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Abstract

To model the reaction speeds of vibrational energy transfer between molecules, potential energy surfaces are
important. Various methods of fitting a full dimensional potential energy surface that is invariant with respect
to permutation of identical atoms to ab initio data are discussed. Several methods are implemented for the
H2–H2 system, using a data set with results of 7291 coupled cluster single-double (CCSD) calculations with
the basis set aug-cc-pVTZ. The results are compared to existing methods. Two methods were the main focus
of this report; the so-called Proximity Matrix Eigenspectrum (PME) method that uses a neural network,
and the Proximity Matrix Invariants (PMI) method that uses a linear regression. These methods achieved
a root-mean-square error (RMSE) of (19.58± 0.66) meV and (10.83± 0.45) meV, respectively. A potential
energy surface from the PME method was used for full-dimensional quasiclassical trajectory simulations
that were used to approximate cross sections for dissociation as well as vibrational and rotational energy
transfer. A major flaw in the PME method is the occurrence of barely avoided eigenvalue crossings. This
flaw is investigated and was solved by switching to the PMI method. An important advantage of this
approach is that it scales favourably to larger systems in comparison to the already existing method using
permutationally invariant polynomials by Braams and Bowman (International Reviews in Physical Chemistry
(28:4), p.577-606).
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Chapter 1

Introduction

1.1 Background

Global warming is widely regarded as a problem [1, 2]. The rising concentration of carbon dioxide (CO2) is
regarded as the most significant cause of global warming [3]. To turn CO2 from a problem into a solution,
CO2 can be captured and split into carbon monoxide and oxygen, using a source of energy that does not
contribute to global warming. The resulting carbon monoxide can then be used for the production of syngas,
which creates a cycle of combustion and capture that is carbon neutral in total [4]. This decomposition
should be as energy efficient as possible. It starts with CO2 dissociation and oxygen then reacts to form O2.
This can be summarized by

CO2 CO +
1

2
O2, (1.1)

and this has an enthalpy of ∆H = 2.9 eV/mol [5, p. 259]. The efficiency of the process is then

η = ∆H/ECO, (1.2)

with ECO the actual energy cost per CO molecule. When using only thermal decomposition, the possible
efficiency is limited to at most 45% (a cost of 6.4 eV/mol), because all degrees of freedom (translational,
vibrational, rotational degrees of freedom) get a similar share of the energy, but the vibrational energy is much
more useful for dissociation [5, p. 262]. For this reason, in a non-equilibrium plasma (meaning vibrational
temperature Tv is much higher than translational temperature T0) the efficiency can be as high as 80%.
Since the influence of the vibrational excitation is so large, cross sections of state-to-state vibrational energy
transfer are of great importance in simulations of plasmas that breakdown CO2 by vibrational excitation [6].

These cross sections can be approximated using statistics, from collision trajectories simulations.
However, trajectories like these need an accurate potential for the interaction between the two reacting
molecules. One of the most accurate ways to obtain this potential energy surface (PES) is from ab initio
calculations, but this is usually very slow. A better approach is to approximate the potential in some
way. For this, usually potential points obtained with ab initio methods are fit. For certain molecules, this
can be done with a many-body type expansion [7] or with polynomials [8, 9, 10], but for a more general
approach artificial neural networks can be used, since training a neural network is essentially performing
high-dimensional curve fitting.

Neural networks are a form of machine learning, which is a collection of techniques that can learn
from data by building a mathematical model, without using explicit instructions about the shape of this
model. The advantage of a neural network approach is that it provides possibilities to scale up to systems
with more atoms, and because it is such a flexible approach, smaller data sets might be sufficient than
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for other fitting methods. Machine learning is increasingly being applied to physics problems, for example
for controlling dynamic systems [11, 12], simulating galaxy formation [13], learning phase transitions [14],
exploring geometries relevant to string theory [15], analysing the atmospheres of exoplanets [16], or improving
ab initio calculations directly [17, 18].

Neural networks have been applied to PESs before. For example, they have been used to model surface
diffusion of CO/Ni(111) [19], hydrogen dissociation on metal surfaces [20], molecular atomization energies
[21], the potential of TiO2 [22], the potential surface of amorphous Li3PO3 [23] and atomization energies of
organic molecules [24].

1.2 Goals

One obstacle in applying neural networks to PESs, is that one needs a way to convert an atom
configuration into an input for the neural network that respects translation, rotation and permutation
symmetry of identical atoms, preferably in a way that is easily scalable so it can be used for larger systems
as well. In this report, two yet unpublished proximity matrix methods by prof. dr. ir. Vianney Koelman
are used. An important advantage of these approaches is that they scale favourably to larger systems in
comparison to the already existing method using permutationally invariant polynomials (PIPs) by Braams
and Bowman [25]. The goals of this study are

� to give an overview of various methods of achieving permutation invariance,

� to implement and test the two new proximity matrix methods,

� to compare them to the existing PIP method,

� and to test the application of these methods to the study of vibrational energy transfer.

1.3 Outline

As a first test, first the H2–H2 system is modelled. Because a H2-molecule has only two electrons, it
is very cheap to use ab initio methods on it, and the PES of H2–H2 is well-studied, which makes it a good
prototype system. A H2–H2 system only has 6 degrees of freedom (4× 3− 6 = 6, 1 internal per molecule, 4
between the molecules), which makes its PES simpler than that of CO2–CO2 which has 12 degrees of freedom
(6× 3− 6 = 12, 3 internal per molecule, 6 between the molecules).

Figure 1.1 shows the basic steps needed to obtain the desired cross sections, with on the left the
approach used in this report involving neural networks. The first step in Figure 1.1 is to use ab initio
methods to create a data set of potential points. In Chapter 2, the methodology and the quantum mechanics
theory behind these ab initio calculations, and the accuracy of the used methods is discussed. This sampling
is performed by calculating some trajectories and picking configurations from these trajectories to do an ab
initio calculation with. A neural network is then used to make a fit of these potential points. In Chapter
3, the relevant machine learning theory is discussed and the results of the neural network are shown. The
trained neural network then provides a PES that can be used to calculate more trajectories using molecular
dynamics methods, much faster than with an ab initio method. In Chapter 4 this molecular dynamics part
of the project is discussed, and the results are processed into state-to-state cross sections and probabilities.
Chapter 5 is the conclusion. The coordinate systems are explained in Appendix A.

All code related to this project is stored in a Git repository that is operated by the group EPG. All
the generated data is also stored. For more details, contact Jan van Dijk (j.v.dijk@tue.nl).
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Figure 1.1: Flowchart of the approach without (left) and with a neural network (right).
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Chapter 2

Quantum Chemistry

Quantum chemistry is a field where quantum physics and chemistry overlap; it is concerned with the appli-
cation of quantum mechanics to chemical systems. A big part of this is predicting and analyzing electronic
structure, and understanding how quantum effects affect molecular dynamics. This chapter concerns the
methods used to compute the data points for the data set. The quantum mechanics theory about the vi-
brational state of the molecules that is relevant to the calculation of the trajectories is covered in Chapter
4.

2.1 Theory

2.1.1 The electronic problem

Ab initio (‘from the beginning’ or ‘from the ground up’ or ‘from first principles’) methods attempt to solve
the electronic Schrödinger equation given the positions of the nuclei and the number of electrons, without
using any empirical fits. The goal is usually to construct approximate solutions |Φ〉 of the non-relativistic
time-independent Schrödinger equation [26]

H |Φ〉 = E |Φ〉 , (2.1)

where E is the energy of the solution |Φ〉. The Hamiltonian H for a system of M nuclei and N electrons is
[26]

H =−
N∑
i=1

1

2
∇2
i −

M∑
A=1

1

2MA
∇2
A

−
N∑
i=1

M∑
A=1

ZA
riA

+

N∑
i=1

N∑
j>i

1

rij
+

M∑
A=1

M∑
B>A

ZAZB
RAB

.

(2.2)

Here i and j iterate over the electrons and A and B iterate over the nuclei. ∇2
i and ∇2

A are the Laplace
operator with respect to the coordinates of the electrons and the nuclei, respectively. MA is the mass of the
nucleus A, ZA is the atomic number of nucleus A, rij is the distance between the electrons i and j and RAB
is the distance between the nuclei A and B. The units in (2.2) are atomic units, so me = ~ = e = 1. The
first and second term describe the kinetic energy of the electrons and the nuclei, respectively. The third term
describes the attraction between electrons and nuclei and the fourth and fifth term describe the repulsion
between the electrons and the nuclei, respectively.
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Relativistic methods are needed for systems where electrons interact with very massive nuclei (for
example the lanthanides and actinides), because then electrons can move at speeds high enough that special
relativity needs to be taken into account [27]. Unless very high accuracy is needed, it is a reasonable
approximation to neglect relativistic effects for elements up to krypton (Z = 36) [28, p. 82].

Most ab initio methods attempt to solve this problem using the Born-Oppenheimer approximation,
which uses the fact that the electrons are moving much faster than the heavy nuclei. This means that
it is a good approximation to assume the Schrödinger equation can first be solved for the electrons while
assuming nuclei are stationary, and then be solved for the nuclei using the average location of the electrons.
This is only a good approximation when the nuclei are much heavier than the electrons, are moving much
slower than the electrons, the system is adiabatic, quantum corrections such as tunnelling are negligible [28,
p. 463] and the electronic ground state and the excited states are far apart [p. 82]jensen2007introduction.
‘Adiabatic’ in this case means that the configuration of the nuclei changes slowly enough that the electronic
states will follow their eigenstate along the trajectory1.

The magnitude of corrections needed to the Born-Oppenheimer approach depends on the rate of
change of the electronic wavefunction when the nuclear configuration is changed. For some configurations of
the nuclei, the potential energy surfaces (these energies are eigenvalues of the Hamiltonian) of the electronic
states cross [29]. Such a crossing happens in situations where the configuration of the nuclei has certain
kinds of symmetry that lead to multiple states with the same energy (the states are degenerate), but can
also occur in configurations where there is no symmetry [30]. These crossings become relevant when looking
at processes such as dissociation, or when the dynamics start with an excited electronic state [31], or when
there is strong mixing between electronic and vibrational modes [32], or when the energy gap between the
electronic ground state and the electronic excited state is small or zero (such as in metals).

There are ab initio methods that can correct for deviations resulting from the Born-Oppenheimer ap-
proximation and also (usually more computationally expensive) methods that involve no Born-Oppenheimer
at all and solve for the nuclear and electronic states at the same time, such as quantum-mechanical wave
packet calculations [33].

Because in the Born-Oppenheimer approximation the nuclei are assumed to be stationary when solving
for the electronic wave function, the second term in (2.2) (the kinetic energy of the nuclei) can be neglected,
and the nuclear repulsion energy (the last term in (2.2)) can be considered a constant [26]. In an eigenvalue
problem like this, it means the constant only shifts the eigenvalues (the energy) and can therefore be neglected
while solving the problem and be added back in later on. The Hamiltonian of the N electrons in a field of
M nuclei that are considered point charges is therefore:

Helec = −
N∑
i=1

1

2
∇2
i −

N∑
i=1

M∑
A=1

ZA
riA

+

N∑
i=1

N∑
j>i

1

rij
. (2.3)

One can obtain the electronic wave functions Φelec and the Eelec by solving the Schrödinger equation with
this Hamiltonian,

HelecΦelec = EelecΦelec. (2.4)

Adding the constant nuclear repulsion back in, it means the total energy is

Etot = Eelec +

M∑
A=1

M∑
B>A

ZAZB
RAB

. (2.5)

1Note that the meaning of the word ‘adiabatic’ is different in quantum mechanics compared to macroscopic thermodynamics.
In macroscopic thermodynamics it refers to a process in which there is no heat transfer from the system to its surroundings.
In quantum mechanics however, it refers to a process that occurs slowly enough that the shapes of the eigenfunctions change
slowly and continuously.
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After solving for the electronic wave functions and energies, one can solve for the motion of the nuclei,
assuming electrons move so fast their average position can be used. This means that essentially, the nuclei
move on a potential energy surface that depends on the solution of the electronic Schrödinger equation.
Describing the motion of the nuclei means describing the vibration, rotation and translation of a molecule.
It is possible to solve the nuclear Schrödinger equation for the motion of the nuclei, but in this report a
quasiclassical approach is used and the motion of the nuclei is determined classically.

Solving for the motion of the nuclei classically is a good approximation if quantum effects are not
important and the particles are fairly massive, so they behave like classical particles [28, p. 461]. For the
CO2–CO2 system this is a better approximation than for the H2–H2 system, but even the hydrogen nucleus
is still more than 1800 times more massive than the electron.

2.1.2 Spin-orbitals, Hartree products, Slater determinants

Ab initio methods attempt to solve (2.3) and (2.4) by constructing an electronic wave function from a set
of orthogonal basis functions φk(x). These basis functions are one-electron spin-orbitals (wave functions
with both a spatial and a spin component). The spin-orbitals consist of a spin part and a spatial orbital
ψk(r). The coordinates x include the Cartesian coordinates r of the electron as well as a spin coordinate
ω. Since the spin can only have two values, this means that if the number of spatial orbitals used for the
basis set is K, there are 2K basis functions in the basis set. These basis set functions are used to construct
one-electron spin orbitals χ(x1). Generally, more basis functions means a higher accuracy, but also a more
computationally expensive calculation.

If the electron-electron interaction (the last term in (2.3)) is neglected or considered a constant, then
the electronic Hamiltonian can be factorized into an operator h(i) for each electron i

H =

N∑
i=1

h(i). (2.6)

The wave function for N electrons, with the coordinates for electron i given by xi is then

ΨHP (x1,x2, ...,xN ) = χ(x1)χ(x2)...χ(xN ), (2.7)

which is called a Hartree product.
However, the Pauli exclusion principle means that the following requirement, called the antisymmetry

principle, must be obeyed by the electronic wave function: when any two electrons i and j are exchanged
(both their location and their spin), the wave function changes its sign,

Ψ(x1, ...,xi, ...,xj , ...,xN ) = −Ψ(x1, ...,xj , ...,xi, ...,xN ). (2.8)

A Hartree product does not obey this requirement, but it can be enforced by using Slater determinants. If
there are only two electrons, one can ensure the antisymmetry principle is obeyed by combining two Hartree
products as follows:

Ψ(x1,x2) =
1√
2

(χi(x1)χj(x2)− χj(x1)χi(x2))). (2.9)

If x1 and x2 are exchanged, it results in the same wave function except for a sign change. The generalization
of this to N electrons is the normalized Slater determinant

Ψ(x1,x2, ...,xN ) =
1√
N !

∣∣∣∣∣∣∣∣∣
χi(x1) χj(x1) · · · χk(x1)
χi(x2) χj(x2) · · · χk(x2)

...
...

...
χi(x1) χj(x2) · · · χk(xN )

∣∣∣∣∣∣∣∣∣ , (2.10)

10



which uses the fact that when two rows of a matrix are switched (which corresponds to switching two
electrons), the determinant changes sign. The notation for the normalized Slater determinant is

Ψ(x1,x2, ...,xN ) = |χiχj · · ·χk〉 , (2.11)

with the order of the electron labels always in order x1,x2, ...,xN . The Slater determinant introduces
exchange correlation, which means the location of an electron is influenced by electrons with the same spin.
However, electrons with opposite spin still do not influence each other at all.

2.1.3 Hartree-Fock method

The Hartree-Fock method (HF), also called the self-consistent field method (SCF) is one of the most basic
and cheapest ab initio methods. It attempts to approximate the solution of the electronic Schrödinger
equation for the ground state with just one Slater determinant,

|Ψ0〉 = |χ1χ2...χN 〉 . (2.12)

The goal is to find the best one-electron spin orbitals χi to use for this Slater determinant. The spatial part
of these spin orbitals are linear combinations of the basis set functions φi,

ψ(ri) =

K∑
m=1

Cmiφm(ri). (2.13)

The best one-electron spin orbitals are the ones that lead to the lowest energy

E0 = 〈Ψ0|H |Ψ0〉 , (2.14)

and they are called the Hartree-Fock molecular orbitals. These Hartree-Fock molecular orbitals χi can be
found by solving the Hartree-Fock equation for every electron

f(i)χ(xi) = εχ(xi), (2.15)

with f(i) the Fock operator

f(i) = −1

2
∇2
i −

M∑
A=1

ZA
riA

+ vHF (i), (2.16)

with vHF (i) the average potential experienced by electron i from the other electrons. The electron-electron
repulsion is approximated by the average potential an electron experiences due to the presence of the other
electrons. This means Hartree-Fock does not include all electron correlation, only the exchange correlation
that the Slater determinant introduces.

Since vHF (i) depends on the Hartree-Fock molecular orbitals of the other electrons, (2.15) is non-linear
and needs to be solved iteratively, by making an initial guess for the spin orbitals χi, then using those to
calculate the average field vHF (i) and using this to solve for updated χi, which can then be used to calculate
the updated vHF (i) et cetera. Each Fock operator f(i) has an infinite number of eigenfunctions χ(xi) [26,
p.123], but when using a set of basis functions, this is reduced to 2K eigenfunctions χi.

From spin orbitals χi, the N with the lowest energies are used for the Slater determinant that is the
Hartree-Fock ground state. These N functions are the occupied spin orbitals χa, and the other 2K − N
spin orbitals are the virtual spin orbitals χr. A larger basis set will result in a better approximation of the
ground state and in a lower energy that converges to a limit called the Hartree-Fock limit.

The Hartree-Fock method is a variational method, which is any quantum mechanics method that uses
the variational principle to find the state with the lowest energy. It involves optimizing the parameters in a
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function to obtain the lowest possible expectation value of the energy. The result is then an upper bound to
the ground state energy [34, p. 256].

The Hartree-Fock ground state is not the only possible Slater determinant; the total number of Slater
determinants that could be formed from the 2K spin orbitals is(

2K

N

)
=

(2K)!

N !(2K −N)!
, (2.17)

which is usually a really big number. These other determinants are classified depending on how they differ
from the Hartree-Fock ground state. If they differ in only 1 spin orbital, it is a singly excited determinant,
if they differ in 2, it is a doubly excited determinant, et cetera. They are written like this:

|Ψr
a〉 = |χ1χ2...χrχb...χN 〉 (singly excited),

|Ψrs
ab〉 = |χ1χ2...χrχs...χN 〉 (doubly excited),

et cetera.

(2.18)

In the first case, spin orbital χa was replaced with χr and in the second case χb was replaced with χs as well.
These determinants can be considered an approximation to the excited states of the system, but the higher
the state, the less accurate this approximation is. The excited determinants can be used as basis functions
for more complicated and more accurate ab initio methods.

A big problem with the Hartree-Fock method is that it often is very inaccurate when describing
dissociation. For example, even with very large basis sets the Hartree-Fock gives a wrong dissociation of H2;
it dissociates H2 into H+ and H– instead of in two H atoms [35]. This makes the dissociation energy much
too high.

2.1.4 Configuration interaction

There are several methods that attempt to improve on the Hartree-Fock method. One of those is CI
(configuration interaction), which attempts to improve the results by using a linear combination of Slater
determinants

|Φ〉 = c0 |Ψ0〉+
∑
ra

cra |Ψr
a〉+

∑
a<b
r<s

crsab |Ψrs
ab〉+

∑
a<b<c
r<s<t

crstabc
∣∣Ψrst

abc

〉
+ .... (2.19)

The number of Slater determinants |Ψi〉 is
(

2K
N

)
and this will often be a lot. Full CI uses all these Slater

determinants and is the best you can do within the non-relativistic Born-Oppenheimer approximation for a
given 1-electron basis set [26]. For H2–H2 this is possible, but for CO2–CO2 it is prohibitively expensive.

The expansion coefficients for the ground state and excited states can be determined by calculating the
eigenvectors of the Hamiltonian matrix, and the energies of the states are the eigenvalues. The Hamiltonian
matrix has elements

〈Ψi|H |Ψj〉 . (2.20)

The difference between this result and the Hartree-Fock energy is the electron correlation energy. This
correlation energy depends only on the coefficients of the double excitations,

Ecorr =
∑
c<d
t<u

ctucd 〈Ψ0|H
∣∣Ψtu

cd

〉
, (2.21)

because the ground state cannot mix with the single excitations or triple or higher excitations. In fact, any
state cannot mix with states with which it differs by more than two spin orbitals [26, p.235]. Figure 2.1 also
shows this coupling hierarchy.
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Figure 2.1: Diagram of the states that couple. Only states that differ by at most 2 spin orbitals
can couple. Excited states also couple to other states with the same number of excitations. The
ground state |Ψ0〉 only couples to doubly excited states.
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This means the double excitations will often play a predominant role in determining the correlation
energy, but this does not mean that other excitations do not play a role at all, since the coefficients {ctucd}
are affected by other excitations [26, p.238].

Unfortunately, the full CI method scales factorially with the number of basis functions and for larger
systems it becomes intractable, so usually not all determinants are used. Instead the expansion is truncated
at some excitation level. The simplest version of CI is therefore CISD (singly and doubly excited CI), which
considers singly and doubly excited Slater determinants.

There are other ways of modifying full CI than just truncating it. For example, MCSCF (multi-
configurational self-consistent field) uses the variation principle to determine not just the expansion coeffi-
cients, but also the orbitals used in the CI expansion [26, p.258].

Unfortunately, all forms of truncated CI are not size consistent; for example, a system of two molecules
that are such a large distance apart that their interaction is negligible should have an energy that is twice
the energy of only one of the molecules. The energy of the whole system should become proportional to the
number of atoms as the number of atoms goes to infinity. The Hartree-Fock method and the full CI method
have this property, but truncated CI does not [26, p. 261]. The discrepancy only gets bigger as the number
of atoms increases, and as it goes to infinity the correlation energy vanishes completely. This makes CI
unsuitable for large systems such as crystals, or situations where molecules are broken up, because in that
case it is very important that the energy of the two fragments sums to the energy of the entire molecule. If
CI includes quadruple excitations, it is fairly accurate for a system with up to (approximately) 50 electrons
[26, p. 265], although in that case calculation times become exceedingly long.

2.1.5 Coupled-Cluster

Some other ab initio methods take a different approach. Figure 2.1 shows the coupling hierarchy. The
problem is that to solve for the coefficients ccdab of the doubly excited states, we need the coefficients of all
the other states, which is intractable, so this hierarchy needs to be cut or decoupled somehow. The CISD
method essentially just sets all coefficients of triply or higher excited states to zero, but the Coupled-Cluster
method uses the fact that

crstuabcd = crsab ∗ ctucd ≡ crsabctucd −
〈
crsab ∗ ctucd

〉
, (2.22)

when the ab and cd electrons are independent, and uses this as an approximation even when those electrons
are not independent. This is not a simple product, since there are 18 combinations of coefficients of doubly
excited states that can result in crstuabcd

2, so instead crsab ∗ ctucd is a sum of all these combinations, with the
appropriate plus or minus sign, which depends on the antisymmetry property [26, p.286].

The Coupled-Cluster approach starts with the ansatz

|Φ0〉 = eT2 |Ψ0〉 , (2.23a)

with T2 =
1

4

∑
abrs

crsaba
†
ra
†
sabaa. (2.23b)

This representation uses the second quantization formalism, with a†i and ai creation and annihilation oper-
ators, respectively, that excite and de-excite an electron in state i. A Taylor expansion of eT2 then results
in

|Φ0〉 = c0 |Ψ0〉+
∑
a<b
r<s

crsab |Ψrs
ab〉+

∑
a<b<c<d
r<s<t<u

crsab ∗ ctucd
∣∣Ψrstu

abcd

〉
+ ..., (2.24)

2There are 3 ways to divide the indices abcd into two pairs ((ab, cd), (ac, bd) and (ad, bc)) and similarly there are 3 ways to
divide the indices rstu into two pairs. Then there are two ways to combine the pairs (for example crsabc

tu
cd and ctuabc

rs
cd), which

makes for 3 · 3 · 2 = 18 combinations in total.
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which, when inserted into
(H− E0) |Φ0〉 = Ecorr |Φ0〉 . (2.25)

and multiplied with |Ψ0〉 and each of the states |Ψrs
ab〉, gives∑

c<d
t<u

〈Ψ0|H
∣∣Ψtu

cd

〉
ctucd = Ecorr. (2.26)

and

〈Ψrs
ab|H |Ψ0〉+

∑
c<d
t<u

〈Ψrs
ab|H − E0

∣∣Ψtu
cd

〉
ctucd

+
∑
c<d
t<u

〈Ψ0|H |Ψrs
ab〉
〈
crsab ∗ ctucd

〉
= 0.

(2.27)

Here the fact that 〈Ψ|Ψ′〉 = 1 if and only if Ψ = Ψ′ and else zero, the fact that 〈Ψ|H |Ψ′〉 = 0 if Ψ and Ψ′

differ by more than two in their number of excitations and the fact that 〈Ψ|H |Ψ〉 = E0 have been used.
Equations (2.26) and (2.27) then form a closed set of equations that only involve the coefficients of the

double excitations. These resulting equations combined with (2.22) are the equations of the Coupled-Cluster
Approximation (CCA) that involve only double excitations (CCD).

This approach can be extended to include single excitations or triple or higher excitations as well.
Adding the single excitations (resulting in the CCSD method) is achieved by replacing T2 in (2.23a) with
T1 + T2, with

T1 =
∑
ar

craa
†
raa. (2.28)

CCSD is not a variational method, so the resulting energy can be an underestimation or an overes-
timation, and therefore gives no strict upper limit on the energy. It is a really good method, but results
are very basis set dependent and the computational cost scales with K6, with K the number of spatial
orbitals in the basis set. Often, a large basis set or basis set extrapolation is needed. The coupled-cluster
equations contain products of coefficients, which means they are non-linear, which means a simple matrix
diagonalization is not sufficient to solve them [26, p. 289]. See Figure 2.2 for an overview of the ab initio
methods discussed in this and the previous section.

2.1.6 Basis sets

The basis set used for an ab initio method has a large influence on the accuracy of the result. Usually, the
bigger the basis set the more accurate the results, but the more computationally expensive the calculation
is, although the computational cost also depends on how fast it is to calculate integrals of the basis sets.
When the basis set gets bigger, the number of unoccupied orbitals increases and therefore the number of
possible excited states increases.

There are 2 kinds of basis sets: Slater type orbitals and Gaussian type orbitals. Slater type orbitals
are of the form

χξ,n,l,m(r, θ, φ) = NYl,m(θ, φ)rn−1e−ζr, (2.29)

which means they are similar to the exact orbitals of the hydrogen atom. Here, N is a normalization constant
and Yl,m are the spherical harmonics. Gaussian type orbitals are of the form

χξ,n,l,m(r, θ, φ) = NYl,m(θ, φ)r2n−2−le−ζr
2

. (2.30)
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Figure 2.2: Diagram of the steps of the Hartree-Fock method, and how the full CI method, the DCI method and the
CCSD method work.
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The Gaussian type orbitals have a slope of zero near the nucleus (where r goes to zero), even though there
should be a sharp peak there, which the Slater type orbitals do have. This means that Gaussian type orbitals
are less accurate near the nucleus. They also have a tail that falls off much faster far away from the nucleus,
which means they are also less accurate far away from the nucleus. This means there are usually more
Gaussian type orbitals needed to get the same accuracy as Slater type orbitals (rule of thumb is that three
times more basis functions are needed), but because integrals with Gaussian type orbitals can usually be
calculated much faster [36], Gaussian type orbitals are still faster in most cases and are therefore the most
commonly used basis sets.

Specifying a Gaussian type orbital means specifying its center, its exponent ζ and n and its spherical
harmonic function (which is specified by l and m). Usually, the centers are chosen such that the basis
functions are centered at the nuclei, but in some cases putting them in other places is convenient (for
example, at the centre of a bond) [28, p. 192].

In general, it holds that basis functions with large powers ζ are good for the electron density at or near
the nucleus [28, p. 199]. Diffuse basis functions (with small powers ζ) are more important in the tail of the
wave function, when the atoms are separating [28, p. 200]. Inner electrons contribute more to the energy, but
this contribution is very stable, since inner electrons are not strongly influenced by other electrons. Outer
electrons are more important for chemical reactions, because they are more strongly affected by the electrons
from the other atoms. The energy of a configuration of atoms is therefore not as important as the relative
energies between different systems.

