, they calculate and tell each other Pα = [α]P and Pβ = [β]P .
Finally, they calculate their shared point Pαβ = [α · β]P = [α]Pβ = [β]Pα.
Despite everyone knowing P , Pα and Pβ , it is very hard to find α, β or Pαβ
with just a classical computer. This problem is called the elliptic curve discrete
logarithm problem. With a quantum computer, algorithms exist which solve this
in polynomial time. We will look at such algorithms.

3 Quantum background

This section contains a brief overview of quantum computing. This section was
inspired by a Mastermath course on quantum computing, taught by Ronald de
Wolf at the University of Amsterdam (UvA). Lecture notes of the most recent
iteration of this course are available online [6].
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3.1 Qubits

A classical bit can take 2 positions: 0 or 1, measuring that bit does nothing to it
and using transistors we can have gates like AND or OR. In the quantum case
we have quantum bits (qubits), for which these things are not true. The reader
might be familiar with the double-slit experiment where light, which is made
from tiny ‘particles’ called photons, behaves both as a particle and a wave (and
the experiment is less cruel than Schrödinger’s cat). By pointing a light source
at a plate with 2 slits and a screen behind it, the pattern on the screen shows
a pattern of interference that cannot be explained if photons were particles.
Furthermore, by placing a light detector in the slit that should not alter the
shape of the pattern, the pattern changes due to the photons being observed.

This displays that two of the introduced properties of bits do not hold in the
quantum space: objects can be in two states at once, referred to as a superpo-
sition and measuring that object collapses the object to one of those states.
In addition, like the interference of the waves of light, qubits interfering can
cause the result to change in ways that would not be possible if qubits were not
in superposition.

The state of n qubits is represented as a vector of length 2n or a weighted
sum of base states written using the ket notation. For example (1, 0)T would be
|0〉 and (0, 1)T would be |1〉. Now if we were to apply a Hadamard gate (detailed
later) to the |1〉 state we get ( 1√

2
,− 1√

2
) or 1√

2
|0〉 − 1√

2
|1〉. When measuring we

can only measure one state. The chance to observe |0〉 is the absolute value of
the square of the corresponding vector element or coefficient of the state, which
in this case is equal to the chance of |1〉 occurring.

Note that qubits are not limited to positive or negative, and can also have
imaginary states. In that case, vector elements are often written as their distance
to 0, called the amplitude, times a rotation on the unit circle, called the phase.
For example, − 1√

2
= 1√

2
eiπ. While measuring qubits, we only care about the

amplitude. However, the phase is significant for interference. We apply that
interference through gates.

3.2 Reversible actions

Quantum computing uses reversible gates, because resetting qubits would require
reading them and collapse (part of) the superposition and discarding them would
quickly balloon the number of qubits required. Unlike classical gates like AND
or XOR reversible gates are bijective (every input state corresponds to exactly
one output state) and require an equal number of input and output qubits. In
Sections 5 to 8 we state our algorithms only in terms of these gates applied to
classic states, but the gates we use can be applied to superpositions of qubits
in states |1〉 and |0〉. Each state then behaves as expected individually: apply-
ing a NOT-gate to |0〉 turns it into |1〉 no matter the phase or amplitude. For
the purpose of binary elliptic curve point operations we need three gates to do
reversible addition, multiplication and division:
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– The NOT gate. It has one input and one output: if the input is |0〉, the
output is |1〉 and vice versa. It is its own inverse.

– The CNOT, or Feynman, gate serves as the equivalent of XOR or F2-
addition. This gate takes 2 qubits as inputs and adds one input to the other
qubit and outputs the other qubit as itself: (a, b) → (a ⊕ b, b). It is re-
versible and its own inverse: applying it twice results in (a⊕b⊕b, b) = (a, b).
In Circuit 1 an example has been drawn. In algorithms we write this as
a← CNOT(a, b).

– The Toffoli (TOF) gate serves as the equivalent of AND or F2-multiplication
in our case. This gate takes 3 qubits as inputs and adds the result of mulitpli-
cation of the first two qubits to the third qubit and outputs the other qubits
as themselves: (a, b, c)→ (a, b, c⊕(a·b)). It is also its own inverse. In circuit 2
an example has been drawn. In algorithms we write this as c← TOF(a, b, c).

a a⊕ b
b • b

Circuit 1: The CNOT gate.

a • a

b • b

c c⊕ (a · b)

Circuit 2: The TOF gate.

In addition to these gates, we will also need to swap some qubits. Unlike the
CNOT and TOF gates we do not build these in physical circuits. Rather, we
change the index on some qubits: if we were to swap qubits a and b we would
simply refer to qubit a as “b” and qubit b as “a” from that point on without
counting any gates. In Circuit 3 an example has been drawn.

a × b
b × a

Circuit 3: The swap

3.3 Quantum actions

We use 3 different actions that are purely quantum and not available in classic
reversible computing:
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– The Hadamard gate (H). This gate transforms |0〉 into 1√
2
(|0〉+ |1〉) and |1〉

into 1√
2
(|0〉−|1〉). Its primary use for us is putting zero states into uniformly

random states, as well as differentiating between states with a positive and
a negative phase. It is its own inverse.

– The phase shift gate (Rφ). This gate maintains |0〉 but transforms |1〉 into
eiφ|1〉. We generally implement one specific φ = π/4 (the T-gate) and use
that (and the H and CNOT gates) to approximate any specific φ with arbi-
trary precision. The inverse of Rφ is R−φ. Circuit 4 shows a phase shift.

– Measurement. This collapses the quantum state of a qubit into a classical
state. The chance to read any specific state is the absolute value of the square
of its amplitude. Circuit 5 shows a measurement.

|0〉 H Rπ H |1〉

Circuit 4: A circuit that shows a phase shift.

|0〉 H

Circuit 5: A circuit that applies a Hadamard gate and then measures. It has an
equal chance of reading a |1〉 or a |0〉.

3.4 Entanglement

|0〉 H •

|0〉

Circuit 6: A circuit that shows entanglement.

Quantum mechanics has a unique property called entanglement that is not
present in the classical world. When 2 qubits interact, they become entangled.
For example, in circuit 6 the chance to read |1〉 or |0〉 in the first qubit is still
equal. However, when reading the second qubit it will always read the same as
the first qubit. Even if you read them in opposite order, they will still be the
same. The state before measuring is 1√

2
(|00〉+ |11〉). Using this entanglement we

can make quantum algorithms.
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3.5 Quantum Algorithms

Quantum algorithms consist of operations to registers of qubits. We divide those
qubits into two types:

– Input and output qubits. These qubits contain the input and will contain the
output after running the algorithm, potentially with some qubits being in
the same state as before. For example, a Toffoli gate has 3 input and output
qubits, but only 1 of them changes.

– Ancillary qubits. These qubits are used by the algorithm, but do not contain
the input and output. For this thesis we restrict ancillary qubits to always
start and end in a fixed state of |0〉.

Efficiency
There are several methods to measure the efficiency of algorithms:

– On the most basic level, we can compare the number of gates. However, quan-
tum Toffoli gates are considered much more expensive than CNOT gates,
with the exact difference depending on the physical realization of the quan-
tum computer. As such, minimizing the number of Toffoli gates alone can be
considered a better goal. The number of Toffoli gates will be an important
concern in this thesis.

– Furthermore, the number of qubits an algorithm uses is something very rel-
evant to implementations today. Actual quantum computers are slowly in-
creasing their number of qubits. As such the space, or width, of an algorithm
is also relevant. The lower this space, the sooner the algorithm can be im-
plemented. Space will be the primary concern in this work.

– In addition to this, we can parallelize quantum circuits well: applying a
circuit once on a set of qubits and once on a different set of qubits can be
done twice as fast as applying that circuit twice on some of the same qubits.
For example, CNOT(a, b) and CNOT(b, c) has to be done sequentially in
2 steps, while CNOT(a, b) and CNOT(c, d) can be done in one step. This
measure of how many gates we need sequentially is called depth. In this
work, depth will not be explored in-depth, but will be reported and left to
future work.

– Finally, all of the above assumes quantum computers will not have errors.
Precise quantum states are difficult to maintain and errors come quickly.
Error correction has to be implemented to create what are called logical
qubits, qubits on which operations can be performed with a reasonable degree
of certainty. Error correction is not considered in this work and any mention
of qubits refers to logical qubits.

