
 Eindhoven University of Technology

MASTER

Waiting-as-a-Service
Handling ash crowds in dynamic online shopping environments with limited, complex stocks
in a fair manner

Pluijmaekers, M.H.L.

Award date:
2020

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/77a7ee8b-8b24-4483-813b-59b702d03dc9

Waiting-as-a-Service
Handling flash crowds in dynamic online shopping environments with limited, complex stocks in a fair manner

M.H.L. Pluijmaekers, BSc.
m.h.l.pluijmaekers@student.tue.nl

Eindhoven, August 2020

Department of Mathematics and Computer Science
System Architecture and Networking Research Group

Eindhoven University of Technology

Assessment Committee:
dr. R.H. Mak

dr. N. Sidorova
Ing. C. de Jong

Contents

1 Introduction 5
1.1 Context . 5
1.2 Domain analysis . 7

1.2.1 Policies . 12
1.3 Related work . 14

1.3.1 Reservations . 14
1.3.2 Admission control and flash crowd handling . 15

1.4 Problem statement, deliverables, and organization . 15

2 Requirements 16
2.1 Scope limitations . 16

2.1.1 Worldwide support . 16
2.1.2 Content delivery . 17

2.2 Formal requirements . 17
2.2.1 Definitions . 17
2.2.2 Reservations . 18
2.2.3 Waiting . 22
2.2.4 Tiebreakers . 24
2.2.5 Near monotonic arrival . 24

2.3 Other requirements . 25
2.3.1 Deployment requirements . 25
2.3.2 Miscellaneous requirements . 26

3 System architecture 27
3.1 Overview . 27

3.1.1 Order module . 29
3.1.2 Stock module . 33
3.1.3 General module . 37

3.2 Scaling . 38
3.2.1 Resiliency and consistency . 38

3.3 Composition . 39
3.3.1 Order module . 40
3.3.2 Stock and general module . 41
3.3.3 Examples . 41

4 Implementation 46
4.1 Environment . 46
4.2 Deployment . 46

4.2.1 Containerization . 46
4.3 Communication . 47

4.3.1 Publish-subscribe middleware . 47
4.3.2 Service communication . 47

4.4 Databases . 47
4.5 Components . 48

4.5.1 Customer Container . 48
4.5.2 Policy Distributor . 49
4.5.3 Log Aggregator . 49
4.5.4 Shop Keeper . 50

1

CONTENTS 2

4.5.5 Reservation Controller . 51
4.5.6 Queue Manager . 51
4.5.7 Admission Controller . 52

4.6 Kubernetes deployment specifics . 53
4.6.1 Container deployment . 53
4.6.2 Container communication . 54

5 Validation 56
5.1 Unimplemented requirements . 56
5.2 Database evaluation . 57

5.2.1 ClickHouse . 57
5.2.2 Dgraph . 57

5.3 Verification . 58
5.3.1 Testing setup . 58

5.4 Functional tests . 58
5.4.1 Admission control . 59

5.5 Exceed stocks . 60

6 Conclusion 62
6.1 Performance discussion . 62
6.2 Future work . 63
6.3 Recommendations . 63
6.4 Conclusion . 64

Bibliography 64

A Dockerfile 67

B Database specifications 69

C Dgraph change request example 73

D Deployment and StatefulSet example 75

E List of requirements 78

F Flatbuffer and gRPC example 82

G Ping tests 84

Abstract

Over the last few years, the number of events has grown, and the existing events have been becoming increasingly
more popular. The companies providing online platforms for event organizers to sell tickets therefore have to deal
with an ever increasing load. The needs Eventix, who offer such a platform, are of specific focus.

Highly popular events attract flash crowds, a large and sudden influx of customers interested in purchasing a
subset of the offered products. Resulting in demand for a product far exceeding supply. Tickets have a strict
limit on supply, overselling or back ordering tickets is not acceptable. Often tickets are actually a combination
of multiple products, each having their own strictly limited stock and are subject to constraints on purchasable
amounts.

In this thesis, an architecture is presentedwhich can handle flash crowds and keeping track of stock of compound
products according to the values of event organizers. Organizers have varying viewpoints on how to handle a flash
crowd, many of which are supported by the architecture. A proof-of-concept of the architecture deployable on a
Kubernetes cluster is created and evaluated. The results of the evaluation indicate that even the proof-of-concept
functions as expected. The designed architecture should be suitable to solve the issues. The throughput of the
proof-of-concept is found to be small. It is recommended Eventix researches methods of improving throughput
before implementing a more feature complete implementation.

3

Preface

Before you lies a thesis titled “Waiting-as-a-Service - Handling flash crowds in dynamic online shopping environ-
ments with limited, complex stocks in a fair manner”. It has been written as part of my graduation project for the
Computer Science and Engineering Master at the Eindhoven University of Technology.

The project was undertaken at the request of Eventix, my current (and hopefully future) employer. The project
itself was difficult, many iterations of both the thesis and the code were needed in order to achieve what I hope is
at least a passible graduation project. But my advisors R.H. Mak and C. de Jong provided help and constructive
criticismwhen needed or requested, evenwhen I did not want to hear it. To themboth I wish to extendmy deepest
appreciation and gratitude. Another person deserving of gratitude is N. Sidorova, for being the third member of
the assessment committee.

Lastly I would also like to thank my girlfriend, parents, friends, and colleagues that read my thesis, provided feed-
back, have been supportive, and put up with me (and my rants) over the last few months. You always supported
me and kept me motivated.

Mart Pluijmaekers
Eindhoven, August 2020

4

Chapter 1

Introduction

In this thesis an architecture for handling flash crowds (large, suddenly appearing crowds) and handling products
with complex stocks (products containing products) will be presented. First, some context on why this thesis
exists is given. Next, an analysis of the problem will be presented. In further chapters, the architecture will be
presented and verified. Finally, the conclusions will be presented including recommendations on the next steps
to be taken.

1.1 Context

The (online) ticketing industry has evolved into providers servicing any type of organization that want to sell
any type of tickets. Whether these tickets are for transportation, cultural events, social events, conferences, or
something different. Most providers are equipped to sell anything that can be sold as tickets.

The needs of one specific provider, Eventix, will be of particular focus. Eventix is a fast growing company focused
on delivering an automated and easy to use multi-tenant self-service ticketing system. Founded in 2014, it has
maintained a steady growth ever since. Eventix strives to create a complete toolbox of features for successful
marketing, management, ticket sales, and growth of any event, regardless of the size of the event.

Eventix focuses on automation, scalability, and quality service. Through Eventix’s systems, their customers (event
organizers) sell tickets for events large and small. They purchase Eventix’s ticketing services to service their own
customers, the audience. After having setup their events, organizers either embed a shop containing their tickets
into their website, or point their intended audience to a url where the shop can be found. Eventix does not offer,
nor is interested in offering, any search option to find events, all events for which they sell tickets are marketed
by the organizers themselves, Eventix only wants to be the middle-man.

In the system Eventix provides, four distinct groups of stakeholders are recognized.

Audience, those visiting a ticket shop and purchasing tickets.

Organizers, those who organize andmanage ticket sales to sell tickets to their audience. They are the ones
purchasing Eventix’s services.

Administrators, those who manage (scale) and monitor the systems, typically employees of Eventix.

Payment Service Providers (PSPs), entities that handle payments on Eventix’s behalf.

Using the dashboard offered by Eventix, Organizers create products which Eventix calls tickets. Within these tick-
ets, sub-products are offered, which Eventix calls products. During the shopping process, customers compose
their tickets using the products offered in these tickets. Consequently, different instances of the same ticket can
contain completely different sets of products. Validity of a ticket is important, each ticket is only valid once. Oth-
erwise, multiple people could use the same ticket to gain access to some event. To achieve this Eventix adds a
unique identifier to each ticket. Even tickets sold with products are still identified by a single identifier. Eventix of-
fers a system which cannot only be used to check whether a ticket has been used, but also whether the products
of a ticket has been used.

An example usecase is an event with limited parking availability. When organizers create the ticket which provides
access to their event, they can create a product which gives access to parking services once and add it to the
ticket. When customers then purchase tickets, they can decide on the number of times they want to park their
car and add the “parking product” the appropriate number of times. When a customer purchases multiple tickets,

5

CHAPTER 1. INTRODUCTION 6

one for each of their friends for instance, the “parking product” can be added a different amount of times per
ticket. Consequently, it is important to keep track of specific instances of tickets and for each ticket instance the
specific amount of products of each product type attached to the ticket instance.

The created tickets can then be linked to organizer created shops. Eventix does not impose any limits on the
number of tickets attached to a shop or to the amount of shops offering the same ticket. Nor does it impose
limits on the products. These shops operate like a frontend to the virtual warehouse of the event organizers’s
tickets.

There is no homogeneous manner in which organizers setup their shops. In general, there are three ways orga-
nizers setup their shops:

• Few large shops, through which tickets for multiple events are sold. When new tickets (other than those
already on offer) need to be offered, these shops get updated. These are generally used for yearly recurring
or one-off events, like music festivals.

• Many small shops, which get discarded after they have served their purpose. These are generally used for
often recurring events, like touring theater companies that move around to different locations.

• One small shop, for one-off events where there is only a single or very limited amount of ticket types avail-
able.

There are also many organizers which use a mix, e.g. having many smaller shops which they actively update.
This might be due to selling many events where every once in a while a new type of ticket becomes available
for sale or simply personal preference. According to Eventix, this is one of their main features. This has resulted
in an architecture where all shops are sharing the same resources, making it a multi-tenant system. For stock
handling, Eventix currently relies on a non-atomic procedure for issuing reservations consisting of the following
actions:

1. Create a reservation for the ticket, decreasing availability.

2. Check availability for the ticket.

3. If availability does not suffice, release ticket.

4. Recursively execute this procedure for all required sub-products.

5. If for any sub-product the availability does not suffice, release all reservations.

6. When all availabilities suffice, hand out all reservations.

Because Eventix, in contrast to some of their competitors, chose to focus on just ticketing, it uses external entities
for handling payments, the PSPs (payment service providers). Therefore, they rely on these partieswhen servicing
the audience on behalf of organizers.

There are multiple issues with the current architecture, mostly related to reliability and scalability. These become
painfully apparent when Eventix is experiencing a flash crowd. For these descriptions a “customer” will denote
the shop visitor trying to purchase tickets.

Payments

As is to be expected with any service, degraded performance and even downtime is to be expected. Currently,
when a PSP is experiencing degraded performance or downtime Eventix cannot prevent customers from access-
ing the payment services, resulting in an apparent performance degradation or downtime for Eventix’s system.
This is a main cause of the apparent unreliability of the system.

Reservations

When the number of concurrent requests, requesting a reservation for a ticket exceeds availability, the current sys-
tem will show nondeterministic behavior. The current process of issuing a reservation consists of decrementing
the stock, checking whether the remaining stock is greater or equal to zero. If it is greater than zero, a reservation
is generated and returned to the customer. If it is less than zero, the stock is incremented and an error is returned
to the customer.

Depending on the exact interleaving of the described actions, customers can experience varying behavior. For
instance, an interleaving exists where no customer is able to obtain a reservation for a product with a stock lower
than the demand: for all requests the first action has been executed (lowering the stock to below zero), when the
second action (the stock check) occurs, it will result in no issued reservations since for no customer the stock of

CHAPTER 1. INTRODUCTION 7

the ticket was high enough. While in a different interleaving, it can occur that the number of reservations handed
out is exactly equal to the stock: when every request happens to be handled in some neat order where no requests
are interleaved. Many more interleavings exist, resulting in nondeterministic behavior.

Admission

Currently, no admission proper control exists, any customer that arrives at Eventix’s systems is admitted imme-
diately, regardless of current load. A system is in place which admits customers in a non-intelligent fashion, but
this system needs to be manually operated. Since the systems are multi-tenant, one customer experiencing de-
graded performance due to load implies many if not all customers are experiencing degraded performance. The
only way to currently mitigate these issues is by increasing total server capacity.

In general a sudden, large influx of customers (called a flash crowd) only occurs when new tickets become avail-
able, making manual flash crowd mitigation manageable, since it is known beforehand when tickets become
available allowing for manual scaling. In general, shop owners (organizers in this case) only want a relatively
small number of concurrent shoppers, to prevent the issues described in Section 1.1. Making flash crowd mitiga-
tion by manually increasing server capacity to handle the increase in customers instead of the desired number
of concurrently shopping customers both undesirable and wasteful of resources.

Eventix
Eventix

�extend�

�extend�

�include�
�include�

check availability

check stock

increase stock

create (sub)product

reserve (sub)product

place order

enter shop

pay

create shop

arrive at shop

check waittime

check waiting place

Scale servers

Customer

Privileged customer

Organiser

Administrator

PSP

Figure 1.1: Usecase diagram for the current Eventix system.

1.2 Domain analysis

For physical shops, the structure of a shop visitation (shopping run) is commonly known and can be roughly
described by following procedure:

1. Arrive at the shop.

2. Enter the shop, becoming an “active” customer.

3. Choose (browsing for) products to purchase.

CHAPTER 1. INTRODUCTION 8

4. Place an available chosen product in the (virtual) basket (reserving of product).

5. Go to checkout to attempt payment.

6. Pay for the chosen products.

7. Receive purchased products or leave without products.

Steps 3 and 4 are repeated until all desired products have been handled. In every step, the customer is receiving
service, either by physical attributes of the shop like layout and product availability or by interactions with staff
like asking for advice or paying. Figure 1.2 describes this process. The flowchart shows only the basic process,
a more extensive process would, for instance, include placing back product from the basket and a decision on
whether to return product to stock after a number of failed payments. All dashed diamonds are decisions that
are taken by either the customer or an external entity, whereas all solid diamonds are decisions taken by the shop
operator.

