
 Eindhoven University of Technology

MASTER

Gyro
an Event-Driven Digital Architecture for Spiking Deep Belief Networks

Adriaans, Guido L.A.

Award date:
2020

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/6a9d28b0-47f8-4d9e-b630-c7e290533531

Gyro: an Event-Driven Digital
Architecture for Spiking Deep

Belief Networks

Master’s Thesis

G.L.A. Adriaans

Eindhoven University of Technology
Department of Electrical Engineering

Electronic Systems Group

Committee members:
Federico Corradi - Supervisor IMEC
Sander Stuijk - Supervisor TU/e
Henk Corporaal - TU/e
Gijs Dubbelman - TU/e

Eindhoven, August 2020

Abstract

This work presents Gyro, an architecture to deploy spiking Deep Belief Networks (DBNs) in di-
gital hardware in an energy and power efficient manner. The high computation, power and energy
requirements of deep neural networks are addressed by the use of a spiking neural network that
is compatible with event-driven neuromorphic sensors. Both feed-forward and feed-back networks
are facilitated by presenting a method to map the weight connections to on-chip memories. Fur-
thermore, a simplified LIF neuron implementation is used to reduce the hardware resources. Gyro
has a strong focus on efficiency and configurability and can deploy arbitrary sized fully-connected
DBNs with a configurable trade-off between hardware resources and spike throughput. The ar-
chitecture is implemented on Xilinx FPGAs. A recurrently connected network of 1274 neurons
and 248.160 synapses achieves a peak throughput of 6,29 giga synaptic operations per second
(GSOPS) and dissipates only 180 pJ per synaptic operation. Moreover, a feed-forward network
of the same size achieves a peak throughput 40,83 GSOPS. The architecture is evaluated using
three case studies: handwritten digit recognition, speech command recognition and mine detection
using sonar. An accuracy of 99,3% is achieved on the MNIST dataset using a network of 2954
neurons.

ii Gyro: an Event-Driven Digital Architecture for Spiking Deep Belief Networks

Acknowledgements

Hereby I want to show my appreciation to all parties that made this project possible. Thanks
to stichting IMEC Nederland for giving me the opportunity to do this project. I thank Federico
Corradi for the supervision from IMEC. We complement each other due to different technical
backgrounds which makes us stronger as a team. It has been a great pleasure to work with you on
a daily basis. I am grateful that I got the chance to work with many experts from IMEC which
has enriched me technically. I thank Sander Stuijk for the supervision from the TU/e. By guiding
me at a higher level you ensured the scientific interests and the right focus. Lastly, I thank my
family, Veerle and family van den Biggelaar for the continuous support and facilities.

Gyro: an Event-Driven Digital Architecture for Spiking Deep Belief Networks iii

Contents

Contents iv

1 Introduction 2

2 Background material 4

2.1 Spiking neural networks . 4

2.2 Leaky integrate-and-fire model . 4

2.3 Restricted Boltzmann machines . 5

2.4 Deep belief networks . 6

2.5 Training . 7

3 Related work 8

4 Design 11

4.1 Neuron model . 11

4.2 Architecture . 13

4.3 Weight memory mapping . 14

4.4 Timer . 17

4.5 Layer . 17

4.5.1 Spike queue . 17

4.5.2 Weight controller . 19

4.5.3 Neuron wrapper . 21

4.6 External interfaces . 22

4.6.1 Network input . 22

4.6.2 Network output . 23

5 Results 24

5.1 Characterization . 24

5.1.1 Throughput . 24

5.1.2 Latency . 26

5.1.3 Implementation . 27

5.1.4 Resource utilization . 28

5.1.5 Power . 29

5.1.6 Energy efficiency . 31

5.2 Case studies . 31

5.2.1 MNIST . 32

5.2.2 Speech command recognition . 32

5.2.3 Mine detection . 32

5.3 Discussion . 33

6 Conclusion 34

iv Gyro: an Event-Driven Digital Architecture for Spiking Deep Belief Networks

CONTENTS

7 Future work 35
7.1 Reconfigurable weights . 35
7.2 Pipelining . 35
7.3 Neuron time-multiplexing . 35
7.4 Timer overflow . 36
7.5 Buffer optimization . 36
7.6 Memory addressing . 37

Bibliography 38

Gyro: an Event-Driven Digital Architecture for Spiking Deep Belief Networks 1

Chapter 1

Introduction

The continuous advances in the field of machine learning and deep learning demonstrate their
increasing value and meaningful contributions to our world. Both training and inference of deep
neural networks require vast amounts of computing, memory, power and energy resources as a
result of the growing number of neurons and interconnections. Spiking neural networks (SNNs)
are a subset of the deep learning domain which mimic biological spiking behavior by encoding
and processing event information using spikes. The large power and energy requirements of SNNs
make their deployment on low-power mobile devices challenging or even infeasible. In contrast
with the use of a remote computational server, SNNs running on edge devices offer lower latency
responses and are able to operate in areas where a connection to other devices is non-existing.
Therefore, numerous novel applications can be realized if SNNs run efficiently on low-power mobile
devices.

Even though SNN implementations and the human brain differ fundamentally, inspiration can
be taken from biology since the human brain achieve orders of magnitude better power efficiency.
The human brain consists of billions of neurons that make trillions of connections. Meanwhile,
the average power consumption of a human brain is as little as 20 W [1], similar to a single light
bulb. While the neurons are noisy, imprecise and operate on a frequency around 40 Hz [8], this
neural network is capable of solving very complex tasks with high precision.

Neuromorphic devices, such as a silicon retina [2] or a silicon cochlea [14], are inspired by human
vision and hearing respectively and send out spikes that indicate events. Event-driven computa-
tion is an approach that can reduce the amount of unnecessary computation. An event-driven
system processes data in a frame-free manner, which is in clear contrast to, for example, tradi-
tional computer vision where a frame is processed at every time step regardless of its content.
A vast amount of computation and power is wasted on processing stationary parts of images.
An SNN implicitly supports event-driven computation as it only updates neurons upon spiking
activity as opposed to updating neurons at a fixed time interval. The amount of computation in
an event-driven system scales with the amount of activity rather than network size, so there are
no computations when there is no spiking activity. Additionally, event-driven computation en-
ables lower latency responses. Instead of waiting for all pixels in a frame, spikes can be processed
directly upon arrival and flow through the SNN.

Whilst a large number of neural network topologies exist, this work focuses on the Deep Belief
Network (DBN) which is formed by stacking multiple recurrently connected Restricted Boltzmann
Machines (RBMs). This topology is elaborated in detail in Chapter 2. The combination of both
feed-forward and feed-back streams is an important deviation from traditional feed-forward only
models and is an integral aspect of this work. The recurrent connections enable predictive er-
ror correction and multisensory integration. DBNs have proven themselves in various applications
such as emotion recognition, seizure detection and sleep stage classification using electroencephalo-

2 Gyro: an Event-Driven Digital Architecture for Spiking Deep Belief Networks

CHAPTER 1. INTRODUCTION

graphy (EEG) [18], estimating the remaining useful life [31], speech recognition [24] or handwritten
character recognition [5].

DBNs can consist of many neurons with even more connections. All neurons operate concur-
rently which requires a massive amount of computation. Even though the implementation of a
SNN may be the easiest and quickest on a general CPU architecture, the concurrent layout of an
SNN does not suit the sequential nature of a CPU. As a result, CPUs are expected to be unable to
meet both computation demands and energy constraints of mobile devices. Alternatively, GPUs
contain a parallel computing architecture. Since they commonly offload a CPU by computing
with a batch of data, they do not fit the event-driven approach nor the continuously streaming
spikes in a SNN. Furthermore, the power consumption of GPUs does not meet the requirements
of mobile applications.

A custom digital hardware design is able to provide a parallel computing architecture that is
optimized for event-driven computation, a spiking neuron model and configurable bit widths. It
inherently supports massive parallelism and can contain local memory to facilitate the storage
of the weights present in a DBN. Custom hardware is application specific and optimized to run
inference in an efficient manner in terms of time, power and energy. A digital, clock based system
does not fully adhere to the even-driven approach as the clock continues to oscillate regardless
of spiking activity. Nevertheless, by implementing the design event-driven, a drastic reduction
in switching activity can be achieved which enables a lower dynamic power consumption. The
design is initially developed and verified on an FPGA. For low volumes these are low-cost devices
and are reconfigurable to allow updating of the DBN. As the state-of-the-art of deep learning
changes quickly, the design can be adapted in limited time and the FPGA can be reconfigured
without additional hardware costs. A design that has proven itself on an FPGA can optionally be
implemented in an ASIC.

This work presents Gyro, an event-driven architecture to deploy spiking DBNs in digital hardware.
The high computation, power and energy requirements of deep neural networks are addressed by
the use of a spiking neural network that is compatible with event-driven neuromorphic sensors.
Both feed-forward and feed-back connections are facilitated by presenting a method to map the
weight connections to on-chip memories. Furthermore, the LIF neuron implementation is simpli-
fied to reduce the hardware resources. Gyro has a strong focus on configurability and can deploy
arbitrary sized SNNs with a configurable trade-off between hardware resources and performance.

The remainder of this thesis is structured as follows. The background material and relevant liter-
ature are described in Chapters 2 and 3 respectively. Chapter 4 presents the design of Gyro, and
Chapter 5 discusses the results and compares with related work. Chapter 6 contains conclusions
and lastly recommendations for future work are given in Chapter 7.

Gyro: an Event-Driven Digital Architecture for Spiking Deep Belief Networks 3

Chapter 2

Background material

2.1 Spiking neural networks

An SNN is formed by interconnecting spiking neurons. In an SNN information is contained in the
relative timing of spikes, i.e. temporal coding. Figure 2.1 shows a spiking neuron with n inputs and
one output. The neuron integrates input spikes at the inputs into its membrane potential. When
the membrane potential exceeds its threshold value it generates an output spike. The neurons are
interconnected using weighted synapses. The output of the neuron is

y(t) = φ

(
n∑
i=1

xi(t) · wi

)
(2.1)

where xi represents incoming spikes, and wi the corresponding weights. The activation function
φ ensures a non-linear function between inputs and output which enables the network to learn
non-linear dependencies.

Figure 2.1: A spiking neuron with n inputs.

2.2 Leaky integrate-and-fire model

The spiking neuron model used in this work is the Leaky Integrate-and-Fire (LIF) model. This
model is used due to its simplicity compared to other neuron models. The neuron is modeled
using a resistor and capacitor in parallel, and the dynamic behavior of the membrane potential is
described by

τm
dV (t)

dt
= RmI(t)− V (t) (2.2)

where Rm the membrane resistance, Cm the membrane capacitance, τm = RmCm is the membrane
time constant, V the membrane potential and I the total input current. As the model name

4 Gyro: an Event-Driven Digital Architecture for Spiking Deep Belief Networks

CHAPTER 2. BACKGROUND MATERIAL

implies, the neuron integrates the input current in its membrane potential V . Once the membrane
potential exceeds its threshold potential Vthr, an output spike is generated and the membrane
potential is reset to Vrst and remains Vrst during the refractory period trefrac. The neuron model
has a time-dependent memory as the membrane potential leaks away exponentially over time. An
exemplary LIF membrane potential behavior is shown in Figure 2.2.

