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Abstract

With an astonishing success of AI-based controllers on simulated dynamical systems, very little
has been explored in their applicability to real-world continuous-time dynamical control systems.
This study investigates the practicality of two popular categories of AI controllers namely Deep
Neural Networks (DNNs) and Spiking Neural Networks (SNNs) on a physical continuous-time dy-
namical system with real-time constraints. The goal of the thesis is achieved through the design,
implementation, optimization, and evaluation of the energy efficiency of the mentioned category of
AI controllers. Our research goal includes obtaining minimal DNN and SNN controllers optimized
in terms of network size and connectivity to control the physical system. The research further
extends to striking comparison in terms of energy consumption of DNN and SNN controllers when
they execute control over the same dynamical system and at the same performance.

Initially, we designed and built a real cartpole system which was the target system to be con-
trolled by the AI controllers. We studied, designed, and implemented two Reinforcement Learning
(RL) algorithms namely Deep Q-Network (DQN) and Neural Fitted-Q iteration (NFQ) on the
cartpole system. We also implemented an Evolutionary algorithm, the Genetic Algorithm (GA)
to produce AI controllers. This algorithm was chosen to produce the DNN and SNN controllers as
it provided the best results compared to the former two RL algorithms. The designed AI control-
lers were optimized through pruning and the most optimal controllers were selected to calculate
the energy consumption. We defined two energy models based on which the DNN and SNN con-
trollers were profiled. Finally, the AI controllers were compared based on the energy consumptions
and the results are discussed.

We obtained a model-based DQN controller that demonstrated an average balance time of 2.2
seconds, a model-free NFQ controller that also showed an average balance time of 2.2 seconds,
and a GA controller that exhibited an average balance time of 2.42 seconds on the real cartpole
system. We produced a DNN controller using GA that could perform an average balance time of
2.42 seconds whereas an SNN controller using GA that could balance the pole on the real cartpole
system for an average of 2.48 seconds. The minimal size of both the controllers obtained that was
able to balance the cartpole system was 10 neurons with 4 neurons in the input layer, 4 neurons in
the hidden layer, and 2 neurons in the output layer. These AI controllers were profiled for energy
consumption based on the number of MAC operations and internal calculations including memory
loads and stores. Our analysis showed that the DNN controller consumed 1.5 times the energy as
that of the SNN controller in terms of energy required for the computations and memory accesses.
However, in the case of the number of MAC operations, the SNN controller was efficient as it took
0.45 times the number of MAC operations as that of DNN.

The primary limitation of the thesis is the use of comparatively simpler hardware to design
a cartpole system. The cartpole system was designed using a LEGO Education Kit with the AI
controllers running on a non-real-time embedded Linux OS. Simply put, the AI controllers are
running on top of a non-real-time hardware setup to control a real-time problem which resulted
in a noticeably lower benchmark of performance set by the AI controllers.

Our research concludes that the AI controllers are capable of performing well on real-time tasks
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in the real-world provided that the hardware of the control system has a real-time nature. We could
judge the practicality of AI controllers on practical dynamical control systems by implementing
two AI controllers belonging to the category of DNN and SNN. We conclude that using SNN
and DNN controllers on general-purpose processors (i.e. non-neuromorphic processors) results
in proving DNN controllers as energy-efficient solutions than SNN controllers in terms of core
computations and memory load and store operations. On the contrary, SNN controllers show
great efficiency in terms of the number of MAC operations that are the most power-consuming
operations on a general 45 nm process.

vi Design, implementation, optimization, and evaluation of energy-efficient AI controllers and
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Chapter 1

Introduction

1.1 Motivation

Deep Reinforcement Learning (DRL) has shown great advancement in the ability to control com-
plex systems. Commonly, Deep Neural Networks (DNNs) are used to compute the controller
actions in DRL. However, most DNNs establish control over the system in a discrete fashion. The
state of the system to be controlled is sampled at every sampling period and fed to the DNN
controller. The DNN controller uses the state input and calculates an action from a discrete set
of actions to be given to the system such that the system can be controlled within the predefined
limits. Precisely, at every sampling period, the neural network passes the input values from the
input layer (i.e. 1st layer) to the consequent layer (called the hidden layer(s)) through a sequence
of calculations until it reaches the final layer (output layer) to produce a discrete action. As a
result, there will be an equal number of state samples and actions generated in the case of a DNN
controller.

Another class of Artificial Neural Networks (ANNs) called Spiking Neural Networks (SNNs)
exist which offer continuous control over the system. However, the term ‘continuous control’ holds
a different meaning in this aspect. Similar to a DNN, an SNN is also fed with a state sample taken
at every sampling time. The number of discrete actions produced by the SNN controller is also
equal to the number of state samples. The major difference lies in the manner in which the SNNs
calculate the control action. Simply put, the frequency with which switching of the actions occurs
between two consecutive sampling periods in SNNs is less as compared to DNNs. This quality
of SNNs is attributed to the sparsity of its neuron firing. The less frequent switching of actions
brings about the effect of a continuous control over the system such that the controller acts on
the system only when it is required to.

The ability of the mentioned controllers in controlling a dynamical system using different
methodologies gives rise to the need for performance evaluation of each of these controllers on
a control application. We aim to compare the energy efficiencies of SNN and DNN controllers
when they execute control on a target system of a comparable level. We present research on how
efficiently can the SNNs be designed with respect to an optimized DNN on a physical dynamical
system with low dimensional sensory input. Further, we implement both the controllers on a
practical dynamical system to check their feasibility in real-world scenarios. The thesis also aims
at minimizing the energy consumptions of both the approaches by optimizing the models through
the frameworks used to design them.
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1.2 Structure of Thesis
The thesis is organized into 10 chapters and the topics covered in each chapter are as follows.

Chapter 2 formally states the objective or the problem statement of the thesis and enlists the
research questions solved by the thesis. The chapter also explains the technical milestones that
were set beforehand for a timely completion and tracking the progress of the thesis. In chapter 3,
we explain the various concepts and theories concerned to the thesis to build a proper orientation
of the reader. We also cover the background and explain the algorithms used in the thesis in
detail. Chapter 4 describes the evaluation framework used for the thesis with its hardware and
software development steps. The chapter also provides the reasons for the choice of the hardware
and enlists the specifications of the designed system.

Chapter 5 entails the implementation procedure of DQN algorithm providing its motivation,
experiment results and conclusion. Chapter 6, describes the methodology of implementing NFQ
algorithm on the hardware along with its results. On the similar lines, chapter 7 and 8 narrate the
implementation procedures of GA and SNN algorithms respectively providing their motivation,
experiments and outcomes.

Chapter 9 focuses on optimizing the best controllers obtained from chapters 5, 6, 7, and 8 and
describes the attempts undertaken to make the controllers energy efficient. The thesis concludes
with evaluating the best DNN and SNN controllers and comparing their performances on the target
hardware in the chapter 10. It also describes the energy models that were built to evaluate the
energy efficiency of the chosen controllers. A brief discussion on the results and their interpretation
is done in the end.

2 Design, implementation, optimization, and evaluation of energy-efficient AI controllers and
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Chapter 2

Problem Statement

2.1 Objective
The thesis aims to check the feasibility of the two state-of-the-art AI controllers namely: Spiking
neural network and Deep neural network on a practical control system with real-time constraints.
Moreover, it also focuses on establishing an energy comparison of the aforementioned controllers
in controlling the dynamical system. Formally stating, the objective of the thesis is,

“Design, implementation, optimization, and evaluation of energy-efficient AI controllers and
testing their feasibility on a real continuous-time dynamical system.”

• AI controllers: We specifically implement the two categories of AI controllers namely Deep
Neural Network (DNN) and Spiking Neural Network (SNN).

• Target platform: The chosen pair of controllers will be implemented on a real-life cartpole
system which represents a real-time dynamical system.

2.2 Research Questions
Following are the set of research questions that address the need for research on efficient control
on real dynamical systems using AI controllers:

1. Given the current state of the art algorithms, what is the minimal optimized Deep Neural
Network (DNN) for robust control of a real Cartpole system where the DNN is optimized
in terms of network size and connectivity i.e. weights and biases, with standard energy
optimization techniques to achieve a given level of performance?

2. What is the energy consumption of such a network in terms of an energy model that is
defined by the number of operations such as multiplication and additions, and number of
load and store operations?

3. How do Spiking Neural Networks (SNNs) compare to DNNs in terms of energy consumption
as defined by the energy model in question 2, when controlling the same cartpole system at
a comparable performance?

2.3 Technical Milestones
To achieve the objective of the thesis, we have to complete several tasks in the given time. In this
section, we enlist the milestones that were set to keep a track of the progress and get an idea of
possible roadblocks that may arrive during the course of the thesis. Besides, the milestones aid
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in providing a proper sequence and they classify the project into different phases. Multiple set of
tasks were required to be completed to reach a milestone and keeping that in mind, we outlined
them as follows:

1. Overview on the state of the art DNNs used for control applications.

• Choose a DNN algorithm suitable for the cartpole-control application

2. Check options and feasibility for buying or making a real single-pole cartpole system

• Build/buy a real-life cartpole system.
• Adapt the cartpole system to make it compatible with a reinforcement learning agent/al-

gorithm.

3. Design and implementation of a Deep Neural Network on the hardware.

• Design the chosen Deep Neural Network algorithm.
• Implement the controller on the simulations.
• Implement the controller on the hardware.

4. Optimizing the chosen DNN

• Optimize network structure through pruning and reducing intermediate layers.

5. Test and evaluate the AI controllers on the real cartpole model.

• Make a simple energy model for the control based on
– Number of operations (additions, multiplications, etc).
– Number of external and internal memory loads and stores.

• Profile the controller and determine energy usage.
• Compare energy and quality to a Spiking Neural Network controller for the cartpole

balance problem.

The thesis intends to design the SNN and the DNN controllers, optimize them and use the most
optimum versions of both the controllers. However, while doing so, maintaining impartiality by the
designer is important and can be a debatable concern at the end of comparison results. To avoid
being tendentious towards SNNs or DNNs, the SNN controller will be studied and designed by
another student. The designing, implementation, and optimization of the DNN would be carried
out by myself. On the completion of the design of the SNN controller, it will also be implemented
and optimized by me. Finally, the designs of controllers using both the approaches (SNN and
DNN) will be compared and tested by me.

4 Design, implementation, optimization, and evaluation of energy-efficient AI controllers and
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Chapter 3

Related Work

In this chapter, we dive into the concepts of Supervised, Unsupervised, and Reinforcement learn-
ing which form the main categories of Machine learning. We explore the relation of Artificial
Intelligence and Machine learning and understand the need for Reinforcement learning for our
study. Next, we briefly describe the algorithms Deep Q-Learning (DQN), Neural Fitted-Q Iter-
ation (NFQ), and Genetic Algorithm (GA). Finally, we understand the two categories of neural
networks: Deep Neural Network (DNN) and Spiking Neural Networks (SNN) which we propose to
compare in terms of their performance in this thesis. We end the chapter with the basic concepts
of the system under study i.e. the Cartpole System.

3.1 Supervised, Unsupervised, and Reinforcement learning
Information is everywhere. Apart from the human being himself, the machines that are produced,
the IoT devices, the social media, the business transactions, and nearly everything that can be
supervised produces data in different formats and sizes. This data is collectively termed as ‘Big
data’. Back in 2001, Doug Laney articulated the definition of Big Data as being 3-dimensional
and is represented using the 3 V’s namely Volume, Velocity, and Variety [15]. The magic of Big
Data does not reside in its quantity but the insights that it can provide. With a proper motive,
the applications of Big Data lay in product optimizations, innovation, cost and time reductions,
smarter decisions, and many more.

Computers are sophisticated machines that are capable of solving complex problems through
the use of various algorithms. Artificial Intelligence (AI) is a process of inducing intelligence into
computers by explicitly programming them. We can consider it as a comprehensive set of ‘if-else’
rules which the computers follow to sense, reason, act, and adapt to a system. However, these
computers have certain constraints such as storage, computational capability, etc. The problem
arises when these computers, with limited capacities, are allowed to face the demanding Big Data.
There arises a point when our traditional algorithms start to fail and coding an exhaustive set
of rules becomes impossible. This is the point where Machine learning comes to the rescue. It
is a field that amalgamates Artificial Intelligence, computer programming, and philosophy all in
one. It fosters the system (i.e. the computer) with the ability to automatically learn and improve
from experience without being explicitly programmed. Machine learning’s key concept lies in
minimizing to eliminating the human-in-the-loop while performing a task. It focuses on building
computer programs that learn by observing the data and make decisions about the data through
either following the instructions given by the programmer, observing patterns in the data, or
direct experience. Owing to the technique used in learning from the data, Machine Learning is
broadly divided into three categories namely, Supervised Learning, Unsupervised Learning, and
Reinforcement Learning. A pictorial hierarchy of the Artificial Intelligence fields is as shown in
figure 3.1.
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Figure 3.1: Hierarchy of Artificial Intelligence fields. (Graphics Source: [5])

Supervised learning (SL) algorithms rely on the data that comes along with labels. The
model that is going to be trained is also termed as the ‘agent’. In supervised machine learning, we
first provide the model with a subset of raw labeled data called the ‘training data set’. The agent
is trained to produce a function that would map the inputs to the outputs that correspond to the
labels of the input data. Once the agent has learned enough i.e it is able to predict the correct
labels of the input data, it is tested on another subset called the ‘test data set’ to check if it can
map the inputs to the outputs correctly. Finally, the knowledge of the agent i.e. the mapping
function can be used on unseen future data to predict the labels. Thus, supervised learning is
useful when we have a labeled data set.

Unsupervised learning (UL) contrasts supervised learning in the sense that, the data we
have is neither classified nor labeled. The idea behind using unsupervised learning is to allow the
agent to find hidden patterns in the input data set and try to predict the output. To train the
model, we feed it with a training data set without any explicit instructions as to what has to be
done with it. Unsupervised learning is used in cases where we expect some relationship between
the data in the data set but we cannot directly point it out due to the complexity in the data
set. Thus, we ask the model to group the data by finding hidden features within it in a way that
makes sense. Therefore, we can choose this type of learning mechanism whenever we have a data
set but it is unlabelled and incomplete.

Reinforcement learning (RL) is the category of machine learning that is neither based
on supervised nor unsupervised learning. The learning of the agent happens through an ‘envir-
onment’ and improving its ‘actions’ through the ‘rewards’ it obtains from the environment. In
a reinforcement learning problem, there exists a start-state or an initial state and an end-state
or a terminal state. The agent begins in the start state and its task is to reach the end state
by providing different actions to the environment. The agent receives appreciation from the en-
vironment in terms of rewards if its previous action led it to success or end-state, and does not
receive any reward otherwise. Thus, a trial and error approach combined with the delayed rewards
guides the agent to automatically determine the ideal behavior to achieve higher rewards. The
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agent-environment interaction process in a reinforcement learning problem is as shown in figure
3.2. RL is not completely a supervised learning technique from the fact that it does not rely on
a labeled training data set to learn the task. Instead, it relies on its capability to observe the en-
vironment, measure the after-effects of its actions taken on the environment through the rewards,
and learn by itself. It does not follow unsupervised learning either, since we, as a programmer
already know upfront when our model will learn the task by defining the expected reward. We use
the reinforcement learning technique when we have to deal with a reinforcement learning problem
that is characterized by a trial and error search along with a delayed reward setting.

Figure 3.2: The agent-environment action taken from [25, p. 48]]

Oftentimes, reinforcement learning problems denote a complex non-linear system which cannot
be modeled easily. Since the reinforcement learning agent learns the task to be achieved in the
environment without knowing its model, it is called a ‘model-free’ approach. Similarly, an agent
that knows the mathematical model of the task to be learned beforehand, the approach that it
uses to learn is called a ‘model-based’ approach. In this thesis, we aim at controlling a real-time,
dynamical system using model-free reinforcement learning algorithms and therefore, we discuss
the reinforcement learning problem further in detail.

The RL problem setup mainly involves three components as seen in figure 3.2. It is due to
these components that an AI (or RL) agent is capable of learning a particular task.

1. The Environment is the world in which the Reinforcement learning takes place. To ex-
emplify, OpenAI Gym is a standardized toolkit used to develop and compare different rein-
forcement learning algorithms. It provides environments for different reinforcement learning
tasks such as Cartpole, Mountain Car, Acrobot, etc using which we can train, test, and
implement different reinforcement learning algorithms.

2. The Agent is the entity that is responsible to execute an action on the environment. The
agent is basically the algorithm that can use a neural network and learn the correct way of
interacting with the environment.

3. A Reward function is the last and most vital part of RL. It is simply a function that
maps a certain value to the state of the environment. It returns the value whenever there
occurs a change in the state of the environment. Using the rewards, the agent understands
whether its action that it provided to the environment in the past was good or bad.

With the description of the important entities in an RL problem, we also enlist the different
terminologies that are also observed in the RL problem. They are as follows:

• Action: An action space is a set of all valid actions in a given environment. The agent is
allowed to take any of the action from the action space at any given time. The action space
can be finite (i.e. Discrete) or real-valued (i.e Continuous)

Design, implementation, optimization, and evaluation of energy-efficient AI controllers and
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Figure 3.3: A generic flowchart used by RL algorithms to learn a task in a given environment

• State: It is a complete description of the world in which the agent finds itself.

• Observation: It is a description of the environment and it typically involves a reward
associated with the last transition.

• Transition: A process through which the environment changes its state to another state
when an action is taken in the environment.

• Return: The goal of the agent is to maximize the cumulative rewards, called return.

• Policy: It is a rule-book that the agent uses to decide how to react to the observed states
of the environment. It basically maps the perceived states by the agent to the actions that
it is allowed to take in the environment.

• Step: A step represents the unit of ‘time (t)’ in the given environment. So if the state of an
environment at a time ‘t’ is St, the environment moves to the state St+1 as a consequence
of action At producing a reward Rt+1.

• Episode: A sequence of states, actions, and rewards that ends in a terminal or end-state,
beginning from a start-state is called an episode. Before the start of an episode, the environ-
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ment is reset to an initial state and the agent is allowed to interact with the environment. An
episode ends when the environment enters a terminal state. Usually, most of the simulated
environments have a predefined maximum episode length to avoid infinite execution time.
Thus, an episode can also end if the maximum episode length is reached.

Using the above set of terminologies and concepts, we can write a generic flowchart that every
reinforcement learning algorithm follows as given in figure 3.3.

3.2 Deep Q-Learning
Neural Networks (NNs) are a means of doing Machine Learning. They are highly powerful and
flexible due to their capabilities of learning a task by analyzing training samples and recognizing
patterns in raw sensory data through a kind of machine perception. They are known for their
generalization capability from the fact that we do not need to devise an algorithm to perform a
particular task. Since NNs are inspired by and loosely modeled on the functioning of a human
brain, they are called as ‘Artificial Neural Networks (ANNs)’. An Artificial Neural Network con-
sists of an organized set of neurons in layers with an input layer, an output layer, and one or more
layers between the input and the output called the ‘hidden layers’. Each layer is connected to
its adjacent using ‘weights’. When an ANN comprises more than one hidden layer, it is termed
as a ‘Deep Neural Network (DNN)’. Unlike other conventional machine learning algorithms, a
DNN performs automatic feature extraction from the data it is provided with, without the human
intervention. It assumes that there exists some correlation between the input and the output
and produces a function for mapping. It is known as a ‘universal approximator’, as it learns to
approximate an unknown function f(x) = y between any input x and output y. A combination of
a Deep Neural Network with a Reinforcement Learning architecture is called ‘Deep Reinforcement
Learning (DRL)’.

We discussed how an RL agent interacts with the environment in a reinforcement learning
setting through executing suitable actions by observing the environment states and improving its
policy based on the rewards. The RL agent aims to maximize the return across an episode. In the
process of attempting to achieve higher rewards, the agent ends up learning the task. An import-
ant aspect of this process is that the state that the agent observes is a consequence of its previous
state which in turn is a result of its previous state. Thus, each state within an environment follows
a Markov property, i.e. each state depends solely on the previous state and the transition from
that state to the current state.

Q-Learning is a model-free reinforcement learning algorithm that uses a Q-table to map all the
possible states in an environment to the actions. The ‘Q’ in the Q-learning represents the q-value
i.e. the Quality of taking a particular action when the agent observes a particular state within
the environment. Thus, the q-value denotes how useful it is to take a particular action to achieve
maximum future rewards. We can estimate the expected future reward from being in a particular
state using the Bellman’s equation given as,

Q(s, a) = r + γ maxa′Q(s′, a′) (3.1)
Equation 3.1 states that, the maximum future reward Q(s, a) for an action a taken in a state

s is the immediate reward r plus the discounted (γ) maximum future reward for the next state s′.
Using this function, the agent can simply follow the policy π and pick the action with the highest
q-value,

π(s) = argmaxaQ(s, a) (3.2)
A Q-table is the simplistic model of Q-learning in which we randomly set the q-values for

each state-action pair. Based on the q-values, the agent keeps interacting with the environment
and iteratively updates the Q-table using the equation 3.1. The values in the Q-table eventually
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converge indicating that the agent has successfully learned the problem. An example of a Q-table
evolution for an environment with 8 possible states and 4 possible actions is shown in figure 3.4.

Figure 3.4: Illustration of Q-table evolution during the training process.

Thus, we can see that the Q-table serves as a rule-book or a policy or a cheat sheet that an
agent uses to solve the task. However, a problem arises when the cheat sheet is too long when an
environment has thousands to millions of states. This causes the size of the Q-table to explode
unrealistically. At this point, a neural network can be used to replace a Q-table.

A Deep Q-Network is nothing but Q-learning using a Deep Neural Network. While the agent
uses a Q-table to pinpoint the best action by looking up their q-values in the Q-table, a Deep
Q-network produces the q-values corresponding to all the possible actions when a state is fed at
the input of the network. Figure 3.5 depicts the working mechanisms of Q-learning using a Q-table
and a Deep Q-Network and highlights how they differ in producing the q-values.

Figure 3.5: Q-Table vs Deep Q-Network.

In 2013, the Deep Q-Network published in [16] proved how a DQN agent could demonstrate
the performance of superhuman level on a benchmark of Atari 2600 games. In that, the agent
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learned the policies using only the high dimensional sensory input i.e. the raw pixels from the
game. The DQN algorithm is as given in listing 1.

Algorithm 1 Deep Q-learning with experience replay [16]
1: Initialize replay memory D to capacity N
2: Initialize action-value function Q with random weights θ
3: Initialize target action-value function Q̂ with weights θ− = θ
4: for episode = 1, M do
5: Initialize sequence s1 ={x1} and preprocessed sequence φ1 = φ1(s1)
6: for t = 1,T do
7: With probability ε select a random action at

8: otherwise select at = argmaxaQ(φ(st),a; θ)
9: Execute action at in emulator and observe reward rt and image xt+1

10: Set st+1 = st, at, xt+1 and preprocess φt+1 = φ(st+1)
11: Store transition (φt, at, rt, φt+1) in D
12: Sample random minibatch of transitions (φj , aj , rj , φj+1) from D
13: Set yj = rj if episode terminates at step j+1
14: yj = rj + γ otherwise
15: Perform a gradient descent step on (yi −Q(φj , aj ; θ))2 w.r.t θ
16: Every C steps reset Q̂ = Q
17: end for
18: end for

The working of the DQN algorithm is as follows. The algorithm makes use of a buffer i.e.
memory to store the interactions of the agent with the environment. In the algorithm, the action-
value function Q represents the Q-network and Q̂ also represents the same Q-network but is termed
as the Target network. We discuss later how both the terminologies differ in their functionality.
At first, the Q-network is initialized with random weights and biases. The agent then observes a
sequence of stacked images from the game screen and preprocesses it. This represents the current
state st. Next, it produces the q-values of all possible actions using the stacked images as the
input to the Q-network. With a certain probability, it chooses the action at corresponding to the
maximum q-value and sends the action to the environment where it is executed. The environment
moves to the next state st+1 producing the reward rt. The DQN agent then stores the tuple
(state st, action at, reward rt, next state st+1) into its memory. This process repeats until there
are enough samples in the memory to start the training process. Once the memory fills with a
certain number of transitions, the agent randomly samples a minibatch of transitions to train the
Q-network. With each transition, the next state st+1 is fed to the Q-network with the previous set
of weights and biases to produce the ‘target q-value’. Since we calculate the target q-value using
the previous set of weights and biases of the network, the network is termed as the Target network.
It is important to note that the Target network produces the q-values using the previous set of
network parameters and not the parameters currently used by the Q-network. Next, the state st

from the same transition sample is fed to the Q-network to produce the ‘predicted q-value’. Then,
the loss is calculated using the mean squared error of the predicted q-value and the target q-value
as given in equation 3.3.

