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Abstract

Leading indicators are defined as variables that contain predictive information and ide-
ally can predict a certain movement for a target variable in advance. This paper aimed
to identify leading indicators for a case company that supplies truck parts to the Eu-
ropean truck aftersales market. We used LASSO to extract relevant information from
a collected pool of business, economic, and market indicators. We propose the efficient
one-standard error rule, as an alternative to the default one-standard error rule, to re-
duce the influence of sampling variation on the LASSO tuning parameter value. We
found that applying the efficient one-standard error rule over the default one, improved
forecasting performance with an average of 0.73%. Next to that, we found that, for our
case study, applying forecast combination yielded the best forecasting performance, out-
performing all other considered models, with an average improvement of 2.38%. Thus,
including leading context information did lead to more accurate parts sales predictions
for the case company. Also, due to the transparency of LASSO, using LASSO provided
business intelligence about relevant predictors and lead effects. Finally, from a pool of
34 indicators, 7 indicators appeared to have clear lead effects for the case company.
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Management Summary

Introduction

PACCAR Parts Europe (PPE) is a leading supplier of high-quality truck parts to the
European truck aftersales market. Generally, it is well known that truck aftersales results
are highly related to the ongoing economic activities. According to Currie and Rowley
(2010) using additional information can enhance forecasting performance in volatile en-
vironments. For example, leading indicators, such as macroeconomics, can contain lead-
ing context information in terms of changing economic conditions (Sagaert, Aghezzaf,
Kourentzes, & Desmet, 2018). Currently, PPE’s Business Development & Intelligence
department tracks a number of macroeconomic indicators to qualitatively analyze and
assess the truck aftersales market conditions. However, it is unclear if there are certain
indicators that possibly contain leading context information for PPE’s parts sales. As a
result, they would like to gain insight into whether there are indicators that contain lead-
ing information for their business in a quantitative manner. Next to that, they want to
know if using information extracted from these indicators actually leads to more accurate
parts sales predictions. Accordingly, the business objective was defined as:

Identify and gain insight into leading indicators for PACCAR Parts Europe’s part sales.
Next to that, explore and analyze whether including information extracted from leading
indicators actually leads to more accurate parts sales predictions.

Modeling

In order to identify leading indicators for PPE’s parts sales, it was necessary to specify
a certain target variable. For this project, the target variable was specified as the total
monthly truck parts sales reported by all DAF dealers, located in the EU27+2 area.
With regard to the indicators, we collected a pool of 34 business, economic and market
indicators which had the potential of being a leading indicator for PPE’s part sales. The
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business indicators covered PPE’s business activities by means of indicators that were
related to observed parts sales in the past and the number of DAF truck deliveries. The
economic indicators covered Europe’s overall economic climate by means of indicators
that were mainly related to the industrial manufacturing and construction sectors, as
these sectors are the major drivers of commercial vehicle transport. The market in-
dicators covered the ongoing activities in Europe’s road transport sector by means of
indicators that were related to the number of placed truck orders, diesel consumption,
tire consumption, carrier sentiment and road activity. Thereafter, in order to model and
identify any lead effects, each considered indicator was lagged in time multiple times,
increasing the number of predictors significantly. For this project, we assumed a maxi-
mum lead effect of 12 months and thus the number of predictors increased to a total of
408. Given a large number of predictors together with the frequent occurrence of small
sample sizes in sales forecasting, the identification of leading indicators in a monthly
sales forecasting environment resulted in a high-dimensional (p > n) problem. Moreover,
since each indicator is lagged in time multiple times, there exists correlation among the
predictors and thus the problem of multicollinearity is present. Hence, the identification
of leading indicators resulted in a high-dimensional problem with the presence of multi-
collinearity among the predictors. Therefore, LASSO was chosen as modeling technique
as LASSO performs both variable selection and regularization that involves penalizing
the absolute size of the regression coefficients. Due to these shrinkage properties, LASSO
is capable of effectively dealing with multicollinearity among the predictors. Next to that,
the use of LASSO contributed to the business objective as “the LASSO forecast is trans-
parent, and provides insights into the selected leading indicators. Experts can benefit by
gaining a better understanding of their market and can thus improve their understanding
of market dynamics and interactions” (Sagaert, Aghezzaf, Kourentzes, & Desmet, 2017,
p. 127)

Results

We found that 7 indicators appeared to have clear lead effects for PPE: observed parts
sales, DAF truck deliveries, construction spending, short-term diesel consumption growth,
automotive diesel deliveries, short-term OEM truck orders and carrier demand expecta-
tions. In order to assess whether the inclusion of leading context information actually led
to more accurate predictions, we benchmarked the performance of LASSO to SARIMA
and Holt-Winters, which are two univariate time series forecasting methods, often used
in businesses. Initially, it turned out that Holt-Winters predicted most accurate on the
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shorter horizons (1-5 months), whereas SARIMA mainly predicted most accurate on the
longer horizons (7-12 months). Hence, despite the fact that LASSO used external in-
formation, it actually predicted less accurate than the traditional forecasting methods.
As a result, two experiments were conducted in order to explore whether forecasting
performance could be improved by applying efficient tuning parameter selection and
forecast combination. With regard to the efficient tuning parameter selection experi-
ment, we introduced the efficient one-standard error rule which, instead of choosing the
parameter value corresponding to the most regularized model within one-standard error
of the minimum CV error estimate, chooses all parameter values within one-standard
error of the minimum, and subsequently calculates a weighted average. The purpose of
applying the efficient one-standard error rule over the default one-standard error rule,
when using CV, is to reduce the influence of sampling variation on the tuning parame-
ter value. Accordingly, it was found that applying the efficient one-standard error rule
improved forecasting performance in 10 out of 12 models, with an average improvement
of 0.73%. Next to that, we analyzed model diversities and explored whether applying
forecast combination could lead to more accurate predictions. Accordingly, it was found
that combining the predictions of LASSO and Holt-Winters yielded the most accurate
predictions, outperforming the individual LASSO, Holt-Winters and SARIMA models
for almost all horizons. Hence, for PPE, the inclusion of leading indicators led to more
accurate parts sales predictions, with an average improvement of 2.38% over all horizons.

Recommendations

The results obtained during this field project led to a number of recommendations to-
wards PACCAR Parts Europe. First of all, it is recommended to implement the additive
Holt-Winters model with smoothing parameters α = 0.2, β = 0.1, γ = 0.2. Next to
that, it is recommended to implement the LASSO model with the indicators: observed
parts sales, DAF truck deliveries, construction spending, short-term diesel consumption
growth, automotive diesel deliveries, short-term OEM truck orders, and carrier demand
expectations. With regard to LASSO’s tuning parameter λ, it is recommended to im-
plement and use 10-fold CV with the efficient one-standard error rule, proposed in this
report, as the tuning parameter selection method. In order to obtain the final prediction,
the predictions of both the LASSO and Holt-Winters models should be averaged.
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Chapter 1

Introduction

This chapter aims at defining and describing the research environment by introduc-
ing DAF Trucks NV and PACCAR Parts Europe. Furthermore, the European truck
aftersales and road freight markets are briefly described in order to improve market un-
derstanding and provide relevant market insights. Finally, this chapter is concluded by
introducing the research problem and the corresponding research questions for this field
project.

1.1 DAF Trucks NV

DAF Trucks NV, further denoted as DAF, is a technology company and a leading com-
mercial vehicle builder in Europe. DAF is a full subsidiary of PACCAR Inc, a worldwide
leader in designing and manufacturing high-quality light, medium and heavy-duty com-
mercial vehicles under the Peterbilt, Kenworth and DAF nameplates. The core activities
of DAF consist of the development, production, marketing and sales of medium and
heavy-duty commercial vehicles. The upcoming sections will elaborate on DAF’s prod-
uct portfolio, market performance and organizational structure.

1.1.1 Product Portfolio

DAF produces vehicles according to the build-to-order principle. Hence, vehicles are
specified to the customer’s needs and are only built after a confirmed customer order is
received. At the time of writing, DAF has a number of production facilities in Eindhoven
(The Netherlands), Westerlo (Belgium), Leyland (United Kingdom) and Ponta Grossa
(Brasil).
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CHAPTER 1. INTRODUCTION

DAF offers high-quality solutions for long-distance, distribution, and construction trans-
port needs by offering trucks on three distinct vehicle platforms. First, the small LF series
is designed for city and regional transport, and is characterized by its maneuverability,
accessibility, and an exceptional low weight. Secondly, the CF series is a multifunctional
truck designed for regional, national or international transport, both on flat roads and
rough terrains. Lastly, the XF series is designed for maximum transport efficiency and
is mainly used for long-distance transport due to its spacious and luxurious interior.

1.1.2 Market Performance

DAF operates in a highly competitive market in which it competes with several other
original equipment manufacturers (OEMs) offering comparable solutions. In 2019, DAF
obtained a market share of 16.2% in the heavy-duty (>16 tons) segment. As a result, they
were market leaders in the Netherlands, the United Kingdom, Poland, Hungary, Belgium,
Luxembourg, and Bulgaria. With regard to the medium-duty (6-16 tons) segment, DAF
were market leaders in the United Kingdom and Ireland as they increased their market
share in this segment up to 9.7%.

1.1.3 Organizational Structure

DAF’s headquarters is located in Europe’s leading innovative technology region, Eind-
hoven (the Netherlands). At the time of writing, DAF employs approximately 9,400
employees within their organization. Figure 1.1 shows the organizational structure of
DAF in 2020. As can be seen, the company structure consists of eight main divisions:
Marketing & Sales, Operations, Product Development, Finance, PACCAR Financial Eu-
rope, PACCAR IT Europe, PACCAR Parts Europe, and PACCAR Purchasing Europe.

The project described in this report was executed at the Business Development & In-
telligence department of the PACCAR Parts Europe division in Eindhoven. The core
activities of PACCAR Parts Europe, and especially the Business Development & Intelli-
gence department are discussed in Section 1.2.
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CHAPTER 1. INTRODUCTION

Figure 1.1: Organizational structure at DAF Trucks NV (DAF Trucks NV, 2020).

1.2 PACCAR Parts Europe

PACCAR Parts Europe, further denoted as PPE, is a leading provider of high-quality
truck parts, integral service concepts and support solutions in the European truck af-
tersales market. The core activities of PPE consist of optimizing parts availability and
logistics operations across the DAF dealer network in order to maximize customer vehi-
cle uptime. It is generally known that the profitability and total cost of ownership of a
commercial vehicle is highly dependent on its availability (i.e. vehicle uptime). Hence,
the availability of truck parts for repairs and maintenance play a crucial role in this.
With a product portfolio consisting of PACCAR Genuine Parts, DAF Genuine Parts,
TRP universal parts and other supplier brands; PPE is able to offer a complete range
of truck spare parts suitable for mixed fleets of all truck ages. Moreover, together with
four state-of-the-art distribution centers in Eindhoven, Leyland, Madrid and Budapest
and a strong DAF dealer network; PPE achieves the highest standards in distribution
efficiency and commercial support in the increasingly demanding truck aftersales market.

The Business Development & Intelligence department is responsible for identifying new
market developments, conducting market studies, determining vehicle parks, calculating
aftersales potential, measuring dealer performance and mapping competitors and the
transport market. Accordingly, the upcoming sections will analyze and elaborate on the
current state of both the European truck aftersales and road freight market.
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CHAPTER 1. INTRODUCTION

1.2.1 Aftersales Market Developments

In the past decade, the relevance of the truck aftersales business has grown significantly
due to the fact that margins in new truck sales are shrinking considerably. Therefore,
aftersales has become the most profitable business and a major profit driver for OEMs,
despite the fact that it only accounts for a small portion of revenues (Roland Berger,
2015). For clarity, Figure 1.2 shows the contrast between margins and revenues in the
truck sales and aftersales business. As can be seen, margins in aftersales are significantly
higher than margins in new truck sales. As a result, competition in the aftersales market
has increased noticeably over the years due to the fact that new participants (e.g. original
equipment suppliers and independent wholesalers) have entered the market. Next to that,
the truck aftersales market is facing a number of key influences (Roland Berger, 2014).

First of all, road freight transportation across Europe is expected to keep on increasing
in the future. In the past decade, the European road freight market size grew from
276.2 billion Euros in 2010 to 355.1 billion Euros in 2019, with continuous year-on-year
increases except for 2012. Hence, the road freight market increased a significant 22%
by the end of 2019. Moreover, estimates suggest that the freight transport market will
increase with 60% by 2050 (European Commission, 2019).

Secondly, truck vehicle parcs across Europe are expanding and getting older year-on
year. In 2014, a total amount of 6.1 million trucks were driving the roads in the European
Union (EU). Ever since, this number has increased year-on-year, resulting into 6.6 million
trucks driving the European roads by the end of 2018. With a fleet size of over 1.1 million
trucks, Poland has the largest truck fleet, followed by Germany and Italy with fleet sizes
of 946,541 and 904,308 trucks respectively. Moreover, the average age of trucks has been
increasing likewise. In 2014, trucks in the EU were 11.9 years old on average, whereas
the average truck age had increased up to 12.4 years by the end of 2018. With an average
fleet age of 14.4 years, Spain has the oldest truck fleet, followed by Italy with an average
fleet age of 14.0 years. Conversely, with an average fleet age of 7.2 years, France has
the youngest truck fleet among the EU’s major markets, followed by Germany with an
average fleet age of 9.5 years (European Automobile Manufacturers’ Association, 2019).

Lastly, requirements for vehicle uptime and efficiency are rising. In order to satisfy these
requirements, OEMs tend to design and develop components in a more sustainable man-
ner. As a result, maintenance intervals are increasing as wear components become more
durable, which positively affects vehicle uptime. For example, DAF used to apply main-
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Figure 1.2: Aftersales is a major profit driver for OEMs (Roland Berger, 2015).

tenance intervals of 100,000 kilometers in the past; whereas at the time of writing, DAF
is applying maintenance intervals up to 200,000 kilometers. Logically, larger maintenance
intervals have a negative impact on the aftersales market. On the other hand, higher
expectations in terms of vehicle uptime and efficiency offer opportunities for introducing
new business models. An example of one of these business models is predictive main-
tenance. Predictive maintenance is a data-driven approach based on machine learning
which uses data from thousands of vehicles in terms of mileage, speed, temperature, and
other performance data to calculate the service life of certain vehicle components and ul-
timately predict when certain vehicle components are likely to break down. Accordingly,
predictive maintenance enables components which are likely to break down in the near
future to be replaced in advance and thus minimizing and preventing unplanned vehi-
cle downtime. Another example of new business models are fleet management systems.
Fleet management systems are data-driven mobility services developed in order to pro-
vide valuable insights and assistance to operators that manage a large number of trucks.
The purpose of fleet management is to improve operational efficiency and minimize costs
by optimizing vehicle maintenance, fuel consumption and fuel costs, driver management,
asset utilization and route planning.

1.2.2 Importance of Road Transport

Road transport is a vital part of, and a major contributor to the European economy. It
can be grouped into the transportation of goods and materials (i.e. road freight transport)
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and the transportation of passengers (i.e. passenger transport) on roads. Undoubtedly,
the truck aftersales market highly depends on the activity of road freight transport.

According to Boylaud and Nicoletti (2001), road freight transport is a key sector for all
economies as it plays a major role in market integration and it directly impacts trans-
action costs in corresponding economies. With a total number of 3.2 million employees
spread over approximately 590,000 businesses, road freight transport dominates the Eu-
ropean freight market in terms of employment (European Commission, 2018). Figure 1.3
shows the modal split of freight transport in the EU for the period 2013-2018. As can
be seen, freight is transferred in the EU by road, maritime, rail, inland waterways and
air transport. Moreover, it can be concluded that road freight transport dominated the
freight market between 2013-2018 in terms of tonne-kilometres, followed at a significant
distance by maritime transport. For clarity, a tonne-kilometer represents the transport
of one ton of goods, including packaging and tare weights of containers and pallets, over
a distance of one kilometer.

Figure 1.3: Modal split of freight transport in the EU (Eurostat, 2020).

The popularity of road freight transport can easily be explained by the fact that it is
the most flexible, responsive and economic mode of goods transportation (European
Automobile Manufacturers’ Association, 2017). Also, it is often the case that all the
other freight transport modes depend on road transport in order to transfer freight from
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and to marine terminals, rail terminals and airports. Hence, road freight transport is an
indispensable link in facilitating door-to-door logistic supply chains across Europe.

1.2.3 Market Understanding

Given the fact that road freight is of great importance for the European logistics network,
it is of importance to analyze and understand how road freight is distributed across
the European territories. Figure 1.4 shows the average total transport of goods across
European territories in terms of million tonne-kilometers over the period 2013-2018. As
can be seen, Germany and Poland were leading countries in the European road freight
market with a market share of 17.0% and 15.4% in terms of million tonne-kilometers
respectively. Thereafter, Spain, France and the United Kingdom follow with market
shares of 11.1%, 9.1%, and 8.0% respectively. Together, these countries accounted for
60.8% of the total goods transported. Moreover, if Italy is also included, the total share
increases to 67.0% and thus six out of twenty-nine countries accounted for about two-
thirds of the total European market.

Figure 1.4: Transport of goods on country level (Eurostat, 2020).
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1.3 Problem Formulation

Sales forecasting plays a significant role in business strategies nowadays. In particular,
tactical (i.e. up to 12 months) forecasting often supports short-term decision-making in
supply chain management as it serves as a basis for raw material purchase, inventory
planning and production scheduling. Alternatively, strategic forecasting is often referred
to as long-term forecasting and principally supports decision-making in the development
of overall strategies and capacity planning. In fact, both forecasting strategies commonly
use observed values of the past and available knowledge to predict the future as accurately
as possible (Sagaert et al., 2018). However, including external information could enhance
the performance of a sales forecasting model (Currie & Rowley, 2010).