Figure 2.2: Exemplary LIF membrane potential.

2.3 Restricted Boltzmann machines

Among the many different SNN topologies that exist, this work focuses on the Restricted Boltzmann
Machine (RBM). RBMs are generative stochastic artificial neural networks which is made up of
two layers of neurons, a hidden and a visible layer, and is shown in Figure 2.3. The two layers are
fully and symmetrically connected, but neurons are not connected within a layer.

Figure 2.3: An example of a Restricted Boltzmann machine.

The energy of the joint configuration of the visible and hidden units is given by

E(v,h) = −
∑

i∈visible

aivi −
∑

j∈hidden

bjhj −
∑
i,j

vihjwij (2.3)

where vi, hj are the binary states of visible unit i and hidden unit j, ai, bj are the visible and hidden
biases respectively and wij are the interconnecting weights. Note that in this work the biases ai
and bj are always zero, and therefore not shown in Figure 2.3. The encoded joint probability can
be written as

p(v,h) =
1

Z
exp(−E(v,h)) =

exp(−E(v,h))∑
v′
∑
h′ exp(−E(v′,h′))

. (2.4)

From Equations 2.3 and 2.4 the following rules are derived for the states of the units, such that on
average every network update results in a lower energy state, ultimately resulting in an equilibrium.

Gyro: an Event-Driven Digital Architecture for Spiking Deep Belief Networks 5

CHAPTER 2. BACKGROUND MATERIAL

Given a visible input vector v, the binary state hj of hidden unit j is set to 1 with probability

p(hj = 1 | v) = σ

(
bj +

∑
i

wijvi

)
(2.5)

where σ(x) is the sigmoid function. Similarly, given a hidden vector h, the binary state vi of
visible unit i is set to 1 with probability

p(vi = 1 | h) = σ

ai +
∑
j

wijhj

 . (2.6)

When the network runs freely it generates samples over all possible states according to the joint
probability distribution in Equation 2.4.

2.4 Deep belief networks

A DBN is a deep learning architecture consisting of recurrently connected RBMs, as shown in
Figure 2.4. A DBN is created by stacking multiple RBMs onto each other, such that the hidden
layer of one RBM acts as the visible layer for the next RBM. DBNs are a subset of artificial
neural networks that span the state-of-the-art in the area of machine learning with applications
in, for example, computer vision and speech recognition. They can extract more abstract relevant
features compared to shallow neural networks. An DBN is trained using unsupervised learning to
predict the activity of the visible layer from the activity of the hidden layer. The higher layers the
DBN are capable of learning more abstract features of the sensory input. DBNs can be trained
layer-by-layer using unlabeled data sets. This is very useful since labeling data sets is very ex-
pensive and large unlabeled data sets can be used for training.

DBNs can be used in generation mode where neurons in the top label layer are activated and
cause spiking activity to propagate through the network. The resulting spiking activity in gen-
eration mode shows what the network has learned. Moreover, these feed-back connections can
facilitate in applications such as error correction and sensor fusion.

Figure 2.4: n-layered DBN where wij denote the set of weights between layers i and j.

6 Gyro: an Event-Driven Digital Architecture for Spiking Deep Belief Networks

CHAPTER 2. BACKGROUND MATERIAL

2.5 Training

Training of an RBM is done by adapting the parameters w, a and b using gradient-ascent updates.
Updating of the weights is described by

∆wij = η(〈vihj〉data − 〈vihj〉model) (2.7)

where η is the learning rate, 〈.〉data denotes the expectation of the input data and 〈.〉model denotes
the expectation of the model distribution. The gradient ascent on the log-likelihood with respect
to the weights can be approximated by a Gibbs-sampling procedure. A Gibbs sampling iteration
consists of updating all hidden units in parallel using Equation 2.5 followed by updating all visible
units in parallel using Equation 2.6.

Ideally the Gibbs sampling procedure is executed an infinite amount of times to ensure that
the chain converges to an equilibrium. Since this is infeasible, contrastive divergence (CD) is com-
monly used to estimate the log-likelihood gradient. k-step contrastive divergence (CD-k) means
that k iterations of Gibbs sampling are performed. It has been shown that only a few Gibbs
samples are sufficient to train an RBM, usually k = 1 or k = 2. The learning rule now becomes

∆wij = η(〈vihj〉data − 〈vihj〉recon). (2.8)

where 〈.〉recon is the approximation of 〈vihj〉model using CD [10].

Furthermore, in [21] is described how the parameters of a DBN that is trained using Siegert
neurons can be converted into an functionally equivalent network of spiking LIF neurons, in which
event-driven real-time inference is performed. This avoids the necessity of training using spiking
neurons.

Gyro: an Event-Driven Digital Architecture for Spiking Deep Belief Networks 7

Chapter 3

Related work

Numerous spiking neural network architectures have been demonstrated in neuromorphic imple-
mentations. First, there are some large-scale academic and industrial architectures. The Spiking
Neural Network Architecture (SpiNNaker) [7] from the University of Manchester is a massively
parallel architecture interconnecting processing nodes where each node consists of 18 ARM cores,
memory and a packet router. The nodes communicate via interconnecting fabric that routes small
packets efficiently. The largest SpiNNaker system comprises over a million ARM cores requiring
up to 75 kW of power. TrueNorth [16] from IBM incorporates 4096 neurosynaptic cores inter-
connected via an intra-chip network. Each core consists of 256 programmable spiking neurons
with each 256 synapses, leading to a total of one million neurons and 256 million synapses. It
is an hybrid asynchronous-synchronous chip where control and communication are event-driven
asynchronous, i.e. do not require a clock, and the neuron is synchronous. The neuron operates
time-driven, i.e. each core updates its neurons at discrete time steps. Loihi [3] from Intel is a
chip consisting of a mesh network of 128 cores that incorporate 131.072 neurons and 130 million
synapses. The chip also has an on-chip learning engine to adapt weights dynamically. At each
time step spikes are routed on the network and all neuron states are updated.

Since the proposed design is evaluated by means of an FPGA in Chapter 5, the related works
listed in Table 3.2 are all implemented on FPGA. The Bluehive project [17] from Cambridge Uni-
versity implemented 256.000 Izhikevich neurons with 1.000 synapses each by interconnecting four
FPGAs that each contain 64.000 neurons. Minitaur [20] and its improved version n-Minitaur [12]
build upon [21] and operate event-driven. They both time-multiplex 32 physical Leaky-Integrate-
and-Fire (LIF) neurons to emulate at maximum 65.536 neurons. Note that this is the only purely
event-driven implementation int his selection. In [13] the Efficient Neuron Architecture (ENA) is
proposed that consists of layers of neurons that communicate using packets. Using the LIF model
and 32 bit precision it promises to emulate up to 3982 neurons and 400 k synapses. The authors
implemented only 3 neurons though. In [28] an FPGA Design Framework (FDF) is proposed that
time-multiplexes up to 200.000 neurons with one physical conductance-based neuron. Further-
more, a network is presented that consists of 1.5 M neurons and 92 G synapses on an FPGA.
To reduce memory usage only the most significant bits of the exponential decay are stored and
the least significant bits are stochastically generated. The same authors emulate 20 M to 2.6 B
neurons in a so called Neuromorphic Cortex Simulator (NCS) [29] using only one FPGA. There
is a large drop in performance, which is likely a result of using off-chip memory which increases
the supported network size.

ASIC implementations support very large networks and can be extremely power and energy effi-
cient, but are expensive to build and not easily accessible to other people. It is acknowledged that
it is infeasible to outperform ASIC implementations that are made by industry and academics
in terms of performance or efficiency. Therefore, this work will focus on small to medium scale
event-driven spiking DBNs. The event-driven algorithm used by Minitaur [20] and n-Minitaur [12]

8 Gyro: an Event-Driven Digital Architecture for Spiking Deep Belief Networks

CHAPTER 3. RELATED WORK

Table 3.1: Spiking neural network MNIST accuracies [27].

Model Year Architecture Learning method Accuracy
Neftci [19] 2014 RBM Contrastive divergence in LIF neurons 91,9%
Neil [12] 2014 DBN Offline learning, hardware 92,0%
Merolla [15] 2011 RBM Offline learning, hardware 94,0%
O’Connor [21] 2013 DBN Offline learning, conversion 94,1%
Neil [12] 2016 DBN Offline learning, hardware 94,1%
Stromatias [26] 2015 DBN Offline learning, conversion 94,9%
Stromatias [25] 2015 DBN Offline learning, hardware 95,0%
Han [9] 2020 SNN Offline learning, hardware 97,1%
Esser [6] 2015 Deep SNN Offline learning, conversion 99,4%
Rueckauer [23] 2017 Spiking CNN Offline learning, conversion 99,4%

is reused. As a result of reduced weight bit precision, weights are stored in on-chip memories and
use of off-chip memories can be eliminated. Even though this directly limits the network size, this
is very beneficial for performance, and power and energy consumption.

In Table 3.1 the MNIST accuracy results are shown for a number of spiking neural networks.
All spiking RBMs and DBNs from [27] are listed, complemented with the highest accuracies of
different architectures. Conversion learning method indicates that a neural network is converted
to a SNN after training. The highest achieved accuracy among the RBM and DBN architectures is
95,0%, while overall the highest accuracies is 99,4% achieved by a spiking CNN and a deep SNN.

Gyro: an Event-Driven Digital Architecture for Spiking Deep Belief Networks 9

CHAPTER 3. RELATED WORK

T
a
b

le
3
.2

:
F

P
G

A
-b

a
sed

sp
ik

in
g

n
eu

ra
l

n
etw

o
rk

im
p

lem
en

ta
tio

n
s

in
ch

ron
ological

ord
er.