This is relevant for the error called the Basis Set Superposition Error (BSSE). This is caused by the
fact that the atom-centered basis functions have different accuracies at different geometries, because when
two atoms are close, the basis set of one atom can compensate for deficiencies in the basis set of another
atom. Technically this makes the energy more accurate in the sense that it will be closer to the energy at the
infinite basis set limit, but since the absolute energy is not of interest, it makes for a worse result, because
the comparison to other geometries becomes worse. A way to approximate the correction for the BSSE is
the counterpoise correction. In the case there are two parts A and B of a system between which there is
interaction that suffers significantly from the BSSE, one needs to do 2 extra ab initio calculations for each
part of the system (the parts between which there is interaction that suffers significantly from the BSSE; a
part can be one atom but more commonly one molecule): one with only that part and only its own basis sets
(a or b) resulting in E(A)a and E(B)b, and one still with only that part but with the basis sets of all parts
ab resulting in E(A)ab and E(B)ab. The basis sets of atoms that are not present are called ‘ghost orbitals’.
The counterpoise correction is then

∆ECP = E(A)ab + E(B)ab − E(A)a + E(B)b. (2.31)

This is important when the energy differences of interest are very small, for example in the case of Van der
Waals interaction and hydrogen bonds [28, p. 227].

Not all coefficients for the Gaussians are always varied; often only one coefficient is used for a fixed
linear combination of Gaussians. This grouping Gaussian together is called basis set contraction, and is often
used for the inner electrons, so not too much calculation time is wasted on those chemically unimportant
electrons.

A lot of basis sets come in hierarchies of increasing size, where each set adds extra spin orbitals to
the minimum basis set. A minimum basis set is a basis set with the smallest possible number of basis
functions, which is equal to the number of electrons. This means there are exactly N occupied spin orbitals
and zero unoccupied ones. The first set to improve on the minimal basis set is usually one that doubles
the number of functions, which results in a Double Zeta (DZ) basis, so called because the letter zeta (ζ)
is used as the exponent in (2.29) and (2.30). The next step could be to go to Triple Zeta, but this would
result in an unbalanced basis set. A better addition is to add higher angular momentum functions, which
are called polarization functions [26, 28, p.189], because they can describe the electron density when it falls
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Figure 2.3: Pople diagram that shows the two factors – the basis set size and method used to determine the electron cor-
relation energy – that determine the accuracy of an ab initio calculation (within the nonrelativistic Born-Oppenheimer
approximation).

off at different rates in different directions, such as near a bond. These polarization effects are especially
important if the ab initio method includes electron correlation.

One such hierarchy of basis sets is the Pople hierarchy of split-valence basis sets, that use more than
one basis function for the valence electrons. Each orbital is composed of a number of Gaussians. 3-21G is the
smallest basis set of this type [37]. Each of its basis functions for the core orbitals consists of 3 Gaussians,
the inner part of the valence orbitals consists of 2 Gaussians and the outer part of 1. In the set 6-31G each
core basis function consists of 6 Gaussians. By adding polarization functions to the 6-31G basis, one can
get the 6-31G* and 6-31G** basis sets. The 6-31G* basis set contains polarization functions added to the
heavy atoms and 6-31G** contains these as well as polarization functions added to hydrogen.

Another hierarchy of widely-used basis sets are the correlation-consistent basis sets by Dunning et
al. [38], which were developed to have good convergence properties, and treat electron correlation in a
consistent way. They are named cc-pVDZ, cc-pVTZ, cc-pVQZ, cc-pV5Z et cetera, where the D, T and
Q stand for ‘double’, ‘triple’ and ‘quadruple’ while for 5 and higher, numbers are used. There also exist
augmented versions of these basis sets, aug-cc-pVDZ, aug-cc-pVTZ, aug-cc-pVQZ et cetera, that have extra
diffuse functions. This makes them better at describing the wave function far away from the nuclei [28, p.
207]. Often calculations with these correlation-consistent basis sets can be extrapolated fairly accurately to
the complete basis set limit [39]. Figure 2.3 shows a Pople diagram, that shows how the basis set size and
method used to determine the electron correlation energy determine the accuracy.
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2.1.7 Potential H2–H2

The hydrogen molecule H2 has only two electrons, which makes it the simplest possible neutral molecule to
study with ab initio methods and it has been extensively studied. For those reasons, it is a good system for
prototyping. The hydrogen nucleus (specifically the nucleus of Hydrogen-1, also called protium) consists of
only one proton and its mass is therefore only approximately 1836 times that of an electron. This means using
classical methods for the motion of the nuclei, or even separating the motion of the nuclei and electrons in
the first place (the Born-Oppenheimer approximation) limits the accuracy. However, research by Carmona-
Novillo et al. [40] shows that away from dissociation thresholds, the results of quasiclassical trajectories
are still comparable to quantum-mechanical wave packet calculations that treat the entire molecule with
quantum methods [33].

The bond between two hydrogen atoms is very strong, with a binding energy of 4.476 eV [41, p. 530],
but the interaction between two molecules of hydrogen is very weak. The H2–H2 system only has a very tiny
Van der Waals well (of about 0.3 meV [42]), because hydrogen has a very low polarizability, which means
the electrons are very resistant to being redistributed. This means the London dispersion forces are very
weak. As a result, two H2 molecules can form a dimer only at very low temperatures. This dimer supports
only one vibrational bound state [43]. Describing this properly would need ab initio methods with very high
accuracy.

The H2–H2 PES has 5 local minima, which complicates fitting it [43]. The potential has multiple
conical intersections between the ground state and the first excited state, where the Born-Oppenheimer
approximation breaks down, because the energy of the ground state and the first excited state are too close
together [44]. This includes one conical intersection that causes a cusp in the potential and is therefore
very difficult to fit [45]. This occurs when the four atoms form a pyramid that has an equilateral triangle
as a base (which means the fourth atom is exactly above the center of this base). However, this conical
intersection can only be reached when the energy is high enough for H2 to dissociate. In this report, the
focus is on vibrational energy transfer, and dissociation is outside the scope of this report. However, effects
of the conical intersection such as a geometric phase effect can affect state-to-state cross sections [46].

Several potential energy surfaces (PES) have been developed for the H2–H2 system, usually based on
some kind of fit to ab initio data. The goal of these potentials is to reach at least chemical accuracy, which
is how accurate a PES needs to be, to make realistic predictions for chemistry. Generally, this is assumed to
be about 40 meV [28, p. 136]. This is also of the same order of magnitude as the thermal energy at room
temperature (293.15 K), which is Eth = kBT = 25 meV, which is the accuracy we are aiming for in this
report. This means that the very tiny Van der Waals well does not need to be reproduced exactly. To reach
this kind of accuracy, the CCSD method with basis set aug-cc-pVTZ is used in this report. The counterpoise
correction pretty small and was therefore not included.

One of the first of such PESs was published by Schwenke in 1988. It was a fit using spherical harmonics
based on 85 ab initio energies, mostly in the H2+H2 repulsive wall [47]. It is only a 4D PES, because it
assumes rigid molecules (the bond length fixed at the equilibrium distance), which is why it also called a
‘rigid-rotor’ PES.

Over the years, more of such 4D rigid-rotor PESs based on a spherical harmonics expansion fit to
more and more accurate ab initio points were published [48, 49, 50, 51], as well as some that attempted to
extend it to 6D, where the bond lengths were (slightly) variable [52, 45, 53]. Aguado, Suarez and Paniagua
[8] also tried this, but with a polynomial expansion instead of a spherical harmonics expansion. One of
the newest of such PESs is by Hinde et al. [53], which uses cubic splines (in the coordinates R, r1, r2) for
the coefficients of the spherical harmonics expansion. This potential is mostly valid for low temperatures
(ca. 40K), because it is meant to describe the bound state of H2–H2. It takes into account all 6 degrees of
freedom, but only gives the intermolecular potential. For a complete potential, an intramolecular potential
needs to be added to it. In this report the Hinde potential is combined with a fit of the H H interaction of
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(2.32)

with pi the fitting parameters that are determined by a non-linear least squares fit to ab initio data. The
resulting potential is used to validate the results of the neural network potential.

2.1.8 Potential CO2

Carbon dioxide (CO2) is a molecule that is fairly well-studied, because it is common in the Earth’s atmosphere
and an important factor in global warming. It is a linear molecule made up of one central carbon atom with
two oxygen atoms attached to it with a covalent double-bond each. Carbon and oxygen are both a lot heavier
than hydrogen, so the Born-Oppenheimer approximation is more accurate for carbon dioxide. Energy transfer
processes for CO2 strongly depend on the vibrational and rotational state [6].

To reach accuracies in the order of 1× 10−6 eV for CO2, it is necessary to take into account relativistic
effects as well as Born-Oppenheimer corrections [54, 55]. However, in this report a CO2–CO2 system (that
of course contains twice as many electrons) is studied and since most ab initio methods scale badly with
the number of electrons, an accuracy of that level was too expensive. For the purposes of this report, an
accuracy of millielectronvolts is enough, since the thermal energy at room temperature is about 25 meV.
This is also a reasonable accuracy for vibrational energy transfer in CO2, because the separation between
the lowest vibrations of CO2 is about 700 cm−1, which is about 90 meV [56].

The bond-bond approach is a way of fitting a potential between two molecules that is based on
summing the individual contributions of interactions of atoms from molecule 1 with atoms from molecule
2 [57, 58]. This also means the monomers do not need to have a fixed length. A way to get a reasonably
accurate full-dimensional PES for CO2–CO2 is to add an intramolecular PES for CO2 to the intermolecular
bond-bond potential [6]. The potential developed by Murrell and Guo [59] and refined by Zúñiga et al.
[60, 61] is one such CO2 PES, which uses a many-body expansion. The combination of the bond-bond
potential with the Murrell-Guo-Zúñiga potential is used to generate the initial trajectories to create the
training data set, as well as to verify the neural network results.

2.2 Methodology

The ab initio calculations were executed using Dalton (versions 2016.2, 2018.0 and 2018.2), a molecular
electronic structure program [62, 63]. At first, CCSD with basis set 6-31G** was used for H2–H2, later the
more expensive basis set aug-cc-pVTZ was used for H2–H2, and for CO2–CO2 we settled for slightly lower
accuracy to keep the calculation time in check and the basis set cc-pVTZ was used. Dalton will need two
inputfiles: the .dal file which describes what needs to be calculated and with which method, and the .mol
file, which describes the molecular configuration and the basis set. This is an example of a .dal file:

** DALTON INPUT

.RUN WAVE FUNCTIONS

**WAVE FUNCTIONS

.HF

.CC
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*CC INPUT

.CCSD

.MAX IT

50

**END OF DALTON INPUT

The section **WAVE FUNCTIONS tells Dalton what kind of wave functions need to be calculated.
.HF indicates a Hartree-Fock wavefunction and .CC indicates a coupled cluster wave function. The *CC
INPUT then indicates the details for the coupled cluster calculation, in this case that it is a CCSD calculation
and that at most 50 iterations should be performed. A value of 50 was chosen because this was enough
iterations for any realistic geometry to converge. The *DERIVATIVES keyword tells Dalton to also calculate
the analytical gradient of the potential.

This is another example of a .dal file, that also calculates the first excited state (with the coupled
cluster calculation), which is relevant for CO2:

** DALTON INPUT

.RUN WAVE FUNCTIONS

**WAVE FUNCTIONS

.HF

.CC

*CC INPUT

.CCSD

.MAX IT

200

*CCEXCI

.NCCEXCI

0

1

**END OF DALTON INPUT

The line with a zero specifies that we don’t need any excited state with singlet excitations and the second
line specifies that we do want a triplet excited state. This is an example of a .mol file for H2–H2:

BASIS

aug -cc-pVTZ

comment

comment

Atomtypes =1 Nosymmetry

Charge =1.0 Atoms =4

H -1.697 0.001689 -27.33

H 1.697 -0.001689 -26.68

H 0.2476 -0.2954 26.50

H -0.2476 0.2954 27.51

This is an example of a .mol file for CO2–CO2:

BASIS

6-31G**

comment

comment

Atomtypes =2 Nosymmetry

Charge =6 Atoms =2

C 0.004052 0.002325 27.513298

C -0.003962 -0.002334 -27.513045

Charge =8 Atoms =4

21



O 1.278 1.643 28.20

O -1.278 -1.643 26.79

O 0.7150 -6.343e-05 -25.42

O -0.7150 6.766e-06 -29.58

The basis set that was used is specified at the beginning of the file. Then two lines are reserved
for comments. Leaving these two lines out will cause Dalton to interpret the next two lines as comments,
which will give an error, which is why there are two lines with a comment. The rest of the files specifies
the charges of the nuclei and their configuration, which is given in Cartesian coordinates in bohr radii. The
letter before the coordinates of an atom (‘H’, ‘C’ or ‘O’) are only interpreted as labels by Dalton. They could
just as well have been ‘H1’, ‘H2’, et cetera. The keyword ‘Nosymmetry’ tells Dalton not to try to simplify
the calculation by considering symmetries in the configuration. The simplification is not very useful in our
case anyway, since the configurations are really unlikely to end up in such a symmetric configuration, and
this symmetry analysis causes Dalton to reorder the atoms. This is a problem if Dalton needs to calculate
the gradient of the potential as well, because in that case the gradient on the atoms can be in a different
order than the Cartesian coordinates of the atoms. This can be fixed by using a unique label for each atom,
but that does not solve another problem: the symmetry analysis can also cause a peak in the potential
at configurations with certain symmetry, because it can make a more accurate calculation when it takes
symmetry into account.

Dalton also needs a description of the basis set, but fortunately these are included with Dalton. An
example of a basis set specification is this one, of 6-31G** for H:

$ HYDROGEN (4s,1p) -> [2s,1p]

$ S-TYPE FUNCTIONS

4 2 0

18.73113700 0.03349460 0.00000000

2.82539370 0.23472695 0.00000000

0.64012170 0.81375733 0.00000000

0.16127780 0.00000000 1.00000000

$ P-TYPE FUNCTIONS

1 1 0

1.10000000 1.00000000

The first line gives a summary of the basis set. In parentheses is the number of Gaussians used per type
of function. The type of function (s-type and p-type in this case) refers to the spherical harmonic function
Yl,m in (2.30). In square brackets is the number of basis set functions these Gaussians are contracted to.
This means there are 2 s-type functions, which in total use 4 different Gaussians. There is only one p-type
function, which consists of just one Gaussian.

The first row below each type of function gives the number of Gaussians and the number of basis
functions made with these Gaussians again, as well as a zero with a meaning that Dalton does not bother to
clarify in their manual, or anywhere else for that matter (other basis set formats include all other information
but not this zero). The rest of the rows specify the basis functions as follows: the first column gives the ζ

used in (2.30) in �A
−2

, and each column after that is one basis function, and gives the contraction coefficients
for the Gaussians. In this example that means that there is one s-type basis function that is a sum of three
Gaussians, and one that is only one Gaussian. The contraction coefficients of the 3 Gaussians are constant,
and the 3 Gaussians are optimized as a group with one coefficient.

Dalton can be run with the command
dalton dalfile.dal molfile.mol.
The output from Dalton is given in a .out file, that will appear in the working directory dalton was run
from. This is an example of a part of such an output file (under ‘Final results from SIRIUS’) that shows the
energy of the computed orbitals for a Hartree-Fock calculation with 4 H-atoms with the basis set 6-31G**:
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Sym Hartree−Fock o r b i t a l e n e r g i e s

1 A −0.56832269 −0.42225086 0.03566174 0.21504343 0.80776954
1.01283520 1.05148215 1.23996694 1.96959607 1.96964932
2.05510860 2.24017572 2.24019773 2.31865881 2.31868106
2.52208699 2.64176275 2.82487148 2.82492588 4.14867146

The counterpoise correction for H2 – H2 was estimated and is really only relevant for the van der
Waals well. The counterpoise correction gives a binding energy of (H2)2 (meaning the energy it takes to
separate one (H2)2 complex into two H2 molecules) that is 26% smaller than the binding energy without the
correction for the aug-cc-pVTZ basis set and 8.3% smaller for the aug-cc-pVQZ basis set. For the 3-21G
basis set the counterpoise correction does make a big difference, since without the correction there is no well
at all. Since the well is already smaller (<5 meV) than the desired accuracy on par with the thermal energy
(25 meV), the counterpoise correction was neglected.

Dalton gives the energy of a certain configuration for the nuclei, relative to the situation where all the
nuclei are infinitely far apart, and completely ionized (meaning the electrons are also infinitely far away from
all the nuclei). In this case it makes more sense to use the situation where the nuclei are infinitely far apart
but not ionized, with their electrons in the ground state as a reference. To obtain this energy, the sum of the
ionization energies for the atoms should be added to the dalton energy. Different basis sets will also have a
different approximation of this value, so a different offset is used for each basis set. This offset is calculated
as the potential energy for the situation where all the atoms are so far apart their interaction is negligible,
and defining this to be zero. For the H2–H2 system this reference value was obtained by calculating the
energy of two H-atoms 5.0�A apart. The results are in Table 2.1. The refence value of H2–H2 system is twice
the H–H value, since CCSD energies can be added. For the CO2 system, the sum of the energy of each
atom can be used. The ionization energy of two hydrogen atoms is 0.999 946 65Eh[64], so the result for
aug-cc-pVQZ is very accurate.

For CO2 this is complicated by the fact that as one oxygen atom dissociates from the molecule, the
ground state curve crosses three triplet excited state curves in three different points. This means at some
point a triplet state overtakes the singlet state as the lowest energy state. (The transition between these
states is forbidden in the Born-Oppenheimer approximation, but possible because of spin-orbit coupling
terms [65].) This is caused by the fact that the dissociation products (CO and O) have a singlet and a
triplet ground state, respectively. For the initial exploration of the potential of CO2 this triplet state at
infinite separation was used as a reference. Depending on which lengths were being varied this can be the
situation where one oxygen atom is infinitely far apart from the leftover CO molecule, or the situation where
all three atoms are infinitely far apart. For the machine learning part we only train the network on singlet
data, and the potential needed to go smoothly to zero, so there the singlet state at infinite separation of all
three atoms was used as a reference, and this is what is shown in Table 2.1. It is important that symmetry
was also not used when determining this energy offset, since it could be slightly different with symmetry .

Several Python scripts were used to automate the creation of .mol files, to run dalton, to import
the results from the .out files and to make a graph from them. H2.py and CO2.py are used to explore the
potential. The scripts to create a data set to use for the machine learning are discussed in Chapter 3.

CCSD is not very accurate for dissociation. Since we were mostly interested in the potential for
vibrational energy transfer, this was not considered a problem. This means the ab initio calculations might
not be very accurate in situations where the atoms of one molecule are approaching the dissociation limit.

2.3 Results H2–H2

The ab initio methods and analytical potentials were used to explore the PES of H2 as well as H2–H2, to
estimate which parameter ranges would be relevant. Figure 2.4 shows the potential between two hydrogen
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Table 2.1: The energy in hartree defined to be zero for different basis sets.

offset (Eh)

H2 CO2

Theoretical -0.99994665
3-21G -186.1773720959
6-31G** -0.9964669427 -187.2987100500
cc-pVDZ -0.9985601387 -187.3408592819
cc-pVTZ -0.9996255424 -187.5162972456
aug-cc-pVDZ -0.9986803034 -187.3759377617
aug-cc-VTZ -0.9996637739 -187.5293160648
aug-cc-VQZ -0.9999098559 -187.6200372457

Table 2.2: Root-mean-square error (RMSE), mean absolute error (MAE) and the standard
deviation of the error (σ), of our results compared to the results of Ko los & Wolniewicz.

Basis set RMSE (meV) MAE (meV) σ (meV)

6-31G** 275.6 274.7 22.4
(4s,1p) -> [2s,1p]

aug-cc-pVDZ, 251.2 223.3 115.1
(5s,2p) -> [3s,2p]

aug-cc-pVTZ, 45.6 43.6 13.2
(6s,3p,2d) -> [4s,3p,2d]

aug-cc-pVQZ, 14.5 14.0 4.0
(7s,4p,3d,2f) -> [5s,4p,3d,2f]

atoms. The results are compared to the very accurate ab initio results of Ko los & Wolniewicz [66, 67, 68].
The ab initio method for their results was specifically designed for H2 and took advantage of the symmetries
of the system. Their basis set contained 100 basis functions and the results included diagonal corrections for
nuclear motion.

Figure 2.4 shows that the Hartree-Fock calculations are not very accurate, even with a very large basis
set such as aug-cc-pVQZ. This is because the Hartree-Fock wave function contains a part that corresponds
to a dissociation of H2 into H+ and H– instead of in two H atoms[26, p. 167]. This makes the dissociation
energy much too high.

Table 2.2 shows the difference between our results and the very accurate Ko los & Wolniewicz results.
It shows a Mean Absolute Error of 43.6 meV with the basis set aug-cc-pVTZ, but this is in large part due to
a systematic error, as shown by the standard deviation of this error, which is only 13.2 meV. This shows that
in this region, which is the most important for low vibrational states, the error is already very small with
the aug-cc-pVTZ basis set, and going to the larger basis set aug-cc-pVQZ only gives a small improvement
in accuracy.

Figure 2.5 shows the potential between two parallel oriented H2 molecules. It shows that the 6-31G**
basis set is not good enough to accurately represent the Van der Waals-interaction between the molecules.
The results for aug-cc-pVDZ, aug-cc-VTZ and aug-cc-pVQZ are very close together, suggesting they are
close to convergence. Also note that the scale of this Van der Waals-well is a few millielectronvolts, which is
smaller than the desired accuracy of the thermal energy at room temperature of 25 meV. Figure 2.7 shows
the potential for the different configurations in Figure 2.6. It shows that in the T- and S45-configurations
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(a)

(b) Zoomed in on the CCSD results, unnormalized.

Figure 2.4: Potential of one H2 molecule, varying the bond length, for both CCSD and HF
calculations with several different basis sets. The results are compared to the very accurate
results of Ko los & Wolniewicz [67]. The results are normalized such that zero is at infinity.
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Figure 2.5: Potential of two (parallel oriented) H2 molecules for various basis sets, varying
the distance between them.

the interaction between molecules is the strongest and in the H- and L-configurations the weakest.
Table 2.3 shows approximately how long the calculations took for each basis set.

2.4 Results CO2–CO2

The ab initio methods and analytical potentials were used to explore the PES of CO2 and CO2–CO2, to
estimate which parameter ranges would be relevant.

First, calculations were done for various configurations of one CO2 molecule. Figure 2.8 shows the
potential as one bond length is kept constant and the other is varied. It shows that the basis set cc-pVTZ is
approximately just as accurate as the Murrell-Guo-Zúñiga potential, and going to larger basis sets only gives
small changes in the potential. As the molecule starts dissociating, the ground state is overtaken by the 3B2

state. This excited state shows some peaks at r =1.163�A, which is because Dalton uses this symmetry to
make the calculation more efficient here. This results in a different accuracy. These spikes are obviously not
a good thing when implementing a potential for the purpose of molecular dynamics, since a smooth potential
is very important in that case. This is why the keyword Nosymmetry is used for creating a training dataset.

Figure 2.9 shows the potential as the internal angle φ is varied. It shows some interesting behavior
between φ = π/4 and φ = π/2, where there is a sharp peak in the ground state and a sudden bend in the
excited 3B2 state. This is caused by an abrupt change in the wavefunction from a state where the two oxygen
atoms repel each other to a state with a partial bond between them. A method that uses only one Slater
determinant (such as Hartree-Fock and CCSD) is unsuitable for these configurations. To properly calculate
the potential at these geometries, a multireference method is more suitable. See B for more detail.

Interestingly, the potential minimum of the excited 3B2 state is not near φ = π, which means CO2

does not want to be a linear molecule in its excited state. The peak in the excited state near φ = π is
probably again a result of Dalton taking the extra symmetry into account for that configuration, although

26



Figure 2.6: Six different configurations of two H2 molecules.

Figure 2.7: Potential of two H2 molecules in the different configurations of Figure 2.6, for the
aug-cc-pVTZ basis set, varying the distance between their centers of mass.
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Table 2.3: Time in seconds it takes Dalton to do Hartree-Fock or CCSD calculations for H2

and H2–H2 with various basis sets.

Basis set H2 H2–H2

HF

6-31G** 0.002 0.005
aug-cc-pVDZ 0.004 0.015
aug-cc-pVTZ 0.023 0.324
aug-cc-pVQZ 0.277 3.996

CCSD

6-31G** 0.02 0.06
aug-cc-pVDZ 0.03 0.35
aug-cc-pVTZ 0.35 11.0
aug-cc-pVQZ 7.35 176

symmetry was turned off for these calculations, so it is unclear whether this is a physical phenomenon or
not.

Figure 2.10 shows the potential of the ground state and the first excited state as the two C-O bond
lengths are varied. The excited state shows some spikes on the diagonal (where r1 = r2), which is because
of the symmetry.

Figure 2.11 shows the potential of two CO2-molecules as the distance R between their centers of mass
is varied, for the H- and X-configuration, which are similar to those configurations in Figure 2.6 (imagine a
C-atom in the middle). It shows that the 3-21G basis set cannot model the van der Waals force at all, since
the potential does not have a well in both configurations. For the X-configuration, the 6-31G**, the cc-pVTZ
and the aug-cc-pVDZ basis set do show a well. For the H-configuration, aug-cc-pVDZ and aug-cc-pVTZ
basis sets show a small well, but the 6-31G** set and, strangely enough, the aug-cc-pVQZ do not show a well
here, but ab initio calculations by Bartolomei et al. show that the well for the H-configuration is either very
small or not present at all as well [58, Fig. 1], so the aug-cc-pVDZ and aug-cc-pVTZ calculation might just
not be good enough to properly describe this interaction. Fig 2.11 also illustrates that just like hydrogen,
the interaction between CO2-molecules can differ a lot depending on the orientation of the molecules with
respect to each other.

Table 2.4 shows a very rough estimate of the time it takes Dalton to do Hartree-Fock or CCSD
calculations for CO2 and CO2–CO2. Keep in mind the fact that the computation time can vary a lot
depending on the configuration; if the configuration of atoms is a realistic configuration with a low energy,
the calculation takes fewer iterations to converge. The available hardware is also a big factor. The table
shows that the scaling in computational cost is very unforgiving. For the bigger basis sets (aug-)cc-pVTZ
and (aug-)cc-pVQZ the amount of memory available and the bandwidth to the disc space were concerns as
well.
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(a)

(b) Zoomed in.

Figure 2.8: Potential of one CO2 molecule, varying one of the C-O bond lengths r. The other

C O bond length is 1.163�A (the equilibrium bond length).
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(a)

(b) Zoomed in.

Figure 2.9: Potential of one CO2 molecule, varying the internal angle φ. The C O bond
lengths are 1.163�A, which is the location of the potential minimum in Figure 2.8.
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(a) The energy of the ground state (X)

(b) The energy of the first excited state (3B2)

Figure 2.10: Potential of one CO2 molecule, varying the lengths of both C O bond lengths r1
and r2.
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(a) H-configuration

(b) X-configuration

Figure 2.11: Potential of two CO2 molecules, varying the distance between their centers of
mass R.
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Table 2.4: Rough estimate of the time it takes Dalton to do Hartree-Fock or CCSD calculations
for CO2 and CO2–CO2 with various basis sets. aincludes computation of excited state 3B2,
bDalton used symmetry to make the calculation more efficient.

Basis set CO2 CO2–CO2

HF

3-21G 0.013sa 0.12s
6-31G** 0.040sa 0.59s

cc-pVDZ 0.040sa 0.79s
aug-cc-pVDZ 0.27sa 0.59sb

cc-pVTZ 0.72a 19s
aug-cc-pVTZ 3.5sa

aug-cc-pVQZ 26sa

CCSD

3-21G 1.1sa 2m 2s
6-31G** 5.3sa 13m

cc-pVDZ 5.0sa 19m
aug-cc-pVDZ 1m 30sa 8m 50sb

cc-pVTZ 3m 10sa 3h 2m
aug-cc-pVTZ 6m 50sa

aug-cc-pVQZ 1h 4ma
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Chapter 3

Machine Learning

3.1 Theory

Machine learning algorithms are used to build a model to analyze data or make predictions, using only
training data, without giving explicit instructions. Modelling a PES is a supervised learning task, which
is a task where there are examples of inputs (here: descriptions of atom configurations) and corresponding
desired outputs (the energy) available.