According to Currie and Rowley (2010) using additional information can enhance fore-
casting performance in volatile environments. The main focus of previous research has
been enhancing operational forecasts (i.e. up to 48 hours ahead). For example, Williams,
Waller, Ahire, and Ferrier (2014) successfully integrated supply chain information into
a forecasting model, whereas Ma, Fildes, and Huang (2016) used additional price and
promotional data to improve forecast accuracy. Conversely, the dynamics of tactical
forecasts can be different due to the relevant horizons and business models. Moreover,
leading indicators, such as macroeconomics, can contain leading context information in
terms of changing economic conditions (Sagaert et al., 2018). These indicators are mainly
published on a monthly or quarterly basis and are therefore useless for operational fore-
casting purposes. However, for medium to long-term horizons (i.e. 3 to 12 months ahead)
macroeconomic information is relevant and could enhance forecast performance (Sagaert
et al., 2018). In many cases, tactical forecasts are based on autoregressive information
(i.e. observed values of the past) and therefore unable to respond to changing conditions
in the market. As a result, expert adjustments are often used to enhance forecasting
accuracy. Fildes, Goodwin, Lawrence, and Nikolopoulos (2009) concluded that these ad-
justments generally suffer from biases towards optimism. Moreover, using human input
increases forecasting complexity and limits automation capabilities. Although including
leading indicators is not entirely new, Verstraete, Aghezzaf, and Desmet (2020) assumed
that, based on their experiences, macroeconomic indicators are primarily used as a qual-
itative aid in forecasting.

Generally, it is well known that truck aftersales results are highly related to the ongoing
economic activities. Currently, PPE’s Business Development & Intelligence department
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reports several indicators in their market intelligence report, to qualitatively analyze and
assess the truck aftersales market conditions. However, up to now, it is unclear if there
are any indicators that possibly contain leading context information for predicting PPE’s
parts sales. As a result, they would like to gain insight into whether there are indicators
that contain relevant leading information for their business in a quantitative manner.
Next to that, they want to know if using information extracted from these indicators
could lead to more accurate parts sales predictions. Accordingly, resolving this problem
could help extend and improve the quality of PPE’s market intelligence report.

1.4 Research Questions

This section presents the research questions that have been defined with regard to this
field project. The research questions are based on the problem described in Section 1.3
and the literature review written in preparation for this project. In order to create a clear
structure within this research, three research questions have been defined. The research
questions are defined as:

• Research Question 1: How to identify leading indicators for PACCAR Parts Eu-
rope’s parts sales?

• Research Question 2: Are there any leading indicators for PACCAR Parts Europe’s
business, and if so, which indicators exactly are relevant for predicting PACCAR Parts
Europe’s parts sales?

• Research Question 3: Does the inclusion of leading context information actually
lead to more accurate predictions of PACCAR Parts Europe’s parts sales?

1.5 Methodology

For this project, the problem-solving cycle defined by van Aken and Berends (2018)
will be used. This cycle is a problem-solving methodology designed for field projects
in business and management. The problem-solving cycle consists of five process steps:
problem identification, analysis & diagnosis, solution design, intervention, and evaluation.
In addition, the process diagram is shown in Figure 1.5. Typically, student projects are
performed up to and including the solution design step (van Aken & Berends, 2018).
Therefore, this field project is scoped to the first three steps: problem identification,
analysis & diagnosis and solution design. The upcoming sections will elaborate more on
these first three process steps related to this field project.
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Figure 1.5: Problem-solving cycle for field projects (van Aken & Berends, 2018).

1.5.1 Problem Definition

The problem definition step forms the base for the whole problem-solving project. It is
based on an agreement between the initiator of the project and the project executor. It
is often the case that the initial problem statement is part of an underlying problem.
Therefore, the initial problem statement should be placed in the context of the problem
mess, a complex system of interacting problems (Ackoff, 1981). Thereafter, the problem
should be scoped thoroughly. Moreover, the problem identification includes designing
the project plan and the approaches for the subsequent steps.

1.5.2 Analysis & Diagnosis

The analysis & diagnosis step produces specific knowledge on the problem context. With
regard to this field project, knowledge on the problem context is produced by conducting
a literature review on which methods are useful to identify leading indicators in a sales
forecasting environment and how to apply regression techniques in time series forecasting.
The literature review will provide insight into useful and suitable modeling approaches
and will clarify how to apply these modeling approaches on a time series forecasting
problem. In this case, the analysis & diagnosis step will serve as a basis to explore and
answer the first research question.
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1.5.3 Solution Design

The solution design step proposes a solution concept for the business problem. Con-
sequently, solution concepts are often designed based on literature review results or on
interviews with members of the client organization. With regard to this field project,
acquired knowledge in the analysis & diagnosis step will contribute to the development of
the solution concept. In this case, the solution design step will serve as a basis to explore
and answer the second and third research questions. For the solution design step, the
cross-industry standard process for data mining (CRISP-DM) framework will be used.
Accordingly, CRISP-DM is an open standard process model that describes a common
approach for data mining. The process model consists of six major phases: business
understanding, data understanding, data preparation, modeling, evaluation, and deploy-
ment (Chapman et al., 2000). For clarity, the process diagram is shown in Figure 1.6.
As can be seen, there is no strict sequence between the six separate phases as switching
between the different phases is often required. This section will elaborate on the six
major phases with respect to this field project.

Figure 1.6: Cross-industry standard process for data mining.

Business Understanding

The first phase in CRISP-DM is business understanding. This phase requires the def-
inition of the business objective and the corresponding success criteria. The business
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objective describes the main goal of the project, whereas the success criteria will deter-
mine whether the project has been successful from a business perspective. Additionally,
this phase requires the definition of the data mining objectives. The difference between
these objectives are that the business objective is defined in terms of business terminol-
ogy, whereas data mining objectives are defined in more technical terms.

Data Understanding

The next phase in CRISP-DM is data understanding. This phase involves collecting,
describing, exploring and verifying useful data.

Data Preparation

The third phase in CRISP-DM is data preparation. This phase involves cleaning and
constructing data sets which can be directly used as input in the modeling phase. As a
result, it is often the case that the data preparation phase is most time-consuming.

Modeling

The fourth phase in CRISP-DM is modeling. This phase involves selecting the right
modeling techniques, building the actual model and interpreting the generated data
mining results.

Evaluation

The fifth phase in CRISP-DM is evaluation. This phase involves assessing the degree
to which extent the model meets the predetermined business objective. Moreover, this
phase offers the possibility to explore business reasons why the model could be consid-
ered as deficient. Accordingly, the evaluation phase is concluded with recommendations
regarding the next steps which could be proceeding to the deployment phase or opting
for additional model improvements.

Deployment

The final phase in CRISP-DM is deployment. This phase involves determining and sum-
marizing the deployment strategy including the necessary steps to be taken. Moreover, it
is often the case that during this phase a report is written to summarize the data mining
results. With regard to this field project, deployment includes solely writing this final
report which summarizes the project and the corresponding data mining results.
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Related Work

This chapter aims at summarizing useful findings and insights gained from available
literature on identifying leading indicators in a sales forecasting environment and using
regression techniques on a time series forecasting problem. It should be noted that
the available literature on leading indicators in a sales forecasting environment focuses
exclusively on including macroeconomics as leading indicators. As a result, the upcoming
sections will refer to macroeconomic indicators as leading indicators.

2.1 Sales Forecasting using Macroeconomic Indicators

According to Verstraete et al. (2020) using macroeconomic indicators as input variables
for tactical sales forecasting introduces two major challenges. The first challenge is the
limited sample size of available sales data, which is considered as a typical challenge in
sales forecasting in general. It is often the case that companies lack having effective
data management practices and therefore cannot access historical data. On the other
hand, even if companies do have effective data management practices to a certain extent,
it is often the case that historical data is not representative anymore due to changing
product portfolios and customer behaviors. Moreover, as macroeconomic data is mainly
reported on monthly or higher aggregation levels, it could be that the amount of usable
data becomes even more limited. The second challenge is the large number of available
macroeconomic indicators across multiple publicly available data sources. For example,
the best known economic database sources such as Organisation for Economic Coopera-
tion and Development (OECD), Federal Reserve Economic Data (FRED) and Eurostat
provide access to thousands of macroeconomic time-series. As a result, selecting poten-
tial macroeconomic indicators could become very time consuming and quite complex.
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According to Sagaert et al. (2018), these two challenges together create the distinct tac-
tical sales forecasting problem. Hence, the tactical sales forecasting problem consists of
a considerably large set of predictors (p) with limited sales data sample sizes (n).

If the number of predictors exceeds the number of observations (p > n), traditional
regression methods such as ordinary least squares (OLS) regression cannot handle these
problems because of non-unique coefficient estimates. As a result, it becomes necessary
to select and simultaneously reduce the number of predictors up to a maximum of n
variables. According to the existing literature, there are several approaches to select
useful predictors amongst a larger group of potential indicators.

For example, stepwise regression is a step-by-step model building procedure that uses
statistical significance in order to automatically select a subset of predictors. The pro-
cedure adds or removes one predictor at each step and in the end produces one final
regression model. Despite the fact that after the emergence of stepwise regression it was
proposed as an efficient way to perform variable selection, it has been critized for hav-
ing bias in parameter estimations, inconsistencies in model selection and the problem of
multiple hypothesis testing (Flom & Cassell, 2007; Whittingham, Stephens, Bradbury,
& Freckleton, 2006). Moreover, Smith (2018) demonstrated that stepwise regression may
prefer to choose nuisance predictors over predictors that do have causal effects on the
dependent variable and therefore the out-of-sample accuracy may be significantly worse
than the in-sample fit. Next to that, Smith (2018) highlighted that the larger the number
of predictors, stepwise regression becomes less effective and tends to be more misleading.

Besides stepwise regression, another approach to select useful predictors is best subset
selection. Best subset selection is a model selection approach that fits and compares
all possible models based on the number of predictors. The end result is a number of
best-fitting models and their summary statistics. Consequently, if there are p predictors,
best subset selection fits and compares a total of 2(p)−1 models. As a result, best subset
selection is generally considered infeasible when p > 30 (Tibshirani, 1996).

Given the fact that both stepwise regression and best subset selection are not appli-
cable to larger datasets and simultaneously the emergence of big data over the past
decade, least absolute shrinkage and selection operator (LASSO) regression has attracted
more and more interest and accordingly has been applied to various large data prob-
lems (Tibshirani, 2011). LASSO is a linear regression technique that uses regularization
in order to enhance forecast accuracy and prevent overfitting of high-dimensional data
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(Tibshirani, 1996). To do so, regularization methods often introduce penalties in cost
functions. For instance, the LASSO cost function has similarities with OLS; however, it
is expanded by adding a penalty equal to the absolute magnitude of the coefficients. As
a result, LASSO is capable of shrinking some coefficients to exactly zero, resulting into
uninformative variables being eliminated from the model and thus performing variable
selection. It should be noted that unlike stepwise regression and best subset selection,
LASSO fits a model starting with all p predictors. Accordingly, LASSO has been found
useful in enhancing forecast accuracy and simultaneously selecting relevant predictors. Li
and Chen (2014) used LASSO regression to forecast 20 macroeconomic time series using
a large set of 107 publicly available macroeconomic variables. The study demonstrated
that LASSO outperformed dynamic factor models for almost all 20 target variables, while
additionally identifying and providing insights in relevant predictors. Moreover, Zhang,
Ma, and Wang (2019) used LASSO regression to forecast oil prices with a large set of
predictors. Again, the study demonstrated that the LASSO model yielded substantially
better predictive ability than several other competing models.

It is obvious that these studies mainly focused on predicting macroeconomic variables,
whereas at the same time LASSO has been found useful in enhancing forecast accu-
racy and identifying leading indicators in tactical sales forecasting. Sagaert et al. (2018)
proposed a forecasting framework that automatically identifies leading indicators from
an enormous set of macroeconomics, tracks changes in the business environment and
generates more accurate forecasts. Next to that, Verstraete et al. (2020) proposed a
comparable framework that automatically generates tactical sales forecasts taking into
account relevant predictors from a large set of macroeconomics and sales data decompo-
sition. Accordingly, the frameworks of Sagaert et al. (2018) and Verstraete et al. (2020)
will be analyzed more in-depth in the upcoming sections.

2.1.1 Framework by Sagaert

Sagaert et al. (2018) proposed a framework to improve tactical sales forecasting using
macroeconomic leading indicators. The proposed framework automatically identified key
leading indicators from an enormous set of macroeconomic indicators for a supplier to the
tire industry. In many studies the gross domestic product (GDP) is used to represent the
ongoing economic activity at some point in time (Muhammad, 2012; Vahabi, Seyyedi, &
Alborzi, 2016; Gao, Xie, Cui, Yu, & Gu, 2018; Fantazzini & Toktamysova, 2015). For
clarity, GDP represents the value of all finished goods and services produced within a
country in a specific time period. However, Sagaert et al. (2018) indicated that GDP is
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principally an aggregate variable and therefore does not provide detailed changes in the
various sectors and economic activities. Moreover, they mention that using more detailed
macroeconomic indicators could possibly provide relevant information and therefore the
number of potentially relevant indicators will increase extensively, especially for supply
chains across multiple markets and countries.

The case company of Sagaert et al. (2018) has a global supply chain and supplies nu-
merous tire manufacturers across multiple markets and as a result Sagaert et al. (2018)
initially selected 67,851 monthly macroeconomic variables from several sections of the
FRED database. To model any indicator leading effects to the sales variable, each input
variable is lagged in time up to a maximum considered time lag. Sagaert et al. (2018)
assumed a maximum leading effect of 12 months and therefore the number of input
variables increased to a total of 67, 851 ∗ 12 = 814, 212 predictors. Due to the exten-
sive number of predictors causal-regression modeling becomes highly complex and truly
impossible. For this reason, Sagaert et al. (2017) proposed to use LASSO regression.
Moreover, Sagaert et al. (2017) opted for the use of LASSO regression as “the LASSO
forecast is transparent, and provides insights into the selected leading indicators. Ex-
perts can benefit by gaining a better understanding of their market and can thus improve
their understanding of market dynamics and interactions” (Sagaert et al., 2017, p. 127).
Additionally, since each input variable is lagged in time multiple times, Sagaert et al.
(2017) highlights that multicollinearity may be present among the input variables. Due
to the shrinkage properties of LASSO, Sagaert et al. (2017) mentions that LASSO is
capable of effectively dealing with multicollinearity.

Next to a large set of macroeconomic indicators, seasonal dummy variables and autore-
gressive information is included as this might contain potential sales dynamics at no
additional data cost (Sagaert et al., 2017). It follows that by applying and implementing
the proposed framework Sagaert et al. (2017) were able to improve sales forecasts by
16.1% in terms of the mean absolute percentage error (MAPE). Sagaert et al. (2018)
extended the framework by integrating judgemental preselection of leading indicators.
In fact, Sagaert et al. (2018) incorporated judgemental preselection by interviewing the
company’s supply chain manager. They based their interview on the latest quarterly
industry report and asked the manager to explicitly state the assumptions why certain
factors could impact the company sales. Based on these assumptions, they constructed a
list of keywords and selected indicators related to these keywords (Sagaert et al., 2018).
As a result, the number of indicators reduced significantly from 67,851 to a filtered set
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of 1,082 indicators. Ultimately, Sagaert et al. (2018) were able to improve sales forecasts
by 18.8% in terms of MAPE. Hence, they proved that incorporating expert knowledge is
an appropriate method to effectively decrease the number of potential indicators without
loss of forecasting accuracy.

Finally, Sagaert et al. (2018) benchmarked the performance of LASSO regression model
against stepwise regression, OLS, Holt-Winters and ETS. Accordingly, LASSO outper-
formed al the aforementioned methods on a horizon of 2 up to 9 months, whereas on
further horizons, LASSO is outperformed by ETS. Sagaert et al. (2018) indicated that
the loss of performance on further horizons is due to absence of predictive information in
longer leads compared with shorter leads. In other words, it is easier to find an indicator
that is leading a couple of months ahead than an indicator that is leading one year ahead.

2.1.2 Framework by Verstraete

Verstraete et al. (2020) proposed a comparable methodology that automatically generates
tactical sales forecasts by using a large group of macroeconomic indicators. A noticeable
difference is Verstraete et al. (2020) assumed that macroeconomic conditions determine
the trend of sales. Therefore, they opted to use the LASSO regression technique of
Sagaert et al. (2018) to forecast the trend component.

The sales data is decomposed into a trend, a seasonal and a remainder component us-
ing the STL decomposition proposed by Cleveland, Cleveland, McRae, and Terpenning
(1990). Additionally, they motivate their choice for STL decomposition because it can
be robust to outliers, the seasonal component may alter across different time periods and
smoothness of the trend component is controllable. Furthermore, as the data is divided
into three independent components, each individual component is forecasted separately.
Verstraete et al. (2020) used the seasonal naive method as proposed by Xiong, Li, and
Bao (2018) to forecast the seasonal component. For clarity, the seasonal naive method
uses the latest seasonal observation as a forecast for the consecutive seasonal period.
Verstraete et al. (2020) assumed that the remainder component is determined by other
factors than macroeconomic indicators. For instance, they mention social media, pro-
motions, weather and random noise as factors that will mainly determine the remainder
component. However, they considered predicting the remainder component out-of-scope
as they assumed that the predictive power of these factors are out of the tactical time
window.
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Moreover, Verstraete et al. (2020) used the framework to examine the influence of the
number of variables included in the indicator set. They composed three different indicator
data sets in order to examine the influence of the number of variables in the indicator
set. The data sets were composed in such a way that whenever the set becomes smaller,
it is more related to the operating sectors of the case companies. Consequently, the
first data set included 2,500 indicators, whereas the second data set consisted of 300
indicators based on keywords. The third and last data set included approximately 10
manually selected indicators based on expert judgement. As a result, Verstraete et al.
(2020) observed that the forecasting accuracy consistently increased as the data set size
decreased. Moreover, they highlighted that the increase in accuracy is due to a higher
density of causal variables in the data set, which will eventually enhance predictive ability.