N
am

e
B

lu
e
h

iv
e

F
D

F
n

-M
in

ita
u

r
P

a
n

i
N

C
S

T
sin

g
h
u

a
G

y
ro

R
eferen

ce
[17]

[2
8
]

[1
2
]

[2
2
]

[29]
[9]

N
/A

Y
ear

20
1
2

2
0
1
4

2
0
1
6

2
0
1
7

2018
2020

2020
F

P
G

A
S

tratix
IV

V
irtex

6
S

p
a
rta

n
6

V
irtex

6
S

tratix
V

Z
y
n

q
7000

Z
y
n

q
U

ltrascale+
C

lo
ck

(M
H

z)
20

0
2
6
6

1
0
5

1
0
0

200
200

250
N

eu
ro

n
m

o
d

el
Izh

ikev
ich

C
o
n

d
u

cta
n

ce
L

IF
Izh

ikev
ich

L
IF

L
IF

L
IF

N
etw

o
rk

U
n

k
n

ow
n

U
n

k
n

ow
n

F
eed

-fo
rw

a
rd

R
ecu

rren
t

U
n

k
n

ow
n

F
eed

-forw
ard

R
ecu

rren
t

D
riven

T
im

e-d
riven

T
im

e-d
riven

E
ven

t-d
riv

en
T

im
e-d

riven
T

im
e-d

riven
H

y
b

rid
E

ven
t-d

riven
W

eigh
t

stora
g
e

O
ff

-ch
ip

O
n

-ch
ip

O
ff

-ch
ip

O
n

-ch
ip

O
ff

-ch
ip

O
ff

-ch
ip

O
n

-ch
ip

W
eig

h
t

b
it-w

id
th

12
b

its
1
2

b
its

1
6

b
its

7
b

its
4

b
its

16
b

its
6

b
its

C
o
res

16
2
3

3
2

8
200

k
U

n
k
n

ow
n

S
am

e
as

n
eu

ron
s

N
u

m
b

er
of

n
eu

ron
s

25
6

k
1
,5

M
1
7
9
4

1
4
4
0

100
M

2842
2954

T
im

e
reso

lu
tion

1
m

s
0
.3

2
m

s
N

/
A

0
,1

m
s

1
m

s
N

/A
N

/A
P

eak
th

rou
gh

p
u

t
(G

S
O

P
S

)
0,25

6
1
2
0
0

0
,0

5
3
5

0
,0

1
4
4

20
0,67

22,85
P

ow
er

d
issip

a
tion

(W
)

U
n

k
n

ow
n

U
n

k
n

ow
n

1
.5

8
,5

32,4
0,477

2,586
E

n
ergy

effi
cien

cy
(n

J
/S

O
)

U
n

k
n

ow
n

U
n

k
n

ow
n

2
8

5
9
0

1,62
712

0,109
M

N
IS

T
accu

racy
U

n
k
n

ow
n

U
n

k
n

ow
n

9
4
,1

%
U

n
k
n

ow
n

U
n

k
n

ow
n

97,1%
99,3%

10 Gyro: an Event-Driven Digital Architecture for Spiking Deep Belief Networks

Chapter 4

Design

This chapter presents the design of Gyro. First, the design of the neuron model is described
with the event-driven network update algorithm. Thereafter, the architecture is presented in a
top-down manner.

4.1 Neuron model

The LIF neuron model is described in Section 2.2. The implemented LIF neuron has instantaneous
dynamics. When neuron i spikes to neuron j, the membrane potential of neuron j is increased
or decreased with a step of size W i,j . An adapted version of the event-driven network update
algorithm from [20] is used as a basis for implementation. Since the layers are fully-connected,
all neurons in one layer are updated simultaneously and the previous spike times are always
identical for all neurons in a layer. To save storage, the algorithm is adapted by replacing the
individual previous spike times by a single previous spike time that is shared over all neurons in
a layer. Besides, an ‘else if’ statement is added which sets the membrane potential to zero if it
becomes negative. The resulting optimized algorithm is shown in Algorithm 1. While a time-
driven algorithm loops through all time steps, this event-driven algorithm loops through spike
events which indicates that computations only happen upon spiking activity.
Algorithm 1 shows that the membrane potential of neuron i decays with

V im = V im · e−(t−t
i
prev)/τm (4.1)

which requires the computation of the exponential function. Calculating the exponential function,
for example using Tailor series, is resource and time expensive. To simplify this computation, the
exponential function is approximated using bit-shifts. By shifting the membrane potential by n
bits to the right, its value is divided by 2n and the least significant bits are eliminated. This is
a resource efficient operation in digital hardware. Figure 4.1 shows the dataflow for one neuron
derived from Algorithm 1, except for subtraction t− tprev which is shared over all neurons in one
layer.

By moving the computation of the previous spike time outside the neuron and simplifying the
computation of the exponential function, the neuron is implemented such that it processes an
input spike in two clock cycles without pipelining. Figure 4.2 shows the neuron behavior using
RTL simulation waveforms. The event-driven approach appears from the observation that the
membrane potential, indicated as v́oltagé, remains unchanged when input spikes are absent. The
refractory period causes the membrane potential to remain zero after an output spike even though
new input spikes arrive. Furthermore, every now and then the membrane potential leaks away by
a noticeable amount. In the period where the weight has value 1, the membrane potential gets
into an equilibrium as the potential increases as much as it leaks away.

Gyro: an Event-Driven Digital Architecture for Spiking Deep Belief Networks 11

CHAPTER 4. DESIGN

Algorithm 1 Event-driven LIF neuron update

Require: set of sorted spike times St
Require: set of corresponding source neurons Ssrc ∈ 1..N
Require: set of corresponding destination layers ldst ∈ 1..L

with neurons Sldst ∈ 1..M
Require: set of synaptic weights W ∈ RN×M
t1..Mre ← 0
t1..Lprev ← 0
for t in St do

for s in Ssrc do
for l in ldst do

tδ ← t− tlprev
tlprev ← t

for d in Sldst do
V im ← V im · e−tδ/τm
if t > tire then

V im ← V im +WSksrc,i

end if
if V im > Vthr then

Spike()
V im ← V ireset
tire ← t+ trefrac

else if V im < 0 then
V im ← 0

end if
end for

end for
end for

end for

Figure 4.1: LIF neuron behavior.

12 Gyro: an Event-Driven Digital Architecture for Spiking Deep Belief Networks

CHAPTER 4. DESIGN

Figure 4.2: LIF neuron RTL simulation.

4.2 Architecture

The way in which connection weights are stored determines the memory bandwidth and ulti-
mately the performance of the network. It is chosen to store all the connection weights in on-chip
memory in contrast to off-chip memory for multiple reasons. First, based on the related work in
Section 3 it is concluded that memory bandwidth is a major issue for the real-time implementation
of DBNs. The use of multiple on-chip memories that are close to computations achieves higher
memory bandwidth and lower access latency compared to off-chip weight storage. This exploits
the massive parallelism of digital hardware and fits the layout of the DBN. Second, the use of
on-chip memory renders a self-contained, vendor independent and external hardware independent
design. This preserves the possibility to implement the design in an ASIC without significant
modifications. Additionally, the lack of large off-chip storage capacity is partly compensated by
the recent advances in weight bit precision reductions [11][26]. Representing weights using lower
bit precision requires less storage and therefore provides the ability to implement larger neural
networks with on-chip memory. In conclusion, the performance and independence advantages of
on-chip memory is favoured over the large capacity of off-chip memory.

The design of Gyro is based on the layered structure of the DBN and is shown in Figure 4.3.
Because the network is fully-connected, each spike is sent to all neurons of another layer and
therefore all neurons in a layer are always updated simultaneously. The assumption that all lay-
ers are fully-connected has two advantages. Firstly, a fully-connected network is the worst-case
scenario in terms of connection quantity, thus an connection scheme that requires less connections
is inherently supported. Secondly, by updating all neurons in a layer simultaneously upon an
input spike, the implementation and behaviour is simple and predictable. Apart from interfacing
modules, the design consists of two main modules: the layer and the weight memory. There is
a layer module for each layer in the DBN except for the very first layer as the input layer does
not require computations. Between every two layers there is a weight memory module that stores
the weights that interconnect the two layers. Hence, for a DBN of N layers, the design consists
of N − 1 layers and N − 1 weight memories. The layer module consists of a spike queue that
receives one or two streams of spikes. The weight controller receives spikes from the spike queue
and retrieves the corresponding weights from the weight memories depending on the spike source.
The neuron wrapper contains the LIF neurons along with spike buffering and arbitration. The
layer module is further elaborated in Section 4.5. The timer module, described in Section 4.4,
creates a notion of time which is required for the calculations in the neurons. A set of registers is
used to dynamically set parameters via an AXI4-lite interface.

The main input of the network are spikes that stream into the spike queue of the first layer
module, as shown in the top-left of Figure 4.3. The spikes can either be streamed in directly or
they can be generated using spike generators. The output of the network are the spikes at the
output layer. There are three ways to monitor the behaviour of the output layer. The literal
spikes can be streamed through a buffer and the Inter-Spike Interval (ISI) and low-pass filtered
membrane potential is computed for each neuron at the output layer. These modules are elabor-

Gyro: an Event-Driven Digital Architecture for Spiking Deep Belief Networks 13

CHAPTER 4. DESIGN

ated in Section 4.6.

In our design, each weight memory contains one or more true dual-port on-chip memories. Being
true dual-port ensures that two layers can access the same weight memory simultaneously, so each
layer has independent access to weights. Furthermore, although it is out of scope of this work,
weights can be updated after synthesis at run time since the memories are writable. This avoids
a potentially long synthesis and implementation time. The mapping of the weights to the on-chip
memories, the associated difficulties and a proposed solution are elaborated in Section 4.3.

Figure 4.3: Exemplary DBN instance of four layers.

4.3 Weight memory mapping

Each of the weight memory modules stores a weight matrix that represents all the weight values
of the connections between two layers. The major challenge of implementing the DBN on digital
hardware is to efficiently map the connection matrices to the on-chip memories. The way the
weights are distributed over the memories determines the memory bandwidth and ultimately the
system throughput. Additionally, this mapping determines the implementation of the weight con-
troller.

To visualize the impact of a weight mapping on memory bandwidth, an example weight set for
a four by four network is shown in Figure 4.4. The corresponding weight matrix is shown in
Figure 4.5. When this structure is also the way it is mapped to memory, one row can be read per
clock cycle. When a neuron vn spikes, each of the four neurons hm require to be updated and the
corresponding, equally colored, weights can be read in one clock cycle. The resulting throughput
is four neuron updates per clock cycle. On the contrary, when a neuron hn spikes, each of the four
neurons vm require to be updated and the corresponding weights, which contain the same shape,
can be read in four consecutive clock cycles. As it effectively reads one weight per clock cycle, the
resulting throughput is only one neuron update per clock cycle.

To make a more fair trade-off between forward and backward weight accesses, the weights can
be mapped differently to the memory as shown in Figure 4.6. In this case, the weights corres-
ponding to any neuron vn or hn are on two different lines. Thus, both a forward and backward
spike require two consecutive reads and have a throughput of two neuron updates per clock cycle.

To generalize the mapping of any weight matrix between V visible neurons and H hidden neurons
to a set of memories, a three dimensional x, y, z coordinate system is introduced. Variables x and
y represent the memory width and depth respectively and z represents the distinctive memories.
All variables x, y and z are integers. The memory width is represented as a number of weights,

14 Gyro: an Event-Driven Digital Architecture for Spiking Deep Belief Networks

CHAPTER 4. DESIGN

Figure 4.4: Example network
of two layers.

Figure 4.5: Weight mapping
requiring either one or four
memory accesses.

Figure 4.6: Weight mapping
always requiring two memory
accesses.

so the memory width in bits is obtained by multiplying x by the weight bit width. The core idea
of the memory mapping is that the set of H weights that correspond to a visible neuron vn are
grouped into a cube of size x1 by y1 by z1. The volume of this cube equals the amount of hidden
neurons, so x1 · y1 · z1 = H. This cube is repeated x2 times in the x dimension, y2 times in the y
dimension and z2 times in the z dimension. As there is a cube for each visible neuron, the amount
of repetitions equals the amount of visible neurons, so x2 ·y2 · z2 = V . To update the set of hidden
neurons upon a forward spike, x1 by y1 weights are read from z1 memories. This is visualized in
Figure 4.7 where the weights belonging to a hidden neuron are colored red. Similarly, to update
the set of visible neurons upon a backward spike, x2 by y2 weights are read from z2 memories.
This is visualized in Figure 4.8 where the weights belonging to a visible neuron are colored green.