One of the simplest and quickest machine learning techniques for supervised learning is a linear
regression. One of the most popular machine learning techniques is an artificial neural network (NN), which
takes inspiration from the structure of connections in the human brain. The variant relevant to PES fitting is
a simple feedforward neural network, which can be used for function approximation (as opposed to recurrent
neural networks, which have ‘memory’). The advantage of a neural network is its flexibility.

The review article by Manzhos and Carrington gives a good overview of the current state of the
research into using machine learning for potential energy surfaces [69].

3.1.1 Linear regression

A linear regression models a function as a linear combination of input variables

output = c0 + c1x1 + c2x2 + ..., (3.1)

with ci the coefficients that need to be determined and xi the inputs (x0 is 1, which means c0 is the constant
term). This can also be written as a matrix equation

ypred = Xc, (3.2)

with ypred the predicted output for each of the N data points, X an N ×M matrix with M inputs for each
data point, and c the M parameters that need to be found. Usually M > N , which means the system is
overdetermined, meaning there are more equations than variables to solve for.

This equation is often solved with the least squares method, which minimizes the total of all squared
deviations,

∑
i(yi,pred − yi,real)2. The solution is

c =
(
XTX

)−1
XTyreal. (3.3)

The main advantage of this approach is its low computational cost. The main disadvantage is that
the model is always a linear function, which means the only way to model a non-linear function is to create
inputs that capture the non-linearity adequately. Coming up with such inputs often takes a lot of expertise
and guesswork.
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Figure 3.1: The architecture of a neural network with one hidden layer

3.1.2 Feedforward neural network architecture

A neural network consists of an input layer, one or more hidden layers and an output layer. This basic
structure is shown in Figure 3.1. Each layer consists of one or more nodes (also called neurons). Each node
in the hidden layer(s) does three things: it takes a weighted sum of all its inputs, adds a bias value and
applies an activation function on the result. The activation function is important, because it introduces non-
linearity. Without it, the network is just a series of matrix multiplications, which means the result is always
a linear function of the inputs. The activation function enables the network to approximate any arbitrary
function. This assertion is the universal approximation theorem, which states that this holds with just one
hidden layer with a finite number of neurons [70], as long as the activation function is not polynomial.

A connection from one node to another has a certain weight. These weights can be represented by a
matrix A` of size N ×M , with N the number of nodes in layer ` and M the number of nodes in the previous
layer (`− 1). The output of layer ` is then

ul = φ`(A`u`−1 + b`), (3.4)

here u`−1 is the output of layer ` − 1, b` is a vector with biases for neurons in layer ` and φ`(x) is the
activation function of layer `. ` runs from 0 to L, with L the number of layers.

This means the output of the network is

output = bL + AL(φL−1(bL−1) + AL−1(...φ1(b1 + A1φ0(b0 + A0x)))), (3.5)

with x a vector of inputs for the network. There is no activation function on the output layer in this case,
so the neural network can output any energy. The parameters that will be trained are the weights A` and
the biases b`.

The activation function needs to be continuously differentiable (smooth), so the potential predicted
by the neural net is also smooth. It is important that the potential fit is smooth because the gradient of the
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potential is needed to calculate the force. ReLU (rectified linear unit, the most common choice of activation
function for neural networks), which is given by

f(x) = max(0, x), (3.6)

is therefore a bad choice in this case, because it has a kink at x = 0. An example of a smooth activation
function is softplus, which is given by

f(x) = ln(1 + ex), (3.7)

and can be considered a smooth version of a ReLU, with the kink smoothed out. Several possible activation
functions are shown in Figure 3.2. The rounded V-function is

f(x) =


−x− 1

2 , for x < −1,
1
2x

2, for − 1 ≤ x ≤ 1,

x− 1
2 , for x > 1,

(3.8)

and has as an advantage the fact that its gradient is -1 or 1 in most places, and only zero at x = 0. This means
it is less susceptible to the vanishing gradient problem, which is something that happens when the activation
function causes a gradient that is almost always very small or zero, which can happen, for example, if the
inputs to the ReLU are always negative, or the inputs to the softsign function have a very large magnitude.
If the gradient is very small, the network cannot update its weights and will therefore only learn very slowly.

The rounded V has a continuous but non-smooth derivative, which would lead to a kink in the force,
which is not necessarily a problem (a kink in the potential would be) but may also not be desirable.

The logistic or sigmoid function has the form

f(x) =
1

1 + e−x
. (3.9)

The softsign function is similar to the logistic function, but is cheaper to calculate. It is given by

f(x) =
x

1 + |x|
, (3.10)

which means it also has a continuous but non-smooth derivative. The half square function

f(x) =

{
0, for x ≤ 0,

x2, for x > 0,
(3.11)

which means it has a continuous but non-smooth derivative as well. It also does not always deal well with
outliers because of the quadratic part.

3.1.3 Training the neural network

A neural network learns from data. The data used for training is called the training data, and consists of
the inputs to the network and the desired output. In our case these are a configuration of atoms and the
corresponding ab initio energy. The output of the network is then compared to the desired output, and
from this a loss is computed, which is a value that reflects how much they differ. A common choice for a
loss function is the mean squared error. Then, the gradient of the loss with respect to all parameters in the
network is computed using backpropagation, which is an algorithm that uses the chain rule to calculate the
gradient backward from the last layer to the first one. This gradient is then used to update the parameters,
by changing the parameters in the direction of the negative gradient.
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Figure 3.2: Several activation functions

The size of the steps depend on the learning rate. If the learning rate is too high, the model can
show oscillations in its predictions and overshoot, or get stuck in a bad state. If the learning rate is too low,
training will take very long. It is a common strategy to decrease the learning rate in steps while training.

There are various iterative methods to update the parameters. The simplest is gradient descent, which
calculates the gradient for the entire training dataset at once. However, usually it is more efficient and more
effective to use only a subset of the training data (a ‘batch’) at a time to estimate the gradient. This is called
stochastic gradient descent and the extra randomness this introduces makes the model converge faster and
helps it to escape local minima. This gradient computation and parameter update is repeated a lot of times.
When each data point in the training data set has been used one time, one epoch has passed. A variation
on stochastic gradient descent is Adam, which is an adaptive method that can be used to train the network
instead of stochastic gradient descent [71]. It gives a kind of momentum to the parameter updates, which
often makes it converge faster.

Common problems during training a neural network are an exploding gradient or a vanishing gradient.
A vanishing gradient is often caused by the activation function, because a lot of activation functions have
ranges where their gradient is very small. For example, the logistic function has a very small gradient if
the magnitude of its input is large. Often this is exacerbated by having many layers in the network, since
the gradient then on average gets exponentially smaller with each layer, causing the first layers to train
very slowly. The exploding gradient problem is the opposite problem and happens when a gradient gets
exponentially larger.

Another common problem is overfitting. Overfitting means the network ‘memorizes’ the training data
and will then perform very well on this training data, but really bad on unseen data. This is why it is
standard practice in machine learning to separate the data set into training, validation and testing data.
The training data is the data that is used for computing the parameter updates, and validation data is data
that is used to track how the training is progressing. If the loss for the validation increases while the training
loss keeps decreasing, it is a sign that the model is starting to overfit and we should stop training. This is
called ‘early stopping’ and is the simplest way to prevent overfitting.
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Validation data is also used for hyperparameter optimization, which refers to choosing the right values
for the parameters that control how training progresses or describe the structure of the model and cannot
be trained by gradient descent. They are, among others, the learning rate, the batch size, the number of
neurons, the number of layers in the network, the type of activation functions used, and in our case also how
many and which type of proximity matrices to use. It is also possible to combine the training and validation
data set and use them for cross-validation, in which case the network is trained a number of times, and
each time a different chunk of data is left out and used as validation data. This gives a better idea of how
consistent the results are.

In the end, we pick the model that performs best on the validation data. However, this means that
in order to know how the model will actually perform on completely unseen data, we need another data set
with data that has not been used for either training or hyperparameter optimization, and this is why there
is a test set in addition to a validation set.

3.1.4 Descriptors

The input of the network is a certain 3D configuration of a system of N atoms. Such a system has 3N − 6
degrees of freedom (3 per atom, minus 3 for rotational and translational symmetry each) if N ≥ 3 (for N = 1
and N = 2 the number of degrees of freedom are 0 and 1 respectively). More generally, in D dimensions the
number of degrees of freedom is DN −D− 1

2D(D−1) if N ≥ D. The term DN is the number of coordinates
needed to pinpoint all particles, the term −D accounts for translation invariance, and 1

2D(D − 1) accounts
for rotational invariance. This configuration needs to be described somehow, using a descriptor. A descriptor
is a numeric representation of the configuration of the system and is used as input for the neural network.
One of the simplest descriptors is just the set of Cartesian coordinates of all atoms. Desirable qualities of a
descriptor are

� it is smooth (a small change in the configuration always results in a small change in the description),

� it is invariant under rotation, translation and permutation of identical atoms,

� each possible configuration has a unique description,

� it is easily scalable, such that it can easily be adapted for different and/or larger systems,

� the inputs are as orthogonal as possible, such that one input does not depend (strongly) on any of the
other inputs, so all inputs give as much information as possible, independent of the other inputs,

� the number of inputs is small, while still not under-specifying the system (so at least a number of
inputs equal to the number of degrees of freedom, but not much more than that).

The requirement of invariance under rotation and translation means that when the entire system is
rotated or moved, but the distances between the atoms do not change, the potential should be the same.
Invariance under permutation means that it should not matter in which order the atoms are described and
that if two atoms of the same species are swapped, the potential stays the same. This means the following
must hold for the descriptor f(X):

f(X) = f(QX), (3.12)

where X is a matrix describing the configuration with one row per atom and Q any permutation matrix.
The set of Cartesian coordinates is not invariant under rotation, translation and permutation. One

approach is to use functions that respect the specific symmetry of the system to transform the Cartesian
coordinates into a suitable representation. For example, Lorenz, Groß, and Scheffler [72] use inputs that
are functions of the coordinates that describe the orientation of a H2-molecule to a surface to predict the
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sticking probability. A disadvantage is that this is not a very scalable approach, because the functions are
very specific to the system.

Another approach is to use the neural network not to predict the total energy, but the energy con-
tribution Ei of each atom [73]. The descriptor is then a description of the local environment of this center
atom, meaning the atoms that are around it. If the number of atoms is large, this local environment can have
some kind of cutoff to make the prediction more efficient. This description of the local environment should
respect permutation (of the neighbor atoms), rotation and translation symmetry. The energy contributions
of the N atoms are then added up to get the prediction of the total energy

E =

N∑
i=1

Ei. (3.13)

This makes it invariant with respect to permutation of identical atoms, since the order in a sum does not
matter.

Rotation and translational invariance of the local environment description can be achieved by using
atom-centered symmetry functions (ACSF). These depend on the distances of other atoms to the center atom,
and the angles pairs of atoms form with this atom. This approach can be extended to take multiple species
of atoms into account [74]. Another way to describe the local environment is to use spherical harmonics [75].

An advantage of an approach that attempts to predict the energy contribution of each atom, is that
one network can be used to predict the energy systems with varying numbers of atoms and types of atoms
(although the training data in that case also needs to include varying numbers of atoms and types of atoms,
because neural networks are generally not good at extrapolating).

3.1.5 Permutation invariance in general

Atom configurations are not the only type of data where permutation invariance is important, it is an
important consideration for any type of data that is a set instead of a vector. Since neural networks work on
vectors, not sets, the input must be transformed in a permutationally invariant representation [76]. The size
of this representation is the latent space and its dimensionality must be at least that of the configuration
[77].

This can be realized by transforming the inputs into a permutationally invariant representation using
symmetric functions, which are functions that have the same value regardless of the order of its arguments.
A general way of creating permutationally invariant functions is by applying any function h(x) to each input
pi and then summming them,

f(x) =
∑
i

h(pi). (3.14)

The result is always permutationally invariant with respect to pi. The same goes for any commutative
operation, such as the product

f(x) =
∏
i

h(pi). (3.15)

Some examples are

f(p) = p1 + p2 + p3 + p4 + p5 + p6 (3.16)

f(p) = p2
1 + p2

2 + p2
3 + p2

4 + p2
5 + p2

6, etc. (3.17)

and

f(p) = p1p2p3p4p5p6, (3.18)

f(p) = (p1 + 1)(p2 + 1)(p3 + 1)(p4 + 1)(p5 + 1)(p6 + 1), etc. (3.19)
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Taking the maximum
f(p) = maxh(pi), (3.20)

is a type of max pooling and is also permutationally invariant. Max pooling is unsuitable for a potential
because it causes kinks, but it is used for other applications, such as classification [78, 79]. Chen, Cheng
and Mallat take a [80] slightly different approach; instead of summing over all inputs, they sum over only
one pair of inputs at a time, creating only permutation invariance for exchange of one specific pair of atoms,
and a cascade of such sums is used to implement global permutation invariance.

Ravanbakhsh, Schneider and Póczos use something similar to (3.14): the outcome of permutation
equivariant layers is summed or max pooled over a set and the output of this is fed into another neural
network [78]. An equivariant function has the following requirement

Qf(p) = f(Qp), (3.21)

where Q is any permutation matrix. This means that when the input is permuted, the output is permuted
the same way. A message passing neural network is a generalization of this approach. It involves creating
an embedding for each node. During this phase, the nodes can exchange information (‘messages’). The
embeddings are combined using a commutative operation, usually a sum such as (3.14), and the outcome of
this is passed to another neural network [81, 82]. Maron et al. use a similar approach [83].

Another way of looking at a configuration of atoms is to consider it a point cloud [79, 84]. A point
cloud is a set of points distributed in a (usually 3D) space. Each point has an x, y and z coordinate and other
possible attributes associated with it. Usually the term point cloud is used for such data that is the result
from 3D scanners. Neural networks that take a point cloud as an input also need permutation invariance
with respect to the order of the points.

3.1.6 Proximities

For N atoms, the set of N(N − 1)/2 interatomic distances rij = ‖xi − xj‖ is invariant under rotation
and translation, but not under permutation. This can be generalized to interatomic distances that are
transformed in some way (for example pij = exp(−rij) or pij = 1/rnij), such that they go to zero when the

atoms are infinitely far apart and therefore non-interacting. The resulting quantities are called proximities1

and have the same invariance under rotation and translation.
Any representation that is permutationally invariant with respect to the proximities is also permu-

tationally invariant with respect to the atoms. Achieving permutation invariance by simply sorting the
proximities is not a suitable descriptor. If they are ordered from high to low, and the particles then start
to move, there can be a point where one distance becomes higher than another, which means they abruptly
switch order, which can lead to ‘kinks’ in the potential. If we use the aforementioned symmetric functions
on the proximities, we have a permutationally invariant representation that can be used as a descriptor.

However, a drawback of any method that achieves permutation invariance of the atoms with per-
mutation invariance of the proximities, is that information is lost, because order does matter somewhat;
the same set of distances or proximities can describe different configurations. For example, the interatomic
distances {1, 1, 1, 1,

√
2,
√

2} can describe either a square (Figure 3.3a) or a wonky tetrahedron (Figure 3.3b),
depending on which distances apply to which atom. However, this might only be a problem in the case of
4 or less atoms, since for any case with more atoms, the number of proximities is more than the number
of degrees of freedom, which means there is some redundancy that makes it very difficult to find another
possible configuration with the same set of proximities.

Braams, Bowman and Xie [25, 85] give ways of creating permutationally invariant polynomials (PIPs)
for different systems with up to 5 atoms, that do take into account which proximities belong to the same

1 Strictly speaking, the resulting quantities are only proximities if the function pij = f(rij) is monotonic and non-negative,
but we are ignoring this.
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(a) Square configuration (b) Wonky tetrahedron

Figure 3.3: Two different configurations of 4 atoms with the same set of interatomic distances

atom. The PIP method is implemented in a library called ezPES. These PIPs were intended to be (and
have been [86, 87, 88, 89]) used for linear regression, but the polynomials can also be used as neural network
inputs [90, 91]. However, the number of monomials per polynomial scales badly since the number of possible
permutations is

M∏
i=0

Ni!, (3.22)

with M the number of atom species and Ni the number of atoms of type i. For example, for 4 H-atoms
there are 4! = 24 possible permutations, and for 2 CO2 molecules there are 2!4! = 48 possible permutations.
However, for bigger systems the number of permutations grows faster than exponentially, for example for 15
identical atoms, the number of permutations is about 1.3× 1012.

The following equations show the PIPs up to third order that can be used as a neural network input
for a system of four atoms of the same type. Each sum sums over all possible permutations of the applicable
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indices i, j, k and l, such that none of the indices are equal and each has a value of 1 to 4:

f1(p) =
∑
ij

pij = p12 + p13 + p14 + p23 + p24 + p34 (3.23)

f2a(p) =
∑
ij

p2
ij (3.24)

f2b(p) =
∑
ijk

pijpik (3.25)

f2c(p) =
∑
ijkl

pijpkl (3.26)

f3a(p) =
∑
ij

p3
ij (3.27)

f3b(p) =
∑
ijk

p2
ijpik (3.28)

f3c(p) =
∑
ijkl

p2
ijpkl (3.29)

f3d(p) =
∑
ijk

pijpjkpik (3.30)

f3e(p) =
∑
ijkl

pijpikpil (3.31)

f3f (p) =
∑
ijkl

pijpikpkl. (3.32)

Because a system with four atoms has six degrees of freedom, not all of these polynomials need to be used.

3.1.7 Proximity matrix

Proximities are a good starting point for a descriptor, because they are already invariant with respect to
translation and rotation of the entire system, but which proximities correspond to the same atom is also
important information. To take this into account, one can use the proximities arranged in a matrix P, called
a proximity matrix. Proximity matrices have been used before to create embeddings of networks to use as
input for a neural network [92]. Because pij = pji, it is a symmetric matrix. The diagonal contains only
zeros, making it a hollow matrix. For a system with 4 atoms, the proximity matrix looks as follows:

0 p12 p13 p14

p12 0 p23 p24

p13 p23 0 p34

p14 p24 p34 0

 . (3.33)

For example, the following proximity matrix (where the proximities are just the interatomic distances)
describes a square (see again Figure 3.3a)

0 1 1
√

2

1 0
√

2 1

1
√

2 0 1√
2 1 1 0

 , (3.34)
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and the next proximity matrix describes a wonky tetrahedron (meaning, a pyramid with an equilateral
triangle as a base, but the fourth atom placed directly above one of the atoms instead of above the centre
of the triangle, see also Figure 3.3b) 

0 1 1
√

2

1 0 1
√

2
1 1 0 1√
2
√

2 1 0

 . (3.35)

The goal is then to find a representation f(P) of this matrix that is invariant with respect to simultaneous
permutation of the rows and columns. This means the following must hold

f(P) = f(QTPQ), (3.36)

with Q any permutation matrix.
A different kind of matrix similar to a proximity matrix is the Coulomb matrix

Mij =

{
0.5 · Z2.4

i , for i = j,
Zi·Zj

‖xi−xj‖ , for i 6= j,
(3.37)

with Zi the nuclear charge (atom number) of atom i. The diagonal entries are a polynomial fit of the
atomic energies as a function of the nuclear charge, and the off-diagonal elements represent the Coulomb
repulsion between nuclei. The Coulomb matrix and any proximity matrix are invariant with respect to
rotation and translation, but not to permutation. To achieve permutation invariance as well, one can use
the ordered eigenvalues of the Coulomb matrix [21]. Ordering the eigenvalues is less likely to lead to kinks
in the potential than ordering the proximities, because eigenvalues almost never cross. Crossings are very
unlikely and can usually only cross this way when in very specific configurations with certain kinds of
symmetry that the system is unlikely to end up in. In all other situations, avoided crossings happen (see
Figure 3.4 for an example), although the separation at these crossings can get very small. Unfortunately, the
number of eigenvalues is always the same as the number of atoms N , which means for N > 3, the system is
underspecified (since the number of dimensions of a system with three or more atoms is 3N − 6).

3.1.8 Proximity matrix eigenspectrum method

The descriptor used in this report is based on unpublished research by prof. dr. ir. Vianney Koelman. The
method is called the proximity matrix eigenspectrum (PME) method and is similar to the Coulomb matrix
method in that it uses the eigenvalues, but proximity matrices are used instead of a Coulomb matrix, and
the problem of underspecification is solved by using multiple proximity matrices.

The eigenvalues of a matrix A are the values λi that together with the eigenvectors vi are the solutions
to the eigenvalue equation

Avi = λivi. (3.38)

If A is an N ×N matrix, it will have N eigenvectors. If n eigenvalues have the same value λ, the algebraic
multiplicity of λ is n. The geometric multiplicity is the number of linearly independent eigenvectors associated
with λ. Since a symmetric matrix has N orthogonal eigenvectors, the geometric multiplicity is the same as
the algebraic multiplicity.

The inputs used for the neural network are the eigenvalues of a number of proximity matrices. The
number of proximity matrices should be at least enough to avoid underdeterminancy. This means the number
of independent inputs should be at least as large as the number of degrees of freedom. The number of degrees
of freedom/dimension of any system is NDoF = 3N − 6 if N > 2, with N the number of particles (for N = 1:
NDoF = 0, for N = 2: NDoF = 1). The size of the proximity matrix is N × N and therefore it has N
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Figure 3.4: The eigenvalues of the symmetric matrix 0 x+ y 0
x+ y 0 x

0 x 0

 ,

for three values of y. It shows that only when y = 0 (which makes the matrix persymmetric:
symmetric with respect to the northeast-to-southwest diagonal), the eigenvalues can cross.
When y 6= 0, an avoided crossing happens.

eigenvalues. The diagonal only has zeros, which means that the trace of the matrix (sum of its diagonal
elements) is always zero. The trace is always equal to the sum of the eigenvalues which must therefore also
be zero. This means that for each proximity matrix, only N−1 of the N eigenvalues give useful information.
Therefore, the minimum number of proximity matrices needed to avoid underdeterminancy is always 3 or
less.

Eigenvalues are ordered from low to high per matrix. The advantage of this approach is the avoided
crossings, which avoids the problem with kinks in the potential with using the interatomic distances them-
selves, since eigenvalues can only cross this way for very specific configurations with certain kinds of symmetry
that the system is unlikely to end up in. The eigenvalues are also invariant under permutation of the atoms
(switching two atoms).

We used several different proximities, all of which go to zero as the distance between the atoms goes
to infinity. Examples of such proximities are pij = 1/rnij (type A) or pij = (r0/rij − rij/r0)n (type B).

Figure 3.5 shows the eigenvalues for the six different configurations of two H2 molecules when the
distance between them is varied. Figure 2.6 shows the configurations and 3.6 shows special cases of these
configurations. It shows that the eigenvalues can only cross for the H and the X configuration when the
atoms form a perfect square or a tetrahedron, respectively. It is very unlikely that the system ends up in
one of these configurations by coincidence.

When there are atoms of different kinds, the different permutation symmetries need to be taken into
account; switching two of the same atoms should lead to the same description, but switching two atoms of a
different kind results in distinct configurations and should not have the same description. To take this into
account, a weight factor α`m is added to the elements of the proximity matrix. It depends on the species
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Figure 3.5: The eigenvalues of a proximity matrix (type B) with n = 2 and r0 = 32�A for
six different configurations of two H2 molecules, varying the distance R between the centers
of mass of the molecules. The distance between atoms within one molecule is kept constant
at the equilibrium distance. The red dashed line marks distances for which the configurations
form a special configuration shown in Figure 3.6.
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Figure 3.6: Special cases of the six different configurations of two H2 molecules. They are:
H) a square, X) a tetrahedron, T) an equilateral triangle, L) an equidistant spacing between
atoms, S45) a rhombus, S60) a rhombus composed of two equilateral triangles.

`,m of the atoms and is different per proximity matrix. For two CO2 molecules, this looks like
0 αCC/r

n
12 αCO/r

n
13 αCO/r

n
14 αCO/r

n
15 αCO/r

n
16

αCC/r
n
12 0 αCO/r

n
23 αCO/r

n
24 αCO/r

n
25 αCO/r

n
26

αCO/r
n
13 αCO/r

n
23 0 αOO1/rn34 αOO/r

n
35 αOO/r

n
36

αCO/r
n
14 αCO/r

n
24 αOO/r

n
34 0 αOO/r

n
45 αOO/r

n
46

αCO/r
n
15 αCO/r

n
25 αOO/r

n
35 αOO/r

n
45 0 αOO/r

n
56

αCO/r
n
16 αCO/r

n
26 αOO/r

n
36 αOO/r

n
46 αOO/r

n
56 0

 , (3.39)

with the first two rows and columns corresponding to the two carbon atoms and the other rows and columns
to the oxygen atoms. The values of the weights are also trained by the neural network and must therefore be
included in backpropagation. The disadvantage of this is the fact that taking the backpropagation further
back, through the computation of the eigenvalues, means the training becomes slower. This part of the
method is still untested, so it is possible there are other, better ways to implement multiple species.

3.1.9 Properties of the eigenspectrum

Since the proximity matrix P is symmetric and all its values are real, the eigenvalues are always real (this
holds for any Hermitian matrix). Any symmetric N ×N matrix has a system of N orthogonal eigenvectors.
These eigenvectors can also be used to diagonalize P [93, §7.2].

In this report, all the proximities that are used go to zero when the distance between two atoms
approaches infinity or is larger than a certain cutoff. This means when all atoms are infinitely far away, all
pij = 0 and therefore all eigenvalues are zero. This has an extra advantage in the fact that adding [?]bias
parameters is no longer needed when the potential value in the case of all atoms infinitely far apart is defined
to be zero. In that case the potential also goes to zero.

When the system consists of M non-interacting parts, all elements pij corresponding to two atoms
that are in different parts become zero, which means the proximity matrix becomes a diagonal block matrix
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with M blocks A1, . . . , AM , each corresponding to one part. The eigenvalues of the proximity matrix are just
the eigenvalues of each block, which are independent of each other. This means that there can be eigenvalue
crossings that are not avoided. It also means the sum of the eigenvalues of each block is zero. For a 2-atom
part this results in two eigenvalues with the same absolute value but opposite sign. For a 1-atom part (one
atom that does not interact with the rest), this results in an eigenvalue of zero.

In the case of proximity matrix type A, the proximity matrix elements do not actually go to zero if
the atoms are finite distances apart, so there are no eigenvalue crossings. Instead really small values of pij
outside of the blocks compared to within them lead to crossings that are avoided, but the separation between
the eigenvalues at this avoided crossing is very small.

As rij goes to 0 (meaning two atoms get very close together) pij goes to infinity (for both proximity
matrices type A and B if a positive n is used), which means at least one eigenvalue goes to infinity as well,
which can be good because the potential goes to infinity then as well.

3.1.10 Proximity matrix invariants method

Another possible way to use a proximity matrix P is to use other matrix invariants2. The quantities

tr
(
Pk
)
, (3.40)

for various k > 1 (the invariant with k = 1 is tr(P) = 0, which is why we only use k > 1), are invariants of P,
meaning they are independent of the basis of the matrix, hence the name proximity matrix invariants (PMI)
method. Figure 3.7 shows an example of these invariants. They can be calculated using the numpy functions
numpy.linalg.matrix power() or np.einsum() and numpy.trace(). Just as the Braams-Bowman-Xie
method, the invariants can be used as inputs for a linear regression or a neural network.

These PMIs are equivalent to sums of all possible closed walks over the particles. In graph theory, a
walk is a sequence of edges that connects a sequence of nodes. ‘Closed’ means the first and last node in this
sequence are the same. To show this, we can write the PMIs as a nested sum. First, the result of squaring
P is

(P2)ij =

N∑
`=1

pi`p`j . (3.41)

Extending this to higher powers, the result of raising P to the power k is then the following expression of
nested sums:

(Pk)ij =

N∑
`1=1

pi`1

N∑
`2=1

p`1`2 ...