An ideal analysis would take all of the above into account. In the interest of time
and space only the first two are detailed, as those are what the author is most
familiar with and has been a measure in previous work [20].
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4 Shor’s algorithm

In 1994, Peter Shor described how to use quantum computers to break traditional
asymmetric cryptography [22]. While his primary example detailed how to break
RSA by factoring integers in polynomial time on a quantum computer, he also
showed how to extend his algorithm to any discrete logarithm problem. This
includes ECC.

Shor’s algorithm for solving discrete logarithms works as follows: we have two
points P,Q ∈ E(F2n) with Q = [µ]P . We want to find µ. Take 2 registers of size
n+1 in the |0〉 state and apply Hadamard gates to them to get them in a uniform

superposition 1
2n+1

∑2n+1−1
k,`=0 |k, `〉. Take another 2n qubits in a state representing

|O〉. Conditional on the first 2 registers, we add classically precomputed points
[20]P, [21]P, ..., [2n]P and [20]Q, [21]Q, ..., [2n]Q to the last 2n qubits and get

1

2n+1

2n+1−1∑
k,`=0

|k, `, [k]P + [`]Q〉.

A quantum Fourier transform (QFT), consisting of specific phase shift gates and
Hadamard gates is applied to the first 2 registers1. Those two registers are then
measured, and the measurement result can be used to compute µ classically [23].
When measuring the last 2n qubits, you would measure a point R, for which
k, ` exist such that [k]P + [`]Q = R. Shor’s algorithm finds the hidden period
ν such that [k + 1]P + [` + ν]Q = R, which you can use to find µ. In Circuit 7
the general algorithm is drawn. Note that it does not matter when the final 2n
qubits are measured, so these can be measured when measuring the entire state
or even after the result of the quantum Fourier transform is measured.

|0〉 H • . . . . . .

QFT...
. . .

|0〉 H . . . • . . .

|0〉 H . . . • . . .

QFT...
. . .

|0〉 H . . . . . . •

|O〉 /2n +P . . . +[2n]P +Q . . . +[2n]Q

Circuit 7: Shor’s algorithm for finding elliptic curve discrete logarithm.

By taking measurements after every step, we can compress the quantum
Fourier transform on the first 2n+2 qubits into a single qubit [9]. The phase shift

1 Quantum Fourier transforms are not detailed in this thesis as the primary focus is
on the elliptic curve operations.



10 Hoof, I van

after every step depends on the previous measurement outcomes µ0, ..., µ2n+1

with θk = −π
∑k−1
j=0 2k−jµj . In Circuit 8 the algorithm has been drawn.

µ0 µ1 µ2n+1

|0〉 H • H |0〉 H • Rθ1 H . . . |0〉 H • Rθ2n+1 H

|O〉 /2n +P +[2]P . . . +[2n]Q

Circuit 8: Shor’s algorithm for finding elliptic curve logarithms with a semiclas-
sical Fourier transform.

5 Basic Arithmetic

In this section we discuss reversible in-place algorithms for the basic arithmetic
of binary polynomials modulo a field polynomial m(x), i.e. elements of F2n .

5.1 Addition and binary shift

The first operation we consider, addition, can easily be implemented for binary
polynomials. Individual additions can be done with a CNOT gate, the addition
of two polynomials of degree at most n − 1 takes n CNOT gates with depth 1.
This operation uses no ancillary qubits and the result of the addition replaces
either of the inputs. Since addition is component-wise, addition for polynomials
over F2 is the same as addition for elements of the field F2n .

Binary shifts are straightforward: they correspond to multiplying or dividing
by x. This requires no quantum computation by doing a series of swaps.

Finally, if we have a fixed n, a polynomial g(x) of degree at most n− 1 and
want to do a multiplication by x followed by a modular reduction by a fixed
weight-ω (for our purposes ω will always be 3 or 5) and degree-n polynomial
m(x) that has coefficient 1 for x0, we can do this in 2 steps. To describe this,
we represent m(x) as M where M is an ordered list of length ω that contains
the degrees of the nonzero terms in descending order, for example if m(x) =

1 + x3 + x10 we get M = [10, 3, 0]. Let g(x) =
∑n−1
i=0 gix

i:

– Step 1: For every qubit gi change its index so that it represents the coefficient
of xi+1 mod n. Let hi be the coefficients of the relabeled polynomial, i.e.
hi+1 mod n = gi.

– Step 2: Apply CNOT controlled by the x0 term h0 (gn−1 before Step 1) to
hj , with j = M1, . . . ,Mω−2. In the example of 1 + x3 + x10 we would apply
1 CNOT to h3 controlled by h0.

See Circuit 9 for an example. After a multiplication by x without reduction the
coefficient of x0 is always 0. As m(x) is irreducible, it always has coefficient 1
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|g0〉 |h1〉
|g1〉 |h2〉
|g2〉 |h3〉
|g3〉 |h4〉
|g4〉 |h5〉
|g5〉 |h6〉
|g6〉 |h7〉
|g7〉 |h8〉
|g8〉 |h9〉
|g9〉 • |h0〉

Circuit 9: Binary shift circuit for F210 with g0 + · · · + g9x
9 as the input and

h0 + · · ·+h9x
9 = g9 + g0x+ g1x

2 + (g2 + g9)x3 + g3x
4 + · · ·+ g9x

9 as the output.

for x0, so after a reduction by m(x) that qubit will be 1 and if no reduction
takes place that qubit will be 0, which means our modular shift algorithm is
reversible. This results in a total of ω− 2 CNOT gates for a modular reduction,
with depth ω − 2 and we do not use ancillary qubits. Running this circuit in
reverse corresponds to dividing by x modulo m(x).

5.2 Multiplication by a constant polynomial

|g0〉 • |g0 + g2〉
|g1〉 • |g1 + g2 + g3〉
|g2〉 • • × |g0 + g2 + g3〉
|g3〉 • × |g1 + g3〉

Circuit 10: Multiplication of g by 1+x2 modulo 1+x+x4. Depth 4 and 5 CNOT
gates.

Multiplication by a constant non-zero polynomial in a fixed binary field is F2-
linear: as the field polynomial is irreducible, every input corresponds to exactly
one output. We can see that any such multiplication can be represented as a ma-
trix, which we can turn into a circuit using an LUP -decomposition, an algorithm
also used by Amento, Rötteler and Steinwandt [1]. For example, multiplication
by 1 + x2 modulo 1 + x + x4 can be represented by a matrix Γ . Using the de-
composition Γ = P−1LU we get an upper and lower triangular matrix which
we translate into a circuit. Any 1 not on the diagonal in U and L is a CNOT
controlled by the column number on the row number. In cases of conflict2, for

2 Conflicts exist if according to the triangular matrix a CNOT would both have to be
applied on and controlled by a qubit. By doing the controlled operation first and
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U CNOT gates should be performed top row first, second row second and so on
and for L CNOT gates from the bottom row up. P represents a series of swaps,
and can be represented either as a permutation matrix or an ordered list with
all elements from 0 to n− 1.

Γ =


1 0 1 0
0 1 1 1
1 0 1 1
0 1 0 1

 = P−1LU =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




1 0 0 0
0 1 0 0
0 1 1 0
1 0 0 1




1 0 1 0
0 1 1 1
0 0 1 0
0 0 0 1


Circuit 10 shows how we translate Γ . According to [1] this costs up to n2 + n
CNOT gates with depth up to 2n. We can improve this count by noting L and
U are each size n by n and can have up to (n2 − n)/2 non-diagonal non-zero
entries, giving us up to n2−n CNOT gates. Note that the LUP -decomposition is
precomputed and for any fixed polynomial and field we can give an exact CNOT
gate count and depth.

Since this algorithm is introduced in [1] without correctness proof and we
will use it later for a bigger algorithm, we will write an explicit implementation
and go over the correctness of this algorithm. Note that since we are working
with reversible gates, multiplying by constant f(x) modulo m(x) is the same as
doing the reverse of multiplying by constant f(x)−1 modulo m(x).

Theorem 1. Algorithm 1 correctly describes multiplication by a non-zero con-
stant polynomial in a fixed binary field.