Online shops try to emulate the shopping experience of physical shops and in doing so they have one main
advantage over their physical counterparts, they (seem to) have unlimited stock. This enables customers to
shop without worrying whether they will receive their desired goods. A customer can browse the offered goods,
place them in a (virtual) shopping basket, submit some personal information like name and shipping address,
and finally, pay. When products are in stock, the experience is the same as in physical shops, the product can be
shipped immediately. When stock for an item has been depleted however, an order will be placed on backorder
and the goods will be shipped after stocks have been replenished. This works due to most online shops selling
goods they can restock.

Other shops, however, are different, they sell goods that cannot be restocked. These include shops selling: (airline-
, theater-, festival-, etc.) tickets, sneakers, high fashion, etc., any business selling items with a limited supply. This
situation is exacerbated due to some of these industries having to deal with “flash crowds”, a very high interest
in offered products, which likely exceeds supply.

In these cases, they have to regulate the shopping behavior of their customers, which explains why the flowchart
contains two decision boxes that limit shopping, one from the perspective of the customer and the other from
the perspective of the shop. The solid “Can continue shopping?” decision box is for the shop/system to decide
whether a customer can continue shopping. The dashed “Finished shopping?” box is for customers to signal they
have finished browsing.

A recent development, especially in the ticketing industry, is selling compound products. These are products
that a customer can compose from multiple sub-products, and therefore have to take into account not only their
own stock, but also stock of the sub-products they encompass. An example of this can be found in Table 1.1.
The example depicts three products a, b, c, each encompassing two sub-products pi, 1 6 i 6 3, with only a, b, c
available for direct purchase. The table shows both the stock and the maximum number of available product,
since any product has a certain stock which cannot be exceeded, the maximum availability is the maximum
amount of this product that can be purchased i.e. the minimum of the stock of the product and all of its sub-
products.

Table 1.2 shows that purchasing c, 25 times in this case, also influences the number of available a, since both
contain p1. Furthermore, the total number of sellable products can vary wildly, for example: purchasing either
5a + 65b or 70b + 5c extra ensures that no further products are available anymore (Tables 1.3, 1.4) even though
stocks still might not have been depleted. This shows that simply counting stock and decrementing availability
is not enough, since stocks are not fully independent.

The previous example is still quite simple, since the sub-products are required. When optional sub-products are
allowed, products which can be optional in one product but that might be required in another, the demonstrated
stock counting issues worsen. Table 1.5 shows an example of this effect, it shows two distinct options when
purchasing x, since q2 might be added.

x without q2, only ax, aq1 decrease.

x with q2, both ax, aq1 and ay, aq2 decrease.

Furthermore, payment success is not guaranteed for any shop, but especially problematic for online shops. These
need to make a choice, either wait for payment success before checking availability and backorder products with
insufficient stock, refund customers when stocks are insufficient, or reserve products before the payment is
attempted and hand back the reservations on payment failure. Different situations fit different options, this is
dependant on the exact requirements of the shop.

Another complication is dealing with stock increases. During normal sales, stock is only expected to decrease
from the time the shop opens until it closes or has sold out its products. Stock increases can occur, however,

CHAPTER 1. INTRODUCTION 9

Start

Arrive at store

Can enter?

Enter store

Can
continue
shopping?

Finished
shopping?

Choose product

Can obtain
product?

Place product
in basket

Can pay? Pay

Leave
or try

payment?

Leave with-
out products

Goto checkout

Payment
success?

Can retry
payment?

Leave with
products

yes

no

no

yes yes

leave

try

yes

no

yes no

yes

no

yes

no

no

Figure 1.2: Flowchart showing basic customer actions in a shop.

because of two main reasons. Stock increases due to:

• Human error or more stock becoming available. e.g. stock was incorrectly setup or a shipment arrived
respectively.

• Reserved products being placed back or unpaid product being returned to stock.

These stock increases also occur in physical shops, but do not specifically need to be accounted for, since there is
no way of possible overselling or underselling when changes are not tracked properly, due to products still being
physical items.

As discussed previously, every product has a stock, whether it is being sold in an online or in a physical shop. For
chains of shops, that get supplied through a central location, stocks can be somewhat distributed. When a single
shop runs out of a certain product, it can get resupplied from a centralized warehouse or even from a different
shop. For online shops a similar mechanism exists. These shops are a frontend to the same warehouse, like the
Dutch company Coolblue used to be. Coolblue once offered many different “stores”. Each of these stores was
specialized in a single category of electronics products. Products were offered in multiple stores. These stores
served as the frontend to the main Coolblue warehouse. Shopping around between frontends, when one has
an out-of-stock product, is useless since frontends selling the same product are subject to the same centralized

CHAPTER 1. INTRODUCTION 10

stock. Meaning stock checks are not necessarily limited to single shops, but to collections of shops.

Product Sub-products Stock (s) Max available (a)

p1 {} 50 50

p2 {} 100 100

p3 {} 200 200

a {p1, p2} 100 min(sa, sp1
, sp2

) = 50

b {p2, p3} 100 min(sb, sp2 , sp3) = 100

c. {p1, p3} 40 min(sc, sp1
, sp3

) = 40

Table 1.1: Example stocks for compound products.

Product s a ∆s(P) s′ a′

p1 50 50 −20a + −25c 5 5

p2 100 100 −20a + −10b 70 70

p3 200 200 −10b + −25c 165 165

a 100 50 −20a 80 min(s′a, s
′
p1
, s′p2

) = 5

b 100 100 −10b 90 min(s′b, s
′
p2
, s′p3

) = 70

c 40 40 −25c 15 min(s′c, s
′
p1
, s′p3

) = 5

Table 1.2: Purchase scenario: P = 20a + 10b + 25c.

Product s a ∆s(P) s′ a′

p1 5 5 −5a 0 0

p2 70 70 −5a + −65b 0 0

p3 165 165 −65b 100 100

a 80 5 −5a 75 min(s′a, s
′
p1
, s′p2

) = 0

b 90 70 −65b 25 min(s′b, s
′
p2
, s′p3

) = 0

c 15 5 0 15 min(s′c, s
′
p1
, s′p3

) = 0

Table 1.3: Purchase scenario: P = 5a + 65b, after purchase scenario of Table 1.2.

Having just low or nonreplenishable stock is not necessarily problematic. When stocks are low, but demand is low
as well, selling products still happens gradually. When there exists a low demand to stock ratio, “competition” for
products is low. It can be the case that there is a sudden, large influx of demand for a product. This can be at any
point in time, even before the shop has opened and therefore unknown to the shop operator! Shops announce
they are selling certain products, either by an actual announcement, or through common knowledge about the
types of products offered by a shop. Customers logically pick up on these announcements, so it is actually the
announcement which causes demand! Due to this large unexpected influx of demand, competition for products
gets fierce. The occurrence of these large crowds, called “flash crowds”, at physical shops is manageable, since
physical shops have physical limitations and a limited service capacity. For every customer action in Figure 1.2,
a shop needs to provide a service. A customer can only purchase products that a shop offers, and a customer
cannot pay for the chosen products when the shop has no cash register available. These different services can
have different capacities and for some of them capacity can be increased at run time, but only to a specific limit.
An example of a scalable service is paying: whenmore customerswant to pay, a physical shop operator canmake
more cash registers available to customers. But at some point there are no more physical registers to make
available that were previously unavailable. Conversely, shop capacity is an example of a service (concurrently
serving a certain amount of customers) that cannot be increased by physical shop operators.

Consequently, not all customers can receive service at the same time, waiting is bound to happen. When flash

CHAPTER 1. INTRODUCTION 11

Product s a ∆s(P) s′ a′

p1 5 5 −5c 0 0

p2 70 70 −70b 0 0

p3 165 165 −70b + −5c 90 90

a 80 5 0 80 min(s′a, s
′
p1
, s′p2

) = 0

b 90 70 −70b 20 min(s′b, s
′
p2
, s′p3

) = 0

c 15 5 −5c 10 min(s′c, s
′
p1
, s′p3

) = 0

Table 1.4: Purchase scenario: P = 70b + 5c, after purchase scenario of Table 1.2.

Product Required sub-products Optional sub-products Stock (s) Max available (a)

q1 {} {} 50 50

q2 {} {} 100 100

x {q1} {q2} 100 min(sx, sq1) = 50

y {q2} {} 100 min(sy, sq2) = 100

Table 1.5: Example stocks for compound products with optional.

crowds occur, a physical shop can use limits on service capacity to handle the crowd and impose limits on its
behavior. In particular, making customers wait for a service in an orderly manner. Figure 1.2 provides logical
places where waiting can occur, at the solid diamonds. The reasons why waiting occurs here are either by design
or physical limitations. Whenever a service is temporarily not available, whether intentional or not, the group of
customers waiting is called a “waiting group”. Every waiting group needs to be handled in some way to ensure
customer can complete its order.

The waiting groups focussed on are listed below, the list also contains a description or example of why waiting
will occur here.

w1 Can enter, shops can have limited capacity preventingmore customers entering than the building capacity.

w2 Can continue shopping, shops can have policies limiting customer shopping behavior (e.g. max. 5 items).

w3 Can pay, a physical shop has a limited number of available cash registers or the cash registers can be
broken.

Note, Can obtain product and Can retry payment, are the remaining solid diamonds that are not waiting
groups, due to them not being a place where waiting can occur. Put simply, these are a decision that the sys-
tem can take immediately based on metrics like availability, contents of basket, and how many times payment
has been attempted.

For low competition products large crowds are simple to deal with for online shops. By simply increasing server
capacity, the same service can be provided to a greater amount of customers. This holds no matter the total
amount of customers in the shop, as long as the competition per product is low enough. For high competition
products however, these online shops cannot make use of physical constraints, like the physical shop can, to
ensure that service is provided without unintentional favoritism.

Shop operators can enact multiple different policies to ensure no favoritism is being given, but the exact policies
to enact depend on the shop operators’s personal viewpoints and goals. In Section 1.2.1, a number of policies are
laid out that can be used by shop operator to handle customer flow and behavior in their shops.

Note, servicewithout unintentional favoritismdoes not imply that all customers receive the sameservice. Multiple
classes of customers may exist, each with a different level of privilege, e.g. passengers of an airline for a single
flight are divided in different classes: first, business, economy, etc. Within each class, service should be provided
without favoritism, while between classes service can be different. This can be a way of handling large crowds,
allowing or disallowing access to service depending on the customer’s class, although this requires tagging of
customers, but basing this on certain attributes (e.g. approximate location) is also an option.

Another method of flash crowd mitigation in offline shops is limiting the number of items that can be purchased

CHAPTER 1. INTRODUCTION 12

by a single customer, so that more customers can get a share of that product. Simply put, if a product has a
limited stock of 1000, allowing a maximum of 10 items per customer guarantees that at least 100 customers
should be able to purchase the product.

Sometimes, the exact opposite is required, choosing a minimum amount of (sub-) product or only being able to
choose a multiple of a certain (sub-) product. Examples of this would be respectively: airplane ticket with at least
one item of checked luggage and “buy-one-get-one-free” type products, where only multiples of a product can be
purchased.

When flash crowds occur at physical shops, it seems intuitive that the crowd gathers for that specific shop.
However, for the most part just a few products are highly desirable and will be the cause of the flash crowd. To
illustrate, ample video examples exist showing crowds scrambling to enter shops on events like “Black Friday”
and “Cyber Monday” and fighting over a few heavily discounted products. These few items were the cause of the
flash crowd.

Unfortunately, products cannot be considered the source of flash crowds. Ample examples exist where the actual
shop is the source of attraction. Specifically, popup shops, where a shop “pops-up” with little to no announcement
to create a fear of missing out on potential deals. In these cases, crowds gather not for specific products, but for
the shop, that might sell desirable products.

The last stock issue which needs consideration is what will be called the “final-items problem”. When an item has
certain limited stock while total demand for this product exceeds the availability, a way of determining who will
get the products is needed. As explained before, if the competition is low, mitigation is possible. However, if it is
assumed all customers currently in a shop suddenly are interested in the same product and rush over to add it
to their basket, increasing competition, the issue manifests. This, however, is just an extension of normal stock
handling. It becomes an issue when combined with sub-products and/or product constraints need to be taken
into account.

Assume only two products are available, but to be a valid combination a customer needs to purchase both prod-
ucts (forced “buy-one-get-one-free”) to be valid. When in a physical shop two different customers take only one
instance of the product they might decide that one of them can get both. For online shops, inter-customer com-
munication is impossible so there is a need for a tiebreaker to solve these issues. The easiest solution is that
neither customer gets both products, both need to wait a certain time (backoff) and then might try again.

For sub-products, this entails having to hand back sub-products that already have been picked to ensure that
another customer can get the full product.