N∑
`k−1=1

p`k−2`k−1
p`k−1j . (3.42)

This means the trace is

tr
(
Pk
)

=

N∑
i=1

(Pk)ii =

N∑
`1=1

pi`1

N∑
`2=1

p`1`2 ...

N∑
`k−1=1

p`k−2`k−1
p`k−1i. (3.43)

This expression consists of terms such as, for example, p12p23p31 for k = 3, where the last index of each pij
is equal to the first index of the next one, which corresponds to a walk over the atoms as nodes. The walk
is closed, because the first index of the first pij is equal to the last index of the last pij .

This means this method of constructing invariants is similar to the PIP method when using only the
polynomials that correspond to a closed walk over the atoms as nodes (for example, of the polynomials in
Figure 3.8, only 3.8d qualifies), although multiple PIPs are included per PMI. However, the PMIs are a lot
faster to calculate, because not all the monomials need to be calculated separately.

2Credit for this method also goes to prof. dr. ir. Vianney Koelman
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Figure 3.7: The first 3 PMIs tr
(
Pk
)
, with k = 2, 3, 4 of the symmetric matrix 0 x+ y 0

x+ y 0 x
0 x 0

 ,

for three values of y.

It is possible to also include all open walks (walks where the first and last node are not the same), by
not only taking the traces, but also using what we call the ‘trace complement’ of each matrix, which is the
sum of all its entries except for the diagonal. The trace complement tc(Pk) is an invariant with respect to
simultaneous permutation of the rows and columns and is therefore also a PMI. This means in Figure 3.8,
graphs 3.8a, 3.8b and 3.8f are also included.

For a linear regression, one can use tr
(
Pk
)

with any k > 1 and tc(Pk) with any k > 0. However, for a
neural network input this is not necessarily very useful, since higher order invariants can be written as linear
combinations of products of the lower ones. More specifically, the invariants tr

(
PN+1

)
and tc(PN ) and all

higher order invariants are linear combinations of products of the lower ones3. Feeding these coefficients into
the neural network does not give the network any useful extra input, so there are 2(N − 1) useful PMIs per
proximity matrix.

An advantage of this approach over the PME method is that the PMIs do not need to be ordered
anymore, which means there will never be any kinks, since sorting is what can cause kinks. In other words,
the coefficients are already a vector, not a set. When all proximities are zero, the PMIs are also zero, so
this approach also has the advantage that adding bias parameters is unnecessary and the potential will
automatically go to zero at infinity. These characteristic polynomials are also promising for characterizing
graphs and creating graph representations to use as input of a neural network [95, 96].

3A strict proof of this is outside the scope of this report, but the following explanation hopefully shows why this makes
sense. Any trace tr

(
Pk

)
consists of a sum of terms that correspond to a closed walk of length k over the atoms. For example,

tr
(
P6

)
will contain the term p12p23p32p23p34p41. Each of these terms contains k pairs of identical indices, because the last

index of each pij is equal to the first index of the next one and first index of the first pij is equal to the last index of the last
pij . Since k > N , this means there must be at least one pair that occurs twice. If we then split the walk between each of these
pairs, we can form two new closed walks. For example, p12p23p32p23p34p41 can be split as p12|p23p32|p23p34p41, which can be
rearranged to form a product of the closed walks p12p23p34p41 and p23p32. If the resulting shorter walks are still longer than
N , they can be split again, until all terms are products of closed walks of a length less than or equal to N . The first N trace
PMIs also consist of these terms.
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3.1.11 Comparison time complexity PIP vs PMI method

For both the PIP and the PMI method, one can use multiple proximity matrices that are parameterized
differently. Here we compare the computation of permutationally invariant quantities for one proximity
matrix, for N identical atoms. This gives us n = N(N − 1)/2 proximities per proximity matrix.

The number of monomials of degree k is(
n+ k − 1

k

)
, (3.44)

(combinations with replacement), with n = N(N − 1)/2 the number of proximities. For constant n and
k →∞, this scales as Θ(kn−1)4. The total number of monomials of degree k or less is(

n+ k

k

)
. (3.45)

For constant n and k →∞, this scales as Θ(kn). For constant k and n→∞, this scales as Θ(nk) = Θ(N2k).
In the PIP method these monomials are then grouped together in permutationally invariant polynomials
(PIPs). When all the atoms are identical, the number of PIPs of a certain degree k is the same as the number
of non-isomorphic (two graphs that have the same structure but different node labels are called isomorphic)
loopless multigraphs possible with N nodes and k edges (loopless: no loops from a node to itself allowed,
multigraph: multiple edges between two nodes allowed), because each PIP corresponds to one such graph.
Such graphs do not need to be connected. For example, there are 6 possible unique graphs with 4 nodes and
3 edges, and therefore also 6 possible PIPs of order k = 3 for a system of 4 atoms. Figure 3.8 shows these 6
graphs and the form of the monomials in the corresponding PIP. A way to calculate the number of possible
graphs is described in [97, §8.9.2, p. 664]. Table 3.1 shows the number of monomials and the number of
PIPs of a certain order for systems with identical atoms.

Scaling with k

PIP method: The total number of monomials scales as kn and for each monomial we need to multiply
up to k proximities together, which means the number of proximities per monomial scales as Θ(k), so time
complexity is Θ(kn+1).

PMI method: To get the PMIs up to order k, we need to do k−1 matrix multiplications of matrices
with size N × N . Matrix multiplication using a naive method that implements the matrix multiplication
C = AB

cij =

N∑
k

aikbkj (3.46)

with 3 nested for loops that loop over i, j and k has time complexity Θ(N3)5, which is a constant, because
we are keeping N constant. Therefore the time complexity is Θ(k).

This means the PMI method scales much better with k than the PIP method. However, this is
misleading, because the number of PIPs up to order kmax is much larger (Θ(knmax)) than the number of
PMIs, which is 2kmax− 1 (one trace and one trace complement per value of k, except no trace for k = 1). A
better comparison is the time complexity of creating the same number of permutationally invariant quantities.

4This is the so-called Big Theta notation, which describes the limiting behavior of a function as its argument goes to infinity;
f(N) = Θ(g(N)) means that as N goes to infinity, f(N) grows as fast as g(N). This is similar to the Big O notation, but the
Big O notation only provides an upper bound; f(N) = O(g(N)) means that as N goes to infinity, f(N) grows at most as fast
as g(N).

5There are methods that have a better asymptotic scaling, such as Strassen’s algorithm, but these only start being more
efficient for matrices larger than about 100× 100 [99, p. 402]
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Table 3.1: Number of PIPs of order k for a system of N identical atoms. The number of
monomials per order is indicated in parentheses. The number of PIPs for N ≤ 8 is taken from
A192517 in OEIS [98]. For N > 8, parts of the rows were added where k ≤ N/2, since these
the same as for N =∞ (A050535 in OEIS [98]).

N Order k of the polynomial

1 2 3 4 5 6 7 8

1 0 0 0 0 0 0 0 0
(2) (3) (4) (5) (6) (7) (8) (9)

2 1 1 1 1 1 1 1 1
(3) (6) (10) (15) (21) (28) (36) (45)

3 1 2 3 4 5 7 8 10
(4) (10) (20) (35) (56) (84) (120) (165)

4 1 3 6 11 18 32 48 75
(5) (15) (35) (70) (126) (210) (330) (495)

5 1 3 7 17 35 76 149 291
(6) (21) (56) (126) (252) (462) (792) (1287)

6 1 3 8 21 52 132 313 741
(7) (28) (84) (210) (462) (924) (1716) (3003)

7 1 3 8 22 60 173 471 1303
(8) (36) (120) (330) (792) (1716) (3432) (6435)

8 1 3 8 23 64 197 588 1806
(9) (45) (165) (495) (1287) (3003) (6435) (12870)

9 1 3 8 23 - - - -
(10) (55) (220) (715)

10 1 3 8 23 66 - - -
(11) (66) (286) (1001) (3003)

11 1 3 8 23 66 - - -
(12) (78) (364) (1365) (4368)

12 1 3 8 23 66 212 - -
(13) (91) (455) (1820) (6188) (18564)

13 1 3 8 23 66 212 - -
(14) (105) (560) (2380) (8568) (27132)

14 1 3 8 23 66 212 686 -
(15) (120) (680) (3060) (11628) (38760) (116280)

∞ 1 3 8 23 66 212 686 2389
(∞) (∞) (∞) (∞) (∞) (∞) (∞) (∞)
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(a) p3ij (b) p2ijpik (c) p2ijpk`

(d) pijpjkpik (e) pijpikpi` (f) pijpjkpk`

Figure 3.8: All possible non-isomorphic loopless multigraphs with 4 nodes and 3 edges, with
the form of the corresponding polynomial terms.

Scaling with q

What happens when we scale up the number of permutationally invariant quantities q we want?
PIP method: The total number of monomials of order k scales with kn−1. When N stays constant,

but k → ∞, the number of monomials per PIP goes to the number of permutations N !, which has Θ(1)
(since we are treating N as a constant). Since the number of monomials per PIP goes to a constant, this
means the number of PIPs needs to grow equally fast as the number of monomials, so q(k) = Θ(kn−1) as
well.

We only found an explicit expression for the number of PIPs of order k for N = 3 and N = 4. For
N = 3, the expression was taken from the page A001399 in OEIS [98]. The expression N = 4 is obtained
from the generating function given on the page A001399 in OEIS [98] by applying SeriesCoefficient in
Mathematica to this generating function (see PIPscaling.nb).

q3(k) = round

(
(k + 3)

2

12

)
(3.47)

q4(k) =
k5

2880
+

k4

192
+

13k3

288
+

7k2

32
+

7

128
(−1)kk +

9439k

17280
+

21(−1)k

128

+
2

27
(−1)kk cos

(
πk

3

)
+

2

9
(−1)k cos

(
πk

3

)
+

1

16
cos

(
πk

2

)
+

635

1152
,

(3.48)

which indeed gives q3(k) = Θ(k2) and q4(k) = Θ(k5), which are equal to Θ(kn−1).
The total number of PIPs then scales as Θ(kn), so the maximum order k we need scales as Θ(q1/n).

The number of monomials needed scales with q × nr of monomials per PIP. As mentioned previously, the
number of monomials per PIP goes asymptotically to the constant value N !, which is independent of q and
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therefore has Θ(1). For each monomial we need to multiply up to k proximities together, which means the
time complexity is Θ(q1+1/n).

PMI method: Just as with k, matrix multiplication also scales as Θ(1) with q. The number of PMIs
is q = 2kmax − 1, and the number of matrix multiplications needed is kmax − 1, so the time complexity for
finding q PMIs for constant N is Θ(q).

Scaling with N

However, for the purposes of creating neural network inputs, the scaling with the number of atoms N is
more important than that with the number of inputs q, because in that case only ’enough’ inputs are needed,
and scaling to higher q is not important. Enough inputs for a neural network usually means a number of
independent inputs that is equal to the number of degrees of freedom of the system. Adding more inputs
can sometimes help the network train faster, but should not be necessary because a sufficiently large neural
network is a universal approximator, which means it can model any function, and can model the other
possible inputs. This means scaling up to higher accuracies can be done by going to a larger neural network
instead of using more PIPs or PMIs.

For this reason, we assume the number of permutationally invariant quantities q that is needed scales
with the number of degrees of freedom 3N − 6 (N ≥ 3), which gives qneeded = Θ(N). When using these
quantities as neural network inputs, this is probably a reasonable assumption, but it is unclear if this is also
true for a linear regression.

PIP method: The number of possible permutations is N ! (which has Θ(NN )), which at first glance
makes it seem as if the calculation of the PIPs will scale very badly with N . However, the full number of
permutations is almost never necessary, so the method does not scale quite that bad. This is because when
N ≥ 2k + 2, the multigraphs representing the PIPs have at least 2 unused nodes (the k edges can use at
most 2k nodes). This means permutations that only differ in the unused nodes are equivalent. Even if there
are only 2 unused nodes, this still halves the number of relevant permutations.

Similary, when N > 2k the number of PIPs qN (k) is independent of N , because adding more nodes
that the edges cannot use will not change the number of multigraphs. Therefore for N > 2k, qN (k) = q∞(k).

Figure 3.9: A plot of q∞(k) , which is the number of PIPs of order k, for N = ∞. Source:
A050535 in OEIS [98].
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A precise scaling for how k needs to increase with N is difficult to determine. We know how qN (k)
scales with constant N and k →∞; namely as Θ(kN ), but this is obviously not valid for N =∞. However,
from Figure 3.9 it seems q∞(k) increases faster than exponentially6 (meaning q∞(k) = Ω(ak)), 7, with a
some unknown constant), which means k needs to increase at most logarithmically with N to keep up with
the 3N − 6 degrees of freedom, so k = O(logN) seems like a reasonable assumption.

This means it will take longer and longer, while increasing N , before a certain k does not give us
enough PIPs anymore and k needs to be increased. For example, if we want at least 3N − 6 PIPs, then
for N = 13 we need 33 PIPs, which means we need to take k up to 4 (see Table 3.1, k ≤ 4 gives us
1 + 3 + 8 + 23 = 35 PIPs). For N = 14 we need 36 PIPs, which means we need to take k up to 5, but this
gives us 1 + 3 + 8 + 23 + 66 = 101 PIPs, which means we will not have to go to a higher k until N = 36 when
we need 102 PIPs. This means we will almost always be in the N > 2k regime (specifically, if q needs to be
at least 3N − 6, we are always in that regime as N ≥ 8).

As mentioned earlier, the number of monomials of order k scales as Θ(nk) = Θ(N2k) when n → ∞
(or N → ∞). For each monomial we need to multiply up to k proximities together. This means the time
complexity of the PIP method is Θ(kN2k) = Θ

(
NΘ(logN) logN

)
. This is a lot better than the complexity of

Θ(NN ) one would expect based on the number of permutations. However, this better time complexity only
takes the computation of the monomials into account. Unfortunately, there can also be a significant cost to
figuring out what to calculate in the first place. For example, we need an efficient way to generate the PIP-
graphs, and then for each PIP we need to know which permutations are relevant, so we know which monomials
to calculate. Generating the PIP-graphs might be a bottleneck, because generating non-isomorphic graphs
usually means generating some graphs and then throwing away the ones that are isomorphic to a previous
graph [100]. The time complexity of determining if graphs are isomorphic is an unsolved problem in computer
science. It is not known to be solvable in polynomial time and might be NP-complete [101, 100]. However,
this is made easier by the fact that most of the time, the number and form of the PIPs is independent of
N (because regime N > 2k). Braams-Bowman-Xie use computer algebra system MAGMA [102], another
option is the program nauty [100].

PMI method: As mentioned earlier, we assume matrix multiplication has time complexity Θ(N3).
Since creating PMIs up to order k gives us q = 2k − 1 PMIs, this means the order k we need scales linearly
with the number of PMIs q we need, which we assume scales linearly with the number of atoms N . This
gives a total time complexity of Θ(N4).

See Table 3.2 for a summary of how various quantities scale with k, q and N . It is worth noting that
the scaling for both the PIP as well as the PMI method can be improved once a cutoff is applied, since that
results in sparse proximity matrices. To scale the PIP method up to more than 10 particles, a fragmented
PIP approach has been developed [103, 104] that uses this sparsity. For the PMI method it means sparse
methods for matrix multiplication can be used, which have a better asymptotic scaling.

3.1.12 Relation to graphs

Previously in this chapter, the connection between the PIPs and graphs was already mentioned. However,
graph theory is relevant to more than just the PIPs; a proximity matrix can also be considered the adjacency
matrix (specifically, an adjacency matrix with the weights of the edges) of an undirected weighted complete
graph, with the nodes corresponding to the atoms, the edges corresponding to pairs of atoms and the weight
of an edge (i, j) corresponding to the proximity value pij .

This correspondence means that any method that can transform a configuration of atoms into a
neural network input while taking into account permutation symmetry, can also transform a graph into such

6Further investigation of this graph leads us to believe the scaling is something like Θ(k!) = Θ(kk), because each time k
increases by 1, q∞(k) increases by a factor that increases linearly with k.

7This is the Big Omega-notation, which is similar to the Big O notation, but the Big Ω notation only provides a lower
bound; f(N) = Ω(g(N)) means that as N goes to infinity, f(N) grows at least as fast as g(N).
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Table 3.2: Scaling of certain quantities or algorithms with: the maximum order k while keeping
N constant, the number of permutationally invariant quantities q while keeping N constant,
and the number of atoms N with q proportional to 3N − 6.

Scaling

with k with q with N

Total nr. of monomials Θ (kn) Θ (q) Θ
(
NΘ(logN)

)
Total nr. of PIPs q Θ (kn) - Θ (N)
Nr. of monomials per PIP Θ (1) Θ (1) -
Max. k needed for PIP method - Θ

(
q1/n

)
Θ (logN)

Nr. of proximities per monomial Θ (k) Θ
(
q1/n

)
Θ (logN)

Time complexity matrix multiplication Θ (1) Θ (1) Θ
(
N3
)

Time complexity PIP method Θ
(
kn+1

)
Θ
(
q1+1/n

)
O
(
NO(logN) logN

)
Time complexity PMI method Θ (k) Θ (q) Θ

(
N4
)

an input, although not necessary the other way around, because of different kinds of atoms. This means
inspiration can be taken from graph theory and any descriptor that is based on one or more proximity
matrices has a much broader applicability than just physics. Graph-inspired methods have already been
applied to the local environment type of descriptors [24] described by (3.13). The PME method and the
PMI method can also be used to transform any arbitrary graph into a representation that can serve as input
for a neural network.

The eigenspectrum of the adjacency matrix is an example of a graph invariant or graph property. In
graph theory, a graph property or graph invariant is a property of graphs that depends only on the abstract
structure, not on graph representations such as particular labellings or drawings of the graph [105]. Other
examples of graph invariants are the characteristic polynomial and the determinant. Permutation invariance
for a graph means two isomorphic graphs will have the same representation.

Using machine learning on graphs is an active area of research [106] and various other ways to achieve
permutation invariance for graphs are being researched, such as graph convolution [107, 82, 108].

3.2 Methodology

3.2.1 Sampling

The data sets were created with Dalton, the use of which is explained in section 2.2. Several sampling
strategies were considered.

A sampling strategy used to get an initial impression of the potential landscape is quasi-random
sampling. For this, first a number of coordinates equal to the number of degrees of freedom to describe the
system should be defined. For each of the coordinates describing the system, a realistic range is defined, this
range is then divided in N intervals. For each combination of different intervals for the different coordinates
(N6 possibilities for a 6D system such as H2–H2), one data point in the volume these interval form together
is randomly chosen and the potential at that point calculated. This leads to faster convergence than grid
sampling, because usually some coordinates will be more important than others, but with grid sampling only
one coordinate is varied, which means the data points that vary that parameter are wasted ([109] discusses
this with regards to hyperparameter tuning, but the same principle applies here as well). It also converges
faster than random sampling, because the intervals make sure the data points are spread evenly over the
sampling space [110]. However, this approach is very coordinate-dependent. There is also the problem that
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the sampling should be spherically uniform, which complicates dividing the space in intervals (the problem
of spherically uniform sampling is also discussed in A.4).

A good way to sample the potential for coordinates that will actually be useful for calculating tra-
jectories, is to use trajectories to sample. This method we chose. However, to calculate these trajectories,
one needs a potential V. Or, more specifically, the gradient of the potential. This gradient is then used to
calculate the force F =∇V on each nucleus, which is then used to compute the velocities and positions for
the next time step using the velocity Verlet integration scheme. One option for the potential is to do an ab
initio calculation that also includes a gradient computation for each time step, which Dalton is capable of.
The following is an example of a .dal file that specifies that the analytical gradient of the CCSD potential
should be calculated as well:

** DALTON INPUT

.RUN WAVE FUNCTIONS

**WAVE FUNCTIONS

.CC

*CC INP

.CCSD

.MAX IT

50

*DERIVATIVES

**END OF DALTON INPUT

For H2–H2 data set 1 (see C.1 for the details) the calculations at all time steps were part of the data set.
For H2–H2 data set 2, the calculations done at each time step were discarded and every so many time steps
a more expensive ab initio calculation was done to create the data set. However, because of the increased
computational cost this was not a good option for the CO2–CO2 system. Another option is then to use an
existing analytical potential, such as the Hinde potential (described in 2.1.7) for H2–H2 combined with a
H–H potential, or the bond-bond potential combined with the Murrell-Guo-Zúñiga potential for CO2–CO2

(described in section 2.1.8), and compute the gradient of this potential numerically8. This was the approach
used for the H2–H2 data set 3 and the CO2–CO2 data sets (see C.2).

The trajectories that used only ab initio calculations were calculated with the Python script trajec-
tory sampling 2H2.py. The trajectories that used an analytical potential were calculated using LAMMPS
(version 3 Mar 2020), a molecular dynamics program that will be discussed in more detail in Chapter 4. For
H2–H2, the Python script lammps trajectory sampling 2H2.py took care of generating the LAMMPS input
scripts, importing the LAMMPS results and then creating Dalton input files and calling Dalton. For CO2–
CO2 this was done with lammps trajectory sampling 2CO2.py. These two scripts run several LAMMPS
trajectories in parallel and then several Dalton calculations in parallel using the Python multiprocessing
library.

For the H2–H2 data sets 1 and 2 and the CO2–CO2 data set 1, the same kind of mistake was made;
the sampling of the initial orientation of the each molecule was not uniform. For H2–H2 data sets 1 and
2, the initial orientation of the molecules was determined by sampling the angles θ and φ, which leads to
relatively more configurations that are mostly oriented along or close to the z-axis. This is also discussed
in A.4. This did not seem to lead to a less accurate fit for other configurations but is not good practice.
For the CO2–CO2 data set 1, the initial orientation was determined by applying a random rotation to the
molecule three times, once around each axis. This is also not perfectly spherically uniform. In H2–H2 data
set 3 and CO2–CO2 data set 2 this was done correctly, and this is why parts of these data sets were used as
the final test set.

When sampling for H2–H2 data set 3 and both CO2–CO2 data sets, the molecules were also given

8Thank you to dr. ir. Jesper Janssen for providing a C++ implementation of the bond-bond potential and for helping with
the implementation of the Hinde potential.
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an initial rotation. This rotation was around an axis perpendicular to the interatomic axis for H2–H2, but
around a random axis for CO2–CO2. This is not strictly physical, and for trajectories that are used to
approximate cross sections, more care was taken (see 4.2.3), but since the purpose of the sampling is just
to get a good representation of the possible configurations, we decided this was good enough. A possible
consequence of this is that there are more states with high velocity, because rotation around an axis close
to the molecular axis has very low moment of inertia.

In all H2–H2 data sets, ab initio points with more than 20 iterations were removed, since this indicates
that the CCSD calculation was very slow to converge and therefore was most likely not a good result (a
multireference calculation might be more suitable for these configurations).

The hardware used for H2–H2 sampling was a computer with an Intel Core i7-4930K Processor @ 3.4
GHz with 6 cores and 64GB RAM. For CO2–CO2 sampling, two computers were used; one with an AMD
Ryzen Threadripper 2990WX 32-Core Processor @ 3.0GHz and 96GB of memory, and one with a AMD
Ryzen Threadripper 3960X 24-Core Processor and 64GB RAM.

3.2.2 Proximities

We tried several different kinds of proximities. The first kind of proximity matrices we are using contain
proximities that are powers n of 1/rij (proximity matrix type A), with a different value of n> 0 for each
proximity matrix: 

0 1/rn12 1/rn13 1/rn14

1/rn12 0 1/rn23 1/rn24

1/rn13 1/rn23 0 1/rn34

1/rn14 1/rn24 1/rn34 0

 , (3.49)

with rij the distance between atom i and atom j.
To force the potential to zero for distances larger than r0, the distances rij can be replaced by an

expression involving a cutoff r0, which results in proximity matrix elements (i 6= j)

p
(n)
ij =

{
( r0rij −

rij
r0

)n, rij ≤ r0,

0, rij > r0,
(3.50)

(proximity matrix type B). This is a continuous function as long as n > 0, if n = 0 then pij goes to 1 at
rij = r0 and if n < 0 it goes to infinity. The derivative of pij with respect to rij is

dpij
drij

=

{
−n( r0rij −

rij
r0

)n−1
(
r0
r2ij

+ 1
r0

)
, rij ≤ r0,

0, rij > r0,
(3.51)

which is continuous if n > 1. For this reason, all n that are used are more than 1.
These first two types of proximities both go to infinity as rij goes to zero. If this is not desirable, the

following proximities can be used instead (proximity matrix type C)

p
(n)
ij =

{(
r0

r0+rij
− rij

2r0

)n
, rij ≤ r0,

0, rij > r0,
(3.52)

which goes to 1 at rij = 0, and similar to type B proximities is continuous if n > 0 and smooth if n > 1.
These type A, B and C proximities are shown in Figure 3.10.

Another type of proximity we tested are the Morse proximities

p
(a)
ij = exp(−r/a), (3.53)

56



Figure 3.10: A, B and C proximities

which are shown in Figure 3.11. These are the kind of proximities that are used for the PIP method, for
which a value of a of around 1�A is a standard choice [25]. A Morse proximity with a = 1�A is very similar
to a C-proximity with n = 13 and a cutoff of 10�A.

Another kind of proximities we tried are Gaussian proximities,

p
(a)
ij = exp

(
−ζr2

)
, (3.54)

which are similar to the radial part of the basis functions used for ab initio methods. They are shown in
Figure 3.12. Because these functions have been optimized to describe the electron wave functions of a
system, we hoped (in vain) they might also be suitable to describe the potential in the same system.

The last type of proximities we tested are the following sine/cosine proximities, which consist of a sine
or cosine combined with the proximities B:

p
(ka)
ij =

{
sin((n+ 1)rijπ/r0) ·

(
r0
rij
− rij

r0

)
, rij ≤ r0,

0, rij > r0.
(3.55)

p
(kb)
ij =

{
cos
((
n+ 1

2

)
rijπ/r0

)
·
(
r0
rij
− rij

r0

)
, rij ≤ r0,

0, rij > r0.
(3.56)

(3.57)

These sine/cosine proximities are smooth as long as n is an integer. See also Figure 3.13. Sine/cosine
proximities are not strictly proximities since they are not monotonic and non-negative. However, for the
purpose of linear regression or neural network inputs, this is not actually a problem. These proximities can
also be combined with the proximities C if it is desired that they do not go to infinity near r = 0.
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Figure 3.11: Morse proximities for a = 0.5, 1.0, 1.5, 2.5, 5.0a0.

Figure 3.12: Gaussian proximities
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Figure 3.13: Sine-cosine proximities

The Gaussian proximities and sine/cosine proximities are similar to some of the atom-centered sym-
metry functions used by Behler [111, Fig. 3].

3.2.3 Neural network architecture

The neural network was implemented and trained using PyTorch (version 1.5.0), an open source machine
learning Python library [112]. PyTorch can perform automatic differentiation (and therefore automatic back-
propagation), through all kinds of operations. This gives a lot of flexibility when designing non-conventional
networks, such as the network used for this project, which needed to include not only regular dense layers,
but also the step from interatomic distances to eigenvalues. PyTorch also supports GPU computing with
CUDA.

For each neural network attempt, 5-fold cross-validation is performed, which means the network is
trained 5 times, each time a different 20% of the data is used for testing, and the network is trained on the
other 80%. A separate testing data set was saved until the very end.

The data is divided per trajectory; meaning all points of one trajectory end up in the same set. This
is done because adjacent points from the same trajectory can be very similar, which would make it easier
for the network to estimate the energy of a point if it was trained on the adjacent point, which could lead
to a higher testing performance that does not accurately represent how well the method actually works.

For the PME method, the eigenvalues were rescaled such that each feature had a variance of 1. If the
variance is not 1, but for example 100, ideally the neural network should be able to compensate for that by
simply learning that all the weights connected to this input node should be 100 times smaller, which will
give the exact same result. However, this takes up training time, which means rescaling the data can help
the training along.