Proof. Since multiplication by a non-zero constant in a finite field is a linear
map, an invertible matrix Γ to represent this linear map must exist. Since Γ
is invertible, its decomposition L,U, P−1 must also consist of invertible linear
maps. Since we are working in a binary field and U is an invertible upper-
triangular matrix, the diagonal of U is all-one. If we look at lines 1 through 4 of
the algorithm, we can see they correspond to applying linear map U to g, as it
results in gi =

∑n−1
j=0 ui,jgj for i = 0, .., n − 1. Analogously the same is true for

L in lines 5 through 8. We can also see that if P−1 is a row-permutation of the
identity matrix, lines 9 through 13 will apply it correctly. Since P−1LU = Γ we
have correctly applied the linear map Γ .

Note that the algorithm is not optimized for depth, for example in circuit 10 the
first and second CNOT could be swapped so the depth would be 3 rather than
4. The LUP-decomposition is generated automatically using primitive Gaussian
elimination.

Choice of field polynomials
When doing operations in a finite binary field we can choose what representation
we use, as long as the polynomial m(x) is irreducible. Our goal is to make the

applying the operation on it afterwards, we ensure that the matrix multiplication is
correctly translated.
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Algorithm 1: MULTf(x), from [1]. Reversible algorithm for in-place mul-
tiplication by a nonzero constant polynomial f(x) in F2[x]/m(x) with m(x)
an irreducible polynomial.

Fixed input : A binary LUP-decomposition L,U, P−1 for a binary n by n
matrix that corresponds to multiplication by the constant
polynomial f(x) in the field F2[x]/m(x).

Quantum input: A binary polynomial g(x) of degree up to n− 1 stored in an
array G.

Result: G as f · g in the field F2/m(x).
1 for i = 0..n− 1 // U ·G
2 do
3 for j = i+ 1..n− 1 do
4 if U [i, j] = 1 then
5 G[i]← CNOT(G[i], G[j])

6 for i = n− 1..0 // L · UG
7 do
8 for j = i− 1..0 do
9 if L[i, j] = 1 then

10 G[i]← CNOT(G[i], G[j])

11 for i = 0..n // P−1 · LUG
12 do
13 for j = i+ 1..n− 1 do
14 if P−1[i, j] = 1 then
15 SWAP(G[i], G[j])
16 SWAP column i and j of P−1

matrices L and U as sparse as possible. For this purpose we also want our Γ
to be as sparse as possible, which can be achieved in two steps: pick irreducible
polynomials with as few non-zero coefficients as possible, i.e. trinomials when
available and pentanomials otherwise, and pick irreducible polynomials where
the second highest non-constant term has the lowest possible degree. For ex-
ample, the pentanomial 1 + x3 + x4 + x19 + x20 requires 108 CNOT gates, the
pentanomial 1 +x3 +x5 +x9 +x20 requires 55 CNOT gates, while the trinomial
1 + x3 + x20 requires only 27. All 3 polynomials are irreducible. In Table 1 we
can see some examples of gate counts for various choices of n. The depth count
is an upper bound without accounting for swapping gates.

5.3 Squaring

Squaring in F2n is a lot easier than in the general case since:(
n−1∑
i=0

aix
i

)2

=

n−1∑
i=0

ai · x2·i mod m(x)
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Degree Irreducible polynomial Source CNOT gates Depth upper bound

4 [4, 1, 0] [2] 5 4
8 [8, 4, 3, 1, 0] [2] 20 14
16 [16, 5, 3, 1, 0] [2] 47 30
32 [32, 7, 3, 2, 0] [2] 133 93
64 [64, 4, 3, 1, 0] [2] 264 182
127 [127, 1, 0] [2] 396 293
128 [128, 7, 2, 1, 0] [2] 626 443
163 [163, 7, 6, 3, 0] [14] 740 975
163 [163, 89, 74, 15, 0] [3] 1885 1646
233 [233, 74, 0] [14] 3319 2976
256 [256, 10, 5, 2, 0] [2] 1401 1030
283 [283, 12, 7, 5, 0] [14] 2117 1700
283 [283, 160, 123, 37, 0] [3] 6785 6368
571 [571, 10, 5, 2, 0] [14] 4027 3177
571 [571, 353, 218, 135, 0] [3] 33182 32331
1024 [1024, 19, 6, 1, 0] [21] 8147 6624

Table 1: Comparison of the CNOT gates required for various instances of Algo-
rithm 1. Source is the source of the polynomial.

If we do not consider the mod operation, this would be ‘free,’ as we just need to
shuffle zeroes between our registers. We can see two approaches for squaring in
F2n : a circuit that takes the result of squaring a polynomial of degree at most
n− 1 and stores it in n separate qubits, or a circuit that replaces the input with
the result. The second approach is only possible for finite fields with 2n elements
since every square is unique.

Squaring and replacing the input: Muñoz-Coreaz and Thapliyal [16] pro-
pose a design which uses a small number of gates for reversible squaring by
shuffling the qubits cleverly. The number of CNOT gates saved for their squar-
ing is equal to n, and they use no ancillary qubits. Their algorithm as proposed,
however, does not take into account cases where qubits in the upper bn2 c reg-
isters have to interact3. Instead, we can use another LUP-decomposition since
squaring is also a linear map.

Squaring and storing the result separately: For this approach, we can take
schoolbook squaring mod m(x): for every i from 0 to n− 1 add aix

2i mod m(x)

3 For example, if n = 8 andm(x) = x8+x4+x3+x+1, we have x6·2 = x7+x5+x3+x+1.
This means the qubit corresponding to x6 in the input has to be added to qubits that
also have to add themselves to the qubit corresponding to x6 in the input, regardless
of which output qubit you use to represent input qubits x4, x5, x7. Solutions (like the
LUP-decomposition) exist, as squaring in F2n is a linear map, but these solutions
are not provided by the authors of [16] in the paper.
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to the output qubits which start in state 0n. Since m(x) is known we can exactly
compute the number of CNOT gates required depending on it. For example,
squaring modulo 1 + x3 + x10 requires 16 CNOT gates, with O(n) CNOT gates
in general.

6 Quantum Multiplication for binary polynomials

This section details schoolbook multiplication and we present our new Karatsuba
algorithm.

6.1 Quantum Schoolbook Multiplication

The simplest way to multiply is schoolbook multiplication. For two polynomials
of degree at most n − 1 that takes n2 Toffoli gates, the number of pairs of
qubits from the first and second polynomial. While the computation does not
use ancillary qubits, the result needs to be stored separately from the input in
2n− 1 qubits; unlike the previous circuits we cannot replace either of the inputs
with the result since the Toffoli gate requires a separate output. If we want to
apply modular reduction by a weight-ω and degree-n odd polynomial, this adds
(n− 1) · (ω− 2) CNOT gates and uses no ancillary qubits (by using the modular
shift algorithm after every n multiplications). The result is stored in n qubits.

6.2 Classic Karatsuba multiplication in binary polynomial rings

Rather than using schoolbook multiplication, methods like Karatsuba multipli-
cation [12] can speed up multiplication of high-degree polynomials in the clas-
sical case. We can look at in-place multiplication in the classical case for ideas
[19]. As input we take two polynomials of degree up to n − 1, f(x) and g(x)
as well as a polynomial of size 2n − 1: h(x). As output we want to calculate
h+ f · g. For some k such that n−1

2 ≤ k < n− 1 (we will always use k = dn−12 e)
we can split each polynomial as follows: f = f0 + f1x

k, g = g0 + g1x
k and

h = h0 + h1x
k + h2x

2k + h3x
3k.

We compute intermediate products α = f0 · g0, β = f1 · g1 and γ = (f0 +f1) ·
(g0 + g1). Finally, we add these in the right way for Karatsuba multiplication:

h+ f · g = h+ α+ (γ + α+ β)xk + βx2k.

For cleanliness, we can split up our α, β, γ in the same way as f and g to get a
result with no overlap, which is useful for checking correctness:

h+f ·g = (h0+α0)+(h1+α0+α1+β0+γ0)xk+(h2+α1+β0+β1+γ1)x2k+(h3+β1)x3k.

Alternatively, we can rewrite this another way that will prove useful:

h+ f · g = h+ (1 + xk)α+ xkγ + xk(1 + xk)β.
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6.3 Reversible Karatsuba multiplication in binary polynomial rings

Based on these equations we can split our multiplication algorithm into 2 parts:
given f(x), g(x), h(x) calculate h + f · g and given k, f(x), g(x), h(x) with k >
max(deg(f),deg(g)) calculate h + (1 + xk)f · g. We will look at our algorithms
for the 2 parts, which can then be used recursively to provide a significant
improvement to the schoolbook algorithm in terms of Toffoli gate count.