Loss L = 1
2[

target︷ ︸︸ ︷
r + γ maxa′ Q(s′, a′) −

prediction︷ ︸︸ ︷
Q(s, a) ]2 (3.3)

Using the loss, the network updates its gradient using backpropagation. The agent aims to
minimize the loss observed in equation 3.3. The training repeats until the minibatch is completed.
The process of learning from the experience of the agent is termed as ‘Experience Replay’. Next,
the agent again interacts with the environment for one step, stores the transition set, samples a
minibatch from its memory, and retrains again. After a fixed set of steps C, the agent copies the
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weights and biases of the Q-network to the Target network. The result of the training process
ends in the convergence of the Q-network.

3.3 Neural Fitted-Q iteration
Martin Riedmiller in his paper [21] introduced a neural network based reinforcement learning al-
gorithm that can learn control policies in a highly data-efficient manner. The proposed algorithm
was called as the ‘Neural Fitted-Q iteration (NFQ)’. Due to the algorithm’s minimal training data
requirement, the algorithm could be used on real-control plants. The author of NFQ demonstrated
its success on a real-time practical pole swing-up and balancing task in his paper.

One of the major drawbacks of the classical Q-learning algorithms is that they are updating
the Q-function in an online fashion i.e. at every transition being added to the memory, the q-value
function is updated. Thus, for the agent to be able to learn a task, typically, several ten thousands
of episodes have to be played [18]. The main cause for this is, if the weights of the Q-network
are tweaked for one particular state-action pair, unpredictable changes are occurring at the other
state-action pairs in the state space. This leads to an unreliable and slower learning process [21].

NFQ solves the problem of online training through performing the updating of the Q-network
in an offline manner. In that, the NFQ agent initially interacts with the environment (real plant)
and collects transitions of the form (s, a, s′) where s denotes the current state, a denotes action
given to the current state, and s′ denotes the next state. This set of transitions describe the
experiences of the agent and is called the sample set D. The sample set can then be used to train
the NFQ agent in an offline setting using the supervised learning technique. NFQ uses Rprop
[19] that is well known to be a very fast and insensitive towards the choice of learning parameters
supervised learning technique for batch learning. A pseudo-code describing the NFQ algorithms
is as given in listing 2.

Algorithm 2 The NFQ Algorithm [21]
1: input: a set of transition samples D
2: output: neural q-value function QN

3: k = 0
4: init MLP() → Q0
5: DO{
6: generate pattern set
7: P = {(inputl, targetl), l=1,....,D} where:
8: inputl = sl, al,
9: targetl = c(sl, al, s′l) + γminbQk(s′l, b)

10: Rprop training(P ) → Qk+1
11: k:= k + 1

12: }WHILE ( k < N )

The NFQ algorithm comprises of two main stages: the generation of a training pattern set
P , and training the multi-layer perceptron (MLP) or a Deep Neural Network (DNN) using the
training set. The pattern set is divided into input and training sections. The input part is formed
using the state sl and the action al from the training experience l. For the cartpole problem, the
target value is calculated as the sum of the cost of transition c(sl, al, s′l) and the expected minimal
path costs for the next state s′l, computed based on the current estimate of the Q-function, Qk.
Finally, using Rprop for fast supervised learning, the network quickly and reliably converges as
compared to an ordinary gradient descent technique.
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In the case of the cartpole balancing problem, the state space is divided into three regions as
shown in figure 3.6. The target value is calculated as,

targetl =


c(sl, al, s′l) , if s′l ∈ S+

C− , if s′l ∈ S−

c(sl, al, s′l) + γminbQk(s′l, b) , else
(3.4)

Figure 3.6: Division of the state space in a pole balancing problem using NFQ.

S+ denotes the set of goal states in which the cartpole system should be controlled to while
S− denotes the set of forbidden states in which the controller being trained must learn to avoid
by using a correct control policy [21]. c(sl, al, s′l) denotes the cost of transition and is set to a
small positive constant which indicates that we are aiming for a minimum time controller. In
other words, the controller must be able to attain the balancing position at the earliest. Further,
we set the target to zero when the system is in the goal region i.e. S+. And lastly, if the agent
enters the S− region, it has to be punished with the highest degree, hence the target is set to 1
as the maximum output (q-value) generated by the network is 1.

The concept of q-value in the case of NFQ is exactly opposite to that of DQN. In NFQ, the q-
value generated at the output of the network represents the cost that it has to incur corresponding
to the state-action pair given at the input. Therefore, the aim of the NFQ agent is to minimize
this cost by choosing the state-action pair with minimal q-value. This also clarifies why we set the
target value highest when a forbidden state is reached and zero when the goal state is reached. The
author of NFQ also has provided a guide to applying the NFQ algorithm to practicals systems,
‘10 Steps and Some Tricks To Set Up Neural Reinforcement Controllers’ [20]. We discuss some
of the key insights obtained from the guide and enlist the settings used in [21] to implement the
NFQ on the real swing-up and pole balancing task.

1. The concept of using the bang-bang controller i.e. oscillating back and forth between two
extreme control signals to keep the system in the desired state is often not acceptable in real
control plants. Instead, the addition of a neutral action that does not use any energy, to the
action space is a better option. However, there exists a tradeoff: a fewer set of actions in the
action space leads to coarser control behavior, thereby compromising accuracy in control. On
the other hand, multiple higher number of actions can exponentially increase the searching
space of available policies. Therefore, the action set should be kept small enough to allow
the fast learning of the agent. The paper uses action space A = {+F, 0, -F}.

2. Choice of S+: The choice of the goal states S+ should be such that there exists a policy, that
S+ is reachable from every starting state. With a larger range of S+, the learning becomes
easier whereas a smaller range of S+ can produce a more accurate controller behavior. In
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the NFQ paper, S+ = cart position is at most 0.1m away from the center AND pole angle
is at most ± 0.15 rad i.e. ±8.59° from the vertical.

3. Choice of S−: The range of S− used in the paper is ±0.25 m from the center.

4. Discounting: To ensure that there exist proper policies through which S+ is reachable from
every state with a non-zero probability, the NFQ paper uses no discounting i.e. γ = 1.

5. Normalized input: Supervised learning is effective when all the inputs are at a similar level.
Thus, the inputs are normalized to zero mean and standard deviation = 1.

6. Epochs: Epochs correspond to the total number of sweeps through the training set and was
set to 300 in the NFQ paper.

7. Sampling time: There exists a directly proportional relationship between the sampling time
and the number of actions available. With a larger sampling time, more number of actions
are required to achieve the same level of controllability and vice versa. Since the action space
is small, the sampling time used in the implementation of NFQ by the author is 10 ms.

8. Network architecture: NFQ was implemented using two hidden layers each comprising of
20 neurons with tanh activations and a single neuron at the output layer with sigmoidal
activation.

9. Artificial training transitions S++: In order to have a reasonable number of state-action
pairs that lead to the goal state, we can add artificial state transitions to the sample set as a
part of the hint-to-goal [21] heuristic. Precisely, a hint-to-goal heuristic implies the addition
of artificial state transitions, that start as well as end in S+. These states are denoted by
S++ and have the terminal cost or target = 0. The NFQ paper applied 3 different artificial
transitions namely state (0,0,0,0,0) combined with all three actions. 100 such transitions
were added to the training pattern set to establish a balance between a large number of
normal transitions and the added special transitions.

10. Exploration scheme: The author of NFQ did not use any explicit exploration scheme. Thus,
the Q-function always exploited greedily i.e. the agent chose the action with the minimal
q-value and did not perform any random selection of the action to induce exploration of the
state space.

Thus, using the settings described above, the target value was calculated as,

targetl =


0 , if s′l ∈ S+

1 , if s′l ∈ S−

0.001 +minbQk(s′l, b) , else
(3.5)
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3.4 Genetic Algorithm
In the field of Artificial Intelligence, Evolutionary Algorithms (EAs) are mainly used for the op-
timization of existing solutions for a problem. However, they can also be used as standalone
algorithms to find optimal solutions from scratch to a problem through randomized search heur-
istics. EAs are inspired by the biological evolution and are based on the evolutionary theory of
Charles Darwin, “Survival of the fittest”. An EA is an optimization algorithm that mimics the
biological mechanisms such as mutation, recombination, and natural selection to find an optimal
design within specific constraints [9]. EAs differ from the other optimization algorithms from the
fact that they are dynamic in nature and they ‘evolve’ over time.

Figure 3.7: Working mechanism of the Genetic Algorithm

Genetic Algorithm [14], first proposed by John Holland is one of the most popularly used EA.
GA is different from RL despite they both solve the same class of problem: maximizing a reward
or minimizing a cost function. The main difference lies in the methodologies that each of the
algorithms uses. In GA, the algorithm ends in finding the most optimal solution for the given
task. On the other hand, RL is a continuous long term learning process of an agent through the
exploration of the state space of the environment. Oftentimes, GA is used on top of RL to improve
the solution provided by the RL algorithm. The Genetic Algorithm’s workflow is given in figure
3.7 using which we understand the mechanism of GA in depth.
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GA is a population-based optimization algorithm, meaning that a population of sub-optimal
or bad solutions to a problem is used to produce better-optimized solutions. Hence, referring to
the flowchart given in 3.7, we start with generating a population in which each solution is termed
as an ‘individual’. Each individual is represented using a set of features, called ‘chromosomes’.
And each chromosome contains a set of ‘genes’. Since we consider the optimization of the neural
network controller in this thesis, consider the example of a neural network as an individual in a
population. Figure 3.8 describes the population setup in a GA and also maps it to an example of
a neural network as an individual for optimization.

Figure 3.8: Mapping the population setup of GA to that of a Neural Network population.

The population size is defined at the initial stage of the GA. When using neural networks for
optimization, each neural network represents an individual with the weights and biases (shown as
W[i] and B[i] in the figure 3.8 which denote the weights and biases of the ith layer) as its chro-
mosomes. Every value of the parameter of the neural network from the weights and biases forms
a gene located at a specific location. Once the population is set up, the next step is to define a
fitness function.

The fitness function is used to calculate the fitness value of an individual in the population. In
control applications like a cartpole system, we use the controlling capability as the fitness function.
For example, the maximum balance time achieved by a neural network i.e. an agent can be set as
the fitness function. Thus, the higher the fitness value achieved by the network, the better is the
quality of the network. Defining the function is an essential part of the GA as it helps to evaluate
the quality of a solution in a population.

The next stage is calculating the fitness value of each individual. Therefore, in the cartpole
problem, each network is tested on the system and the performance of the network in terms of
balance time can be noted as its fitness value. If the fitness values of the desired individual or the
entire population are not optimal, we proceed for the next step that is inspired by the biological
process of ‘reproduction’.

To perform reproduction, first, we select the individuals that have the highest fitness scores.
These individuals are treated as the ‘parents’ for generating the offsprings of the next generation
of the population. This process helps in slowly killing individuals with bad qualities within one
generation of the population and gradually producing better individuals using good quality parents
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for the next generation. In the case of neural networks, the top best performing AI controllers on
the real-cartpole system are selected. Next, we perform a process called ‘Crossover’ that mimics
the mating process in biology. In this, the genes in the chromosomes of each parent are fused to
produce the chromosomes of the offspring. This process is illustrated in figure 3.9. The amount of
genes corresponding to each parent into their offspring is random. As seen in the illustration, the
offspring has sometimes carried an equal number of genes from each of its parents thus inheriting
the qualities of its parents. In the case of a neural network, the offspring shares the weights and
biases from each of its parent networks randomly. Crossover mechanism is an important step in
GA as it ensures that the offspring will be different from its individual parent.

Figure 3.9: Illustration of crossover mechanism in GA.

Finally, the last key component of GA that is responsible to bring diversity in the population is
the ‘Mutation’ operation. Using mutation, we change the genes in the offsprings with a mutation
rate. In general, if the genes are represented by bits, then the mutation process can result in
random flipping of bits to induce variation in the offspring. From the ML point of view, mutation
helps to avoid getting stuck with a solution in the local minima of the solution space. When
neural networks are mutated, the values of the weights and/or biases get tweaked according to the
mutation rate used. The mutation mechanism is illustrated in figure 3.10.

A commonly used strategy to produce better solutions in every generation is ‘Elitist selection’.
It implies that every time a new generation is reproduced using a set of parents, one or more elite
parent is carried over to the next generation, unaltered. A parent is considered elite if it is found
to be the fittest from its generation. Similarly, in the case of neural network optimization using
GA, the network with the highest score from the previous generation is carried over to the next
generation with regards to elitism.
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Figure 3.10: Illustration of crossover mechanism in GA.

3.5 Spiking Neural Networks

Despite the prosperity of Artificial Neural Networks in the field of ML for reportedly being analog-
ous to a human brain, they are biologically inaccurate and do not exactly mimic the functioning
of a biological neuron. The closest representation of the functioning of a biological neuron is the
Spiking Neuron that was proposed back in 1952 by Hodgkin and Huxley [13]. To comprehend the
working mechanism of a spiking neuron, we describe how a biological neuron works in brief.

Owing to the biochemical constitution of a human brain, a biological neuron within our brain
has unequal concentrations of ions on the outside and the inside of its membrane. This difference
in the concentrations of ions gives rise to a potential difference. The neurons within a human brain
communicate with each other through voltage spikes. Based on the electrical theory and concepts,
a voltage spike can be produced with a battery with a switch closed for an extremely short period
and opened immediately. A biological neuron produces a spike or in biological terms, fires an ‘ac-
tion potential’, when it receives sufficient stimulus. This action potential travels through the axons
of the neuron until the terminal where it releases neurotransmitters. These neurotransmitters get
attached to the receptors of other neurons which causes a change in the membrane potential of
that neuron. Depending on the type of neurotransmitters, the potential difference across the
membrane of the neuron may increase (for excitatory neurotransmitters) or decrease (for inhib-
itory neurotransmitters). Whenever the membrane potential of a particular neuron reaches a
certain threshold, it fires the charges contained inside it, thereby dropping the membrane poten-
tial drastically. A neuron is connected to another neuron via a ‘synapse’. On average, a single
neuron is connected to tens or hundreds of other neurons. The voltage spikes are transmitted
through the synapses to the other neurons and the strength of this synapses decides how much
influence it has over the neuron it is connected to. The strength of a synapse translates to the
number of neurotransmitters that a neuron releases. With a neuron being connected to multiple
other neurons through their respective synapses, the net effect of voltage spikes received from all
the neurons adds up to decide when the current neuron will fire. The neurons that send voltage
spikes to a certain neuron are called presynaptic neurons while the neuron on the receiving end
is called the postsynaptic neuron. Once a neuron fires its action potential or the voltage spike, it
returns to a stable state and the potential inside the membrane resets. The process of receiving
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spikes and changing the membrane potential repeats forever and this demonstrates the function-
ality of neurons within a human brain.

Spiking neurons are inspired by the biological neurons and are represented using a Leaky-
Integrate-and-Fire (LIF) model. The LIF model is one of the most basic and widely used neuron
model. In that, each neuron has a predefined threshold voltage and a membrane potential. With
each spike incoming from input neurons, the membrane potential of the neuron increases until it
reaches a threshold point as seen in figure 3.11a. Once the threshold voltage is reached, a spike
is produced at the output of the spiking neuron, and the potential of the neuron is reset to the
resting potential. The spiking neuron demonstrates a small potential dissipation i.e. leakage of
the potential to the environment as shown in figure 3.11b. When a train of input spikes (colored
in red) forces the membrane potential θ (line graph in blue color) of the Spiking neuron to in-
crease, the neuron produces a spike (shown by a ‘+’ colored in green) at its output by dropping
its potential to a stable resting state.

(a) (b)

Figure 3.11: (a) LIF spiking neuron working mechanism, (b) LIF spiking neuron behaviour taken
from [28]

The LIF neuron is mathematically represented using the equation 3.6 [10].

τm
du

dt
= −[u(t)− urest] +RIt (3.6)

The LIF neuron integrates the input current It =
∑

ti
δ(ti) expressed in terms of a spike train

t(i). The term τm = RC is a time constant and it represents the leaky nature of the LIF neuron. R
represents the resistance of the neuron’s membrane. Thus, the RHS of the equation 3.6 represents
the leaky integration of input signal of the spiking neuron. The LIF neuron fires a spike st when
its membrane potential given by u(t) crosses the fixed threshold denoted by θ. Thus, the spike
can be modelled as a non-linear function given by,

st = f̂s(u(t), θ) (3.7)

Finally, the membrane potential u(t) resets to a resting potential urest once the spike is fired
and given by,

u(t) = u(t)(1− st) + urestst (3.8)

In summary, the difference between the working of an SNN and an ANN is that the SNN does
not fire each neuron for every feedforward path of the network but rather fires only when the
membrane potential of its neuron reaches a certain value. This effectively produces fewer spikes at
the output of an SNN for a given number of feedforward iterations as compared to that of an ANN.

In day-to-day life, human brain encounters activities that are mostly sequential. SNNs have
adopted this behaviour through the memory that each LIF neuron maintains. As a result, SNNs

Design, implementation, optimization, and evaluation of energy-efficient AI controllers and
testing their feasibility on a real continuous-time dynamical system.

19



CHAPTER 3. RELATED WORK

can perform well even when we feed them individual frames of sequential data one at a time.
On the contrary, ANNs require a set of consecutive frames of temporal data in order to control
sequential control systems as they do not possess memorizing capabilities inherently. This makes
SNNs suitable for applications that are sequential and need to be controlled. On the similar lines,
when static applications such as image classification are concerned, ANNs can perform better as
they do not depend the previous input that was classified.

Finally, SNNs work on the principle of transmitting and receiving binary signals (0 or 1) as
opposed to ANNs that communicate continuous values. This makes SNNs more robust to noise
as the binary value still gets communicated as a spike or a no spike. On the other hand, in ANNs,
a continuous value added with noise that is transmitted to the next neuron can be considered
meaningful as the next neuron directly uses the received signal for further calculation.
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Chapter 4

Evaluation Framework

In this chapter, we provide reasons for the choice of the hardware used to build a real cartpole
system. We begin with a feasibility study and describe the market survey we conducted to buy
existing cartpole system. Next, we show the blueprint of the expected cartpole system based on
which we built the cartpole system using LEGO Education kit. The specifications of the designed
cartpole system and the component characteristics are tabulated. Next, we describe the software
setup used to communicate with hardware and implement AI controllers on it. We chose to use
an on-board mode of operation based on the delays observed in the hardware and the results are
described. Owing to the choice of on-board computation, we describe the PyBrain API that we
used to implement the AI controller on the hardware.

4.1 Feasibility Study
Since we plan to implement the AI controllers on a real system, we studied the possible options
to build or buy such a system. Upon researching for existing solutions, we found that there are
companies that provide a variety of plants to execute control over a single inverted pendulum
(or a single-pole cartpole), rotary inverted pendulum (single or double), etc. Quanser1 is one
such company that provides several solutions such as an Inverted Pendulum with a Linear Servo
Base Unit, a Rotary Inverted Pendulum module attached to a Rotary Servo Base Unit, and a
QUBE – Servo 2 which is a low-cost teaching platform with fully integrated, modular servomotor.
Bytronic Educational Technology2 provides a Pendulum Control System (PS2) that can function
as a stand-alone system that can be used as an inverted pendulum as well as an overhead crane.
Asti Automation3 is another company that provides a similar solution with an AC servo motor
and inbuilt sensors. All the mentioned companies provide their respective products along with the
licensed Matlab Simulink software experiment platforms and all the necessary subsystems such as
voltage amplifiers, data acquisition, signal conditioning, etc to support the cartpole system. The
above systems cost from €5000 to €12000 for an entire full-fledged system.

Owing to the limited budget, we could not buy any of the comprehensive set of systems as
described above. Therefore, we sought for options to build a cart-pole system on our own. We
found a possible solution of LEGO EV3 Core Set provided by LEGO Education which comprises
of an EV3 controller (also called as Py-Brick or just brick), a set of motors, sensors and several
modular parts that can be arranged together to make a movable four-wheeled cart powered by a
rechargeable battery. We planned to install a pole on top of this cart to build our desired cartpole
system. One advantage of building such a system using LEGO is that we could make modifications
to the system dynamically, for e.g. changing the pole length, adding weight to the pole/cart more

1See https://www.quanser.com/ for details.
2See http://www.bytronic.net/ for details.
3See https://astiautomation.com/ for details.
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easily as compared to buying parts of the cartpole with a fixed length and weight. The basic EV3
core set along with the required supplementary parts was purchased at a price of €418 leaving
some space to buy additional parts if required.

Alternatively, we could also choose to buy separate parts of the cartpole system such as a
linear guide rail to provide linear sliding motion for the cart, a gyroscope, and a pole, a linear
motor controller, voltage amplifier, etc. Apart from the fact that the cost of building this system
would slightly be over the budget, the end product would result in a system fixed to some rigid
support (such as a table) which inhibits the mobility of the system as a whole. Since we are aiming
to build a demo product to perform our experiments, it is advantageous to make it flexible and
mobile. Further, building such a system is more time consuming and complex as compared to that
of a system built using LEGO. A cartpole system built through LEGO is not fixed to a surface
and is easily portable. We can further extend the communication of the hardware (EV3 brick)
through either USB communication or via Bluetooth. This makes our product more mobile and
hassle-free. Therefore, we preferred to build a four-wheeled, EV3-controlled cart mounted with a
set of motors and sensors and a pole on top to realize the real cartpole system for our project.