1.2.1 Policies

In this section different policies will be presented which can be used by shop operators to compose a shopping
experience for their customers. The policies will be converted to requirements in Chapter 2. Multiple different
frameworks of specifying requirements exist. For this thesis, the SMART framework1 was chosen. SMART origi-
nates from time management courses and aids with setting attainable goals. The paper describes how to gener-
ate requirements in a SMARTmanner. A requirement is SMART if it is: Specific, Measurable, Attainable, Realizable,
and Traceable. In the context of policies it is interpreted to mean:

S Specific, a policy must say what is required.

M Measurable, when possible verify that the policy is implemented.

A Attainable, the system can actually exhibit the described policy.

R Realizable, the policy can be implemented given the known constraints.

T Traceable, ability to trace the policy to other parts of the process: requirements, design, implementation,
and tests.

For these policies, two distinct classes of customers are recognized: normal, and privileged customers. Privi-
leged customers can do anything that normal customers can, but might be able to receive service when normal
customers cannot. These privileged customers might be identified before the start of and/or during their shop-
ping run. In certain industries, the privileged customer class can be separated further. Previously, three waiting
groups (w1, w2, and w3) were identified where waiting might need to occur. For each of these some policies will
be described. Furthermore, policies regarding the final-products tiebreaker will be listed. Some listed policies
are more usable than others, the provided lists are intended to provide an overview, not to be exhaustive. These
policies have been distilled from interviews with employees of Eventix.

CHAPTER 1. INTRODUCTION 13

w1, Can enter

The policies described in this section pertain to admittance into a shop, they not only deal with admission, but
also with (not) providing information to the customer.

Customers are admitted . . .

ce1 immediately.

ce2 eventually, admission is temporarily held.

ce3 only iff privileged.

ce4 in (near) arrival monotonic order, i.e. if customer a arrives before customer b, a will be admitted before b.

ce5 in random order.

ce6 only while the capacity of the shop is not exceeded.

ce7 with a constant flow, e.g. 5 per minute.

Customers . . .

ce8 abandoning shopping runs does not lead to changes in service.

ce9 can know when they approximately will be admitted.

ce10 can know how many other customers are also awaiting to be admitted.

ce11 cannot know when they approximately will get admitted.

ce12 cannot know how many other customers are also awaiting to be admitted.

w2, Can continue shopping

The policies described in this section pertain to a customer being able to choose a product.

Any customer can . . .

cs1 immediately choose a product.

cs2 limit reservation burstiness, allow choosing a limited amount of product per interval, increasing the number
of different customers that can buy the same product.

cs3 choose up to a strictly limited amount of product.

cs4 choose up to a strictly limited amount of a single product.

cs5 choose products within a certain fixed shopping window. e.g. a customer has 30minutes to complete filling
its basket.

cs6 only choose product that was not shown as sold-out to any customer.

Note, for cs5 another option is keeping track of the age of products in the shopping basket. This however, is
undesired since it allows for the following to occur:

• A customer picks a product p1 and places it in the basket.

• Some time later, the customer picks another product p2 and places it in the basket.

• The customer returns p1.

• Repeat

This would result in the ability for a customer to postpone completing its order indefinitely even though a maxi-
mum shopping-time is desired.

Can obtain product

The policies described in this section pertain to a customer being able to place a product in its basket.

Any customer can get . . .

op1 up to the amount of product that has not been purchased yet.

op2 up to the amount of product that has neither been purchased nor is awaiting payment success.

CHAPTER 1. INTRODUCTION 14

op3 up to the amount of product that has neither been purchased, is awaiting payment success, nor has been
placed in baskets yet.

op4 up to a certain amount of product, allowing for some overselling percentage.

w3, Can pay

The policies described in this section pertain to a customer being able to pay for its order.

cp1 any customer can pay.

cp2 no customer can pay (temporarily).

cp3 in a pre-/yet to- be determined order.

cp4 only privileged customers can pay.

Note, in general these policies can, or need to be, combined to achieve a feasible shopping experience. Most
are composable, but others are not. Within the same category mutual exclusive policies exists, for instance:
neither: ce3 and ce4, nor cp1 and cp3 are composable. These lists also show that it might be desirable to alter
the applied policies depending on the situation. For instance, when a shop is experiencing a high, load customers
might need to be prevented for paying for their orders (cp2) until enough capacity can be created to handle all the
payments. While others might only need to be altered, like cp3.

Since the entire system is multi-tenant, a method needs to exist to ensure that for different shops different com-
positions of policies can be applied. Different shops can have different policies depending on the exact outcome
the shop operator desires.

Tiebreakers

As described in the previous section, different policies can exist to deal with tiebreakers regarding the final-
products problem.

tb1 no customer gets a final product unless the complete product can be reserved.

tb2 random customers will get the final products.

tb3 customers in the shop the longest will get the final products.

tb4 customers in the shop the shortest will get the final products.

tb5 customers having the highest value in their basket will get the final products.

1.3 Related work

This project deals with handing out instances of products (reservations) with a strictly limited stock and proper
admission control evenwhen encountering flash crowds. Both of these topics already have been subject of some
research. However much is only tangentially relevant to this project.

Listed below are a number of papers which are at least somewhat relevant.

1.3.1 Reservations

Research on reservations systems pertains mainly to low-level resource reservations or when relevant to this
project are quite old. Usually describing centralized systems.

In an interview back in 1984, the TWA reservation system is described2. In a slightly more recent publication,
Eklund described the history of another such reservation system3 dating back to the 1940’s. Even though these
publications are old and describe even older systems, they provide nice insights into data recovery procedures,
basic database designs, and how to operate such a system in an even further constrained environment as the
airline industry.

More modern descriptions of such systems exists, like the work by Oloyede, Alaya, and Adewole4. They describe
the construction of a system for reserving bus tickets. They provide a very practical view of what a reservation
system might look like.

CHAPTER 1. INTRODUCTION 15

The older systems are usually centralized since that is a comparatively easy way of ensuring data is consistent.
Since a distributed architecture will be presented, consistency will play a large role in ensuring reservations can
be handed out while ensuring stocks are not exceeded. Bermbach and Kuhlenkamp provide a comprehensive
overview of different data consistency models and viewpoints5. Including detailed discussions on usability and
usecases of these models.

1.3.2 Admission control and flash crowd handling

Some work is done on admission control in relation with flash crowds. But in general, research no flash crowds
is how to properly handle content delivery.

Elson and Howell present an overview of different techniques that can be used for dealing with flash crowds6.
Including content delivery using different tiers serving the content, load balancing techniques, and dynamic scal-
ing.

Another overview of different techniques is given by Hamilton7. The paper lists many different recommendations
on how to design internet scale applications and therefor how to potentially deal with flash crowds. These rec-
ommendations provide ideas on how to structure the architecture and how to implement certain aspects of the
proof-of-concept.

Chen and Heideman presented a novel way of detecting and mitigating the effects of flash crowds by aggregat-
ing requests and responses when a flash crowd is detected8. The method of dealing with flash crowds is by
selectively allowing requests to pass at a router level.

In 2004, Zeng and Veeravalli provide an overview of, and described a new dynamic load balancing algorithm9.
This algorithm strives to divide members of a flash crowd between components in the system in such a manner
as to distribute the load between components evenly.

Fischer, Lynch, Burns, and Borodin presented a method for maintaining a distributed FIFO queue10. The queue
contains processes, and admission from that queue means the process is allowed to access its critical section.
Only allowing for a certain maximum number of processes to access their critical section concurrently. This is
very similar to what is needed for this project, though their technique does not aid with arrival monotonic adding
to the queue.

1.4 Problem statement, deliverables, and organization

In this chapter we described two categories of problems encountered by shop operators and ticketing platform
administrators. A method needs to be devised to deal with flash crowds and compound products with limited
stocks. Different shop operators can have different viewpoints on how to admit flash crowds and handle com-
pound products. Policies that can be used to express these viewpoints were laid out in Section 1.2.1.

The problem this project solves, is how to admit flash crowds and issue instances of compound products using
policies applied by shop operators. Ensuring, neither the applied policies, nor the load on any shop influences the
operations of other shops. Each shop should operate fully independent of other shops. Even when shops are
hosted by the same multi-tenant system.

The main result achieved in this project is a distributed architecture that can be used to construct a system that
provides a solution to the stated problems. The architecture should be designed such that systems implementing
this architecture can be scaled dynamically, are deployable to a Kubernetes cluster, and are resilient to failures
ensuring no data loss occurs. Furthermore, for the designed architecture a proof-of-concept implementation is
created to verify whether the architecture is suitable to solve the stated problem.

For creating this architecture, first requirements engineering is needed. The gathered requirements, which the
architecturemust satisfy, are presented in Chapter 2. When applicable these requirements receive a formalism to
make them measurable. These requirements are used to devise an architecture, which is presented in Chapter 3.
To validate the architecture, a proof-of-concept implementation is constructed and described in Chapter 4. This
chapter also describes how the proof-of-concept can be deployed on a Kubernetes cluster. Two functional tests
and their results are presented in Chapter 5. These functional tests verify whether the proof-of-concept performs
as expected. In Chapter 6, the performance of the proof-of-concept implementation is discussed, future work is
laid out, and recommendations are made for continuation projects.

Chapter 2

Requirements

In the previous chapter an introduction to the problems was stated and listed a number of policies on how to
deal with these problems. In this chapter the requirements of the system (and thus the policies) will be de-
scribed.

From the policies in Section 1.2.1 it becomes clear that there exist at least two distinct groups of requirements.
One dealing with the life cycle of a shop visitor, the other dealing with the lifecycle of products. The first pertaining
to dealing with stock and availability (reservations), while the second deals with admission to the shop and pay-
ment services (waiting). Both parts will be treated as distinct categories, to be specified separately. Furthermore,
some requirements will be presented for which no policies have been defined in the previous chapter, but which
are important nevertheless. These extra requirements (as are the policies) are based on interviews with Eventix
employees.

Each of the policies laid out in Section 1.2.1 will be translated into requirements directly. The identifiers of each of
these requirements directly corresponds with the policies laid out in Section 1.2.1. The interviews also provided
a second set of requirements for each part of the system.

Not all requirements are equally important. In order to make this distinction, a priority system is needed. For this
project MoSCoW11, 12 was chosen. The main advantage of MoSCoW is its simplicity, since it only uses four levels of
importance. Furthermore, Eventix had experience with this system which eased setting the priorities of each of
the requirements.

MoSCoW is an acronym for:

M Must have, critical requirements which must be present for the system to be a success.

S Should have, important but not critical requirements, often as important as Must have requirements, but
not as critical for the current delivery.

C Could have, desirable but not necessary requirements, often enhance user experience or performance.

W Won’t have, requirements that are (currently) undesirable.

2.1 Scope limitations

The problems described below are not considered for this project, even though they heavily influence the per-
ceived operations of the system. Their inclusion would increase the scope of the project to an unmanageable
size.

2.1.1 Worldwide support

In an ever more connected world, more andmore shops draw interest from an ever more geographically disperse
group of customers. Consequently, distances between customers, and distances between customers and the
shops increase. This equates to the servers of online shops having an (on average) greater distance to the shop’s
customers, impacting loading time of the shop due to networking delays. To keep the same level of loading time
all over the world, a system might need to be globally distributed in some manner.

However, this will be ignored since the shops that would benefit from having these issues resolved likely attract
mostly local interest. This is due to:

16

CHAPTER 2. REQUIREMENTS 17

• An event needs to be traveled to. As distances increase, travel costs also increase, decreasing the number
of attendees from further away.

• The further an item needs to be shipped, the higher the shipping costs will be. Making it more cost efficient
to shop locally.

For both of these reasons, it is also likely that customers are still motivated enough to purchase the products and
are content with higher loading times.

2.1.2 Content delivery

For serving online stores, content delivery also needs to be resilient to flash crowds. When a flash crowd occurs,
the content still needs to be served properly. Serving content is well understood. Many different techniques for
content delivery are known and have even permeated into enthusiast level applications6.

Content delivery is an integral part of a full-fledge system. If the shop interface cannot be served to customers,
no shopping can occur. The cited paper lists many techniques that can be used to construct a robust content
delivery system, showing the breadth of this topic. This breadth is the reason content delivery will not be taken
into account for this project.

2.2 Formal requirements

In this section the requirementswill be presented and, whenever reasonable, a formal definition of the requirement
will be stated. To facilitate these formal definitions, multiple (total) partial functions and sets need to be defined.
For all of these requirements only a single shop is considered, since each shop operates independently from all
others.

The requirements listed in Sections 2.2.2 and 2.2.3 are direct translations of the policies specified in Section 1.2.1,
except for the set of requirements about Sub-products. Since the policy proposals from Section 1.2.1 are not
always unambiguous more stringent definitions of these requirements are laid out either in text or in the formal-
izations.

2.2.1 Definitions

Listed below is an initial set of definitions which will be used in all requirement formalizations. This is not the full
list, in Sections 2.2.2 and 2.2.3 more definitions will be given.