Algorithm 2: MULT1xk. Reversible algorithm for multiplication by the
polynomial 1 + xk.

Fixed input : A constant integer k > 0 to indicate part size as well as an
integer n ≤ k to indicate polynomial size.
` = max(0, 2n− 1− k) is the size of h2 and (fg)1. In the
case of Karatsuba we will have either n = k or n = k − 1.

Quantum input: Two binary polynomials f(x), g(x) of degree up to n− 1
stored in arrays A and B respectively of size n. A binary
polynomial h(x) of degree up to k+ 2n− 2 stored in array C
of size 2k + `.

Result: A and B as input, C as h+ (1 + xk)fg
1 if n > 1 then
2 C[k..k + `− 1]← CNOT(C[k..k + `− 1], C[2k..2k + `− 1])
3 C[0..k − 1]← CNOT(C[0..k − 1], C[k..2k − 1])
4 C[k..2k + `− 1]← KMULT(A[0..n− 1], B[0..n− 1], C[k..2k + `− 1])
5 C[0..k − 1]← CNOT(C[0..k − 1], C[k..2k − 1])
6 C[k..k + `− 1]← CNOT(C[k..k + `− 1], C[2k..2k + `− 1])

7 else
8 C[0]← CNOT(C[0], C[k])
9 C[k]← TOF(A[0], B[0], C[k])

10 C[0]← CNOT(C[0], C[k])

Line C in MULT1xk
C[0..k − 1] C[k..2k − 1] C[2k..2k + `− 1]

1 h0 h1 h2

2 h0 h1 + h2 h2

3 h0 + h1 + h2 h1 + h2 h2

4 h0 + h1 + h2 h1 + h2 + (fg)0 h2 + (fg)1
5 h0 + (fg)0 h1 + h2 + (fg)0 h2 + (fg)1
6 h0 + (fg)0 h1 + (fg)0 + (fg)1 h2 + (fg)1

Table 2: Step by step calculation of Algorithm 2.
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Lemma 1. Given polynomials f, g of degree up to n− 1 with n > 1, polynomial
h of degree up to k + 2n − 2 with some k ≥ n and assuming Algorithm 3 cor-
rectly calculates h+ fg with degrees of f, g and h bounded as above, Algorithm 2
correctly calculates h+ (1 + xk)fg in F2[x] without altering the values of f and
g.

Proof. Let ` = max(0, 2n− 1− k). Table 2 gives the result of each step on array
C, split into 3 parts of size k, k and `−1 respectively: h = h0+h1x

k+h2x
2k. The

final result corresponds to h0+(fg)0+(h1+(fg)0+(fg)1)xk+(h2+(fg)1)x2k =
h0 +h1x

k +h2x
2k +fg+fgxk = h+ (1 +xk)fg, where (fg)0 is the first k terms

of f · g and (fg)1 is the last up to ` terms.
f and g do not have their values altered because arrays A and B remain

unchanged.

Algorithm 2 computes h+(1+xk)fg with at most 2k+2` ≥ 2k+2(2n−1−k) =
4n − 2 CNOT gates, at a depth of 4 per layer and 1 call to Algorithm 3 for an
n-by-n multiplication. For n = 1 both the depth and number of gates is 2 CNOT
and 1 TOF gates.

Algorithm 3: KMULT. Reversible algorithm for multiplication of 2 poly-
nomials.
Fixed input : A constant integer n to indicate polynomial size and an

integer k < n ≤ 2k with k = dn
2
e for n > 1 and k = 0 for

n = 1, to indicate upper and lower half.
Quantum input: Two binary polynomial f, g of degree up to n− 1 stored in

arrays A and B respectively of size n. A binary polynomial
h of degree up to 2n− 2 stored in array C of size 2n− 1.

Result: A and B as input, C as h+ fg
1 if n > 1 then
2 C[0..3k − 2]← MULT1xk(A[0..k − 1], B[0..k − 1], C[0..3k − 2])
3 C[k..2n− 2]← MULT1xk(A[k..n− 1], B[k..n− 1], C[k..2n− 2])
4 A[0..n− k − 1]← CNOT(A[0..n− k − 1], A[k..n− 1])
5 B[0..n− k − 1]← CNOT(B[0..n− k − 1], B[k..n− 1])
6 C[k..3k − 2]← KMULT(A[0..k − 1], B[0..k − 1], C[k..3k − 2])
7 B[0..n− k − 1]← CNOT(B[0..n− k − 1], B[k..n− 1])
8 A[0..n− k − 1]← CNOT(A[0..n− k − 1], A[k..n− 1])

9 else
10 C[0]← TOF(A[0], B[0], C[0])

Lemma 2. Let k = dn2 e. Given polynomials f, g of degree up to n − 1 with
n > 1 and h of degree up to 2n − 2. Assuming Algorithm 2 correctly calculates
h′ + (1 + xk)f ′g′ for f ′, g′ up to degree k − 1 and h′ up to degree 3k − 2, and
Algorithm 3 correctly calculates h′′ + f ′′g′′ with f ′′, g′′ of degree k − 1 and h′′

of degree 2k − 2 without altering the values of f ′′ and g′′. Then Algorithm 3
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correctly calculates h+fg in F2[x]. The values of f and g are the same after the
algorithm as they were before.

Proof. Table 3 gives the result of each line on array C, split into 4 parts of size
k, k, k and 2n− 1− 3k respectively: h = h0 + h1x

k + h2x
2k + h3x

3k. As can be
seen in the table, the final result corresponds to (h0 +α0) + (h1 +α0 +α1 +β0 +
γ0)xk + (h2 + α1 + β0 + β1 + γ1)x2k + (h3 + β1)x3k = h + f · g as discussed in
Section 6.2. Lines 7 and 8 are the inverses of lines 4 and 5 so return A and B to
their original states.

Line C in KMULT
C[0..k − 1] C[k..2k − 1] C[2k..3k − 1] C[3k..2n− 2]

1 h0 h1 h2 h3

2 h0 + α0 h1 + α0 + α1 h2 + α1 h3

3-5 h0 + α0 h1 + α0 + α1 + β0 h2 + α1 + β0 + β1 h3 + β1
6-8 h0 + α0 h1 + α0 + α1 + β0 + γ0 h2 + α1 + β0 + β1 + γ1 h3 + β1

Table 3: Step by step calculation of Algorithm 3.

Algorithm 3 computes h+fg with 4(n−k) CNOT gates, at a depth of 4, 1 call to
itself for a k-by-k multiplication, 1 call to Algorithm 2 for a k-by-k multiplication
and 1 call to Algorithm 2 for an (n− k)-by-(n− k) multiplication. For n = 1 we
just have a single TOF gate.

Theorem 2. Given polynomials f, g of degree up to n− 1 and h of degree up to
2n − 2, Algorithm 3 correctly calculates h + fg. The values of f and g are the
same after the algorithm as they were before.

Proof. We use proof by induction. For n = 1 line 10 of Algorithm 3 correctly
calculates h+ fg without altering f or g.

For n = 2 two calls are made to Algorithm 2 and one call to Algorithm 3 with
n′ = 1 and k′ = 1. Lines 7-9 of Algorithm 2 correctly calculate h′+ (1 +xk)f ′g′.

For n > 2 we use lemmas 1 and 2 as our inductive steps. Every time Algorithm
3 is called recursively to calculate h′+ f ′g′ with f ′, g′ of degree n′− 1, it is with
either n′ = dn2 e or n′ = n− dn2 e = bn2 c.

The series dn2 e, d
dn2 e
2 e, d

d
dn

2
e

2 e
2 e, ... reaches 1 in O(log n) steps and bn2 c ≤ d

n
2 e.

From this we can see that we reach n′ = 1 or 2 in a finite number of steps. By
induction Algorithm 3 correctly calculates h + fg and returns f and g to their
original values.

7 Reversible Karatsuba multiplication in binary finite
fields

With the multiplication methods from the previous section, we can move on to
the modular multiplication. We will need Algorithm 1, which we will also run in
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Algorithm 4: MODMULT. Reversible algorithm for multiplication of 2
polynomials in F2[x]/m(x) with m(x) an irreducible polynomial.