The maximum throughput in terms of weights per clock cycle can be derived solely from the
weight mapping parameters (x1, y1, z1, x2, y2, z2). The parameters (x1, y1, z1) correspond to the
weights for a forward spike, and (x2, y2, z2) to the weights for a backward spike. As xn indicates
the amount of effective weights per row and zn indicates the amount of memories accessed in
parallel, xn · zn is the amount of effective weights that are read per clock cycle. The amount of
effective weights per clock cycle equals the amount of neurons that are simultaneously updated,
i.e. the neuron cluster size C1 = x1 · z1 and C2 = x2 · z2. Updating all neurons in a layer upon a
forward and backward spike takes y1 and y2 clock cycles, respectively.

All variables related to the weight memory mapping are listed in Table 4.1. Moreover, the weight
memory mapping objective and constraints are written in Equations 4.2a to 4.3b. Even though
it is written as an optimization problem, formally solving is out of scope of this work. The ob-
jective in Equation 4.2a is to maximize performance which includes both forward and backward
throughput and priority. Variable F in Equation 4.2b defines the forward throughput priority
compared to backward throughput. Equations 4.2c and 4.2d ensure that the product of the para-
meters is sufficient to storage all weights. The width and depth of the memories are constrained
in Equations 4.2e and 4.2f respectively and Equation 4.2g constrains the amount of memories.

Gyro: an Event-Driven Digital Architecture for Spiking Deep Belief Networks 15

CHAPTER 4. DESIGN

Figure 4.7: Set of x1 · y1 · z1 red colored weights
for a forward spike.

Figure 4.8: Set of x2 ·y2 ·z2 green colored weights
for a backward spike.

16 Gyro: an Event-Driven Digital Architecture for Spiking Deep Belief Networks

CHAPTER 4. DESIGN

Variable Type Description
x1, y1, z1, x2, y2, z2 Integer Memory mapping parameters

C1 Integer Forward neuron cluster size, i.e. x1 · z1
C2 Integer Backward neuron cluster size, i.e. x2 · z2
Mx Integer Maximum memory width in bits
My Integer Maximum memory depth
Mz Integer Maximum amount of memories
V Integer Number of neuron in visible layer
H Integer Number of neuron in hidden layer
W Integer Weight bit width
F Real Relative importance forward performance

Table 4.1: Variables related to the weight memory mapping

max
x1,y1,z1,x2,y2,z2∈N

(F · C1) + (1− F) · C2 (4.2a)

subject to 0 ≤ F ≤ 1 (4.2b)

x1 · y1 · z1 ≥ H, (4.2c)

x2 · y2 · z2 ≥ V, (4.2d)

x1 · x2 ≤
Mx

W
, (4.2e)

y1 · y2 ≤My, (4.2f)

z1 · z2 ≤Mz (4.2g)

4.4 Timer

The neurons require a notion of time for the membrane potential leakage and the refractory period
as shown in Algorithm 1. The timer module, shown in the bottom of Figure 4.3, introduces a
notion of time by generating a time value and upon a time increment it generates a trigger. The
timer period is configurable and depends on network requirements and the clock frequency. For
example, for a resolution of 1 μs and clock period of 10 ns, the timer period is 1 μs / 10 ns = 100
clock cycles.

4.5 Layer

The layer is the computational core of the design as shown in Figure 4.3. The inner structure of
the layer is shown in Figure 4.9 along with the timer and weight memories to show the external
interfaces. The layer is split into three submodules: the spike queue, the weight controller and the
neuron wrapper. Each of the submodules is elaborated in the following sections.

4.5.1 Spike queue

The spike queue is the purple module at the top of Figure 4.9. It receives two streams of spikes,
one for forward spikes generated by the previous layer and one for backward spikes generated by
the next layer. A spike is represented by the address of the neuron that generated the spike which
is abbreviated to Ssrc. Each stream is separately buffered using a FIFO. The FIFO outputs are
arbitrated using a round robin scheme.

Gyro: an Event-Driven Digital Architecture for Spiking Deep Belief Networks 17

CHAPTER 4. DESIGN

Figure 4.9: Layer diagram.

18 Gyro: an Event-Driven Digital Architecture for Spiking Deep Belief Networks

CHAPTER 4. DESIGN

4.5.2 Weight controller

The weight controller retrieves the weights from the memories and controls the neurons. Figure 4.9
shows the weight controller in red including its submodules and external interfaces. Additionally,
Figure 4.11 shows the behavior of the weight controller in more detail. The state machine, which
behavior is shown in Figure 4.10, synchronizes the other modules in the weight controller. Ini-
tially, the weight controller latches the spike source address Ssrc and spike direction from the
spike queue. During states decode 1 and decode 2, the address decoder module generates the
memory addresses derived from Ssrc and the spike direction. During the forward or backward
active states, the state machine generates indices yf and yb for the forward and backward weight
control modules respectively to multiplex the weights that are read from the memories.

On top of the weight memory mapping Equations 4.2a to 4.2g, there are a few additional con-
straints in our design which are shown in Equations 4.3a to 4.3c. Firstly, parameter x2 is fixated
to 1 because this resulted in an optimal performance for all weight memory mappings in this work
and this simplifies the implementation of the weight controller. This simplification is shown in
the forward weight control in Figure 4.11, since it does not multiplex weights in the x dimension.
Secondly, since a neuron requires two clock cycles to update its membrane potential, the weight
controller must wait for a neuron to finish before it can initiate another update. This is expressed
in Equations 4.3b and 4.3c, where NOH represents the amount of clock cycles overhead of the
weight controller. In the current implementation the overhead is two clock cycles, i.e. NOH = 2,
which allows any value for y1 and y2.

x2 = 1, (4.3a)

y1 +NOH ≥ 2, (4.3b)

y2 +NOH ≥ 2, (4.3c)

Figure 4.10: Weight controller state machine diagram.

The weights corresponding to a forward spike are all weights within a virtual cube. The surface
of the cube of C1 weights are read in parallel, so the address decoder module generates memory
addresses by iterating over the rows of the concerned cube. Index yf from the state machine
counts from 0 to yn − 1 with steps of size 1 which represents the index of the row within the
cube. To get the memory address, this index is incremented by the row offset of the cube. Since
parameter x2 is fixed to one, dividing Ssrc by z2 obtains the cube offset in the y dimension, and
this is multiplied by cube height y1 to get the row offset. Thus, the forward address is generated
by

Forward memory address = yf +
Ssrc · y1
z2

. (4.4)

Gyro: an Event-Driven Digital Architecture for Spiking Deep Belief Networks 19

CHAPTER 4. DESIGN

Figure 4.11: Weight controller diagram.

For a backward spike, one weight is retrieved per virtual cube, and C2 weights are read in parallel
for each yb index. The vertical position within the cube of the C2 weights is obtained by dividing
Ssrc by the surface size, i.e. C1. The vertical cube offset is given by index yb which counts from
0 to (y2 − 1) · y1 with steps of size y1. Thus, the backward address is generated by

Backward memory address = yb +
Ssrc
C1

(4.5)

which concludes the calculations of the address decoder module.

In the forward and backward weight control modules receive the data from the memories and
multiplex the data to filter out the relevant weights. In forward weight control module, the cube
offset in z dimension is obtained by

zf = Ssrc mod z2. (4.6)

The relevant weights are from the memories related to this cube, so memories zf · z1 up to and
including ((zf + 1) · z1)− 1. There is no multiplexing in the x dimension because x2 is fixed to 1.
In the backward weight control module, the offset in the z dimension within the cube is obtained
by

zb =
Ssrc
x1

mod z1. (4.7)

The corresponding weights are read from memories zb + i · z1 for i = 0..z2 − 1. The weight offset
in the x dimension is obtained by

x = Ssrc mod x1 (4.8)

which is used to select the valid bits from each weight vector.

The last module in the weight controller is the neuron addressing module which generates weight
valid signals to control the neurons and source addresses neurons that possibly spike. The weight
valid signals are generated from a counter y which goes from 0 to max(y1, y2) with step size 1.
Clusters of C1 or C2 neurons are subsequently activated using the weight valid signals. The ad-
dresses of neurons in a cluster are generated to store the spike source addresses. The spike source
address is generated for each neuron in the forward cluster by

Sisrc = y · C1 + i for 0 < i < C1 − 1. (4.9)

20 Gyro: an Event-Driven Digital Architecture for Spiking Deep Belief Networks

CHAPTER 4. DESIGN

Similarly, for each neuron in the backward cluster the spike source address is generated by

Sisrc = y · C2 + i for 0 < i < C2 − 1. (4.10)

These addresses are used in the neuron module to store the spike source addresses if neurons spike
which is shown in Figure 4.12 and described in Section 4.5.3.

4.5.3 Neuron wrapper

The neuron wrapper module in the layer consists of a set of neurons which are described in
Section 4.1 and the processing of the output spikes. All neurons exist in parallel, but the output
of the layer is a serial stream of spike sources addresses, identical to the spike queue input streams.

To serialize the output spikes from all neurons in the layer, a round-robin arbiter can be used
to grant exclusive access to the output stream. However, this solution introduces two issues.
Firstly, when N is large, the amount resources to implement the arbiter and the amount of logic
levels in the arbiter increases. This leads to high resource utilization and a low maximum clock
frequency. Secondly, the serial stream processes at maximum one spike per clock cycle, while the
neurons can generate many spikes in a single clock cycle. This difference in throughput is inevit-
able for this design and the throughput of the serial stream must be at least the average amount
of generated spikes. However, it can be beneficial or even necessary to buffer a burst of spikes
to avoid losing them which requires spike buffering between the neurons and the serial stream.
Note that this argument is not valid when a sufficiently large refractory period is used since that
can guarantee that the arbiter grants a neuron access before the next spike is generated which
eliminates the need of a spike buffer.

Due to the fact that a subset of C1 or C2 neurons is activated in parallel and therefore at maximum
max(C1, C2) spikes are generated in parallel, only max(C1, C2) buffers are needed, one buffer for
each neuron in a cluster. Depending on the cluster sizes C1 and C2, this can save a significant
amount of buffers and therefore hardware resources. Figure 4.12 shows the sharing of spike buffers
for three clusters of two neurons. The spike signals are fed through a logical or gate to generate
the buffer write signal. As spikes are represented using their source address, the information from
the neuron addressing module is used. In this example, instead of six buffers, one buffer for each
neuron, only two buffers are required since at maximum two neurons spike simultaneously. Lastly,
the arbiter arbitrates between the buffers to ensure fair and mutual access to the serial stream.

Figure 4.12: Exemplary post-neuron spike buffer sharing.

Gyro: an Event-Driven Digital Architecture for Spiking Deep Belief Networks 21

CHAPTER 4. DESIGN

4.6 External interfaces

4.6.1 Network input

The input spikes of the first layer can either be temporally coded or mean rate (MR) coded. In
case of temporal coding the spikes are, just like the streams between the layers, encoded as the
spike source address. Since time is implicit in temporal coding, communication latency and jitter
must be limited. Firstly, limited jitter avoids unacceptable differences between the spike arrival
times and the time they are processed. If the jitter is too large, the time related calculations
become erroneous. For instance, neurons might leak more than they should or it is incorrectly
decided that the refractory period is expired. Secondly, in principle latency has no influence on
functional correctness as it does not affect the relative spike timing. However, latency affects the
feasibility of real-time requirements. When the communication latency increases, the response
time of the whole system increases to a potentially unacceptable amount.