4.2 Hardware setup
To design a Cartpole using LEGO EV3 Educational kit, we required the following components:

1. An EV3 brick (controller): This is the central controller on the hardware responsible for
communicating with the sensors and motors and sending commands to perform actions as
required. Its specifications are as shown in table 4.1

Hardware specifications for the EV3 Programmable brick

Main processor
32-bit ARM9 processor
300 MHz
OS: LINUX

Memory
64 MB DDR RAM
16 MB FLASH
256 KB EEPROM

Micro SD-Card interface SDHC standard, 2 – 32 GB

Bluetooth Bluetooth V2.1 EDR
Primary usage, Serial Port Profile (SPP)

USB 2.0 Communication,
Client interface

High speed port (480 MBit/s)

USB 2.0 Communication,
Host interface

Full speed port (12 MBit/s)

4 input ports UART communication
Up to 460 Kbit/s (Port 1 and 2)
Up to 230 Kbit/s (Port 3 and 4)

4 output ports 6 wire interface supporting input from motor
encoders

Power source Rechargeable Lithium Ion battery, 2000 mAH
Connector 6-wire industry-standard connector, RJ-12

Right side adjustment

Table 4.1: LEGO MINDSTORMS EV3 hardware specifications[8]

2. Two EV3 large motors: It includes tacho functionality with a resolution of one count/degree
enabling accurate speed control of the motor. The specifications are as given in the table
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4.2

Operating condition Characteristics

9 volt, no load 175 RPM
60 mA

Stalled 40 Ncm
1.8 A

Table 4.2: LEGO MINDSTORMS EV3 Large motor specifications[8]

3. An EV3 medium motor : It also includes tacho functionality with a resolution of one coun-
t/degree enabling accurate speed control of the motor. The specifications of the medium
motor are as indicated in the table 4.3

Operating condition Characteristics

9 volt, no load 260 RPM
80 mA

Stalled 15 Ncm
800 mA

Table 4.3: LEGO MINDSTORMS EV3 Medium motor specifications[8]

4. An EV3 Gyro sensor : It operates at a sampling rate of 1ms if the sensor reading changes
fast enough. If not, the sensor is programmed to return a new sensor value automatically
whenever the value changes, or when the EV3 brick requests the latest sensor value. The
Gyro Sensor supports up to 440°/sec with a accuracy at ± 3° within 90°. The Gyro sensor
can operate in the following three modes:

a) ‘GYRO-ANG’ Mode: Returns the number of degrees the sensor has been rotated since
it was switched to this mode.

b) ‘GYRO-RATE’ Mode: Returns the rate at which the sensor is rotating, in degrees/sec.
c) ‘GYRO-G&A’ Mode: Returns the angular velocity as well as the angle measurement.

5. An EV3 Ultrasonic sensor : The ultrasonic sensor measures the distance to the object by
sending out an ultrasonic sound signal, with a sound burst of 12 at 40 kHz. It can measure
up to 250 cm (100 Inches) with an accuracy of 1 cm (0.393 Inches) in either centimeters or
inches. The sensor values are returned with a 0.1 resolution.

6. LEGO Bricks: Apart from the LEGO building bricks provided in the set MINDSTORMS
EV3 Core Set (45544), we required additional parts which were taken from the LEGO
MINDSTORMS EV3 Expansion Set (45560).

7. Four wheels with rim: LEGO MINDSTORMS EV3 Core Set (45544) provides only one pair
of large wheels with rims. Since we planned to build a four-wheeled cart, we had to use four
large wheels and rims from the LEGO MINDSTORMS EV3 Expansion Set (45560).

The idea was to build a four-wheeled cart controlled by the EV3 brick and two EV3 large
motors. However, on experimenting, we observed that only one large EV3 motor was sufficient
to move the cart along with all the parts and pole mounted on top. Hence, a large motor was
attached to both the rear wheels making it a rear-wheel-drive (RWD) cart. Since we have to
perform training of the neural network in an episodic fashion, the pole needs to be brought to an
initial position if it exceeds the limit within which it should be balanced. By resetting the pole,
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we mean that the pole is made upright such that its angle from the exact vertical is zero. We
automated this process by designing a pair of grabbers that bring the pole back to the upright
position whenever an episode ends. The structure of the planned cartpole mechanism is as shown
in figure 4.1a. The grabbers are designed such that they follow the trajectory shown by the dotted
curves. We have used the second large motor to operate the grabbers. Though the grabbers
were intended to make the pole upright, we had to design another mechanism to fine-tune the
pole to make it almost exactly vertical and perform the releasing action before the start of the
next episode. To implement this mechanism, we used a medium EV3 motor which holds the pole
upright while the grabbers move outwards. An EV3 Gyro sensor is attached to the axle around
which the pole rotates. Thus, the gyroscope also rotates in alignment with the pole movement.
Lastly, we use an EV3 Ultrasonic sensor on the front of the cart to measure the distance traveled
by the cart.

(a) Cartpole mechanism blueprint (b) Actual Cartpole System

Figure 4.1: Hardware components of the Cartpole System

The actual cartpole system was built as depicted in figure 4.1b. We have added a few more
pictures of the final assembly in appendix B. The specifications of the designed cartpole system
are described in the table 4.4.

Sr. No Parameters Values
1 Cart Dimensions (w x l x h) 17 x 36 x 25 cm
2 Cart weight 1.93 Kg
3 Pole weight 0.052 Kg
4 Overall weight of the system 1.982 Kg
5 Pole height from ground 14 cm
6 Pole Length 1 m
7 Wheel diameter 6.24 cm
8 Wheel thickness 2 cm
9 Maximum speed 3.66 m/s
10 Maximum acceleration 7.208 m/s2
11 Maximum force 14.29 N

Table 4.4: Specifications of the Cartpole system
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4.3 Software setup
EV3, the brain of the LEGO Mindstorms, has a Linux computer at its core. We can, therefore,
program it using several programming systems such as Python, C++, C, Java, or Prolog apart
from the EV3 Programming app which is the official programming app from LEGO Education.
We choose to program EV3 using python as we would be implementing a neural network on the
controller which is designed using the python programming language. EV3 Python is an extended
version of the python programming language that allows using python to control the LEGO EV3
robot. EV3 Python needs to run on top of the EV3dev which is a Linux based operating system. To
boot up the EV3 brick with EV3dev, we simply download the EV3dev image file into a microSDHC
card (2GB or larger), insert it into the EV3 brick, and start the brick. Once the EV3 has booted
up, we have one of the following options to connect the EV3 to our PC using a technology called
‘tethering4’:

(a) Using Bluetooth

(b) Using USB cable

We choose to connect EV3 to the PC using Bluetooth at the initial stage to provide a basic
wireless setup for experimentation. Once the Bluetooth connection is set up, we need to connect
to the EV3dev using SSH so that we can run commands on the EV3 to deploy codes, make changes
in setting, etc. remotely, over the network. Among many applications available such as PuTTy,
OpenSSH, etc. we used MobaXterm toolbox to establish the SSH connection as it features a
window displaying folders on the remote device. This completes the connection setup and scripts
can be written on the EV3 remotely. We used Visual Studio Code as the IDE to write the python
programs on the PC and then either download or remotely run the scripts on EV3.

Running simple python scripts such as rotating a motor or performing basic operations on a
cart (such as move front or back) using EV3 is an easy task as it involves less computation. Here
we are considering that the python script is residing and running on the EV3’s ARM9 processor
and we term this as ‘on-board’ computation. Complex tasks such as performing training of a
neural network on the EV3 can be too heavy for its processor. As a result, we had to find a
solution to run the programs remotely on the EV3 without the actual python program residing
on the EV3 brick as opposed to ‘on-board’ computation.

4.3.1 RPyC
Remote Python Call (RPyC) is a python library that is used for making remote procedure calls,
clustering, and distributed-computing. It uses object-proxying, a technique that employs python’s
dynamic nature, to overcome the physical boundaries between processes and computers, so that
remote objects can be manipulated as if they were local [3]. RPyC mainly features Transparency,
meaning that it provides access to remote objects as if they were local and, a Symmetric protocol
by which both, the client and the server can serve requests. To start using RPyC, we must install
RPyC both on the EV3 and on the PC.

Issues while using RPyC

It is important to use the same versions of RPyC on both EV3 and the PC. Initially, we followed
the instructions given in [4] which resulted in installing RPyC version 4.1 on PC while version
3.3 on the EV3. This caused the version discrepancy issue. We then tried to solve this issue by
installing RPyC version 3.3 on PC as well. Despite both the devices having the same versions this
time, we still ran into another issue. On investigating, we found out that there is a file named
“async.py” and it is referenced by many other files in the RPyC directory. However, “async” was
introduced as a keyword between RPyC version 3.3 and RPyC version 4.0. To troubleshoot this

4This process does not provide Internet access to the EV3 brick after connection.
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problem, we changed all references from “async” to “async ”. This got the RPyC working normally
on both the devices.

An important disadvantage of using RPyC is the latency introduced by a network connection.
Though RPyC aids in using PC’s computational power (RAM, GPUs, etc) instead of EV3’s
resources for training a neural network, every command to be executed by the EV3 comes with
a round-trip delay over the network connection. It is therefore crucial to analyze this round-trip
latency and check if it is suitable for our cartpole system. In case of excess delay, we might have
to opt for a wired connection i.e. using USB to connect EV3 to the PC.

4.3.2 Delays
A simple ‘if-else’ control logic of moving the cart in the forward direction if the pole has inclined
in the forward direction (i.e. Pole angle > 0°) and vice versa was used to calculate the delays. We
repeated this ‘if-else’ control logic 500 times and calculated the average amount of time required
to produce action by three possible means: On-board, USB, and Bluetooth. The results of the
experiment are given in table 4.5 which represent the average time and variance for a single iter-
ation of ‘if-else’ loop.

Mode of operation Avg. computation time (in ms) Variance (in ms)
On-Board 16.9451 0.0103

USB 152.600 0.561
Bluetooth 235.648 1.305

Table 4.5: Average computation latency for different modes using EV3

The results underpin the intuition that performing on-board calculations took the least amount
of time whereas the average computation latency increased as we shifted from wired to wireless
communication. By wireless communication, we mean that the data is read through the sensors by
the EV3 brick, transferred over the network to the PC where the next motor action is calculated,
and the action is sent back to the EV3 brick. Every command that is sent to/from the EV3 brick
adds a round-trip delay to the overall latency which makes Bluetooth communication temporally
most expensive.

Further, we can see that on-board computation was around 10 times faster than USB and 14
times faster than Bluetooth modes of operation. We had performed experiments on simulation of
‘Cartpole-v1’ environment using OpenAI Gym for maximum allowable sampling time to be able to
successfully balance the pole upright. The latencies of the Bluetooth and USB modes of operation
are too large to be suitable for use in a real-time setting of the cartpole problem. Therefore,
we chose on-board mode of operation for the cartpole problem. It also necessitates research for
different options to implement a neural network on the EV3 brick (i.e. on-board) as it nullifies
the chances to use wired or wireless modes of operation to control the cartpole system.

4.3.3 PyBrain
Keras is one of the leading open-source neural network libraries. It uses TensorFlow at its backend
and provides several advantages such as consistent and simple APIs, lowering the number of user
actions needed for typical usage cases thereby delivering reduced cognitive load [26]. Therefore, we
preferred to use Keras as our Deep Learning API to design and evaluate our neural network. Since
EV3 brick has a very small memory (RAM = 64 MB DDR) it was not possible to install Keras
or any other popular Deep Learning APIs such as Pytorch or TensorFlow on-board since they
required better system requirements. This paved way for a modular Machine Learning Library
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for Python called PyBrain [24].

PyBrain aims at providing flexible, easy-to-use yet powerful algorithms for neural networks,
reinforcement learning, supervised learning, unsupervised learning, and evolution. Mainly, it could
be installed on the EV3 brick which enabled us to run a neural network on the hardware. However,
simply using PyBrain to run a network trained on Keras was not straightforward. We followed a
systematic approach to substitute Keras by PyBrain as described in the following section.

Figure 4.2: Consistency checks required to successfully substitute Keras with PyBrain on-board

The aim was to obtain consistent results i.e. output from the neural network when both Keras
and PyBrain were used. Therefore, we had to perform two consistency checks as seen from figure
4.2. First, we considered checking the consistency of using both the APIs on simulation rather
than directly testing on EV3 brick. Thus, we installed PyBrain on PC. Next, we built a network
(or model) using Keras and the model weights and biases were saved in HDF5 binary data format
as it is the default format used by Keras. The saved .HDF5 model had to be converted to .xml
format as PyBrain can only load/save a network in this format. To perform the consistency test, a
fixed set of input values were provided to both networks i.e in Keras as well as in PyBrain libraries
and the output values were compared. Initially, we observed a discrepancy in the results as they
were not matching despite the weights, biases, and input to the network were exactly the same.

Figure 4.3: Methodology used by Keras (left) for storing weights (Row-major Order) and PyBrain
(right) for storing weights (Column-major Order)

After digging into the discrepancy, we observed that the issue was with the manner in which
the weights and biases are stored by Keras and PyBrain. From figure 4.3, we can see that Keras
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stores weights (and biases) in a row-major order whereas PyBrain stores weights in a column-
major format. Due to this, the network was producing inconsistent results. We then corrected
the manner in which the model was written from .HDF5 format to .xml format and were able to
observe consistent results on PC. The corresponding code to write the weights from .HDF5 file to
.xml is uploaded to the GitHub5

Lastly, we cross-checked if the exact same results were obtainable from running the network on
EV3. We could see the consistency in the results in this experiment as well and therefore, chose
to use PyBrain for running a neural network on the hardware.

5https://github.com/yaskam8/Thesis_work
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Chapter 5

Implementation: DQN

This chapter discusses the experiments that were conducted to obtain a DQN agent that could
balance the pole on the hardware. It explains various steps that started with obtaining a DQN
agent through simulations and further on the hardware. We discuss why the implementation of the
online DQN is not straightforward in the practical world and propose an offline training approach
to train the DQN agent. The chapter also covers major modifications in the software setup that
were used to make the real cartpole system feasible to be controlled by a DQN agent. Another
main finding of the chapter is the existence of a reality gap that causes the failure of simulated
DQN agents to control a real hardware setup of the cartpole system. In the end, we describe how
we obtained a DQN agent through offline training that could balance the pole for an average of
2.2 seconds and a best performance of 3.7 seconds.

5.1 Motivation
Deep Q-Network (DQN) had gained popularity due to its super-human performance on a number
of Atari games. It is one of the fundamental algorithms in the world of reinforcement learning and
has been the anchor for many recently developed advanced RL algorithms. We chose the DQN
algorithm to implement on our real-life cartpole system due to its simple and powerful nature.

5.2 Experiments
DQN was implemented on a high dimensional sensory input i.e. pixels of images in [16] to demon-
strate its superhuman performance in Atari 2600 games. Thus, it involved convolutional layers
followed by pooling in the architecture of the network. In our case, we provided a low dimensional
sensory input obtained from Gyro and Ultrasonic sensors installed on the hardware. As a result,
the state that described our environment i.e. the real-life cartpole system is: the cart position x
from the center of the track measured by the ultrasonic sensor, the cart velocity ẋ calculated using
the ultrasonic sensor, the pole angle θ measured using the gyro sensor, and finally the angular
velocity θ̇.

DQN algorithm is an online training approach that interleaves interacting with the environ-
ment and learning policy. To train a DQN agent (i.e neural network), at every step, the reward
from the cartpole system needs to be sent back to the agent as shown in figure 5.1. The agent
then undergoes training where its weights and biases are modified. Next, the updated agent is
now used to calculate the next action and this cycle is repeated until the agent gets trained to
completely be able to balance the pole.

Balancing the cartpole is an inherently real-time task; neither an arbitrary amount of time is
available in choosing an action nor backtracking is feasible [22]. This is non-trivial as we have to
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Figure 5.1: The Agent-Environment interaction process in online DQN.

consider delay occurring due to the training methodology used by the DQN algorithm to train the
agent. Since the DQN algorithm is an online training approach that interleaves interacting with
the environment and learning policy, it is difficult to train the network while interacting with the
cartpole system parallelly in a real cartpole system. Training the network at each step would add
some amount of delay while the pole is still in motion. This would result in applying the next
action at a point when the pole is already out of control.

The main cause of delay in interacting with the real cartpole system is the fact that we per-
form training while interacting with the system. This is termed as ‘Online training’. One possible
solution to this was to convert online training to ‘Offline training’. In this approach, we repeatedly
loaded the network on the EV3 brick, produced control actions observing the state of the cart-
pole system using the network for a set of episodes, and stored the transactions in a file. The
interaction could be then paused and the stored transactions could be sent to the PC where the
network would be trained. This effectively demonstrates the offline training approach. Lastly,
we can reload the partially trained network from PC on the EV3 and resume the interaction to
store the next set of transactions. This process was repeated until we obtain a sufficiently trained
network that is capable of balancing the pole completely. A sequence diagram is shown in figure
5.2 that describes the process of offline training of the DQN agent.

Step 1: Obtain a naive online DQN agent using simulation

The main idea was to obtain a configuration of the DQN agent that is capable of balancing the
cartpole system. Initially, we started with an online DQN agent with a configuration of [4, 24,
24, 2]1 i.e. 4 neurons in the input layer, 24 neurons in the first hidden layer, 24 neurons in the
second hidden layer, and 2 neurons corresponding to two actions: front (or forward) and back (or
backward) in the output layer. We used ReLU activation in the hidden layer and linear activation
in the output layer. The learning rate was set to 0.001 and Adam optimizer was selected. Since
we had built our cartpole system on the hardware, we did not have the mathematical model of

1This annotation will be used hereon to describe the structure of the network. The first and last numbers denote
the neurons in the input and output layer respectively while the remaining denote the neurons in the hidden layer(s)
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Figure 5.2: Sequence diagram for offline training of DQN agent.

Design, implementation, optimization, and evaluation of energy-efficient AI controllers and
testing their feasibility on a real continuous-time dynamical system.

31



CHAPTER 5. IMPLEMENTATION: DQN

the system. However, there are standardized toolkits in the ML domain that provide an interface
for a cartpole balancing problem on simulation. OpenAI Gym is one such toolkit that provides
an environment ‘Cartpole-v1’ that can be used to train and test RL algorithms. Therefore, we
trained the DQN agent on simulations using Keras and used the simulation script of OpenAI
Gym’s Cartpole-v1 environment2. The Cartpole-v1 environment’s simulation script was changed
to have the cartpole parameters such as cart weight, pole weight, pole height, cart weight, etc.
equal to the real cartpole system (see table 4.4). The sampling time τ is kept unchanged and is
20 ms as per the simulation script used by OpenAI Gym. The network was able to balance the
cartpole and the training and testing results are as shown in figure 5.3. Note that the maximum
achievable score as per the simulation script is 500.

(a) Training online DQN agent (b) Testing online DQN agent

Figure 5.3: Simulation results for training and testing online DQN agent [4, 24, 24, 2]

Step 2: Reduce the network structure

Next, we experimented with the architecture of the agent by reducing neurons and layers and
observed that the online DQN agent could not be trained with less than two hidden layers. We
found the best configuration of [4, 24, 16, 2] that could successfully balance the cartpole with
hardware parameters. The simulation results of the online DQN agent [4, 24, 16, 2] are shown in
figure 5.4.

Step 3: Verify offline DQN concept through simulations

Before we attempted to implement offline DQN on the real cartpole system, we tried to imitate
the offline training in simulation. Since we know that the online DQN mechanism trains the agent
every other step, we simulated offline DQN by skipping a certain number of steps before training
the DQN agent [4, 24, 16, 2]. We performed experiments for training operation:

• every step with a chance of 25%,

• after every 5 steps

• after every 10 steps

• after every N steps; where N = [5, 20, 30, 40, 50] and it increases after every 100 episodes.
For every experiment, the trained network was tested on hardware to check how it performs

on a real cartpole system.

2The simulation script can be found at https://github.com/openai/gym/blob/master/gym/envs/classic_
control/cartpole.py
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(a) Training online DQN agent (b) Testing online DQN agent

Figure 5.4: Simulation results for training and testing online DQN agent [4, 24, 16, 2]

Update
Q-network at Training Testing Hardware

implementation

Every step with
a chance of 25%

PStoH= 17
(∼1.86 sec)

Every 5th step PStoH= 8
(∼1.03 sec)

Every 10th step PStoH= 16
(∼1.80 sec)

Every Nth step PStoH= 18
(∼1.99 sec)

Table 5.1: Simulating offline training

As seen from table 5.1, although the network did not seem to maintain a high score of 500
during the training phase, the network was able to balance the cartpole based upon the results
we obtained from the simulation tests. The test was performed for 300 episodes played by the
agent. The tests proved that all the trained networks produced from different experiments were
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able to perform well and balance the pole until 500 time steps. The reasons for the agents to not
to achieve constant high scores in the training phase can be the following:

1. The simulation contains the parameters that match the realistic system that makes the
system more complex,

2. In the latter half part of the training, we have an exploration rate of 0.5% which implies
that the agent can take a different step with a probability of 0.5%. Since we have made the
simulation more complex by inducing realistic parameters and owing to the nature of the
problem, the exploration rate implies taking a ‘wrong step’ with a 0.5% probability.

As a result, we cannot see a constant high score while training the network. The last column
in the table 5.1 indicate the numbers of steps/actions taken by the offline DQN agents trained
on simulation before the pole fell. We refer to this term as PStoH implying the performance of
moving directly from simulation to hardware. The corresponding balance time (in seconds) for
steps are also described. We could see that the performance is poor when we use a trained agent
from simulation directly on hardware. The primary reason for this effect is called the Reality Gap
as described in the section below.

5.3 Reality gap
Simulations are based on mathematical models i.e. set of equations describing the dynamics of
a physical system. In our case, we used the Cartpole-v1 environment from OpenAI Gym which
contains the dynamics of a real cartpole system in its simulation script. No matter how realistic
the simulator is, there always exists a significant gap between simulation and reality and this is
termed as the ‘Reality Gap’. The proof that there exists a Reality Gap in our case is from the
fact that the results from the simulation do not match the realistic behavior. To comprehend the
difference, we first introduce some of the control theory concepts.

5.3.1 Control application tasks
We used the control logic provided by the DQN agent to control the real cartpole system. From
figure 5.5 we demonstrate how simulation differs from the reality in temporal aspects for our
cartpole system. There are three main components in a control application which are described
below:

1. Sensing time τs : This indicates the time required to get relevant information from the
environment. In the simulation world, τs is the time required to get the observations from
the simulated cartpole environment. In a realistic world, τs depicts the time required to
measure the distance traveled by the cart, velocity of the cart, angle of the pole from vertical
and its angular velocity, and sending the measured values to the controller (EV3 brick).

2. Computation time τc: It is the time required by the control logic to produce the control
action. In both, simulation and reality, computation time is the time required by the neural
network to compute the action with respect to the observed state.

3. Actuation time τa: Actuation time corresponds to the time required to execute the task on
the system. This holds the same meaning in simulation while in reality, it implies the total
of time required to send the action from the controller to the motors and the time required
by the motors to execute the command.

As seen from figure 5.5, we have shown how the concept of a sampling period of 110 ms works
differently in simulations and on the hardware. The key difference between simulation and prac-
tical execution is that, in simulation, we perform all the control tasks (τs, τc, and τa) while pausing
the simulation at that point. Once we have the action calculated by the agent we send it to the

34 Design, implementation, optimization, and evaluation of energy-efficient AI controllers and
testing their feasibility on a real continuous-time dynamical system.



CHAPTER 5. IMPLEMENTATION: DQN

Figure 5.5: Simulating the control algorithm vs. the reality.

system. At this point, the simulation resumes by calculating the next state after 110 ms and
returns it to the agent. This process is repeated (see figure 5.5(top section))

Contrastingly, in the realistic world, the point at which the sensing is done (τs) and the point
at which the action is applied to the system (τa) are different. This implies that the network reacts
to the cartpole system by providing an action to a state observed at an earlier point in time as
the pole is in motion while the τs, τc and τa were being executed. This would result in a delayed
action provided to the cartpole (see figure 5.5(bottom section)). Hence, the network trained on
the simulation would not be able to balance the pole on the real cartpole system.

Figure 5.6 gives a zoomed-in view of how the action given by the agent is delayed in reality.
We observe that the control tasks τs, τc and τa have a varying execution time and are denoted
by the mean and variance. Sensing, computation, and actuation tasks have a mean of 15 ms,
60 ms, and 15 ms respectively, and variance of 0.23 ms, 0.3 ms, and 0.25 ms respectively. The
neural network shares the maximum time for computation as compared to sensing and actuation
tasks. Owing to the inherent sequential nature of the problem, we can observe the next state
from the cartpole system only when all the control tasks are completed. This essentially im-
plies the sampling period of the system. As we observed an average of 90 ms for the control tasks
to complete, we set the sampling period for experiments slightly higher (i.e 110 ms) on a safer side.