T is the set of positive real numbers, representing semi-infinite time domain (2.1)
P the set of products sold in the shop (2.2)
C the set of customers who want to enter the shop (2.3)
CP ⊆ C subset of customer having some privilege (2.4)
a : C → T the arrival times of customer at a shop (2.5)
e : C → T ∪ {∞} admission times of customers into a shop (entry) (2.6)
p : C → T ∪ {∞} the time when a customer is ready to pay (2.7)
d : C → T ∪ {∞} shop departure time for a customer (2.8)

These yield the following invariant, which must always hold for all customers due to the flow through a shop
displayed in Figure 1.2:

∀c∈C a(c) 6 e(c) 6 p(c) 6 d(c) (2.9)

Note, that one scenario breaks this invariant, the accidental departure from a shop by a customer. Taking this
into account, the invariant becomes:

∀c∈C a(c) 6 e(c) 6 p(c) 6 d(c) ⇒ a(c) 6 d(c) (2.10)

CHAPTER 2. REQUIREMENTS 18

2.2.2 Reservations

The flowchart in Figure 1.2 shows that shopping customers over time collect a number of products, which thereby
may become unavailable to other customers. The state of these collections is captured using the following
function:

rc : T × P × C → N (2.11)

Where rc(t, p, c) is the size of the collection of products of typeP that customer c has collected at time t. Depend-
ing on where c is in the flowchart of Figure 1.2, the meaning of this number is slightly different. The size of the
collection of products depicted by rc(t, p, c) is called:

• reserved, when the customer has been admitted into the shop but is still shopping (e(c) 6 t < p(c))

• pending, when the customer has gone to checkout but has not yet left the shop, (p(c) 6 t < d(c))

• bought, when the customer has left the shop (d(c) 6 t)

Note, only while the customer is shopping, the value of rc changes. After the customer has finished shopping
but before the customer has left (p(c) 6 t < d(c)), the value of rc does not change. After the customer has left
(d(c) 6 t), the value of rc for any customer c and any product p is as follows:

rc(t, p, c) =

{
0 when the customer leaves without products (2.12a)
lim

t′↑d(c)
rc(t

′, p, c) when the customer leaves with products (2.12b)

This is due to the products either being bought or returned to stock. This difference is due to the fact that when
a customer leaves, the products have to be handed back, while when they have not yet rc(t, p, c) becomes zero
when no successful.

Note that rc is a left continuous piece-wise constant function (see Figure 2.1), where left continuous means that
rc seen as a function of time satisfies rc(t, p, c) = limt′↑t rc(t

′, c, p).

Next consider the function ri defined by:

ri(t, p, c) = lim
t′↓t

rc(t
′, p, c)− rc(t, p, c) (2.13)

where ri(t, p, c) is the number of products p placed in or removed from the basket of customer c at time t.

So, for all c ∈ C and p ∈ P , ri is almost always zero, except for a finite number of moments t ∈ T .

If a reservation is placed at t, it is assumed to be handled immediately. Furthermore, it is assumed that at any
point in time there is either an increase or decrease in the number of reservations, not both.

Figures 2.1 and 2.2 depict an example for both functions for the following scenario for a customer and a prod-
uct:

t1 The customer reserves two products

t2 The customer reserves three products

t3 The customer releases two reservations

t4 The customer reserves another product

Figure 2.1 shows the cumulative number of reservations, while Figure 2.2 shows the steps taken at any point in
time.

CHAPTER 2. REQUIREMENTS 19

t1 t2 t3 t4

2

5

3

4

Figure 2.1: Cumulative number of reservations (rc)
over time

t1 t2 t3 t4

2

3

−2

1

Figure 2.2: Graph visualizing the reservation increases
and decreases (ri) over time

The following sets and (total) functions aid with the formalisms listed below.

Tin(p, c) = {t ∈ T | ri(t, p, c) > 0} the points in time when reservations were added (2.14)
Tout(p, c) = {t ∈ T | ri(t, p, c) < 0} the points in time when reservations were released (2.15)
Tms ∈ T ∪ {∞} the maximum amount of time a customer can be choosing products (2.16)
Sm ∈ N+ ∪ {∞} the maximum number of products that can be purchased (2.17)
Tb ∈ T ∪ {∞} burst interval, the interval in which a high number of reservations can be placed (2.18)
Smb ∈ N+ ∪ {∞} the amount of reservations that can be placed in Tb (2.19)
Ps : T × P → N ∪ {∞} the stock of a product at a certain point in time (2.20)

Pa : T × P → N ∪ {∞}
the availability of a product at a certain point in time, this is more
specifically laid out in Section 2.2.2

(2.21)

Psr : P → 2P the set containing the required sub-products of a product (2.22)
Pso : P → 2P the set containing the optional sub-products of a product (2.23)
Popt(p) = Pso(p) ∪ Psr(p) the set containing all sub-products of a product (2.24)

rr(t, p) =
∑

c∈C, t<p(c)

rc(t, p, c)
the total number of products all customers reserved prior to a point
in time

(2.25)

rp(t, p) =
∑

c∈C, p(c)6t<d(c)

rc(t, p, c)
the total number of products all customers have pending
payment success prior to a point in time

(2.26)

rb(t, p) =
∑

c∈C, d(c)6t

rc(t, p, c)
the total number of products all customers bought prior to a point
in time

(2.27)

Invariants

For the proposed functions and sets a few invariants can be defined to ensure that they can be used to properly
formalize the desired shop behavior.

No customer can start reserving products before they have been admitted:

∀c∈C ∀t∈T t < e(c)⇒ ∀p∈P rc(t, p, c) = 0 (2.28)

To prevent exceeding of stock, the sum of rc for all customers and products at any point in time cannot exceed
the product stock:

∀p∈P ∀t∈T
∑
c∈C

rc(t, p, c) 6 Ps(t, p) (2.29)

Ensuring stocks are not exceeded is not enough since stocks and availability have a more complex relation, as
described in Section 2.2.2. Therefore, it must hold that the value of ri can be at most Pa at any point in time for

CHAPTER 2. REQUIREMENTS 20

any customer that has not yet finished shopping. Note, due to Definitions 2.13 and Invariant 2.28 only the point
in time customers have finished shopping needs to be defined.

∀c∈C ∀p∈P ∀t∈T t < p(c)⇒ ri(t, p, c) 6 Pa(t, p) (2.30)

Lastly, after a customer has finished shopping, no changes to the amount of reserved products is allowed. One
exception being that all products can be put back, when the customer leaves the shop without products, due to
unsuccessful payment for instance.

∀c∈C ∀p∈P ∀t∈T ri(t, p, c) 6= 0⇒
(
t < p(c) ∨ ri(t, p, c) = −rc(t, p, c)

)
(2.31)

Can continue shopping

Listed below are the requirements for determining when customer must be done shopping, based on the policies
defined in Section 1.2.1.

cs1 any customer can immediately choose a product [MUST]
Meaning that no limits will be imposed on the shop flow after a customer has been admitted. But a customer
that has not yet been admitted is not allowed to have any reservations. Since this is the initial condition listed in
Equation 2.28, a formalization is not needed.

cs2 limit reservation burstiness, any customer can choose a limited amount of product per interval [COULD]
The intent of this requirement is to limit the number of items that can be reserved within a certain interval (burst
protection), to prevent customers from being able to issue too many actions in too short a time. This ensures
that there is enough total stock for all customers. To achieve this, the total number of reservation increases will
be limited. This is done since it cannot be known beforehand which products have a limited availability due to
(intentional) low stock or have low availability due to a large number of reservations. Therefore, looking at the
actual availability of products is not a good metric of determining popular products. Two possible formalizations
can be formulated to achieve the desired behavior, both having different implications.

The first would be to impose a lower bound on two subsequent reservation increases, by only allowing a single
increase per interval. Another, preferable, way is to limit the number of reservations for any interval of a certain
length, ensuring that a customer wanting to purchase a certain amount (fewer than the bound) of products is not
forced to wait for a certain amount of time before the next reservation can be placed.

Since the second version is preferable, this formalism will be used to limit the number of reservations in a inter-
val.

∀t∈T ∀c∈C
(∑

p∈P

∑
t′∈Tin(p,c),t−Tb<t′6t

ri(t
′, p, c)

)
6 Tms (2.32)

cs3 any customer can choose up to a strictly limited amount of product [MUST]

∀t∈T ∀c∈C
∑
p∈P

rc(t, p, c) 6 Sm (2.33)

cs4 any customer can choose up to a strictly limited amount of a single product [MUST]
The total number of each product type that can be reserved by any customer at any single point in time needs to
be limited. It is assumed a function f exists which maps each product to the maximum amount of times it can
be purchased.

∀t∈T ∀c∈C ∀p∈P rc(t, p, c) 6 f(p) (2.34)

cs5 any customer can choose products within a certain fixed shopping window [MUST]

∀c∈C e(c) <∞⇒ p(c)− e(c) 6 Tms (2.35)

cs6 any customer can only choose product that was not shown as sold-out to any customer [MUST]
When a customer at a previous point in time saw that a product was unavailable, it has to remain unavailable
even when stock has become available.

CHAPTER 2. REQUIREMENTS 21

∀t∈T ∀p∈P
(
∃t′6t Pa(t′, p) = 0

)
⇒ Pa(t, p) = 0 (2.36)

Can obtain product

All these requirements are formalized as an image ofPa for values of t ∈ T , p ∈ P . SincePa defines the availability
of any product. Since usable stock is not only determined by Ps but also by the availability of its required sub-
products, the following recursive function will be used to depict the usable stock of a product:

P ′s(t, p) = min
(
Ps(t, p), min

p′∈Psr(p)

(
P ′s(t, p

′)
))

(2.37)

op1 any customer can get up to the amount of product that has not been purchased yet [MUST]

Pa(t, p) = P ′s(t, p)− rb(t, p) (2.38)

op2 any customer can get up to the amount of product that has neither been purchased nor is awaiting payment
success [MUST]

Pa(t, p) = P ′s(t, p)− rb(t, p)− rp(t, p) (2.39)

op3 any customer can get up to the amount of product that has neither been purchased, is awaiting payment
success, nor has been placed in baskets yet [SHOULD]

Pa(t, p) = P ′s(t, p)− rb(t, p)− rp(t, p)− rr(t, p) (2.40)

op4 any customer can get up to an amount of product, allowing for some overselling percentage [COULD]
Assume P ′a, O ∈ R, |O| 6 100, to be the presented availability to the customer and the overselling percentage
respectively. This value can be negative to also support “underselling”

P ′a(t, p) = (1 +
O

100
) ∗ Pa(t, p) (2.41)

Sub-products

For sub-products reservation, another function is needed to keep track of the exact number of sub-product reser-
vations per reservation. Since a reference to a product reservation (using ri and Tin) can be generated, it can be
used to uniquely track the number of reserved sub-products per product reservation.

sub : T × C × P ×N+ × P → N (2.42)

Since any non-zero value of ri(t, p, c) is either an increase or decrease, not both. All reservations can be identified
since ri(t, p, c) gives the exact number of reservations increases/decreases. Since only reservation increases are
needed, just points in time present in Tin will be considered. For every sub-reservation the following holds: the
amount of sub-reservations for any products has to be zero when there is no reservation the sub-product can
belong to.

∀t∈T ∀c∈C ∀p∈P t /∈ Tin(p, c)⇒ ∀n∈N ∀p′∈Popt(p) sub(t, c, p, n, p
′) = 0 (2.43)

sp1 A product can have either a strictly limited, or unlimited stock [MUST]
Stock might be limited due to a finite number of items that can be sold or infinite when a product might be backo-
rdered. The definition for the reservation function already covers this. This is already provided by the specification
of Ps

sp2 A product contains multiple sub-products [MUST]
This has been resolved using the specification of Popt.

sp3 A product contains required sub-products [MUST]
This has been resolved using the specification of Psr .

CHAPTER 2. REQUIREMENTS 22

sp4 A product contains optional sub-products [MUST]
This has been resolved using the specification of Pso.

sp5 A product contains a set of sub-products from which a minimal amount of products need to be chosen. i.e.
from 10 sub-products, at least two must be chosen [COULD]
It is assumed a function f exists which maps products to the minimal amount of sub-products that need to be
chosen.

∀c∈C ∀p∈P ∀t∈Tin(p,c) ∀n∈[1,ri(t,p,c)]
∑

p′∈Popt(p)

sub(t, c, p, n, p′) > f(p′) (2.44)

sp6 A product contains a set of sub-products from which a maximum amount of products can be chosen. i.e.
from 10 sub-products, at most five can chosen [COULD]
It is assumed a function f exists which maps products to the maximum amount of sub-products that can be
chosen.

∀c∈C ∀p∈P ∀t∈Tin(p,c) ∀n∈[1,ri(t,p,c)]
∑

p′∈Popt(p)

sub(t, c, p, n, p′) 6 f(p′) (2.45)

sp7 A product contains sub-products which can be purchased a limited amount of times, i.e. when composing a
product, certain sub-products can be added a bounded number of times [COULD]
It is assumed a function f exists which maps products to the maximum amount of a single sub-product type
that can be chosen.

∀c∈C ∀p∈P ∀t∈Tin(p,c) ∀n∈[1,ri(t,p,c)] ∀p′∈Popt(p) sub(t, c, p, n, p
′) 6 f(p′) (2.46)

sp8 For some n,m ∈ N, n > m, when n customers want to reserve the same (sub-) product p, with ap = m, a
tiebreaker exists to determine who will get the (sub-) products [COULD]
A formalization for this requirement cannot be given since the exact workings of this tiebreaker is not given.

sp9 For some n,m ∈ N, n > m, when n customers want to reserve the same product p having required sub-
products, with ap = m, a tiebreaker exists to determine who will get the products and the sub-products [COULD]
A formalization for this requirement cannot be given since the exact workings of this tiebreaker is not given.