The file fleur NN.py contains some custom activation functions and the neural network classes. This
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file is imported in 2 of the scripts that actually train a network, which are NN crossvalidation charpoly.py

(for the PMI method for H2–H2) and NN crossvalidation 2CO2.py (for the PME method for CO2–CO2).
NN crossvalidation.py is for the PME method for H2–H2 and includes its own network class definition.
The file fleur NN.py contains the following neural network classes, that each subclass the PyTorch Module
class:

Net eigenvals A network class for the eigenspectrum method. It is intended to be a general class (for
any system) and is the only class as of yet that can handle different types of atoms. It includes the
trainable weights for different pairs of atoms described in 3.1.8.

Net PIPs A network class that takes PIPs as input, only for 4 identical atoms. It uses the 10 PIPs in
(3.23).

Net charpoly A network class for the PMI method for a system of N identical atoms. Uses proximities
type B.

Net charpoly altproxes A subclass of Net charpoly that takes a keyword to use different proximities.

3.2.4 Training the neural network

The Adam optimizer was used with a decreasing learning rate. Various settings were tried, but generally a
really high number of epochs of around 15,000 epochs was used. Usually, less than a hundred epochs are
used to train neural networks, for example, the very successful image recognition NN AlexNet was trained
in just 90 epochs[113]. However, it seems it is not unusual to use a much larger number of epochs in PES
fitting; the review article by Manzhos and Carrington [69] mentions several NN fits with tens of thousands
of epochs9. The high number of epochs is probably a result of the fact that we want a high accuracy so we
keep training as long as the loss is still decreasing. Since there is not a lot of noise in the data, training can
go on for a long time before overfitting becomes a problem.

The learning rate started at 4× 10−3 and was halved every 2000 or so epochs.
5-fold cross-validation was used to check if the results were consistently good. This means all the

data except the final test set was divided into five ‘folds’, and the network was trained five times, each time
leaving out one fold to use as validation data to check overfitting.

The test set for H2–H2 consists of 5000 trajectories from H2–H2 data set 3, which gives 49925 data
points. Removing data points with more than 20 iterations removed 11 data points. Data points where the
intermolecular distance was more than 10.6�A were also removed, as at this distance there was no H2–H2

interaction anymore and the energy would be too easy to predict, leading to an inflated test score. Removing
these removed 10482 data points (in the future, it would be smarter to implement a check during sampling
such that these points are not used for ab initio calculations in the first place).

The resulting 39432 data points were the entire test set. There was also a reduced test set, from
which we attempted to remove possible outliers. This meant keeping only configurations with 4 < R < 20
bohr and all 0.8 < r < 7.56 bohr, and making sure r12 and r34 were the smallest distances (meaning, two
atoms from different molecules are not closer together than two atoms from the same molecule). This is
done because these configuration space around these outliers was sampled very sparsely and its performance
there would often make the overall performance look very bad, even though the models were pretty accurate
on the configurations that were sampled thoroughly.

Cross-validation sets were often also reduced in various ways, but less consistently. Table 3.3 gives an
overview.

9They suggest using the Levenberg-Marquardt algorithm instead of gradient descent or the Adam optimizer, which for them
brought it down to 500-2000 epochs. This was not implemented in this project, but could be worth a try in the future.
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Table 3.3: Data sets that the various methods were trained and tested on. (Testing was con-
sistent, to make comparison between methods at least somewhat accurate, the crossvalidation
data is not as consistent, because a lot of experimentation was done)

Data set Size Kept configurations where

All methods, test set entire 3 (part) 39,432 R < 20 bohr, it ≤ 20

All methods, test set reduced 3 (part) 37,809
R < 20 bohr, it ≤ 20, 0.8
bohr < r < 7.56 bohr, r12
and r34 are smallest

PME NN method, cross-validation 2 23,908 R > 4 bohr, it ≤ 20

PIP method, cross-validation entire 2 7,291 R < 20 bohr, it ≤ 20

PIP method, cross-validation reduced 2 6,906
R < 20 bohr, it ≤ 20, 0.8
bohr < r < 5.67 bohr, r12

and r34 are smallest

PMI method, cross-validation entire 2 7,291 R < 20 bohr, it ≤ 20

PMI method, cross-validation reduced 2 6,906
R < 20 bohr, it ≤ 20, 0.8
bohr < r < 5.67 bohr, r12

and r34 are smallest

PMI NN method, cross-validation 2 6,906
R < 20 bohr, it ≤ 20, 0.8
bohr < r < 5.67 bohr, r12

and r34 are smallest
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Since the last layer had no activation function (or, equivalently, the linear activation function f(x) =
x), it can also be trained using a least squares fit. Because a least squares fit gives the result that minimizes
the average squared error (and therefore also the root mean square error), this immediately gives the optimal
weights for the connections from the last hidden layer to the output layer, given all other weights. This gives
a big improvement in prediction accuracy in very little time, if the results were not properly converged yet.
If they are, this fit should make only a small difference. This makes the least squares fit a good check of
the convergence. Unfortunately, using a least squares fit for the last layer was very prone to overfitting, so
unless the last layer contained only a few nodes, this trick is only used as a convergence check.

The hardware that was used for most of the training was a computer with an Intel Core i7-4930K
Processor @ 3.4 GHz with 6 cores and 64GB RAM. Later on, training was also done on a GeForce RTX
2080 SUPER GPU. The GPU only sped up training by a factor of about 2, which was less than expected,
so perhaps with some careful optimization the training time can be brought further down.

3.2.5 Hyperparameter optimization

For the PME method for H2–H2, an expansive search for the hyperparameters was performed, mostly using
data set 1. Some tables and figures showing different hyperparameters can be found in D.

Using 3 eigenvalues per matrix instead of 4 performs equally well. Adding more proximity matrices
gives no extra advantage, which shows that the eigenvalue representation is a very good way to summarize
the configuration.

For the activation function softplus and softsign were about equally good. The half-square activation
was a bad choice, because the square part did not handle outliers well.

It was found that a bigger dataset needs fewer epochs to converge, which makes sense because the
number of updates to the network is equal to number of batches × number of epochs.

Several different combinations of exponents for the proximity matrices were tried for type A proxim-
ities. It made sense from a physics point of view to try exponents such as -6 and -2, because the Coulomb
force scales with r−2, dipole-dipole forces scale with r−3 and London dispersion forces scale with r−6. How-
ever, these exponents did not perform any better or worse than similar exponents such as -5 or -1.5. The
only noticeable differences were that higher exponents performed worse, presumably because they amplify
outliers when the proximities are type A or B. A possible reason for this could be numerical issues such as
underflows.

It turned out that when using proximities type A, adding bias parameters improves the result, even
though they should not be strictly necessary, presumably because more parameters means better fitting
capabilities. However, proximities type B (with no bias) turned out to work better. Proximities C were
never used with a PME NN. For the PMI NN method, proximities B, C and Gaussian ones were tried, of
which the proximities C performed the best.

3.2.6 PIP method

The PIP method was implemented up to 7th order for the H2–H2 system in Python as well, in the script
Braams auto 7.ipynb.

Creating all unique PIPs up to a certain order is non-trivial, which is why a brute force method was
used. For each order, all possible sets of 6 non-negative integers that sum to that order were generated (for
example: 0, 0, 0, 0, 1, 1 and 0, 0, 0, 0, 0, 2 for order 2), and then for each of those sets, we created a set of all
permutations of these integers. For example, for {0, 0, 0, 0, 0, 1} this was

{[0, 1, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0], [0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1]} .

In each permutation, the numbers correspond to the exponents for the proximities p12, p13, p14, p23, p24, p34.
For each of these permutations, a set of permutations that correspond to permutations of the atoms was
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created. Each of these sets then corresponds to one PIP, but there are a lot of identical PIPs, which are
removed. This means that the computational complexity is far worse than the Θ(q1+1/n) indicated in Table
3.2. It is possible to do this more efficiently, for example by using graph generating software nauty[100].

3.2.7 PMI method

The PMIs are used for both linear regression as well as NN inputs. The former is implemented in the
Python script linear regression.py and the latter in NN crossvalidation charpoly.py. For the linear
regression the PMIs tr

(
Pk
)

and tc(Pk) are used, with k from 2 to various orders (the maximum order is

experimented with) for the tr
(
Pk
)

PMIs. For the tc(Pk) PMIs, k = 1 is also used (tr
(
Pk
)

is zero when

k = 1). For the NN method, only the PMIs tr
(
Pk
)

with k = 2, 3, 4 are used, because higher order terms can
always be written as a product of these PMIs.

3.3 Results H2–H2, PME method

The PME method described in 3.1.8 was the main focus of this project.
In the end, the neural network with the best RMSE in cross-validation was chosen and this network

was used on the test set. This best neural network uses proximities type B (see (3.50)) with n =2 and 3 and
a cutoff of 30�A. It has two hidden layers of 200 nodes each that use the softplus activation function. The
output layer had no activation function (or, equivalently, the function f(x) = x).

This network (NND 48) had an average validation RMSE of (5.9± 1.3) meV during cross-validation.
On the test set, this network managed an RMSE of (19.58± 0.66) meV on the entire test set, and (6.50± 0.66) meV
on the reduced test set. The performance on the reduced test set is better than on the entire test set, which
makes sense, because this network was trained on data more similar to the reduced test set (see Table 3.3
for specifics). The performance on the reduced test set is still slightly worse than the performance on the
validation set, which is most likely because the training/validation set (data set 2) contained too many ‘easy’
configurations (large R). Figure 3.14 shows a crossplot of the neural network results for both the entire as
well as the reduced test set. Figure 3.15 shows histograms of the error of the test set of this network. It shows
that the goal of getting an accuracy better than the thermal energy at room temperature (approximately 25
meV) is achieved for the vast majority of configurations.

The accuracy is comparable to other neural network approaches to PESs. For example, the PES
of amorphous Li3PO3 by Li et al. [23] using an approach that sums the contributions of each atom (see
(3.13)) inspired by work by Behler [111] reached an RMSE of 5.5 meV/atom. The PESs of H + H2 and
Cl + H2 systems by Jiang and Guo using PIPs as inputs (see 3.1.6) reached a RMSE of 3.6 and 4.2 meV,
respectively. However, Kamath et al. [114] manage to create a NN PES of formaldehyde (H2CO) with a
really low RMSE of 0.14 meV, so it is unlikely our results are state-of-the-art (although it is unclear how
meaningful comparisons of RMSE values of different systems really are). Their results used up to 2500
different configurations, which covered a range of energies of approximately 0 – 2 meV, using sampling similar
to Boltzmann sampling. This is a smaller range of range that what we are working with, but also a smaller
training set.

3.3.1 Comparison to ab initio potential

Figure 3.16 shows the neural network potential for one H2-molecule, varying the bond length and com-
pares it to the Dalton results 10. It shows that the neural network does a very good job at recreating the

10Because the neural network always needs the same number of inputs, this curve was obtained by using the coordinates of 4
H-atoms, with the two molecules very far apart (beyond the cutoff of 30�A) and varying the bond length of one of the molecules
while keeping the second molecule at the equilibrium bond length. The bond energy of the second molecule is then added to
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Figure 3.14: Crossplot of the results of the best neural network using the PME method.

intramolecular potential.
Figure 3.17 shows the neural network potential for the 6 configurations of two H2-molecules in 2.6 (H,

X, T, L, S45 and S60 configurations), and compares it to the Dalton results. 2 times the H2 bond energy
was added to normalize the data. It shows that while the potential is qualitatively approximately correct –
the steep potential wall and the small Van der Waals well are both present – the location of the potentiall
wall is slightly off and the Van der Waals well is often exaggerated. It is unclear why this happens.

It also shows that the neural network has an error of about 0.5 to 2 meV in the estimated bond energy,
since there is a shift of about 1 to 4 meV in the energy at large R. The potential is forced to zero when using
proximities type B, but only when all atoms are further apart than the cutoff, not when only two molecules
are beyond the cutoff. For this potential that means it goes to a constant value for R > rcutoff.

3.3.2 Gradient

In the end the goal of this potential modelling is to use the potential for trajectories, which means it is
not the potential itself, but the gradient which is of interest. The gradient is used to calculate the forces
the particles experience. Dalton can also calculate an analytical gradient. One trajectory (the trajectory of
H2–H2 data set 2 with the smallest R in it, in order to pick the most difficult trajectory) was chosen and was
entirely calculated with aug-cc-pVTZ, both the potential as well as the gradient. This trajectory is shown
in Figure 3.18. One of the 5 folds was trained on points from this trajectory, which is why results from all 5
folds are shown.

The analytical gradient of the neural network potential is calculated by differentiating the entire chain
from Cartesian coordinates to proximity matrix to eigenvalues to the neural network to the predicted energy
value F. Figure 3.19 is a crossplot of the magnitude of the gradient on each atom predicted by the neural
network against the real (ab initio) gradient. It shows that in general, the magnitude of the gradient is

the predicted energy.
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(a)

(b) Zoomed out, with logarithmic y-axis to show outliers.

Figure 3.15: Histograms (one per fold) of the results of the best NN that uses the PME method
on the test data set.
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Figure 3.16: The neural network potential (all five folds) for one H2-molecule when varying
the bond length, compared to the Dalton results

very accurate. Figure 3.20 shows a histogram of angle between the gradient vector predicted by the neural
network and the gradient vector from the ab initio data on one atom (‘gradient vector’ refers to the 12D
gradient vector). It shows that the vast majority of the time, this angle is very small, which means that the
direction of the gradient vector is also very accurate. There are some outliers where the angle is pretty large
and therefore the direction is pretty inaccurate. However, Figure 3.21 shows that these large angles only
happen when the gradient is really small.

The numerical gradient is also calculated, using with the central difference method, with various dx.
Figure 3.22 shows the average relative error in the gradient (the magnitude of the error vector divided by the
magnitude of the gradient vector) for the analytical gradient and for the numerical gradient. It shows that
strangely enough, for very specific values of dx, the numerical gradient is actually slightly more accurate
than the analytical gradient.

3.3.3 Effect of crossing eigenvalues

The motivation for using the eigenvalues as a permutationally invariant representation is the avoided
crossing phenomenon, which means eigenvalues can only cross when the configuration has a certain kind of
symmetry. When eigenvalues cross and are then sorted, there will be a kink in the curve of sorted eigenvalues,
which will lead to a kink in the potential.

We expected that the symmetric configurations where this is a problem would be very rare, however
this turned out to be wrong for two reasons: 1) when two parts of the system don’t interact, the matrix
becomes a block matrix and a symmetric state becomes much more likely, 2) even when the crossing is
technically avoided, the separation between the eigenvalues can be so small that in practice they might as
well cross.

With the proximities of type B and C this is the case when the intermolecular distance is larger than
the cutoff distance. With proximities A, the Morse proximities and the Gaussian proximities, the molecules
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(a)

(b) The Van der Waals well (x-axis is zoomed out, y-axis is zoomed in)

Figure 3.17: Comparison of the intermolecular potential by the neural network (all five folds)
and the Dalton results for the 6 configurations shown in 2.6, while varying the distance between
the centers of mass of the molecules.
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Figure 3.18: Trajectory chosen as test trajectory. Two H2-molecules exchange an atom. Each
colored curve is the path of one atom and the starting point of each atom is marked with a dot.
The pink/purple molecule starts at the top, moving down and the cyan/blue molecule starts at
the bottom, moving up.

Figure 3.19: The magnitude of the predicted gradient compared to the magnitude of the ab
initio gradient
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Figure 3.20

Figure 3.21: A histogram of the angle between the predicted gradient vector and the gradient
vector from the ab initio data, plotted against the magnitude of the gradient vector, for all five
folds
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Figure 3.22: Numerical gradient compared to the analytical gradient, for each fold

are never technically completely non-interacting, but the interaction does become negligible, resulting in a
very small separation of the eigenvalues. For the B and C proximities, this also happens already before the
cutoff.

For H2–H2, this means there is an avoided or just-barely-avoided eigenvalue crossing every time both
molecules have the same bond length when they are some distance apart. Figure 3.23 shows this occurring
during the same trajectory that was discussed in the previous subsection (Figure 3.18). It also shows the
absolute value of the dot product between an eigenvector and the same eigenvector at the previous time
step. Since each eigenvalue has a unique corresponding eigenvector, and eigenvectors belonging to different
eigenvalues are orthogonal, the dot product can be used to check if the eigenvector corresponds to a different
eigenvalue than in the previous time step. The network used for this plot and others in this subsection was
a different one than the best one discussed in previous parts of this chapter, but with very similar settings.
The cutoff was 30 Å, which means R was within the cutoff the entire time.

Figure 3.24 shows that the separation of the eigenvalues in an avoided crossing gets very small very
quickly. For example, if the intramolecular proximities are 1 and the intermolecular proximities are ap-
proximately 0.1, the minimum eigenvalue separation is about 0.02. If the intermolecular proximities are
approximately 0.01, the separation is about 0.002. The ratio between intramolecular proximities and inter-
molecular proximities gets much smaller than 0.01 during a trajectory. This is shown by Figure 3.25, which
shows the value of the proximities (type B, cutoff 30 Å, n = [2, 3]) during the trajectory in 3.18.

We caught this problem pretty late in the project, because the results for H2–H2 still end up smooth.
However, this is purely a result of the neural network simply being trained very well and learning to smooth
out the kinks. Figure 3.23 shows this by showing the gradient error along a trajectory for networks that are
in various states of convergence near a near-avoided crossing. Figure 3.23 shows the entire trajectory.

At first we suspected that these kinds of crossings are specific to a four-atoms 3D trajectory, and that
in 2D or with more atoms the chance of a crossing decreases exponentially. However, this turned out not to
be the case. Figure 3.26 shows a 2D H2–H2 trajectory, and Figure 3.27 shows that here eigenvalue crossings
also occur. This trajectory was created by removing the y component from the trajectory in Figure 3.18.
Figure 3.26 shows a 3D 5H trajectory, and Figure 3.29 once again shows that eigenvalue crossings still occur,
although not exactly when r1 = r2. This trajectory was created from the trajectory in Figure 3.18 by adding
a fifth 5th atom that moves in a straight line (grey line in figure). For both trajectories no new molecular
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Figure 3.23: The bond lengths r1 and r2, the potential, the eigenvalues, the error in the gradient
and the absolute value of the dot product between an eigenvector and the same eigenvector in
the previous time step. The colors in the gradient error plot gradually go from dark purple to
blue to green to yellow and indicate how long the network was trained; the darkest purple line
corresponds to a neural network that was trained for only 100 epochs, the yellow line to one
that was trained for 7000 epochs and the other colors something inbetween.
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Figure 3.24: The separation between the lowest two eigenvalues of the asymmetric matrix
0 1 1.4y 1.5y
1 0 1.3y 1.6y

1.4y 1.3y 0 x
1.5y 1.6y x 0

 ,

for two values of y. The inset shows the eigenvalues as x is varied, with the blue circle marking
the avoided crossing whose separation is plotted.

Figure 3.25: The values of the proximities (type B) over the course of a trajectory
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Figure 3.26: A H2–H2 trajectory in 2D.

dynamics or ab initio calculations were done. The results were interpolated to make the time step 100 times
smaller.

3.4 Results H2–H2, PIP method

The PIP method described in 3.1.6 to 7th order, which has 120 coefficients for H2–H2, was applied to several
different proximities (this is one more than in Table 3.1, because there is also a term of order 0, which is a
constant). The results are in Table 3.4. The best result was achieved with Morse proximities with a = 2 a0.
The proximities A and B did not perform very well, most likely because the fact that they go to infinity near
r = 0. The proximities C however reached an RMSE of 8.5 meV, which is in the same order of magnitude
as the Morse result.

Since the best results were obtained with the Morse proximities with a = 2 a0, these proximities were
used for the test set. The results are in Table 3.5. Figures 3.30 and 3.31 show a crossplot and histograms,
respectively, of the error of the test set, for the fits that were trained on the entire cross-validation set.

Table 3.6 shows the first 10 coefficients in one of the least squares fits, their corresponding PIPs and
the average value of each PIP, as well as the 5 PIPs with the biggest contributions of all 120 PIPs. See
also Figure 3.8, which shows the corresponding graphs for the four 3rd order PIPs. It shows that of the
first 10 PIPs, almost all the PIPs corresponding to open walks and closed walks seem to be more important
than the disconnected graphs and the star graph (a star graph is a graph whose nodes all have only one
edge connected to them, except for one internal node that connects to all nodes). For both the 2nd and the
3rd order PIPs, the disonnected graph has the smallest contribution. This makes sense, since then you are
trying to sum two different particle interactions. It also shows that the 5 most important PIPs are all open
or closed walks. This is a promising sign for the methods that use the PMIs, since the PMIs include only
the open and closed walks.
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Figure 3.27: The bond lengths r1 and r2, the eigenvalues and the absolute value of the dot
product between an eigenvector and the same eigenvector in the previous time step, for a 2D
H2–H2 trajectory

Table 3.4: The results for the PIP method on the validation data for each proximity type. For
comparison, the RMSE achieved by simply always predicting the mean is also given.

Type of proximities
Parameter value n

or a (a in bohr)
RMSE validation

(meV)

Proximities A 2 170.2 ± 161.1
Proximities B (cutoff=15.9Å) 2 1764.7 ± 386.8
Proximities C (cutoff=10.1Å) 2 61.5 ± 2.8
Proximities C (cutoff=10.1Å) 13 24.92 ± 23.6
Proximities C (cutoff=10.1Å) 15 52.5 ± 45.2
Proximities C (cutoff=15.9Å) 15 8.5 ± 3.0
Morse 2 4.7 ± 0.4
Morse 5 19.3 ± 1.5
Always predict mean - 1815. ± 64.
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Figure 3.28: Trajectory with 5 H-atoms.

Table 3.5: Results of the PIP method on the validation data and on the test data. Morse
proximities met a = 2 a0.

RMSE on entire test set (meV) RMSE on reduced test set (meV)

Trained on entire cross-validation set 10.70 ± 0.33 meV 5.94 ± 0.41 meV
Trained on reduced cross-validation set 26.40 ± 3.67 meV 4.37 ± 0.14 meV

Validation RMSE

Trained on entire cross-validation set 11.94 ± 2.93 meV
Trained on reduced cross-validation set 4.71 ± 0.36 meV
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Figure 3.29: The bond lengths r1 and r2 and the distance of the 5th atom to its closest neighbor,
the eigenvalues and the absolute value of the dot product between an eigenvector and the same
eigenvector in the previous time step, for a trajectory with 5 H-atoms

76



Table 3.6: PIPs up to order 3 with their corresponding coefficient, as well as the average value
of the PIPs applied to the training set, and the average contribution to the potential (which is
the average value times the coefficient). Morse proximities with a = 2 a0, trained on one fold
of the full crossvalidation set.

Contributions of PIPs up to order 3

PIP Graph type Avg. value Coefficient value Avg. contribution (Eh)

pij Open walk 0.89 4.08× 10−2 3.63× 10−2

p2
ij Closed walk 0.37 0.29 0.11
pijpik Open walk 7.86× 10−2 −7.37× 10−1 −5.80× 10−2

pijpkl Disconnected graph 0.16 −4.21× 10−2 −6.88× 10−3

p3
ij Open walk 0.17 −1.76× 101 -3.01
p2
ijpik Open walk 4.05× 10−2 5.75 0.23
p2
ijpkl Disconnected graph 0.14 −1.99× 10−1 −2.84× 10−2

pijpjkpik Closed walk 3.05× 10−3 10.52 3.21× 10−2

pijpikpil Star 3.16× 10−3 −1.94× 101 −6.14× 10−2

pijpikpkl Open walk 1.74× 10−2 3.93 6.85× 10−2

PIPs with the highest contributions of all 120 PIPs

p4
ij Closed walk 8.51× 10−2 68.94 5.87
p6
ij Closed walk 2.34× 10−2 94.91 2.22
p3
ijpikpkl Open walk 5.88× 10−3 58.29 0.34
p4
ijpikpil Open walk 3.65× 10−4 780.86 0.28
p4
ijpik Open walk 7.58× 10−3 36.57 0.28
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Figure 3.30: Crossplot of the results of the PIP method with Morse proximities with a = 2 a0
on the test data set.

3.5 Results H2–H2, linear regression on PMIs

A lot of linear regressions on the PMIs tr
(
Pk
)

and tc(Pk) (described in 3.1.10) were tried, with various types
of proximities and parameters (n for proximities A, B and C, a for Morse proximities). The full results are in
Appendix E. The results in this appendix are from fits on cross-validation with suspected outliers removed.
We also tried to use the first 4 PMIs as a neural network input, but this did not perform any better than a
linear regression.

There are a lot of different parameter combinations. The fits were to:

� only the tr
(
Pk
)

PMIs,

� to the tr
(
Pk
)

(trace) as well as the tc(Pk) (trace complement) PMIs,

� or to combinations of tr
(
Pk
)

with k = 2, 3, 4 (for example tr
(
P2
)

tr
(
P3
)
).

Including the trace complements tc(Pk) as well helped, but making combinations of the PMIs did not. Table
3.7 shows the best result achieved for each type of proximity. The C proximities performed the best, the
Morse proximities also did well. The B proximities did very badly, which was most likely because of numerical
issues (the condition number of the matrix with the PMIs was often in the order of 1031), since the value of
the B proximities goes to infinity near zero. It was often the case that adding more inputs actually made
the fit worse (both the training and validation result), which should be impossible for a linear least squares
fit if there are no numerical issues. The Gaussian proximities were also surprisingly bad. It is possible that
this is because their gradient gets smaller closer to zero, when in the PES there will be a steep potential wall
as two atoms get close. The sine/cosine proximities B were better than expected, given the fact that they
also to to infinity near r = 0, but did not manage to improve on the result with the proximities C.

This shows that the best settings turned out to be proximities C ((3.52)), with the maximum k equal
to 13, n = [2, 3, 5, 8, 12]. This gives 125 parameters in total, which is comparable to the 120 parameters in a
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(a)

(b) Zoomed out, with logarithmic y-axis to show outliers.

Figure 3.31: Histograms (one per fold) of the results of the PIP method with Morse proximities
with a = 2 a0 on the test data set.
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Table 3.7: The best results of the PMI linear regressions on the validation data for each
proximity type. For comparison, the RMSE achieved by simply always predicting the mean is
also given. ausing linear combinations of tr

(
Pk
)

up to order 3, busing tr
(
Pk
)

and tc(Pk),
cusing only tr

(
Pk
)

Type of proximities
Number
of coeffi-
cients

Max. k
Parameter values n
or a (a in bohr)

RMSE training
(meV)

RMSE validation
(meV)

Proximities B
(cutoff=15.9Å) c 8 3 [1.5, 2., 2.5, 3.] 292.9 ± 1.1 294.4 ± 4.8

Proximities C
(cutoff=10.1Å) b 125 13

[2., 3., 4., 6., 9.,
12.]

2.8 ± 0.1 3.6 ± 0.4

Morse b 155 16 [0.7, 2., 3., 4., 5.] 2.2 ± 0.1 3.6 ± 1.7
Sine/cosine proximities B
(cutoff=15.9Å) c 120 7

[0., 1., 2., 3., 4., 5.,
6., 7., 8., 9.]

10.4 ± 0.2 11.9 ± 1.2

Always predict mean 1 - - 1817. ± 16. 1815. ± 64.

Table 3.8: Results of the PMI method on the validation data and on the test data. Uses both
tr
(
Pk
)

and tc(Pk). Proximities C, a maximum k of 13, n = [2, 3, 5, 8, 12], 125 parameters

RMSE on entire test set (meV) RMSE on reduced test set (meV)

Trained on entire cross-validation set 10.83 ± 0.45 5.09 ± 0.41
Trained on reduced cross-validation set 87.39 ± 19.51 2.71 ± 0.21

Validation RMSE (meV)

Trained on entire cross-validation set 17.36 ± 8.77
Trained on reduced cross-validation set 3.59 ± 0.26

7th order PIP fit. The 5 fits (from 5-fold cross-validation) with those settings were used on both the entire
test set as well as the reduced test set. The results of this are in Table 3.8. Figure 3.32 and 3.33 show a
crossplot and histograms, respectively, of the error of the test set, for the fits that were trained on the full
cross-validation data.