Fixed input : A constant integer n to indicate field size, k = dn
2
e. m(x) of

degree n as the field polynomial. The LUP-decomposition
precomputed for multiplication by 1 + xk modulo m(x).

Quantum input: Three binary polynomials f(x), g(x), h(x) of degree up to
n− 1 stored in arrays A,B,C respectively of size n.

Result: A and B as input, C as h+ f · g mod m.
1 for i = 0..k − 1 do
2 C[0..n− 1]← MODSHIFT−1(C[0..n− 1])

3 A[0..n− k − 1]← CNOT(A[0..n− k − 1], A[k..n− 1])
4 B[0..n− k − 1]← CNOT(B[0..n− k − 1], B[k..n− 1])
5 C[0..n− 1]← KMULT(A[0..k − 1], B[0..k − 1], C[0..n− 1])
6 B[0..n− k − 1]← CNOT(B[0..n− k − 1], B[k..n− 1])
7 A[0..n− k − 1]← CNOT(A[0..n− k − 1], A[k..n− 1])

8 C[0..n− 1]← MULT−1

1+xk
(C[0..n− 1])

9 C[0..n− 1]← KMULT(A[k..n− 1], B[k..n− 1], C[0..n− 1])
10 for i = 0..k − 1 do
11 C[0..n− 1]← MODSHIFT(C[0..n− 1])

12 C[0..n− 1]← KMULT(A[0..k − 1], B[0..k − 1], C[0..n− 1])
13 C[0..n− 1]← MULT1+xk (C[0..n− 1])

reverse for multiplication by an inverse of the polynomial, and the binary shifts
from Section 5.1, which we will refer to as MODSHIFT (MODSHIFT−1 for the
reverse), as well as the previous Karatsuba algorithms. We can see in Algorithm
4 the number of operations we use:

– 3 calls to Algorithm 3: twice for k-by-k multiplication and once for (n− k)-
by-(n− k) multiplication.

– 2 calls to Algorithm 1 (once in reverse), each time for multiplication by the
same polynomial 1 + xk.

– 2k calls to MODSHIFT.
– 4 times (n − k) CNOT gates, half of which can be performed at the same

time.

Note that Algorithm 3 can multiply two polynomials f and g of degree at most
dn2 e − 1 while needing n qubits for the output polynomial h, which has degree
n − 1 at most in the case that n is odd. We make recursive calls to Algorithm
3 rather than Algorithm 4 because it uses significantly fewer CNOT operations
and fits in the required space.

In total, this algorithm uses nlog 3 + O(1) TOF gates, with O(1) being zero
if n is a power of two. The exact number of TOF and CNOT gates are in Table
5. Section 10 details the comparison to other multiplication algorithms.

Theorem 3. Algorithm 4 correctly calculates fg in a field F2[x]/m(x) and the
values of f and g are the same after the algorithm as they were before.
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Line C in MODMULT

1 h

2-4 x−kh mod m

5-7 x−kh+ γ mod m

8 (1 + xk)−1(x−kh+ γ) mod m

9 (1 + xk)−1(x−kh+ γ) + β mod m

11 (1 + xk)−1(h+ xkγ) + xkβ mod m

12 (1 + xk)−1h+ α+ xk(1 + xk)−1γ + xkβ mod m

13 h+ (1 + xk)α+ xkγ + xk(1 + xk)β mod m

Table 4: Step-by-step calculation of Algorithm 4.

Proof. Table 4 gives the result of each line on array C. As can be seen in the
table, the final result corresponds to h+ (1 +xk)α+xkγ+xk(1 +xk)β mod m.
Lines 6 and 7 are the inverses of lines 3 and 4 so return A and B to their original
states.

Degree schoolbook TOF gates Algorithm 4 TOF gates CNOT gates Depth upper bound

2 4 3 9 9
4 16 9 44 32
8 64 27 200 124
16 256 81 678 365
32 1,024 243 2,238 1,110
64 4,096 729 6,896 3,129
127 16,129 2,185 20,632 8,769
128 16,384 2,187 21,272 9,142
163 26,569 4,387 37,168 17,906
233 54,289 6,323 63,655 29,530
256 65,536 6,561 64,706 26,725
283 80,089 10,273 89,620 41,548

571 326,041 31,171 270,940 121,821
1024 1,048,576 59,049 591,942 234,053

Table 5: CNOT and TOF gate count and depth upper bounds for various in-
stances of Algorithm 4 as well as TOF gate count for schoolbook multiplication.
Field polynomials used are the same as in Table 1, with the irreducible polyno-
mial chosen that has the lowest CNOT count.

8 Inversion and division in binary finite fields

The most computationally intensive step is the division step. For the purpose
of this paper we treat division as multiplication by the inverse of a polynomial.
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Usually there are two different ways these inverses are calculated, which we
compare in this section.

8.1 Inversion using extended GCD

The first variant we look at is using the extended greatest common divisor
(GCD) or Euler’s algorithm. Roetteler, Naehrig, Svore and Lauter [20] propose
a straightforward variant using Kaliski’s binary GCD algorithm for inversion in
Fp. In the quantum setting this has a problem because Kaliski’s algorithm ter-
minates in a number of steps dependent on the input polynomial. To circumvent
this, a qubit stores whether the algorithm has terminated and log(n) qubits store
how long ago the algorithm terminated. This ends up introducing a rather large
number of conditional CNOT and conditional Toffoli gates at each step, which
balloons the total Toffoli gate cost. This algorithm ends up having 32n2 log(n)
Toffoli gates while using only 8n+ 2dlog(n)e+ 9 qubits.

Instead, we use a constant time gcd variant introduced by Bernstein and
Yang [4] as the basis of our new quantum algorithm. They introduce a classical
gcd-based inversion algorithm which runs in constant time. Our translation to a
reversible algorithm runs in fewer Toffoli gates than a naive implementation of
a greatest common divisor algorithm. In order to help with the simplification of
some of the steps, we base our algorithm on an optimized variant from section 7
of the paper. Specifically, it allows us to restrict the sizes of 2 variables to n+ 1
qubits rather than the less optimized variant from section 6 of the paper, which
use up to 2n qubits, and gets rid of 2 variables which are not relevant for the
calculation of the inverse.

Using these strategies, we arrive at Algorithm 5. The loop is repeated 2n− 1
times uses the following actions:

– RIGHTSHIFT and LEFTSHIFT shift the contents using only swap gates.
We see these as free.

– a is the qubit used to decide whether to swap or not. Since v is always
odd after a swap takes place and even if no swap has taken place, we can
uncompute it directly. Unfortunately, v is always even before the swap takes
place and whether r is odd depends on g, so keeping track of the sign is
necessary.

– δ is a number from 1 to 2n. In [4] this is a number from −n to n but by
making it a positive number we get an important advantage: by making the
number 1 in the original equal to 2blog(n)c+1 the most significant qubit of
δ will correspond to the sign and changing the sign is done by a series of
CNOT gates. This will also increment δ, which is why δ is only incremented
with the incrementer circuit if a is 0.

– CSWAP is a conditional swap using 2 CNOT and 1 TOF gate to swap 2
qubits based on a.

– g0 is not possible to uncompute within a single step. In [20] a similar value,
called mi, is stored. We reduce some of the space by observing that f and g
start to decrease in size after n steps but at step n the registers v, r, f, g, g0
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Algorithm 5: GCD DIV. Reversible algorithm for division using inversion
with an extended GCD algorithm. CNOT(δ[0, ..., blog(n)c+ 1], a) is short-
hand for CNOT(δ[0], a), ...,CNOT(δ[blog(n)c+1], a) and similar shorthand
is used for TOF gates.

Fixed input : A constant field polynomial m of degree n > 0 as an array
M as in Subsection 5.1, Λ = min(2n− 2− `, n) and
λ = min(`+ 1, n).

Quantum input:
– A non-zero binary polynomial R1(x) of degree up to n− 1 stored in array g of

size n to invert.
– A binary polynomial R2(x) of degree up to n− 1 to multiply with the inverse

stored in array B.
– A binary polynomial R3(x) of degree up to n− 1 for the result stored in array C.
– 4 arrays of size n+ 1: f , r, v, g0 initialized to an all-|0〉 state.
– 1 array of size dlog(n)e+ 2 initialized to an all-|0〉 state: δ, which will be treated

as an integer.
– 2 qubits to store ancillary qubits a, g[n] initialized to |0〉.
– Refer to g[n], g[n− 1], ..., g[3] as g0[n+ 1], g0[n+ 2], ..., g0[2n− 2] when applicable.
– Refer to δ[blog(n)c+ 1] as sign with sign = 1 if δ ≥ 2blog(n)c+1 and 0 otherwise.