Finally, Verstraete et al. (2020) benchmarked the performance of the LASSO regression
model against the naive method, seasonal naive method, OLS, Theta, ARIMA and ETS.
Accordingly, LASSO outperformed all the aforementioned techniques on a horizon of
1 up to 6 months. However, on a horizon of 7 up to 12 months, Theta, ARIMA and
ETS outperformed LASSO. Verstraete et al. (2020) concluded that incorporating non
causally related indicators will enlarge prediction errors for further horizons due to the
fact that “as indicators are selected by optimizing fit and the near future pattern will
most likely not differ too much, the short term prediction of the variables will often lead
to accurate predictions even if they are not causally related. However, on the further
horizons, selecting non causally related indicators will lead to large prediction errors"
(Verstraete et al., 2020, p.6).

2.2 Time Series Forecasting using Regression Techniques

According to Bontempi, Ben Taieb, and Le Borgne (2013) a time series is a sequence of
observations at discrete points in time. It should be noted that time series data differ
from other types of data due to the fact that the temporal aspect contains additional
information that can be used. Time series analysis originated in the late 1920s and has
served as the foundation for time series forecasting (Tsay, 2000).

Within time series forecasting, a distinction is made between two different modeling
approaches: univariate models and multivariate models (Nahmias & Olsen, 2015). Uni-
variate models use only historical data of the series being forecasted and are based on
the assumption that existing patterns in past observations can be used to forecast future
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values of the series. Multivariate models use data from additional sources other than the
time series itself, as patterns in other variables might be linked to the series being fore-
casted. Time series analysis recognizes several patterns that occur frequently (Nahmias
& Olsen, 2015):

1. Trend: a stable pattern of growth or decline.
2. Seasonality: a pattern that repeats at fixed time intervals.
3. Cycles: patterns that are to some extent similar to seasonality, except that the

length and magnitude of cycles are not fixed and vary.
4. Randomness: data without any recognizable patterns or structures.

There are many methods available for addressing time series problems. For a long time,
time series forecasting has been dominated by linear statistical methods such as ARIMA
and exponential smoothing. These methods are often limited to univariate analysis and
therefore future estimates are based on the patterns present in the time series itself. For
example, in case we want to estimate the total sales for September, we assume that the
patterns found in the sales data will continue into the future. Then, we could use these
patterns to predict the expected total sales in September. A drawback of this assumption
is that univariate methods are unable to respond to changing conditions in the market.
Alternatively, including external information (i.e. leading indicators) could enhance the
performance of a sales forecasting model (Currie & Rowley, 2010).

Over the years, some of these statistical methods have been expanded to include multi-
variate analysis into their method. However, with the increasing popularity and success
of machine learning in many different fields, a lot of research has been conducted in solv-
ing time series problems as a regression problem. Before regression techniques can be
used, time series forecasting problems must be restructured as supervised learning prob-
lems. Next to that, when moving from a one-step to a multi-step forecasting problem it
becomes necessary to select a forecasting strategy in order to forecast multi-steps-ahead.
Hence, the upcoming sections will elaborate on restructuring one-step-ahead forecasting
problems as supervised learning tasks and present an overview of existing forecasting
strategies when dealing with multi-step-ahead forecasting problems.

2.2.1 Supervised Learning Setting

Supervised learning is the task of learning a function that maps an input, often a vector,
to an output based on a set of example input-output pairs, also known as the training
set. Given a sequence of numbers for a time series, the data can be restructured as a
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supervised learning problem by using previous time steps as input variables and the next
time step as the output variable. For clarity, Figure 2.1 shows an example of how a time
series sequence is restructured as a supervised learning problem in case of a univariate
model. As can be seen, the training set consists of three examples that can be used to
learn a machine learning function that maps the given input to the output.

Figure 2.1: Time series sequence as a supervised learning task.

2.2.2 Multi-Step-Ahead Forecasting Strategies

A one-step-ahead time series forecasting problem predicts a single time step into the
future (e.g. the next month). In many scenarios a time series forecasting problem consists
of a multi-step-ahead problem where forecasts are required for longer horizons (e.g. the
next 12 months). In other words, multi-step-ahead forecasting involves predicting the
next H observations (yt+1, . . . , yt+H) given a time series sequence (yt, . . . , yt−n+1) of n
observations at time t. In general, there are three common strategies for multi-step-
ahead forecasting: recursive, direct and multiple output (Bontempi et al., 2013; Ben
Taieb, Sorjamaa, & Bontempi, 2010).

Recursive Strategy

The recursive strategy first involves training a one-step-ahead function f :

yt+1 = f(yt, . . . , yt−d+1) + wt+1 (2.1)

Where wt+1 represents missing information and d the number of past observations taken
into account for predicting future observations. Then, the trained model is used itera-
tively to generate multi-step forecasts, using forecasted values in prior steps as input for
the next time steps. For example, if we want to forecast the total sales of September and
October, the forecasted sales of September are used as input for October. Hence, after
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the training process, the next H observations are estimated by:

ŷt+h =


f(yt, . . . , yt−d+1) if h = 1

f(ŷt+h−1, . . . , ŷt+1, yt, . . . , yt−d+h) if h ∈ {2, . . . , d}

f(ŷt+h−1, . . . , ŷt+h−d) if h ∈ {d+ 1, . . . ,H}

(2.2)

A drawback of the recursive strategy is that the use of predictions instead of observations,
allows errors to accumulate, especially on longer horizons.

Direct Strategy

The direct strategy involves training h separate functions fh, one for each time step:

yt+h = fh(yt, ..., yt−d+1) + wt+h (2.3)

Where wt+h represents missing information and d the number of past observations taken
into account for predicting future observations. After the training process, the next H
observations are estimated by:

ŷt+h = fh(yt, ..., yt−d+1) h ∈ {1, . . . ,H} (2.4)

Since the direct strategy does not make use of predicted values, it is not sensitive to the
accumulation of errors. Nevertheless, a drawback of the direct strategy is that statistical
dependencies among forecasts are ignored as each function is trained independently.

Multiple Output Strategy

The multi-input multi-output strategy involves training a function that is capable of
predicting all time steps in once:

{yt+H , ..., yt+1} = F (yt, ..., yt−d+1) + w (2.5)

Where w represents missing information and d the number of past observations taken
into account for predicting future observations. After the training process, the next H
observations are estimated by:

{ŷt+H , ..., ŷt+1} = F (yt, ..., yt−d+1) (2.6)
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The multi-input multi-output strategy avoids the ignorance of statistical dependencies
and the accumulation of errors of both the direct and recursive strategies. Nevertheless,
a drawback of the multi-input multi-output strategy is that the strategy constrains all
horizons to be forecasted with the same model structure, set of inputs and learning
procedure.

2.3 Summary and Evaluation

The previous sections have shown that identification of leading indicators in a sales fore-
casting environment results in a high-dimensional problem with the presence of multi-
collinearity among the predictors. Accordingly, LASSO has already been found useful in
the identification of leading indicators, due to its shrinkage properties and transparency.
As a result, LASSO is chosen as modeling technique for the case study described in
Chapter 3. As described in the previous sections, LASSO is a linear regression analysis
method that performs both variable selection and regularization in order to prevent over-
fitting of high-dimensional data, and in order to enhance both prediction accuracy and
model interpretability (Tibshirani, 1996). The LASSO solution minimizes a penalized
residual sum of squares, yielding coefficients that are shrunken to/towards zero (Kirkland
& Millard, 2015):

β̂lasso = argminβ
n∑
i=1

(
yi − β0 −

p∑
p=1

βpxip

)
+ λ

p∑
p=1

|βp| (2.7)

The solution and thus the β̂lasso estimator highly depends on the magnitude of regular-
ization, which is a value between 0 and 1, and is represented by tuning parameter λ. The
solution produced by LASSO is a linear solution path, starting with β̂lasso containing all
zero coefficients and ending with β̂lasso containing all non-zero coefficients as the tuning
parameter is reduced to 0.

With regard to the multi-step-ahead forecasting strategies, as will become clear in Sec-
tion 3.1.2, we are dealing with a 12-step-ahead forecasting problem, and therefore we
have to decide which forecasting strategy to apply in order to predict multi-steps-ahead.
Since we have chosen to use LASSO as modeling technique, the multiple output strat-
egy is excluded, as LASSO can only handle a single output. Consequently, we have to
choose between the remaining recursive and direct forecast strategies. A large number
of studies have compared the performances of both strategies in linear models, and ac-
cordingly this has led to the overall conclusion that “if the model is correctly specified,
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the recursive strategy tends to benefit from more efficient parameter estimates, while the
direct strategy tends to be more robust to model misspecifications” (Ben Taieb, 2014,
p. 37). Accordingly, as the LASSO solution highly depends on λ, there is a likelihood
of any model misspecification if λ is chosen incorrectly. Given the fact that the direct
strategy tends to be more robust to this, applying the direct strategy is preferred over
the recursive strategy in order to predict on further horizons. Hence, this means that,
for the case study described in Chapter 3, a total number of 12 separate models must be
built and trained independently, in order to predict the next 12 observations.
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Case Study

3.1 Business Understanding

This section aims at covering the business understanding phase of the CRISP-DM frame-
work. First, the business objective is described in order to understand the primary goal
of this project from a business perspective. Thereafter, the corresponding data mining
objectives are described in order to understand the desired project goals from a more
technical perspective.

3.1.1 Business Objective

As indicated earlier in Section 1.3, macroeconomics can contain leading context informa-
tion in terms of changing economic conditions. Generally, leading indicators are defined
as variables that contain predictive information and ideally can predict a certain move-
ment for a target variable in advance. Additionally, Figure 3.1 shows the dynamics
between a leading indicator and a specified target variable. Sagaert et al. (2017) illus-
trated the potential of leading indicators by showing an example from the tire industry.
For instance, an economic upturn causes an increase in road transport, which results in
an increase in truck tire wear and hence tire consumption will probably rise likewise.
It should be noted that truck tires are replaced whenever old tires are worn out and
therefore their replacement will likely lag behind the economic upturn. Hence, variables
that represent ongoing economic activities have the potential to be a leading indicator
of replacement tire sales.

As a major part of PPE’s business consists of supplying truck wear and maintenance
parts to the European aftersales market, the same reasoning can be applied to PPE’s
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Figure 3.1: Dynamics between a leading indicator and a specified target variable.

business. In other words, variables that represent ongoing economic activities, have the
potential to be a leading indicator for PPE’s business. As a result, the primary objective
from a business perspective is defined as:

Identify and gain insight into leading indicators for PACCAR Parts Europe’s part sales.
Next to that, explore and analyze whether including information extracted from leading

indicators actually leads to more accurate parts sales predictions.

3.1.2 Data Mining Objectives

In order to achieve the business objective, the business objective must be translated into
specific data mining objectives. The data mining objectives state the desired project
goals in more technical terms. As a result, the data mining objectives from a more
technical perspective are defined as:

1. Provide insight into which potential leading indicators are actually relevant for
predicting PACCAR Parts Europe’s parts sales at {(t + 1), (t + 2), . . . , (t + 11),
(t+ 12)}.

2. Build, validate and benchmark a forecasting model that is capable of predicting
PACCAR Parts Europe’s parts sales at {(t+ 1), (t+ 2), . . . , (t+ 11), (t+ 12)}.

3.2 Data Understanding

This section aims at covering the data understanding phase of the CRISP-DM framework.
At first, three different types of potential leading indicators are introduced. Thereafter,
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a brief description is given of the data sources and the collected data itself. Finally, the
data availability of both the target variable and the included indicators are discussed.

3.2.1 Data Collection

The studies of Sagaert et al. (2018) and Verstraete et al. (2020) only included publicly
available macroeconomic indicators as potential leading indicators. With regard to this
field project, it was possible to access non-publicly available databases with data specif-
ically related to DAF and the European road freight market. Therefore, a distinction is
made between three different types of potential leading indicators: business, economic
and market indicators.

In order to collect data with regard to the target variable and the potential leading
indicators, different data sources were used. First, the internal departments PPE Control
and PPE Business Development & Intelligence served as data sources for PPE’s sales
sales data and the business indicators described in Section 3.2.2 and 3.2.2. Secondly, the
Eurostat and OECD publicly available economic databases provided access to thousands
of macroeconomic time series related to European territories and served as data sources
for the economic indicators described in Section 3.2.2. Thirdly, Rementum Research
& Management, further denoted as Rementum, is a market research and advisery firm
specialized in both the European road freight market and commercial vehicles with a
gross vehicle weight over 6 tonnes. Rementum collects data from a broad array of sources
relevant for heavy commercial road transport such as road carriers, transport equipment
OEMs and OE & aftermarket component suppliers in order to analyze the European
road transport market conditions. The expertise of Rementum was used to collect the
market indicators described in Section 3.2.2.

3.2.2 Data Description

Together with PPE’s sales data, a total number of 33 potential leading indicators have
been collected. All potential leading indicators are directly or indirectly related to the
European road freight market. For example, the vast majority of the economic indicators
are related to the industrial manufacturing and construction sectors and are therefore
not directly related to the road freight market. However, the industrial manufacturing
and construction sectors are considered as the major drivers of commercial vehicle road
transport and are therefore indirectly related to transport. Additionally, it should be
noted that the exact European areas which each indicator covers, are not revealed in this
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report due to confidentiality. The upcoming sections will provide more information on
the collected data in terms of time series properties.

Parts Sales

As explained in Section 3.1.1, in order to identify which potential leading indicators
are relevant for predicting PPE’s parts sales, it is necessary to specify a certain target
variable. In this case, the target variable is specified as the total monthly truck parts
sales reported by all DAF dealers located in the EU27+21 area. Figure 3.2 shows the
specified target variable, which will be further denoted as PPE’s parts sales. It should be
noted that the y-axis is normalized due to data confidentiality. As can be seen, observed
sales data is available from January 2002 to February 2020 which is equivalent to 218
monthly observations. Moreover, it becomes clear that the sales data is following a certain
trend and that there may be seasonality present in the data. The partial autocorrelation
function and a seasonal subseries plot of the PPE truck parts sales data in Appendix A
show that the sales data indeed has a seasonal pattern that repeats every 12 months.

Figure 3.2: PPE’s parts sales from January 2002 to February 2020 in EU27+2 area.

1Included countries: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Esto-
nia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta,
Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden and Switzerland.
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Business Indicators

The business indicators represent the most important internally reported variables that
are likely to affect PPE’s parts sales. A total number of two business indicators have been
selected which are related to observed sales in the past (i.e. autoregressive information)
and the total number of DAF truck deliveries. Sagaert et al. (2017) mentioned that
autoregressive information contains potential sales dynamics at no additional data cost
and should therefore always be included as an indicator. Moreover, PPE’s parts sales
consists of both parts sales related to wear/maintenance (e.g. brake pads, oil filters) and
parts sales related to new truck sales (e.g. side skirts, mudguards). As a result, it is
likely that the total number of DAF truck deliveries affects PPE’s parts sales and it is
therefore included as an indicator. Accordingly, Table 3.1 presents an overview of all
included business indicators and their time series properties.

Table 3.1: All business indicators and their corresponding time series properties.

Indicator description Unit Source

Y Observed parts sales: Current month, NSA e PPE Control
X1 DAF truck deliveries: Current month, NSA Trucks PPE Business Development

& Intelligence
NSA = Not seasonally adjusted;

Economic Indicators

The economic indicators represent ongoing developments in Europe’s overall economic
climate and relevant sectors. A total number of 12 economic indicators have been selected
which are likely to affect PPE’s parts sales. The vast majority of these indicators are
related to the industrial manufacturing and construction sectors as these sectors are the
major drivers of commercial vehicle transport. Additionally, macroeconomic variables
such as passenger car registrations, gross domestic product and economic sentiment are
commonly used to assess the current state of the overall economy and are therefore
included as indicators likewise. Accordingly, Table 3.2 presents an overview of all included
economic indicators and their time series properties.
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Table 3.2: All economic indicators and their corresponding time series properties.

Indicator description Unit Source

X2 Business climate: Current month, SA Index Rementum
X3 Economic sentiment: Current month, SA Index Eurostat
X4 Passenger car registrations: Current month, NSA Cars Rementum
X5 Retail confidence: Current month, SA Balance Eurostat
X6 Industrial confidence: Current month, SA Balance Eurostat
X7 Industrial production: Current month, SA Index Eurostat
X8 Gross domestic product: Current month, SA Index OECD
X9 Producer price index: Current month, SA Index Eurostat
X10 Construction confidence: Current month, SA Balance Eurostat
X11 Construction spending: Current month, NSA Index Rementum
X12 Construction activity: Current month, SA Index Eurostat
X13 Construction and mining equipment sales: MA

(3mos), NSA
Index Rementum

SA = Seasonally adjusted; NSA = Not seasonally adjusted; MA = Moving average;
mos = months;

Market Indicators

The market indicators represent the ongoing activities in Europe’s transport sector. A
total number of 19 market indicators have been selected which are likely to affect PPE’s
parts sales. These indicators cover a wide range of variables that provide valuable infor-
mation about the current and expected market conditions, such as the number of truck
orders, diesel consumption, tire consumption, carrier sentiment and road activity. Ac-
cordingly, Table 3.3 presents an overview of all included market indicators and their time
series properties.
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Table 3.3: All market indicators and their corresponding time series properties.