Due to the existence of the reality-gap, the offline DQN agent trained on simulations was
unable to balance the pole on a real system. Next, we implement offline training on hardware
starting with an untrained agent.

Step 4: Implementing offline training using PyBrain on hardware and Keras on PC

To implement the offline training of the DQN agent, we followed the process described by the
sequence diagram in figure 5.2. The training was done on PC using Keras after completion of
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Figure 5.6: Delays encountered for the control tasks in practice.

each episode on the EV3. A single loop of training on the PC followed by running one episode
on EV3 took a wall clock time of around 1 minute and 30 seconds. After the completion of 500
episodes i.e. 12.5 hours of training time, the DQN agent could balance the pole for an average of
1.8 seconds with the best time of 2 seconds.

The key aspect behind the success of the DQN agent to be able to balance the pole on sim-
ulations is that the agent produces an action based on the current state of the environment i.e.
cartpole system. However, this would not hold true in the practical system as the cartpole sys-
tem will change its state inherently between the time at which its state was sampled, fed to the
network, action calculation by the network and the action being sent back to the cartpole system;
due to the real-time setting of the problem. To resolve this, we had the following approaches:

1. Learning the delay: Predicting the state at which the action will be sent to the cartpole
system was the underlying motive behind ‘Learning the delay’ concept. This approach essen-
tially used two different neural networks: the first neural network predicted the future state
(st+1) based on a temporal sequence of previous states (st−2, st−1, and st) of the cartpole
system; and the second network was the DQN agent that was responsible to calculate the
action based on the future state provided by the first network. Thus, the DQN agent would
predict the action at+1 for the state st+1 thereby mimicking the key aspect used by a DQN
agent in being successfully able to balance the pole in simulations. The architecture of the
neural networks used in this approach is as shown in figure 5.7.

First, we logged a sequence states observed on the hardware when random actions are given
to the cartpole system. Next, a set of four consecutive states namely st−2, st−1, st, and st+1
were grouped per row. Thus, we produced a training dataset as shown in figure 5.8 in which
the last column describing state st+1 was considered as the output values and the first three
columns describing states st−2, st−1, and st were considered as the input values. Using the
input-output as the training set, we trained the forward predicting network (figure 5.7(left))
having a configuration of [12, 12, 16, 4]3 on PC using supervised learning technique. Once
this network was trained, it was taken to hardware where its output was fed to the offline
DQN agent to predict the action (front or back).

3This was the best configuration obtained from experiments that provided minimum root mean square error
value.
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Figure 5.7: Architecture of networks used in the approach of learning the delay.

Figure 5.8: Dataset for training the forward prediction network.

We performed 500 episodes of offline training corresponding to 14 hrs of wall-clock training
time on the hardware using the above approach. The results showed that the agent performed
even worse than the previous results where its average balance time was 2 seconds. One of
the key reasons for the failure of this approach was that the sampling time was doubled (215
ms) due to the use of two neural networks in calculating the action for the pole balancing
task.

2. Counteracting the delay: This approach aims to reduce the sampling time caused due
to use of two neural networks in the approach of ‘Learning the delay’. Despite the forward
prediction network was able to approximately predict the future state st+1, it produced an
additional delay which led to the failure of the control over the cartpole system. Therefore,
we found a way around this problem by including a simulation script of Cartpole-v1 from
OpenAI Gym in the hardware implementation. The parameters of the cartpole used in the
simulation script were substituted with the real cartpole’s physical parameters to make the
predictions as realistic as possible.

The idea behind ‘Counteracting the delay’ is similar to that of learning the delay except
that in this case, the cartpole’s mathematical model i.e. equations of motion describing
the dynamics of a cartpole system are used in the hardware implementation. However, in
the earlier case, the delay was ‘learned’ using the interactions with the real cartpole system
which makes it a pure reinforcement learning task. By including the equations of motion in
the hardware implementation, we predict the future state at which the action will be sent
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to the cartpole system. The simulation script contains the sampling time of the hardware
using which next state st+1 is calculated based upon the current state st. This approach
substitutes the forward prediction network from figure 5.7 with a set of equations thereby
reducing the sampling time to 110 ms. Figure 5.9 shows how the forward prediction network
is replaced by a forward prediction script. The script performs a much fewer number of
mathematical operations as compared to the forward prediction network which led to a
substantial decrease in overall sampling time of the cartpole system.

Figure 5.9: Simulation script (left) used along with DQN agent(right) to counteract the delay.

We performed experiments for 1000 episodes i.e. a wall-clock training time of 25 hours using
the above mechanism. During the training, the offline DQN agent showed signs of being able
to balance the pole for a longer time, with a best of 3.7 seconds of balance time. However,
the average balance time was still observed at 2.20 seconds.

After experimenting with all the above approaches and methods to overcome delays, the
offline DQN agent was unable to balance the cartpole problem for more than 2.2 seconds on
an average. The only possible issue at this point could be the sampling time of 90 ms used
on the hardware. Since this value was not explicitly set but was inherently present due to
the control tasks (τs, τc, and τa), we attempted to reduce this sampling time so that the
DQN agent can provide quicker actions before the pole could fall.

Step 5: Replacing Pybrain by simple NumPy matrix calculations

The sampling time observed on the EV3 brick to sense (i.e. reading the ultrasonic and gyro sensor),
compute (feedforward the DQN agent), and actuate (to send the action to the EV3 motors) took
an average time of 90 ms. As seen from the leftmost pie chart in figure 5.10, a breakdown of the
total sampling time indicates that the neural network consumed the maximum amount of time
(67% of the total sampling time) as compared to actuation and sensing tasks. We, therefore,
worked on options to reduce the computation time to achieve better sampling time.

Neural networks, under the hood, perform simple matrix multiplications to produce output.
An input vector represented as a 1D array is multiplied by a 2D weight matrix followed by adding
a 1D bias matrix. The output is finally passed through an activation function that results in a
1D array that is fed to the next layer in the neural network. Thus, in each layer, we perform the
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same set of operations until the output of the last layer is obtained. We used this concept and
represented our DQN agent i.e. neural network as a sequence of matrix multiplications to produce
the action at the output. In general, the output of a neuron with activation function f(x) has an
output of the form:

yn = f(
n∑

i=0
(xi × wi) + bn) (5.1)

where xi, wi, and bi correspond to the inputs, corresponding weights and biases respectively.
yn represents the output of the nth neuron.

We used the NumPy library to perform the matrix multiplications. Since the NumPy library
itself was enough to act as the neural network i.e. DQN agent, we could eliminate PyBrain from
the hardware implementation. After having successfully substituted the PyBrain with NumPy
matrix multiplications as the neural network, we had achieved a 50% reduction in sampling time.
As seen from the central pie chart in figure 5.10, the feedforward process of the neural network
took around 13 ms out of 43 ms of total sampling time. At this point, we had a balanced propor-
tion of time taken by sensing, computation, and actuation tasks.

Python is an interpreter and one has plenty of scopes to make a python script run faster. We
used different profilers to pinpoint sections of code that took a larger amount of time to execute.
Python’s built-in functions like ‘map()’ are implemented in C that could run faster than function
calls. Using such code optimization techniques, we could further reduce the sampling time to 28
ms in which sensing, computation, and actuation tasks accounted for a contribution of 28%, 43%,
and 29% respectively. This corresponds to the pie chart shown to the right in figure 5.10.

Figure 5.10: Comparison of sampling time using Pybrain (left), NumPy matrix calculations
(middle), and NumPy with code optimizations (right) .

In summary, we had achieved optimization of around 70% in sampling time by substituting
PyBrain with NumPy matrix multiplications coupled with other code optimization techniques.

Step 6: Retraining with optimized agent

After several changes and optimizations, we had the current offline DQN agent with the configur-
ation [4, 24, 16, 2] that had a sampling time of 28 ms on EV3 using NumPy. We trained this agent
on hardware for 500 episodes and observed that after a certain point, the cartpole was frequently
moving backward than forward. In other words, the offline DQN agent was predicting the action
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corresponding to moving the cart backward as compared to moving forward. Due to this behavior,
the pole was falling faster than expected resulting in a balanced time of 1 second.

On investigating, we observed that the replay memory had stored a significantly uneven number
of samples of backward and forward actions. As a result, the DQN agent was trained with higher
samples containing backward actions than that of forward actions. This issue occurred due to the
design of the cartpole and the inherent nature of the pole balancing problem. As described in
the chapter 4 section 4.2, we had built an automated mechanism to reset the pole to an upright
position using a set of grabbers. A pole fine-tuning mechanism was used that helped the pole to
be held almost vertical allowing the slow-moving grabbers to release the pole. The start of an
episode was indicated by the release of the pole by the fine-tuning mechanism. However, the pole
could not be held exactly upright as it is at its unstable equilibrium point and the fine-tuning
mechanism added a very small bias to the pole to fall back. This resulted in the pole falling
backward more often than normal.

Step 7: Uniform sampling from replay buffer

A potential solution to the problem occurring in the above step was to force the DQN agent to
sample an equal number of transitions corresponding to backward and forward actions for train-
ing itself. This would result in training the agent in equal proportion for forward and backward
actions. We initially implemented this on simulations to check if the approach could successfully
balance the pole. The simulation results were successful as seen from figure 5.11 and the agent
was still able to balance the pole. We also experimented the training by setting exploration = 0
i.e. no exploration of state space and concluded that the agent could still be able to balance the
pole without performing any exploration as well.

We used the concept of uniform sampling on hardware and performed 800 episodes of training
corresponding to a wall-clock time of 13 hours. However, the agent could not perform better using
this approach and we obtained an average balance time of 2 seconds.

(a) Training offline DQN agent (b) Testing offline DQN agent

Figure 5.11: Simulation results for training and testing offline DQN agent [4, 24, 16, 2] using
uniform sampling from replay buffer.

5.4 Results
Following is the summary of the results of using DQN to balance a real-life cartpole system.

1. An online DQN agent [4, 24, 16, 2] was successfully able to balance the pole in simulation.

40 Design, implementation, optimization, and evaluation of energy-efficient AI controllers and
testing their feasibility on a real continuous-time dynamical system.



CHAPTER 5. IMPLEMENTATION: DQN

However, the simulation is quite far from a real-life cartpole system as it disregards various
factors such as delays in computation, physical parameters such as friction, etc.

2. The offline DQN agent [4, 24, 16, 2] was also successfully able to balance the cartpole in
simulations for the maximum allowable amount of time. However, a direct transition of a
trained network from simulation to hardware failed due to the reality-gap.

3. An offline DQN agent was able to balance the pole for an average of 1.8 seconds and the
best time of 2 seconds on the EV3 using PyBrain with a training time of 12.5 hours.

4. The offline DQN agent [4, 24, 16, 2] coupled with a forward predicting network failed to
balance the pole due to a higher sampling rate caused by the inclusion of a second neural
network to enable forward prediction.

5. The best performance of the offline DQN agent [4, 24, 16, 2] was obtained when it was
combined with a forward prediction script that could balance the pole for an average of 2.2
seconds and the best time of 3.7 seconds. The major downside in this approach was that
it was not a completely model-free approach as it used a mathematical model of cartpole
system to predict the future state.

6. An offline DQN agent [4, 24, 16, 2] with a sampling time as small as 28 ms was obtained
when the neural network was built as a sequence of matrix multiplications as opposed to
using sophisticated machine learning APIs such as PyBrain on EV3.

7. A modified version of sampling data, termed as ‘Uniform Sampling’ from the replay buffer
was used to force the agent to learn both the actions in equal proportion. It was implemented
by selecting an equal number of transitions due to both the actions within a batch of training
data. However, this did not help in improving the performance of the offline DQN agent [4,
24, 16, 2].

5.5 Conclusion
Using a DQN algorithm to solve a real-life cartpole system designed using EV3 was not successful.
The best agent obtained through various experiments and optimizations could provide an average
balance time of 2.2 seconds. In a relevant study [27] which aimed at balancing an inverted pendu-
lum, it was proved that even the best performing DRLs were incapable of balancing the inverted
pendulum for a long period of time. The best possible balance time achieved by the agents was
only 2.5 sec which is even lower than the best score achieved by our offline DQN agent i.e 3.7
seconds. The mentioned study involved a long-lasting training time of 7 days despite which the
agents were incapable of balancing the inverted pendulum.

In conclusion, we aim for other reinforcement learning algorithms in order to achieve a better
performance in balancing the cartpole problem as the experiments performed using the DQN agent
proved the DQN algorithm incapable of being able to solve a real-life pole balancing problem.
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Chapter 6

Implementation: NFQ

This chapter discusses the motivation behind opting for the NFQ algorithm after DQN. It entails
the process of implementing the NFQ controller from scratch i.e. designing the code, testing it
on simulations, and finally implementing it on the hardware. A key takeaway from the chapter is
the trick we used to calculate multiple q-values in a single feedforward mechanism from a network
designed to produce a single q-value per feedforward path. This move helped reduce the sampling
time drastically. We further discuss the existence of state space drift that was observed which could
have been a possible hindrance in the performance of the NFQ controller. We perform experiments
to overcome this issue. On the whole, the chapter provides details on various configurations of
NFQ agents that were experimented until the final controller was obtained that had an average
balance time of 2.2 seconds and the best balance time of 3.6 seconds.

6.1 Motivation
The DQN algorithm is popularly attributed to being a slow learning mechanism. In other words,
it requires a higher amount of training time with the environment in order to achieve noteworthy
performance. This restricts its use for a practical system owing to the limited training time
available. A suitable alternative for the DQN algorithm to execute control over a reinforcement
learning problem of cartpole balancing in a real-world setting is Neural Fitted Q Iteration or NFQ
proposed by Riedmiller [21]. It is known for its sample efficient yet effective training of a neural
network to produce high-quality control policies. Primarily, the paper [21] proves the efficacy of
the NFQ algorithm by implementing the cartpole regulator benchmark. In the cartpole regulator
benchmark, a controller is successful if the pole is still balanced upright by the controller at the
end of the episode and the cart is within ±0.05 m of tolerance at its target position 0. Thus, we
aim to implement the same strategy described in the NFQ paper to build an NFQ agent for our
real-life cartpole system.

6.2 Experiments
The paper that introduced the NFQ algorithm, described its algorithm and the experiments to
prove its success on real-life RL problems. However, it did not publish the source code that was
used during the experiments. Therefore, we built our own code in python by using the NFQ
algorithm described in the NFQ paper [21].

Step 1: Verifying the code for NFQ algorithm on simulations using OpenAI Gym’s
Cartpole-v1 environment

The NFQ agent that we designed had a configuration [5, 5, 1] with the state variables x, ẋ, θ, θ̇,
and action a ∈ [0,1] at the input of the network and a single neuron to indicate the q-value of
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the state-action pair at the output as shown in figure 6.1a. The settings of the environment i.e.
cartpole-v1 from OpenAI Gym were kept unchanged except that the maximum achievable score
by an agent was set to 3000 (i.e. 60 seconds, since the sampling time, by default, was 20 ms). The
hyperparameters used to train the NFQ agent in the simulation are learning rate: 0.01, activation
used in hidden and output layers: Sigmoid, loss: mean squared error, optimizer: rmsprop and
epochs: 300. Further, the target value was calculated similar to that of the NFQ paper as,

targetl =


0 , if s′l ∈ S+

1 , if s′l ∈ S−

0.001 +minbQk(s′l, b) , else
(6.1)

with the goal states S+ being set to cart position is at most 0.1m away from the center AND
pole angle is at most ± 0.15 rad i.e. ±8.59°from the vertical. The range of S− was set to ±0.24m
from the center of the track. A pseudo-code to describe the implementation of the NFQ agent on
the Cartpole-v1 environment is as given in listing 3.

(a) Initial configuration of NFQ Agent. (b) Optimized configuration of NFQ Agent

Figure 6.1: Configuration of NFQ agent used in step 1 (left) and in step 2 (right)

Algorithm 3 Pseudo-code describing implementation of NFQ Agent on Cartpole-v1 env
1: Build the environment ‘Cartpole-v1’
2: Build a network and initialize it with random weights all with sigmoidal activations.
3: for episode = 1, max episodes do
4: env.reset()
5: for step = 1, max steps (default:500) do
6: Query the NFQ-model and get Q-values for possible actions
7: env.step(action)
8: action = np.argmin(Q value)
9: if done then

10: agent.remember(state, action, next state)
11: Generate lists D s, D a, D s prime from memory
12: Perform one iteration of NFQ algorithm with 300 epochs using Rprop
13: Test the current network if it is trained successfully
14: if Test successful then
15: Exit, as training is completed
16: end if
17: break
18: end if
19: agent.remember(state, action, next state)
20: state = next state
21: end for
22: end for
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(a) Testing NFQ agent [5, 5, 1] on cartpole-v1 env. (b) Testing NFQ agent [5, 3, 1] on cartpole-v1 env.

Figure 6.2: Test results of NFQ agents in the simulation.

The primary step in implementing the NFQ algorithm was to check the correctness of the code
and verify that the translation of the algorithm into a code to incorporate a cartpole balancing
problem was done correctly. Therefore, we checked the performance of the NFQ agent on simu-
lation using Keras. We observed that the agent was able to balance the pole for 60 seconds as
shown in figure 6.2a after being trained for 127 episodes.

Step 2: Optimizing the structure of NFQ agent [5, 5, 1]

Once we had working code for NFQ and also verified that it works correctly, the next step was
to reduce the network structure of the NFQ agent [5, 5, 1] in a way that it can still be able to
balance the pole in the cartpole system on simulations. Reducing the size of the NFQ agent could
be done in the following ways:

1. Removing the hidden layer completely: We started with completely excluding the hidden
layer of 5 neurons from the NFQ agent [5, 5, 1]. However, the NFQ agent did not converge
when there was no hidden layer in the network. This was obvious since a hidden layer
is responsible for incorporating the non-linearity in solving a dynamic, non-linear cartpole
balancing problem.

2. Reducing the number of neurons from the hidden layer: Upon experimentation, we obtained
an NFQ agent with the structure [5, 3, 1] as shown in figure 6.1b, that was also capable of
balancing the pole in simulation. The result of testing the NFQ agent [5, 3, 1] after training
for 87 episodes is as shown in figure 6.2b.

Another scope for improving the network structure was to replace the sigmoidal activation
function with a computationally efficient activation function. A sigmoid activation function is
given by,

Sigmoid Activation function f(x) = 1
1 + e−x

(6.2)

As seen from equation 6.2, passing a value into a sigmoid function requires calculating an
exponent term which is computationally expensive. As a consequence, it would consume additional
time for computation on the hardware as sigmoid activation is used for each neuron. This could
result in increased overall sampling time. To avoid this phenomenon, we experimented using a
Rectified Linear Unit (ReLU) activation function in the hidden layers since it has a minimal impact
on computation time. The ReLU activation function is given by,
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ReLU Activation Function f(x) =
{

0 , if x < 0
x , otherwise

The experiments concluded that the NFQ agent could not converge when a ReLU activation
function was used in hidden layers. Therefore, we retained the earlier configuration of the NFQ
agent [5, 3, 1] with all sigmoidal activations with hardware parameters on the simulation.

Step 3: Training the NFQ agent [5, 3, 1] with hardware parameters

The results obtained until this point were using the OpenAI Gym’s Cartpole-v1 environment with
the default parameters. As a next step, we changed these parameters and set the values equal
to the parameters of the real cartpole system. We also set the sampling time to 40 ms which we
obtained by running the NFQ agent [5, 3, 1] twice (corresponding to producing two actions) on
the EV3 brick.

The results proved that the NFQ agent [5, 3, 1] was able to balance the pole after playing 145
episodes in the simulation. This was a key result as it proved that the NFQ algorithm was able
to learn the cartpole balancing problem concerning the hardware setup used in our thesis. We
tested the agent for 10 episodes with each episode lasting for 120 seconds. The agent was able to
balance the pole for the maximum duration in all the testing phases (see figure 6.3).

Figure 6.3: Simulation result of testing the NFQ agent [5, 3, 1] with hardware parameters

Step 4: Training NFQ agent [5, 3, 1] on the hardware

With the success of NFQ implementation with two actions on the simulations, we could start im-
plementing NFQ on the hardware. The process that we followed to implement NFQ on EV3 was
similar to that of DQN as shown in the sequence diagram 5.2 except that, whenever the network
was loaded on the EV3 brick, it was allowed to play for only one episode and then sent back to PC
for retraining. We also used the forward prediction script as shown in figure 6.4 so that the time
at which the action was sent to the cartpole system would correspond to the state of the cartpole
at that time.

The NFQ agent was trained for 1016 episodes on hardware (accounting to 22.5 hrs of training
time) which resulted in generating 26,000 training data samples. The scores obtained by the agent
while training on the hardware are shown by the graph in figure 6.5. The best balancing time
achieved by the NFQ [5, 3, 1] agent was 3.1 seconds after episode 308 (corresponding to the peak
in the graph shown in figure 6.5). On average, the agent could balance the pole for 2.15 seconds.
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Figure 6.4: Hardware setup for training NFQ agent [5, 3, 1].

Figure 6.5: Performance of NFQ agent [5, 3, 1] on the hardware

At this point, the EV3 Lego Large motor (6009430) that drove the rear wheels of the cartpole
system was damaged due to excessive training sessions carried out on it. It lasted for a massive
100 hours of vigorous use while training different AI controllers on the cartpole system. Since
the real wheel axle assembly was complex, most of the parts of the cartpole system had to be
dismantled and reassembled to replace the faulty large motor with a new motor.

To improve the performance of the NFQ agent, we tried to reduce the sampling time further to
allow the agent to have more frequent interaction with the cartpole system. One possible way was
to use a Look-up Table (LUT) for the sigmoid function so that it would require fewer calculations
due to the activation function. Thus, we implemented a dictionary comprising of 1000 rows that
consisted of input-output the pairs of the possible range of values that could be fed to the sigmoid
function during the control of the cartpole problem. Additional logic was also required to be
included to select the closest key in case an exact key was not found for a particular input value.
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Since the dictionary was created ahead of the start of the control loop, it did not directly interfere
with the sampling time. Surprisingly, the results of using a dictionary for a faster calculation of
activation function were not as expected. The sampling time rose to 150 ms as compared to the
initial 40 ms, which proved that the EV3 took a longer time to search through 1000 rows of the
dictionary than to calculate the output of sigmoidal activation in the runtime. Therefore, the idea
of using the LUT was discarded.

Another approach that we used to reduce the sampling time of the NFQ agent was by changing
its mechanism of calculating action based on the input state. Originally, to choose an action out
of possible options (i.e. [0, 1] corresponding to forces [-14N, 14N]) suitable for a given state [x,
ẋ, θ, θ̇], the NFQ agent first feedforwards the input set [x, ẋ, θ, θ̇, 0] to produce the q-value for
action ‘0’. Next, it again feedforwards the input set [x, ẋ, θ, θ̇, 1] to produce the q-value for action
‘1’. Finally, it compares the two q-values and chooses the action corresponding to the minimum
q-value. This process requires two iterations (or feedforward mechanisms) of the network. There-
fore, we experimented to check if both the q-values could be obtained with a single feedforward of
the network.

It was indeed possible to produce two q-values through a single feedforward process by using
a 2D array of inputs being fed to the network. Since we used simple matrix multiplications to
represent a neural network, using a 2D array in place of a 1D array of input was not too difficult.
An example to illustrate the feeding of a 2D matrix of input to the NFQ is as shown in figure 6.6.
This trick helped to reduce the overall sampling time such that it took only 22 ms to calculate
both the q-values as compared to the earlier time of 40 ms to calculate two q-values. Thus the
sampling time was reduced by 45%

Figure 6.6: Illustration of a single feedforward of NFQ agent [5, 3, 1] to produce multiple q-values.