Result: Everything except C the same as their input, C as R3 +R2/R1

1 for i in M do
2 f [n− i]← |1〉 // Reverse m

3 sign ← |1〉
4 r[0]← |1〉
5 for i = 0, ..., bn

2
c − 1 do

6 SWAP(g[i], g[n− 1− i]) // Reverse g

7 for ` = 0, ..., 2n− 2 do
8 v[0, ..., n]← RIGHTSHIFT(v[0, ..., n])
9 a← TOF(sign, g[0], a)

10 δ[0, ..., blog(n)c+ 1]← CNOT(δ[0, ..., blog(n)c+ 1], a)
11 CSWAPa(f [0, ..., Λ], g[0, ..., Λ]) // Λ = min(2n− 2− `, n)
12 CSWAPa(r[0, ..., λ], v[0, ..., λ]) // λ = min(`+ 1, n)
13 δ[0, ..., blog(n)c+ 1]← INC1+a(δ[0, ..., blog(n)c+ 1])
14 a← CNOT(a, v[0]) // Uncompute a
15 g0[`]← CNOT(g0[`], g[0])
16 g[0, ..., Λ]← TOF(f [0, ..., Λ], g0[`], g[0, ..., Λ]) // Λ+ 1 TOF gates

17 r[0, ..., λ]← TOF(v[0, ..., λ], g0[`], r[0, ..., λ]) // λ+ 1 TOF gates

18 g[0, ..., Λ]← LEFTSHIFT(g[0, ..., Λ])

19 for i = 0, ..., bn
2
c − 1 do

20 SWAP(v[i], v[n− 1− i])
21 C[0, ..., n− 1]← MODMULT(v[0, ..., n− 1], B[0, ..., n− 1], C[0, ..., n− 1])
22 UNCOMPUTE lines 1-20
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all need mostly full n+ 1 qubit arrays. This means the number of qubits for
these arrays is 5n+O(1) at least.

– INC1+a is a controlled incrementing algorithm. Using the n borrowed bits
design from [7] (we easily have log(n) qubits laying around for borrowing), we
turn the CNOT gates into TOF and TOF into 3 TOF gates using ancillary
qubit g0[`] at step ` which is still zero at this point. This leads to 22blog(n)c+
26 TOF gates and 2blog(n)c+ 3 CNOT gates.

– In total we get 2(Λ + λ) + 5 TOF gates at step ` and 4(+λ) + 3 CNOT
gates in addition to the gates from INC, with Λ = min(2n − 2 − `, n) and
λ = min(`+ 1, n).

By keeping track of the maximum sizes of f, g, v, r we get two distinct benefits:
the CSWAP and TOF steps take fewer gates and we free up some space to store
some of the decisional qubits. On average, both Λ and λ are size 3

4n + O(1)
since we have n − 1 steps of size n and n steps where the size is increasing or
decreasing by 1 per step.

We need to do the loop 4n−2 times in total: 2n−1 for computing and 2n−1
for uncomputing. Not including the multiplication, this gives us 12n2 + (88n−
44)blog(n)c+ 116n− 62 TOF gates and 24n2 + 8nblog(n)c+O(n) CNOT gates
while using 4n + blog(n)c + 8 ancillary qubits plus 3n qubits for the input and
output qubits.

|δ〉 /|δ|

+1
|δ〉

|sign〉 • |sign〉
|f〉 /n+1 × • |f〉

|g〉 /n+1 × • < |g〉

g0[`] = |0〉 • • |g0[`]〉

a = |0〉 • • • |0〉

|r〉 /n+1 × |r〉

|v〉 /n+1 > × • • |v〉

Circuit 11: Step ` of Algorithm 5. |δ| = blog(n)c+ 1.

8.2 Inversion using FLT

Fermat’s little theorem (FLT) states xp = x mod p. This can be extended for
binary finite fields to f2

n−2 = f−1 mod m(x) where n is the degree of m(x). By
using squarings we can compute this in n multiplications and n − 1 squarings:
f2

n−2 = f2 · f22 · f23 · ... · f2n−1

. However, improvements to this straightforward
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method exist. Itoh and Tsuji4 [11] give three improved variants. We use the
second variant (theorem 2 in [11]) since the third variant, despite giving better
results, requires n to be a product of two integers, meaning it cannot be used
for n prime like the NIST curves [14] use.

This algorithm uses two observations:

– f2
n−2 = (f2

n−1−1)2

– f2
2t−1 = (f2

2t−1
−1)2

2t−1

(f2
2t−1

−1)

to reduce the cost to below 2 log(n) multiplications and to n− 1 squarings. This
algorithm works as follows:

0. Write n− 1 as [k1, ..., kt] with
∑t
s=1 2ks = n− 1 and k1 > k2 > ... > kt ≥ 0.

Note t is the Hamming weight of n − 1 in binary and t ≤ blog(n − 1)c + 1
and k1 = blog(n− 1)c.

1. Calculate f2
2k1−1 with k1 multiplications using the second observation, save

the intermediate results f2
2kt−1, f2

2
kt−1−1, ..., f2

2k1−1.

2. Calculate f2
n−1−1 = {...{(f22

k1−1)2
2k2

(f2
2k2−1)}22

k3

...}22
kt

(f2
2kt−1) using

t− 1 multiplications.
3. Square the result to get f−1.

|f〉 /n• • • • |f〉

|0〉 /n M • • • |f3〉

|0〉 /n M • • • |f15〉

|0〉 /n M
f255

K • |f510〉

|0〉 /n K • K−1 K2 • K−2 K4 • K−4 M K |f1022〉

Circuit 12: Step 1-3 of Algorithm 6 for n = 10. K is the squaring circuit using
a LUP-decomposition and M is MODMULT. [k1, k2] = [3, 0], 22

1 − 1 = 3,

22
2 − 1 = 15, 22

3 − 1 = 255.

In total we have k1 + t− 1 multiplications, which in the quantum case trans-
lates to 2nlog(3)(k1 + t− 1

2 ) TOF gates and n ·max(k1 + t− 1, k1 + 1) ancillary
qubits. The classic algorithm uses n − 1 squarings, while we have to use up to
4n − 4. We use O(n2) CNOT gates per squaring as explained in Section 5.3,
but we cannot be more accurate about the number of CNOT gates for general
n due to the variance in the squaring algorithm. We can get the exact number
of CNOT gates using an LUP-decomposition. A full division algorithm is given

4 They cite an unpublished manuscript by Scott A. Vanstone as having found a similar
algorithm for the second theorem independently a year earlier, 1987.
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Algorithm 6: FLT DIV. Reversible algorithm for division using inversion
with Fermat’s little theorem.
Fixed input : A constant field polynomial m(x) of degree n > 0.

k1 > k2 > ... > kt ≥ 0 such that
∑t
s=1 2ks = n− 1.

k = max(k1 + t− 1, k1 + 1).
Quantum input:
– A non-zero binary polynomials R1(x) of degree up to n− 1 stored in array f0 of

size n to invert.
– A binary polynomial R2(x) of degree n− 1 to multiply with the inverse stored in

array B.
– A binary polynomial R3(x) of degree n− 1 for the result stored in array C.
– k zero arrays of size n initialized to an all-|0〉 state: f1, ..., fk.