Indicator description Unit Source

X14 Replacement truck tire sales (ST):MA (2mos), NSA Index Rementum
X15 Replacement truck tire sales (LT): MA (12mos),

NSA
Index Rementum

X16 OE truck tire sales (ST): MA (2mos), NSA Index Rementum
X17 OE truck tire sales (LT): MA (12mos), NSA Index Rementum
X18 Aftermarket truck tire deliveries: Current month,

NSA
Index Rementum

X19 Diesel consumption growth (LT): MA (12mos), NSA % Rementum
X20 Diesel consumption growth (ST): MA (2mos), NSA % Rementum
X21 Retail diesel price: Current month, NSA e Rementum
X22 Automotive diesel deliveries: Current month, NSA m3 Rementum
X23 OEM truck orders growth (LT): MA (12mos), NSA % Rementum
X24 OEM truck orders (ST): MA (3mos), NSA Trucks Rementum
X25 OEM order intake expectations: MA (6mos), NSA Balance Rementum
X26 OEM production expectations: MA (6mos), NSA Balance Rementum
X27 Road transport activity: Current month, NSA Index Rementum
X28 Road transport capacity: Current month, SA Index Rementum
X29 Freight volume index: MA (3mos), NSA Index Rementum
X30 Carrier confidence: Current month, NSA Balance Rementum
X31 Carrier demand expectations: Current month, NSA Balance Rementum
X32 Carrier hiring expectations: Current month, NSA Balance Rementum
X33 Carrier pricing expectations: Current month, NSA Balance Rementum
ST = Short-term; LT = Long-term; SA = Seasonally adjusted; NSA = Not seasonally
adjusted; MA = Moving average; mos = months;

3.2.3 Data Availability

The previous sections have shown that a total number of 34 variables (33 potential leading
indicators and PPE’s historical parts sales), coming from various data sources such as
PPE, Eurostat, OECD and Rementum, were collected. As a result, the availability of
historical data differs for each data source. For example, the historical records of the
indicators coming from the Eurostat and OECD databases generally start in the early
90’s and in some cases even the early 80’s. On the other hand, the historical record of
PPE’s parts sales data is considerably shorter and Figure 3.2 shows that the historical
record only starts from January 2002. Nevertheless, the historical records coming from
Rementum are decisive as the data from Rementum is only available from January 2005.
Hence, the number of observations available for modeling is limited to the period from
January 2005 to February 2020, which is equivalent to 182 monthly observations.
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3.3 Data Preparation

This section aims at covering the data preparation phase of the CRISP-DM process
model. At first, the data cleaning proceedings that have been applied are discussed.
Then, all variables are analyzed and if necessary transformed to achieve stationarity.
Finally, a brief description is given of how the data is restructured to a supervised learning
setting and what consequences this has on the data availability.

3.3.1 Data Cleaning

Data cleaning consists of assessing and ideally improving the data quality by removing
or modifying data that is considered as incomplete, incorrect or irrelevant. Therefore,
all variables were checked for the presence of missing values in the period from January
2005 to February 2020. Since all used data sources apply their own data management
practices, no missing values were found. Then, a visual inspection was carried out on
each variable in order to possibly detect any incorrect or doubtful values. As a result,
during the inspection of PPE’s parts sales data (see Figure 3.2) it was noticed that in
October 2007 there were significantly higher sales than usual. After this finding, the
PPE control department was approached with the question whether there was a clear
explanation for this extremely high value. It turned out that for the year 2007 the Dutch
government had introduced a subsidy scheme for the installation of diesel particulate
filters (DPF) in order to encourage and promote the reduction of air pollution. Since
PPE does a lot of business in the Netherlands, this subsidy scheme led to a significant
increase in DPF sales throughout the year 2007. As the increase in sales is clearly visible
in the data, it was decided to exclude the results of these additional DPF sales. Figure
3.3 shows the result of excluding the additional DPF sales from the data.
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Figure 3.3: Result of removing additional DPF sales.

3.3.2 Data Stationarity

Many time series forecasting techniques require stationary data as input in order to be
able to forecast future values. Generally, a stationary time series is defined as a time
series which statistical properties, such as mean and variance do not change over time.
In consequence, it is assumed that a stationary time series is easier to predict as the
statistical properties in the future must correspond to the current statistical properties.
Hence, all variables must be checked for stationarity. There are several statistical tests
that can determine whether a series is likely to be stationary or alternatively whether
the series contains a unit root. If a series contains a unit root, it shows a systematic
pattern that is hard to predict and control. In practice, two statistical tests are often
used interchangeably: the Augmented Dickey-Fuller (ADF) test and the Kwiatkowski-
Philips-Schmidt-Shin (KPSS) test. The ADF and KPSS tests differ from each other
due to the different hypotheses that are being tested. In particular, the null (H0) and
alternative (H1) hypothesis for the ADF test are defined as follows:

• H0: the series contains a unit root.
• H1: the series does not contain a unit root.

Alternatively, the null and alternative hypothesis for the KPSS test are defined as follows:

• H0: the series is stationary around a deterministic trend.
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• H1: the series contains a unit root.

As can be seen, the null hypothesis of the ADF test states that the series contains a
unit root, which is equal to the alternative hypothesis of the KPSS test. Practically, a
series is often classified as a stationary series if the null hypothesis of the ADF test is
rejected and at the same time the null hypothesis of the KPSS is accepted. Accordingly,
Appendix B presents an overview of the results of both the ADF and KPSS test applied
on all included variables.

The results show that for many variables the ADF and KPSS test contradict each other.
For example, applying both tests on variable X4 led to the acceptance of both the ADF
null hypothesis (indicating non-stationarity) and the KPSS null hypothesis (indicating
stationarity). Since this occurs a considerable number of times, it becomes necessary
to choose if we rely solely on the results of the ADF or the KPSS test. As the KPSS
test was specifically developed for economic series, the decision was made to rely on the
results of the KPSS test (Kwiatkowski, Phillips, Schmidt, & Shin, 1992). According to
these results, the variables Y , X9, X11, X22 are non-stationary and must be transformed
in order to achieve stationarity.

A well-known method to make a non-stationary series stationary is differencing. Dif-
ferencing computes the differences between consecutive observations and helps eliminat-
ing/reducing trend. When dealing with a non-stationary series Yt, the differenced series
Y d
t is obtained through:

Y d
t = Yt − Yt−1 (3.1)

If the series contains seasonality, seasonal differencing computes the differences between
consecutive observations of the same season and helps eliminating/reducing trend and
seasonality. When dealing with a non-stationary series Yt, the seasonal differenced series
Y sd
t is obtained through:

Y sd
t = Yt − Yt−s (3.2)

Where s represents the number of seasonal periods in one cycle (e.g. 12 for monthly
seasonality, 4 for quarterly seasonality). A consequence of applying seasonal differencing
is that s observations are lost as it is not possible to calculate the seasonal differenced
values for the first s observations. Consequently, Table 3.4 shows the applied data trans-
formations in order to achieve stationarity for the variables Y , X9, X11, X22. As can be
seen, both differencing and seasonal differencing have been applied to achieve stationarity
for all variables. As a consequence of applying seasonal differencing, a total number of
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12 observations are lost as in this case s equals 12 and thus the number of observations
available for modeling reduces from 182 to a total of 170 observations.

Table 3.4: Data transformations applied to achieve stationarity.

Variable Data transformation

Y Observed parts sales Seasonal differencing
X9 Producer price index Differencing
X11 Construction spending Seasonal differencing
X22 Automotive diesel deliveries Seasonal differencing

3.3.3 Supervised Learning Setting

In order to use regression techniques on a time series forecasting problem, the data must
be restructured to a supervised learning task. As demonstrated in Section 2.2.1, given
a sequence of numbers for a time series, the data can be restructured as a supervised
learning task by using previous time steps as input variables and the next time step
as the output variable. As Sagaert et al. (2018) indicated that macroeconomic indica-
tors can contain leading context information up to a maximum horizon of 12 months,
the decision was made to include all 12 previous time steps as input variables. This
means that every potential leading indicator is lagged in time 12 times and therefore
the number of indicators/predictors increases significantly from 34 (business, economic
and market indicators + autoregressive information) to a total number of 34 ∗ 12 = 408

input variables/predictors. Hence, we are dealing with a high-dimensional problem since
the number of predictors exceeds the number of observations (p > n). Figure 3.4 shows
how the data is restructured to a supervised learning task for the first three observations
when predicting (t+ 1) ahead.

Figure 3.4: Time series data to supervised learning setting.
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As can be seen, as a consequence of lagging each indicator in time 12 times, the first 12
observations are lost and thus a total number of 158 observations are left over for modeling
purposes. Next to that, as a consequence of restructuring the data to a supervised
learning task when predicting multi-steps ahead, additional observations are lost.

Figure 3.5: Restructuring the data causes additional observation losses.

For clarity, Figure 3.5 shows how many observations are lost due to restructuring the data
when predicting (t+3) and (t+12) ahead. As can be seen, the number of observations that
are lost depends on the forecasting horizon and thus the number of observations available
for modeling will differ for each forecasting horizon. Therefore, Table 3.5 presents an
overview of how many observations are available for modeling per model Mt+h, where h
represents the forecast horizon in months.

Table 3.5: Data available for modeling after data preparation activities.

Model Period available for modeling Number of observations

Mt+1 Jan 2007 to Feb 2020 158
Mt+2 Feb 2007 to Feb 2020 157
Mt+3 Mar 2007 to Feb 2020 156
Mt+4 Apr 2007 to Feb 2020 155
Mt+5 May 2007 to Feb 2020 154
Mt+6 Jun 2007 to Feb 2020 153
Mt+7 Jul 2007 to Feb 2020 152
Mt+8 Aug 2007 to Feb 2020 151
Mt+9 Sep 2007 to Feb 2020 150
Mt+10 Oct 2007 to Feb 2020 149
Mt+11 Nov 2007 to Feb 2020 148
Mt+12 Dec 2007 to Feb 2020 147

3.4 Modeling

This section aims at covering the modeling phase of the CRISP-DM process model. At
first, the proposed modeling approach is explained and discussed in detail. Then, a

35



CHAPTER 3. CASE STUDY

brief description is given of the tuning parameter selection procedure and the benchmark
models that are considered.

3.4.1 Modeling Approach

As explained in Section 2.3, the LASSO solution highly depends on the amount of regu-
larization, which is controlled by the tuning parameter λ. Hence, choosing an appropriate
value for λ is crucial and therefore paying serious attention to the design of the modeling
approach is necessary.

Hastie, Tibshirani, and Friedman (2009) proposes to determine λ based on the cross-
validation estimate of the prediction error. Typically, K-fold cross-validation (KCV)
randomly splits the data into K-folds and subsequently fits a model using K − 1 folds
and uses the Kth fold for testing. This process is repeated until every Kth fold is used
for testing once. The estimated prediction error is determined by averaging the errors
over all Kth folds used for testing. For clarity, Figure 3.6 shows the principle of KCV
when using 5-fold cross-validation. As the data is partitioned randomly, using KCV in a

Figure 3.6: K-fold cross-validation.

time series environment does not seem applicable as temporal dependencies are ignored.
Nevertheless, using CV in a time series environment was extensively studied by Bergmeir
and Benítez (2012) and they did not find any practical problems with standard cross-
validation. Moreover, they suggest to use standard KCV or blocked CV together with
stationary data as this uses all available information for training and testing. In this
case, applying standard KCV is preferred over applying blocked CV as applying blocked
CV will lead to additional observation losses. With regard to KCV, it is well known
that there exists a bias-variance trade-off when choosing K. When K is small, more
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observations are removed from the training set and therefore error estimates are biased
upwards while suffering less variance. Otherwise, when K is large, error estimates are
less biased as the training set becomes larger; however, due to the increasing similarities
between the training sets, the variance of the error estimates increases. The choice
of K was extensively studied by Breiman and Spector (1992) and Kohavi (1995) and
accordingly the use of K = 5 or K = 10 is recommended as a good compromise (Hastie
et al., 2009). Consequently, in order to evaluate whether to apply K = 5 or K = 10, the
observations must be split into two subsets: in-sample observations (i.e. training data)
and out-of-sample observations (i.e. test data). Next to that, it is necessary to determine
which error measure will be used for the cross-validation estimate of the prediction error.

A common approach to split training and test sets when dealing with time series data, is
time series cross-validation (Hyndman & Athanasopoulos, 2018). This approach uses a
series of test sets, with each test set consisting of a single observation. The corresponding
training set consists only of observations prior to the observation in the test set. Figure
3.7 shows an example of how the training and test sets are defined for models Mt+1 and
Mt+12. Since it is not possible to obtain reliable predictions when using a small training

(a)

(b)

Figure 3.7: Time series cross-validation data split when predicting (t+1) ahead (a) and
(t+ 12) ahead (b).

set, the initial size of the training set is set to 70% of the smallest available sample size.
The smallest sample size equals 147 observations for model Mt+12 and thus the initial
size of the training set is set to 102 observations for all 12 models. Accordingly, Table 3.6
presents an overview of the remaining observations that are used as test sets for model
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Table 3.6: Data available for model performance evaluation.

Model Period used as test sets Number of test sets

Mt+1 Jul 2015 to Feb 2020 56
Mt+2 Aug 2015 to Feb 2020 55
Mt+3 Sep 2015 to Feb 2020 54
Mt+4 Oct 2015 to Feb 2020 53
Mt+5 Nov 2015 to Feb 2020 52
Mt+6 Dec 2015 to Feb 2020 51
Mt+7 Jan 2016 to Feb 2020 50
Mt+8 Feb 2016 to Feb 2020 49
Mt+9 Mar 2016 to Feb 2020 48
Mt+10 Apr 2016 to Feb 2020 47
Mt+11 May 2016 to Feb 2020 46
Mt+12 Jun 2016 to Feb 2020 45

performance evaluation. As can be seen in Table 3.6, model Mt+1 has a total number of
56 observations available for performance evaluation, whereas model Mt+12 has a total
number of 45 observations available for performance evaluation. When aggregating all
observations across all horizons, a total number of 606 observations are available for
model performance evaluation.

With regard to the prediction error estimates, two commonly used metrics, when dealing
with continuous variables, are the root mean square error (RMSE) and the mean absolute
error (MAE) (Chai & Draxler, 2014). The RMSE is defined as the square root of the
quadratic mean of the prediction errors and is mathematically represented as:

RMSE =

√√√√ 1

n

n∑
j=1

(yj − ŷj)2 (3.3)

On the other hand, the MAE is defined as the sum of the absolute values of the prediction
errors and is mathematically represented as:

MAE =
1

n

n∑
j=1

|yj − ŷj | (3.4)

A major difference between the RMSE and MAE lies in the contribution of individual
prediction errors to the overall error. In the case of MAE, individual prediction errors
contribute proportionally to the total amount of error and thus larger errors will con-
tribute linearly to the overall error. In the case of RMSE, the contribution of individual
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prediction errors to the total amount of error grows quadratically and thus larger errors
contribute more to the overall error. While both metrics have been widely used in many
applications, there is no consensus on which is the most appropriate metric for model
evaluation (Chai & Draxler, 2014). As a result, the choice between RMSE and MAE
should depend on the problem domain. Accordingly, as it is assumed that penalizing
larger errors disproportionately is unnecessary in a sales forecasting environment, the
use of MAE is preferred over RMSE in the modeling approach.

On the whole, we used the first 102 observations as training set and the MAE to analyze
the KCV error curves for K = 5 and K = 10. Since it is not practically feasible to
consider all possible λ values, λ is chosen on a fixed logarithmic grid of {−2.5, . . . ,−0.5}
with equally spaced intervals of 0.1. Figure 3.8 shows an example of the CV error curves
for model Mt+1. As can be seen, the error curve when K = 5 is biased upwards as
expected, while the error curve when K = 10 is still quite stable, despite the increased
variance. As this was the case in all 12 models, the decision was made to apply CV with
K = 10.

Figure 3.8: Comparison of CV error curves when K = 5 and K = 10.

On the whole, Figure 3.9 shows the overall modeling approach that will be used for all
models. At first, we determine the value of tuning parameter λ using a 10-fold CV grid
search on the in-sample data. Then, we fit a β̂lasso estimator using the entire training
set and the determined tuning parameter λ, after which the β̂lasso estimator is used to
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predict the observation in the final test set.

Figure 3.9: Design of the modeling approach.

3.4.2 Tuning Parameter λ

The existing literature describes two options to choose tuning parameter λ when using
CV (Hastie et al., 2009):

1. Choose λ corresponding to the smallest CV error estimate, mathematically ex-
pressed as:

λmin = argmin CV(λ) (3.5)

2. Choose λ corresponding to the most regularized model within one-standard er-
ror of the minimum CV error estimate (one-standard error rule), mathematically
expressed as:

λ1se = argmaxλ≥λmin
CV(λ) with CV(λ1se) ≤ CV(λmin) + SE(λmin) (3.6)

The one-standard error rule assumes equal performance for all models within one-standard
error of the minimum and as a result opts to choose the most regularized model. In other
words, the one-standard error rule chooses the most simple model as more coefficients
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will be shrunken to 0. The one-standard error rule additionally requires to calculate the
standard errors of each CV(λ). Accordingly, for k = {1, . . . ,K} the standard errors are
obtained by:

CVk(λ) =
1

nk

nk∑
i=1

|yi − β̂lasso,−kλ (xi)| (3.7)

SD(λ) =
√

var(CV1(λ), . . .CVK(λ)) (3.8)

SE(λ) =
SD(λ)√
K

(3.9)

Figure 3.10 shows an example of how tuning parameter values λmin and λ1se are deter-
mined based on the CV error curve with vertical standard error bars. As can be seen
in Figure 3.10, the CV error estimate is minimized when log(λ) = −1.3 and thus −1.3
is chosen as value for log(λmin). Moreover, the most regularized model that does not
exceed CV(λmin) + SE(λmin), which is represented by the green horizontal line, is found
at log(λ) = −1.0 and thus −1.0 is chosen as value for log(λ1se). In practice, choosing
λ1se is often considered as standard (Hastie et al., 2009).