We took the advantage of this move by adding a neutral action to the action set [0, 1, 2]
corresponding to forces [0N, -14N, +14N]. The author of the NFQ paper, suggests in [20], that
it is useful to have neutral actions that do not put additional energy into the system. With the
additional neutral action and the trick to producing multiple q-values in one go, we obtained an
NFQ agent [5, 3, 1] which had a sampling time of 25 ms to choose an action out of [0, -14N and
+14N]. Next, as a sanity check, we planned to implement this agent on simulations first, before
directly implementing it on the hardware.

Step 5: Implementing NFQ agent [5, 3, 1] with 3 actions: [0N, -14N, +14N] on
simulations with hardware parameters.

The training of the NFQ agent lasted for 68 episodes after which the agent was able to balance
the pole with a 100% accuracy. Figure 6.7a depicts the learning curve of the NFQ agent during
the training phase whereas figure 6.7b describes the performance of the trained NFQ agent. The
testing phase comprised of 10 episodes, each lasting for a maximum of 120 seconds (i.e. 4800 steps
with a sampling time of 25 ms.)
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(a) Training NFQ agent [5, 3, 1] with three actions (b) Testing NFQ agent [5, 3, 1] with three actions

Figure 6.7: Performance of NFQ agent [5, 3, 1] with 3 actions: [0N, -14N, +14N] on the simulations.

Step 6: Implementing NFQ agent [5, 3, 1] with 3 actions: [0N, -14N, +14N] on the
hardware

As the 3-action NFQ agent could succeed in balancing the pole on the simulations with hardware
parameters, we moved to hardware to train the same agent. After training for 600 episodes (≈12
hrs of wall-clock time), the NFQ agent [5, 3, 1] could reach the best balancing time of 3.6 seconds
and an average balance time of 2 seconds. The best score was attained by the agent in the 49th

episode.

Despite 3.6 seconds of balance time was the best score we had obtained until this point after
experimenting several configurations of DQN as well as NFQ agents, the average performance
of 2 seconds was not noteworthy. The paper that introduced NFQ proved its efficiency only
through simulations. However, the same author had experimented on a real-life cartpole system
in [20] using an NFQ agent. The cartpole setup used in the experiment involved a swing-up and
balance task. This was the only key difference in the hardware setup as compared to the cartpole
system that we have used in the thesis. Further, the author used an effective method to overcome
the delays caused due to sensing, computation, and actuation tasks. The state information was
augmented with historical information by including the previous action in it. Thus, we decided to
implement the strategy used by the author in [20].

Step 6: Implementing NFQ agent [6, 3, 1] with 3 actions: [-14N, 0N, +14N] on the
hardware

We designed the NFQ agent [6, 3, 1] with the tanh activation function (since this was used in the
paper [20]) in the hidden layer and sigmoid activation at the output. The network configuration
used in the [20] was [6, 20, 20, 1] and due to better hardware setup, the sampling time was 0.01
seconds. Since we used comparatively naive hardware to build the cartpole system, we could not
include a higher number of neurons as it would lead to increased sampling time. Further, we also
applied the trick of scaling the input values as used in [20]. To normalize the input values to have a
mean of 0 and a standard deviation of 1, we used the z-score formula as given in 6.3. Furthermore,
to exactly match with the setup from the paper, we also modified the action set to [-14N, 0N,
+14N] from [0N, -14N, +14N]. We continued to include the calculation of multiple q-values in one
go as done in step 4. With the above configurations, the NFQ agent [6, 3, 1] required 50 ms of
sampling time. The increased sampling time was due to the calculation of z-scores for the input
array as well as the inclusion of one additional input neuron. Since we had included the past
action a′ in the state variables, the forward prediction script was not used during implementation.
The architecture used for training NFQ agent [6, 3, 1] on the hardware is as shown in figure 6.8.
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Z = x− µ
σ

(6.3)

where,
Z = Standard score
x = input value
µ = mean of the sample
σ = standard deviation of the sample

Figure 6.8: Architecture of NFQ agent [6, 3, 1] showing normalized input and no forward prediction
script.

The NFQ agent was trained for 700 episodes i.e. a training time of 15.5 hours. We observed
that the agent could balance the pole for a maximum of 2.9 seconds in the 334th episode, and its
average balance time was still around 2.2 seconds. We investigated possible issues for the agent
to be unable to achieve a higher average balance time than 2.2 seconds. The cartpole system that
we had built had an inherent issue due to the initialization mechanism used in it. As described in
the hardware setup (section 4.2), the combination of using a grabber mechanism and a fine-tuning
mechanism to keep the pole upright before the start of an episode led to the issue of ‘State Space
drift’.

State Space Drift

The hardware setup that we built as a demo for representing a cartpole system moved on a set of
four Lego wheels as shown in figure 4.1b. The pole balancing task should be initialized at either of
the equilibrium points shown by figures 6.9a and 6.9b. Since the cartpole system we built would
move on the ground, the pole could not be initialized at the stable equilibrium point (6.9a), and
hence, it had to be initialized at the unstable equilibrium point(6.9b).

The fine-tuning mechanism was built to allow the grabbers to release the pole while keeping the
pole almost upright. The release of the fine-tuning mechanism indicated the start of an episode.
The EV3 Gyro sensor installed near the pivot point was reset every time before the release of
the fine-tuning mechanism to avoid the Gyro sensor drift1. Using such a setup to reset the pole
vertically upright, created a difference in state space when the pole was initialized slightly away
from the center at different episodes. This is shown in figure 6.10 where the pole is initialized at
three different positions: I0, I1, and I2 for three episodes:0, 1, and 2 respectively. The shaded

1This issue is caused inherently due to the manufacturing of the sensor.
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(a) Stable equilibrium point of cartpole (b) Unstable equilibrium point of cartpole

Figure 6.9: Stable and unstable equilibrium points in a cartpole system.

cones behind every pole indicate the state space as seen by the controller for each of the episodes.
This phenomenon is termed as ‘State Space Drift’.

Figure 6.10: The pole being initialized at different starting points leading to a state space drift

Since the hardware could not be upgraded/modified to keep the pole exactly upright, we cannot
avoid the presence of state drift in the cartpole system when the pole initialization is done at the
unstable equilibrium point. A solution to this was to make the controller more robust to the state
space it observes by adding some Gaussian noise to the state space variables x, ẋ, θ, and θ̇.

Step 7: Retraining the NFQ agent [6, 3, 1] with noise on the hardware

The addition of Gaussian noise to the state variables did not affect the sampling time of the
cartpole system and we still could maintain the sampling time of 50 ms (on an average) to train
the NFQ agent [6, 3, 1] with noise on the hardware. The agent achieved the best balance time
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of 2.79 seconds after training for 500 episodes (≈10 hrs of training time) and the average balance
time was still observed around 2 seconds. Therefore, the addition of noise could not contribute to
increased performance.

After further investigation, we observed that the z-scores that we calculated to normalize the
input values could be a possible issue in not allowing the agent to learn properly. The idea behind
calculating the z-scores of the input was to scale and normalize the input variables. The input
variables had the following ranges:

• x: -2.4m to 2.4 m

• ẋ: -∞ to +∞

• θ: -0.6019 rad to +0.6019 rad i.e. -35° to +35°.

• θ̇: -∞ to +∞

• a′: [0, 1, 2]

• a: [0, 1, 2]

While calculating the z-score, we had included the current action value a, and the past action
value a′ as well. Since we feed three sets of z-scores for three different actions as a 2D input array,
we were feeding the network with three completely different sets of inputs. To exemplify, let the
state space observed be,

x
ẋ
θ

θ̇
a′

 =


0.02
0.5
−0.01
−0.13

1


It implies that the previous action i.e 1 (≡ 0N ), taken by the controller led the cartpole to

move into the state given by [x, ẋ, θ, θ̇]. The z-score of the input is calculated as,
x
ẋ
θ

θ̇
a

 =


0.02
0.5
−0.01
−0.13

1

 =


−0.60796797
0.53197197
−0.67921421
−0.9641992
1.71940941


Next, we produced a 2D matrix combining the state variables with each action. The Z-scores

are calculated as shown below:
x x x
ẋ ẋ ẋ
θ θ θ

θ̇ θ̇ θ̇
a′ a′ a′

a0 a1 a2

 =


0.02 0.02 0.02
0.5 0.5 0.5
−0.01 −0.01 −0.01
−0.13 −0.13 −0.13

1 1 1
0 1 2

 =


−0.52775592 −0.80204399 −0.72569983
0.67854333 0.22002977 −0.08459078
−0.60314963 −0.8659236 −0.76576914
−0.90472444 −1.12144204 −0.9260464
1.93510506 1.28468993 0.58323115
−0.57801839 1.28468993 1.918875


It is evident that from a network’s point of view, the input matrix described three completely

different states of the cartpole which was wrong. We, therefore, excluded the past action a and
current action a which produced the input matrix as,
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Episode Balance Time (in sec)
3 2.67

244 2.25
258 2.31
262 2.19
377 2.42
579 2.43
674 2.66
699 2.35
720 2.57

Table 6.1: NFQ [6-6-1] 3 actions hardware performance


x x x
ẋ ẋ ẋ
θ θ θ

θ̇ θ̇ θ̇
a′ a′ a′

a0 a1 a2

 =


0.02 0.02 0.02
0.5 0.5 0.5
−0.01 −0.01 −0.01
−0.13 −0.13 −0.13

1 1 1
0 1 2

 =


−0.31189143 −0.31189143 −0.31189143
1.68421373 1.68421373 1.68421373
−0.436648 −0.436648 −0.436648
−0.93567429 −0.93567429 −0.93567429

1 1 1
0 1 2


In the above case, it is clear that the network would calculate q-values for 3 different actions

taken in the same state.

An advantage of excluding the actions while standardizing the inputs was that the number of
times the z-score had to be calculated dropped by a factor of 3 as we calculated z-score for each
state variable-action pair. This reduced the sampling time and created room to add neurons. As
a matter of fact, an entire hidden layer could be added to the previous network configuration. We
chose to add neurons as that would make the network more capable and powerful to handle the
nonlinearity and complex nature of the real-cartpole system.

Step 8: Training the NFQ agent [6, 6, 6, 1] with noise on the hardware

We could fit in a second hidden layer with six neurons and the original hidden layer was added
with 3 neurons whilst maintaining the same sampling time of 50 ms owing to the reduction in
z-score computation (see figure 6.11). We trained the NFQ agent [6, 6, 6, 1] with added Gaussian
noise on the hardware. Table 6.1 enlists the best scores obtained by the NFQ agents in terms of
balance time. Despite the additional hidden layer, higher computation power in terms of neurons,
the NFQ agent [6, 6, 6, 1] could balance the pole for a maximum of 2.67 seconds and an average
balance time of 2.2 seconds after training for 800 episodes (≈18 hrs of training time).

Figure 6.11: Architecture of the NFQ agent [6, 6, 6, 1]
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Apart from the above variations in configurations, we have also tried different modifications
by changing the choices for X+, X−, and addition of artificial states namely [0,0,0,0,0,0] in the
spirit of hint-to-goal heuristic [21] as suggested in [20]. Nevertheless, the performance of the agent
remained the same.

6.3 Results
The summary of results obtained through implementing NFQ algorithm to control a real-life
cartpole problem are noted below:

1. The NFQ agent [5, 5, 1] along with its optimized version of configuration [5, 3, 1] were both
able to execute complete control of a simulated cartpole system provided by OpenAI Gym.
The agents were able to learn the task of balancing the pole within 127 and 87 episodes
respectively.

2. The NFQ agent [5, 3, 1] was also able to balance the cartpole system on the simulation with
hardware parameters. It took 145 episodes to learn the task successfully.

3. Accounting to a wall-clock training time of 22.5 hours, the NFQ agent [5, 3, 1] could balance
the pole for a maximum of 3.1 seconds on the hardware and an average balance time of 2.15
seconds. The sampling time used was 40 ms.

4. A trick to calculate multiple q-values in one iteration of the network was helped reduce the
sampling time significantly. This provided scope to add a neutral action to the action set
which is necessary for the context of controlling a real dynamical system. Therefore, a NFQ
agent [5, 3, 1] with 3 actions: [0, 1, 2]≡[0N, -14N, +14N] and a sampling time of 25 ms
was designed. The experiments showed that it was capable to balance the pole infinitely on
the simulation with hardware parameters. It learned the pole balancing task in merely 68
episodes.

5. The NFQ agent [5, 3, 1] could also perform well on the hardware with the use of three
actions and a sampling time of 25 ms. It achieved the best balance time of 3.6 seconds and
an average of 2 seconds. It was trained for a total of 600 episodes accounting for ≈12 hours
of training time.

6. A new NFQ agent [6, 3, 1] coupled with the action set: [0, 1, 2]≡[-14N, 0N, +14N] was
designed inspired by [20]. It used normalized inputs and a sampling time of 50 ms on the
hardware. After being trained for 700 episodes (≈15.5 hours of training), the agent could
balance the pole on the hardware for a maximum of 2.9 seconds and an average of 2.2
seconds.

7. The same NFQ agent [6, 3, 1] was retrained with Gaussian noise to eliminate the state space
drift. However, the agent completed 500 episodes (≈10 hrs of training time) to be able to
balance the pole for a maximum of 2.79 seconds and an average of 2 seconds.

8. On discovering an improper calculation of z-scores at the input of the NFQ agent [6, 3, 1],
a correct method was proposed. The corrective measure allowed the addition of neurons to
the network since a few seconds were saved avoiding unnecessary computations during input
normalization. This led to a design of the NFQ agent [6, 6, 6, 1] with normalized input
and a sampling time of 50 ms. This agent was trained for 800 episodes on the hardware
(totaling ≈18 hours of training time) during which it balances the pole for a maximum of
2.67 seconds.
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6.4 Conclusion
To sum up, the NFQ agent in general performed better than the DQN agent in terms of executing
a model-free control. However, the average balance time of 2.2 seconds was similar to that of DQN
agent and not yet significant. We have referenced the NFQ algorithm on account of its success in
being able to balance a real-life cartpole system. The author of the NFQ paper has implemented
the NFQ algorithm with enough evidence that NFQ is tailor-made to control real RL problems.
Despite following a similar procedure taken in [20], the settings in our experiments are not exactly
the same in terms of network architecture, sampling time, and the hardware setup. The author has
designed a slightly complex swing-up and pole balancing task through sophisticated components
accompanied by real-time software. To exemplify, the hardware used in the paper is capable of
providing a fixed sampling time of 10 ms which is very small. On the other hand, the demo
product that we built for the thesis using the LEGO Educational kit does not guarantee a fixed
or less variable response time. The EV3 brick uses embedded Linux at its heart powered with
a comparatively simpler ARM9 core. The problem becomes worse when the hardware has very
limited cache memory and slower clock. As a result, it becomes nearly impossible to balance
a real-time dynamical control problem like the cartpole system using a LEGO educational kit.
Nevertheless, we have a few agents that can manage to balance the pole for an average of 2.2
seconds running on top of non-real-time hardware.
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Chapter 7

Implementation: GA

In this chapter, we describe the motivation for using the Genetic Algorithm in our thesis. We
elaborate on how the experiments were carried out to optimize the existing solutions of the NFQ
agent. The key insight from this chapter is that the GA was able to produce a better quality
controller when it was used alone to produce the controllers. In other words, the GA was ineffective
when it comes to optimizing existing solutions whereas it excelled when it was provided with
completely untrained agents. The effective way of generating best-performing agents through GA
was by training the agents initially on the simulation and further continuing their training on the
hardware. Therefore, a best performing GA agent is produced at the end of this chapter that could
balance the pole on the hardware for an average of 2.42 seconds and the best of 6.03 seconds. The
GA agent was named after its index in the population as Agent-45.

7.1 Motivation
In the world of neural networks, the term ‘parameters’ is often referred to as the weights and
biases of the network. When we train a network, it essentially learns the parameters until it is
able to solve the task given to it. The better the set of parameters learned, the better is the
performance of the network on the task. Therefore, poor performance can be attributed to a
sub-optimal set of parameters of the network. We use Evolutionary Algorithms to optimize and
improve sub-optimal agents obtained in this thesis. Genetic Algorithm (GA) is a popular classical
evolutionary algorithm. In principle, it is based on Charles Darwin’s theory of natural evolution
“survival of the fittest” and uses a gradual and random tuning of the network parameters until
the network’s performance increases to an expected level. Based on this concept, we chose to
use a genetic algorithm to optimize the existing best performing AI agents and improve their
performance to some extent. In our case, we had obtained the following set of agents that had
comparable performance:

1. An offline DQN agent [4, 24, 16, 2] with a sampling time of 90 ms, best balancing time of
3.7 seconds, and an average balance time of 2.2 seconds. It used a forward prediction script
to overcome the delays encountered on the hardware.

2. An NFQ agent [5, 3, 1] with a sampling time of 40 ms, best balancing time of 3.1 seconds,
and an average balance time of 2.15 seconds. It used a set of two actions: [-14N, +14N] and
a forward prediction script to execute the control.

3. An NFQ agent [5, 3, 1] with a sampling time of 25 ms, best balancing time of 3.6 seconds,
and an average balance time of 2 seconds. It used a set of three actions: [0N, -14N, +14N]
and a forward prediction script.

4. An NFQ agent [6, 3, 1] with a sampling time of 50 ms, best balancing time of 3.6 seconds,
and an average balance time of 2.2 seconds. It used a set of three actions: [-14N, 0N, +14N]
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and avoided the use of forward prediction script. Instead, it used historical information to
augment state information.

5. An NFQ agent [6, 6, 6, 1] with a sampling time of 50 ms, best balancing time of 2.67 seconds,
and an average balance time of 2.12 seconds. It executed control using three actions: [-14N,
0N, +14N] and also avoided the use of forward prediction script similar to NFQ agent [6, 3,
1].

Initially, we intended to obtain better performing agents through GA. However, we later found
out that an agent that was trained using GA from scratch was able to put a better performance
than any other previously mentioned agents.

7.2 Experiments
Step 1: Optimize the best NFQ agents on the hardware using GA

Fundamentally, the GA performs crossover and mutation operations iteratively over a set of ini-
tial agents/networks called the ‘population’. Therefore, we had to choose multiple agents with the
same network structure, to be optimized using GA. We chose the NFQ agent [6, 3, 1] that had a
sampling time of 50 ms using three actions: [-14N, 0N, +14N]. Additionally, we chose the top 2nd

and 3rd best performing NFQ agents that were obtained while training NFQ agent [6, 3, 1]. We
did not plan to use the offline DQN agent [4, 24, 16, 2] or any other configurations of NFQ agents
as they made the use of a forward prediction script that made them a model-based controller.

We started with a population size of three NFQ agents with configuration [6, 3, 1] and a
sampling time of 50 ms. These agents were allowed to play three episodes each on the hardware
and the average score was calculated. This average score was considered as the fitness criteria of
that agent. Next, we chose the top two agents based on their fitness levels and used them in the
process of reproduction. These two agents were termed as the ‘parents’ for generating the next
generation. In reproduction, we performed a crossover of the two parents followed by mutation
to maintain diversity and produced five agents in total. These five agents were termed as the
‘children’. With the inclusion of the parents, a total of seven agents formed the 2nd generation.
All the agents in the second generation were allowed to play three episodes each on the hardware
and the average score of the generation was calculated. This average score was used to check the
evolution of GA towards producing better agents. A sequence diagram describing the process used
to optimize NFQ agents using GA on EV3 is as shown in figure 7.2.

We performed experiments comprising of 20 generations and the results are as shown in figure
7.1. Performing 20 generations produced a total of 73 different NFQ agents and the performance
of the agents, in general, was not significant. A total of ≈5 hours of wall-clock training time was
consumed. As seen from figure 7.1, the average balance time for each generation was fluctuating
with a peak of 34 steps i.e. 1.7 seconds of average balance time in the 10th generation. The possible
reasons for the failure could be the small initial population size which started with 3 parents and
comprised of just 7 children in each generation. It is generally observed that GA performs well
with higher population size. As a result, we could not optimize the performance of the NFQ agent
[6, 3, 1] using GA.

Step 2: Training agents from scratch using GA on simulation.

GA has been a popular evolutionary algorithm that generates high-quality solutions to optimiz-
ation and search problems. We planned to implement the GA afresh with using any pretrained
network unlike step 1. We started with a small architecture of shape [4, 4, 2] and implemented
the GA algorithm on the Cartpole-v1 environment from the OpenAI Gym updated with hardware
parameters. The initial population size was kept to 500. All the agents in a generation were played
for 3 episodes on the cartpole-v1 environment and the average score attained by them symbolized
their fitness level. Top 20 best GA agents were chosen as parents for mutation and crossover based
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Figure 7.1: Performance of 20 generations in terms of average generation balance time.

upon the fitness scores. We produced 499 children agents as the outcome of the crossover and
mutation process. To guarantee a progressive performance of the GA, we chose one elite to be
carried over to the next generation from the current generation. The elite was chosen by retesting
the average score of the top 5 parents out of the top 20 parents on the cartpole environment.
The agent with the highest average score was then allowed to carry over to the next generation.
The training was stopped at a point when the average scores of the top 50 agents (i.e. 10 % of
the generation population) were 500 and the average scores of all the population were 90% of the
highest achievable score (i.e. 500) in the cartpole-v1 environment. The training on simulation
was successful and we chose a set of top 20 agents trained on simulation to train further on the
hardware.

Step 3: Training trained GA agents from simulation on the hardware.

Obtaining trained GA agents from simulation had dual-motives. First, the GA could be used in
its natural setting i.e. training on a dense population of agents, and second, training such a high
number of agents on hardware was impractical due to time constraints. As a result, we had 20
trained GA agents which could still be managed to be trained on the hardware in the aspects of
training time. The trained GA agents had the configuration [4, 4, 2] with the state [x, ẋ, θ, θ̇] at
the input and two actions [-14N, +14N] at the output. The network configuration was significantly
small with ReLU activation used in the hidden layers and sigmoid activation at the output. Fur-
ther, the input was also not required to be normalized; hence, eliminating the z-score calculation
and its corresponding computation time. As a consequence, we could observe a sampling time of
merely 25 ms.

Table 7.1 depicts the performance of the trained GA agents on the hardware. The agent index
column refer to the indexes of the agents when they were trained on the simulation. As observed,
they indicate a comparatively better performance as compared to NFQ or DQN agents.

Moving further, we trained these agents for four generations on the hardware. The training
process on the hardware followed a similar flow as shown in the sequence diagram 7.2, except
that the initial population size was 20, 19 agents were produced through crossover and mutation
using the top 10 parents, and one elite parent was added by retesting the top 10 best performing
parents. We completed four generations of GA generating a total of 80 agents and training time
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Figure 7.2: Sequence diagram describing the process of implementing GA to optimize NFQ trained
agents on the hardware.
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Agent Index Balance Time (sec) Agent Index Balance Time (sec)
84 1.4 289 1.38
88 1.76 296 1.13
100 1.35 297 1.33
101 3.91 298 1.37
102 1.56 299 1.25
281 2.33 301 1.21
284 1.6 304 1.37
286 1.47 305 1.18
287 1.34 311 1.38
288 1.38 499 2.89

Table 7.1: Performance of the top 20 trained GA agents implemented directly from simulations
on to the hardware.

of ≈20 hours. The results of training the trained GA agents from simulation on the hardware
are as shown in table 7.2. We obtained an agent with index 45 that was able to balance for the
highest amount of time of 5.7 seconds. Such a duration of balance time was never achieved by
DQN or NFQ agents tested until this point. Agent 45 scored 98, 243, and 105 steps in three
consecutive episodes on the hardware which accounted for an average score of 143 steps. Since
this agent had the index 45, we term this GA agent as Agent-45 in the remaining section of the
thesis. However, as seen from table 7.2, the average scores of the generation started to drop after
the second generation which forced us to discontinue training further.