Result: Everything except C as input, C as R3 +R2/R1

1 for i = 1, ..., k1 do
2 fk[0, ..., n− 1]← CNOT(fk[0, ..., n− 1], fi−1[0, ..., n− 1]) // Step 1

3 for j = 1, ..., 2i−1 do
4 fk[0, ..., n− 1]← SQUARE(fk[0, ..., n− 1])

5 fi[0, ..., n− 1]← MODMULT(fi−1[0, ..., n− 1], fk[0, ..., n− 1], fi[0, ..., n− 1])

6 for j = 1, ..., 2i−1 do
7 fk[0, ..., n− 1]← SQUARE−1(fk[0, ..., n− 1])

8 fk[0, ..., n− 1]← CNOT(fk[0, ..., n− 1], fi−1[0, ..., n− 1])

9 for s = 1, ..., t− 1 // Step 2

10 do

11 for i = 1, ..., 2ks+1 do
12 fk1+s−1[0, ..., n− 1]← SQUARE(fk1+s−1[0, ..., n− 1])

13 fk1+s[0, ..., n− 1]←
MODMULT(fk1+s−1[0, ..., n− 1], fks+1 [0, ..., n− 1], fk1+s[0, ..., n− 1])

14 if t = 1 then
15 SWAP(fk1 , fk)

16 fk[0, ..., n− 1]← SQUARE(fk[0, ..., n− 1]) // Step 3

17 C[0, ..., n− 1]← MODMULT(fk, B[0, ..., n− 1], C[0, ..., n− 1])
18 UNCOMPUTE lines 1-16
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in Algorithm 6. We can save up to n(k1− t) qubits by doing additional multipli-
cations to uncompute intermediate results, at the cost of a significant number
of Toffoli gates. We leave it to future work how many qubits we can save for
specific fields.

8.3 Comparison of the two division algorithms

In the division branch of [24] we have given a full implementation of both division
algorithms for the purpose of comparison. As can be seen in Table 6 the algo-
rithms have different strengths. For small n (n < 12 or n = 13) the FLT-based
algorithm performs better in both number of qubits and Toffoli gate count, for
larger n the GCD-based algorithm performs better in number of qubits. For any
n the GCD-based algorithm performs better in CNOT gate count, with roughly
half the gate count of the FLT-based algorithm. The FLT-based algorithm uses
roughly a fifth of the Toffoli gates used by the GCD-based algorithm while using
roughly twice the number of qubits. Due to the lower space requirement of the
GCD-based algorithm we use it in the remainder of the work despite the larger
Toffoli gate cost.

n GCD FLT
TOF CNOT qubits depth TOF CNOT qubits depth

8 3,641 1,516 67 4113 243 2,212 56 1314
16 10,403 5,072 124 12,145 1,053 10,814 144 5968
127 277,195 227,902 903 378,843 50,255 502,870 1,778 203,500
163 442,161 375,738 1,156 612,331 83,353 906,170 1,956 451,408
233 827,977 743,136 1,646 1,172,733 132,783 1,486,464 3,029 640,266
283 1,202,987 1,088,400 1,997 1,708,863 236,279 2,708,404 3,962 1,434,686
571 4,461,673 4,266,438 4,014 6,494,306 814,617 10,941,536 9,136 6,151,999

Table 6: Comparison of various instances of division Algorithms 5 and 6. Field
polynomials from Table 1. Depths and gate count are upper bounds since a
generic algorithm is used rather than optimizing for specific fields.

9 Point addition

With every type of basic operation covered we now describe how to do point
addition on binary elliptic curves.

9.1 Classic point addition

Consider the following case from Section 2.3: we have two non-zero points on
our elliptic curve, P1 = (x1, y1), P2 = (x2, y2) with x1 6= x2. We want to find
P1 + P2 = P3 = (x3, y3). Point addition uses λ = y1+y2

x1+x2
to get x3 = λ2 + λ +

x1 + x2 + a and y3 = (x2 + x3)λ+ x3 + y2.
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9.2 Reversible point addition

Looking at these formulas, we seem to need at least 6n qubits: n for every x and
every y. However, in the case of Shor’s algorithm we want something different:
we have a size 2n register containing a superposition of points P1. Given this
P1, a control qubit q and a fixed P2, change P1 into P3 = P1 + P2 if q = 1
and let it remain P1 otherwise. Considering division needs at least 3n input and
output qubits, a minimal implementation of one step would need 2n+ 1 qubits
for the input, output and control qubits as well as the ancillary qubits from
the division algorithm, and n qubits for the division result. Indeed, modifying
Algorithm 1 from Roetteler, Naehrig, Svore and Lauter [20] for the binary case
gives us exactly this number of qubits. The modified algorithm for a single step
is Algorithm 7 with Table 7 providing a step-by-step breakdown and it is drawn
in Circuit 13.

Algorithm 7: Point addition for binary elliptic curves.

Fixed input : A constant field polynomial m of degree n > 0. A fixed
constant a from the elliptic curve formula. A fixed point
P2 = (x2, y2).

Quantum input: A control qubit q. An elliptic curve point P1 represented as
two binary polynomials x1, y1 stored in x, y of size n. A
size-n array λ initialized to an all-|0〉 state. Ancillary qubits
for division.

Result: (x, y) as P1 + P2 = P3 = (x3, y3) if q = 1, P1 if q = 0, λ and ancillary
qubits same as input λ = 0.

1 x← const ADD(x, x2) // x = x1 + x2
2 y ← ctrl const ADDq(y, y2) // y = y1 + q · y2
3 λ← DIV(x, y, λ) // λ = y/x
4 y ← MODMULT(x, λ, y) // y = y + x · (y/x) = 0
5 y ← SQUARE(λ, y) // y = λ2

6 x← ctrl ADDq(x, λ) // x = x1 + x2 + q · λ
7 x← ctrl ADDq(x, y) // x = x1 + x2 + q(λ+ λ2)
8 x← ctrl const ADDq(x, a+ x2) // x = x1 + x2 + q(λ+ λ2 + a+ x2)
9 y ← SQUARE(λ, y) // y = λ2 + λ2 = 0

10 y ← MODMULT(x, λ, y) // y = x · λ
11 λ← DIV(x, y, λ) // λ = λ+ (x · λ)/x = 0
12 x← const ADD(x, x2) // x = x1 + q(λ+ λ2 + a+ x2)
13 y ← ctrl ADDq(y, x) // y = y + q · x3
14 y ← ctrl const ADDq(y, y2) // y = y + q · y2

– const ADD adds x2 to x. Since this is a constant addition. we use up to n
NOT gates with an average of n/2, assuming a uniformly random x2.

– Similarly ctrl const ADD applies a CNOT gate from q onto another qubit
in x or y at each space the constant polynomial has one as coefficient. Again
up to n CNOT gates with an average of n/2.
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– For DIV we use GCD DIV as it uses fewer ancillary qubits.

– SQUARE is squaring with separate output, SQUARE(λ, y) computes y+λ2.
This takes roughly O(n) CNOT gates with the exact number depending on
the shape of the polynomial. For certain polynomials this can be more than
O(n) if the exponent of the second non-zero term is very high: for example
x127 + x126 + 1 has a very high number of CNOT gates. A design where we
replace the input works equally well but using a LUP-decomposition requires
O(n2) CNOT gates.

– ctrl ADD applies n TOF gates controlled by q.

Algorithm 7 uses 3n TOF gates, up to 3n CNOT gates with an average of
1.5n and 2 calls to SQUARE, GCD DIV and MODMULT each. The depth of
the algorithm can be reduced by making up to n copies of q and doing the
controlled actions simultaneously, but currently the majority of the depth is due
to the division algorithm.

step q = 1 q = 0

1 x = x1 + x2 x = x1 + x2
2 y = y1 + y2 y = y1
3 λ = y1+y2

x1+x2
λ = y1

x1+x2

4 y = 0 y = 0
5 y = λ2 y = λ2

6-8 x = x2 + x3 x = x1 + x2
9 y = 0 y = 0
10 y = (x2 + x3)λ y = y1
11 λ = 0 λ = 0
12 x = x3 x = x1

13, 14 y = y3 y = y1
Table 7: Steps of Algorithm 7.

|x1〉 /n +x2 • • +a+ x2 • • +x2 • |x3〉 or |x1〉

|q〉 • • • • • • |q〉

|y1〉 /n +y2 • M S • S M • +y2 |y3〉 or |y1〉

|0〉 /n D • • • • • D |0〉

Circuit 13: Algorithm 7. M is MODMULT, S is squaring with separate output,
D is division.
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9.3 Addition of points in special cases

When adding points, the constraints that both points are not the points at
infinity or x1 6= x2 cannot always be met. Proos and Zalka [18] proposed ignoring
these special cases by taking a random ν, taken uniformly random as an integer
above 0 and below the order of P , and starting with [ν]P instead of O. This does
not affect the classical computations or quantum Fourier transform. As stated
by Proos and Zalka and proven by Rötteler, Naehrig, Svore and Lauter [20], this
only affects n/2n of the state5. We leave as future work to find out how to do
this in the binary case, and how efficient reversible addition of any two points
is.