For sp8, assume that for a product p, ap = 1 and two different customers want to place a reservation for p. When
a tiebreaker exists, it can be ensured that one of the customers get this product.

2.2.3 Waiting

For the formalization of these requirements more sets and functions are needed, specifically:

W(t) = {c ∈ C | a(c) 6 t < e(c)} the set of customers waiting for admission (2.47)
B(t) = {c ∈ C | e(c) 6 t < p(c)} the set of customers choosing products (browsing) (2.48)
D(t) = {c ∈ C | p(c) 6 t < d(c)} the set of customers who have finished shopping (2.49)
E(t) = {c ∈ C | d(c) 6 t} the set of customers who have departed the shop (2.50)

Es(t) = {c ∈ C | d(c) 6 t}
the set of customers who have departed the shop and successfully
paid for the products

(2.51)

To ∈ T ∪ {∞} the point in time when customers first are admitted into the shop (2.52)
Sr ∈ N ∪ {∞} the rate in which customers are admitted into the shop (2.53)
Sqt ∈ T , Sqt 6 To when customers are accepted into a waiting group for the shop (2.54)

Sc ∈ N+ ∪ {∞}
shop capacity, the maximum amount of people that are allowed to be choosing
products (browsing) concurrently

(2.55)

Can enter

ce1 customers are admitted immediately [MUST]

∀c∈C e(c) = a(c) (2.56)

CHAPTER 2. REQUIREMENTS 23

ce2 customers are admitted never [MUST]

∀c∈C a(c) =∞ (2.57)

ce3 customers are admitted iff privileged [COULD]

∀c∈C e(c) <∞⇒ c ∈ CP (2.58)

ce4 customers are admitted in (near) arrival monotonic order [SHOULD]
There is no need for exact arrival monotonic admission of customers, since only the impression of arrival mono-
tonic admission order needs to be given. Therefore, the following process wil be used

When a customer c1 arrives more than some amount of time ta before a second customer c2, c1 should be
admitted before c2. When ta = 0 monotonic admission is achieved. In Section 2.2.5 bounds on ta are laid
out.

∀c1,c2∈C a(c2)− a(c1) > ta ≡ e(c1) < e(c1) (2.59)

ce5 customers are admitted in random order [COULD]
This would be used to randomize customers that attempt to have the lowest place possible in a waiting group as
possible, even days or perhaps weeks in advance. The time after which customers will be admitted into a waiting
group will be constrained, this time should be the shop opening time at the latest. This would mean that all
customers will have to rejoin the waiting group. When the waiting group admission time and shop opening time
are the same, randomization occurs. This will be achieved due to external factors like reaction time and network
speed. During normal opening-time there is no need for randomadmission, thiswas only identified after the policy
requirement had been given. Therefore, only the set of customers arriving before Sqt are randomized.

∀c∈C a(c) < Sqt ⇒ e(c) =∞ (2.60)

ce6 customers are admitted only while the capacity of the shop is not exceeded [MUST]

∀t∈T |B(t)| 6 Sc (2.61)

ce7 customers are admitted with a constant flow [SHOULD]
Unlike cs2 bursts are not allowed, but actually a fixed rate of customers admitted into the shop, meaning the
entry-time between two customers has a certain minimum.

∀c1,c2∈C e(c1) 6 e(c2) <∞⇒ e(c2)− e(c1) <
1

Sr
(2.62)

ce8 customers abandoning shopping runs does not lead to changes in service [SHOULD]
There are two causes for customers to abandon a shopping run, either accidental or on purpose. When on pur-
pose, the customer is unlikely to return since the action was intentional. Accidental leaving, including accidental
refreshes and networking issues, should not result in a “punishment” for the customer. Neither should intentional
leaving and returning result in an improvement of service. Since the difference between accidental and purposeful
abandonment cannot be detected all abandonment should be handled in the same way.

Any action by the customer leaving the shop, except explicit leaving using the Leave without products or Leave
with products actions, need to be ignored (Figure 1.2). No changes to the (eventual) admission time (e) or time
that the customer needs to finish browsing Tms will be made.

ce9 customers can know when they approximately will be admitted [SHOULD]
Showing the customer the amount of customers in front of the current customer (customers that would be
admitted before the current customer) is a nice way to show the customer how long the approximate wait would
be. When this can update automatically, it also serves to show progress is being made.

ce10 customers can know how many other customers are also awaiting to be admitted [COULD]
Showing the amount of customers behind the current customer (customers that would be admitted after the
current customer) can aid with customers deciding they do not want to remain in the waiting group.

ce11 customers cannot know when they approximately will get admitted [COULD]
The opposite of ce9, when it is desirable to give the queuing customer as little information as possible, to keep
interest as high as possible.

CHAPTER 2. REQUIREMENTS 24

ce12 customers cannot know how many other customers are also awaiting to be admitted [COULD]
The opposite of ce10, when it is desirable to give the queuing customer as little information as possible, to keep
interest as high as possible.

Can pay

These requirements pertain to the ability of customers to precede to payment, these are analogous to the require-
ments for Can enter.

cp1 any customer can pay [MUST]
No limit should be imposed on the customers that want to pay, comparable to ce1. But since a customer needs
to initiate payment, a stricter bound cannot be given.

∀t∈T ∀c∈D(t) p(c) <∞ (2.63)

cp2 no customer can pay [MUST]
Whichever customer is done shopping, a payment attempt should not be allowed, comparable to ce2

∀t∈T ∀c∈D(t) p(c) =∞ (2.64)

cp3 in a pre-/yet to- be determined order [COULD]
It is assumed a function f exists which maps customers to the order in which they are allowed pay.

∀t∈T ∀c1,c2∈D(t) f(c1) < f(c2) ⇒ p(c1) < p(c2) (2.65)

cp4 only privileged customers can pay [COULD]

∀c∈C c ∈ CP ≡ p(c) <∞ (2.66)

2.2.4 Tiebreakers

Id Requirement Priority

tb1 no customer gets a final product unless the complete product can be reserved MUST

tb2 random customers will get the final products COULD

tb3 customers admitted the earliest get the final products COULD

tb4 customers admitted the latest get the final products COULD

tb5 customers having the highest value of products in their basket will get the final products COULD

2.2.5 Near monotonic arrival

For near monotonic arrival, different customers in the same waiting group will be compared by their arrival and
admittance times a(ci), e(ci). The only waiting groups where admittance is important is w1 (Can enter), since
this influences the potential availability of products. For this, it is assumed that the unit of T ismilliseconds.

For any two customers (∀t∈T c1, c2 ∈ W(t)), c1 is admitted before c2 iff:

ma1 c2 arrives more than 1 second after c1 [MUST]
When there is more than 1000 milliseconds between the arrival of c1, c2, c1 will be admitted before c2.

∀c1,c2∈C a(c2)− a(c1) > 1000 ≡ e(c1) < e(c2) (2.67)

ma2 arrives more than 250 milliseconds after c1 [SHOULD]
When there is more than 250 milliseconds between the arrival of c1, c2, c1 will be admitted before c2.

∀c1,c2∈C a(c2)− a(c1) > 250 ≡ e(c1) < e(c2) (2.68)

ma3 arrives more than 100 milliseconds after c1 [COULD]
When there is more than 100 milliseconds between the arrival of c1, c2, c1 will be admitted before c2.

∀c1,c2∈C a(c2)− a(c1) > 100 ≡ e(c1) < e(c2) (2.69)

CHAPTER 2. REQUIREMENTS 25

2.3 Other requirements

2.3.1 Deployment requirements

Due to the erratic nature of flash crowds making their occurrence unpredictable, the system needs to be elastic,
i.e. scale in or out depending on load. Since flash crowds can occur very quickly, this scaling must occur quickly
as well. Two deployment platforms where evaluated, running directly within an OS, virtualized or bare-metal, and
containerized. Containerization was chosen because of the following reasons:

• Increased portability, regardless of the platform and cloud, containers can run almost anywhere as long as
a runtime is available.

• Increased security, through application isolation from the host- and other- systems.

• Better elasticity, through deploying more or removing containers.

• Faster start-up.

• Automatic load balancing.

• Build in high availability, depending on the orchestrator automatic container restarting on failure might be
available.

The advantages of these components is that when a container crashes, an orchestrator can start a new instance
of that container, increasing fault tolerance of the entire system. If the system was designed to run on a bare-
metal/virtualized platform scaling and crash recovery would need to be specifically implemented, while for con-
tainerized solutions ready made solutions exist.

This also ensures that integration of the system in existing system should be comparatively easy, since the ser-
vices should be as self contained as possible.

Multiple container orchestrators exist, Kubernetes, Swarm, Mesos, and others. Kubernetes was chosen since, it
is one of the big three and Eventix already deploys part of its system on Kubernetes clusters.

Id Requirement Priority

dp1 application runs on Linux MUST

dp2 application runs on Windows WON’T

dp3 application is containerized SHOULD

dp4 application runs in a Kubernetes cluster SHOULD

dp5 application scales with load SHOULD

dp6 application is failure resilient MUST

Multi-tenantcy

As described in Section 1.1, Eventix’s system is amulti-tenant system. Many of their customers and visitors make
use of the same set of resources, regardless of size.

Id Requirement Priority

mt1 application handles a single shop MUST

mt2 application handles multiple shops SHOULD

mt3 when a single shop is experiencing a flash crowd, other stores should remain unaf-
fecteddepends mt1

SHOULD

mt4 shop operators can have a guaranteed number of customers in their shop SHOULD

mt5 shop operators can have a guaranteed limit on waiting times WON’T

CHAPTER 2. REQUIREMENTS 26

Limits

Id Requirement Priority

li1 application aids content delivery WON’T

li2 application is globally distributed WON’T

Metrics

Id Requirement Priority

me1 application works without supervision, based on some pre-specified operation policies SHOULD

me2 application keeps track of metrics MUST

me3 application keeps track of total number of waiting customers depends me2 MUST

me4 application keeps track of total customer influx depends me3 SHOULD

me5 application keeps track of total customer outflux depends me3 SHOULD

me6 application keeps track of number of waiting customers per shopdepends me2 SHOULD

me7 application keeps track of customer influx per shop depends me6 SHOULD

me8 application keeps track of customer outflux per shop depends me6 SHOULD

2.3.2 Miscellaneous requirements

Id Requirement Priority

mc1 Products can only be purchased from stores they are offered in MUST

mc2 Customers have a limited amount of retries for achieving a successful payment SHOULD

Chapter 3

System architecture

In this chapter an architecture will be presented for handling both flash crowds, and complex stocks. Firstly
a decomposition of the requirements into separate groups is given, in such a manner that each group has a
coherent set of responsibilities. These groups will then be combined into different components. For this project,
we will be using the definition of a component by Szyperski13. This definition was chosen since it provides a
clear method of specifying components. A component is a unit of composition providing explicit interfaces to
other components and depending on interfaces provided by other components. After the components have
been defined, a composition is presented making use of the architectural styles presented by van Steen and
Tanenbaum14.

One of the main considerations for the architecture was the desired deployment environment. Since multiple
different deployment environment were specified, Linux and Kubernetes, focus was put on the most restrictive
deployment environment: Kubernetes. Kubernetes is an extensible system that can be used to manage and
deploy containerized applications and systems15. Containers are a way to package applications in such amanner
that they contain everything in order to run. Containerized application should be designed using cloud-native
patterns. The 12-factor app methodology16 was specifically chosen as it has seen wide adoption in industry by
(for instance) Heroku17.

The 12-factor app recognizes 12 factors which when used correctly yield a well defined, easy to deploy, and easy
to scale application. From these 12 factors the following are most relevant for the architecture:

• Backing services: no distinction should be made between local and third party services.

• Processes: components should be run as processes and be stateless when possible.

• Port binding: communication between components should happen over the network.

• Disposability: a component should be able to start and stop as quickly as possible.

Consequently, the architecture will be designed subject to these factors. i.e. all components are stateless when
possible, boot and terminate as quickly as possible, and communicate with other components over the network.
Obviously, state needs to be kept, statelessness in this context means that for every request, the needed state is
retrieved from a datastore, and the resulting state is stored in a datastore before the request is finalized. From
this follows that many of the requirements about persistence and resiliency should now be taken into account
when choosing datastores.

Since the system as a whole needs to be scalable (dp5), it is already taken into account that for any component
multiple instances might be running at the same time. All running instances of a component will collectively be
referred to as “nodes” of that component.

3.1 Overview

The final system is performing multiple tasks, roughly categorized into maintaining an orderly shopping run, and
ensuring stocks are properly kept. Since these two categories’s responsibilities are orthogonal to each other it
would be best to separate these tasks into separate modules. Since eachmodule needs to perform several tasks,
each module will be further separated into components. Figure 3.1 contains an overview of the modules and the
components in each module. For simplicity the datastores and communication to the datastores has been left

27

CHAPTER 3. SYSTEM ARCHITECTURE 28

 Order module Stock module

General module
Publish

Subscribe

Statistics
AggregatorStatistics

AggregatorLog
Aggregator

Shop
KeeperShop

KeeperShop
Keeper

Policy
DistributorPolicy

DistributorPolicy
Distributor

Administrators

Customer
ContainerCustomer

ContainerCustomer
Container

Queue
ManagerQueue

ManagerQueue
Manager

Customers

Reservation
ControllerReservation

ControllerReservation
Controller

Admission
ControllerAdmission

ControllerAdmission
Controller

Figure 3.1: Diagram showing communication between components, and actors and components.

out. In further sections each of these components will be discussed. Section 3.3.3 contains examples of the
actual communication between components.