Figure 3.10: Tuning parameter values λmin and λ1se.
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3.4.3 Benchmark Models

The purpose of extracting information from leading indicators is to ideally enhance fore-
casting performance by including information in terms of changing economic and market
conditions. In order to assess whether including leading indicators enhances forecasting
performance, the performance of LASSO is benchmarked to commonly used univariate
methods that are unable to respond to these changing conditions. Since we are dealing
with a very small sample size, complex machine learning techniques, such as the recurrent
neural network, are considered out of scope as these techniques require a large sample
size for training purposes. The methods used as benchmark are listed below.

Holt-Winters

The Holt-Winters method, also known as triple exponential smoothing, is a statistical
method that can be used to model and predict a series containing both trend and sea-
sonal variations (Hyndman & Athanasopoulos, 2018). It distinguishes three components
within the time series: the level component lt, the trend component bt and the seasonal
component st. The three components are expressed as three distinct types of exponen-
tial smoothing, with corresponding smoothing parameters α, β, γ. Additionally, the
frequency of the seasonality, i.e. the number of observations within a seasonal period,
is represented by m, which equals 12 in this case. Within Holt-Winters there are two
variations that distinguish between additive and multiplicative seasonality. The additive
method is often used when the seasonal variations in the series can be considered as
practically constant, while the multiplicative method is often used when the seasonal
variations are changing proportional to the level of the series. As the seasonal varia-
tions in PPE’s parts sales data seems to fit the description of both the additive and
multiplicative seasonal variations to some extent, both variations will be used as bench-
mark. Accordingly, the component expressions and the forecast equation for the additive
method are:

ŷt+h|t = lt + hbt + st+h−m (3.10)

lt = α(yt − st−m) + (1− α)(lt−1 + bt−1) (3.11)

bt = β(lt − lt−1) + (1− β)bt−1 (3.12)

st = γ(yt − lt−1 − bt−1) + (1− γ)st−m (3.13)
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In addition, the component expressions and the forecast equation for the multiplicative
method are:

ŷt+h|t = (lt + hbt)st+h−m (3.14)

lt = α
yt
st−m

+ (1− α)(lt−1 + bt−1) (3.15)

bt = β(lt − lt−1) + (1− β)bt−1 (3.16)

st = γ
yt

(lt−1 − bt−1)
+ (1− γ)st−m (3.17)

Where yt equals the observed sales at time t and ŷt+h|t equals the prediction for h-
month(s) ahead made at time t. The smoothing parameters α, β, γ were automatically
chosen in the range of 0.1-0.2 by minimizing the prediction error on a validation set, as
this often ensures stable forecasts (Nahmias & Olsen, 2015).

SARIMA

ARIMA is, next to exponential smoothing, one of the most widely used approaches to
model and predict a series. ARIMA, an acronym for Autoregressive Integrated Moving
Average, aims to describe the autocorrelations in the data by using a linear combina-
tion of past observed values, known as the autoregressive part, and past forecast errors,
known as the moving average part (Hyndman & Athanasopoulos, 2018). Accordingly,
an autoregressive model of order p, referred to as AR(p), is written as:

yt = c+ φ1yt−1 + φ2yt−2 + · · ·+ φpyt−p + εt (3.18)

Where εt equals white noise. Note that varying the parameters φ1, . . . , φp will result in
different time series patterns. Moreover, a moving average model of order q, referred to
as MA(q), is written as:

yt = c+ θ1εt−1 + θ2εt−2 + · · ·+ θqεt−q + εt (3.19)

Where, again, εt equals white noise and varying the parameters θ1, . . . , θp results in
different time series patterns. Consequently, if autoregressive and moving average models
are combined, we obtain an ARMA(p, q) model, which is logically written as:

yt = c+ φ1yt−1 + · · ·+ φpyt−p + θ1εt−1 + · · ·+ θqεt−q + εt (3.20)

In order to use ARMA(p, q), AR(p) and MA(q) models, the time series must be sta-
tionary. Otherwise, if autoregressive and moving average models are combined together
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with differencing, we obtain an ARIMA(p, d, q) model, where d refers to the order of
differencing. Accordingly, an an ARIMA(p, d, q) model which is written as:

y′t = c+ φ1y
′
t−1 + · · ·+ φpy

′
t−p + θ1εt−1 + · · ·+ θqεt−q + εt (3.21)

Where y′t equals the differenced series of order d. Furthermore, when dealing with sea-
sonal variations, additional seasonal terms are included and as a result we obtain a
SARIMA(p, d, q)(P,D,Q)m model, where m represents the number of observations in a
seasonal period. Note that the seasonal part of the model consists of terms that are similar
to the non-seasonal components of the model, but involve backshifts of the seasonal pe-
riod. Since we are dealing with trend and seasonal variations, a SARIMA(p, d, q)(P,D,Q)m

model with m = 12 will be used as benchmark. Accordingly, plots of the autocorrelation
function (ACF) and the partial autocorrelation function (PACF) were used to determine
appropriate values for (p, d, q)(P,D,Q).
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Results

This chapter aims at presenting and describing the results related to the previously de-
scribed case study. Additionally, this chapter will elaborate on two experiments that have
been conducted in order to explore, investigate and analyze whether forecasting perfor-
mance can be enhanced by applying efficient tuning parameter selection and forecast
combination.

4.1 Case Study

This section presents the forecasting performance results of the LASSO, Holt-Winters
and SARIMA models. With regard to LASSO, the one-standard error rule was used to
select the value of tuning parameter λ. Furthermore, to account for the randomness of
CV, all models were run five times and thus the total number of test sets available for
model evaluation, presented in Table 3.6, are multiplied by five. Hence, model Mt+1 will
have 280 test sets available for evaluation, model Mt+2 will have 275 test sets available
for evaluation and so on. On the other hand, with regard to the benchmark models, both
the additive (AHW) and multiplicative Holt-Winters (MHW) methods were implemented
with optimal smoothing parameters α = 0.2, β = 0.1, γ = 0.2, whereas regarding
SARIMA, a model with (p, d, q)(P,D,Q)m equal to (2, 1, 0)(1, 1, 1)12 was selected using
the Akaike information criterion (AIC). Overall, Table 4.1 shows the mean absolute
prediction error and the mean absolute percentage error across all considered models
and forecast horizons.
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Table 4.1: Mean absolute prediction error and the mean absolute percentage error (in
parentheses) across all models and forecast horizons.

Horizon LASSO SARIMA AHW MHW

t+ 1 1,865.93 (4.75) 1,876.55 (4.76) 1,732.56 (4.43) 1,994.59 (5.03)
t+ 2 1,883.23 (4.79) 1,778.85 (4.51) 1,636.93 (4.17) 1,935.19 (4.85)
t+ 3 1,895.85 (4.79) 1,955.72 (4.95) 1,669.06 (4.23) 1,999.18 (5.03)
t+ 4 1,808.90 (4.57) 1,778.09 (4.48) 1,722.89 (4.34) 2,043.26 (5.10)
t+ 5 1,803.76 (4.56) 1,820.68 (4.57) 1,726.69 (4.33) 2,087.26 (5.20)
t+ 6 1,785.07 (4.51) 1,872.53 (4.73) 1,887.68 (4.74) 2,140.95 (5.35)
t+ 7 2,067.32 (5.17) 1,968.04 (4.93) 2,125.34 (5.31) 2,313.06 (5.74)
t+ 8 2,092.85 (5.19) 1,939.43 (4.83) 2,038.74 (5.04) 2,248.73 (5.56)
t+ 9 2,242.76 (5.58) 2,021.24 (4.99) 2,120.01 (5.24) 2,291.26 (5.64)
t+ 10 2,138.72 (5.34) 2,232.01 (5.57) 2,342.59 (5.84) 2,547.03 (6.32)
t+ 11 2,377.19 (5.91) 2,363.90 (5.84) 2,405.85 (5.91) 2,680.01 (6.57)
t+ 12 2,349.52 (5.84) 2,316.47 (5.78) 2.378.72 (5.88) 2,614.66 (6.42)

As can be seen in Table 4.1, when comparing AHW with MHW, AHW consistently out-
performs MHW and thus the seasonal variations could be considered additive. Moreover,
when comparing LASSO, SARIMA and AHW, their model performances seem more com-
petitive as no model consistently outperforms the other. In particular, AHW seems to
predict more accurate on the shorter horizons, whereas on the longer horizons, SARIMA
seems to predict more accurate. Thus, despite the fact that LASSO uses information from
external indicators, forecasting performance has not improved compared to traditional
time series forecasting methods. A possible reason why the traditional methods perform
reasonably well in this case, may be due to the limited volatility in the out-of-sample
parts sales. According to Currie and Rowley (2010) using additional information can
enhance forecasting performance, especially in volatile environments. The period used
for out-of-sample evaluation, July 2015 to February 2020, was a reasonably stable period
from an economic point of view, and as a result, the volatility in the parts sales was lim-
ited during this period. Hence, it could be that in more volatile times, the performance
of LASSO might be more competitive.

4.2 Efficient Tuning Parameter Selection

With regard to the case study, the commonly used one-standard error rule was used for
choosing the value of λ. Jung (2016) stated that tuning parameter selection is often one of
the crucial parts in high-dimensional modeling and hence using CV to select a single value
as optimal value for the tuning parameter can be unstable due to the sampling variation.
A possible solution to account for these sampling variations is to apply repeated CV.
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Nevertheless, applying repeated CV exponentially increases computational costs when
predicting multi-steps ahead and as a result Jung (2016) proposed the use of efficient CV.
Efficient CV selects multiple candidates of parameter values and calculates an average
based on different weights depending on their performance without significant additional
computational costs. As a criterion to select C candidates, Jung (2016) opts to select
the top C best performing parameter values. This follows that efficient CV proposed
in Jung (2016) cannot be implemented when the one-standard error rule is used for
choosing the optimal value of λ. Therefore, this experiment will explore and analyze an
extension that combines efficient CV with the one-standard error rule. Thus, instead
of choosing the top C best performing parameter values as candidates, all parameter
values which are considered by the one-standard error rule {λmin, . . . , λ1se} are selected
as candidates. The combination of efficient CV with the one-standard error rule will be
further denoted as the efficient one-standard error rule. The efficient one-standard error
rule will calculate a weighted average of all candidates with different weights depending
on the CV error estimates as proposed by Jung (2016). The estimates of the weights are
designed in such a way that candidate values with lower CV errors are assigned a greater
weight. Additionally, the weights are normalized and thus the weights of all candidate
models add up to 1. The tuning parameter corresponding to the efficient one-standard
error rule is obtained by:

λ̂eff1se =
C∑
c=1

wcλc with wc =

(
1

CV(λc)

)
C∑
c=1

(
1

CV(λc)

) (4.1)

Accordingly, Figure 4.1 shows an example of which models are selected as candidate
models by the efficient one-standard error rule. As can be seen in Figure 4.1, a total
number of 4 candidate models log(λ) = −1.3, log(λ) = −1.2, log(λ) = −1.1, log(λ) =
−1.0 were selected. After determining the weights wcs, the efficient one-standard error
tuning parameter is calculated at log(λeff1se) = −1.14. It should be noted that the value
of λeff1se is not a value on the grid used for the parameter search. Hence, the efficient
one-standard error rule is capable of finding parameter values on a finer grid without any
additional computational costs. Overall, Table 4.2 presents an overview of the model
performances when using both the default and the efficient one-standard error rule.
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Table 4.2: Mean absolute prediction error and the mean absolute percentage error (in
parentheses), when using the default and efficient one-standard error rule.

Model LASSO, one-standard error LASSO, efficient one-standard
rule (λ1se) error rule (λeff1se)

Mt+1 1,865.93 (4.75) 1,855.95 (4.72)
Mt+2 1,883.23 (4.79) 1,855.71 (4.71)
Mt+3 1,895.85 (4.79) 1,891.97 (4.78)
Mt+4 1,808.90 (4.57) 1,788.00 (4.51)
Mt+5 1,803.76 (4.56) 1,786.83 (4.51)
Mt+6 1,785.07 (4.51) 1,818.96 (4.59)
Mt+7 2,067.32 (5.17) 2,063.71 (5.16)
Mt+8 2,092.85 (5.19) 2,082.58 (5.16)
Mt+9 2,242.76 (5.58) 2,190.58 (5.45)
Mt+10 2,138.72 (5.34) 2,150.93 (5.36)
Mt+11 2,377.19 (5.91) 2,335.49 (5.82)
Mt+12 2,349.52 (5.84) 2,297.18 (5.72)

As can be seen in Table 4.2, the proposed efficient one-standard error rule outperforms
the default one-standard error rule for 10 out of 12 models, with an average improvement
of 0.73%. Hence, it seems that in our case study sampling variation did affect the value
of the tuning parameter. Accordingly, choosing multiple candidate values, instead of
choosing one optimal value, and calculating a weighted average, to reduce the influence

Figure 4.1: Tuning parameter values λmin, λ1se and λeff1se.
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of sampling variation on the tuning parameter value, did seem to cause improvements in
both tuning parameter selection and forecasting accuracy.

4.3 Forecast Combination

The case study has shown that LASSO did not outperform traditional time series fore-
casting methods, whereas the studies of Sagaert et al. (2018) and Verstraete et al. (2020)
reported forecasting performance losses on the longer horizons compared to traditional
methods. It should be noted that these studies solely compared the forecasting perfor-
mance of individual models. Bates and Granger (1969) noted that combining sets of
forecasts can lead to improvements if each set contains independent information. More-
over, Bates and Granger (1969) indicated that this independent information could be of
two types: (1) forecasts are based on variables or information that other forecasts have
not considered and (2) forecasts make different assumptions about the form of relation-
ships between variables. For clarity, Figure 4.2 illustrates whenever forecast combinations
are superior to individual forecasts.

Figure 4.2: Forecast combinations considering five forecast vectors u(1), u(2), u(3), u(4)
and u(5) and two steps ahead y1 and y2. The solid lines represent the forecast combination
in pairs of two, whereas the dotted lines to y represent the corresponding error of the
forecast vectors.

As can be seen in Figure 4.2, forecasts u(1) and u(3) are highly correlated and there-
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fore combining these forecasts will not improve the forecasting performance significantly.
Moreover, forecast u(5) is a considerably poor forecast as the distance to y is large.
However, combining forecasts u(5) with u(2) will improve the forecasting performance
significantly as the distance between y and the solid line between u(5) with u(2) is re-
duced. Clearly, the performance improvement is due to the diversity of both models
(Atiya, 2020). Accordingly, this experiment will explore and analyze whether using a
combination of individual forecasts potentially enhances forecasting performance.

With regard to LASSO, SARIMA and AHW, each individual model creates forecasts
based on independent information. For example, LASSO extracts information from lead-
ing indicators, whereas SARIMA extracts information from autocorrelations and AHW
extracts information from level, trend and seasonal variations. Hence, in order to quanti-
tatively assess their model diversities, correlation between the individual forecast errors
are presented in Table 4.3.

Table 4.3: Correlation of individual forecast errors.

LASSO AHW SARIMA

LASSO 1 - -
AHW 0.758 1 -
SARIMA 0.825 0.944 1

As can be seen in Table 4.3, the least correlation exists between the forecast errors of
LASSO and AHW. Thus, combining the individual forecasts of LASSO and AHW will
have the highest potential for enhanced forecasting performance. In order to obtain
combined forecasts, weights must be allocated to the individual forecasts. Accordingly,
Bates and Granger (1969) introduced numerous methods for determining the weights
of each individual forecast as it is preferred to assign a greater weight to an individual
forecast with a higher accuracy. However, Armstrong (2001) mentioned that applying
weights is only beneficial if there is strong evidence that particular forecasting models
are likely to predict better than others. Otherwise, the use of equal weights is likely
to perform better under almost all other circumstances (Clemen, 1989). In our case
study, there is no strong evidence that LASSO outperforms AHW or vice versa and
thus the decision was made to allocate equal weights to the individual forecasts, i.e. the
individual forecasts of LASSO and AHW are simply averaged. Overall, Table 4.4 shows
the forecasting performance of the combined LASSO and AHW forecasts (LASSO-AHW)
in comparison to all other individual models.
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Table 4.4: Mean absolute prediction error and the mean absolute percentage error (in
parentheses) across all models and forecast horizons.

Horizon LASSO SARIMA AHW LASSO-AHW

t+ 1 1,855.95 (4.72) 1,876.55 (4.76) 1,732.56 (4.43) 1,618.09 (4.13)
t+ 2 1,855.71 (4.71) 1,778.85 (4.51) 1,636.93 (4.17) 1,581.07 (4.03)
t+ 3 1,891.97 (4.78) 1,955.72 (4.95) 1,669.06 (4.23) 1,650.04 (4.19)
t+ 4 1,788.00 (4.51) 1,778.09 (4.48) 1,722.89 (4.34) 1,648.04 (4.17)
t+ 5 1,786.83 (4.51) 1,820.68 (4.57) 1,726.69 (4.33) 1,642.26 (4.15)
t+ 6 1,818.96 (4.59) 1,872.53 (4.73) 1,887.68 (4.74) 1,736.84 (4.39)
t+ 7 2,063.71 (5.16) 1,968.04 (4.93) 2,125.34 (5.31) 1,928.84 (4.84)
t+ 8 2,082.58 (5.16) 1,939.43 (4.83) 2,038.74 (5.04) 1,939.34 (4.81)
t+ 9 2,190.58 (5.45) 2,021.24 (4.99) 2,120.01 (5.24) 2,047.29 (5.08)
t+ 10 2,150.93 (5.36) 2,232.01 (5.57) 2,342.59 (5.84) 2,120.66 (5.28)
t+ 11 2,335.49 (5.82) 2,363.90 (5.84) 2,405.85 (5.91) 2,279.48 (5.64)
t+ 12 2,297.18 (5.72) 2,316.47 (5.78) 2.378.72 (5.88) 2,316.44 (5.75)

As can be seen in Table 4.4, after combining the individual forecasts of LASSO and AHW,
LASSO-AHW outperforms all other individual models for almost all forecast horizons.
Thus, it seems that both the LASSO and AHW models are so diverse, that combining
the predictions of these models results into enhanced forecasting performance, with an
average improvement of 2.38%. Apparently, LASSO extracted valuable information from
leading indicators, whereas Holt-Winters extracted valuable information from level, trend
and seasonal variations, and ultimately, combining all of this information resulted in fore-
casting performance improvements. Hence, with regard to this case study, the inclusion
of information extracted from leading indicators actually did lead to more accurate parts
sales predictions.