10 Result

Since the only step with ancillary qubits is division, which has 3n input and
output qubits, we only need the number of qubits for the divisions as well as
1 control qubit on which we perform the semi-classical Fourier transform. The
number of qubits we need is

7n+ blog(n)c+ 9

to perform Shor’s algorithm on binary elliptic curves. Since we need to do 2n+2
point additions, each step consisting of 2 divisions, 4 multiplications (including
the 2 in division) and 3 controlled additions, we get the following number of
Toffoli gates:

48n3 + 8nlog(3)+1 + 352n2 log(n) + 512n2 +O(nlog(3)).

We do not give an exact number of CNOT gates due to our upper bound of
the cost of multiplication, leaving the total count if CNOT gates at O(n3). In
Table 8 several numerical examples are given. We used java to calculate a LUP-
decomposition and then calculate the number of gates. The total number of TOF
gates is simply the number of TOF gates for a single step multiplied by (2n+2).
Depth upper bound is calculated by keeping track of whether 2 or more gates
can be executed at the same time, increasing the counter if they cannot. These
algorithms are not optimized for depth, as such the depth is of the same order
as the number of TOF gates.
We can see that the number of Toffoli gates is strongly dependent on the number
of Toffoli gates in the division: 48n3 + 352n2 log(n) + 512n2 is purely from the
division, with the log(n) term coming specifically from the incrementer circuit.

10.1 Comparison to previous work

We look at previous work to compare our multiplication algorithm as well as the
point addition.

5 Because each point P still only has one negative R = −P such that P + R = O,
the fact that they work over prime field rather than binary elliptic curves does not
invalidate their proof.
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Single step Total
n qubits TOF gates CNOT gates depth upper bound TOF gates

8 68 7,360 3,514 8,553 132,480
16 125 21,016 11,665 25,183 714,544
127 904 559,141 497,782 776,058 143,140,096
163 1,157 893,585 827,379 1,262,035 293,095,880
233 1,647 1,669,299 1,614,947 2,405,889 781,231,932
283 1,998 2,427,369 2,358,734 3,503,510 1,378,745,592
571 4,015 8,987,401 9,080,190 13,237,682 10,281,586,744

Table 8: Qubit and gate count for Shor’s algorithm for binary elliptic curves.
Field polynomials from Table 1.

Multiplication in binary finite fields
We compare our multiplication algorithm to two previous instances of multipli-
cation: a variant by Kepley and Steinwandt [13] that optimizes TOF gate count
and a variant by Maslov, Mathew, Cheung and Pradhan [15] that optimizes the
number of qubits used but does not use Karatsuba. Other variants exist, such
as a Karatsuba variant by Parent, Roetteler and Mosca [17], that are worse in
terms of space or Toffoli gate count. Since Kepley and Steinwandt use Clifford
and T-gates rather than CNOT and Toffoli, we translate 7 of their T-gates and
8 Clifford gates to 1 Toffoli gate, and translate any remaining Clifford gates to
CNOT. The resulting comparison is in Table 9. We can see that although Algo-
rithm 4 does not compare favorably in every regard, both the number of Toffoli
gates and the number of qubits are best compared to the alternatives. These are
considered the more important metrics than CNOT gate count, as Toffoli gates
are significantly more expensive than CNOT gates.

Field size 2n Toffoli gates CNOT gates qubits
n = Here [13] [15] Here [13] [15] Here [13] [15]

4 9 9 16 44 22 3 12 17 12
16 81 81 256 678 376 45 48 113 48
127 2185 2185 16129 20632 13046 126 381 2433 381
256 6561 6561 65536 64706 57008 765 768 7073 768

n O(nlog2 3) O(nlog2 3) n2 O(n2) O(nlog2 3) O(n) 3n O(nlog2 3) 3n

Table 9: Comparison of this work with the works of Kepley and Steinwandt [13]
and Maslov, Mathew, Cheung and Pradhan [15] in terms of Toffoli and CNOT
gates as well as qubit count.

Greatest common divisor based inversion
The algorithm we used for inversion and division is an improvement over the
inversion algorithm based on Kaliski’s [20]. That algorithm uses a large number
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of controlled Toffoli and CNOT gates, which are translated into 3 Toffoli gates
and 1 Toffoli gate respectively. This causes a large increase in Toffoli gate count,
with the prime field cases using 32n2 log(n) Toffoli gates. The binary case would
not be much better: a comparison is required in Kaliski’s algorithm which, even
in the binary case, requires two integer additions. The four remaining integer
additions however, would be binary polynomial additions.

In terms of space the difference is smaller. Our implementation of Bern-
stein and Yang’s inversion algorithm [4] is better than the quantum variant of
Kaliski’s inversion algorithm by n + blog(n)c + 2 ancillary qubits. We get this
benefit by using part of the input to store decision qubits, saving n qubits, us-
ing an incrementer circuit that uses dirty qubits rather than clean ones, saving
blog(n)c qubits, as well as using fewer individual ancillary qubits: we only use
one, compared to the three required by [20], accounting for differences in binary
and prime fields.

Prime field elliptic curve point addition
When comparing the formulas in this thesis to the finite field formulas from
Rötteler, Naehrig, Svore and Lauter [20] we cannot compare the number of qubits
or gates. As we work in the binary case, this would not be very meaningful and
we would likely have better results even with schoolbook algorithms because
our essential operations of multiplication and addition require no carry qubits.
However, when comparing the algorithms, potential for improvement even in the
prime field case shows.

The step function is essentially the same as ours, with extra space required in
their algorithm for inversion output, as their algorithm requires separate steps for
inversion and multiplication. We can see that a variant of the division algorithm
we use likely improves gate count in the prime field case: Bernstein and Yang
[4] propose a classical implementation of a constant time prime field division
algorithm in addition to the division algorithm we use. Translating this to a
quantum algorithm might be worthwhile. For multiplication the algorithm in
[20] is not optimized either, with recent work by Gidney [8] giving similar results
as the binary Karatsuba algorithm for multiplying integers in Z.

Binary elliptic curve point addition
Comparing to the binary point addition formulas by Amento, Rötteler and Stein-
wandt [1], we have to note an important difference. Their formulas use projective
coordinates to avoid divisions. However, the formulas used still use a lot of ancil-
lary qubits and require separate input and output qubits, leading to 10n qubits
after the first step. Their paper is unclear on whether they store intermediate
results as separate registers, but even if we take this 10n as the number of qubits
their result has worse space requirements than the 7n+blog(n)c+9 we use. How-
ever, since they do not use division, they only need 26 multiplications every step
(they report 13, but do not replace the input and we need to run their algorithm
in reverse to clear the input), which would result in 52nlog(3)+1 as the leading
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term in their Toffoli gate count if they used our new Karatsuba multiplication
algorithm.

It is left as future work how much we can benefit from a similar change in
coordinate system.

11 Conclusion

The results in table 8 show concrete numbers of logical qubits required to perform
Shor’s algorithm to solve the discrete logarithm problem on binary elliptic curves.
We obtained these results by optimizing the multiplication and division circuits.
The number of Toffoli gates is high due to choosing algorithms optimized for
space. Using the alternative division algorithm 6 with cryptographic field sizes,
the number of Toffoli gates for division could be cut by about 80% at the cost of
doubling the number of qubits. Furthermore, optimizing for depth might result in
a better depth count than the upper bounds given without changing the number
of gates. Additionally, a change to projective coordinates might result in an even
better trade-off.

The multiplication algorithm described in Section 7 provides equal or better
results to existing binary multiplication algorithms in terms of of Toffoli gate
count and space. It can still be optimized for depth or CNOT gate count and
can potentially be used as a base for non-binary cases.

11.1 Future work

We suspect that a better algorithm exists for multiplication by xd
n
2 e + 1. Depth

so far has been an upper bound: both the multiplication and division algorithm
could benefit from a further look at how to optimize it. The division algorithm
specifically can also benefit from a better incrementer circuit. A look at projective
coordinates might also result in valuable contributions: the algorithms in [1]
could benefit from being optimized for space rather than depth. Finally, some
of the work done in this thesis such as a quantum algorithm for constant time
GCD-based inversion can potentially provide benefits in prime fields.
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