In total three modules exist, each with their own tasks and responsibilities, the order, stock, and general modules.
The order module is tasked with ensuring customers transition properly between phases of their shopping runs.
The stock module is tasked with ensuring everything related to products and their stocks are handled properly.
The general module provides services that other modules need, and contains the services that do not fit in the
other modules.

The modules will exist of multiple components, each of which encompass a coherent set of responsibilities. The
following list contains the modules, the components per module and the general responsibilities of each of the
components:

• Order module:

– Queue Manager: keeps track of an ordering of customers for every shop.

– Admission Controller: decides when to allow which customers based on the ordering kept by the
Queue Manager.

– Customer Container: the entrypoint for customers into the system. When customers issue a request
to the Customer Container, it ensures this request is permissible and gets forwarded to the correct
component.

• Stock module:

– Shop Keeper: keeps track of the number of products per phase of the product lifecycle.

– Reservation Controller: keeps track of product instances and which customer they are issued to and
is responsible for handing out these instances.

• General module:

– Log Aggregator: tracks all generated log items and makes them available to administrators and other
components.

– Policy Distributor: distributes policies/settings provided by administrators to all components that need
settings.

CHAPTER 3. SYSTEM ARCHITECTURE 29

Arrived Browsing Done Paying DepartedAdmit Finish AdmitPay
SucceedToPay

FailToPay

Figure 3.2: The customer lifecycle.

Figure 3.1 contains an overview of how these components are communicating, an arrow from component A to
component B means that component A depends on an interface provided by component B.

All components in the system adhere to the definition of components provided by Szyperski13. All components
have the following properties:

• a component is a unit of independent deployment

• a component is a unit of third-party composition

• a component has no (externally) observable state

A component provides contractually specified interfaces while consuming explicit context dependencies, i.e. a
component provides interfaces to other components, while consuming interfaces provided by other components.
For every presented component, the interfaces and dependencies are laid out.

In the next sections an overview of the components and the functionality they provide will be presented. Finally
some examples on how the components interact are provided.

3.1.1 Order module

If it were up to the customers, their shopping runs would be as advantageous to themselves as possible without
any regard for the needs and desires of other customers. The order module exists to ensure that order is kept
and that all customers within the same privilege level are treated equally.

A customer’s shopping run can be seen as the lifecycle of that customer within a store. Specifically, a shopping
run consists of five phases:

• Arrived: the customer has arrived at the shop, but has not been admitted. Since the system does not
perform any serving of content, admission is not trivially determined. How the customers’s arrival is deter-
mined, is laid out later in this section.

• Browsing: the customer has been admitted and is selecting the desired set of products for purchasing.

• Done: the customer has finished browsing, but is not yet admitted to payment services.

• Paying: the customer has been admitted to payment services and is attempting payment for the chosen
products.

• Departed: the customer has departed the store, either with products (after successful payment) or without.

A customer transitions into a new lifecycle phase iff some event occurs. Specifically the following events:

• Arrive (at store): customer arrives at store and the system gets notified of the arrival. Customer moves to
“Arrived”.

• Admit (into store): the customer is admitted into the store. Customer moves to “Browsing”.

• Finish (browsing): when either the system or the customer has determined the browsing phase is over and
the customer has now finished browsing. Customer moves to “Paying”.

• AdmitPay: when the customer has been admitted to payment services. Possibly directly after finish.

• SucceedToPay: customer has attempted payment, which succeeds. Customer moves to “Departed”.

• FailToPay: customer has attempted payment, which fails. Customer moves to “Departed”.

These phases and events correlate to elements of the flowchart depicted in Figure 1.2 and the lifecycle with the
transitions can be found in Figure 3.2.

Some events are generated by customers, while others are generated by the system. The arrive events are gen-
erated by customers. The finish event is generated by both the system and the customer since either can decide
when a shopping run is finished. All other events are generated by the system.

CHAPTER 3. SYSTEM ARCHITECTURE 30

Note, transitions to departed from other phases have been left out since that would make the figure confusing.
Furthermore, any customer can decide to simply depart but not inform the system of the departure. Therefore,
it must be ensured an upper bound exists on the amount of time a customer can be browsing or attempting
payment. When this upper bound is reached, the customer should be forced to transition to the next phase in the
lifecycle. This to guarantee progress will be made in every shopping run.

Ensuring order is kept consists of two distinct parts, keeping track of the actual order of customers and making
use of that ordering to perform useful tasks. Since the behavior of these parts is orthogonal to each other these
will be separated into distinct components. The Queue Manager will be responsible for actually keeping track of
the ordering of customers, while the Admission Controller is responsible for ensuring that ordering is used for
admitting customers.

Queue Manager

The Queue Manager will be providing two functions, registering customers into queues and when requested
retrieve, return, and delete the head of a specific queue in order to facilitate admission of customers.

The Queue Manager stores the order of customers. To achieve this, the Queue Manager will store queues for
customers and enqueue customers when requested. Specifically, enqueueing should be done in such a way that
the customers in the queue are in arrival monotonic order, i.e. using a FIFO queue. However, when customers
have different levels of privilege the situation gets more complex. In the case of queueing, for any two enqueued
customers having different levels of privilege, customers with a greater level of privilege should experience a
shorter wait compared to customers with a lower level of privilege. Simply appending customers to the end of
a list is no longer a suitable solution when customers have different privilege levels. A different data structure
needs to be chosen.

Any data structure keeping track of queues should have the following properties:

• Fast head removals: to remove the customer at the head of the queue for admission.

• Fast insertion: to add a customer to the appropriate place in the queue.

• Quick value queries: to find the appropriate place where to put new customers in the queue.

Preferably all operations have the smallest time complexity as possible, preferably O(1). Two immediately suit-
able options exist for these queues, lists and trees. When the number of privilege levels is small, one list per
privilege level can be created. Admission is as simple as storing a pointer to the first non-empty queue with the
highest privilege, dequeuing a customer from that list and update the pointer when needed. When the number of
privilege levels is large, trees are more suitable.

When using trees as the queue data structure, the privilege level needs to be used to determine where the cus-
tomer needs to be inserted. When multiple customers have the same privilege level, the newly arrived customer
needs to be added to the queue in such amanner that he/she gets admitted after all customers of equal privilege
that are already present in the queue.

Trees that are suitable are either efficient in memory datastructures, or should easily serialize into the used data-
stores. Regardless of the tree chosen, the time complexity of operations must be as low as possible.

Every shop requires two queues, one for admission into the store and one for admission to payment services.
From the queueing perspective, there is no difference in the operation of both queues. Any queue implementation
that is agnostic to the lifecycle phase the customers it contains are in suffices as an implementation for the shop
queues.

The two functions described at the beginning of the section can be performed in a stateless manner. Data struc-
tures like linked lists or trees can be stored in most databases and queries on these data structures should
therefore be easily executable in a stateless manner as well.

Provided interfaces The Queue Manager provides the following interfaces to other components:

• AddCustomer(ShopIdentifier, Phase, CustomerIdentifier)

• AdmitNext(ShopIdentifier, Phase) : CustomerIdentifier

Required interfaces The Queue Manager requires no interfaces.

CHAPTER 3. SYSTEM ARCHITECTURE 31

Admission Controller

With theQueueManager being responsible for ensuring customers are placed in queues, the AdmissionController
needs to ensure customers actually get added into, and admitted from these queues. The main issue with this is
that potentially a large number of people needs to be admitted within a certain period. Suppose the administrator
desires that 1000 people are admitted per minute, either the Admission Controller needs to be triggered 1000
times per minute, or when this is impossible, admit customers in groups. For instance, admitting 50 customers
every three seconds, still achieving 1000 admitted customers per minute. Even though this grouping lowers
overhead, it comes at the cost of a greater jerk in admission.

Admission policies consist of two parts: maximum number of customers per shopping phase and a rate-limit on
the number of customers that can be admitted within a certain period. To ensure the upper bound on customers
does not get exceeded the Admission Controller is interested in the following events:

• A shopping customer finishes shopping: decreasing the number of shopping customers.

• A shopping customer departs: i.e. a customer leaves with or without product, decreasing the number of
shopping customers.

• A customer arrives: when themaximum amount of browsing customers has not yet been reached, this new
customer can be admitted immediately.

When no rate-limit is set, customers can be admitted when a departure occurs or immediately after arrival when
themaximumbound has not yet been reached. When shop admission is rate-limited it is insufficient to only listen
for these events, since these only pertain to customer lifecycle events and arrive irrespectively of any rate-limit
the administrators want to impose on the shop. Consequently, rate-limiting needs a periodic event generator
that reliably signals when a specific amount of time has passed, a ticker. Assuming the rate-limit is 60 admitted
customers per minute, the ticker has to send an event every second and the Admission Controller then checks
whether to admit the next customer. However, since the rate limit can be very high, it might still be needed to
admit customers in batches, to reduce the number of ticks. So, for the example, it can be advantageous to
only tick once every five seconds and then admit up to five customers. This lowers the ticking overhead without
decreasing customer throughput though, as described before, increasing jerk. Therefore, the choice of batch size
is important to ensure a smooth admission is achieved. When a rate-limit is needed, only the ticker events should
admit customers, all other events should only be used for accounting.

When some event, either ticker based or lifecycle based, is received by the Admission Controller, it needs to deter-
mine whether to admit the customer. For this, the Admission Controller needs to count the number of customers
in each phase of the lifecycle, the occupancy statistics. For ticker events, the Admission Controller needs to use
these counts to determine whether to admit the next customer. For lifecycle based events, the Admission Con-
troller needs to use the counts to determine whether to admit the customer immediately, or whether to enqueue
the customer.

Due to the fact that a ticker based approach is needed, it is best to not make the Admission Controller fully
stateless, since these tickers potentially tick many times per minute, or even per second, to achieve the desired
smoothing effect of the rate-limit. Making this component stateful means that a different approach to scaling is
needed.

The Admission Controller can make use of a polling architecture and partition every shop between all nodes in
such away that no two Admission Controller nodes are admitting customers for the same shop. Every Admission
Controller node, regularly checks all shopswithin their partition for updates to the admission policies. By querying
the datastore and using a (preferably) simple consistent hashing algorithm, determine which policies are in their
partition. When a Admission Controller node detects a new shop, it needs to retrieve the occupancy statistics
for that shop since it could be possible that another Admission Controller node already processed customers for
that shop.

Requirement ce1 states that customers can be admitted immediately upon arrival. When new customers arrive,
the Admission Controller is informed by the Customer Container of arrival. The Admission Controller must then
decide whether to immediately admit the new customer, or to add it to a queue. Only after the Admission Con-
troller has either decided on direct admission, or has received confirmation from the Queue Manager that the
customer has been added to the queue, can it inform the Customer Container of the new status of the customer.
Since the Admission Controller decides what happens when a customer arrives, it is the authority which decides
when a customer has arrived.

Any change requested by the customer to the Customer Container cannot be applied directly, the Customer Con-
tainer must await the response of the Admission Controller.

CHAPTER 3. SYSTEM ARCHITECTURE 32

Provided interfaces The Admission Controller provides the following interfaces to other components:

• ChangePhase(CustomerIdentifier, ShopIdentifier, LifecyclePhase)

Required interfaces The Admission Controller requires the following interfaces:

• Queue Manager :: AddCustomer(ShopIdentifier, Phase, CustomerIdentifier)

• Queue Manager :: AdmitNext(ShopIdentifier, Phase) : CustomerIdentifier

• Customer Container :: ChangePhase(CustomerIdentifier, LifecyclePhase)

• Log Aggregator :: CustomerPhases(ShopIdentifier) : map[Phase]Integer

Customer Container

The Customer Container is the entrypoint of customers into the system, responsible for taking in all requests
issued by customers, checking whether they are permissible to be executed with respect to the customers’s
lifecycle phases and issue requests to other components.

As the Customer Container is the entrypoint for customers into the system, a method is needed to detect the
arrival of customers. Since content delivery is explicitly left out of this project’s scope, there is no immediate way
of detecting customer arrival. If content-delivery was taken into account, the retrieval of the content used to serve
the customer user interface could be used to detect customer arrival.

It is expected that any implementation of the system is informed by the user interface of arrival. Interfaces will be
specified which deal with customer interaction. One advantage of this approach is that it makes the system user
interface agnostic. Any user interface adhering to the specified interfaces can make use of the services provided
by the entire system.

It is desirable to know the amount of customers that are actually currently shopping, i.e. the amount of con-
nected and admitted customers. When only the status of customers’s shopping runs is stored, only an upper
limit on the amount of customers per shop can be given, even though a more reliable metric is desired. Users
(customers) cannot be trusted to reliably inform the system of their departure from the shops. Since they could
simply have departed without sending a notification of departure or due to hardware failure cannot continue their
shopping runs. This is an extension of the argument that, in general, user input cannot be trusted, as suggested
by Fowler18.