4.4 Summary

The results have shown that the individual LASSO model does not outperform the tra-
ditional forecasting methods SARIMA, and Holt-Winters. Moreover, we proposed the
efficient one-standard error rule, as an alternative to the default one-standard error rule,
to reduce the influence of sampling variation on the value of tuning parameter λ. As
a result, forecasting performance improved with an average of 0.73% over all horizons.
Lastly, we found that combining LASSO with the additive Holt-Winters model, out-
performed all other individual models, with an average improvement of 2.38% over all
horizons.
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Leading Indicators

This chapter will provide insight into which indicators contain leading context informa-
tion by analyzing which predictors were consistently included in the β̂lasso estimators.

5.1 Inclusion Ratio

Amajor advantage of LASSO is that the β̂lasso estimator is transparent and could provide
business intelligence about relevant predictors. The β̂lasso estimator is a vector of size
p with zero and non-zero regression coefficients, representing uninformative and relevant
predictors respectively. Accordingly, Table 5.1 presents an overview of how many relevant
predictors and unique indicators were included in all LASSO models.

Table 5.1: The number of included relevant predictors and unique indicators.

Model Number of relevant predictors Number of unique indicators

Mean Standard deviation Mean Standard deviation

Mt+1 16.04 9.75 9.81 3.07
Mt+2 11.53 3.42 7.57 1.95
Mt+3 9.28 3.01 6.44 1.30
Mt+4 13.55 5.69 10.57 1.50
Mt+5 13.66 3.70 10.71 1.48
Mt+6 12.96 4.55 9.85 1.65
Mt+7 19.67 2.59 12.02 1.00
Mt+8 21.94 9.89 13.11 2.39
Mt+9 22.02 6.73 13.69 1.74
Mt+10 21.29 7.60 12.65 2.26
Mt+11 23.33 9.89 12.13 2.85
Mt+12 37.10 12.22 15.54 2.71
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As can be seen in Table 5.1, when predicting (t + 1) ahead a total number of 16.04
predictors spread over 9.81 unique indicators were included on average, whereas, when
predicting (t + 12) ahead, a total number of 37.10 predictors spread over 15.54 unique
indicators were included on average. Hence, when predicting on further horizons, more
predictors and more unique indicators are included in the β̂lasso estimators. This insight
is at a considerably high level and does not provide business intelligence about any lead
effects. In order to explore and identify any lead effects, we will use the inclusion ratio
to assess the inclusion consistency of each predictor. The inclusion ratio represents the
percentage of how many times a predictor turned out to be relevant in all fitted β̂lasso

estimators. For example, if the inclusion ratio for predictor p equals 0.30, then in 30%
of the fitted β̂lasso estimators the regression coefficient of the corresponding predictor
turned out non-zero, whereas in the other 70% the regression coefficient was shrunken to
zero. Accordingly, the inclusion ratio is mathematically expressed as:

Inclusion ratio predictor p =

∑[
β̂lasso : β̂p 6= 0

]
∑[

β̂lasso : β̂p 6= 0
]
+
∑[

β̂lasso : β̂p = 0
] (5.1)

A comprehensive overview of the calculated inclusion ratios is shown in Appendix C.

5.2 Lead Effects

It is likely that if a certain predictor actually contains relevant information, it should
be consistently included in the β̂lasso estimator as a non-zero coefficient. Therefore, we
assume that a predictor could be considered as consistently relevant if the inclusion ratio
has a value of at least 0.50 or greater. Accordingly, the inclusion ratios across all forecast
horizons were analyzed to explore the existence of any consistent patterns that might
indicate a lead effect. As a result, consistent patterns were found in the inclusion ratios
of the following indicators:

• Y Observed parts sales (i.e. autoregressive information)
• X1 DAF truck deliveries
• X11 Construction spending
• X20 Short-term diesel consumption growth
• X22 Automotive diesel deliveries
• X24 Short-term OEM truck orders
• X31 Carrier demand expectations
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The upcoming sections will elaborate more on the exact patterns found in all these
indicators.

5.2.1 Observed Parts Sales

With regard to the parts sales observed in the past, Table 5.2 presents the inclusion
ratios for each lagged predictor. As can be seen, there is a consistent diagonal pattern
running from Y(t−2) in Mt+1 to Y(t) in Mt+3, indicating an autoregressive lead effect of
3 months. Next to that, there is a consistent diagonal pattern running from Y(t−11) in
Mt+1 to Y(t) in Mt+12, indicating an additional autoregressive lead effect of 12 months.
The latter can be explained by the existence of a seasonal pattern within the sales data.

Table 5.2: Inclusion ratios of observed parts sales.

Mt+1 Mt+2 Mt+3 Mt+4 Mt+5 Mt+6 Mt+7 Mt+8 Mt+9 Mt+10 Mt+11 Mt+12

Y(t) 0.05 0.00 1.00 0.00 0.00 0.07 0.00 0.20 0.00 0.00 0.24 1.00
Y(t−1) 0.00 1.00 0.00 0.00 0.02 0.00 0.05 0.00 0.00 0.19 1.00 0.23
Y(t−2) 1.00 0.00 0.00 0.11 0.00 0.01 0.00 0.01 0.23 1.00 0.00 0.00
Y(t−3) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.33 1.00 0.00 0.00 0.00
Y(t−4) 0.00 0.01 0.00 0.00 0.00 0.00 0.61 1.00 0.00 0.00 0.06 0.01
Y(t−5) 0.00 0.00 0.00 0.02 0.00 0.45 1.00 0.00 0.00 0.00 0.00 0.48
Y(t−6) 0.00 0.00 0.00 0.00 0.45 1.00 0.00 0.00 0.02 0.00 0.00 0.25
Y(t−7) 0.07 0.02 0.00 0.14 1.00 0.00 0.00 0.02 0.00 0.01 0.18 0.01
Y(t−8) 0.02 0.00 0.04 1.00 0.00 0.00 0.00 0.00 0.00 0.18 0.00 0.00
Y(t−9) 0.00 0.11 1.00 0.00 0.00 0.00 0.00 0.00 0.23 0.00 0.00 0.29
Y(t−10) 0.19 1.00 0.00 0.00 0.00 0.00 0.00 0.19 0.00 0.00 0.47 0.00
Y(t−11) 1.00 0.00 0.00 0.05 0.00 0.00 0.19 0.00 0.00 0.45 0.01 0.68

5.2.2 DAF Truck Deliveries

With regard to the number of DAF truck deliveries, Table 5.3 presents the inclusion
ratios for each lagged predictor. As can be seen, there is a consistent diagonal pattern
running from X1,(t−8) in Mt+4 to X1,(t) in Mt+12, indicating a lead effect of 12 months.

Table 5.3: Inclusion ratios of DAF truck deliveries.

Mt+1 Mt+2 Mt+3 Mt+4 Mt+5 Mt+6 Mt+7 Mt+8 Mt+9 Mt+10 Mt+11 Mt+12

X1,(t) 0.00 0.00 0.00 0.00 0.00 0.00 0.89 0.00 0.00 0.15 0.01 1.00
X1,(t−1) 0.00 0.00 0.00 0.00 0.00 0.66 0.00 0.00 0.12 0.00 1.00 0.04
X1,(t−2) 0.00 0.00 0.00 0.00 0.47 0.00 0.00 0.43 0.00 1.00 0.00 0.00
X1,(t−3) 0.00 0.00 0.00 0.12 0.00 0.00 0.53 0.01 1.00 0.00 0.00 0.00
X1,(t−4) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.01 0.00
X1,(t−5) 0.00 0.04 0.00 0.00 0.24 0.00 1.00 0.00 0.00 0.00 0.00 0.00
X1,(t−6) 0.04 0.00 0.00 0.50 0.00 0.51 0.00 0.00 0.00 0.00 0.00 0.00
X1,(t−7) 0.00 0.00 0.00 0.00 0.74 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X1,(t−8) 0.00 0.00 0.00 0.55 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08
X1,(t−9) 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00
X1,(t−10) 0.00 0.06 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00
X1,(t−11) 0.24 0.00 0.00 0.18 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.37
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As a result, it seems that the seasonal pattern existing in the DAF truck deliveries data
contributes to the seasonal pattern in PPE’s parts sales. Noticeably, this finding seems
plausible as a part of PPE’s parts sales are related to new truck sales. Moreover, a
possible reason for the fact that in Mt+1 to Mt+3 no lead effect is identified, is that these
models receive additional autoregressive information as shown in Section 5.2.1.

5.2.3 Construction Spending

With regard to the construction spending indicator, Table 5.4 presents the inclusion
ratios for each lagged predictor. As can be seen, there is a consistent diagonal pattern
running from X11,(t−6) in Mt+1 to X11,(t) in Mt+7, indicating a lead effect of 7 months.
Hence, it seems that the construction spending indicator contains relevant predictive
information up to 7 months in advance.

Table 5.4: Inclusion ratios of construction spending.

Mt+1 Mt+2 Mt+3 Mt+4 Mt+5 Mt+6 Mt+7 Mt+8 Mt+9 Mt+10 Mt+11 Mt+12

X11,(t) 0.01 0.00 0.00 0.00 0.00 0.00 1.00 0.24 0.20 0.84 0.40 0.72
X11,(t−1) 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.55 0.23 0.16 0.95
X11,(t−2) 0.00 0.00 0.00 0.00 0.99 0.00 0.00 0.34 0.21 0.14 0.72 0.00
X11,(t−3) 0.05 0.00 0.00 0.88 0.00 0.00 0.00 0.00 0.17 0.23 0.00 0.77
X11,(t−4) 0.05 0.00 0.59 0.00 0.00 0.00 0.00 0.09 0.27 0.00 0.03 1.00
X11,(t−5) 0.00 0.62 0.00 0.00 0.00 0.00 0.00 0.20 0.00 0.02 0.98 0.65
X11,(t−6) 0.63 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.89 0.01 0.00
X11,(t−7) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.98 0.01 0.00 0.23
X11,(t−8) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.54 0.00 0.00 0.00 0.55
X11,(t−9) 0.00 0.00 0.00 0.00 0.00 0.00 0.79 0.00 0.00 0.00 0.33 0.91
X11,(t−10) 0.00 0.00 0.00 0.00 0.00 0.17 0.00 0.00 0.00 0.11 0.48 0.00
X11,(t−11) 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.09 0.20 0.22 0.00 0.51

5.2.4 Short-term Diesel Consumption Growth

With regard to the short-term diesel consumption growth indicator, Table 5.5 presents
the inclusion ratios for each lagged predictor. As can be seen, there is a consistent
diagonal pattern running from X20,(t−7) in Mt+1 to X20,(t) in Mt+8, indicating a lead
effect of 8 months. Hence, it seems that the short-term diesel consumption growth
indicator contains relevant predictive information up to 8 months in advance.

Table 5.5: Inclusion ratios of short-term diesel consumption growth.

Mt+1 Mt+2 Mt+3 Mt+4 Mt+5 Mt+6 Mt+7 Mt+8 Mt+9 Mt+10 Mt+11 Mt+12

X20,(t) 0.00 0.01 0.00 0.00 0.00 0.00 0.00 1.00 0.21 0.00 0.00 0.00
X20,(t−1) 0.10 0.00 0.00 0.00 0.00 0.00 0.98 0.00 0.00 0.03 0.00 0.00
X20,(t−2) 0.00 0.00 0.00 0.00 0.00 0.55 0.00 0.00 0.21 0.00 0.00 0.45
X20,(t−3) 0.00 0.00 0.00 0.00 0.57 0.00 0.00 0.27 0.00 0.00 0.01 0.00
X20,(t−4) 0.04 0.00 0.00 0.74 0.00 0.02 0.21 0.00 0.00 0.07 0.00 0.00
X20,(t−5) 0.00 0.00 0.64 0.00 0.00 0.10 0.00 0.00 0.13 0.00 0.00 0.00
X20,(t−6) 0.00 0.81 0.00 0.00 0.02 0.00 0.00 0.16 0.00 0.00 0.00 0.00
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X20,(t−7) 0.99 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X20,(t−8) 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.49
X20,(t−9) 0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.22 0.00
X20,(t−10) 0.20 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.23 0.00 0.00
X20,(t−11) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.28 0.00 0.00 0.00

5.2.5 Automotive Diesel Deliveries

With regard to the automotive diesel deliveries indicator, Table 5.6 presents the inclusion
ratios for each lagged predictor. As can be seen, there is a consistent diagonal pattern
running from X22,(t−11) inMt+1 to X22,(t) inMt+12, indicating a lead effect of 12 months.
As a result, it seems that, just as the number of DAF truck deliveries, the seasonal pattern
in the automotive diesel deliveries contributes to the seasonal pattern in PPE’s parts sales.
Again, this finding seems plausible since in addition to parts related to new truck sales,
PPE’s sales consists of parts related to wear and maintenance. Hence, the number of
DAF truck deliveries provides predictive information related to new truck sales, whereas
the amount of automotive diesel deliveries seems to be a good approximation of the
kilometers driven/road activity and therefore provides predictive information related to
wear and maintenance parts.

Table 5.6: Inclusion ratios of automotive diesel deliveries.

Mt+1 Mt+2 Mt+3 Mt+4 Mt+5 Mt+6 Mt+7 Mt+8 Mt+9 Mt+10 Mt+11 Mt+12

X22,(t) 0.31 0.03 0.00 0.13 0.00 0.00 0.01 0.12 0.00 0.01 0.43 1.00
X22,(t−1) 0.22 0.00 0.00 0.02 0.00 0.02 0.34 0.00 0.00 0.30 0.92 0.05
X22,(t−2) 0.00 0.00 0.00 0.00 0.00 0.19 0.00 0.13 0.32 0.94 0.03 0.04
X22,(t−3) 0.00 0.00 0.00 0.00 0.44 0.00 0.00 0.23 1.00 0.00 0.00 0.34
X22,(t−4) 0.00 0.00 0.00 0.12 0.00 0.00 0.13 0.99 0.00 0.00 0.73 0.00
X22,(t−5) 0.00 0.01 0.02 0.00 0.00 0.07 1.00 0.00 0.00 0.43 0.00 0.04
X22,(t−6) 0.13 0.02 0.00 0.03 0.00 1.00 0.00 0.00 0.95 0.00 0.00 0.22
X22,(t−7) 0.04 0.00 0.00 0.00 1.00 0.00 0.00 0.88 0.00 0.01 0.10 0.10
X22,(t−8) 0.04 0.01 0.00 1.00 0.00 0.00 1.00 0.00 0.00 0.04 0.03 0.04
X22,(t−9) 0.04 0.00 0.88 0.00 0.00 0.24 0.00 0.00 0.05 0.00 0.00 0.80
X22,(t−10) 0.05 0.89 0.00 0.00 0.13 0.00 0.00 0.29 0.00 0.00 0.68 0.85
X22,(t−11) 0.98 0.00 0.00 0.12 0.00 0.00 0.15 0.00 0.00 0.82 0.49 0.70

5.2.6 Short-term OEM Truck Orders

With regard to the number of OEM truck orders on the short-term, Table 5.7 presents
the inclusion ratios for each lagged predictor. As can be seen, instead of a consistent
diagonal pattern indicating a lead effect, there is a consistent horizontal pattern running
from X24,(t) in Mt+1 to X24,(t) in Mt+11. It seems like that the number of OEM truck
orders on the short-term was used to assess the market position of road freight at time
t. As a result, the number of short-term OEM truck orders at time t seems to be a good
indication of the current market conditions.
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Table 5.7: Inclusion ratios of short-term OEM truck orders.

Mt+1 Mt+2 Mt+3 Mt+4 Mt+5 Mt+6 Mt+7 Mt+8 Mt+9 Mt+10 Mt+11 Mt+12

X24,(t) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.67 0.00
X24,(t−1) 0.04 0.53 0.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X24,(t−2) 0.33 0.66 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X24,(t−3) 0.79 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X24,(t−4) 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X24,(t−5) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X24,(t−6) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05
X24,(t−7) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.30
X24,(t−8) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00
X24,(t−9) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X24,(t−10) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X24,(t−11) 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00

5.2.7 Carrier Demand Expectations

With regard to the carrier demand expectations, Table 5.8 presents the inclusion ratios for
each lagged predictor. As can be seen, there is a consistent diagonal pattern running from
X31,(t−5) inMt+1 to X31,(t) inMt+6, indicating a lead effect of 6 months. Hence, it seems
that the carrier demand expectations indicator contains relevant predictive information
up to 6 months in advance.

Table 5.8: Inclusion ratios of carrier demand expectations.