An example use case that uses temporal coding has been implemented and is shown in Figure 4.13
where a Xilinx DMA IP is used to outsource the communication to and from an external memory.

Figure 4.13: Example system that streams spikes via DMA.

Alternatively, the spike inputs can be supplied using rate coding. The advantage of this approach
is that there is no dependence on communication latency or jitter. On the other hand, it requires
additional logic to convert the MR for each input neuron into a sequence of spikes. To achieve
this, a spike generator module is used which is shown in Figure 4.14. This module uses the MR
which represents the probability that a neuron spikes and is set via registers. This stochasticity is
implemented using a Linear-Feedback Shift Register (LFSR) which is triggered once every timer
period. A spike is generated if the pseudorandom number is greater than the mean rate. The
value of the MR is relative to its maximum value of 2M − 1 for M bits. An MR of zero results in
zero spikes and an MR of 2M − 1 results in one spike every timer period. The probability that a
neuron spikes upon a timer trigger for a MR of M bits is

P (spike) =
MR

2M − 1
. (4.11)

A spike generator is time-multiplexed over multiple input neurons. Each neuron cannot spike more
than once per time resolution. Therefore, the amount of neurons that can share a spike generator
is Ntm = Tres/Tclk. For example, a time resolution of 1 µs and clock period of 10 ns results in
10−6/(10 · 10−9) = 100 neurons per spike generator. Thus, an input layer of 784 neurons requires
only d784/100e = 8 spike generators at 100 MHz.

22 Gyro: an Event-Driven Digital Architecture for Spiking Deep Belief Networks

CHAPTER 4. DESIGN

Figure 4.14: Spike generation with stochastic ISI.

4.6.2 Network output

Determining the network inference result requires monitoring of the neurons of the last layer. To
increase coverage of the monitors, two different methods are applied. Firstly, for higher spike
rates the Interspike Interval (ISI) is a reliable measure. The ISI is measured for each neuron at
the last layer by computing the interval between the two last spikes. The resulting values are fed
into registers and can be read via the AXI-lite interface. As the unit of the ISI is clock cycles, the
highest supported frequency is equal to the clock frequency. The bit width of the ISI measurement
determines the largest ISI and therefore the lowest possible frequency. The frequency range of the
ISI measurement is

1

2ISI bits · Tclk
≤ fISI ≤

1

Tclk
. (4.12)

Secondly, the membrane potential is used to monitor the neurons when spike rates are below
fISI . The membrane potentials are readily available from the neurons, but the values are low-pass
filtered to obtain an averaged potential without high frequency variations. A first-order Infinite
Impulse Response (IIR) filter as shown in Figure 4.15 is used since it is resource efficient. Since
low frequencies are of interest, the data is sampled on the, relatively low frequency, timer trigger.
To further simplify the implementation, α is chosen to be 1/32 such that the multiplication can
be implemented by bit shifts. Consequently, 1−α = 31/32 which results in a cut-off frequency of

31

32
= e−2π

fc
fs (4.13)

which is rewritten to obtain
fc
fs

=
− ln 31

32

2π
= 0.005 (4.14)

where the sampling frequency fs is derived from the timer period parameter fs = 1/Tres.

Figure 4.15: First order IIR filter.

Gyro: an Event-Driven Digital Architecture for Spiking Deep Belief Networks 23

Chapter 5

Results

The assessment of Gyro is divided into three sections. First, the characterization presents quant-
itative results in terms of throughput, latency, resource utilization and power dissipation. Second,
three case studies evaluate the inference accuracy and above all they empirically verify the func-
tional correctness. Thereafter, the results are discussed by comparing with related works.

5.1 Characterization

The characterization of Gyro consists of a theoretical analysis on throughput and latency and the
results of an FPGA implementation of the design which reports FPGA resource utilization, power
dissipation and energy efficiency. Networks are represented using format L1−L2− ..−LN format
where For instance, 784-10 is a network of two layers where the first layer has 784 neurons and
the second layer 10.

5.1.1 Throughput

The throughput is represented as the amount of synaptic operations per second (SOPS). One
neuron that generates a spike to N other neurons causes N synaptic operations. The peak
throughput depends on the weight mapping parameters and the clock frequency and assumes
there is sufficient spiking activity. As described in detail in Section 4.3, the weight mapping para-
meters define the memory sizes, layer size and the amount of concurrency inside the layer. To
distinguish the weight mapping parameters of different weight sets, notation ym1,2 is used where m

is the weight set. Layer l uses parameters (xl−11 , yl−11 , zl−11) from the previous weight memory and
parameters (xl2, y

l
2, z

l
2) of the next weight memory.

Upon a forward spike the layer does x1 · y1 synaptic operations per clock cycle. The layer requires
y1 clock cycles plus two clock cycles overhead to update all neurons in a layer. The maximum
amount of forward spikes that a layer processes per time unit is

1

tclk(y1 + 2)
. (5.1)

Consequently, the peak feed-forward throughput in synaptic operations per time unit for layer l is

xl−11 · yl−11 · zl−11

tclk(yl−11 + 2)
. (5.2)

The peak throughput of the whole DBN is obtained by summing the peak throughput of the
individual layers. The input layer is excluded since the input layer does not require computations,

24 Gyro: an Event-Driven Digital Architecture for Spiking Deep Belief Networks

CHAPTER 5. RESULTS

resulting in
L∑
l=2

xl−11 · yl−11 · zl−11

tclk(yl−11 + 2)
(5.3)

for a network of L layers.

The calculation of the peak feed-back throughput is similar to feed-forward apart from using
parameters with suffix 2, i.e. x2, y2 and z2, from the next weight memory. Upon a backward spike
the layer does x2 · y2 synaptic operations per clock cycle and it takes y2 + 2 clock cycles to update
all neurons in a layer. The peak feed-back throughput in neuron updates per time unit for layer l
is

xl2 · yl2 · zl2
tclk(yl2 + 2)

. (5.4)

For the peak throughput of the whole DBN, both the first and last layer are excluded as these
layers do not receive nor compute backward spikes. The total peak feed-back throughput is

L−1∑
l=2

xl2 · yl2 · zl2
tclk(yl2 + 2)

. (5.5)

As shown in Equation 5.3 and 5.5, the throughput is maximized by minimizing y1 and y2. As
a result of storing the weights in on-chip memories, it might be necessary to fill the available
memories virtually completely which translates to maximizing y1 · y2. However, as Equation 4.2f
indicates, y1 ·y2 cannot exceed the amount of rows in a memory, which creates a trade-off between
y1, forward throughput, and y2, backward throughput, and the amount of memories y1 ·y2. When
choosing a low value for y1, y2 must be high to sufficiently fill the memories and vice versa.

Example

Two examples of network throughput are given: one with recurrency taken into account and
one with feed-forward only. First, a four-layered recurrent network of 784-240-240-10 neurons is
considered that runs on a clock frequency of 250 MHz. To have a fair trade-off between forward
and backward throughput for layer l, yl−11 and yl2 are chosen to be similar. This does not hold for
m = 1 since weight set 1 is only accessed by layer 2 for forward spikes. Therefore, y11 can be chosen
low without having a backward throughput penalty. The chosen memory mapping parameters are
shown in Table 5.1.

Weight memory x1 y1 z1 x2 y2 z2
1 6 10 4 1 98 8
2 6 20 2 1 24 10
3 5 2 1 1 24 10

Table 5.1: Example weight memory mapping for a recurrent 784-240-240-10 network.

The throughput for the input layer 1 is derived from Equation 5.1 with unit spikes per second.
The forward and backward throughput is computed for each layer and shown in Table 5.3. For
instance, the throughput of layer 2 is computed using Equation 5.2

x11 · y11 · z11
tclk(yl1 + 2)

=
240

4 · 10−9(10 + 2)
= 5 · 109 = 5 GSOPS. (5.6)

Since there cannot be spikes towards to the input layer nor to the output layer, there is no
backward throughput for layer 1 and 4. The throughput can be combined with the knowledge
that forward and backward spikes are processed one after the other due to the round-robin arbiter.

Gyro: an Event-Driven Digital Architecture for Spiking Deep Belief Networks 25

CHAPTER 5. RESULTS

Both directions update the same amount of neurons, but with a different throughput. Therefore,
the combined throughput is

2 · FW ·BW
FW +BW

. (5.7)

Next, the network throughput is presented for the same network size, 784-240-240-10 neurons,
but feed-forward only. In this case ym1 can be minimized for all weight memories without being
disadvantaged on backward throughput. By using more memories, in this case 82 in total, the
throughput is further increased which is shown in Table 5.3. The throughput of input layer
increases to 83, 3 · 106 spikes per second. The throughput of both layer 2 and 3 increase to 20
GSOPS and with the little increase at layer 4 it results in a total throughput of 40,83 GSOPS. In
this case the two clock cycles overhead become a major factor on the throughput.

Weight memory x1 y1 z1 x2 y2 z2
1 6 1 40 1 784 1
2 6 1 40 1 240 1
3 6 1 2 1 240 1

Table 5.2: Example weight memory mapping for a non-recurrent 784-240-240-10 network.

Network Direction Layer 1 Layer 2 Layer 3 Layer 4 Total

Recurrent
Forward 20,8 MSPS 5 2,73 0,63 8,35

Backward N/A 2,31 2,31 N/A 4,62
Combined 20,8 MSPS 3,16 2,50 0,63 6,29

Feed-forward Forward 83,3 MSPS 20 20 0,83 40,83

Table 5.3: Peak throughput for 784-240-240-10 networks on 250 MHz. The unit is GSOPS unless
stated otherwise.

5.1.2 Latency

Latency can have various meanings in a DBN, such as the time interval between an input and
output spike or the time it takes to obtain a reliable inference result. The latter cannot be ana-
lyzed without having information about the input and internal spiking activity, network size and
the use case. Therefore, this section gives insight in the input spike to output spike latency for a
feed-forward network.

As the design is based on the layers of the DBN, the input layer to output layer latency is
obtained by summing the latency of each layer plus any overhead. The latency of a layer consists
of a number of elements, which correspond to the submodules of the layer, the spike queue, weight
controller and the neuron wrapper. The best-case latency of the spike queue is one clock cycle
when the FIFO is empty. The worst-case latency is when the FIFO is full, which purely depends
on the buffer size SSQ. The weight controller has a clearly defined latency. As described in Sec-
tion 5.1.1, it takes y1 + 2 clock cycles to update all neurons in a layer. On top of this, a neuron
update requires 2 clock cycles, so the latency of a layer is between 2+2 = 4 and 2+(y1+2) = y1+4
clock cycles. The best-case latency of the spike buffering and arbitration in the neuron wrapper
is one clock cycle when all FIFOs are empty. The worst-case latency depends on the buffer size
SNW but also on the amount of buffers. As described in Section 4.5.3, the amount of buffers is
max(C1, C2), resulting in a worst-case latency of SNW ·max(C1, C2).