It shows that in this case, training on a more inclusive data set improves performance on the difficult
points, but when testing on a reduced data set it is better to also train on a reduced dataset. At least, for
these settings, but these settings were chosen based on their performance on the reduced cross-validation
data set, so that may not always be the case.

It shows that on the reduced test set, the performance was actually better than during cross-validation.
A possible explanation is the uniform spherical sampling in the test set (see also A.4), while the cross-
validation data set oversampled the configuration that are similar to the L-configuration in 2.6. These
configurations seem to be more difficult than the others.

Table 3.9 shows almost the same thing as 3.8, but in this case the trace complement for the last prox-
imity matrix (with k = 13) is left out, so the number of traces is equal to the number of trace complements.
This gives exactly 120 parameters (the same as the PIP method). It shows that the performance does not
change much.

The full results in Appendix E show that the PMI method, especially when using both tr
(
Pk
)

and
tc(Pk), is very temperamental, in that small changes in the settings can give a very different result, for
example when using the best settings mentioned earlier (both tr

(
Pk
)

and tc(Pk) with proximities C, k up
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Figure 3.32: Crossplot of the results of the PMI method with the best settings on the test data
set.

Table 3.9: Results of the PMI method on validation data of 5-fold cross-validation of fits trained
on part of the training set (outliers removed). Uses both tr

(
Pk
)

and tc(Pk), but no trace
complement for the maximum k = 13. Proximities C, a maximum k of 13, n = [2, 3, 5, 8, 12],
120 parameters

RMSE on entire test set (meV) RMSE on reduced test set (meV)

Trained on entire cross-validation set 11.15 ± 0.95 5.17 ± 0.38
Trained on reduced cross-validation set 40.08 ± 7.11 3.16 ± 0.19

validation RMSE

Trained on entire cross-validation set 16.48 ± 6.05
Trained on reduced cross-validation set 4.64 ± 0.91
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(a)

(b) Zoomed out, with logarithmic y-axis to show outliers.

Figure 3.33: Histograms (one per fold) of the results of the PMI method with the best settings
on the test data set.
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Figure 3.34: The bond lengths r1 and r2 and the CPCs (rescaled so they each have a standard
deviation of 1, equal to the first 3 PMIs rescaled) over time during the same trajectory as the
one discussed in subsections 3.3.2 and 3.3.2.

to order 13 and n = [2, 3, 5, 8, 12]), we achieve an RMSE of 3.6 ± 0.4 meV, but using those exact same
settings except taking k up to order 12 instead of 13, results in an RMSE of (1.8 ± 3.6)Ö105 meV. Possible
explanations are numerical issues, even though the proximities C are bounded between 0 and 1, or that the
method is very sensitive to outliers, even though these results were obtained with the reduced cross-validation
set, which already had the worst outliers removed.

Comparison with Table 3.5 for the PIP method shows that the PIP method seems somewhat more
robust when it comes to outliers; the PIP method performs better on the entire test set, although for the
case where both methods were also trained on the entire cross-validation data set the difference is small.
The PMI method seems to work slightly better on the reduced test set, although we experimented more with
different settings for that method, so that comparison may not be entirely fair.

Figure 3.34 shows that absolutely nothing special happens near r1 = r2, which is where the PME
method shows the just-barely-avoided eigenvalue crossings.
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Chapter 4

Molecular Dynamics

.

4.1 Theory

Molecular dynamics is a computational method used to obtain the trajectories of certain particles over a
length of time. The particles are given initial positions and velocities, and allowed to interact from there
under the influence of a molecular potential, with a = f(x). From these trajectories, macroscopic properties
of the system can be determined.

The most common integration method for such trajectories is the velocity Verlet method, which looks
as follows [115]

xn+1 = xn + dtvn + dt2 f(xn)/2 (4.1)

vn+1 = vn + dt [f(xn+1) + f(xn)] /2. (4.2)

The timescale of the simulation is the most serious bottleneck in molecular dynamics, because the
duration of the simulation needs to be long enough to capture the processes of interest, but the time step
size is limited by atomic oscillations.

Quasiclassical trajectory (QCT) calculations are a combination of molecular dynamics (which uses
classical physics) with a quantum PES. It means the hydrogen atoms move classically on a PES based on
quantum chemistry calculations. In other words, the atoms are treated classically, the electrons quantum
mechanically. Since the atoms are usually a lot heavier and slower than the electrons, calculating their motion
classically is usually a reasonable approximation. However, because hydrogen is so light, this approximation
is somewhat limited in accuracy (as mentioned in section 2.1.7). Especially near reaction or dissociation
thresholds, quantum effects are important. However, in this case we are mostly interested in the vibrational
and rotational energy transfer, where QCT seems to be reasonably accurate [116, 40].

For this part of the project, bunches of molecular dynamics trajectories of H2–H2 were calculated.
The collision energy is defined as the total kinetic energy of the molecules at the start of a trajectory in a
reference frame with a stationary global center of mass, where for each molecule its velocity is taken to be
the velocity of its center of mass relative to this global center of mass. Apart from the collision energy, there
is also kinetic energy in the motion of the atoms within a molecule, which are vibrational and rotational
energy.
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4.1.1 Vibrational states

The vibrational energy (relative to the potential minimum) of a vibrational state with quantum number ν
of a diatomic molecule is [117, p. 87]

Evib = ωe
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− ωexe
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2
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+ ωeye
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The values of ωe and ωexe for H2 are 546 meV and 15.0 meV, respectively [118]. It is important to note here
that these values ωe do not say anything about the actual classical frequency with which the molecule will
vibrate.

CO2 however, is not a diatomic molecule and therefore there are three vibrational modes that play a
role; the symmetric stretching mode (ra and rb oscillate with the same phase), the antisymmetric stretching
mode (ra and rb oscillate with opposite phase) and the bending mode (the internal angle φ oscillates). The
vibrational energies for CO2 can be approximated with the following formula [119, 56]:
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The values of ωi, xij and xl2l2 can be found in Kozák and Bogaerts 2014 [56].

4.1.2 Rotational states

The classical rotational energy of a molecule is the energy in the rotation of the molecule around its center
of mass. This is is equal to

Erot =
∑
i

1

2
Iiω

2
i =

∑
i

1

2
miv

2
i,⊥, (4.5)

with Ii the moment of inertia of atom i, ωi its angular velocity pseudovector and mi its mass. The velocity
of an atom relative to the center of mass is vi, and vi,⊥ the component of this velocity perpendicular to
the vector ri that connects the atom to the location of the center of mass rCoM. This is how the rotational
energy is extracted from the quasiclassical trajectories.

A diatomic molecule will rotate around an axis that is perpendicular to the molecular axis and goes
through the molecule’s center of mass. CO2 is a linear molecule, and will therefore have only one important
axis of rotation, which is perpendicular to the molecular axis. However, once the angle φ is large, a rotation
about the molecular axis can also become significant.

To relate this energy to a rotational quantum state, one can look at the energy of a rotational state
with quantum number J . For small J for a diatomic molecule such as hydrogen, this is [41, p. 68]:

Erot =
~2J(J + 1)

2I
, (4.6)

with I the total moment of inertia of the molecule. Assuming I is constant, we get the rigid rotator
approximation and we can introduce the constant Be:

Erot = BeJ(J + 1) (4.7)
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Figure 4.1: The energy of the rotational levels J of hydrogen for the uncorrected ( (4.6)) and
the corrected energy ( (4.8)).

For H2, the value Be is 7.55 meV [118]. When adding a correction for higher J , this becomes:

Erot = BeJ(J + 1)−DeJ
2(J + 1)2. (4.8)

For H2, the value of De is 5.84× 10−3 meV [118]. For comparison: for J = 1, the correction is only
0.0234 meV, for J = 10 it is 70.7 meV. Figure 4.1 shows these energies for increasing J . At J = 25, the
corrected version starts declining and the polynomial fit is not valid anymore, which is why only J = 0 to
J = 25 are taken into account.

The rigid rotator approximation assumes that the rotational inertia I is constant, meaning they assume
the molecule has its equilibrium bond length. This is not the case, since the molecule vibrates. However,
since the vibrational state is initialized first, we can calculate I and use (4.6) to determine the rotational
energy.

When one wants to calculate cross sections that are thermally averaged, the rotational state J needs to
be sampled from a Boltzmann distribution for a certain temperature. Figure 4.2 shows what the Boltzmann
distribution looks like for various temperatures for H2. Appendix A.4 describes how to initialize a diatomic
molecule with a certain vibrational and rotational energy. Quantum mechanically speaking, some rotational
transitions are spin-forbidden, because they would change the spin state. We ignore this, since we are treating
the atoms classically.

4.1.3 Probabilities and cross sections

A cross section is a quantity that expresses the probability of a certain process happening when two particles
collide. It can be thought of as the area of the ‘target’ a particle needs to hit to cause the process of interest
to occur. It can be approximated by simulating lots of trajectories of the particles approaching each other
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Figure 4.2: The relative population of the rotational states J of H2 for various temperatures,
using the rotational energy in (4.8).

with various impact parameters. In this chapter, several cross sections for dissociation of hydrogen and
rovibrational energy transfer in hydrogen are calculated.

Cross sections can be approximated by analyzing the statistics of many randomly sampled trajectories.
This means running simulations of trajectories of colliding molecules, while varying the impact parameter
b. In the paper by Lombardi et al. [6], 30,000 trajectories were simulated for each unique collision energy
and Trot and set of initial vibrational states. The probability of vibrational state transition from v to v′ can
then be estimated as Pvv′ = Nvv′

Nt
, with Nvv′ the number of trajectories where this transition happens, and

Nt the total number of trajectories. The cross section is then

σvv′ =

∫ bmax

0

2πbPvv′(b)db. (4.9)

The cross sections can be used to determine rate constants for the process they describe. These cross
sections and rate constants can then be used in simulations involving a lot more molecules. They can be
used to model how energy in the system will move to and from translational energy, rotational energy and
vibrational energy.

It can be useful to determine cross sections that are thermally averaged in some way, for example the
rotational states. This means assuming that these states have already relaxed to equilibrium and there is
a rotational temperature Trot. The resulting cross section can be used in a simulation where keeping track
of the rotational state is not necessary. The process for setting up a simulation is then simpler; instead
of using the Boltzmann distribution of J corresponding to the rotational temperature and then using one
cross section for each J , only one thermally averaged cross section needs to be used. It is also possible
to thermally average over the collision energy Ecoll, where it is assumed that the translational motion has
relaxed to equilibrium and there is a collisional temperature that is given.
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4.2 Methodology

4.2.1 Trajectories using LAMMPS

To compute the trajectories, the program LAMMPS (Large-scale Atomic/Molecular Massively Parallel Sim-
ulator) is used [120]. LAMMPS was extended with custom code, which implements a neural network and
the analytical gradient (see F for the derivation of the analytical gradient of the potential) of its energy pre-
dictions1. It was verified that this analytical gradient was the same as the gradient of the network computed
by PyTorch’s automatic differentiation. The best performing NN for the PME method was used (with the
sole exception of the rotational cross section in 4.4, which was done with an older network with a similar
performance), which is discussed in Section 3.3. The following is an example of a LAMMPS input file:

un i t s e l e c t r o n
atom sty l e atomic
atom modify map yes
boundary f f f
r eg i on myreg block −30.0 30 .0 &

−30.0 30 .0 &
−30.0 30 .0

c r ea t e box 1 myreg
create atoms 1 s i n g l e −0.6542561833886333 −0.5150144618469884 −27.41992441975301
create atoms 1 s i n g l e 0.6542561833886333 0.5150144618469884 −27.58007558024699
create atoms 1 s i n g l e 0.3473961564372681 −0.584578291017627 26.823582416153627
create atoms 1 s i n g l e −0.3473961564372681 0.584578291017627 28.176417583846373

group group1 id 1
group group2 id 2
group group3 id 3
group group4 id 4
mass * 1.00782503207

v e l o c i t y group1 s e t −0.000466166235213183 0.0002762497586835011 −0.0020320742050145262
v e l o c i t y group2 s e t 0.000466166235213183 −0.0002762497586835011 0.0020320742050145262
v e l o c i t y group3 s e t −4.774679328081884 e−06 0.0007171149594321428 −0.0006222022501271932
v e l o c i t y group4 s e t 4.774679328081884 e−06 −0.0007171149594321428 0.0006222022501271932

p a i r s t y l e pml
p a i r c o e f f * * none

thermo 10
f i x 1 a l l nve

t imestep 0.24188843265963555
dump dump1 a l l custom 1 / data / f l e u r / l a / dump dir 6 01 / r e s u l t s x y z /dumpH2 xyz . * . tx t x y z
dump dump2 a l l custom 1 / data / f l e u r / l a / dump dir 6 01 / r e s u l t s f o r c e /dumpH2 force . * . tx t fx fy f z
dump dump3 a l l custom 1 / data / f l e u r / l a / dump dir 6 01 / r e s u l t s v /dumpH2 v . * . tx t vx vy vz

run 22 # 1 #

s e t group group3 x 0.3473961564372681 y −0.584578291017627 z 26.823582416153627
s e t group group3 vx −4.774679328081884 e−06 vy 0.0007171149594321428 vz −0.0006222022501271932
s e t group group4 x −0.3473961564372681 y 0.584578291017627 z 28.176417583846373
s e t group group4 vx 4.774679328081884 e−06 vy −0.0007171149594321428 vz 0.0006222022501271932
v e l o c i t y group1 s e t −0.010993521189413212 −0.0010408813751451734 0.07621833990444324 sum yes

1Thank you to dr. ir. Jesper Janssen for doing the majority of the C++ programming for this and a thank you to dr. ir.
Jan van Dijk for help with this as well.
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v e l o c i t y group2 s e t −0.010993521189413212 −0.0010408813751451734 0.07621833990444324 sum yes
v e l o c i t y group3 s e t 0.010993521189413212 0.0010408813751451734 −0.07621833990444324 sum yes
v e l o c i t y group4 s e t 0.010993521189413212 0.0010408813751451734 −0.07621833990444324 sum yes

l a b e l loop
v a r i a b l e a loop 500
run 100
p r in t ’ $ ( x [ 1 ] ) $ ( y [ 1 ] ) $ ( z [ 1 ] ) $ ( x [ 2 ] ) $ ( y [ 2 ] ) $ ( z [ 2 ] ) $ ( x [ 3 ] ) $ ( y [ 3 ] ) $ ( z [ 3 ] ) ’
next a
p r i n t ” next a”
jump SELF loop

The line print ’$(x[1]) $(y[1]) $(z[1]) $(x[2]) $(y[2]) $(z[2]) $(x[3]) $(y[3]) $(z[3])’

is important, because when one or more of the atoms end up outside the simulation box, the coordinates
of those atoms become nan, but LAMMPS will happily continue the trajectory. However, when LAMMPS
is then asked to write the coordinates to the screen, it crashes. This is the easiest way to stop a trajectory
once one or more atoms are out of range. This means this print statement functions as a check to determine
if the simulation is done, which is why it is executed every 100 steps.

To call LAMMPS from Python, the Python script lammps NN trajectories 2H2.py is used. This
script creates LAMMPS input files and uses the Python multiprocessing library to run multiple trajectories
in parallel. This script itself also takes an input file, which specifies what kind of trajectories and how many
should be run, where to find LAMMPS and also where the results should be written. An example of such
an input file is:

lammps command mpirun −np 1 . . / s r c / lmp g++ openmpi −in # command to run lammps
lammps input dir /home/ f l e u r /LAMMPS ML/lammps/ input # d i r with ML f i l e s
lammps temp dir / data / f l e u r / l a # d i r to put temporary lammps f i l e s
r e s u l t s d i r / data / f l e u r / r e s u l t s / lammps results NN 2H2 / # d i r to put r e s u l t s

J1 9 # v i b r a t i o n a l quantum number o f molecule 1
J2 9 # v i b r a t i o n a l quantum number o f molecule 2

T c o l l 8000 # t r a n s l a t i o n a l temperature in k e l v i n

v i1 9 # i n i t i a l v i b r a t i o n a l quantum number o f molecule 1
v i2 9 # i n i t i a l v i b r a t i o n a l quantum number o f molecule 2

R i n i t 55 # i n i t i a l s epa ra t i on between molecu le s in bohr
R l imi t 60 # edge l ength in bohr o f s imu la t i on box ( i s a cube )
b max 38 # maximum impact parameter in bohr (38 bohr = 20 angstrom )

n t r a j s t o t a l 30000 # nr o f t r a j e c t o r i e s to do
n t r a j s 10 # nr o f t r a j e c t o r i e s to run s imul taneous ly . Should be l e s s than nr o f c o r e s
max steps 50000 # maximum nr o f time s t ep s
dt 10 # time step in hbar/ ha r t r e e

For each set of cross sections, 30,000 trajectories were run. Depending on the number of time steps
needed, this took about 4 to 10 hours per cross section. The trajectories for the rotational cross sections were
on average about 1800 steps (these trajectories had an initial Ecoll = 1.2 eV, for lower values the atoms move
more slowly and therefore need more time steps), and took on average about 15 seconds per trajectory on a
computer with an AMD Ryzen Threadripper 2990WX 32-Core Processor @ 3.0GHz and 96GB of memory.
We ran 30 trajectories in parallel, so one set of 30,000 trajectories took 4 hours. LAMMPS is not completely
threadsafe, so we cannot guarantee that running multiple trajectories at the same time will always work
with no problems, but we experienced no problems. (LAMMPS can also parallellize a simulation by dividing
the atoms over multiple cores using Message Passing Interface (MPI), but this is not very useful in this case
because each simulation will only have 4 atoms. For that reason we chose to run multiple trajectories in
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Figure 4.3: Amplitudes of vibrational energy levels of H2.

parallel instead of parallelizing one trajectory.)

4.2.2 Vibrational state

For the H2–H2 system, the energy levels were obtained from (4.3), using the first two terms shown in that
equation. This formula is an expansion around the minimum, so it gets less accurate for a higher vibrational
quantum number ν and higher order corrections are required.

These energy levels were related to the maximum amplitude of the oscillation. This is the value of r
where the potential energy is equal to the vibrational energy, with r > rminimum. In Figure 4.3 this r is the
value where the dark grey line crosses the potential curve. This is the maximum amplitude of the classical
oscillation corresponding to this quantum vibrational level. These amplitudes were determined in the script
H2.py. For each level, a trajectory calculation (CCSD with basis set aug-cc-pVTZ, same as the data set)
was done where the molecule vibrated in place, to determine its period (shown in Figure 4.4). The periods
and amplitudes are given in Table 4.1.

The vibrational state in the beginning of the trajectories was initialized by creating a molecule with a
bond length equal to this amplitude. This means that the molecule is created with all its vibrational energy
in the form of potential energy. This means all molecules start with the same phase. This is especially
a problem if both molecules start in the same vibrational state, because then their phase will always be
the same when they collide, which ruins the statistics. To avoid this, the configuration of one of the two
molecules is reset back to t = 0 after a certain delay. This delay is chosen randomly uniform from the period
associated with this vibrational level. For CO2–CO2 this might be unnecessary, because the random state
is very chaotic anyways with three atoms, and the vibrational time scale compared to the time scale of the
collision is much smaller for CO2–CO2 than for H2–H2. In the input script, the first time the command run

is called, it is used to have the molecules vibrate in place and after that one of the two molecules is reset to
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Figure 4.4: Trajectories of one H2 molecule vibrating in place used to determine the period,
for the first 12 vibrational energy levels.

Table 4.1: The quantum vibrational energy levels of a H2 molecule and their associated classical
amplitudes and periods.

ν Energy (eV) Max. amplitude (Å) Period (fs)

0 0.27 0.89 7.79
1 0.78 1.02 8.25
2 1.27 1.12 8.76
3 1.73 1.22 9.32
4 2.15 1.32 9.86
5 2.55 1.41 10.79
6 2.91 1.51 11.58
7 3.25 1.62 12.56
8 3.55 1.72 13.68
9 3.83 1.84 15.09
10 4.07 1.97 17.24
11 4.29 2.13 21.07
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Figure 4.5: The bond lengths during a typical H2–H2 trajectory. The configuration of one
molecule is reset, to randomize the initial phase. In this trajectory this happens near t =
200 ~/Eh.

its original position, and both molecules are given the extra velocity that makes them collide.
The vibrational state at the end of the trajectories H2–H2 was determined by taking the amplitude of

the oscillation and picking the quantum number with an energy closest to the potential energy associated
with this amplitude. There are more sophisticated methods to do this (Gaussian binning, etc.) which can
be investigated in the future.

For a 3-atom (or more) molecule such as CO2, extracting the vibrational state is a bit more difficult.
One possibility is to use normal mode analysis, which is a decent approximation near the bottom of the
potential well. For CO2, there are three coordinates of relevance: p1 = r1 − req, p2 = r2 − req, φ. The
three modes are: antisymmetric stretching (p2 = −p1), symmetric stretching (p1 = p2) and the bending
mode (φ oscillates). This is only approximately correct near the bottom of the well because of the harmonic
approximation. the ‘amplitude’ of the symmetric mode is then the amplitude of (p1 + p2)/2, for the
antisymmetric this is (p1 − p2)/2, and the bending mode is just described by φ. However, this harmonic
approximation is really only accurate near the bottom of the potential well.

4.2.3 Rotational state

To initialize a molecule in a certain rotational state J , using the rigid rotor approximation (which means
assuming that the vibrational state is not interfering), we can use (4.7) or (4.8) to get the corresponding
rotational energy Erot. Appendix A.5 then details how to intialize a molecule with this rotational energy.
However, the rigid rotor approximation turns out to be pretty bad even with low vibrational quanta. The
rigid rotor approximation seems to only be reasonable if the molecules do not vibrate at all, but in our
trajectories they do even for ν = 0. Because the vibrational state changes the moment of inertia I, the
rotational energy is changed. Since the vibrational state is initialized first, we can calculate I and use (4.6)
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to determine the rotational energy corresponding to the desired value of J .
To extract the rotational state, we essentially do the opposite of what we do to intialize a molecule

with a certain rotational energy in Section A.5 and extract the rotational energy of each molecule. This
rotational energy can then be mapped back to a rotational quantum number by simply determining which
rotational energy it is closest to, using (4.7). This turned out to be very imprecise, because the rotational
energy shows big oscillations caused by the vibrational state. Another option is also extract the moment of
inertia I. Given the values of Erot and I we found, we can then solve (4.6) for J

Erot =
~2J(J + 1)

2I
=⇒ J = −1

2
+

1

2

√
1 +

4ErotI

~
, (4.10)

and round it to the nearest integer. However, this does not include the correction with De in (4.8), which
means we need to choose to correct for higher J or correct for the influence of the vibrational state.

The code to initialize the rotational state used (4.8), only for extracting the final rotational state
was (4.10) used. In the future, modifying the code to also use (4.10) is probably a good idea to improve
consistency.

The combination of the vibrational and rotational states of both molecules is often written (ν1, J1, ν2, J2).

4.2.4 Dissociation

We also calculated some dissociation cross sections for H2–H2. These were only to test the procedure, as
the CCSD calculations were not meant to be accurate for dissociation (no multireference method and no
counterpoise correction, which will be relevant near the dissociation threshold), sampling for NN did not
include dissociation, and the QCT approach is not very accurate near dissociation thresholds anyway. The
neural network did seem to replicate the potential fairly accurately for dissociated states as well, since the
potential is forced to zero. However, dissociation also means higher energy states are possible, including
configurations with the atoms very close together and in these configurations the potential may not be
accurate at all.

To decide if two atoms formed a molecule together or not at the end of a trajectory, we used a threshold
of 3�A. There are then six possible outcomes of a trajectory:

Type 0 Same molecules at the end.

Type 1 Atom exchange. The molecules exchange an atom.

Type 2 Non-reactive dissociation. One original molecule is left, the other is dissociated.

Type 3 Reactive dissociation. Both molecules are dissociated, one new molecule is formed.

Type 4 Full dissociation. At the end, 4 separate atoms are left.

Type 5 Miscellaneous. Any trajectory outcome that does not fit in any of the other types. This turned out
to be trajectories where three H-atoms were close together at the end (distance less than 3�A).

Figure 4.6 shows an example of each of these outcomes.
Type 5 trajectories are interesting, but the network is extrapolating at that point because the training

set contained no configurations with 3 H-atoms together, so these results are completely unreliable. This
can also affect the trajectories where one or two molecules dissociate, but when a molecule dissociates, the
relevant proximities are forced to zero, which should work even though those configurations are also sparsely
sampled. It should also be mentioned that due to a bug in the code (now corrected), for these dissociation
cross sections the rotational state of a molecule with J = 0 was not initialized as exactly zero, but with a
rotational energy of about 15% of one vibrational quantum.
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Figure 4.6: The 6 possible outcomes of a trajectory for a dissociation cross section. In each
figure, each colored curve is the path of one atom and the starting point of each atom is marked
with a dot. The blue/purple molecule starts at the top, moving down and the red/orange
molecule starts at the bottom, moving up.

94



4.2.5 Cross sections

The previous three subsections described how the outcomes of the trajectories were categorized according
to their vibrational state, rotational state or dissociation result. These results can then be processed into an
actual cross sections, which was done in the script 2H2 crosssections.py. To do this, (4.9) was calculated
numerically, by binning the results based on their impact parameter b, with 50 bins from 0 to bmax. This
is not a very sophisticated method, and more advanced methods such as Gaussian binning could be more
accurate. Varying the number of bins did not change the results much. Another option is to calculate the
cross sections directly, without binning, which requires that b is sampled according to the probability density
function

f(b) db =

{
2πb
πb2max

db b ≤ bmax,
0 b > bmax,

(4.11)

which essentially means uniform sampling on a disc-shaped target of area πb2max. The cross section can then

be calculated as πb2max
Nvv′
Nt

, which is equal to [size of the target]Ö[probability of process occurring when
hitting this target]. This way of calculating the cross sections is not currently implemented.

Since during training with five-fold cross-validation, five networks were already trained, it made sense
to use the five different networks to get an estimate of the accuracy of the cross sections. For the rotational
and vibrational cross sections, only one neural network was used and Poisson statistics were used to obtain
uncertainties for the results. The Poisson distribution tells us the spread in how often we can expect an
event to occur in a certain time interval if it has a constant rate, or, in this case, the number of ‘positives’
(trajectories where a certain process happens, for example Nvv′) we can expect given a total number of tries
(total number of trajectories Nt). The standard deviation of the Poisson distribution is

√
Nt, and this is

used to calculate the uncertainty in the probability Pvv′ and from that the uncertainty in the cross section.

4.3 Results H2–H2 Dissociation cross sections

Figure 4.7 shows the outcomes of one set of 30,000 trajectories, for the initial state (v1, J1, v2, J2) = (9, 0, 9, 0),
at a temperature of 8000 K. Table 4.2 shows the calculated cross sections and compares them to the results of
Ceballos et al. [121]. Their results were obtained from trajectories with the Aguado-Suarez-Paniagua PES [8],
which has a RMSE of 52 meV. The Aguado-Suarez-Paniagua PES is fitted on ab initio data by Boothroyd et
al., which was calculated using the multiple reference (single and) double excitation configuration interaction
(MRD-CI) method, with an estimated RMSE of 24 meV.

It is important to note here that the uncertainty for our results in this table is simply the standard
deviation over the 5 networks that were trained during cross-validation. So this uncertainty does not take
into account the Poisson statistics or the errors in the ab initio methods.

Despite the questionable accuracy of our neural network for dissociation purposes, the calculated cross
sections are still somewhat similar to the cross sections calculated by Ceballos et al., with the cross sections
for atom exchange and reactive dissociation having overlapping uncertainty intervals. Only for non-reactive
dissociation is the difference large; our cross section is more than twice as large. It is possible that Ceballos
et al. calculated this cross section slightly differently and divided their result by 2, to account for the fact
that there are two possible molecules that can split. However, there are also multiple ways an atom exchange
reaction or a reactive dissociation can happen, so it would be a strange choice to do this.