Mt+1 Mt+2 Mt+3 Mt+4 Mt+5 Mt+6 Mt+7 Mt+8 Mt+9 Mt+10 Mt+11 Mt+12

X31,(t) 0.00 0.00 0.72 0.00 0.00 1.00 0.34 1.00 0.01 0.98 1.00 0.63
X31,(t−1) 0.00 0.76 0.00 0.00 1.00 0.00 0.99 0.00 0.58 0.88 0.37 0.00
X31,(t−2) 0.66 0.00 0.00 1.00 0.00 0.58 0.00 0.24 0.69 0.05 0.00 0.00
X31,(t−3) 0.00 0.00 1.00 0.00 0.55 0.00 0.00 0.41 0.28 0.00 0.00 0.00
X31,(t−4) 0.00 1.00 0.00 0.26 0.00 0.02 0.16 0.00 0.00 0.00 0.00 0.00
X31,(t−5) 1.00 0.00 0.20 0.00 0.00 0.19 0.00 0.00 0.00 0.00 0.00 0.12
X31,(t−6) 0.00 0.28 0.00 0.01 0.16 0.00 0.00 0.00 0.00 0.00 0.01 0.00
X31,(t−7) 0.24 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.39
X31,(t−8) 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.92
X31,(t−9) 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.61 0.00
X31,(t−10) 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.86 0.02 0.73
X31,(t−11) 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99 0.17 0.99 0.70

5.3 Summary

We used the inclusion ratio to assess the inclusion consistency of each predictor over all
horizons. Accordingly, we assumed that a predictor is considered as consistently relevant
if the inclusion ratio equals 0.50 or greater, after which, we analyzed the inclusion ratios
to find any consistent patterns that might indicate a lead effect. Ultimately, 2 business,
1 economic, and 4 market indicators appeared to have clear lead effects for PPE’s parts
sales.
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Conclusion

This chapter will elaborate on the overall conclusion and recommendations of this field
project.

6.1 Evaluation

In the business understanding phase of the CRISP-DM framework, the business objective
of this field project was defined as:

Identify and gain insight into leading indicators for PACCAR Parts Europe’s part sales.
Next to that, explore and analyze whether including information extracted from leading

indicators actually leads to more accurate parts sales predictions.

In line with the business objective, a total number of three research questions were
defined, which are addressed and answered below.

• Research Question 1: How to identify leading indicators for PACCAR Parts Eu-
rope’s parts sales?

Leading indicators are defined as variables that contain predictive information and ide-
ally can predict a certain movement for a target variable in advance. Thus, in order to
identify leading indicators for PPE’s parts sales, it was necessary to specify a certain tar-
get variable. For this project, the target variable was specified as the total monthly truck
parts sales reported by all DAF dealers, located in the EU27+2 area. With regard to the
indicators, we collected a pool of 34 business, economic and market indicators which had
the potential of being a leading indicator for PPE’s parts sales. In order to model and
identify any lead effects, each considered indicator was lagged in time multiple times,
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increasing the number of predictors significantly. For this project, we assumed a maxi-
mum lead effect of 12 months and thus the number of predictors increased to a total of
408. Given a large number of predictors together with the frequent occurrence of small
sample sizes in sales forecasting, the identification of leading indicators in a monthly
sales forecasting environment resulted in a high-dimensional (p > n) problem. Moreover,
since each indicator is lagged in time multiple times, there exists correlation among the
predictors and thus the problem of multicollinearity is present. Hence, the identification
of leading indicators resulted in a high-dimensional problem with the presence of multi-
collinearity among the predictors. Therefore, LASSO was chosen as modeling technique
as LASSO performs both variable selection and regularization that involves penalizing
the absolute size of the regression coefficients. Due to these shrinkage properties, LASSO
is capable of effectively dealing with multicollinearity among the predictors. Next to that,
the use of LASSO contributed to the business objective as “the LASSO forecast is trans-
parent, and provides insights into the selected leading indicators. Experts can benefit by
gaining a better understanding of their market and can thus improve their understanding
of market dynamics and interactions” (Sagaert et al., 2017, p. 127).

• Research Question 2: Are there any leading indicators for PACCAR Parts Europe’s
business, and if so, which indicators exactly are relevant for predicting PACCAR Parts
Europe’s parts sales?

We collected a pool of 34 business, economic and market indicators which had the po-
tential of being a leading indicator for PPE’s part sales. The business indicators covered
PPE’s business activities by means of indicators that were related to observed parts sales
in the past and the number of DAF truck deliveries. The economic indicators covered
Europe’s overall economic climate by means of indicators that were mainly related to the
industrial manufacturing and construction sectors, as these sectors are the major drivers
of commercial vehicle transport. The market indicators covered the ongoing activities in
Europe’s road transport sector by means of indicators that were related to the number
of placed truck orders, diesel consumption, tire consumption, carrier sentiment and road
activity. Eventually, the transparency of LASSO provided business intelligence about
leading indicators that are relevant for predicting PPE’s part sales. It turned out that
a total number of 2 business indicators, 1 economic indicator and 4 market indicators
have clear lead effects for PPE’s business. The identified leading indicators and their
corresponding lead effects are shown in Table 6.1.
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Table 6.1: Indicators with clear lead effects.

Indicator name Indicator type Lead effect

1. Observed parts sales Business 3 and 12 months
2. DAF truck deliveries Business 12 months
3. Construction spending Economic 7 months
4. Short-term diesel consumption

growth
Market 8 months

5. Automotive diesel deliveries Market 12 months
6. Short-term OEM truck orders Market 1 up to 12 months
7. Carrier demand expectations Market 6 months

• Research Question 3: Does the inclusion of leading context information actually
lead to more accurate predictions of PACCAR Parts Europe’s parts sales?

In order to assess whether the inclusion of leading context information actually led to
more accurate predictions, we benchmarked the performance of LASSO to SARIMA and
Holt-Winters, which are two univariate time series forecasting methods, often used in
businesses. Initially, it turned out that Holt-Winters predicted most accurate on the
shorter horizons (1-5 months), whereas SARIMA mainly predicted most accurate on the
longer horizons (7-12 months). Hence, despite the fact that LASSO used external in-
formation, it actually predicted less accurate than the traditional forecasting methods.
As a result, two experiments were conducted in order to explore whether forecasting
performance could be improved by applying efficient tuning parameter selection and
forecast combination. With regard to the efficient tuning parameter selection experi-
ment, we introduced the efficient one-standard error rule which, instead of choosing the
parameter value corresponding to the most regularized model within one-standard error
of the minimum CV error estimate, chooses all parameter values within one-standard
error of the minimum and subsequently calculates a weighted average. The purpose of
applying the efficient one-standard error rule over the default one-standard error rule,
when using CV, is to reduce the influence of sampling variation on the tuning parame-
ter value. Accordingly, it was found that applying the efficient one-standard error rule
improved forecasting performance in 10 out of 12 models, with an average improvement
of -0.73%. Next to that, we analyzed model diversities and explored whether applying
forecast combination could lead to more accurate predictions. Accordingly, it was found
that combining the predictions of LASSO and Holt-Winters yielded the most accurate
predictions, outperforming the individual LASSO, Holt-Winters and SARIMA models
for almost all horizons. Hence, for PPE, the inclusion of leading indicators led to more
accurate parts sales predictions, with an average improvement of -2.38% over all horizons.
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6.2 Recommendations

The results obtained during this field project led to a number of recommendations to-
wards PACCAR Parts Europe. First of all, it is recommended to implement the additive
Holt-Winters model with smoothing parameters α = 0.2, β = 0.1, γ = 0.2. Next to
that, it is recommended to implement the LASSO model with the indicators: observed
parts sales, DAF truck deliveries, construction spending, short-term diesel consumption
growth, automotive diesel deliveries, short-term OEM truck orders and carrier demand
expectations. With regard to LASSO’s tuning parameter λ, it is recommended to im-
plement and use 10-fold CV with the efficient one-standard error rule, proposed in this
report, as the tuning parameter selection method. In order to obtain the final prediction,
the predictions of both the LASSO and Holt-Winters models should be averaged.

6.3 Limitations

This research has several limitations which are addressed and discussed. First of all, no
distinction was made between new truck parts sales and wear/maintenance parts sales.
In the end, we found leading indicators that are specifically related to new truck parts
sales (DAF truck deliveries, short-term OEM truck orders) and wear/maintenance parts
(short-term diesel consumption growth, automotive diesel deliveries). Hence, it might be
the case that if new truck parts sales and wear/maintenance parts are distinguished, and
predicted separately, forecasting performance could be enhanced. Secondly, with regard
to the determination of LASSO’s tuning parameter λ, we used K-fold CV and thus
ignored the temporal dependencies between parts sales. As an alternative to K-fold CV,
Bergmeir and Benítez (2012) recommended to use blocked CV together with stationary
data, however, using blocked CV will lead to additional observation losses. It might be
the case that when using blocked CV, forecasting performance could be improved, but
due to the additional observation losses, it was considered as not applicable in our case
study. Additionally, since we applied the direct forecast strategy and each model was
retrained at every time step, applying repeated CV was considered out of scope, as this
would result into exponentially increased computational costs. Nevertheless, applying
repeated CV should reduce the influence of sampling variation on the tuning parameter
value and perhaps could improve forecasting performance. Lastly, since we were dealing
with limited sample sizes, complex machine learning techniques, such as the recurrent
neural network, were considered out of scope as these techniques require larger data sets
for training purposes.
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6.4 Contribution and Future Research

This research has several contributions to the existing academic literature. First of
all, we proposed the efficient one-standard error rule, as an alternative to the default
one-standard error rule, by combining efficient CV, proposed in Jung (2016), with the
commonly used one-standard error rule, described in Hastie et al. (2009). The purpose of
the efficient one-standard error rule is to reduce the influence of sampling variation on the
actual tuning parameter value. As stated earlier, we found that applying the efficient one-
standard error rule over the default one, improved forecasting performance in 10 out of 12
models. With regard to future research purposes, there is a need to explore and analyze
whether the efficient one-standard error rule improves performance, compared to the
default one-standard error rule, when applied on multiple and larger data sets. Secondly,
the studies of Sagaert et al. (2018) and Verstraete et al. (2020) reported forecasting
performance losses of LASSO on the longer horizons, compared to traditional methods.
These studies solely considered and compared the forecasting performance of individual
models, whereas we found that, for our case study, applying forecast combination resulted
into improved forecasting performance over almost all horizons.
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Appendix A

Truck Parts Sales

A.1 Partial Autocorrelation Function

Figure A.1: Partial autocorrelation function of PPE truck parts sales.
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A.2 Seasonal Subseries Plot

Figure A.2: Seasonal subseries plot of PPE truck parts sales (2002-2010).

Figure A.3: Seasonal subseries plot of PPE truck parts sales (2011-2019).
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Appendix B

Data Stationarity

B.1 Augmented Dickey-Fuller Test

Table B.1: Results of the Augmented Dickey-Fuller test.

Variable ADF test statistic Critical value at 95% Result
confidence interval

Y -1.291 -2.878 H0 not rejected
X1 -3.211 -2.878 H0 rejected
X2 -4.103 -2.878 H0 rejected
X3 -2.876 -2.878 H0 rejected
X4 -1.723 -2.878 H0 not rejected
X5 -2.752 -2.878 H0 not rejected
X6 -4.220 -2.878 H0 rejected
X7 -2.643 -2.878 H0 not rejected
X8 -3.292 -2.878 H0 rejected
X9 -1.950 -2.878 H0 not rejected
X10 -1.342 -2.878 H0 not rejected
X11 -1.832 -2.878 H0 not rejected
X12 -1.282 -2.878 H0 not rejected
X13 -5.270 -2.878 H0 rejected
X14 -3.263 -2.878 H0 not rejected
X15 -3.232 -2.878 H0 not rejected
X16 -3.206 -2.878 H0 rejected
X17 -2.476 -2.878 H0 not rejected
X18 -3.244 -2.878 H0 rejected
X19 -2.075 -2.878 H0 not rejected
X20 -2.289 -2.878 H0 not rejected
X21 -2.915 -2.878 H0 rejected
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X22 -1.405 -2.878 H0 not rejected
X23 -3.519 -2.878 H0 rejected
X24 -3.671 -2.878 H0 rejected
X25 -4.480 -2.878 H0 rejected
X26 -3.304 -2.878 H0 rejected
X27 -2.426 -2.878 H0 not rejected
X28 -2.093 -2.878 H0 not rejected
X29 -2.338 -2.878 H0 not rejected
X30 -2.838 -2.878 H0 not rejected
X31 -3.113 -2.878 H0 rejected
X32 -2.655 -2.878 H0 not rejected
X33 -2.525 -2.878 H0 not rejected

B.2 Kwiatkowski-Philips-Schmidt-Shin Test

Table B.2: Results of the Kwiatkowski-Philips-Schmidt-Shin (KPSS) test.

Variable KPSS test statistic Critical value at 95% Result
confidence interval

Y 1.244 0.463 H0 rejected
X1 0.190 0.463 H0 not rejected
X2 0.180 0.463 H0 not rejected
X3 0.247 0.463 H0 not rejected
X4 0.273 0.463 H0 not rejected
X5 0.369 0.463 H0 not rejected
X6 0.160 0.463 H0 not rejected
X7 0.267 0.463 H0 not rejected
X8 0.101 0.463 H0 not rejected
X9 1.024 0.463 H0 rejected
X10 0.294 0.463 H0 not rejected
X11 0.578 0.463 H0 rejected
X12 0.425 0.463 H0 not rejected
X13 0.305 0.463 H0 not rejected
X14 0.251 0.463 H0 not rejected
X15 0.351 0.463 H0 not rejected
X16 0.151 0.463 H0 not rejected
X17 0.172 0.463 H0 not rejected
X18 0.246 0.463 H0 not rejected
X19 0.244 0.463 H0 not rejected
X20 0.207 0.463 H0 not rejected
X21 0.204 0.463 H0 not rejected
X22 1.074 0.463 H0 rejected
X23 0.061 0.463 H0 not rejected
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X24 0.136 0.463 H0 not rejected
X25 0.306 0.463 H0 not rejected
X26 0.382 0.463 H0 not rejected
X27 0.349 0.463 H0 not rejected
X28 0.316 0.463 H0 not rejected
X29 0.396 0.463 H0 not rejected
X30 0.111 0.463 H0 not rejected
X31 0.106 0.463 H0 not rejected
X32 0.222 0.463 H0 not rejected
X33 0.154 0.463 H0 not rejected
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Inclusion Ratios

Table C.1: Indicator inclusion ratios.