Accumulating the derived latencies, the best-case latency in clock cycles of a layer is

T bclayer = 6 (5.8)

26 Gyro: an Event-Driven Digital Architecture for Spiking Deep Belief Networks

CHAPTER 5. RESULTS

and worst-case latency in clock cycles of a layer is

Twclayer = SSQ + y1 + 4 + SNW ·max(C1, C2). (5.9)

To provide a theoretical example, a network of 784-240-240-10 neurons is considered with weight
memory mapping parameters as shown in Table 5.1 and spike buffer sizes SSQ = 16 and SNW = 8.
By using Equations 5.9 and 5.8, this network has a best-case latency of 3 · 6 = 18 clock cycles and
a worst-case latency in clock cycles of

TwcL2 + TwcL3 + TwcL4 = 3SSQ + y21 + y31 + y41 + SNW (max(C2
1 , C

2
2) + max(C3

1 , C
3
2) + max(C4

1 , C
4
2))

= 408. (5.10)

5.1.3 Implementation

The design is implemented in hardware description language VHDL and evaluated on the Xilinx
FPGAs which specifications are listed in Table 5.4. As the project evolved, the implemented
network size increased which led to the use of different boards. Using a bottom-up approach, each
module is separately written and verified in block-level simulation. Thereafter, the modules are
integrated and verified using system-level simulations. The synthesis and implementation of the
FPGA using Vivado is fully automated using tcl scripting and a Makefile. The whole design and
tool scripting is developed by Guido Adriaans, except for the AXI-slave module which is developed
by Jan Stuyt.

Board FPGA LUTs FFs DSPs BRAM UltraRAM
Trenz TE0720-03-1QFA 7Z020 53.200 106.400 220 5 Mb 0 Mb

Trenz TE0820-03-4DE21FA ZU4EV 87.840 175.680 728 4,5 Mb 13,5 Mb
Trenz TE0808-04-09EG-1EE ZU9EG 274.080 548.160 2520 32,1 Mb 0 Mb

Table 5.4: FPGA board specifications.

The parameters shown in Table 5.5 along with the memory mapping parameters are specified using
a VHDL package. In the following sections, the default values are used unless stated otherwise.

Parameter Data type Default
Amount of layers Integer ∈ {1, 2, 3} -
Feedback connections Boolean -
Input spike encoding Mean rate or temporal -
Enable ISI monitors and potential filters Boolean -
Amount of neurons at the output layer Integer -
Depth of spike buffers at layer input Integer 32
Depth of spike buffers after neurons Integer 32
Depth of spike buffer after the last layer Integer 32
Period of the timer in clock cycles Integer Tres/Tclk
Bit width of input mean rate Integer 8
Bit width of ISI output Integer 19
Bit width of neuron address Integer 10
Bit width of neuron membrane potential (V) Integer 9
Bit width of the timer Integer 24
Bit width of weights Integer 6
Neuron membrane potential threshold Integer 2V − 1
Neuron refractory period in timer period Integer 0

Table 5.5: Network parameters.

Gyro: an Event-Driven Digital Architecture for Spiking Deep Belief Networks 27

CHAPTER 5. RESULTS

The weight values are specified using ASCII text files containing binary data. These files are
parsed by Vivado during synthesis which initializes the BRAM memories accordingly. As it is
impractical to create or maintain such a format, a Python script is created that converts a weight
matrix with memory mapping parameters into a set of memory initialization files. Additionally,
this script verifies whether the resulting memory sizes do not exceed the actual BRAM sizes as
stated by Equations 4.2e and 4.2f.

5.1.4 Resource utilization

A main measure of the design is the amount of FPGA resources that are required to implement it.
The resource utilization in terms of Lookup Tables (LUTs), Flip-Flops (FFs), BRAMs and DSPs
is shown in Table 5.6 for different network sizes. The numbers only include the resources for the
DBN, so external logic such as reset and AXI infrastructure logic is excluded. For the 60-60 net-
work, which is a network of two layers that each have 60 neurons, the tool decided to implement
the weight memories using FFs instead of BRAMs, resulting in an utilization of zero BRAMs.
The networks of size 528-528-462-30 and 528-396-396-396-30 use 30 DSP blocks because the tool
implemented the IIR filter of each neuron at the output layer using a DSP block. Furthermore,
the additional cost of recurrency is small for LUTs and virtually zero for the other resources. No
additional memory is required, because the same weights are used for both forward and backward
spikes. The increase in LUTs is caused by the second FIFO in the spike queue, additional logic in
the address decoder and the backward weight control.

Network FPGA LUTs FFs BRAMs DSPs
Feed-forward 60-60 7Z020 9246 8392 0 0
Feed-forward 784-240-240-10 7Z020 35.578 33.586 62 0

Recurrent 784-240-240-10 7Z020 37.832 33.746 62 0
Feed-forward 528-528-462-30 ZU4EV 69.490 65.915 127 30
Feed-forward 528-396-396-396-30 ZU4EV 81.415 77.357 126 30
Feed-forward 784-720-720-720-10 ZU9EG 140.206 131.977 306 10

Table 5.6: FPGA resource utilization for different networks.

Figure 5.1 shows the resource utilization distribution of a network of size 784-240-240-10. The
number of BRAMs correlates to the number of connections between the layers. The resources
of layer 2 and 3 slightly differ while they both contain 240 neurons. It can be concluded that
the number of neurons determines the number of FFs which is virtually equal. The number of
LUTs slightly differs, because layer 2 multiplexes weight memory 1 which contains more BRAMs.
A striking measure is the resource utilization of the registers. This large amount is caused by
the mean rate coding of the inputs. One mean rate input register exists for each of the 784
input neurons, resulting in many FFs and even more LUTs to connect the AXI-lite interface to
all the registers. The resource utilization of spike generators, ISI calculation and IIR filters are
relatively low. This is a merit of the resource optimizations described in Section 4.6, which are
time-multiplexing of spike generators, simple ISI calculation and using first order IIR filter.

Table 5.7 provides insight in the resource utilization within a layer of 240 neurons. This shows that
the neurons use the majority of both LUTs and FFs, followed by the weight controller. Dividing
the resources by 240 reveals that one LIF neuron uses 28 LUTs and 51 FFs, no BRAMs nor DSP
blocks. The relatively large amount of FFs is caused by the storage of the refractory period end
time and the membrane potential. The weight controller contains many LUTs compared to FFs,
because the module mostly contains combinational logic to generate memory and neuron addresses
and multiplex data which requires little memory.

28 Gyro: an Event-Driven Digital Architecture for Spiking Deep Belief Networks

CHAPTER 5. RESULTS

La
ye

r 2

La
ye

r 3

La
ye

r 4

W
eig

ht
 m

em
or

y 1

W
eig

ht
 m

em
or

y 2

W
eig

ht
 m

em
or

y 3
Spik

e
ge

ne
ra

to
rs

IS
I a

nd
 vo

lta
ge

 fil
te

rs
Reg

ist
er

s

0

2000

4000

6000

8000

10000

12000

14000

LU
T

s
or

 F
F

s

0

5

10

15

20

25

30

35

B
R

A
M

s

LUTs
FFs
BRAMs

Figure 5.1: FPGA resource distribution of a recurrent DBN of size 784-240-240-10.

Module LUTs FFs
Spike queue 82 42

Weight controller 5721 262
LIF neurons 6730 12.240

Spike buffers and arbitration 1116 486

Table 5.7: FPGA resource distribution of a layer with 240 neurons.

Device floorplan

Figure 5.2 and 5.3 show the FPGA device floor plans for a recurrent and a non-recurrent DBN of
size 784-240-240-10. Besides giving a quick overview of the resource distribution it also shows the
relative placement of logic and memories. In both figures weight memory 1 is surrounded by layer
2, since this is the only layer accessing these memories. In a recurrent network, some weights are
accessed by different layers. This is expressed in Figure 5.2 as weight memory 2 is placed between
layer 2 and 3, while this does not apply to Figure 5.3. It is rather surprising that weight memory
3 is relatively far away from layer 4 in Figure 5.2. It is expected that the high LUT utilization
causes the tool to move memories away. Lastly, it is in line with expectation that the registers are
close to the PS, since the PS is the external interface of the registers.

5.1.5 Power

For a measure of the power dissipation of the design, the estimation from Vivado is used. Due to
the lack of simulated signal toggle information, the default activity settings are used. The toggle
rate is 12,5% indicating a toggle every 8 clock cycles. The static probability is 50%. The distri-
bution of the power consumption is listed for different network sizes in Table 5.8. The design is
implemented on a SoC that includes an embedded PS. However, because the DBN is implemented
in PL while the PS is only used to interface with the DBN, the power consumption of the PS is
excluded.

The power consumption positively correlates with the network size and the amount of resources

Gyro: an Event-Driven Digital Architecture for Spiking Deep Belief Networks 29

CHAPTER 5. RESULTS

Figure 5.2: FPGA floor plan for a recurrent DBN of size 784-240-240-10.

Figure 5.3: FPGA floor plan for a non-recurrent DBN of size 784-240-240-10.

30 Gyro: an Event-Driven Digital Architecture for Spiking Deep Belief Networks

CHAPTER 5. RESULTS

used as shown in Table 5.6. Though, for the 7Z020 FPGA the static power dissipation has a signi-
ficant share of the total. Therefore, the power dissipation does not scale well when implementing
even smaller networks.

Networks 528-396-396-396-30 and 784-240-240-10 contain 1218 and 490 neurons respectively which
is approximately a factor three differing. Nevertheless, their difference in power dissipation differs
more than a factor four. This is explained by the difference in clock frequency, since a higher
frequency results in more switching activity and therefore more power dissipation.

Network size 528-396-396-396-30 784-240-240-10 60-60
FPGA ZU4EV 7Z020 7Z020

Clock frequency (MHz) 250 100 100
Clocks (mW) 309 62 27
Signals (mW) 701 123 27

Logic (mW) 359 66 18
BRAM (mW) 590 191 0

DSP (mW) 47 0 0
Static (mW) 479 159 143
Total (mW) 2486 601 215

Table 5.8: Estimated PL power dissipation for non-recurrent networks.

5.1.6 Energy efficiency

The absolute resource utilization, throughput or power dissipation are impractical for comparison
with other implementations since they highly depend on the used network size. Therefore, the
peak throughput and power dissipation are combined to create a measure of the energy efficiency
in unit nanojoule per synaptic operation (nJ/SO). The energy efficiency is listed for different net-
work sizes and clock frequencies in Table 5.9.

The results in energy efficiency show that, regardless of network size, a higher clock frequency
results in more energy efficiency. The reason is provided by the results of the 784-330-330-10
network, where the clock frequency is increased by 5.5 times. Even though the throughput scales
identically, the power dissipation only increases by a factor two. This shows that the dynamic
power dissipation, which depends on clock frequency, is not the dominant factor in the total power
dissipation in the FPGA. Therefore, it can be concluded that an FPGA is more energy efficient
when it runs on high frequency and achieves the highest possibly throughput.

Network size 528-396-396-396-30 784-330-330-10 784-240-240-10
Clock frequency (MHz) 250 250 45 100

Peak throughput (GSOPS) 22,85 13,32 2,40 3,34
Power dissipation (mW) 2486 1890 927 601

Energy efficiency (nJ/OP) 0,109 0,142 0,254 0,180

Table 5.9: Best-case energy efficiency for different non-recurrent networks at 250 MHz.