Generation 1 Generation 2 Generation 3 Generation 4
Agent
index

Avg.
Score

Agent
index

Avg.
Score

Agent
index

Avg.
Score

Agent
index

Avg.
Score

0 51.66 30 54.33 60 41.66 90 50.33
1 59.33 31 56.33 61 35.33 91 46.33
2 51.70 32 57.33 62 50.66 92 46.66
3 51.70 33 46.33 63 44 93 61.33
4 70.33 34 84.66 64 45 94 48
5 52.33 35 53.33 65 45.33 95 47.33
6 112.66 36 105.66 66 44 96 62
7 55 37 47.66 67 39.33 97 47.33
8 56.33 38 56.66 68 45.66 98 45.33
9 52.66 39 92 69 43.66 99 51.66
10 50 40 50 70 41 100 46.66
11 43 41 46 71 47 101 51.66
12 48 42 50.66 72 39 102 59
13 59 43 52.66 73 49 103 54.33
14 50.33 44 42.33 74 44.66 104 47.66
15 52.66 45 143 75 45 105 47.33
16 52.66 46 47.66 76 45.33 106 53
17 46.33 47 103.33 77 40 107 52.66
18 51.33 48 59 78 44.33 108 47.33
19 63.33 49 80 79 51.66 109 54.33

Average 53.9 Average 66.1 Average 43.8 Average 58.45

Table 7.2: Results for training the trained GA agents [4, 4, 2] from the simulations on the hardware.
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Step 4: Retraining the GA Agents with a modified version of GA and Gaussian noise

In the GA, it has been proved [23] that it can learn faster when the crossover function is excluded,
keeping the mutation mechanism unchanged. We attempted to implement this version of GA in
search of obtaining better agents than Agent-45. Also, it is important to note that the Agent-45
gave the best performance of balancing of 5.7 seconds only once and was not able to repeat it the
next time. The possible issue could be that the pole’s initialization could have also assisted the
Agent-45 with a favorable starting point. In other words, we suspected the contribution of the
state space drift in the performance of the Agent-45. Therefore, we decided to include Gaussian
noise in the modified version of the GA implementation.

First, we trained agents from scratch on simulations using the modified version of GA. Then a
set of 20 successfully trained agents was taken to hardware similar to the process done in step 2.
These 20 agents were then trained for 8 generations on the hardware amounting to a total of 700
episodes (≈25 hours of training time). The training results for the GA agents on hardware are as
shown in figure 7.3. We observed fluctuation in the average scores of each generation experimented
on the hardware. Despite the addition of noise, this approach did not conclude with a better result
than the Agent-45.

Figure 7.3: Hardware results for training agents obtained from the modified GA through simula-
tions.
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7.3 Results
Following are the key results obtained by implementing the Genetic Algorithm in controlling a
real-life cartpole system:

• An NFQ agent [6, 3, 1] was attempted to be optimized by using GA on top of the trained
agent. However, GA was unable to optimize the performance of the NFQ agent [6, 3, 1].

• The best AI controller among all the approaches used in this thesis to control the real-
cartpole system was obtained when a GA algorithm was used to train agents first through
simulation and then followed by additional training on the hardware. The Agent-45 was able
to balance the real cartpole system for a maximum of 5.7 seconds and an average of 2.42
seconds.

7.4 Conclusion
The use of the Genetic Algorithm for balancing the cartpole was successful. One of the key reasons
for its success, despite failures of DQN and NFQ algorithms, was the algorithm itself. The point
in time at which the GA agent produced the action did not require the condition that the input
state should also be at the same point in time. On the other hand, DQN and NFQ heavily relied
on the fact that there should be almost no delay between the input state and the action produced
by the agent. Nevertheless, NFQ had incorporated the historical information (i.e. previous action
a′) as a countermeasure for the delays, yet did not produce a controller with a performance of a
satisfactory level.

Another key observation was that, despite the use of elitism to guarantee a better quality of
agents with increasing generations, the GA algorithm was not producing higher quality agents
(referring to the average scores for the generations in the table 7.2 and figure 7.3). This can be
attributed to the naive design of the cartpole system. The state space drift and non-real-time re-
sponse nature of the hardware had a major contribution in losing some of the best agents obtained
in the previous generation to the next generation. To exemplify, Agent-45 was obtained in the
1st generation with the index 45 in which its average score was 143 (Per episode score: 98, 243,
105). However, the agent could not give the same performance in the tests for choosing the elite
candidate to carry over to the next generation. As a result, it got left out despite showing the
best performances in the initial trials. Nevertheless, after the completion of training, we tested
the performance of the Agent-45 and observed that it maintained an average balance time of 2.42
seconds and also could reach up to a balanced time of a maximum of 6.03 seconds.

Therefore, we chose the Agent-45 as the solution of the ‘DNN controllers’ category and would
optimize it through the Pruning technique described later in chapter 9. In the next chapter, we
design and implement an ‘SNN controller’ as the second category of AI controllers.
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Chapter 8

Implementation: SNN

With Agent-45 representing the category of ‘DNN controllers’, we describe how we used the Genetic
Algorithm in building SNN category controller in this chapter. The outcome of this chapter is the
SNN controller Agent-87 that executes an average balance time of 2.48 seconds on the real-cartpole
system.

8.1 Motivation
Genetic algorithm is originally a searching algorithm that finds an optimal solution to a given
problem. Since it showed a better performance for developing DNNs for our cartpole problem, we
chose to use the same algorithm to develop the SNN controller. In particular, we used the genetic
algorithm excluding crossover and including mutation to train the SNN agents.

8.2 Experiments
Step 1: Training the SNN agents from scratch using GA on the simulation.

We adopted a similar technique that we used in producing the DNN agents by initially training the
SNN agents using GA from scratch on the simulation. The simulation training setup was exactly
similar to that of training DNNs through GA. The architecture of the SNN agent was chosen to be
[4, 4, 2] with a ReLU activation used in the hidden layer whereas sigmoid activation in the output
layer. The target platform on the simulations was the Cartpole-v1 environment from the OpenAI
Gym befitting the hardware parameters. Training of the SNN agents started with a population
size of 500. The agents were allowed to play 3 episodes and the average score attained by them
was considered as their fitness score. In each generation, the top 20 agents were considered for
reproducing the next generation of 499 agents through mutation. An elite agent from the top
5 parents was carried over to the next generation forming a total population of 500 in the new
generation. We considered the training as completed when the average scores of the top 50 agents
were 500 and that of the entire generation was 90% of the maximum achievable score i.e. 90% of
500 = 450. On completion of the training on simulation, the top 20 agents were carried over to
the hardware for further training.

Step 2: Training the trained SNN agents using GA on the hardware.

SNN agents primarily differentiate from the DNN agents in terms of the neuron structure. SNN
neurons, termed as LIF neurons, contain a form of memory that stores each incoming pulse. Each
LIF neuron has a fixed memory potential threshold that decides the firing point of that neuron.
With each incoming spike, the potential of the neuron increases until it reaches the threshold, after
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which the neuron fires a spike and clears its internal memory through discharging its membrane
potential. This entire process comes at the cost of additional calculations that the SNN agent
does for keeping a track of the membrane potential of each of its neurons. Therefore, owing to this
overhead of calculations, the sampling time of the SNN agent also increases and we observed it
to be 35 ms on an average on the hardware. With the sampling time set to 35 ms, we performed
experiments producing 5 generations of SNN agents starting with an initial population of 20 agents
on the hardware. The training process that we followed was similar to the sequence diagram as
shown in figure 7.2.

In every generation, 19 agents were reproduced using the top 2 parents, and one elite agent
was added to the generation that was chosen by retesting the top 2 best performing parents. At
the end of training on the hardware, we produced a total of 110 agents requiring a training time
of ≈25 hours. The results of the training of the SNN agents using GA on hardware is as shown in
figure 8.1.

Generation 1 Generation 2 Generation 3 Generation 4 Generation 5
Agent
index

Avg.
Score

Agent
index

Avg.
Score

Agent
index

Avg.
Score

Agent
index

Avg.
Score

Agent
index

Avg.
Score

0 44.3 22 77.7 45 59 68 44.3 91 52.7
1 65.3 23 47.3 46 66 69 51.7 92 57.3
2 77 24 50 47 53 70 53.7 93 53.7
3 50 25 51 48 63.7 71 60 94 116.3
4 47.7 26 82.3 49 61 72 50.7 95 52
5 47.7 27 72.7 50 49.7 73 120.3 96 55.3
6 52.3 28 52 51 79 74 82.7 97 59.7
7 78 29 50.3 52 53 75 48 98 56.7
8 111.7 30 110.7 53 76.7 76 100.3 99 60.3
9 52.7 31 55.3 54 63.3 77 47 100 64
10 65 32 76.7 55 52.3 78 73.7 101 85.3
11 85.7 33 51 56 54.3 79 56 102 56.3
12 46.7 34 85 57 61.3 80 48.7 103 112.7
13 46.7 35 59.7 58 45.7 81 48 104 54
14 81.7 36 56.7 59 52.3 82 51 105 68.3
15 103 37 47 60 80.3 83 72.3 106 76.7
16 65 38 56 61 45.3 84 50 107 45.7
17 64.3 39 81.7 62 50 85 55.7 108 67.7
18 106.7 40 69.7 63 73.3 86 61.7 109 50.3
19 61.3 41 70.7 64 106 87 122.3 110 52.3

Average 67.64 Average 65.18 Average 62.26 Average 64.905 Average 64.86

Table 8.1: Results for training the trained SNN agents [4, 4, 2] using GA from the simulations on
the hardware.

We could obtain an agent in the 4th generation with index 87 that could get the highest average
score of 122.3. Furthermore, the average scores per generation were also decreasing gradually.
Therefore we selected the Agent-87 as the representative of the SNN category of controllers in
this thesis. The average score attained by the agent when we tested it later for 30 episodes was
2.48 seconds with the best score of 3.6 seconds. Thus, the maximum balance time achieved by the
SNN category of controllers was 2.48 seconds on the cartpole system.

8.3 Results
We obtained an SNN agent that was trained using GA from scratch initially on the simulations
followed by training on the hardware. The agents that were trained on the simulations were able
to balance the pole completely on the Cartpole-v1 environment with the hardware parameters.
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Additional training of the trained agents from the simulation on the hardware produced an Agent-
87 as the best performing SNN controller. It could balance the pole for an average of 2.48 seconds
of balance time and with a maximum of 3.6 seconds. The configuration of the SNN agent is exactly
similar to the DNN Agent-45 which is [4, 4, 2].

8.4 Conclusion
The Genetic Algorithm once again proved to be a better search method to build SNN controllers
in controlling a real-time practical cartpole system. However, the end performance of the SNN
controller could not exceed above 2.5 seconds in terms of average balance time. As mentioned
earlier, the key reason for the failure of the agents is the non-real-time response of the hardware.
The fact that the Linux based OS provides a non-real-time response, could be a major reason for
the failure of the algorithms like DQN and NFQ as well. We discuss the inconsistencies provided
by the EV3 hardware in chapter 10 in detail.

In conclusion, we obtained an SNN controller named Agent-87 using GA that could be used
to balance the real-life cartpole system for an average balance time of 2.48 seconds.
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Chapter 9

Optimization

In this chapter, we understand how optimization plays a vital role in the performance of the AI
controller. We describe how the optimization of a neural network is directly related to its energy
efficiency. Furthermore, we discuss the effect of pruning neurons on the best performing DNN and
SNN agents. We highlight the simulation results of pruning followed by its hardware implement-
ation for both the AI controllers. The key insights we provide through this chapter is that the
performance of controllers deteriorates as we reduce the number of neurons in its architecture.

Optimization of network architecture is one of the key aspects as it directly affects the per-
formance of the network. The thesis aims at designing AI controllers such that they are energy
efficient for a particular control application. The energy consumption of the controller is directly
proportional to the architecture of the neural network. If we have a larger model (i.e. more layers
and/or neurons), it would require more number of parameters i.e. weights and biases to calculate
the action. In our case both the agents: Agent-45 from the DNN category and Agent-87 from the
SNN category have the configuration [4, 4, 2] i.e 10 neurons. The parameters of each of the agents
are as shown in table 9.1.

Network Parameters
DNN Agent-45 SNN Agent-87

W[0] 0.114611 -0.36976 0.004006 -0.01454 0.497691 -0.39565 -1.02451 -0.95091
-0.1884 0.313377 -0.60841 -0.53499 0.14929 -0.58698 0.09589 -0.51850

0.296651 0.190262 -0.66778 -1.17585 0.82563 -2.33728 -0.08185 -2.41357
-0.75604 -0.69925 -0.69153 -2.42713 0.92475 -1.02903 0.63633 -1.52933

B[0] -0.38316 0.087548 0.206646 0.816 0.45309 0.71787 0.56929 0.46604

W[1] 0.153732 0.507467 -1.39897 1.10257
0.617005 0.121731 1.24334 -2.90878
0.223229 -0.85645 -1.50185 1.712698
1.451527 -1.86267 1.21840 -0.58915

B[1] -0.9865 1.917096 -0.21924 0.155174

Table 9.1: DNN and SNN agents’ network parameters

Thus, there are a total of 30 network parameters used by each of the agents to produce one
action. During the execution, the weights and biases of the agent are initially stored in the
memory of the EV3 brick. Whenever a state is fed at the input of the neural network, the weights
and biases are accessed from the memory to the processor for calculations such as additions and
multiplications. These weights and biases are stored in the memory of EV3. For a generic platform
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with a 45 nm CMOS process, we consider the energy cost for basic arithmetic calculations and
memory accesses as shown in figure 9.1. Memory accesses from the DRAM are energy expensive
by three orders of magnitude as compared to that of simple arithmetic operations. As a result, the
network that has a higher number of parameters that are required to be stored in memory away
from the processor requires a higher number of memory references to perform the calculations,
which in turn results in higher energy consumption. For a real-time task like balancing a pole on
a resource-constrained device like EV3 brick, a model with a larger set of parameters and more
number of computations becomes a bottleneck. Therefore, we aim to optimize the network by
reducing its parameters such that its performance remains unaltered or deteriorates minimally.

Figure 9.1: Energy table for 45 nm CMOS process [12]

9.1 Pruning
One of the common approaches in optimizing the network architecture is Pruning. In that, we
trim the network parameters that are redundant and can be eliminated while maintaining network
performance. There exist several pruning algorithms [6] to choose the set of weights and biases,
and eventually, neurons that can be removed leaving the performance unharmed. Most of the
pruning techniques are suitable for networks of a very large size i.e. > 100 neurons. Since the
network architecture that we are using is already small i.e. 10 neurons, we choose to do the
pruning process manually as opposed to implementing complex pruning algorithms. Traditionally,
the process of pruning is a three stages process as shown in figure 9.2. In our case, we used GA
as the algorithm to produce the DNN and SNN agents. Retraining the GA agents is difficult due
to the mutation process involved during the production of the next generation. Thus, we limit
the pruning process to simply eliminating the unnecessary neurons and observe the performance
of the agent.

Figure 9.2: Traditional 3-step pruning process
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We performed the pruning of our agents in a naive fashion in which we dropped neurons one-
by-one and tested the performance of the agent. Due to the absence of retraining, the pruning
technique that we used could also result in a deterioration of the performance of the network.
Thus, if the performance after pruning one or more neurons has not dropped substantially or if
it has improved, we continued dropping neurons further and repeated the process. Initially, we
started dropping neurons one at a time from the hidden layer by setting the weights (also called
synapses) to that corresponding neuron to zero. As seen from figure 9.3a the weights with a green
cross are set to zero thereby imitating that the neuron with the red cross is removed/absent. By
removing one neuron from the hidden layer, we can also remove the weights connected to that
neuron from the previous layer that becomes redundant as shown in figure 9.3b.

(a) Technique for pruning synapses and neurons (b) Network structure after pruning of 1 neuron

Figure 9.3: Naive pruning methodology used to prune DNN and SNN agents.

It was necessary to validate if the discussed approach would help in successfully reducing the
structure of the network. Therefore, we performed the pruning of each of the agents on simulation,
noted the results, and then performed the pruning process on the hardware.

Terminology:

Figure 9.4: Notation for indicating which neuron is pruned during the experiments.

The scope of pruning in our network is focused on the hidden layer that contains four neurons.
There exist 16 different possible combinations of pruning neurons in the hidden layer with four

Design, implementation, optimization, and evaluation of energy-efficient AI controllers and
testing their feasibility on a real continuous-time dynamical system.

71



CHAPTER 9. OPTIMIZATION

neurons. Note that there has to be at least one neuron in the hidden layer to learn the nonlinearity
in the cartpole problem. We denote the pruning configurations as [x1, x2,x3, x4] where xn denotes
the nth neuron from the top to bottom in the hidden layer of the network. If the nth neuron from
the hidden layer is pruned, the corresponding xn is substituted by ‘0’. Thus the network without
pruning would be denoted as [1, 1, 1, 1]. The possible combinations of pruning and their notations
are as shown in figure 9.4.

9.2 Pruning DNN controller
Agent-45 was obtained using the Genetic algorithm and was able to execute control over the
cartpole system for 2.42 seconds of average balance time. This controller was obtained by first
training it on the simulations followed by training on the hardware. To begin pruning the Agent-
45, we first had to check if it was still able to balance the pole on the simulated cartpole system.
The simulation setup was the cartpole-v1 environment replaced with the hardware parameters.
The results of Agent-45 performing on simulations is as shown in figure 9.5. The DNN agent was
able to balance the pole on the simulations completely for a test of 100 episodes each lasting for
500 steps.

Figure 9.5: Performance of the Agent-45 on simulation over 1000 episodes.

9.2.1 Simulation results for pruning DNN

Figure 9.6: Performance of the Agent-45 after pruning 1 neuron from the hidden layer on simula-
tions.

The simulation setup involved testing the agent with different configurations as shown in figure
9.4. The test involved 10 episodes with a maximum allowed balance time of 10 seconds and the
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average balance time was calculated. We began with pruning a single neuron from the hidden
layer. There were four different ways in which a single neuron could be pruned and they are as
shown by the y-axis in the figure 9.6. We observed that the Agent-45 was able to balance the
pole for the maximum allowable time for all configurations except when the last neuron from the
hidden layer was pruned. The plot in figure 9.6 is a box-and-whisker plot that has got squeezed
into a vertical line implying that the mean, maximum, minimum, and the quartiles are all the
same. The additional points in the case of [0, 1, 1, 1] and [1, 1, 1, 0] configurations describe the
outliers based on a method used by Seaborn library that is a function of the inter-quartile range [1].

Next, we pruned two neurons from the hidden layer of Agent-45 in six different ways as shown
in figure 9.7. In this case, we observed a similar pattern of performance as found in pruning a
single neuron. The agent was unable to balance the pole when the last neuron in the hidden layer
was pruned. This is indicated by the nearly zero average balance time for configurations [0, 1, 1,
0], [1, 0, 1, 0] and [1, 1, 0, 0].

Figure 9.7: Performance of the Agent-45 after pruning 2 neurons from the hidden layer on simu-
lations.

Lastly, we experimented with pruning three neurons from the hidden layer in four different
ways and obtained the results as shown in figure 9.8. Combining the results for pruning three
neurons with the previous pruning results, we observed that the last neuron in the hidden layer
was enough to be able to balance the pole on the simulations for the maximum balance time. In
other words, a DNN controller with a configuration of [4, 1, 2] i.e. 7 neurons is fully capable of
controlling the cartpole system.

Figure 9.8: Performance of the Agent-45 after pruning 3 neurons from the hidden layer on simu-
lations.
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9.2.2 Summary of pruning DNN controller on the simulations
Pruning the Agent-45 on the simulations was fruitful as it verified the advantage of pruning in
reducing the network structure and also provided key insights on the important connections/neur-
ons in controlling the cartpole system. The Agent-45 was able to perform equally well despite the
removal of first three neurons in its hidden layer because the weights and biases associated to that
neuron were comparatively higher than the other neurons (see table 9.1: 4th column under ‘DNN
Agent-45’). We plot the best configurations of Agent-45 when one, two, and three neurons are
pruned, in the figure 9.9 and the performance remains unaltered.

Figure 9.9: Performance of the Agent-45 after pruning n neurons from the hidden layer on simu-
lations.

9.2.3 Hardware results for pruning DNN
In this section, we perform the pruning operation similar to the simulations, on the hardware. The
only difference was the number of the test episodes carried out per configuration. We performed
10 experiments for each of the possible pruning configurations owing to the time constraints of
testing episodes on the hardware. The results are the box-and-whisker plots of the balance time
for each pruned configuration of the Agent-45.

The effect of choosing a single neuron in four different ways to be pruned from the hidden layer
on the hardware is shown in figure 9.10. We observed that dropping the first neuron from the
hidden layer gave a better performance as compared to dropping any other neuron in that layer.
Further, this result was also in compliance with the simulation result of pruning single neuron such
that the absence of the last neuron in the hidden layer results in a failure of the DNN controller.

Figure 9.10: Performance of the Agent-45 after pruning 1 neuron from the hidden layer on the
hardware.

As discussed earlier, choosing two neurons to be pruned from the hidden layer can be done in
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Figure 9.11: Performance of the Agent-45 after pruning 2 neurons from the hidden layer on the
hardware.

six different ways. The results for pruning two neurons with all possible combinations are as seen in
figure 9.11. It was observed that dropping the first and second neurons from the hidden layer gave
a better performance as compared to dropping any other pair of neurons. It is also important to
focus on the configurations that pruned the last neuron where the controller had failed completely.

Lastly, we plot the performance of the Agent-45 when 3 neurons were pruned from its hidden
layer in four different combinations. Experiments showed that the Agent-45 could still perform
well using only the last neuron from the hidden layer (see figure 9.12).

Figure 9.12: Performance of Agent-45 after pruning 3 neurons from the hidden layer.

9.2.4 Summary of pruning DNN controller on the hardware

Figure 9.13: Summary of pruning neurons in the Agent-45 on the hardware.

We choose the best configuration of pruning one, two, and three neurons from figures 9.10,
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9.11 and 9.12 respectively and compared it with the performance of Agent-45 where no neurons
are pruned. This comparison is seen in figure 9.13 where we observed that the performance of
Agent-45 decreases gradually as we prune neurons from the hidden layer. Overall, the performance
graph of the Agent-45 follows the simulations in terms of the importance of the last neuron in the
hidden layer due to its corresponding weights and biases. The last column of the DNN Agent-45
network parameter in table 9.1 indicates the weights and biases that are connected to the fourth
neuron in the hidden layer. Further, the last row i.e. W[1] matrix signifies the weights that connect
the fourth hidden neuron to the output layer. These values are comparatively larger than other
connections which make the DNN controller highly reliable on the last neuron in its hidden layer.

9.3 Pruning SNN controller
Similar to the DNN controller, the SNN controller: Agent-87 was obtained using the Genetic
algorithm and was able to execute control over the cartpole system for 2.48 seconds of average
balance time. The controller was also obtained by initially training it on the simulations and then
training it on the hardware. Before pruning the Agent-87, we implemented the agent unpruned,
on the simulations, to check if it was still able to balance the pole. The simulation setup was
similar to that used for the DNN controller as discussed in section 9.2. It was conclusive from the
results shown in figure 9.14 that the SNN controller was able to balance the pole completely on
the simulations.

Figure 9.14: Performance of the Agent-87 on simulation over 1000 episodes.