Therefore, a mixed stateful and stateless approach is needed to handle customer sessions. All customers need
to remain connected to the system and send liveness probes to show they are still connected. This liveness
check can be achieved through amyriad of approaches, for instance sending regular heartbeats over a persistent
TCP/Web socket or other networking technology. When either the heartbeat stops or the connection is dropped/-
closed the customer has disconnected. This however does notmean that the customer has consciously departed
the shop, since it is possible the customer is experiencing hardware failure. This persistent connection also en-
sures that the Customer Container can serve as a hot cache for the customers’s sessions, lowering the request
duration for every customer request, since the session of that customer does not need to be loaded from the
(persistent) datastore for every request. Nevertheless, all changes resulting from customers’s actions should be
persisted immediately to ensure these changes are not lost. When a customer reconnects after a failure, that
customers’s session can be retrieved and the customer can continue issuing requests.

Part of the recovery of sessions for disconnected customers is that the contents of the basketmust be retrievable.
Even though customer user interfaces could store the basket contents, ensuring the recovery procedure sends
the current basket (as stored by the Reservation Controller) ensures that any session using any user interface
can recover.

As a consequence of the need for recovery, customers’s sessions need to be uniquely identified, so immediately
after customers have arrived, they should be issued a unique identifier which is linked to their session.

The Customer Container is also responsible for sending status changes of customers to the Log Aggregator
since this component registers the changes of customers. Another entity interested in certain phase changes
is the Reservation Controller. Since it needs to ensure that when the customer lifecycle phase changes, that
customers’s shopping basket is updated. Specifically, for the transitions in both lifecycles that have the same
name. The product lifecycle is presented in Section 3.1.2.

Provided interfaces The Customer Container provides the following interfaces to other components:

• ChangePhase(CustomerIdentifier, LifecyclePhase)

• PaymentSuccess(CustomerIdentifier)

CHAPTER 3. SYSTEM ARCHITECTURE 33

TheCustomerContainer also needs to provide an interface to the customerswith the following functionality:

• Arrive(ShopIdentifier) : SessionIdentifier

• Return(SessionIdentifier)

• Reserve(Product) : Reservation

• Release(Reservation)

• Finish()

• Leave()

The Customer Container also needs a way to signal the customer of changes, most notably of status changes
for when the customer is forced to attempt payment since its browsing window has expired.

Note, this does not contain anymethods to handle payments, payment services are not taken into account for this
project. It is assumed an implementation sends a customer to payment services and receives proper feedback
on payment success.

Required interfaces The Customer Container requires implementation of the following interfaces:

• Log Aggregator :: CustomerStatusChange(ProductIdentifier, PhaseChange) : Boolean

• Reservation Controller :: MakeReservation(ProductIdentifier, ShopIdentifier) : Reservation

• Reservation Controller :: UndoReservation(Reservation) : Boolean

• Reservation Controller :: Extend(ProductIdentifier, ShopIdentifier, Reservation) : Reservation

• Reservation Controller :: FinishBrowsing(CustomerIdentifier)

• Reservation Controller :: SucceedToPay(CustomerIdentifier)

• Reservation Controller :: FailToPay(CustomerIdentifier)

• Reservation Controller :: RetrieveReservations(CustomerIdentifier) : [Reservation]

• Admission Controller :: ChangePhase(CustomerIdentifier, ShopIdentifier, LifecyclePhase)

3.1.2 Stock module

The stock module concerns itself with ensuring instances of products can be issued to customers, while ensur-
ing that policies setup by administrators do not get violated and most importantly stocks of products are not
exceeded. For this, the Stock module will try to emulate shopping baskets. In a physical shop, instances of
products can be picked up from shelves or a different warehousing system. In online shops, physical products
do not exist, only descriptions of products exist which makes keeping track of specific instances of products
non-trivial.

As with the shopping runs, product instances also encounter a lifecycle of sorts. Assume a virtual shop exists
containing all instances of products, all products in this shop would be called “available”. When a customer, after
browsing the shop, has decided on a product instance, it is placed in the customer’s basket, making that product
instance “reserved”. After the customer has finished shopping and has attempted to pay for the product instances
(reservations) in their basket, the status of all product instances in that customer’s basket change from “reserved”
to “pending”. When the initiated payment succeeds the status of the product instances change from “pending” to
“sold”. This lifecycle can be seen in Figure 3.3.

It is also possible for the state of products tomove back to a previously held state. For instance, when a customer
changes his mind and wants to return a “reserved” product instance, that instance becomes “available” again.
Similarly, when a payment fails, all “pending” product instances which could have been paid through that payment
will become “available” again.

The handling of stocks consists of two distinct responsibilities: keeping track of the number of product instances
per phase of the lifecycle, and keeping track of the actual instances of products and deciding whether new in-
stances can be reserved by customers. These two responsibilities will each be handled by different components,
the Shop Keeper will keep track of the number of products per lifecycle, while the Reservation Controller will be
responsible for keeping track of the product instances and for handing out new product instances.

It might seem that the Reservation Controller has too many responsibilities. However, splitting the storing of
product instances and the issuing of new instances into two components would result in the component storing

CHAPTER 3. SYSTEM ARCHITECTURE 34

Available Reserved Pending Sold
MakeReservation Finish SucceedToPay

UndoReservation

FailToPay

Figure 3.3: The product lifecycle.

the instances having too little responsibility. Furthermore, for every newly issued product, the entire shopping
basket for the requesting customer needs to be retrieved, whichmakes the issuing component too dependent on
the storing component to justify keeping them separate. Keeping these two responsibilities together was deemed
the best solution.

Shop Keeper

The Shop Keeper is concerned with keeping track of products and the statuses of those products, and ensure
stocks are not exceeded pertinent to the requirements setup by the administrators. There is no need for this
component to be stateful, since for every request it can retrieve the applicable policies and number of products in
each class. As described in the introduction, the system needs to recognize the following lifecycle phases:

• Available: not yet purchased, nor put in basket.

• Reserved: added to basket by customers.

• Pending: products for which payment is attempted, but the payment did not yet succeed.

• Sold: products for which a successful payment exists.

The lifecycle and the transitions between lifecycle phases can be found in Figure 3.3.

In a physical shop all products are uniquely identifiable since they are physical products and therefore are count-
able. For an online shop - where products might be converted into physical products eventually - there is no
need to link the physical products (for instance, products stored in warehouses) to digital instances of products.
Therefore, the system only needs to keep count of the number of products given out per phase.

The Shop Keeper will keep track of these counts and when the Reservation Controller requests a change, the
Shop Keeper checks whether stocks suffice and either process or deny the request when no policies get violated
and stocks are sufficient.

For instance, when for a product all phases need to be considered and a request comes in for reserving n product
p, the Shop Keeper can simply retrieve the stock s and number of reserved r, pending p, and sold q stock for p.
Shop Keeper should only process that request when s − r − p − q > n, note the structure of this inequality is
dependent on the applied policies. Processing in this case would mean increasing r by n. Shop Keeper should
be able to handle the following phase changes, where each phase change is applied to a single product for some
number n of that product:

As explained in the introduction, when possible every component should perform in a stateless manner. For
every phase change request, the Shop Keeper can check the number of products per phase, and the policies
subject to that product whether that change request can occur. This operation can yield race conditions when not
implemented carefully. Therefore, it is required that either the datastore supports long-lived transactions such
that both the retrieval of the data and the (potential) update of the data occurs atomically. Or another locking
mechanism must be implemented to ensure that data does not change. A high level of consistency is needed.
Consistency models are discussed in a later section.

Just handling these phase changes is not enough, the Shop Keeper also needs to ensure that the statistics are
kept up to date. A different component (Log Aggregator) is responsible for aggregating changes in lifecycle
phases, so the Shop Keeper should send these changes to the Log Aggregator. There are two main different
techniques that can be used to send the number of products that changed per phase to the Log Aggregator:
immediately or deferred.

Sending the changes immediately when they occur yields the highest accuracy, but at the cost of performance.
Sending them in a deferred manner (on a fixed period, or when a threshold value is reached) has two drawbacks.

CHAPTER 3. SYSTEM ARCHITECTURE 35

The first is that large changes can get averaged out within a time period. Both a large increase and an equally
large decrease within a single period will not result in a reported change, or at least will the reported change not
be as large as the actual changes. This can bemitigated by also defining a threshold value, which is used to send
the changes when the current change is greater than the defined threshold. Therefore, choosing period length
or threshold value becomes very important. The second drawback is that now state is being kept. When the
Shop Keeper experiences a crash, it might not have sent all the changes to Log Aggregator, resulting in a need
for recovering from this failure by comparing the actual values for each product and each phase with the values
reported to Log Aggregator, resulting in a more complex interaction between Shop Keeper and Log Aggregator.
Therefore, it is advised to immediately report the values, since if the Shop Keeper is a stateless component, the
number of deployed nodes can be scaled up, in order to mitigate the performance penalties.

The following phase changes and associated actions should be recognized by the Shop Keeper to ensure that
the customer lifecycle can properly influence the product lifecycle. Note, the Shop Keeper itself is not responsible
for ensuring these lifecycles are kept in sync. This has to be done by the Customer Container and Reservation
Controller. The Shop Keeper only keeps track of products and the amount of products in each of the product
lifecycle phases.

• MakeReservation: increase the reserved count.

• UndoReservation: decrease the reserved count.

• FinishBrowsing: decrease the reserved count and increase the pending count.

• SucceedToPay: decrease the pending count and increase the sold count.

• FailToPay: decrease the pending count.

For every change the number of products that needs to change can be included. This is to reduce overhead.
When customers finish shopping, all products in the customers’s basket must be transitioned from “reserved”
to “pending” to ensure that the product lifecycle is kept in sync with tho customer lifecycle. When a customer,
for instances, finishes shopping instead of having to request a transition for every reservation seperately, the
Reservation Controller can now request the Shop Keeper to change all product instances of the same type at
once.

Provided interfaces The Shop Keeper provides the following interfaces to other components:

• ChangeProduct(ProductIdentifier, PhaseChange, Integer) : Boolean

Required interfaces The Shop Keeper requires the following interfaces:

• Log Aggregator :: ProductPhaseChange(ProductIdentifier, map[Phase]Integer)

Reservation Controller

In order to keep track of product instances, the Reservation Controller will be generating “reservations” for prod-
ucts, and using the interfaces provided by the Shop Keeper to ensure that stocks are not exceeded.

In physical shops, product instances are easily tracked, since these are physical and can be made unavailable
to other customers by simply taking them and putting them in - for instance - a shopping basket. As stated in
Section 1.1 for every ticket (or product) sold, Eventix needs to know the exact products that where sold within that
ticket. This is an important consideration for the design of the Reservation Controller.

For physical shops, a similar situationwould not be an issue. Combined products can be physically linked together
ensuring there is an automatic relation between product instances and sub-product instances. For online stores,
there is no obvious way to track any product instances. One possible technique is to keep count of the number of
instances of all products customers have put in their basket. This is a good solution as long as products are not
compound. For compound products, this idea can be extended to include keeping track of the specific number
of sub-products per product. As long as products can be nested a small number of times this is a good solution.
However, when the level of nesting increases, a better solution is to issue and keep track of “reservations”, random
identifiers linked to a specific product. When the reservation is for a sub-product, the reservation can also be linked
to the reservation it belongs to.

Sub-products had the largest influence on the design of this component and the designed interface. Two prob-
lems need to be taken into account when dealing with (sub-)products. The first is determining validity of a reser-
vation subject to the setup constraints on the associated sub-products. The second problem is how to resolve
conflict between customers. Customers are said to be in conflict when they want to place n reservations of a
product with an availability awhere a < s. Individually, these problems are not difficult to solve, but they combine
in a subtle fashion in such a way that the combination is much more difficult to solve.

CHAPTER 3. SYSTEM ARCHITECTURE 36

To ensure that sub-products reservations adhere to the bounds setup by the administrators, a method needs to
be devised to issue reservations subject to these bounds. Multiple different techniques can be considered, each
having different advantages and disadvantages. Selecting the best technique is heavily dependent on the specific
way the bounds are setup. Possible techniques:

1. Issue “complete” reservations, a reservation containing not only the reservation of the product, but also the
reservations for all sub-products. When requesting the reservation, the requesting customer must provide
the structure of sub-products that should be part of the reservation. A “complete” reservation can only be
handed back in its entirety.

2. Automatically issue reservations, using some automated process to decide which sub-products to issue
reservations for in order to satisfy all bounds.

3. Use an iterative process, the customer first needs to reserve some product, and then using that reservation
can add sub-products to that original reservation.

For handing back reservations, similar techniques can be devised. Note, regardless of the chosen technique the
entire shopping basket and all relationships between reservations need to be stored.

When customers are in conflict the pigeonhole principle states that only a subset of all requested reservations
can be issued. Amethod needs to be devised to determinewhich customers are awarded the reservations. These
so called tiebreakers are specified in requirements tb1, tb2, tb3, tb4, tb5. Since most of these tiebreakers require
communication to determine which customers are awarded reservations, these are left as future work due to this
complicating the (stateless) requests considerably. Only one tie breaker will be considered, tb1.

Releasing any reservation is trivial since this will only increase the availability of products. Worst case, handing
back a reservation will break one or more of the defined bounds on the number of products. For requesting new
reservations however, caution must be taken on how these reservations get issued. Resolving competition by
not awarding any reservation to any of the competing customers reduces the complexity slightly, since it should
be easy to implement.