The temperature of 8000 K corresponds to an energy of 0.689 eV, which is inside the range of 0.0433 eV–
0.868 eV that was used for creating the training data sets. However, the collision energy Ecoll for these
trajectories was sampled from a Boltzmann distribution, so there were also some trajectories with a higher
energy. This means the cross sections are not expected to be very accurate. There is also the fact that (4.8),
used to initialize the rotational state, uses the rigid-rotor approximation, which will not be very accurate at
higher vibrational energies like v = 9.
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Figure 4.7: The outcomes of 30,000 trajectories with intial quantum numbers (v1, J1, v2, J2) =
(9, 0, 9, 0) for a translational temperature of 8000 K, while varying the impact parameter b.

Table 4.2: The cross sections computed using the neural network potential compared to the
results of Ceballos et al. [121], for the initial state (v1, J1, v2, J2) = (9, 0, 9, 0), at 8000 K.

Cross sections (�A
2
)

Type of trajectory outcome Our results Ceballos et al.

1. Atom exchange 1.68 ± 0.07 1.82 ± 0.09
2. Non-reactive dissociation 3.19 ± 0.42 1.53 ± 0.09
3. Reactive dissociation 6.43 ± 0.28 6.64 ± 0.17
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Figure 4.8: The rotational energy of a H2 molecule over the course of a trajectory in which it
collides with another H2 molecule, for several trajectories. With initial state (ν1, J1, ν2, J2) =
(0, 0, 0, 0). Ecoll = 1.2 eV.

4.4 Results H2–H2 Rotational excitation cross sections

We only attempted one set of cross sections where only rotational excitation was relevant, which were
from one bunch of 30,000 trajectories with a collisional energy Ecoll of 1.2 eV and initial quantum numbers
(0, 0, 0, 0).

Extracting the rotational state by extracting the rotational energy and mapping this to the closest J ,
using (4.8) proved to be difficult because of the strong influence of the vibrational state. Figure 4.9 shows
the outcome of the trajectories when the final state is determined this way. Figure 4.8 shows the rotational
energy of a H2 molecule over the course of some trajectories in which it collides with another H2 molecule. It
shows that the rotational energy oscillates strongly. This oscillation has approximately the same frequency as
the vibrational state, which indicates the rotational and vibrational state mix, even for the lowest vibrational
state ν = 0. This means it is necessary to correct the results for the changing moment of inertia.

When the changing moment of inertia is taken into account, we can estimate J with (4.10). The
results of this for some trajectories are in Figure 4.10 and the outcomes of all trajectories are shown in
Figure 4.11. This way of determining J results in an estimate for J that is not disturbed by oscillations.
The results are compared in Table 4.3. It shows that the two different methods give very different results,
with the second method resulting in much smaller cross sections for J1 ≥ 2.

The table also shows that using either method to estimate J results in cross sections that are not
in agreement with the results of Quéméner & Balakrishnan ([122]), which were based on full quantum
calculations. A possible explanation is the fact that Ecoll = 1.2 eV was higher than the maximum Ecoll of
0.87 eV during sampling. The fact that the rigid-rotor approximation of (4.8) was still used during the
initialization of the trajectory should not make a difference in this case, since the initial rotational states were
J = 0. Another possible explanation is that we do not take into account which states are spin-forbidden,
which Quéméner & Balakrishnan probably do. It is unlikely that we should take into account higher order
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Figure 4.9: The outcomes of 30,000 trajectories with intial quantum numbers (0, 0, 0, 0) and
final quantum numbers (0, J1, 0, J2), with Ecoll = 1.2 eV, while varying the impact parameter
b. J was estimated using (4.8).
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Figure 4.10: Estimated J over the course of several trajectories.

terms in (4.8), since in the vibrational and rotational quantum numbers are still very low.

4.5 Results H2–H2 Rovibrational energy transfer cross sections

We only attempted two sets of state-to-state cross sections where both the rotational and vibrational quanta
played a role. We used two bunches of 30,000 trajectories each, both with a collisional energy Ecoll of 0.871 eV
and initial quantum numbers (1, 0, 0, 0) and (1, 0, 0, 1), respectively. For these trajectories, transitions to
other vibrational quanta (v = 0 and v = 2) were also possible, although they were too rare to compute a
reasonably accurate cross section.

To extract the rotational energy, we used (4.10), which takes into account the changing inertia. The
outcomes of all trajectories are shown in Figure 4.12 and 4.13 for initial quantum numbers (1, 0, 0, 0) and
(1, 0, 0, 1), respectively.

The computed cross sections are shown in Table 4.4 and 4.5. The cross sections from initial quantum
number (1, 0, 0, 1) are compared to results of Dos Santos et al. [123]. Agreement with these results is poor.
Once again our results give significantly smaller cross sections.
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Figure 4.11: The outcomes of 30,000 trajectories with intial quantum numbers (v1, J1, v2, J2) =
(0, 0, 0, 0) and final quantum numbers (0, J1, 0, J2), with Ecoll = 1.2 eV, while varying the
impact parameter b. J was estimated using equation (4.10).

Table 4.3: The cross sections computed using the neural network potential compared to the
results of Quéméner & Balakrishnan [122, Fig. 9] (results estimated from Fig. 9 in the
paper), with intial quantum numbers (0, 0, 0, 0) and final quantum numbers (0, J1, 0, J2), with
Ecoll =1.2 eV. (1) Estimating J from closest Erot from (4.8), (2) estimating J from (4.10).

Cross sections (�A
2
)

(J1, J2) Our results (1) Our results (2) Quéméner & Balakrishnan

(1, 0) 2.9 ± 0.24 3.1 ± 0.23 -
(1, 1) 2.1 ± 0.19 2.4 ± 0.19 -
(2, 0) 0.59 ± 0.078 0.11 ± 0.029 2.4
(2, 1) 0.95 ± 0.11 0.44 ± 0.059 -
(2, 2) 0.7 ± 0.082 0.26 ± 0.039 1.9
(3, 0) (1.81 ± 1.0)×10−2 (4.64 ± 3.0)×10−3 -
(3, 1) (7.08 ± 2.3)×10−2 (1.07 ± 0.6)×10−2 -
(3, 2) 0.17 ± 0.033 (8.17 ± 4.5)×10−3 -
(3, 3) 0.11 ± 0.023 - -
(4, 0) (3.55 ± 2.6)×10−3 - 0.11
(4, 1) (1.14 ± 0.7)×10−2 - -
(4, 2) (1.03 ± 0.6)×10−2 - 0.22
(4, 3) (9.30 ± 5.0)×10−3 - -
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Figure 4.12: The outcomes of 30,000 trajectories with intial quantum numbers (1, 0, 0, 0) and
final quantum numbers (v1, J1, v2, J2), with Ecoll = 0.87 eV, while varying the impact parameter
b. J was estimated using (4.8).

Table 4.4: The cross sections computed using the neural network potential, with intial quantum
numbers (1, 0, 0, 0) and final quantum numbers (v1, J1, v2, J2), with Ecoll =0.871 eV. J was
estimated using (4.10).

(v1, J1, v2, J2) Cross sections (�A
2
)

(1, 0, 0, 1) 1.4 ± 0.17
(1, 0, 0, 2) 0.35 ± 0.061
(1, 1, 0, 0) 2.2 ± 0.22
(1, 1, 0, 1) 2.3 ± 0.21
(1, 1, 0, 2) 0.48 ± 0.074
(1, 2, 0, 0) 0.58 ± 0.09
(1, 2, 0, 1) 0.91 ± 0.12
(1, 2, 0, 2) 0.59 ± 0.08
(1, 3, 0, 0) 0.12 ± 0.028
(1, 3, 0, 1) 0.17 ± 0.033
(1, 3, 0, 2) 0.25 ± 0.041
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Figure 4.13: The outcomes of 30,000 trajectories with intial quantum numbers (1, 0, 0, 1) and
final quantum numbers (v1, J1, v2, J2), with Ecoll = 0.87 eV, while varying the impact parameter
b. J was estimated using (4.8).
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Table 4.5: The cross sections computed using the neural network potential compared to the
results of Dos Santos et al. [123, Fig. 2] (results estimated from Fig. 2 in the paper), with
intial quantum numbers (1, 0, 0, 1) and final quantum numbers (v1, J1, v2, J2), with Ecoll =0.871
eV. J was estimated using (4.10).

Cross sections (�A
2
)

(v1, J1, v2, J2) Our results Results Dos Santos et al.

(1, 0, 0, 0) 1.1 ± 0.17 -
(1, 0, 0, 2) 0.69 ± 0.12 -
(1, 0, 0, 3) 0.10 ± 0.032 0.58
(1, 1, 0, 0) 0.94 ± 0.14 -
(1, 1, 0, 1) 2.9 ± 0.26 -
(1, 1, 0, 2) 1.0 ± 0.14 -
(1, 1, 0, 3) 0.14 ± 0.037 -
(1, 2, 0, 0) 0.27 ± 0.063 -
(1, 2, 0, 1) 1.1 ± 0.12 2.3
(1, 2, 0, 2) 0.65 ± 0.095 -
(1, 2, 0, 3) 0.18 ± 0.043 0.58
(1, 3, 0, 0) (5.49 ± 2.1)×10−2 -
(1, 3, 0, 1) 0.24 ± 0.043 -
(1, 3, 0, 2) 0.18 ± 0.036 -
(1, 3, 0, 3) (7.13 ± 2.0)×10−2 -
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Chapter 5

Conclusions and outlook

5.1 Conclusions

Various methods of fitting a full dimensional potential energy surface that is invariant with respect to
permutation of identical atoms to ab initio data were discussed, and several of these methods are implemented
for the H2–H2 system.

The PME NN method gave an RMSE of (19.58± 0.66) meV on the entire data set, and (6.50± 0.66) meV
when possible outliers were removed. Unfortunately crossings or barely avoided crossings are a problem for a
smooth PES. This method could still be very promising for applications where a smooth result is not impor-
tant, such as when comparing the atomization energy of different molecules, as is done by Rupp et al. [21].
When comparing molecules with a different number of atoms, or different species, there is no smoothness
needed, since we cannot ‘gradually’ add or remove an atom. It is also promising for graph neural networks,
since a proximity matrix is essentially the adjacency matrix of a complete graph, with the nodes representing
the nuclei and the edges representing the internuclear distances. Which means the PME method, as well
as the PMI method, can be used to represent any arbitrary undirected graph, which means the possible
applications are very broad.

The PIP method gave an RMSE of (10.70± 0.33) meV on the entire test set, and (4.37± 0.14) meV on
the reduced test set. The PMI method using a linear regression gave an RMSE of (10.83± 0.45) meV on the
entire data set, and (2.71± 0.21) meV on the reduced data set. The PMI method is promising; an important
advantage of this approach (the PME method also has this advantage) is that it scales favourably to larger
systems in comparison to the PIP method. A potential challenge is its apparent instability; small changes
in the hyperparameters can cause an extreme difference in accuracy (more than 4 orders of magnitude
difference). It seems very sensitive to outliers, a good performance on most of the data points can be
disturbed by large errors for very few points. These outliers were especially a challenge for the neural
network approach. A possible cause for this is the large dynamic range of the PMIs. A challenge for all
these methods are the different scales that show up, the van der Waals well is small (millielectronvolts), the
wall goes to electronvolts.

In the end, a potential energy surface from the PME method was used for full-dimensional quasiclassi-
cal trajectory simulations that were used to approximate cross sections for dissociation as well as vibrational
and rotational energy transfer. The dissociation cross sections were mostly in good agreement with the
literature, the rovibrational cross sections were not. There is room for improvement of the mapping of the
quantum numbers to a classical state and vice versa.
In conclusion, the PME method gives to good results for a H2–H2 system, but cannot guarantee a smooth
surface. The PMI method does result in a smooth surface and is a promising way of creating a permutation-
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ally invariant potential energy surface, although its stability might be a problem and needs to be investigated
more.

5.2 Outlook

There are a lot of possible directions to take this kind of research into the future, and this report only shows
a part of the possibilities. There is a lot of literature of similar and also completely different approaches, as
machine learning is a hot topic in physics right now. In this section we make some suggestions for future
research. We also recommend reading the review paper by Manzhos and Carrington [69], which gives a
pretty good overview of machine learning applied to PESs.

For example, in this report, the sampling, the machine learning and the molecular dynamics were
treated separately, but a more integrated approach is also possible [124]. For example, DeePMD kit is a
package specifically for deep learning applied to interatomic potentials and force fields [125]. It interfaces
with TensorFlow, a machine learning framework similar to PyTorch, as well as LAMMPS. For example if
we want to adjust the sampling based on how the training of the model is progressing, or to switch from
machine learning back to ab initio calculations when a new configuration is encountered during a trajectory.

Another obvious target for future research is the CO2–CO2 system, since that was originally the goal
of this project. This would also help to figure out how best to apply the PMI method to systems with more
than one species.

5.2.1 Quantum Chemistry

For dissociation processes, different ab initio methods (such as multireference methods) are needed, and the
counterpoise correction becomes important. Since the eventual goal is to model the dissociation of CO2 in
various vibrational states, this could be a reason to switch to a different method.

A big drawback of using Dalton that we only realized later into the project, is that CCSD calculations
are not parallellized, but running multiple Dalton instances at the same time also does not work properly
because it writes so much data to disk. This is also not great for an SSD. Most likely, one can realize
more efficient sampling using another ab initio program than Dalton, that is either parallellized properly
or can have more instances running at the same time, or even uses GPU computing. This page compares
various quantum chemistry computer programs and this page lists several open source programs. Some
options are CFOUR [126], OpenMolcas[127], Orca [128], LSDalton, PySCF [129] or Dirac [130] (Dirac is also
relativistic). PySCF may be especially promising, since it has a Python interface (although the underlying
code is compiled C/Fortran code and therefore fast) and can therefore probably be used more easily from a
Python script. This is also a way to realize a more integrated approach.

5.2.2 Machine Learning

The sampling used in this report is trajectory sampling, which means using trajectories to sample molecular
configurations, that way one obtains a set of states that are actually relevant during a trajectory. It is not
perfect, however. The points that can have the biggest influence on the trajectory are often rare outlier
points, for example, states where the molecules are very close together are rare, but they have a large impact
on the trajectories of the molecules because the repulsion is so strong in those configurations. A combination
with quasirandom sampling might help. It may also be a good idea to train a network on broader data than
the region of interest; sample slightly beyond the range you’re interested in.

A big advantage of the PME and PMI methods discussed in this report is that they scale better to
bigger systems than the PIP method, so a natural place to take this research is systems with a lot more
atoms. Using proximities with a cutoff then results in a sparse matrix. This can be combined with a method
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that sums contributions from atoms (like 3.13), in that case the PME or PMI method could be applied to a
matrix with rik · rij for each atom i [131, 132].

The PMI method and especially the PIP method were not investigated very thoroughly. For the PIP
method it could be interesting to look at the effect of including various proximities (as we do for the PME
and PMI methods), perhaps then it is not necessary to go up to high order, which would make this method
scale a lot better as well.

There are also more options for possible descriptors to achieve a permutation invariant representation
of an atom configuration. There is potential in taking inspiration from machine learning problems dealing
with permutation invariance in general, not just in the physics literature. There seems to be surprisingly little
overlap between the physics literature dealing with permutation invariance of PESs and the machine learning
and mathematics literature on permutation invariance. One example of a paper than does take inspiration
from machine learning literature is about message-passing neural networks [81], which takes inspiration from
graph neural networks.

If not only the energy but also the gradient is obtained from ab initio calculations, this gradient can
also be used for training. Nandi et al. [133] report a very impressive RMSE of only 1.1 meV using only 100
data points for CH5, with configurations sampled from 3 trajectories (which they do not keep separate when
dividing the data into training and testing sets, so they may have been helped by correlated data points).
They have also made their code available on GitHub.

One thing that became obvious during this project was that the training can take an unusual number of
epochs. Manzhos and Carrington [69] suggest using the Levenberg-Marquardt algorithm. This is also known
as the damped least-squares (DLS) method and it essentially solves a non-linear least squares problem to
determine the best possible update to the parameters for each batch. Combined with Extreme Learning
Machines this could lead to faster training [134].

Also promising are neural network ‘committees’; these are essentially multiple networks averaged
together [135].

Options for using a network pre-trained on a different system may be worth exploring. This means
less data is needed for fine-tuning it to a specific system. For example, the Murrell-Guo-Zúñiga potential
can be used for both CO2 and CS2, although with different parameters. It might be possible to use a net
pre-trained on CO2 data as a starting point for a CS2 net, which might mean the CS2 data set does not have
to be as big as it would have to be when starting from scratch, although this only works if the constants of
the potential are similar.

The least-squares trick described in 3.2.4 was only used for checking convergence in this report, because
it caused some bad overfitting. However, if the last layer of the neural network is a lot smaller, for example
just 5 neurons, there are most likely not enough parameters for the least squares to cause bad overfitting.
That means it might be possible to use this trick to get rid of a bias in the error; the average error will be
zero.

5.2.3 Molecular Dynamics

Before using PESs resulting from some fitting procedure, it is a good idea to check the PES for holes, using
for example the code crystal [136].

The current implementation of neural network in LAMMPS is not very flexible, for example changing
the activation function requires changing the code and recompiling LAMMPS. It would probably be more
convenient to call the network implemented in Python from the LAMMPS input script. It is possible to
execute Python code from a LAMMPS script. Another option is to convert a PyTorch model to a neural
model that can be executed from C++ with no dependency on Python. This can be achieved by using a
Torch Script.

It seems like a good idea to use more of LAMMPS built-in options, such as rotate to give a random
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rotation to molecules, instead of reinventing the wheel and doing it ourselves.
A more thorough and smart calculation of the cross sections, for example using Gaussian binning and

sampling b using (4.11) may give more accurate results, which can help elucidate whether the discrepancies
are due to the neural network or some other reason.

Investigating a bigger energy range for H2–H2 or higher initial quantum numbers would be interesting,
especially ranges where more vibrational energy transfer happens. For the initial conditions in this report,
mostly only rotational energy transfer happens.
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h2 reaction,” Chemical physics letters, vol. 305, no. 3-4, pp. 276–284, 1999.
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M. Iliaš, Ch. R. Jacob, S. Knecht, S. Komorovský, O. Kullie, J. K. Lærdahl, C. V. Larsen, Y. S. Lee,
H. S. Nataraj, M. K. Nayak, P. Norman, G. Olejniczak, J. Olsen, J. M. H. Olsen, Y. C. Park, J. K. Ped-
ersen, M. Pernpointner, R. di Remigio, K. Ruud, P. Sa lek, B. Schimmelpfennig, B. Senjean, A. Shee,
J. Sikkema, A. J. Thorvaldsen, J. Thyssen, J. van Stralen, M. L. Vidal, S. Villaume, O. Visser,
T. Winther, and S. Yamamoto (available at http://dx.doi.org/10.5281/zenodo.3572669, see also
http://www.diracprogram.org).

[131] H. Weyl, The classical groups: their invariants and representations, vol. 45. Princeton university press,
1946.
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Appendix A

Coordinate systems

A.1 Coordinates H2–H2

To generate initial starting positions for the trajectories, 6 coordinates are used for H2–H2, since the system
has 6 degrees of freedom (4 atoms, 3 coordinates per atom, minus 6 coordinates for translational and
rotational invariance. The coordinates that are used for this system in this report are shown in Figure A.1.
The origin is defined to be at the center of mass of the entire system. The z-axis is defined to go through
the centers of mass of each molecule. The direction of the y-axis is chosen such that molecule 1 lies in
the xz-plane (so the y-coordinate of each atom in this molecule is zero). The angle the hydrogen atoms of
molecule 1 make with the z-axis is θ1. The angle of molecule 2 with the z-axis is θ2, and the azimuthal angle
of molecule 2 is φ2 (there is no φ1, since that would always be zero).

A.2 Coordinates CO2–CO2

The coordinates R, ra1, ra2, rb1, rb2, φa, φb that are used for the CO2–CO2 system in this report are shown
in Figure A.2. These coordinates describe the internal state of both molecules (bond lengths ri1, ri2 and
internal angle φi) and the distance between their centers of mass R. Since the system has 12 degrees of
freedom (6 atoms, 3 coordinates per atom, minus 6 coordinates for translational and rotational invariance)
this is not enough to specify a unique configuration, but specific coordinates to describe their orientation
were not worked out, since for this project there is no physically relevant information in those coordinates.

The origin is defined to be at the center of mass of the entire system. The z-axis is defined to go
through the centers of mass of each molecule.

A.3 Extracting coordinates from Cartesian coordinates

To analyze the results of the trajectories we need the distance between the centers of mass of each molecule
R, and the internal bond lengths (r1 and r2 for H2–H2, ra1, ra2, rb1, rb2, for CO2–CO2). For CO2–CO2 we
need the internal bond angles φa and φb as well.

For both systems R is just the distance between the center of mass of each molecule

R =

∥∥∥∥∥
∑N1

i mixi∑N1

i mi

−
∑N2

j mjxj∑N2

j mj

∥∥∥∥∥ , (A.1)
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Figure A.1: The coordinates R, r1, r2, θ1, θ2 and φ2 used to describe the H2–H2 system.
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Figure A.2: The coordinates R, ra1, ra2, rb1, rb2, φa, φb used to describe the CO2–CO2 system.
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with i iterating over the N1 atoms in molecule 1 and j iterating over the N2 atoms in molecule 2. Any
internal bond length r (r1 and r2 for H2–H2, ra1, ra2, rb1, rb2, for CO2–CO2) between atoms i and j is just
||xi − xj ||.

The internal angle φ of a CO2-molecule can be calculated using

φ = arccos

(
rCO,1 · rCO,2

‖rCO,1‖ ‖rCO,2‖

)
, (A.2)

with rCO,1 the vector from the carbon atom to the first oxygen atom and rCO,2 the vector from the carbon
atom to the other oxygen atom. Note that when calculated this way, φ is always less than or equal to π.

A.4 Generating a random starting state

To generate a random configuration, the coordinates R, r1, r2 (for H2–H2) or R, ra1, ra2, rb1, rb2, φa, φb
(for CO2–CO2) can be picked uniformly from a chosen range, but determining the relative orientations of
the molecules requires more care. Picking random values for the angles describing their orientations from a
uniform distribution, or rotating each molecule randomly around the x-, y- and z-axis is not good enough,
because the molecules should have a random orientation that is spherically uniform. See Figure A.3 for an
illustration of the problem.

The orientation of a hydrogen molecule can be described by just one vector, for example one from
atom 1 to atom 2 rij . A way to generate a random orientation for this molecule is to pick a random direction
for this vector from a spherically uniform distribution. One can pick a vector with a random direction by
picking each coordinate x, y and z from a normal distribution [137, §12.11]. Fortunately, the SciPy library
has a Rotation class that has a classmethod Rotation.random() that can generate a random rotation [138].

Unless the internal angle is exactly π, the orientation of a CO2 molecule needs to be described by two
vectors, so just picking one random direction is not enough. A uniformly distributed random rotation of any
molecule can be generated by a performing a random rotation around the z-axis (the angle can be picked
uniformly from [0, 2π]), and then rotating the north pole (unit vector ez) to a random position [139], for
which SciPy’s Rotation.random() can be used once again.

Generating the velocity of the atoms of each molecule (leaving out the rotational velocity of each
molecule for now) needs to take into account the absolute velocity ‖v‖ and the impact parameter b.

If the desired collisional energy Ecoll (defined as the total kinetic energy in the reference frame with
a stationary center of mass) is given, ‖v‖ can be calculated as follows. If the two molecules have the same
mass mmol (which is the case for both the H2–H2 and the CO2–CO2 system), the absolute value of their
initial velocity ‖v‖ will be the same and can be calculated from the desired collision energy using

Ecoll = 2 · 1

2
mmol ‖v‖2 , (A.3)

which means

‖v‖ =

√
Ecoll

mmol
. (A.4)

If we want to calculate cross sections for a given collisional temperature Tcoll, then ‖v‖ should be sam-
pled from the Maxwell-Boltzmann distribution that depends on Tcoll. The Maxwell-Boltzmann distribution
looks like this

P (v) =
( m

2πkT

)3/2

4πv2 exp

(
−mv

2

2kT

)
. (A.5)

To sample this, the SciPy library has a random variable class scipy.stats.maxwell that can generate a
random variable from the Maxwell-Boltzmann distribution [140].
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Figure A.3: If the polar angle θ and azimuthal angle φ are picked from a uniform distribution,
the resulting distribution of orientations will not be uniform. On a sphere, this means relatively
more data points near the north and south poles are chosen. For H2 orientations this means
the molecules will disproportionately often be oriented mostly along the z-axis (meaning with
small θ).
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The polar angle θv of the velocity depends on the desired impact parameter b (which can be chosen
uniformly from a chosen range)

θv = arcsin

(
b

R

)
, (A.6)

and the azimuthal angle φv can be chosen randomly from a distribution [0, 2π].
In Cartesian coordinates, this results in the following v for the molecule that moves in negative z-

direction in Figure A.1 and Figure A.2

vx = ‖v‖ cosφv sin θv (A.7)

vy = ‖v‖ sinφv sin θv (A.8)

vz = −‖v‖ cos θv, (A.9)

while for the other molecule each component switches its sign. These velocities are the same for all atoms
in one molecule, it is only when a rotation is added that the atoms get different velocities.

A.5 Adding rotation

To add a rotation to the initial state of the molecules, we add some extra velocity to the atoms relative to
each other. We first need to know the rotational energy Erot to add. If we know exactly what rotational
quantum each molecule needs to have, Erot can be taken directly from 4.8.

If instead we want to calculate cross sections for a given rotational temperature Trot, then Erot for each
molecule should be sampled from the same rotational energy distribution, which is a Boltzmann distribution
that depends on Trot. This means that the cross sections will be thermally overaged over the rotational state
[6]. The Boltzmann distribution looks like this

P (J) =
e−εJ/kT∑M
i=1 e

−εi/kT
. (A.10)

The sum runs over all values of J in (4.8) that have a rotational energy below the dissociation limit. For
H2, this mean up to state J = 25

Then a direction for the axis of rotation ω̂ will be chosen, which is the normalized version of the
pseudovector representing the angular velocity ω. This direction should be chosen perpendicular to the
interatomic axis in H2, which is possible by generating a random vector and then subtracting the component
of this vector parallel to the interatomic axis.

The position of an atom relative to the center of mass of the molecule it is a part of is

ri = xi − xCoM, (A.11)

with x1 the position of atom i in Cartesian coordinates and xCoM the position of the center of mass. The
component of ri perpendicular to the axis of rotation is then

ri,⊥ = −ω̂× (ω̂× ri) , (A.12)

or, equivalently
ri,⊥ = ri − ri,‖ = ri − (ω̂ · ri) ω̂. (A.13)

The moment of inertia of a molecule consisting of N atoms is

I =

N∑
i=0

mi||ri,⊥||2. (A.14)
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From the fact that Erot = 1
2Iω

2, the magnitude of ω can then be calculated. The extra velocity on the atoms
is then

vi,⊥ = ω× ri,⊥. (A.15)
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Appendix B

CO2 peak in φ graph

Figure B.1 shows the 3D wave function for the ground state of CO2, for various values of φ. In Figures B.1a,
B.1b and B.1c the two oxygen atoms are in anti-bonding mode and repel each other. However, as they get
forced closer and closer together, at some point (near φ = 76°) the wave function abruptly changes shape
drastically (Figures B.1d, B.1e and B.1f).