9.3.1 Simulation results for pruning SNN
The simulation setup that we used for testing was exactly similar to that of DNN. We performed
the same set of pruning configurations for the SNN controller and recorded the results. The
simulation test consisted of 10 episodes that allowed a maximum balance time of 10 seconds. We
started the pruning of the Agent-87 by removing single neuron in four different ways. The result
of the experiment is shown in figure 9.15. We observed that, in the presence of both the neurons:
first and second from the hidden layer, the SNN controller performed the best.

Next, we proceeded with pruning two neurons from the hidden layer in six different methods
and the results are shown in figure 9.16. In this case, we could observe the pattern followed by
the SNN controller as seen earlier. The Agent-87 was able to balance the pole for the maximum
allowable time when its configuration involved the first and second neurons in the hidden layer.

Lastly, a three neuron pruning was done on the Agent-87 on the simulation and the results
obtained are shown in figure 9.17. In this case, since no two neurons could be left unpruned in
the hidden layer, the agent could perform better with the pruning configuration of [0, 0, 0, 1] as
compared to the remaining configurations. However, the performance of this configuration was
worse than the results obtained from pruning one and two neurons.
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Figure 9.15: Performance of Agent-87 after pruning 1 neuron from the hidden layer on simulations.

Figure 9.16: Performance of Agent-87 after pruning 2 neurons from the hidden layer on simulations.

Figure 9.17: Performance of Agent-87 after pruning 3 neurons from the hidden layer on simulations.

9.3.2 Summary of pruning SNN controller on the simulations
SNN Agent-87 has a comparatively uniform distribution of weights as compared to DNN Agent-45.
This is evident from the SNN Agent-87 column of the network parameter in table 9.1. Almost all
the weights and biases of the network have their values distributed evenly with a range. Thus, the
important neurons/parameters cannot be directly observed using the network parameter table.
However, SNN executes a better performance when either the first two neurons or only the last
neuron from the hidden layer is present. This can be concluded from the overall results obtained
from the pruning of the SNN agent on the simulation (see figure 9.18).

9.3.3 Hardware results for pruning SNN
We repeated the pruning procedure on the hardware with the change similar to that of pruning
DNN on the hardware. Box-and-whisker plots describing the performance of the pruned Agent-87
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Figure 9.18: Performance of Agent-87 after pruning n neurons from the hidden layer on simulations.

are plotted in this section and the summary of pruning is provided at the end.

Figure 9.19: Performance of Agent-87 after pruning 1 neuron from the hidden layer on the hard-
ware.

We started with pruning a single neuron in the hidden layer of Agent-45 and observed that it
gave its best performance when only the last neuron was pruned [1, 1, 1, 0] (see figure 9.19). This
was in alignment with the simulation result of pruning a single neuron.

Next, we pruned two neurons from the hidden layer of the Agent-87 in six different combinations
and the result is shown in figure 9.20. Similar to the simulations, the SNN controller displayed
better versions of control with the configurations [0, 1, 1, 0] and [1, 1, 0, 0].

Figure 9.20: Performance of Agent-87 after pruning 2 neurons from the hidden layer on the
hardware.

Finally, a three neuron pruning was performed in four different ways on the SNN controller.
The hardware performance of the Agent-87 as shown in figure 9.21 which proved an exactly similar
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behavior as that of simulations.

Figure 9.21: Performance of Agent-87 after pruning 3 neurons from the hidden layer on the
hardware.

9.3.4 Summary of pruning SNN controller on the hardware
To summarize, pruning the SNN Agent-87 resulted in a gradual decrease in the performance of
the controller similar to the behavior observed in the DNN controller. The SNN controller was at
its best when no neurons were pruned and this implies that there is no or minimal redundancy of
connections in the architecture of the SNN controller.

Figure 9.22: Performance of Agent-87 after pruning n neurons from the hidden layer on the
hardware.
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Chapter 10

Comparisons, Discussion, and
Conclusions

In this chapter, we perform a comparison of the DNN and SNN agents and evaluate their energy
consumptions. We define the energy models that were used to compute and compare the energy
used by both the controllers in controlling the cartpole. Next, we discuss the results in brief and
mention the key insights observed. We also explain the reason for the pattern of results obtained
in our thesis. Lastly, we conclude on our research by revising the aim of work and reflect on the
methods and results of the thesis followed by answering the research questions. We wrap-up the
thesis with the future scope and recommendations in the end.

10.1 Performance vs. Complexity
We obtained Agent-45 and Agent-87 as DNN and SNN category of controllers respectively and
attempted to optimize them through pruning as discussed in the previous chapter. By varying
the configurations of each of the controllers, we recorded their performance in terms of average
balance time. This allows us to plot a Performance vs. Complexity graph that describes how
the performance of the AI controllers varies with respect to their complexity. In our case, the
controller is a neural network and thus, its complexity is given by the number of parameters i.e.
the number of weights and biases it requires. In the summary of pruning methodology that we
discussed in chapter 9, we obtained the set of best performing DNN and SNN agents when 1, 2,
and 3 neurons from their hidden layers were pruned. The best performing pruned DNN agents
are given in figure 9.13 whereas the best performing SNN agents are shown in figure 9.22. With
the removal of each neuron from the hidden layer, all the weights and biases associated with
that neuron also become redundant. Thus, the mapping of the number of neurons pruned to the
number of parameters eliminated is given in table 10.1. As discussed earlier, an unpruned DNN
or SNN controller has 10 neurons in its architecture accounting to 30 parameters. As we remove
neurons, the number of parameters decreases. Thus, using the results of pruning, we can plot the
performance vs. complexity graph in figure 10.1.

Number of neurons pruned
from the hidden layer Number of parameters reduced Complexity of the controller

(in terms of parameters)
0 0 30
1 7 23
2 14 16
3 21 9

Table 10.1: Variation in the complexity of the controller with respect to the number of neurons
pruned.
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Figure 10.1: Performance versus Complexity graphs for different SNN and DNN agent configura-
tions.

The average balance time of the unpruned Agent-87 was 2.48 seconds while that of the un-
pruned Agent-45 was 2.42 seconds. These agents gave the best performances as compared to
their pruned versions which is evident from figure 10.1. The vertical lines for each point in the
performance vs. complexity graph indicate the standard error of the mean. Using the standard
error of the mean, it is observed that the performance of both the unpruned agents is nearly
equal. The performance of SNN and DNN agents was nearly similar when a single neuron was
pruned from the hidden layer of each of the controllers. However, when additional neurons were
pruned e.g. two or three, the performance of the SNN controller dropped significantly. It must
be noted that an average balance time of 1.4 seconds is higher than the time required for the
free-fall of the pole initialized upright. Thus, with 3 neurons pruned in the hidden layers of both
SNN and DNN agents, the agents still attempt to balance the pole but with very poor performance.

Next, we choose the best configurations of each category i.e. DNN and SNN for further con-
sideration of energy consumptions. The pruning methodology allowed to reduce the complexity
of the controllers at the cost of performance. As seen in figure 10.1, the best-case performance
of the DNN and SNN controllers is 2.42 seconds and 2.48 seconds of average balance time on the
hardware. Since this benchmark itself is not very high in terms of balancing time, we do not opt
for any of the pruned controllers for further analysis. Thus, we choose Agent-45 and Agent-87 and
profile them to examine and compare their energy consumptions.

The thesis requires that the controllers that are to be compared should provide comparable
performance. It only makes sense to calculate the energy consumption of the controllers when they
can provide the same level of controllability on the cartpole system. Since we chose Agent-45 and
Agent-87 as our optimal controllers, we have to verify if they are providing a comparable level of
performance. Despite there is a difference in the values of the average balance times of unpruned
SNN and DNN agents of 0.06 seconds, we had to be sure if this difference was significant or not.
To check the significance, we performed the t-test as described in the next section.
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T-test

A t-test is a standard inference statistic that is used to estimate the true difference between two
data populations. A t-test is used for testing a null hypothesis against the mean values of two
groups. The idea behind using a t-test is to verify that the difference in the mean values of two
given populations are strong and not by chance. An alternative test called the z-test also exists but
it is suitable for populations of size in hundreds to thousands. In our case, we had calculated the
average balance time of each of the agents after performing 30 episodes (due to time constraints)
for each of the agents. Thus, we opt for doing a t-test on the mean values that we suspect to
be similar. A t-test can be of three types namely an Independent two-sample t-test to compare
the means between two independent groups, a Paired t-test to compare the means with the same
group for different parameters, and a One-sample t-test to test the mean of a group against a
known mean. Since we have two populations i.e. 30 episode performances of DNN Agent-45 and
SNN Agent-87 each, we have to opt for a two-sample t-test. Let us formally state our problem to
carry out the two-sample t-test.

Problem: We assume that there are no differences in the average balance time of Agent-45
and Agent-87. We would like to know if the difference between the average balance time of DNN
and SNN controllers is significant or not. The data that we have for performing the test is given
in table 10.2.

Balance Time SNN DNN
Mean 2.48 2.42
Standard Deviation 0.88764 0.81503
Number of samples 30 30

Table 10.2: Statistics about the SNN and DNN performances

Solution: To begin with, we first construct our null hypothesis H0:µDNN = µSNN , meaning
that the average of balance time of DNN and SNN are the same. Next, we construct the alternative
hypothesis Ha:µDNN 6= µSNN , meaning that we want to check if the mean values between the two
controllers differ from each other or not. Thus, using the values given in table 10.2, we calculate
the t-statistic using the formula,

t = sample difference − hypothesized difference
Standard error of the difference

t = (x̄SNN − x̄DNN )− (µ̄SNN − µ̄DNN )√
s2

SNN

nSNN
+ s2

DNN

nDNN

where µSNN and µDNN are the mean values considering the null hypothesis. Since our null
hypothesis says there is no difference in the mean values, the difference is zero. Furthermore,

x̄SNN and x̄DNN represent the sample means of SNN and DNN respectively
sSNN and sDNN represent the standard deviations of SNN and DNN respectively, and
nSNN and nDNN denote the sample size of SNN and DNN groups respectively.

Substituting these values to compute the value of t,
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t = (2.48− 2.42)− (0)√
0.88762

30 − 0.81502

30

= 0.06√
0.7878+0.6642

30

= 0.06√
0.0484

= 0.06
0.22

t = 0.2727

Once we have calculated the t-value, as a next step, we have to calculate the p-value. A p-value
indicates the probability with which the mean values were obtained by chance. To exemplify, if
we calculated a p-value = 0.05, it means that the average values that we have obtained regarding
the SNN and DNN were not by chance. The lower the value of p, the higher is the reliability of
the results. Usually, a p-value of 0.05 i.e. 5% or less is considered to validate the averages of the
two datasets.

To use the t-table, we require another variable i.e. degree of freedom (df). A df is directly
related to the size of the population. The df, in the case where the two samples sets are of the
same size, is calculated as,

df = 2n− 1
df = (2× 30)− 1
df = 59

The problem we are considering is a ‘two-tail’ problem since our alternative hypothesis is
Ha:µDNN 6= µSNN . Thus, we have to look up in the t-table (can be found in the Appendix C)
across the row with df = 59 for the values near our test statistic t = 0.2727. A snippet of the
t-table is shown in figure 10.2. We observe that we do not have an exact match for our value of
df=59. In such cases, we use the closest row below df=59 i.e df = 40.

We can see that the p-value corresponding to our t-value for a two-tails test lies in between
1.00 and 0.50 i.e. between 100% and 50%. We can also calculate the p-value using technology
(i.e. online) using the t-values. The p-value turned out to be 0.78943 which is way larger than the
allowed p-value of 0.05.

As a result, we fail to reject our null hypothesis i.e. µDNN = µSNN , and thus this hypothesis
still holds. Therefore, we conclude that the average balance time of 2.48 seconds for the SNN
controller and 2.42 seconds for the DNN controller are not significantly different. With this result,
we have a pair of AI controllers: unpruned Agent-45 and unpruned Agent-87 with comparable
performance on the real cartpole system.
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Figure 10.2: Extracting the p-value using t-value and df from the t-table.

10.2 Memory Consumption
The agents trained to control the cartpole system are designed in Python. One of the key features
of Python is that it ensures the memory management internally using the ‘python memory man-
ager’ and that the user has no control over it. Despite this feature makes the manual calculation
of memory usage by the agents complicated and trivial, it cannot be ignored. In this section,
we calculate the memory consumptions of each agent in terms of different sections of the python
script and compare them.

We used Python 3.4 version for scripting that includes a debug tool called ‘tracemalloc’ [2].
This tool is used to trace the size of memory blocks allocated by the python script executing the
agent. The script to run each of the agents has the structure as shown in listing 10.1.

# Sect ion 1 : IMPORTING LIBRARIES

# Sect i on 2 : SETTING PARAMETERS ( Weights and Biase s )

# Sect i on 3 : DEFINING FUNCTIONS

# Sect ion 4 : SETTING UP THE STATE SPACE (2D array )

s t ep s = 500

f o r i in range ( s t ep s ) :

# Sec t i on 5 : FEED−FORWARDING

Listing 10.1: Structure of the python script used to run the agent

As seen from above, the script mainly comprises five sections namely: importing libraries, set-
ting parameters of the network, defining functions, setting a dummy state-space, and finally actual
execution of the network through the feed-forward process. Speaking of memory consumption of
the AI controller, we are mainly concerned here with the amount of memory taken by the network
parameters, functions that are required to produce the control actions, and the feed-forwarding
of the network. The remaining sections in the listing 10.1 are common for both the agents and
would also take up the same amount of memory space.
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10.2.1 Memory consumptions for one step
We implemented the script given in the listing 10.1 on the laptop to calculate the memory con-
sumption. The test was not carried out on the hardware to avoid the interference of memory
usage due to sensor and motors. A dummy state space was fed to the network and the memory
consumption was traced using tracemalloc.

As seen from figure 10.3, we see a higher memory footprint by SNN agent as compared to the
DNN agent while setting parameters and actual execution of the network per step. By per step,
we mean that the network executes feed-forward once and calculates one action for a state fed
into the network.

Figure 10.3: Memory footprint of one step execution by each agent.

Further, we see a substantially higher memory used by SNN in setting the parameters despite
the number of neurons in both the agents is the same i.e 10. Apart from setting the weights and
biases of the SNN agent, it requires initializing a few additional variables to calculate its internal
state dynamics which is the cause for a higher memory footprint as compared to the DNN agent.
Both SNN and DNN agents display the same amount of memory allocation for declaring functions
because memory is not allocated to the functions until their execution.

Finally, unlike DNN, the SNN performs more number of calculations owing to its internal state
dynamics associated with every spiking neuron. Thus, except the input layer, SNN keeps a track
of the membrane potential of all the neurons in the hidden layer and the output layer to decide
when that particular neuron will fire i.e. produce a spike. Thus, there are additional variables
required to keep a check of each neuron’s membrane potential. This makes an SNN costlier in
terms of the memory footprint as compared to DNN.

10.3 Energy Consumption
In our project, one of the key differences in the control strategies of SNN and DNN agents is the
sampling frequencies of each agent. Despite the same architectures of both the controllers, the
SNN agent has a sampling time of 35 ms owing to its methodology, whereas the DNN agent has
a sampling time of 25 ms. Thus, theoretically, the SNN agent requires approximately 28 correct1

actions to balance the pole for 1 second. On the other hand, DNN would require 40 correct actions
1It implies that the action taken by the agent did not result in the failure of the pole balancing task.
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to balance the pole for 1 second.

Both the SNN and DNN agents have an equal number of neurons i.e. 10 (4 input, 4 hidden, and
2 output). However, SNN has additional parameters inherently to keep track of the internal states
(commonly referred to as internal state dynamics) of its neurons. Therefore, in each feedforward
mechanism, these parameters play a vital role and are updated for every neuron in the net-
work. As a result, apart from the basic feedforward calculations done by the DNN, SNN performs
additional calculations owing to the internal state dynamics of the neurons leading to an overhead.

In summary, DNN holds an advantage over SNN in terms of fewer calculations per action
whereas SNN has an upper hand when we consider the number of actions required to balance the
pole over a longer period. In this section, we scrutinize the energy consumption of each of the
agent.

Strategy for calculating energy consumptions of AI controllers

EV3 has very simplistic hardware when it comes to interface. It has four input ports, four output
ports, a mini-USB PC Port for connecting to a computer, and the power supply port. To measure
the power consumption of a process, the best option is to take the readings from the actual hard-
ware in some way. These measurements indicate the power consumption of the running programs
as well as other things such as the brightness of the monitor (in case of a laptop). Thus, the
measurements are termed as global or whole-system measurements. We can use ammeters dir-
ectly on the hardware to read the power numbers, but in case of EV3, this is not possible as there
is no direct access to the hardware or availability of ports that can be used to measure power.
Another method to measure the energy consumptions of a program is by measuring the difference
in the battery drainage when the programs are run for a longer duration of time. However, this
would simply give an unclassified single value of energy consumption of the EV3 as a whole. The
difference in the battery drainage would also include the energy used by the motors and sensors
that are used for the application. Thus, the approach of tracking battery drainage to estimate the
energy consumption of the AI controllers is not a good option. In summary, measuring the energy
consumptions on the hardware is difficult.

We chose an approach of simulating the AI controllers on a laptop to measure their internal
energy consumption. The idea is to have a ratio of energy consumptions of DNN controllers to
SNN controllers, and conclude with the most efficient controller. The laptop we used is equipped
with a powerful Intel processor as compared to the simple ARM9 processor used in the EV3
controller. The advantage of simulating the AI controllers on a laptop is the possibility of being
able to measure the internal energy consumptions. Latest Intel processors implement the RAPL
(Running Average Power Limit) interface that provides model-specific registers (MSRs) containing
energy consumption estimates for up to four power planes or domains of a machine. These MSRs
are unavailable on the LEGO EV3 controller which limit the energy profiling to be carried out on
the real cartpole system. A processor has four power planes implies that there are four different
voltages required by the processor to power its core, I/O pins, and other hardware components.
The power planes can be visualized in figure 10.4. A processor has one or more packages. Client
processors, e.g. Core i3, i5, and i7 have a single package. Each package contains multiple cores. A
package can be broadly classified into two parts, the ‘Core’ and the ‘Uncore’. The core typically
comprises computational units like ALU and FPU whereas the uncore consists of the last level
caches (LLCs) and the memory controller. The core, the package, and the graphics (i.e. GPU)
energy estimates can be directly obtained through the MSRs. To obtain the energy consumption
due to the caches, we can subtract the energy consumptions of core and graphics from the package
energy. The Intel processors calculate the energy estimates through a power model that uses
processor-internal counts as inputs. The energy numbers obtained using this process have been
proved in [11] to be fairly accurate and reliable since they are updated at a frequency of 1000 Hz.
As the next step, we have to use a tool to extract the energy estimates via the RAPL interface.
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Figure 10.4: Power planes in the Intel processor taken from [7].

Perf as the Energy Profiler tool

Some of the commonly used tools to read the RAPL estimates are Perf (Linux based), Intel Power
Gadget (Linux, Mac, and Windows), powermetrics (Mac), and turbostat (Linux). Among these
options, we choose the Perf tool as the energy profiler tool because it is simple, flexible, and used
via the command-line interface. It is a powerful system-wide instrumentation service for Linux
based systems. It is capable of printing all the available Intel RAPL power estimates at specified
regular intervals. The only care that had to be taken while taking the measurements was that,
no other activities apart from the controller-program should be running on the system. This was
essential since the RAPL power estimates are system-wide estimates. Next, we had to install and
use the perf tool on the laptop. The key requirement for using perf tool was that the laptop should
be running Linux OS. However, we had a Windows-based laptop. Therefore, we had the following
two options to use the perf tool on our laptop:

1. Installing a Linux Virtual Machine on Windows, and

2. Using Linux via creating a bootable Ubuntu USB stick on Windows.

We initially tried to install Linux on the Virtualbox on the Windows laptop. Despite the
installation was successful, the readings that we obtained were incomplete. Various metrics such
as the number of cycles, instructions, branches, and energy estimates of cores, package, etc. were
not supported. On investigation, we understood that the perf tool does not work in the Virtualbox
environment as Windows does not support APIs that allow easy access to the MSRs. The perf
tool only works on a local machine running Linux. As a result, we moved to the second option of
creating a bootable Ubuntu USB stick on Windows. With the bootable flash drive, we could use
the perf tool to its full extent. The processor specifications of the laptop that we used to simulate
and profile the AI controllers are given in table 10.3.

10.3.1 Energy consumption per step
Procedure: To describe the process that we used to calculate the energy consumptions, consider
the structure of the python script that was used to execute the AI controllers in listing 10.1. It
mainly consists of 5 sections namely, importing libraries, setting parameters, defining functions,
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Processor Intel(R) Core(TM) i7-7700HQ CPU @ 2.80 GHz
Cores 4
L1 Cache 256KB
L2 Cache 1 MB
L3 Cache 6 MB

Table 10.3: Specifications of the system used for profiling AI controllers for calculating energy and
memory consumptions.

setting up the state space, and feed-forwarding. A key aspect in understanding the script is that
the profiling of the AI controllers had to be done on the simulations, i.e. the controllers would
not be able to directly interact with the real plant. We already know that both the controllers are
capable of attaining an average balance time of 2.42 seconds and 2.48 seconds. These controllers
are also capable of balancing the simulated cartpole system i.e. Cartpole-v1 environment from
the OpenAI gym toolkit substituted with the real hardware parameters. However, to simulate the
AI controllers on the laptop, we used a dummy state space instead of OpenAI Gym’s cartpole
environment. We avoided using the OpenAI Gym’s environment to remove the overhead in calling
the library. The dummy state space was fed into the network, and the feedforwarding action was
monitored. In summary, the script given in listing 10.1 was used to simulate the AI controllers on
the laptop over a dummy state space that represented a cartpole system.

Moving further, the energy consumption that we are focussing on is the energy used in per-
forming the feed-forward calculations since feed-forwarding is mainly responsible to produce the
controlling actions. The process of obtaining the energy of the feedforwarding section from the
python script was fivefold:

1. Import the NumPy library, set the weights and biases of the controller, and produce a
dummy state-space of the cartpole system with state variables in the ranges [x ∈ [-2.5, 2.5],
ẋ ∈ (-∞, ∞), θ ∈ [-0.61, 0.61], θ̇ ∈ (-∞, ∞)] with number of entries ≥ step variable.

2. Set step = 500. Execute the python script using the perf tool to obtain the energy numbers.
Run the script 100 times and calculate the average of the energy values (to get accurate and
reliable results with less deviation). Note the values for core energy and package energy.
Calculate the uncore value by subtracting core energy from package energy.

3. Now set step = 0 and repeat the process as done in step 2.

4. Subtract the values obtained in step 3 from step 2 to obtain the energy relevant to the
feedforward process executed 500 times. This gives the energy for performing feedforwarding
process 500 times i.e 500 steps.

5. Divide each result by 500 to obtain the energy per step for the controller.

Table 10.4 demonstrates the steps 2 until 5 by using variables for core, uncore, and package.
The exact process is repeated for the SNN controller and the readings for both the controllers are
recorded.

STEPS CORE PKG UNCORE
Step 2 500 Core500 Pkg500 Uncore500 = Pkg500 - Core500
Step 3 0 Core0 Pkg0 Uncore0 = Pkg0−Core0
Step 4 Difference Corediff = Core500 - Core0 Pkgdiff = Pkg500 - Pkg0 Uncorediff = Uncore500 - Uncore0
Step 5 Energy /step Corestep = Corediff / 500 Pkgstep = Pkgdiff / 500 Uncorestep = Uncorediff / 500

Table 10.4: Illustration of stepwise calculation of core, uncore, and package energy per step for
SNN and DNN controllers.
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Results: As discussed earlier, we know that SNN performs more number of calculations to
produce a single action as compared to DNN. Based on this theory, it is expected that the SNN
agent would also require more energy than DNN per step. As seen from figure 10.5, the SNN agent
required almost twice the energy required for computation in the cores and the uncore planes than
the DNN. In summary, referring to the sum of core and uncore power planes as indicated by the
package energy bar, it can be concluded that SNN consumes nearly 1.7 times the energy required
by DNN to perform a single feedforward step calculation.