5.2 Case studies

Three case studies are performed to evaluate the design. This empirically verifies functional
correctness of the implementation and enables a comparison with related works. The case studies
are handwritten digit recognition, speech command recognition and mine detection using sonar.
The training is done using Python. The obtained floating-point weight values are converted to
fixed-point and truncated to the desired bit with, which is 6 bits for all case studies in this work.

Gyro: an Event-Driven Digital Architecture for Spiking Deep Belief Networks 31

CHAPTER 5. RESULTS

Training of the networks and obtaining the inference accuracies is done by Federico Corradi from
IMEC. Interpreting the results and writing the text is done by Guido Adriaans.

5.2.1 MNIST

The handwritten digits dataset MNIST provides a basis for accuracy comparison with related
work. The MNIST dataset contains 60.000 training images and 10.000 test images. The images
are black and white 28 by 28 pixels, which causes the input layer to be 28 · 28 = 784 neurons. An
exploration is done to obtain the relation between network size and classification accuracy for a
weight resolution of 6 bits. The results are listed in Table 4.1, which shows a positive correlation
between the network size and classification accuracy. The highest accuracy achieved is 99,3% using
a 784-720-720-720-10 network. It is concluded that the relatively low bit precision of 6 bits is not
a blocking factor in achieving a high accuracy. However, having sufficient number of neurons in
the hidden layers is key to reduce the error rate for low weight bit precision.

Network Neurons Accuracy
784-120-120-10 1034 75%
784-196-196-10 1186 88%
784-280-280-10 1354 96%
784-288-288-10 1370 96%
784-330-330-10 1454 97%

784-720-720-720-10 2954 99,3%

Table 5.10: MNIST accuracy using 6 bits weight resolution.

5.2.2 Speech command recognition

The second case study uses the Google speech recognition dataset [30] which consists of 64.727
audio samples of 30 different words. In this case, the ten spoken commands are used which are
yes, no, up, down, left, right, on, off, stop and go. The input of the network uses Mel-frequency
cepstral coefficients (MFCC) to create 12 by 44 input features which results in an input layer of
528 neurons. The Mel scale relates the actual measured frequency to the perceived frequency.
As humans are sensitive to little pitch changes on low frequencies, this scale ensures that input
features match more closely to human hearing.

The inference accuracy results are shown in Table 5.11 for two networks of different sizes. This
indicates that a higher accuracy is achieved by a larger second layer even though the third layer
size is smaller.

Network Neurons Accuracy
528-528-462-10 1528 78%
528-648-360-10 1546 80%

Table 5.11: Speech command recognition accuracy for different networks.

5.2.3 Mine detection

The third case study comprises underwater mine detection using Sound Navigation and Ranging
(sonar). The dataset [4] has 208 spectograms which are obtained by emitting frequency modulated
sonar signals on either a metal cylinder or rocks. Each spectogram contains 60 values representing
different frequency bands over a fixed period of time. Therefore, the input layer has 60 neurons,
and the output layer has 2 neurons indicating either ’rock’ or ’mine’.

The inference accuracy results are shown in Table 5.12 for two networks with different sizes.

32 Gyro: an Event-Driven Digital Architecture for Spiking Deep Belief Networks

CHAPTER 5. RESULTS

For this case study the same conclusion is drawn as for the MNIST dataset, a larger number of
neurons in the second and third layer results in a higher accuracy.

Network Neurons Accuracy
60-120-60-2 242 82%

60-240-120-2 422 90%

Table 5.12: Sonar mine detection inference accuracy for different networks.

5.3 Discussion

In this section the presented results are discussed and the key results are compared to the related
works listed in Table 3.2. All related work time-multiplex (TM) neurons to reduce the neuron
resource utilization and consequently support larger network sizes with fewer resources. Based on
this observation, it can be concluded that TM is an effective method to increase the network size.
Gyro does not TM neurons which causes the neurons to be the major contributor to LUT usage
as shown in Table 5.7. When TM is implemented by storing the neuron states in memories, it
will reduce LUT and FF usage at the cost of memory utilization. As synaptic weights are stored
in on-chip memories, there may already be a shortage of memory. It is application and device
dependent whether TM is recommended. TM is further elaborated in Section 7.3.

A benefit of Gyro is that it supports a range of layer and network sizes. When sufficient resources
are available, many layers can be stacked on top of each other. Moreover, layers can be distributed
over multiple FPGAs to further increase the network size. On top of configurable network size,
the weight mapping parameters provide the ability to make a trade-off between resources and
throughput for each layer. The optimal trade-off is application specific and heavily depends on
the device, requirements and its context. Network scales cannot easily be compared, since Gyro
refers to the architecture rather than a specific implementation. Nevertheless, the largest network
implemented using Gyro consists of 2954 neurons which is rather small compared to related works.

The peak throughput of Gyro is heavily depending on network size, but also on whether re-
currency is taken into account. When including recurrency, a trade-off is made between forward
and backward throughput using the weight memory mapping parameters. For a network of 784-
240-240-10 neurons, a peak throughput of 6,29 GSOPS is achieved which includes both forward
and backward connections. When there are no backward connections, the weights can be mapped
optimally for forward throughput without being penalized on backward throughput. For the same
network of 784-240-240-10 neurons a peak throughput of 40,83 GSOPS is achieved.

Since the amount of spikes per second and the power and energy dissipation depend on net-
work size, a comparison with related work is difficult. Instead, the energy efficiency with unit
nanojoule per synaptic operation is used for comparison. The energy efficiency of Gyro for differ-
ent networks is shown in Table 5.9 and varies from 0,109 to 0,254 nJ/OP. This is superior to all
related works in Table 3.2 which range from 1,62 to 712 nJ/OP. Gyro achieves a factor 15 higher
energy efficiency compared to NCS which is the most energy efficient among the related works.
Though, it must be noted that Gyro uses newer FPGA technology compared to all related works.

Lastly, the MNIST dataset enables a comparison of classification accuracy. A number of ac-
curacies of related works are listed in Table 3.1. Table 5.10 shows that Gyro achieves 99.3% on
MNIST using a network of 2954 neurons, which exceeds all other spiking RBMs and DBNs. Gyro
has only 0,1 percentage point less accuracy than the highest among the related works which has
99,4% accuracy.

Gyro: an Event-Driven Digital Architecture for Spiking Deep Belief Networks 33

Chapter 6

Conclusion

This work presents Gyro, an architecture to deploy spiking DBNs on digital hardware. On-chip
memories are used to store the synaptic weights to ensure a high memory bandwidth as opposed
to off-chip memory. A method is presented to map the synaptic weights to on-chip memories
facilitating both feed-forward and feed-back networks. The weight memory mapping parameters
offer a configurable trade-off between forward and backward throughput and hardware resource
utilization. When more memories can be used, a higher memory bandwidth and ultimately a
higher spiking throughput can be achieved. Furthermore, a hardware efficient LIF neuron model
has been implemented to avoid the necessity of neuron time-multiplexing.

The architecture is implemented and evaluated on various Xilinx FPGAs and is characterized
using theoretical and empirical analyses. The theoretical analysis on throughput shows that
a recurrently connected network of 1274 neurons achieves a peak throughput of 6,29 GSOPS.
Moreover, a feed-forward network of the same size achieves a peak throughput of 40,83 GSOPS.
This achievement is a merit of using on-chip memory which exploits co-localization of computation
and memory. The energy efficiency of Gyro varies for various network sizes and clock frequencies
from 0,109 nJ/OP to 0,254 nJ/OP and turns out to be superior to all related works.

Three case studies are performed, handwritten digit recognition, speech command recognition
and mine detection using sonar. These prove the applicability and functional correctness of the
architecture. Gyro achieved a classification accuracy of 99,3% on the MNIST dataset using a net-
work of 2954 neurons which is among the highest of the related SNN implementations. Research
and development in the area of deep neural networks is nowhere close to and end. Neverthe-
less, Gyro continues to pave the way for the deployment of spiking DBNs on power and energy
constrained systems.

34 Gyro: an Event-Driven Digital Architecture for Spiking Deep Belief Networks

Chapter 7

Future work

As a result of a tight time constraint, before and during execution of the project the list of desired
features is prioritized and only a selection is implemented. The proposed architecture is a first
working version that can be improved in many ways. This chapter describes a number of methods
that further enhance functionality, performance, area, power and energy.

7.1 Reconfigurable weights

The weights of the network are set by initializing the BRAM contents during synthesis and their
values are not adapted afterwards. However, since the weights are stored in true dual-port BRAMs
which have both read and write ports, their values can be changed dynamically while the DBN
is running on the FPGA. This avoids the potentially long synthesis and implementation times
between updates of weight values where nothing but the memory contents change.

The FPGA implementation in this work uses BRAM memories. The Xilinx Ultrascale+ ar-
chitecture contains UltraRAM memory blocks which have larger width and depth compared to
BRAM, enabling storage of more weights. A key difference is that UltraRAM memory contents
are initialized to zeros at power up, and therefore weight reconfiguration functionality is required
to use them.

7.2 Pipelining

Currently the state machine in the weight controller finishes fetching all weights before it starts
decoding the next spike source as shown in Figure 4.10. The weight controller can be pipelined to
already start the address decoder for the next spike before it finishes fetching the weights. This
would eliminate the two clock cycles overhead for each spike source address that is processed.
The percentage improvement is relative to parameter y1. To illustrate the impact, the first layer
of the two examples given in Section 5.1.4 are considered. For the recurrent network shown in
Table 5.1 the peak performance would increase by 20% to 240/(10 · 4 · 10−9) = 6 GSOPS. For
the non-recurrent network shown in Table 5.1, the overhead elimination leads to a neuron update
interval of a single clock cycle which violates Equation 4.3b. Still, with one clock cycle overhead
the peak performance would increase by 50% to 240/(2 · 4 · 10−9) = 30 GSOPS.

7.3 Neuron time-multiplexing

The resource utilization in Table 5.7 shows that the neurons are the major contributor to LUT
usage. Therefore, time-multiplexing (TM) has been implemented in an attempt to reduce the

Gyro: an Event-Driven Digital Architecture for Spiking Deep Belief Networks 35

CHAPTER 7. FUTURE WORK

amount of physical neurons. Since memory bandwidth is commonly the bottleneck for perform-
ance, having a subset of neurons suffices to achieve maximum performance. However, the amount
of LUTs increased significantly after implementing TM. It turned out that the amount of LUTs
required to implement TM exceeded the decrease in LUTs that are saved in physical neurons. The
vast majority of LUTs are used to multiplex the voltages and refractory end times which are stored
in flip-flops. For a network of two layers that each have 500 neurons and use 9 bits to represent
membrane potential and 32 bits to represent time, the TM module multiplexes 500 vectors of each
41 bits wide. Consequently, implementing this network required more than 220.000 LUTs.

A potential solution is to store this data in dedicated memories, for example BRAMs in FP-
GAs, to drastically reduce the amount of multiplexing logic. By using true dual-port memories
the weight controller can simultaneously read and write data which is required to achieve maximum
performance.