Mt+1 Mt+2 Mt+3 Mt+4 Mt+5 Mt+6 Mt+7 Mt+8 Mt+9 Mt+10 Mt+11 Mt+12

Y(t) 0.05 0.00 1.00 0.00 0.00 0.07 0.00 0.20 0.00 0.00 0.24 1.00
Y(t−1) 0.00 1.00 0.00 0.00 0.02 0.00 0.05 0.00 0.00 0.19 1.00 0.23
Y(t−2) 1.00 0.00 0.00 0.11 0.00 0.01 0.00 0.01 0.23 1.00 0.00 0.00
Y(t−3) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.33 1.00 0.00 0.00 0.00
Y(t−4) 0.00 0.01 0.00 0.00 0.00 0.00 0.61 1.00 0.00 0.00 0.06 0.01
Y(t−5) 0.00 0.00 0.00 0.02 0.00 0.45 1.00 0.00 0.00 0.00 0.00 0.48
Y(t−6) 0.00 0.00 0.00 0.00 0.45 1.00 0.00 0.00 0.02 0.00 0.00 0.25
Y(t−7) 0.07 0.02 0.00 0.14 1.00 0.00 0.00 0.02 0.00 0.01 0.18 0.01
Y(t−8) 0.02 0.00 0.04 1.00 0.00 0.00 0.00 0.00 0.00 0.18 0.00 0.00
Y(t−9) 0.00 0.11 1.00 0.00 0.00 0.00 0.00 0.00 0.23 0.00 0.00 0.29
Y(t−10) 0.19 1.00 0.00 0.00 0.00 0.00 0.00 0.19 0.00 0.00 0.47 0.00
Y(t−11) 1.00 0.00 0.00 0.05 0.00 0.00 0.19 0.00 0.00 0.45 0.01 0.68
X1,(t) 0.00 0.00 0.00 0.00 0.00 0.00 0.89 0.00 0.00 0.15 0.01 1.00
X1,(t−1) 0.00 0.00 0.00 0.00 0.00 0.66 0.00 0.00 0.12 0.00 1.00 0.04
X1,(t−2) 0.00 0.00 0.00 0.00 0.47 0.00 0.00 0.43 0.00 1.00 0.00 0.00
X1,(t−3) 0.00 0.00 0.00 0.12 0.00 0.00 0.53 0.01 1.00 0.00 0.00 0.00
X1,(t−4) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.01 0.00
X1,(t−5) 0.00 0.04 0.00 0.00 0.24 0.00 1.00 0.00 0.00 0.00 0.00 0.00
X1,(t−6) 0.04 0.00 0.00 0.50 0.00 0.51 0.00 0.00 0.00 0.00 0.00 0.00
X1,(t−7) 0.00 0.00 0.00 0.00 0.74 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X1,(t−8) 0.00 0.00 0.00 0.55 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08
X1,(t−9) 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00
X1,(t−10) 0.00 0.06 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00
X1,(t−11) 0.24 0.00 0.00 0.18 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.37
X2,(t) 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X2,(t−1) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X2,(t−2) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X2,(t−3) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X2,(t−4) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X2,(t−5) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X2,(t−6) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X2,(t−7) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X2,(t−8) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X2,(t−9) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X2,(t−10) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X2,(t−11) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X3,(t) 0.00 0.00 0.00 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X3,(t−1) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X3,(t−2) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X3,(t−3) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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X3,(t−4) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X3,(t−5) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X3,(t−6) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X3,(t−7) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X3,(t−8) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X3,(t−9) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X3,(t−10) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X3,(t−11) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X4,(t) 0.06 0.00 0.00 0.03 0.00 0.00 0.01 0.00 0.00 0.26 0.02 0.00
X4,(t−1) 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.02 0.00 0.00
X4,(t−2) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.03 0.00 0.00 0.01
X4,(t−3) 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.02
X4,(t−4) 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00
X4,(t−5) 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X4,(t−6) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.51
X4,(t−7) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.00
X4,(t−8) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.03 0.00 0.00
X4,(t−9) 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.02 0.00 0.00 0.01
X4,(t−10) 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.07
X4,(t−11) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00
X5,(t) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.00
X5,(t−1) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X5,(t−2) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X5,(t−3) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X5,(t−4) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X5,(t−5) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X5,(t−6) 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X5,(t−7) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X5,(t−8) 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X5,(t−9) 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X5,(t−10) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00
X5,(t−11) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.03 0.00 0.33
X6,(t) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X6,(t−1) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X6,(t−2) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X6,(t−3) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X6,(t−4) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X6,(t−5) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X6,(t−6) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X6,(t−7) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X6,(t−8) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X6,(t−9) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X6,(t−10) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X6,(t−11) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X7,(t) 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X7,(t−1) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X7,(t−2) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X7,(t−3) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X7,(t−4) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X7,(t−5) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X7,(t−6) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X7,(t−7) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X7,(t−8) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X7,(t−9) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X7,(t−10) 0.00 0.00 0.00 0.00 0.23 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X7,(t−11) 0.00 0.00 0.00 0.28 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00
X8,(t) 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X8,(t−1) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06
X8,(t−2) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.23
X8,(t−3) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.26 0.10
X8,(t−4) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.15 0.27 0.23 0.12
X8,(t−5) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.25 0.42 0.57 0.09
X8,(t−6) 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.10 0.62 0.32 0.14 0.00
X8,(t−7) 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.52 0.03 0.00 0.00 0.00
X8,(t−8) 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.08 0.00 0.00 0.00 0.00
X8,(t−9) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00
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X8,(t−10) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X8,(t−11) 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X9,(t) 0.02 0.00 0.05 0.00 0.12 0.00 0.00 0.00 0.00 0.01 0.00 0.00
X9,(t−1) 0.00 0.09 0.00 0.10 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.48
X9,(t−2) 0.19 0.00 0.01 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.16
X9,(t−3) 0.01 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.25 0.82
X9,(t−4) 0.26 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.03 0.17 0.98 1.00
X9,(t−5) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.11 0.98 0.14
X9,(t−6) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.19 0.95 0.23 0.20
X9,(t−7) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.89 0.01 0.14 0.79
X9,(t−8) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.00 0.09 0.04 0.21
X9,(t−9) 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.01 0.21 0.01 0.00 0.24
X9,(t−10) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.32 0.01 0.00 0.22 0.34
X9,(t−11) 0.04 0.00 0.00 0.00 0.00 0.05 0.02 0.07 0.05 0.21 0.23 0.00
X10,(t) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.03 0.00 0.06
X10,(t−1) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X10,(t−2) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X10,(t−3) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X10,(t−4) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X10,(t−5) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00
X10,(t−6) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X10,(t−7) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
X10,(t−8) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00
X10,(t−9) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X10,(t−10) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X10,(t−11) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X11,(t) 0.01 0.00 0.00 0.00 0.00 0.00 1.00 0.24 0.20 0.84 0.40 0.72
X11,(t−1) 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.55 0.23 0.16 0.95
X11,(t−2) 0.00 0.00 0.00 0.00 0.99 0.00 0.00 0.34 0.21 0.14 0.72 0.00
X11,(t−3) 0.05 0.00 0.00 0.88 0.00 0.00 0.00 0.00 0.17 0.23 0.00 0.77
X11,(t−4) 0.05 0.00 0.59 0.00 0.00 0.00 0.00 0.09 0.27 0.00 0.03 1.00
X11,(t−5) 0.00 0.62 0.00 0.00 0.00 0.00 0.00 0.20 0.00 0.02 0.98 0.65
X11,(t−6) 0.63 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.89 0.01 0.00
X11,(t−7) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.98 0.01 0.00 0.23
X11,(t−8) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.54 0.00 0.00 0.00 0.55
X11,(t−9) 0.00 0.00 0.00 0.00 0.00 0.00 0.79 0.00 0.00 0.00 0.33 0.91
X11,(t−10) 0.00 0.00 0.00 0.00 0.00 0.17 0.00 0.00 0.00 0.11 0.48 0.00
X11,(t−11) 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.09 0.20 0.22 0.00 0.51
X12,(t) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X12,(t−1) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X12,(t−2) 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X12,(t−3) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03
X12,(t−4) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X12,(t−5) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X12,(t−6) 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.16
X12,(t−7) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X12,(t−8) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X12,(t−9) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00
X12,(t−10) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.16 0.00 0.00 0.41
X12,(t−11) 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.23 0.00
X13,(t) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X13,(t−1) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X13,(t−2) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X13,(t−3) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05
X13,(t−4) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X13,(t−5) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10
X13,(t−6) 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00
X13,(t−7) 0.00 0.00 0.00 0.00 0.37 0.00 0.00 0.20 0.00 0.03 0.00 0.00
X13,(t−8) 0.00 0.00 0.00 0.00 0.00 0.00 0.24 0.00 0.15 0.00 0.00 0.00
X13,(t−9) 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.19 0.00 0.00 0.00 0.00
X13,(t−10) 0.00 0.00 0.00 0.00 0.02 0.00 0.01 0.00 0.00 0.00 0.00 0.00
X13,(t−11) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X14,(t) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.32
X14,(t−1) 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00
X14,(t−2) 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
X14,(t−3) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.38
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X14,(t−4) 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.02 0.00 0.00 0.05 0.00
X14,(t−5) 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00
X14,(t−6) 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
X14,(t−7) 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00
X14,(t−8) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X14,(t−9) 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.02
X14,(t−10) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X14,(t−11) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.85
X15,(t) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X15,(t−1) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X15,(t−2) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X15,(t−3) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X15,(t−4) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X15,(t−5) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X15,(t−6) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X15,(t−7) 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
X15,(t−8) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X15,(t−9) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X15,(t−10) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X15,(t−11) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X16,(t) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X16,(t−1) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00
X16,(t−2) 0.00 0.00 0.00 0.00 0.00 0.00 0.17 0.00 0.00 0.00 0.00 0.00
X16,(t−3) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X16,(t−4) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00
X16,(t−5) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X16,(t−6) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X16,(t−7) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00
X16,(t−8) 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00
X16,(t−9) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X16,(t−10) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X16,(t−11) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X17,(t) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X17,(t−1) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X17,(t−2) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X17,(t−3) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X17,(t−4) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X17,(t−5) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X17,(t−6) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X17,(t−7) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X17,(t−8) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X17,(t−9) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X17,(t−10) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X17,(t−11) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X18,(t) 0.05 0.15 0.00 0.00 0.00 0.00 0.00 0.71 0.00 0.00 0.00 0.68
X18,(t−1) 0.11 0.00 0.00 0.00 0.00 0.01 0.93 0.00 0.00 0.02 0.40 0.01
X18,(t−2) 0.00 0.00 0.00 0.00 0.03 0.31 0.00 0.00 0.00 0.55 0.00 0.36
X18,(t−3) 0.00 0.00 0.00 0.01 0.49 0.00 0.00 0.03 0.29 0.00 0.09 0.65
X18,(t−4) 0.00 0.00 0.00 0.51 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00
X18,(t−5) 0.00 0.00 0.20 0.00 0.00 0.00 0.00 0.01 0.17 0.00 0.00 0.00
X18,(t−6) 0.00 0.39 0.00 0.00 0.01 0.00 0.00 0.31 0.00 0.00 0.00 0.08
X18,(t−7) 0.62 0.00 0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.00 0.00
X18,(t−8) 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.15 0.00 0.58
X18,(t−9) 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.23 0.00 0.12 0.15
X18,(t−10) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.51 0.00 0.02 0.33 0.00
X18,(t−11) 0.00 0.00 0.00 0.00 0.00 0.00 0.52 0.00 0.07 0.33 0.00 0.00
X19,(t) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X19,(t−1) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00
X19,(t−2) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X19,(t−3) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.00 0.00 0.00 0.00
X19,(t−4) 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00
X19,(t−5) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X19,(t−6) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X19,(t−7) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X19,(t−8) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X19,(t−9) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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X19,(t−10) 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X19,(t−11) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X20,(t) 0.00 0.01 0.00 0.00 0.00 0.00 0.00 1.00 0.21 0.00 0.00 0.00
X20,(t−1) 0.10 0.00 0.00 0.00 0.00 0.00 0.98 0.00 0.00 0.03 0.00 0.00
X20,(t−2) 0.00 0.00 0.00 0.00 0.00 0.55 0.00 0.00 0.21 0.00 0.00 0.45
X20,(t−3) 0.00 0.00 0.00 0.00 0.57 0.00 0.00 0.27 0.00 0.00 0.01 0.00
X20,(t−4) 0.04 0.00 0.00 0.74 0.00 0.02 0.21 0.00 0.00 0.07 0.00 0.00
X20,(t−5) 0.00 0.00 0.64 0.00 0.00 0.10 0.00 0.00 0.13 0.00 0.00 0.00
X20,(t−6) 0.00 0.81 0.00 0.00 0.02 0.00 0.00 0.16 0.00 0.00 0.00 0.00
X20,(t−7) 0.99 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X20,(t−8) 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.49
X20,(t−9) 0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.22 0.00
X20,(t−10) 0.20 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.23 0.00 0.00
X20,(t−11) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.28 0.00 0.00 0.00
X21,(t) 0.00 0.00 0.00 0.00 0.00 0.23 0.00 0.00 0.55 0.99 1.00 0.27
X21,(t−1) 0.00 0.00 0.00 0.00 0.19 0.00 0.00 0.80 0.93 0.03 0.00 0.58
X21,(t−2) 0.00 0.00 0.00 0.00 0.00 0.00 0.61 0.22 0.00 0.00 0.28 0.00
X21,(t−3) 0.00 0.00 0.00 0.00 0.00 0.04 0.02 0.00 0.00 0.00 0.00 0.00
X21,(t−4) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X21,(t−5) 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X21,(t−6) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X21,(t−7) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X21,(t−8) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X21,(t−9) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03
X21,(t−10) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X21,(t−11) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X22,(t) 0.31 0.03 0.00 0.13 0.00 0.00 0.01 0.12 0.00 0.01 0.43 1.00
X22,(t−1) 0.22 0.00 0.00 0.02 0.00 0.02 0.34 0.00 0.00 0.30 0.92 0.05
X22,(t−2) 0.00 0.00 0.00 0.00 0.00 0.19 0.00 0.13 0.32 0.94 0.03 0.04
X22,(t−3) 0.00 0.00 0.00 0.00 0.44 0.00 0.00 0.23 1.00 0.00 0.00 0.34
X22,(t−4) 0.00 0.00 0.00 0.12 0.00 0.00 0.13 0.99 0.00 0.00 0.73 0.00
X22,(t−5) 0.00 0.01 0.02 0.00 0.00 0.07 1.00 0.00 0.00 0.43 0.00 0.04
X22,(t−6) 0.13 0.02 0.00 0.03 0.00 1.00 0.00 0.00 0.95 0.00 0.00 0.22
X22,(t−7) 0.04 0.00 0.00 0.00 1.00 0.00 0.00 0.88 0.00 0.01 0.10 0.10
X22,(t−8) 0.04 0.01 0.00 1.00 0.00 0.00 1.00 0.00 0.00 0.04 0.03 0.04
X22,(t−9) 0.04 0.00 0.88 0.00 0.00 0.24 0.00 0.00 0.05 0.00 0.00 0.80
X22,(t−10) 0.05 0.89 0.00 0.00 0.13 0.00 0.00 0.29 0.00 0.00 0.68 0.85
X22,(t−11) 0.98 0.00 0.00 0.12 0.00 0.00 0.15 0.00 0.00 0.82 0.49 0.70
X23,(t) 0.23 0.03 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X23,(t−1) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X23,(t−2) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X23,(t−3) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X23,(t−4) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X23,(t−5) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X23,(t−6) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.32
X23,(t−7) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.06 0.72 0.22
X23,(t−8) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.68 0.09 0.70 0.15 0.00
X23,(t−9) 0.01 0.00 0.00 0.00 0.00 0.00 0.05 0.12 0.82 0.02 0.00 0.00
X23,(t−10) 0.01 0.00 0.00 0.00 0.00 0.49 0.43 0.27 0.07 0.00 0.00 0.00
X23,(t−11) 0.00 0.03 0.04 0.95 1.00 0.84 0.87 0.00 0.00 0.00 0.00 0.00
X24,(t) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.67 0.00
X24,(t−1) 0.04 0.53 0.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X24,(t−2) 0.33 0.66 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X24,(t−3) 0.79 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X24,(t−4) 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X24,(t−5) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X24,(t−6) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05
X24,(t−7) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.30
X24,(t−8) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00
X24,(t−9) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X24,(t−10) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X24,(t−11) 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00
X25,(t) 0.00 0.00 0.00 0.22 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X25,(t−1) 0.00 0.00 0.00 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X25,(t−2) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X25,(t−3) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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X25,(t−4) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X25,(t−5) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X25,(t−6) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X25,(t−7) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X25,(t−8) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X25,(t−9) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X25,(t−10) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X25,(t−11) 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X26,(t) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X26,(t−1) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X26,(t−2) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X26,(t−3) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X26,(t−4) 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X26,(t−5) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X26,(t−6) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X26,(t−7) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X26,(t−8) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X26,(t−9) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X26,(t−10) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.18
X26,(t−11) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.04 0.32 0.13 0.41
X27,(t) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00
X27,(t−1) 0.02 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00
X27,(t−2) 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.00
X27,(t−3) 0.00 0.05 0.00 0.00 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X27,(t−4) 0.11 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X27,(t−5) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X27,(t−6) 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X27,(t−7) 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X27,(t−8) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12
X27,(t−9) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00
X27,(t−10) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X27,(t−11) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00
X28,(t) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00
X28,(t−1) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.58
X28,(t−2) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.00
X28,(t−3) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00
X28,(t−4) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X28,(t−5) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X28,(t−6) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X28,(t−7) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X28,(t−8) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X28,(t−9) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X28,(t−10) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X28,(t−11) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X29,(t) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X29,(t−1) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X29,(t−2) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X29,(t−3) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X29,(t−4) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X29,(t−5) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X29,(t−6) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X29,(t−7) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X29,(t−8) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X29,(t−9) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X29,(t−10) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X29,(t−11) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X30,(t) 0.12 0.02 1.00 0.00 0.00 1.00 0.76 0.40 1.00 0.05 0.00 1.00
X30,(t−1) 0.00 1.00 0.00 0.00 1.00 0.00 0.00 0.96 0.00 0.00 0.94 0.00
X30,(t−2) 0.93 0.00 0.00 1.00 0.00 0.00 0.98 0.00 0.00 0.84 0.00 0.64
X30,(t−3) 0.00 0.00 0.13 0.00 0.00 0.11 0.00 0.02 0.73 0.00 0.25 0.00
X30,(t−4) 0.00 0.19 0.00 0.00 0.00 0.00 0.00 0.61 0.00 0.05 0.00 0.00
X30,(t−5) 0.32 0.00 0.00 0.00 0.00 0.00 0.14 0.00 0.02 0.00 0.00 0.00
X30,(t−6) 0.03 0.00 0.00 0.00 0.00 0.07 0.00 0.10 0.00 0.00 0.00 0.00
X30,(t−7) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X30,(t−8) 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X30,(t−9) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

77



APPENDIX C. INCLUSION RATIOS

X30,(t−10) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X30,(t−11) 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
X31,(t) 0.00 0.00 0.72 0.00 0.00 1.00 0.34 1.00 0.01 0.98 1.00 0.63
X31,(t−1) 0.00 0.76 0.00 0.00 1.00 0.00 0.99 0.00 0.58 0.88 0.37 0.00
X31,(t−2) 0.66 0.00 0.00 1.00 0.00 0.58 0.00 0.24 0.69 0.05 0.00 0.00
X31,(t−3) 0.00 0.00 1.00 0.00 0.55 0.00 0.00 0.41 0.28 0.00 0.00 0.00
X31,(t−4) 0.00 1.00 0.00 0.26 0.00 0.02 0.16 0.00 0.00 0.00 0.00 0.00
X31,(t−5) 1.00 0.00 0.20 0.00 0.00 0.19 0.00 0.00 0.00 0.00 0.00 0.12
X31,(t−6) 0.00 0.28 0.00 0.01 0.16 0.00 0.00 0.00 0.00 0.00 0.01 0.00
X31,(t−7) 0.24 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.39
X31,(t−8) 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.92
X31,(t−9) 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.61 0.00
X31,(t−10) 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.86 0.02 0.73
X31,(t−11) 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99 0.17 0.99 0.70
X32,(t) 0.98 0.39 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.08 0.28
X32,(t−1) 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00
X32,(t−2) 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X32,(t−3) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X32,(t−4) 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.27
X32,(t−5) 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.18 0.00
X32,(t−6) 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00
X32,(t−7) 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.10 0.00 0.00 0.04
X32,(t−8) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.00
X32,(t−9) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X32,(t−10) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X32,(t−11) 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.31 0.00 0.00 0.00 1.00
X33,(t) 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.52 0.01 0.00
X33,(t−1) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.93 0.00 0.00 0.53
X33,(t−2) 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.82 0.06 0.00 0.03 0.00
X33,(t−3) 0.00 0.00 0.00 0.00 0.00 0.00 0.75 0.68 0.00 0.50 0.00 0.04
X33,(t−4) 0.00 0.00 0.00 0.00 0.00 0.69 0.00 0.00 0.21 0.00 0.00 0.00
X33,(t−5) 0.01 0.00 0.00 0.00 0.71 0.00 0.00 0.10 0.00 0.00 0.00 0.00
X33,(t−6) 0.00 0.00 0.00 0.69 0.00 0.00 0.21 0.00 0.00 0.00 0.00 0.00
X33,(t−7) 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07
X33,(t−8) 0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X33,(t−9) 0.05 0.00 0.00 0.24 0.00 0.00 0.00 0.00 0.00 0.25 0.00 0.00
X33,(t−10) 0.04 0.00 0.00 0.00 0.26 0.00 0.00 0.00 0.40 0.00 0.00 0.00
X33,(t−11) 0.04 0.00 0.00 0.43 0.00 0.00 0.14 0.29 0.00 0.00 0.00 0.00

78