Figure 10.5: Energy consumption of one step execution by each agent.

10.3.2 Energy consumption per second
By energy consumption per second, we mean the energy required by the agents to balance the
pole for a duration of 1 second. Considering the sampling times of SNN and DNN agents as
35 ms and 25 ms, we calculate that they require to compute 28.57 and 40 actions respectively.
Since, the number of actions can only be an integer, we calculate a balance time common for
both the agents wherein they can take integral number of actions. We choose a balance time of
35 seconds for which SNN agent would require 1000 steps (35/0.035) whereas DNN agent would
require 1400 steps (35/0.025). Once again, the steps are followed similar to the previous case with
minor modifications as illustrated in the table 10.5 and table 10.6 for DNN and SNN controllers
respectively. To obtain the energy per second, we divide the results obtained in step 4 by 35 in
both the cases.

STEPS CORE PKG UNCORE
Step 2 1400 Core1400 Pkg1400 Uncore1400 = Pkg1400 - Core1400
Step 3 0 Core0 Pkg0 Uncore0 = Pkg0 - Core0
Step 4 Difference Corediff = Core1400 - Core0 Pkgdiff = Pkg1400 - Pkg0 Uncorediff = Uncore1400 - Uncore0
Step 5 Energy /step Corestep = Corediff / 35 Pkgstep = Pkgdiff / 35 Uncorestep = Uncorediff / 35

Table 10.5: Illustration of stepwise calculation of energy consumption per second for DNN con-
troller.

From figure 10.6, it is evident that SNN’s advantage of having a higher sampling time does not
help it overcome the energy costs as compared to DNN. The overall energy consumption of SNN
for balancing the pole for 1 second is 14000 µJoules whereas DNN consumes 10285 µJoules. The
same pattern is observed in the core and uncore planes where SNN is consuming higher energy as
compared to DNN. In conclusion, the SNN controller required approximately 1.4 times the energy
of the DNN controller to balance the pole for one second.
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STEPS CORE PKG UNCORE
Step 2 1000 Core1000 Pkg1000 Uncore1000 = Pkg1000 - Core1000
Step 3 0 Core0 Pkg0 Uncore0 = Pkg0−Core0
Step 4 Difference Corediff = Core1000 - Core0 Pkgdiff = Pkg1000 - Pkg0 Uncorediff = Uncore1000 - Uncore0
Step 5 Energy /step Corestep = Corediff / 35 Pkgstep = Pkgdiff / 35 Uncorestep = Uncorediff / 35

Table 10.6: Illustration of stepwise calculation of energy consumption per second for SNN con-
troller.

Figure 10.6: Energy consumption for balancing the pole for one second by each agent.

10.4 Energy Consumptions based on Multiply-Accumulate
(MAC) operation

Spiking Neural Networks, at the heart, are driven by a sparse event-based mechanism. Precisely,
the spikes that propagate through the network are responsible for the communication and com-
putation in SNNs. Mathematically, these spikes are binary values (0 or 1). SNNs are popularly
known to be energy-efficient solutions due to their inherent nature of event-driven hardware op-
eration. In the following section, we evaluate the energy efficiency of SNN and DNN agent with
respect to the Multiply-Accumulate (MAC) operations.

A Multiply-Accumulate (MAC) operation is a commonly used term in computation which
calculates the product of two numbers and adds the result to an accumulator ‘a’ as shown below:

a⇐ a+ (b× c)

Generally, there are dedicated hardware units equipped in the computers that perform this
type of operation. These are called a MAC unit or simply MAC. To understand how the MAC
operations play a role in the neural network, consider the example given in figure 10.7.

For a standard artificial neuron, a single MAC operation is required per input as seen from
figure 10.7 (upper half). As we increase the number of inputs to the neuron, the number of MAC
operations increases proportionally. As seen from figure 10.7 (lower half), with three inputs to
the neuron, we require to do three MAC operations. Thus, we can say that the number of MAC
operations that a neuron requires is equal to the number of inputs it is connected to.
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Figure 10.7: An example of a neuron with inputs xi, their corresponding weights wi and bias bi.
The top network depicts the output of a single input to a neuron. The bottom network depicts
the output of three inputs to a neuron.

10.4.1 Energy Model for DNN
Based on the theoretical concepts described for the MAC operations in a neural network, we build
an energy model based on the number of MAC operations for a DNN as,

For a layer l with m inputs and n neurons,

Energyl = m × n × EnergyMAC (10.1)

where,
Energyl = Energy per layer
EnergyMAC = Energy required for a single MAC operation.

The structure of our DNN Agent-45 consists of 4 inputs, 4 neurons in the hidden layer and 2
neurons at the output. Therefore, we calculate the energy consumption of the DNN agent using
equation 10.1 as:

Energyi/p = 0× 4× EnergyMAC = 0× EnergyMAC

Energyhid = 4× 4× EnergyMAC = 16× EnergyMAC

Energyo/p = 2× 4× EnergyMAC = 8× EnergyMAC

EnergyDNN = Energyi/p + Energyhid + Energyo/p = 24×EnergyMAC

10.4.2 Energy Model for SNN
Since we are implementing the SNN controller on a non-neuromorphic platform, spiking neurons
perform similar computations as that of the Artificial neurons except that the neurons do not
fire at every step. We, therefore, consider the average firing rate of neurons to compute the total
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energy in terms of MAC operations. Apart from the basic feedforward functionality, the network
also keeps track of the internal dynamics of each neuron. We build an energy model as given in
[28] based on number of MAC operations for an SNN as:

For a layer l with m inputs and n outputs,

Energyl = (mn + 2nn) × Fr × EnergyMAC (10.2)
where,
Energyl = Energy per layer
Fr = Firing rate of neuron
EnergyMAC = Energy required for a single MAC operation.

The structure of our SNN agent is similar to that of the DNN agent and it consists of 4 inputs,
4 neurons in the hidden layer, and 2 neurons at the output. In our experiments, we calculated
the firing rate Fr = 0.17. It is calculated by running the simulation for certain steps denoted by
s and summing up the total number of spikes generated denoted by totalspikes. Finally, the firing
rate is calculated as (totalspikes / s) / n where n is the total number of neurons that fired. We
calculate the energy consumption of the SNN agent substituting the values in equation 10.2 as,

Energyi/p = NA (as there is no internal state calculation)
Energyhid = (16 + 2× 16)× Fr × EnergyMAC = 8.16× EnergyMAC

Energyo/p = ( 8 + 2× 4 )× Fr × EnergyMAC = 2.72× EnergyMAC

EnergySNN = Energyi/p + Energyhid + Energyo/p = 10.88×EnergyMAC

From the above results, it is conclusive that the SNN is 0.45 times expensive than DNNs in
terms of MAC operations. Unlike general processors, Neuromorphic processors are more efficient
in training and running spiking neural networks. Spikes are considered as binary values in neur-
omorphic computers that act as a switch to enable or disable a multiply operation. Hence, a MAC
operation for an SNN on a Neuromorphic platform acts as an accumulate (AC) operation and the
energy model given by equation 10.2 is modified as:

Energyl = mn × Fr × EnergyAC (10.3)
Energyl = mn × 0.17 × EnergyAC (10.4)

Calculating the energy layer wise, we get,

Energyi/p = NA (as there is no internal state calculation)
Energyhid = (4× 4)× 0.17× EnergyAC = 2.72× EnergyAC

Energyo/p = (4× 2)× 0.17× EnergyAC = 1.36× EnergyAC

Energy NeuromorphicSNN = Energyi/p + Energyhid + Energyo/p = 4.08×EnergyAC

A 32-bit MAC Int requires 3.2pJ and a 32-bit AC Int require 0.1pJ [17] which would make
running SNNs on a Neuromorphic platform much faster. Thus, the thesis also provides a scope
and motivation for further development of neuromorphic platforms for SNN implementation to
obtain energy efficient controllers. We provide a brief comparison on the energy per layer in terms
of MAC operations between ANN and SNN in table 10.7.

Design, implementation, optimization, and evaluation of energy-efficient AI controllers and
testing their feasibility on a real continuous-time dynamical system.

93



CHAPTER 10. COMPARISONS, DISCUSSION, AND CONCLUSIONS

Platform Energy per layer in terms of MAC operations
ANN SNN

General processor m × n × EMAC (mn + 2nn) × EMAC × Fr
Neuromorphic Not Supported mn × Fr × EAC

Table 10.7: Energy consumption per layer for ANN and SNN on the different target platforms. m
and n denote the number of inputs to a neuron and total number of neurons in a layer respectively.
Fr denotes the firing rate of the spiking neurons. EMAC and EAC denote the energy required for
a MAC and an AC operation respectively.

10.5 Energy Comparison Summary
We built two energy models to compute and compare the energy consumption of AI controllers.
The first model was a practical calculation taken by profiling the AI controllers on the laptop.
The second energy model was a theoretical calculation based on the number of MAC operations.
In this section, we summarize the methodology and the results obtained for a clear comparison.

The energy models that were built practically and theoretically are stated in table 10.8. For
the practical approach, the term Pkgn denotes the package energy when the controller produced
‘n’ number of total actions. In the theoretical approach, ml and nl denote the number of inputs
to a neuron and the total number of neurons in the layer l respectively. EMAC and EAC denote
the energy required fora MAC and an AC operation respectively. Fr denotes the firing rate of the
spiking neurons. Note that we take the sum of energy for three layers (l = 3) of our controllers in
the theoretical approach.

Approach Energy Models
DNN SNN

Practical Per step Per second Per step Per second
(Pkg500 - Pkg0)/500 (Pkg1400 - Pkg0)/35 (Pkg500 - Pkg0)/500 (Pkg1000 - Pkg0)/35

Theoretical Gen. processor (MAC) Neuromorphic (AC) Gen. processor (MAC) Neuromorphic (AC)
3∑

l=1
ml × nl × EMAC NA

3∑
l=1

(mlnl + 2nlnl)×Fr×EMAC
3∑

l=1
mlnl × Fr × EAC

Table 10.8: Summary of energy comparison methodology for DNN and SNN controllers

Table 10.9 describes the results of the energy comparisons of DNN and SNN controllers. It is
evident that the DNN controller is energy efficient as compared to the SNN controller when they
are executed on a general-purpose processor. However, SNN dominates the energy-efficiency when
we use a neuromorphic processor to run the SNN controller.

Approach Energy Consumption
DNN SNN

Practical Per step Per second Per step Per second
Energy (µJ) 280 10285 480 14000

Theoretical Gen. processor (MAC) Neuromorphic (AC) Gen. processor (MAC) Neuromorphic (AC)
Energy (pJ) 76.8 - 34.816 0.408

Table 10.9: Summary of energy comparison results for DNN and SNN controllers

10.6 Discussion
The study demonstrates a comparison of two categories of AI controllers that are designed to con-
trol a practical continuous-time cartpole system. The process started with designing a real cartpole
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system using LEGO Educational Kit. It involved hardware specifications, hardware design and
assembly, software design, AI controller’s study, design, implementation, testing, and finally pro-
filing. The two categories of AI controllers considered for the thesis are Deep Neural Networks
and Spiking Neural Networks. The design of DNN controllers began with implementing DQN in
an offline fashion and a controller was obtained. With several modifications and multiple types of
configurations, the DQN controller was able to balance the pole on the real cartpole system for an
average balance time of 2.2 seconds. The main drawback of this controller was that it had to make
the use of the approximate model of the cartpole system to be able to execute control over the
hardware. To obtain a better version of the DNN controller than the DQN, we studied, designed,
and implemented the second reinforcement learning algorithm, NFQ that was proven in [20] to
be capable of solving an inverted pendulum task (similar to a cartpole problem). Owing to the
difference in problem setup and the hardware limitations between the experiments done in [20] and
our thesis, the parameters of the NFQ used in this thesis did not exactly match. However, most
of the settings of the network hyperparameters were nearly similar to those used in the paper [20].
Nevertheless, the NFQ agent was able to execute a performance with an average balance time of
2.2 seconds as a model-free controller. Despite it was an improvement in terms of being model-free,
the performance was still not very significant. Lastly, with an aim to improve the NFQ controller’s
performance we used an Evolutionary algorithm called the Genetic Algorithm. Despite GA being
an optimization technique used to optimize existing suboptimal solutions, it could not remarkably
improve the performance of the NFQ agent. Instead, the GA was able to produce the best DNN
controller when it was provided with completely untrained networks. The GA controller, Agent-45
representing the DNN category of controllers exhibited an average balance time of 2.5 seconds over
the real cartpole system. Since GA showed the best capability of producing controllers among our
chosen algorithms, we used it to produce the SNN category of controllers as well. The result was
an SNN Agent-87 that could balance the real cartpole system with an average balance time of 2.8
seconds. These agents were later pruned to check if there existed any redundant weights or biases.
With the pruning results, the Agents 45 and 87 were proved to be performing better when used un-
pruned. These agents were finally profiled for energy consumptions and the results were compared.

One of the major points of concern in this thesis is the notably lower benchmark set by all
the algorithms used to control the practical cartpole system. Thus, we discuss the cause of this
behavior. We had encountered a few issues with the hardware and also found out their solutions.
The issues encountered and their countermeasures that we devised are presented below.

1. Delays: There exists a reality gap that disallows using simulated AI controllers directly on
the real hardware. This is due to the inherent presence of delays in the hardware due to
the sensors, actuators, and the controller (i.e. computation within the network) itself. To
resolve this, we implemented strategies such as ‘learning the delay’ and ‘countering the delay’.
Eventually, the DQN controller was able to execute its control using the latter technique.

2. State space drift: This occurred mainly due to the construction mechanism of the cartpole
system. A fairly simplistic mechanism coupled with inaccurate sensors and naive hardware
resulted in producing a drift in the state space every time a new episode was initiated. We
considered adding Gaussian noise into the state variables so that the AI controllers would
become robust to the drifting state space.

3. Skidding: This was an issue that was encountered in the early stages of testing the
hardware. The wheels as shown in A.2f of the LEGO Educational kit are made up of rubber
that were skidding on a normal floor with consistent use over a period of time. To stop
the wheel from skidding, we used a foamed polyethylene mat (commonly called a ‘yoga’
mat) that made the skidding almost non-existent. This allowed a direct translation of the
controller’s actions into physical movements with negligible delay.

4. Slow Processor: EV3 brick runs an ARM9 processor clocked at 300 Mhz. We used EV3
python on the Linux OS of the EV3 to develop the AI controllers. This setup combined
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with the speed of the processor are not powerful enough to run large networks of size >50
neurons at a high speed e.g. <100 ms. This brought a major constraint on the size of the
networks that we could use for our cartpole application. For a real cartpole system that
we have built, it is required to provide actions in a few tens of milliseconds. If we keep the
frequency of application of the actions higher, the control over the plant would become more
robust and accurate. Therefore, after the initial experiments of using 40+ neurons (in DQN
agent [4, 24, 16, 2]), we dropped the network size to a minimum of 10 neurons for obtaining
a lower sampling time. However, there was a compromise in the quality of control with the
decrease in the number of neurons.

We had come up with either the solutions to solve the problems or some workarounds to avoid
the problem that occurred in the thesis due to the hardware. Despite that, the benchmark did
not improve above an average balance time of 2.5 ms. The key reason that was hindering the
performance of our controller was the inconsistent delays within the EV3. The cartpole problem
is an inherently real-time problem in which we cannot take an arbitrary amount of time between
two actions. Doing so would affect the performance and in worst cases can lead to controller failure
as well. To prove the inconsistencies observed in the EV3 to execute the same configuration of
the network, we show a box-plot describing the average sampling time for each of the controllers
in figure 10.8.

(a) (b)

Figure 10.8: (a) Variations in sampling time for different DNN agents with the same network
configuration, and (b) Variations in sampling time for different SNN agents with the same network
configuration

Figure 10.8 visualizes the difference in the delays observed when running DNN and SNN con-
trollers of the same network configurations on the hardware. In figure 10.8a, we have 5 different
DNN agents with configuration [4, 4, 2] on the x-axis. For each DNN agent, we played 10 episodes
and the average sampling time observed in each episode is plotted with a dot. Thus, we have a box
plot for the average sampling time that each agent encountered, for 10 episodes. It is observed
that the mean value of sampling time that every DNN agent had is around 25 ms. However,
the variations of the sampling times are clearly evident. To exemplify, the DNN agent 3 had a
sampling time of 33 ms in one of the episodes that it played on the hardware. The DNN agent 2
experienced an average sampling time of 22 ms as well as 28 ms in two different episodes on the
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hardware. Since we measure the performance of an agent in terms of the average balance time for
a few tens of episodes, the fact that one or more episodes were played at different sampling times
cannot be ignored. It can happen that in those cases, due to the higher sampling time, the agent
had a poor balancing time on the cartpole system.

Figure 10.8b describes the same details as mentioned above for the SNN agents. Each of the
SNN agents had a configuration of [4, 4, 2] i.e. 10 neurons in its network. It can be observed that
on an average the SNN controllers had an average sampling time of around 35 ms. However, the
EV3 could not provide a sampling time of 35 ms consistently in every episode that an SNN agent
played. For example, SNN agent 1 observed an average sampling time from 33 ms to 39 ms within
10 different episodes it played on the hardware.

The reasons for the inconsistencies observed in the EV3 can be attributed to non-real-time
Linux OS that it uses. Some of the qualities that make Linux a non-real-time operating system
include applications being considered as processes, I/Os being read via files, etc.

This justifies the performance of the controllers for having a notable lower benchmark of around
2.5 seconds of balance time. However, the fact that these agents were also able to balance the
pole for a maximum of 6.03 seconds for a real-time task using non-real-time hardware makes our
implementation in this thesis significant.

10.7 Conclusion
This research aimed at designing, implementing, optimizing, and evaluating energy-efficient AI
controllers belonging to the category of Deep Neural Networks and Spiking Neural Networks. Fur-
ther, the thesis also planned at testing the feasibility of the AI controllers on a practical real-time
dynamical control system. As a result, we have designed and implemented a DNN and SNN
controller using the Genetic Algorithm. Both the controllers executed a comparable performance
on a real-life dynamical system that we built i.e a Cartpole. The practical cartpole was built
from scratch and configured to be seen as a reinforcement learning problem which enabled the AI
controllers to learn the task of balancing the pole by themselves. Based on the outcome of our
implementations, we can say that the AI controllers are not only capable to perform exceptionally
well on the simulated dynamical control systems but also execute control on a practical dynamical
system with a real-time constraint. The only key requirement for the AI controllers to be able to
execute control over a dynamical system is the real-time response of the hardware. In other words,
the hardware must be equipped with a Real-Time Operating System (RTOS) in order to process
and provide responses in a deterministic fashion. However, this requirement on the hardware is
directly dependent on the nature of the dynamical system that has to be controlled. In our case,
we had to control a real-time Cartpole system that requires a fixed and predetermined response
time as the AI controllers encode this information into themselves while learning the task. With
inconsistent responses from the hardware, the sampling time of the system gets affected directly
and thereby degrading the controller performance. One of the key insights of our implementation
was the effect of non-real-time hardware on the performance of the AI controllers. We observed
that the AI controllers are affected drastically for a system with varying response times. Yet,
the controllers that we designed exhibited their capabilities in controlling the real-time task of
pole-balancing on a non-real-time hardware setup. We were also able to achieve the research goals
set for the thesis as explained further.

A Deep Neural Network with a configuration of [4, 4, 2] (can also be termed as an ANN owing
to a single hidden layered architecture) i.e. 4 input neurons, 4 neurons in the hidden layer, and 2
neurons at the output was capable of controlling a real Cartpole system with arguably significant
performance. It set a benchmark for balancing the pole for an average of nearly 2.5 seconds. We
attribute the DNN controller to be robust as it could execute its control despite the system suf-
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fering from a state-space drift. The mentioned controller used 30 32-bit float value parameters i.e.
weight and biases to establish the control over the cartpole system by observing the data related
to its cart movement (horizontal) and angular motion of the pole.

An SNN controller was also designed with a configuration exactly similar to the DNN controller
i.e. [4, 4, 2]. It was able to present a comparable level of performance in controlling the same
cartpole system as that of the DNN controller.

We built two energy models to profile and evaluate the DNN and SNN controllers. The first
energy model was based on the energy used by the controller in terms of the hardware computa-
tions (processor core computation) and the memory transactions (Cache loads and stores). The
second energy model was defined by the number of Multiply-Accumulate (MAC) operations that
each of the controllers required. We conducted the energy profiling on a simulated system on the
laptop instead of the real hardware due to the inflexible nature of the hardware controller (EV3) to
support the energy measurements. The DNN controller was observed to be more energy-efficient
than the SNN controller for the energy model based on internal energy consumptions required
for computation. We observed the DNN controller to be 1.5 times energy-efficient than the SNN
controller for controlling the same system and at the same level of performance. However, the
SNN controller was observed to be 2.2 times computationally efficient according to the second en-
ergy model. The capability of SNN controllers to demonstrate sparse neuron firing helps them in
performing fewer energy-expensive MAC operations. The DNNs on the other hand perform these
MAC operations for each neuron in every feedforward process making them highly expensive in
terms of computation.

To conclude, we present a diverse set of experiments to build and implement model-free, rein-
forcement learning algorithms, termed as AI controllers to efficiently control a real-world dynamical
control system. We present a detailed energy comparison of the two categories of AI controllers
namely DNN and SNN and discuss the results through this thesis.

10.8 Future scope and recommendations
Following are some of the recommendations that we provide based on our work for researchers
interested to conduct a study on the topic relevant to our thesis:

• As a future study on the comparison of DNN and SNN controllers, we suggest using a
Neuromorphic processor to realize the actual strength of Spiking Neural Networks over the
DNNs. The platforms using neuromorphic processors are specially designed to execute neuro-
biological architectures such as SNNs. Keeping that in mind, we can compare and assess the
energy consumptions on that platform for SNN and DNN controllers.

• We recommend using an RTOS over embedded Linux while designing real-time applications
like a cartpole system on the hardware. Despite embedded Linux is popularly used in con-
sumer embedded devices, its major functionality lies in performing non-real-time tasks used
in touch screens, wireless routers, etc.

• We performed the energy comparison of the AI controllers by taking the ratio of the indi-
vidual energy consumptions as this process was not carried out on the real cartpole system
owing to hardware limitations. However, the scaling of these results to any hardware may
bring slight variations in the results. As a future scope, we recommend using sophisticated
real-world control plants that can allow direct measurements of energy consumptions on the
system itself. This approach would help in producing an accurate comparison of energy
consumptions of SNNs and DNNs in energy units rather than ratios.
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Appendix A

LEGO MINDSTORMS EV3
component images

Figure A.1: EV3 Brick
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APPENDIX A. LEGO MINDSTORMS EV3 COMPONENT IMAGES

(a) EV3 Ultrasonic Sensor (b) EV3 Gyro Sensor

(c) EV3 Large Motor (d) EV3 Medium Motor

(e) Wheel rim (f) Wheel tyres

Figure A.2: Hardware components of the Cartpole System
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Appendix B

Cartpole System Images

(a) Two-point perspective(1) (b) Two-point perspective(2)

Figure B.1: Cart realization
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APPENDIX B. CARTPOLE SYSTEM IMAGES

(a) Right side view

(b) Left side view

(c) Front view (d) Rear view

Figure B.2: Pictorial views of the Cartpole System
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Appendix C

T-Table

Figure C.1: The T-table.
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