7.4 Timer overflow

All timer related signals use the bit-width of the timer, such as the refractory end time and the
previous spike time. The refractory end time is stored in each neuron and is used to determine the
membrane voltage leakage. Therefore, this bit-width parameter significantly affects the amount of
resources. Currently, the timer is implemented such that it wraps-around when it overflows and
as a result neurons behave incorrectly. There are two causes, leakage and the refractory period.
As leakage depends on the difference between the current time and the previous input spike time,
the resulting leakage becomes erroneous after a timer overflow. Secondly, once a neuron spikes it
stores the refractory end time which is defined as the current time incremented with the refractory
period. As long as the refractory end time is larger than the current time, the neuron is in its
refractory period. When subsequently the timer is reset to 0, the refractory period is unintention-
ally extended. After some time, virtually all neurons are in the refractory period.

A possible solution is to introduce a reset signal that is triggered upon a timer overflow. This
signal resets the previous spike time of each layer and the refractory end time of each neuron. Due
to the loss of the refractory end times, neurons may violate the refractory period and spike too
soon. If this is not acceptable, a safer approach is to set the refractory period of all neurons to a
non-zero value. Similarly, the loss of previous spike times may cause neurons to decay less then
they should. A safe approach to solve this is to reset the timer to a non-zero value to force decay
for all neurons.

7.5 Buffer optimization

Resources can be saved when buffer sizes are chosen as small as possible as a result of analyzing
the DBN performance and the input data. The maximum throughput of each layer can be derived
from the weight memory mapping parameters, this derivation is described in Section 4.3. The
number of spikes in the network and the variation in number of input spikes can be approximated
from training results and knowledge of the spike source. When the input of the DBN uses mean
input rates, they can be scaled such that the cumulative mean input rate is below the throughput
of the first layer to avoid buffer overflows. Furthermore, when the variation in the number of input
spikes is known, the buffers can be scaled accordingly.

In case the buffer sizes are chosen too small and an overflow occurs, the buffer contents do not
change and therefore drop the newest spike. As time is implicit for each spike, the mismatch
between the spike arrival time and when it is processed increases as time elapses. Consequently,
the implementation should be adapted such that a buffer drops the oldest spike and stores the
newest spike.

36 Gyro: an Event-Driven Digital Architecture for Spiking Deep Belief Networks

CHAPTER 7. FUTURE WORK

7.6 Memory addressing

The weight controller inside each layer outputs the memory addresses to fetch the weights from the
memories. Currently, a single address is shared over a set of memories while the resulting data of
only a subset may be used as shown in Figure 7.1. The toggling of signals in and around memories
whose data is unused in that clock cycle causes unnecessary power and energy consumption. To
avoid this, the weight controller should generate a separate address for each memory, as shown in
Figure 7.2, such that only the addresses of memories whose data is used toggle and addresses of
unused memories remain stable.

Figure 7.1: Shared memory addressing. Figure 7.2: Individual memory addressing.

Gyro: an Event-Driven Digital Architecture for Spiking Deep Belief Networks 37

Bibliography

[1] D. Attwell and S. B. Laughlin. An energy budget for signaling in the grey matter of the brain.
Journal of cerebral blood flow and metabolism : official journal of the International Society
of Cerebral Blood Flow and Metabolism, 21 10:1133–45, 2001. 2

[2] C. Brandli, R. Berner, M. Yang, S. Liu, and T. Delbruck. A 240 180 130 db 3 μs latency global
shutter spatiotemporal vision sensor. IEEE Journal of Solid-State Circuits, 49(10):2333–2341,
Oct 2014. 2

[3] M. Davies, N. Srinivasa, T. Lin, G. Chinya, Y. Cao, S. H. Choday, G. Dimou, P. Joshi,
N. Imam, S. Jain, Y. Liao, C. Lin, A. Lines, R. Liu, D. Mathaikutty, S. McCoy, A. Paul,
J. Tse, G. Venkataramanan, Y. Weng, A. Wild, Y. Yang, and H. Wang. Loihi: A neuromorphic
manycore processor with on-chip learning. IEEE Micro, 38(1):82–99, January 2018. 8

[4] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. 32

[5] M. Elleuch, N. Tagougui, and M. Kherallah. Arabic handwritten characters recognition using
deep belief neural networks. In 2015 IEEE 12th International Multi-Conference on Systems,
Signals Devices (SSD15), pages 1–5, 2015. 3

[6] Steve K Esser, Rathinakumar Appuswamy, Paul Merolla, John V. Arthur, and Dharmendra S
Modha. Backpropagation for energy-efficient neuromorphic computing. In C. Cortes, N. D.
Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural Information
Processing Systems 28, pages 1117–1125. Curran Associates, Inc., 2015. 9

[7] S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana. The spinnaker project. Proceedings
of the IEEE, 102(5):652–665, May 2014. 8

[8] Ian Gold. Does 40-hz oscillation play a role in visual consciousness? Consciousness and
Cognition, 8(2):186–195, 1999. 2

[9] J. Han, Z. Li, W. Zheng, and Y. Zhang. Hardware implementation of spiking neural networks
on fpga. Tsinghua Science and Technology, 25(4):479–486, 2020. 9, 10

[10] Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm for deep
belief nets. Neural Computation, 18(7):1527–1554, July 2006. 7

[11] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio.
Quantized neural networks: Training neural networks with low precision weights and ac-
tivations. J. Mach. Learn. Res., 18(1):6869–6898, January 2017. 13

[12] I. Kiselev, D. Neil, and S. Liu. Event-driven deep neural network hardware system for sensor
fusion. In 2016 IEEE International Symposium on Circuits and Systems (ISCAS), pages
2495–2498, May 2016. 8, 9, 10

[13] Lei Wan, Yuling Luo, Shuxiang Song, J. Harkin, and Junxiu Liu. Efficient neuron architecture
for fpga-based spiking neural networks. In 2016 27th Irish Signals and Systems Conference
(ISSC), pages 1–6, June 2016. 8

38 Gyro: an Event-Driven Digital Architecture for Spiking Deep Belief Networks

BIBLIOGRAPHY

[14] S. Liu, A. van Schaik, B. A. Minch, and T. Delbruck. Asynchronous binaural spatial audi-
tion sensor with 2× 64× 4 channel output. IEEE Transactions on Biomedical Circuits and
Systems, 8(4):453–464, Aug 2014. 2

[15] Stephane Loiselle, Jean Rouat, Daniel Pressnitzer, and Simon Thorpe. Exploration of rank
order coding with spiking neural networks for speech recognition. volume 4, pages 2076 –
2080 vol. 4, 01 2005. 9

[16] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L.
Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy,
B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha. A mil-
lion spiking-neuron integrated circuit with a scalable communication network and interface.
Science, 345(6197):668–673, aug 2014. 8

[17] S. W. Moore, P. J. Fox, S. J. T. Marsh, A. T. Markettos, and A. Mujumdar. Bluehive -
a field-programable custom computing machine for extreme-scale real-time neural network
simulation. In 2012 IEEE 20th International Symposium on Field-Programmable Custom
Computing Machines, pages 133–140, April 2012. 8, 10

[18] F. Movahedi, J. L. Coyle, and E. Sejdić. Deep belief networks for electroencephalography: A
review of recent contributions and future outlooks. IEEE Journal of Biomedical and Health
Informatics, 22(3):642–652, 2018. 3

[19] Emre Neftci, Srinjoy Das, Bruno Pedroni, Kenneth Kreutz-Delgado, and Gert Cauwenberghs.
Event-driven contrastive divergence for spiking neuromorphic systems. Frontiers in Neuros-
cience, 7:272, 2014. 9

[20] D. Neil and S. Liu. Minitaur, an event-driven fpga-based spiking network accelerator. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 22(12):2621–2628, Dec 2014.
8, 11

[21] P. O’Connor, D. Neil, S. Liu, T. Delbruck, and M. Pfeiffer. Real-time classification and sensor
fusion with a spiking deep belief network. Frontiers in Neuroscience, 7:178, 2013. 7, 8, 9

[22] Danilo Pani, Paolo Meloni, Giuseppe Tuveri, Francesca Palumbo, Paolo Massobrio, and Luigi
Raffo. An fpga platform for real-time simulation of spiking neuronal networks. Frontiers in
Neuroscience, 11:90, 2017. 10

[23] Bodo Rueckauer, Iulia-Alexandra Lungu, Yuhuang Hu, Michael Pfeiffer, and Shih-Chii Liu.
Conversion of continuous-valued deep networks to efficient event-driven networks for image
classification. Frontiers in Neuroscience, 11:682, 2017. 9

[24] T. N. Sainath, B. Kingsbury, B. Ramabhadran, P. Fousek, P. Novak, and A. Mohamed.
Making deep belief networks effective for large vocabulary continuous speech recognition. In
2011 IEEE Workshop on Automatic Speech Recognition Understanding, pages 30–35, 2011. 3

[25] Evangelos Stromatias, Dan Neil, Francesco Galluppi, Michael Pfeiffer, Shih-Chii Liu, and
Steve Furber. Scalable energy-efficient, low-latency implementations of trained spiking deep
belief networks on spinnaker. 07 2015. 9

[26] Evangelos Stromatias, Daniel Neil, Michael Pfeiffer, Francesco Galluppi, Steve B. Furber, and
Shih-Chii Liu. Robustness of spiking deep belief networks to noise and reduced bit precision
of neuro-inspired hardware platforms. Frontiers in Neuroscience, 9:222, 2015. 9, 13

[27] Amirhossein Tavanaei, Masoud Ghodrati, Saeed Reza Kheradpisheh, Timothée Masquelier,
and Anthony Maida. Deep learning in spiking neural networks. Neural Networks, 111:47–63,
Mar 2019. 9

Gyro: an Event-Driven Digital Architecture for Spiking Deep Belief Networks 39

BIBLIOGRAPHY

[28] R. Wang, T. J. Hamilton, J. Tapson, and A. van Schaik. An fpga design framework for
large-scale spiking neural networks. In 2014 IEEE International Symposium on Circuits and
Systems (ISCAS), pages 457–460, June 2014. 8, 10

[29] Runchun M. Wang, Chetan S. Thakur, and André van Schaik. An fpga-based massively
parallel neuromorphic cortex simulator. Frontiers in Neuroscience, 12:213, 2018. 8, 10

[30] Pete Warden. Speech commands: A dataset for limited-vocabulary speech recognition, 2018.
32

[31] C. Zhang, P. Lim, A. K. Qin, and K. C. Tan. Multiobjective deep belief networks ensemble
for remaining useful life estimation in prognostics. IEEE Transactions on Neural Networks
and Learning Systems, 28(10):2306–2318, 2017. 3

40 Gyro: an Event-Driven Digital Architecture for Spiking Deep Belief Networks

	Contents
	Introduction
	Background material
	Spiking neural networks
	Leaky integrate-and-fire model
	Restricted Boltzmann machines
	Deep belief networks
	Training

	Related work
	Design
	Neuron model
	Architecture
	Weight memory mapping
	Timer
	Layer
	Spike queue
	Weight controller
	Neuron wrapper

	External interfaces
	Network input
	Network output

	Results
	Characterization
	Throughput
	Latency
	Implementation
	Resource utilization
	Power
	Energy efficiency

	Case studies
	MNIST
	Speech command recognition
	Mine detection

	Discussion

	Conclusion
	Future work
	Reconfigurable weights
	Pipelining
	Neuron time-multiplexing
	Timer overflow
	Buffer optimization
	Memory addressing

	Bibliography