Figure B.2 shows the energy of one CO2-molecule when varying the O-C-O angle φ, for various ab
initio methods. It shows a sharp peak in the energy for the self-consistent field method (SCF) and the
coupled-cluster methods near this point. This is because a partial bond is formed between the two oxygen
atoms, which means the configuration is less a carbon dioxide molecule (O C O) and more an oxygen

molecule (O O) that happens to have a carbon atom close to it.
In reality, the real wave function will be some mixture of these states. This means that configurations

like these really need a multireference calculation such as the complete active space SCF method (CASSCF)
or the complete active space perturbation theory (CASPT2) method to properly describe them, which is
why these methods show no peak here. This means that the sharp peak is an unphysical artifact, but the
sudden bend in the energy for the CASSCF and the CASPT2 method is most likely physical.
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(a) φ = 180° (b) φ = 141°

(c) φ = 82.5° (d) φ = 76°

(e) φ = 69.5° (f) φ = 63°

Figure B.1: Images showing the 3D wave function for the ground state of CO2, for gradually
decreasing φ. Images created by dr. Jos Suijker, using CCSD calculations in the program
CFOUR[126], visualized using Jmol[141].
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Figure B.2: The energy of a CO2-molecule when varying the O-C-O angle φ, for various ab
initio methods. Calculated by dr. Jos Suijker using CFOUR[126] for SCF, CCSD, CCSD(T)
and CCSDT, and OpenMolcas[127] for CASSCF and CASPT2.
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Appendix C

Data sets

C.1 H2–H2

For the first ‘cheap’ data set of 2 H2 molecules configurations, CCSD with basis set 6-31G** was used, and
the maximum initial kinetic energy was set to 1.2 eV, to prevent the molecules from dissociating. For each
molecule, the x, y and z component of the velocity was chosen randomly from a range of 0 – 4375 m/s. 176
trajectories of each 2.000 points were calculated. Each ab initio calculation took approximately 0.4 seconds.
The settings for data set 1 are shown in Table C.1.

For the more ‘expensive’ second data set of 2 H2 molecules configurations, CCSD with basis set aug-
cc-pVTZ was used, but instead of doing all steps of the trajectory with this, most of the trajectory steps
were calculated using again the cheaper basis set 6-31G**, and only every 200 steps an expensive calculation
was done. This was done because data points that are very similar to other data points are less useful. The
settings for data set 2 are shown in Table C.2. Figure C.1 shows the distribution of the energy in the data
set and Figure C.1 that of the intermolecular distance R.

The third data set for H2–H2 was created using trajectories by LAMMPS. Each trajectory was calcu-
lated with the Hinde potential combined with a custom fit for the H-H interaction. 10 configurations from
each trajectory were chosen to do an ab initio calculation (basis set aug-cc-pVTZ) with. Unlike data set 1
and 2, in determining the random starting configurations the orientation was spherically uniform. For these
trajectories, the molecules were also given an initial rotation, unlike the trajectories of data set 1 and 2.
However, due to a bad unit conversion the rotational energy was very small. The settings for data set 3 are
shown in Table C.3.

C.2 CO2–CO2

For the first CO2–CO2 data set, the collisional energy range was the same as in Lombardi [6], which is 1
to 20 kcal/mol (0.043 to 0.87 eV). The rotational temperature in Lombardi is at most 12000K, which is a
rotational energy of 1.034 eV (using E = kBT ). This was supposed to be the maximum initial rotational
energy, but due to a bad unit conversion the rotational energy is smaller than that. The rotation axis
was chosen randomly, so the axis is usually not perpendicular to the primary principal axis of inertia of
the molecule. The trajectories were calculated using the bondbond and zuniga-murrell-guo potential in
LAMMPS. The settings for data set 1 are shown in Table C.4.

For the second CO2–CO2 data set, the problem with non-spherical sampling of the initial orientations
was solved. The settings for data set 2 are shown in Table C.5.
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Table C.1: Settings used and other information of H2–H2 data set 1. All points of the
trajectories were used. Trajectories were of 2 hydrogen molecules bouncing around in a sphere
a couple times. In determining the random starting configurations, the mistake illustrated in
Figure A.3 was made; the orientations of the molecules are not spherically uniform.

H2–H2 (dataset 1)

Calculated properties Energy ground state and its numerical gradient
Nr. of trajectories 176
Total nr. of data points 351,581
Timestep 0.24 fs
Ab initio method CCSD
Ab initio basis set 6-31G**
Initial velocity (each component) 0 – 4375 m/s
Initial R 3 – 4 Å
Limit on R 3 Å
Initial r 0.5 – 1.5 Å
Erot (eV) 0 (no rotation)
Approx. computation time per data point 0.5 s

Table C.2: Settings used and other information of H2–H2 data set 2. Every 200th time step an
expensive ab initio calculation (basis set aug-cc-pVTZ) was performed. Trajectories were of 2
hydrogen molecules. In determining the random starting configurations, the mistake illustrated
in Figure A.3 was made; the orientations of the molecules are not spherically uniform.

H2–H2 (dataset 2)

Calculated
properties

Energy ground state and its analytic gradient

Nr. of trajectories 1770
Total nr. of data
points

23,917

Timestep 0.24, 0.48 or 1.2 fs
Ab initio method CCSD
Ab initio basis set aug-cc-pVTZ
Energy 0.0433 – 0.868 eV
Initial R 21 – 29 Å
Initial r1 and r2 0.5 – 1.5 (2200 data points), 0.42 – 2.1 Å (21717 data points)
Impact parameter
b

0 – 20.1 Å (1100 data points), 0 Å (22817 data points)

Stop trajectory if
one or more particles were more than 15.9 Å from the origin or maximum number of
steps (1,001 or 2,000 or 20,001) reached

Initial Erot (eV) 0 (no initial rotation)
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Figure C.1: Distribution of R in the second data set of H2–H2 data points.

Table C.3: Settings used and other information of H2–H2 data set 3.

H2–H2 (dataset 3)

Calculated
properties

Energy ground state

Nr. of trajectories 75,720
Total nr. of data
points

756,335

Timestep 0.48 fs
Ab initio method CCSD (max 50 iterations)
Ab initio basis set aug-cc-pVTZ
Collision energy 0.043 – 0.87 eV
Initial R 10.6 Å
Initial r1 and r2 0.42 – 2.1 Å
Impact parameter
b

0 – 1.59 Å

Stop trajectory if
one or more particles were outside the simulation box (cube with sides 13.2 Å centered
at the origin) or maximum number of steps (20,001) reached

Initial Erot 0.0252 – 0.509 meV
Approx.
computation time
per data point

11.5 s
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Table C.4: Settings used and other information of CO2–CO2 data set 1.

CO2–CO2 (dataset 1)

Calculated
properties

Energy ground state

Nr. of trajectories 2564
Total nr. of data
points

19445

Timestep 0.48 fs
Ab initio method CCSD
Ab initio basis set cc-pVTZ
Energy 0.043 – 0.87 eV
Initial R (Å) 29.1 Å
Initial r1 (Å) 1.0 – 1.27 Å, 0.96 – 1.6 Å, 0.9 – 1.9 Å, 0.9 – 2.3 Å
Initial r2 (Å) 1.0 – 1.27 Å, 0.96 – 1.6 Å, 0.9 – 1.9 Å, 0.9 – 2.3 Å
Initial φ (rad) 0.95π – π, 0.7π – 1.3π, 0.625π – 1.375π, 0.6π – 1.4π
Impact parameter
b (Å)

0 or 0 – 1.59 Å

Stop trajectory if
one or more particles were outside the simulation box (cube with sides 31.8 Å or 37.0
Åcentered at the origin) or maximum number of steps (20,001) reached

Initial Erot (Eh) 0.0252 – 0.509 meV
Approx.
computation time
per data point

30 min.
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Table C.5: Settings used and other information of CO2–CO2 data set 2.

CO2–CO2 (dataset 2)

Calculated
properties

Energy ground state

Nr. of trajectories 1710
Total nr. of data
points

16880

Timestep 0.48 fs
Ab initio method CCSD
Ab initio basis set cc-pVTZ
Energy 0.043 – 0.87 eV
Initial R (Å) 31.8 Å
Initial r1 (Å) 0.96 – 1.6 Å
Initial r2 (Å) 0.96 – 1.6 Å
Initial φ (rad) 0.7π – 1.3π
Impact parameter
b (Å)

0 – 1.59 Å

Stop trajectory if
one or more particles were outside the simulation box (cube with sides ... centered at
the origin) or maximum number of steps (20,001) reached

Initial Erot (Eh) 0.0252 – 0.509 meV
Approx.
computation time
per data point

30 min.
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Appendix D

Neural network parameters

The hyperparameter search was mostly done on data set 1, with proximities type A.
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Table D.1: The accuracy of the neural network for different numbers of nodes in the hidden
layer.

nr. of nodes RMSE (eV) MAE (eV)

2 (1.9± 1.3)× 10−1 (1.3± 1.0)× 10−1

20 (1.02± 0.35)× 10−2 (6.2± 1.8)× 10−3

200 (5.3± 1.5)× 10−3 (2.58± 0.23)× 10−3

2000 (5.2± 1.7)× 10−3 (2.18± 0.32)× 10−3

Figure D.1: Error in potential predicted by neural network for different numbers of nodes in
the one hidden layer.
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Table D.2: The accuracy of the neural network with and without bias parameters.

description RMSE (eV) MAE (eV)

no bias (1.02± 0.35)× 10−2 (6.2± 1.8)× 10−3

with bias (6.6± 1.8)× 10−3 (2.9± 0.5)× 10−3

Figure D.2: Error in potential predicted by neural network with and without bias parameters.
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Table D.3: The accuracy of the neural network for different activation functions.

description RMSE (eV) MAE (eV)

softplus (1.02± 0.35)× 10−2 (6.2± 1.8)× 10−3

softsign (1.3± 0.4)× 10−2 (6.8± 1.0)× 10−3

Figure D.3: Error in potential predicted by neural network for various activation functions.
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Table D.4: The accuracy of the neural network for different numbers of layers.

hidden layers RMSE (eV) MAE (eV)

[20] (1.02± 0.35)× 10−2 (6.2± 1.8)× 10−3

[20, 20] (5.4± 1.7)× 10−3 (2.8± 0.4)× 10−3

[20, 20, 20] (4.5± 1.2)× 10−3 (2.11± 0.15)× 10−3

Figure D.4: Error in potential predicted by neural network for different numbers of hidden
layers with each 20 nodes.
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Table D.5: The accuracy of the neural network for various learning rate schedules.

nr of epochs × learning rate RMSE (eV) MAE (eV)

500× 10−3 (6.5± 1.8)× 10−3 (4.7± 1.0)× 10−3

250× 10−3, 250× 10−4 (5.3± 1.5)× 10−3 (2.58± 0.23)× 10−3

250× 10−3, 250× 10−4, 250× 10−5 (5.2± 1.5)× 10−3 (2.36± 0.13)× 10−3

Figure D.5: Error in potential predicted by neural network for various learning rate schedules.
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Table D.6: The accuracy of the neural network for different combinations of exponents.

description RMSE (eV) MAE (eV)

[1] (1.7± 0.5)× 10−1 (1.20± 0.32)× 10−1

[2, 1], only 6 eigenvalues (9.0± 1.1)× 10−3 (5.5± 0.4)× 10−3

[2, 1] (1.02± 0.35)× 10−2 (6.2± 1.8)× 10−3

[6, 2, 1] (7.6± 1.7)× 10−3 (4.3± 0.6)× 10−3

Figure D.6: Error in potential predicted by neural network for different combinations of expo-
nents. (The exponents in the legend still have a minus sign, due to a different definition of
the proximities A as rnij at the time. Exponents in Table D.6 are correct.)
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Table D.7: The accuracy of the neural network with and without scaling the input data to
have variance 1. Powers=[1, 2], N1=20, 250 epochs lr=1e-3, 250 epochs lr=1e-4.

description RMSE (eV) MAE (eV)

no scaling (1.4± 0.6)× 10−2 (8.5± 1.9)× 10−3

with scaling (1.02± 0.35)× 10−2 (6.2± 1.8)× 10−3

Figure D.7: Error in potential predicted by neural network with and without scaling the inputs
to have a variance of 1, for exponents [1, 2].
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Appendix E

Linear regression PMI results

E.1 On traces

Table E.1: Results of a linear regression on the tr
(
Pk
)

PMIs.

Type of proximities
Number
of coeffi-
cients

Max. k
Parameter values n
or a (a in bohr)

RMSE training
(meV)

RMSE validation
(meV)

Proximities B 9 4 [1.5, 2., 2.5] 654.6 ± 3.2 657.5 ± 12.5

24 4
[1.5, 2., 2.5, 3., 3.5,
4., 4.5, 5.]

(6.5 ± 0.0)Ö103 (6.5 ± 0.0)Ö103

Proximities C
(cutoff=10.1Å)

24 4
[1.5, 2., 2.5, 3., 3.5,
4., 4.5, 5.]

62.0 ± 0.6 62.5 ± 2.4

108 13
[1.5, 2., 2.5, 3., 3.5,
4., 4.5, 5., 5.5]

4.6 ± 0.1 5.7 ± 0.5

120 13
[1.5, 2., 2.5, 3., 3.5,
4., 4.5, 5., 5.5, 6.5]

7.7 ± 0.2 8.6 ± 0.5

Proximities C
(cutoff=15.9Å)

9 4 [1.5, 2., 2.5] 844.4 ± 6.3 846.2 ± 24.8

24 4
[1.5, 2., 2.5, 3., 3.5,
4., 4.5, 5.]

74.0 ± 0.5 74.5 ± 2.1

30 11 [1.5, 2., 2.5] 100.2 ± 0.9 101.9 ± 3.8

80 11
[1.5, 2., 2.5, 3., 3.5,
4., 4.5, 5.]

10.3 ± 0.1 11.1 ± 0.6

108 13
[1.5, 2., 2.5, 3., 3.5,
4., 4.5, 5., 5.5]

7.9 ± 0.1 8.7 ± 0.5

120 16
[1.5, 2., 2.5, 3., 3.5,
4., 4.5, 5.]

8.2 ± 0.2 9.5 ± 0.9

120 13
[1.5, 2., 2.5, 3., 3.5,
4., 4.5, 5., 5.5, 6.]

6.8 ± 0.1 7.7 ± 0.5

120 13
[1.5, 2., 2.5, 3., 3.5,
4., 4.5, 5., 5.5, 6.5]

6.0 ± 0.1 7.2 ± 0.7
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120 13
[1.5, 2., 2.5, 3., 3.5,
4., 4.5, 5., 6., 7.]

5.5 ± 0.1 7.1 ± 1.0

120 11
[1.5, 2., 2.5, 3., 3.5,
4., 4.5, 5., 5.5 6.5
7. 7.5]

7.0 ± 0.1 7.8 ± 0.5

120 13
[1.5, 2., 2.5, 3., 3.5,
4., 5., 6., 7., 8.]

5.0 ± 0.1 6.5 ± 1.0

120 13
[1.5, 2., 2.5, 3., 4.,
5., 6., 7., 8., 9.]

4.8 ± 0.1 5.8 ± 0.6

120 13
[1.5, 2., 2.5, 3., 4.,
5., 6., 7., 8., 10.]

4.8 ± 0.1 5.8 ± 0.6

120 13
[1.5, 2., 2.5, 3., 4.,
5., 6., 8., 10., 12.]

4.7 ± 0.1 5.6 ± 0.4

132 13
[1.5, 2., 2.5, 3., 4.,
5., 6., 8., 10., 12.,
15.]

4.6 ± 0.1 5.9 ± 0.7

Morse 9 4 [0.2, 0.7, 1.5] 207.7 ± 1.0 208.5 ± 4.1
12 4 [0.2, 0.35, 0.55, 1.5] 120.6 ± 0.6 121.6 ± 3.0
12 4 [0.2, 0.4, 0.7, 3.] 157.5 ± 1.4 170.9 ± 22.6
12 4 [0.2, 0.4, 0.7, 1.5] 89.9 ± 0.5 93.0 ± 3.3

15 4
[0.2, 0.35, 0.55, 0.8,
1.5]

56.5 ± 0.8 62.4 ± 8.0

18 7 [0.7, 1., 2.] 41.0 ± 0.5 43.8 ± 4.2
18 7 [0.2, 0.4, 0.7] 733.5 ± 8.0 761.8 ± 42.8
30 7 [0.2, 0.4, 0.7, 1., 2.] 27.5 ± 0.5 29.3 ± 2.4

36 7
[0.2, 0.4, 0.7, 1., 2.,
3.]

23.5 ± 0.5 25.2 ± 2.3

120 21
[0.2, 0.4, 0.7, 1., 2.,
3.]

4.3 ± 0.1 18.5 ± 17.4

120 16
[0.2, 0.4, 0.7, 1., 2.,
3., 4., 5.]

4.6 ± 0.1 5.8 ± 1.3

120 16
[0.1, 0.2, 0.4, 0.7,
1., 2., 3., 4.]

5.1 ± 0.1 6.4 ± 0.5

140 21
[0.1, 0.2, 0.4, 0.7,
1., 2., 3.]

4.3 ± 0.1 18.5 ± 17.4

120 13
[0.2, 0.4, 0.7, 1., 2.,
3., 4., 6., 9., 13.]

5.9 ± 0.1 7.2 ± 0.9

120 13
[0.2, 0.4, 0.7, 1.,
1.5, 2., 3., 4., 6., 9.]

5.1 ± 0.1 7.3 ± 2.0

Sine/cosine B
(cutoff=15.9Å)

18 4 [0, 1, 2] 369.3 ± 3.2 371.6 ± 12.3

60 11 [0, 1, 2] 174.1 ± 1.8 176.4 ± 6.8
60 7 [0, 1, 2, 3, 4] 54.4 ± 0.5 56.5 ± 2.3
120 21 [0, 1, 2] (5.7 ± 0.0)Ö103 (1.3 ± 1.3)Ö104

120 11 [0, 1, 2, 3, 4, 5] 73.7 ± 0.8 81.7 ± 10.4

112 8
[0, 1, 2, 3, 4, 5, 6,
7]

16.0 ± 0.3 18.9 ± 3.0
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120 7
[0, 1, 2, 3, 4, 5, 6,
7, 8, 9]

10.4 ± 0.2 11.9 ± 1.2

E.2 On products of traces

Table E.2: Results of a linear regression on products of tr
(
P2
)
, tr
(
P3
)

and tr
(
P4
)
, up to a

certain order.

Type of proximities
Number
of coeffi-
cients

Order
Parameter values n
or a (a in bohr)

RMSE training
(meV)

RMSE validation
(meV)

Proximities B 8 3 [1.5, 2., 2.5, 3.] 292.9 ± 1.1 294.4 ± 4.8

20 3
[1.5, 2., 2.5, 3., 4.,
5., 6., 8., 10., 12.]

(7.0 ± 0.0)Ö103 (7.0 ± 0.1)Ö103

88 10 [1.5, 2., 2.5, 3.] (7.0 ± 0.0)Ö103 (7.3 ± 0.7)Ö103

Proximities C
(cutoff=10.1Å)

20 3
[1.5, 2., 2.5, 3., 4.,
5., 6., 8., 10., 12.]

78.0 ± 0.8 79.8 ± 3.8

110 7
[1.5, 2., 2.5, 3., 3.5,
4., 4.5, 5., 5.5, 7.,
7.5]

15.5 ± 0.3 18.4 ± 0.7

126 8
[1.5, 2., 2.5, 3., 3.5,
4., 4.5, 5., 5.5]

8.8 ± 0.2 10.4 ± 0.9

130 11 [1.5, 2., 2.5, 3., 3.5] 6.2 ± 0.1 7.4 ± 0.5

140 8
[1.5, 2., 2.5, 3., 4.,
5., 6., 8., 10., 12.]

8.6 ± 0.2 10.6 ± 1.4

182 11
[1.5, 2., 2.5, 3., 3.5,
4., 4.5]

4.5 ± 0.1 6.9 ± 0.7

198 10
[1.5, 2., 2.5, 3., 3.5,
4., 4.5, 5., 5.5]

4.6 ± 0.1 6.4 ± 0.9

198 12 [1.5, 2., 3.] 111.9 ± 1.8 158.9 ± 37.8

Morse 50 7
[0.2, 0.35, 0.55, 0.8,
1.5]

24.0 ± 0.4 32.0 ± 10.6

90 7
[0.2, 0.35, 0.55, 0.8,
1.5, 2., 3., 4., 5.]

16.2 ± 0.3 22.5 ± 7.5

126 8
[0.2, 0.35, 0.55, 0.8,
1.5, 2., 3., 4., 5.]

9.4 ± 0.3 11.9 ± 2.6

119 9
[0.2, 0.35, 0.55, 0.8,
1.5, 2., 3.]

9.8 ± 0.2 14.7 ± 2.5

Sine/cosine 80 6 [0, 1, 2, 3, 4] 201.2 ± 1.8 213.1 ± 7.7
140 8 [0, 1, 2, 3, 4] 127.8 ± 2.0 146.6 ± 10.6
260 11 [0, 1, 2, 3, 4] 57.3 ± 0.3 85.3 ± 13.5
264 12 [0, 1, 2, 3] 45.4 ± 0.5 72.6 ± 15.3

E.3 On traces and trace complements
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Table E.3: Results of a linear regression on the tr
(
Pk
)

PMIs.

Type of proximities
Number
of coeffi-
cients

Max. k
Parameter values n
or a (a in bohr)

RMSE training
(meV)

RMSE validation
(meV)

Proximities C
(cutoff=10.1Å)

75 13 [2, 3, 5] 6.2 ± 0.2 (8.0 ± 16.0)Ö106

91 7
[1.5, 2., 2.5, 3., 3.5,
4., 4.5]

10.4 ± 0.4 (9.6 ± 19.2)Ö103

100 13 [2, 3, 5, 8] 3.3 ± 0.1 5.7 ± 2.0
105 11 [2, 3, 5, 8, 12] 4.0 ± 0.2 (1.0 ± 2.1)Ö105

105 11 [2, 3, 5, 8, 12] 4.0 ± 0.2 (1.0 ± 2.1)Ö105

105 11 [2, 3, 4, 8, 12] 4.2 ± 0.1 (3.8 ± 7.6)Ö104

105 11 [1.5, 2., 2.5, 3., 3.5] 6.5 ± 0.1 7.8 ± 0.4
115 12 [2, 3, 5, 8, 12] 3.5 ± 0.1 (1.8 ± 3.6)Ö105

125 13 [2, 3, 5, 8, 12] 2.8 ± 0.1 3.6 ± 0.4
126 11 [2, 3, 4, 6, 9, 12] 3.7 ± 0.1 8.1 ± 5.5

126 11
[1.5, 2., 2.5, 3., 3.5,
4.]

4.8 ± 0.1 5.7 ± 0.6

130 7
[1.5, 2., 2.5, 3., 3.5,
4., 4.5, 5., 5.5, 6.5]

8.3 ± 0.1 10.2 ± 1.6

130 7
[1.5, 2., 2.5, 3., 4.,
5., 6., 8., 10., 12.]

7.4 ± 0.3 (7.4 ± 14.7)Ö103

Morse 120 8
[0.2, 0.4, 0.7, 1., 2.,
3., 4., 5.]

6.8 ± 0.1 752.9 ± 1488.2

124 16 [0.2, 0.4, 0.7, 1.] 24.2 ± 0.2 (4.3 ± 8.5)Ö104

125 13 [0.7, 2., 3., 4., 5.] 3.4 ± 0.2 (1.2 ± 2.4)Ö105

135 14 [0.7, 2., 3., 4., 5.] 2.7 ± 0.1 (4.6 ± 9.2)Ö104

155 16
[0.2, 0.35, 0.55, 0.8,
1.5]

3.8 ± 0.0 17.5 ± 14.7

155 16 [0.7, 2., 3., 4., 5.] 2.2 ± 0.1 3.6 ± 1.7

248 16
[0.2, 0.4, 0.7, 1., 2.,
3., 4., 5.]

1.9 ± 0.1 (5.4 ± 10.7)Ö107
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Appendix F

Derivation analytical gradient

To get the analytical gradient of the neural network potential the entire chain from Cartesian coordinates
xii′ (where xii′ is the i′th coordinate of particle i) to the predicted energy E needs to be differentiated. The
element pjj′ of the proximity matrix P(n) of type A with the exponent n and the weight factor αjj′ is

pjj′(n) = αjj′1/r
n
jj′ , (F.1)

or, if the potential is forced to zero for rjj′ > r0 (proximity matrix type B):

pjj′(n) =

{
αjj′

(
r0
rjj′
− rjj′

r0

)n
, if rjj′ < r0,

0 if rjj′ > 0,
(F.2)

in both cases rjj′ are the interatomic distances:

rjj′ = ||xj − xj′ || =


√√√√ 3∑
h=1

(xjh − xj′h)
2

 , (F.3)

which means the diagonal pj=j′ is always zero.
Using the fact that

∂xjh
∂xii′

= δjiδhi′ , (F.4)

the derivative of rjj′ with respect to a coordinate xii′ for proximity matrix type A is then

∂pjj′

∂xii′
= −αjj′n(rjj′)

−n−2(xji′ − xj′i′)


1 if i = j,

−1 if i = j′,

0 else

(F.5)

and for proximity matrix type B

∂pjj′

∂xii′
=


αjj′n

(
r0
rjj′
− rjj′

r0

)n−1
(
− r0
r2
jj′
− 1

r0

)
xji′−xj′i′

rjj′


1 if i = j,

−1 if i = j′,

0 else

if r < r0,

0 if r > r0,

(F.6)
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with in both cases the diagonal
∂pj=j′

∂xii′
also always zero.

εk, the kth eigenvalue of the matrix P(n) with elements pjj′ is scaled to ek = εk−meank√
vark

, with meank
the mean of this eigenvalue over the entire training set, and vark the variance.

The derivative of the eigenvalues with respect to an element of the matrix is [142]:

∂εk
∂pjj′

= (vk · wj)(vk · wj′) = vkjvkj′ , (F.7)

where wi is the Euclidean basis vector with only a 1 at i and zero everywhere else. with vki the ith element
of the eigenvector vk of unit length corresponding to eigenvalue εk. The derivative of the scaled eigenvalue
ek is then

∂ek
∂pjj′

=
1

√
vark

∂εk
∂pjj′

=
vkjvkj′√

vark
. (F.8)

The eigenvalues resulting from multiple proximity matrices with different exponents are then combined into
a vector ek′ .

The result of a neural network with L layers and activation function φ(x) for each neuron is

Escaled = bL + AL(φL(bL−1) + AL−1(...φ1(b1 + A1φ0(b0 + A0ek′)))). (F.9)

with the matrix A` the `th weights connecting the ` th hidden layer (or the input layer for ` = 0) to the
(` + 1) th layer (or to the output for ` = L) and b` the bias parameters for layer `. The derivative of
the neural network result Escaled with respect to the vector of eigenvalues e is then (do this efficiently with
backpropagation [143]):

∂Escaled

∂ek′
= AL · φ′(aL−1)AL−1 · φ′(aL−2)...A1 · φ′(a0)A0

:,k′ , (F.10)

Here a` is the activation before applying the activation function (so the intermediate result after applying
the matrix A` and parameters b`; these are already computed during the forward pass, so save them)
of the neurons in layer `. Here · stands for matrix multiplication, the other multiplications (for example
φ′(a0)A0

:,k′) are element-wise. A0
:,k′ is the k′th column of the matrix A0. For the softplus activation function

φ(x) = ln(1 + ex) (applied element-wise) the derivative is φ′(x) = 1
1+e−x .

The actual energy predicted by the net is then E = Escaled
√

varE + meanE , which makes

∂E

∂ek′
=
√

varE
∂Escaled

∂ek′
. (F.11)

Here varE is the variance of E in the training set and meanE the mean.
Putting this all together, this is the result:

∂E

∂xii′
=
∑
k′

∂E

∂ek′

∑
j,j′

∂ek′

∂pjj′

∂pjj′

∂xii′

 . (F.12)

This can be implemented as matrix multiplications.
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Glossary
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fold One iteration during crossvalidation. 59, 60

NN Neural Network. 34, 60, 62, 63, 65, 88, 104, 148

open walk A sequence of edges in a graph that connects a sequence of nodes, where the first and last node
in the sequence are not the same. 48, 73

PES Potential Energy Surface. 63, 84, 105

PIP Permutationally Invariant Polynomials as described by Braams, Bowman and Xie [144, 25]. 40, 47, 53,
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PME Proximity Matrix Eigenspectrum. 43, 48, 54, 59, 60, 62, 63, 65, 88, 104, 148
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QCT Quasiclassical Trajectories. 84, 93

RMSE Root-mean-square error. 24, 63, 74, 80, 95, 135, 141, 143, 144, 151

trace complement The sum of the off-diagonal elements of a matrix. 48, 78
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