Due to the choice of this tiebreaker handing out exactly the stock in number of reservations should take longer
than strictly necessary. As long as stocks are higher then concurrent demand for a product, meaning no com-
petition occurs, reservations can be issued when requested. However, as soon as competition occurs, the rate
of handing out reservations slows down compared to the number of requested products. This is not a major is-
sue, since reservation requests occur in a probabilistic fashion and therefore the number of issued reservations
should converge on the available stock eventually.

The process chosen for issuing reservations influences the duration of this convergence. When an automated
process is used, the number of products that two customers can potentially be in competition over increases
to the number of products the automated process is trying to reserve. Therefore, only the iterative process is
deemed viable when using the chosen tiebreaker. This enforces that for any reservation request, customers
can only be in conflict over a single product. Another advantage to this approach is that customers are now in
full control over the issued reservations. This is useful since depending on the structure chosen for defining the
bounds on sub-products, it is possible that automated systems generate a set of reservations the customer does
not want, resulting in many unnecessary reservation undo requests issued by the customer.

When theReservationController is notified by theCustomer Container of a customer’s lifecycle change, it needs to
signal the Shop Keeper to ensure the counts can change for the reserved product instances. The phase changes
defined by the Shop Keeper can be used to handle these changes. These phase changes were already chosen
in such a way that they can be used to ensure that the counts for the number of products per lifecycle phase
can transition together with customer lifecycle changes. Since the Shop Keeper does not have the notion of
reservation, or of compound products, an extra operation needs to be defined, the ExtendReservation operation.
The entire list of operations:

• MakeReservation: when customers want to place product in their basket.

• UndoReservation: when customers want to return product from their basket.

• ExtendReservation: when customers want to extend a reservation.

• FinishBrowsing: when customers finish browsing and wants to attempt payment.

• SucceedToPay: when customers successfully pay for the products in their baskets.

• FailToPay: when customers fail to pay for the products in their baskets.

Provided interfaces The Reservation Controller provides the following interfaces to other components:

CHAPTER 3. SYSTEM ARCHITECTURE 37

• MakeReservation(ProductIdentifier, ShopIdentifier) : Reservation

• UndoReservation(Reservation) : Boolean

• Extend(ProductIdentifier, ShopIdentifier, Reservation) : Reservation

• FinishBrowsing(CustomerIdentifier)

• SucceedToPay(CustomerIdentifier)

• FailToPay(CustomerIdentifier)

• RetrieveReservations(CustomerIdentifier) : [Reservation]

Required interfaces The Reservation Controller requires the following interfaces:

• Shop Keeper :: ChangeProduct(ProductIdentifier, PhaseChange, Integer) : Boolean

3.1.3 General module

The general module consists of services which do not fit within any of the other modules, or provide services to
components in both of the other modules.

Log Aggregator

Two components (Shop Keeper and Customer Container) generate log events which need to be used to gener-
ate statistics. The Log Aggregator aggregates these log events and stores them in such a way that (complex)
statistics can be generated from them. Since the Admission Controller requires a specific statistic for its opera-
tion (the number of customers in each lifecycle phase for each shop), the Log Aggregator will also disclose this
specific statistic. Other statistics need to be disclosed using a separate component. Since a plethora of differ-
ent statistics can be conceived of and these statistics have not been specified, therefore the current prototype
system does not contain a component (or multiple components) that provide such statistics. In Section 4.5.3
however, a tool will be presented to disclose statistics to the Administrators, but only to show that statistics can
be generated.

The choice of both aggregating the log events and disclosing the statistics on shop occupancy in the same com-
ponent was made to ensure all components are somewhat balanced in terms of complexity and responsibility.
This component can also easily be expanded to encompass more responsibilities and even functionalities like re-
solving conflicts with customers or shop operators whether certain transactions/operations happened, although
an exploration of this is left as future work.

As with other components, the Log Aggregator can and should be implemented in a stateless manner. i.e. im-
mediately storing all received statistics in a persistent datastore. The log events received are phase changes for
customers and for products.

The interfaces provided by the Log Aggregator contain a mapping from a customer or product lifecycle phase to
an integer. This abstraction is made to keep the interface specification concise.

Provided interfaces The Log Aggregator provides the following interfaces to other components:

• CustomerStatusChange(ShopIdentifier, map[Phase]Integer)

• ProductPhaseChange(ProductIdentifier, map[Phase]Integer)

• CustomerPhases(ShopIdentifier) : map[Phase]Integer

• ProductPhases(ProductIdentifier) : map[Phase]Integer

Required interfaces The Log Aggregator requires no interfaces.

Policy Distributor

ThePolicy Distributor serves the purpose of ingesting settings from the administrators and distributing these to all
components in the entire system. Since almost all components perform in a stateless fashion and retrieve needed
settings from datastores, interactions with these components by storing the settings can also be performed by
interactions with the datastores. The Policy Distributor will simply register administrator specified policies in the
store and the components in need of policies will retrieve them from the datastore.

CHAPTER 3. SYSTEM ARCHITECTURE 38

All settings are rooted in the concept of shop. Therefore, when a shop is no longer needed, settings for prod-
ucts sold through, and admission policies of that shop are no longer needed. Furthermore, these updates only
occur intermittently, reducing the need for having separate updates and deletions for the policies and products.
Consequently, the create/update and delete operations can create/update and delete the entire shop at once.
Since deleting and retrieval of shop settings is not required by the requirements, they are not added to the inter-
faces.

Provided interfaces The Policy Distributor provides the following interfaces to administrators:

• SetStore(ShopIdentifier, [Product], AdmissionPolicy, PaymentPolicy)

Required interfaces The Policy Distributor requires no interfaces.

3.2 Scaling

As specified, the system needs to be scalable this was one of the driving factors behind designing components
to be stateless. Since stateless components can be scaled by simply spawningmore instances of the same type.
They are limited by the throughput on the datastores, since for every request the state needs to be retrieved from,
and when needed updated in the datastores.

Each component has amaximum capacity, an upper bound on the number of tasks it can perform in a set period.
Sincemost components are stateless, a node of a component operates independently from other nodes. Linearly
changing the number of running nodes for a component, results in a linear change of capacity of that component.
Since each component belongs to exactly one module, changing the capacity of any component, changes the
capacity of that component’s module.

When the load of the system changes, the capacity of the system must also change to deal with the load. De-
pending on the place where the load changes, different components must be scaled. If there is a change in the
number of arriving customers, the capacity of the order module should change accordingly. For instance, when
the system is encountering a flash crowd, or a flash crowd event has been resolved, the capacity of the order
module needs to be changed. Increasing the capacity of the stock module will not result in an increase in the
ability of coping with a flash crowd. Vice versa, when the amount of concurrently browsing customers changes,
the stock module’s capacity needs to change.

Logically, an upper bound on the number of instances per component that can run simultaneously exists, or more
precisely an upper bound on the maximum load the system can support exists. This bound is now determined
by the throughput and maximum number of simultaneous connections of the datastore.

3.2.1 Resiliency and consistency

Since all state changes get stored immediately, datastores need to be constructed in such away that they achieve
the desired resiliency and consistency requirements per component. Many different viewpoints on consistency
and consistency models exist, each having its own advantages. An overview of these models is presented by
Bermbach and Kuhlenkamp5, and this overview is used to determine which models to choose.

A dichotomy exists between the required consistency models for all components. Some are sufficiently serviced
with a very weak consistency model, while others require a greater level of consistency.

For every component the impact of encountering stale data is different:

• Customer Container: low impact. Every customer is connected to exactly one Customer Container node.
All updates are stored in memory and are persisted. Stale data should therefore only be encountered when
the system is trying to recover the session of a disconnected customer. When session data is stale, either
the entire session cannot be found, or the retrieved lifecycle phase is wrong. When the entire session is
missing the entire recovery procedure can be retried. When the lifecycle phase is wrong, in the worst case
the customer might have to wait to be admitted again.

• Admission Controller: low impact. The Admission Controller polls the database for changes to policies and
applies them to the local state. As long as the data is updated eventually, these policy changes will also be
applied eventually. It can be assumed, that all policy settings in the database were valid at one point in time.
Even though it is unfortunate the Admission Controller is applying stale settings, it is applying settings that
were valid once.

CHAPTER 3. SYSTEM ARCHITECTURE 39

• Queue Manager: high impact. If the Queue Manager would encounter stale data it might add a customer
in the wrong spot in the queue, or return customers to the Admission Controller for admission that have
already been admitted.

• Reservation Controller: medium impact. The Reservation Controller deals with everything related to reser-
vations with respect to constraints on products. Taking issuing a reservation as an example, when there
is stale data the Reservation Controller might decide incorrectly that some reservation can or cannot be
issued. Not issuing a reservation poses no problems, since the request can simply be retried by the cus-
tomer. A reservation that is issued when it should not have, can be fixed by checking the entire customers’s
shopping basket again when placing the order.

• Shop Keeper: high impact. The Shop Keeper must ensure stocks are kept. Out of the four fields the Shop
Keeper tracks per product (stock, reserved, pending, sold), only stale stock should not result in operational
problems by the same reasoning as how the Admission Controller handles stale data. For the other fields
however, stale data can be detrimental to the operations of the Shop Keeper. Taking the reserved count as
an example, an under or over reporting of this field, will result in an under or over reporting of the product’s
availability. Possibly resulting in an over or under sell of that product. The same reasoning applies to the
other two fields.

• Policy Distributor: low impact. The Policy Distributor only writes data to the datastores. Writing data is
idempotent, since the Policy Distributor sets all settings for a shop at once.

• Log Aggregator: low impact. All log items received should be logged. But this data is only appended, there
is no stale data to be read.

The impact of stale data on all components except theReservationController, ShopKeeper andQueueManager is
low. They therefore require comparatively little in terms of consistency, since all data stored only eventually needs
to be present and available to all nodes. For these components comparatively weak consistency is sufficient,
since there are no hard requirements on the data they write, if they write data at all.

Taking a data-centric viewpoint, most components are adequately served by eventual consistency since either
only a single node needs the data, is updating the data, or is only appending data.

However for the Reservation Controller, Shop Keeper, and QueueManager the situation is different. These need a
high level of consistency guarantees. Therefore, the datastore of these components is at least sequentially consis-
tent and preferably provides linearizability of operations. When some of the stricter requirements like monotonic
arrival are relaxed, serializability of operations could also be suitable.

The CAP theorem19 states that it is impossible for distributed data to have more than two of the following three
properties:

1. Consistency: the data that is read, is the data that was written last.

2. availability: every request receives a response, without guarantees on staleness of data.

3. Resistance to network partitions: the system containing the data continues to operate even when commu-
nication is interrupted between nodes in the system.

By consequence, the stronger consistency models sacrifice the availability. However, having low availability can
result in highly consistent and network partition resilient datastores. Both very desirable features for the data-
stores for the Reservation Controller, Shop Keeper, and Queue Manager. Unfortunately, since interactions with
datastores are mostly write heavy, the throughput of components can be quite limited. When components are
made to be stateful, or data storage patterns are carefully chosen, it can be possible to achieve a higher through-
put.

For instance, ensuring stocks are kept (ShopKeeper), if the available stockwas “distributed” between ShopKeeper
nodes, in such amanner that each of n nodes can give out 1

n of the total stock, congestion on the datastore would
be lowered since only intermittent updates on stock changes have to be communicated. Research on these kinds
of solutions, to increase possible throughput in the system, is left as future work.

3.3 Composition

Up to this point the components are only presented as separate entities. In the introduction, it was mentioned
that the chosen architectural style is a mixed SOA and Publish-Subscribe approach. This choice was made since
the order and stock modules have different requirements on communication when multiple nodes of every com-
ponent are running. Figure 3.1 provides an overview of the modules, the components, the interaction between

CHAPTER 3. SYSTEM ARCHITECTURE 40

components, and interaction between the actors (customers and administrators) and the components. For sim-
plicity, the datastores and interactions with the datastores have been left out.

3.3.1 Order module

The order module has to ensure that shopping runs for customers are managed properly. The main driving force
for the architectural style of the order module is the behavior of the Admission Controller and the Customer
Container. Every store is assigned to a single Admission Controller node and every customer is assigned to a
single Admission Controller node. These nodes therefore operate in a referentially decoupled manner. Customer
Container nodes are not aware of shops, so are neither aware which Admission Controller node takes care of ad-
mission into the shop of any of the Admission Controller nodes’s customers. Vice versa, an Admission Controller
node is not aware of customers, so neither which Customer Container nodes takes care of communication with
that customer. A Publish-Subscribe interaction style14 is the standard solution for such a solve this.

When a customer arrives, the Admission Controller must always decide what happens with the customer. In case
immediate access is needed, the customer must immediately be admitted. When admission is not immediate,
the customer must be added to a queue. Consequently, when it is decided a customer must be added to a
queue, the Admission Controller must contact the Queue Manager to add this customer to the queue. When the
Admission Controller decides a customer can be admitted, it requests the Queue Manager to retrieve the head of
the queue, return it to the Admission Controller, and remove the head. To ensure that customers are not admitted
multiple times, the retrieving and removal of the head must occur atomically.

This structure also decreases the amount of race conditions regarding admissions into and from queues. It is
impossible for a customer to be admitted from a queue before being added to the queue, since both actions are
initiated by a single Admission Controller node for any single shop.

In principle, any event generated by any customer of any store can be sent to all Admission Controller and Queue
Manager nodes. This is highly inefficient, since not every node might be interested in that event. Therefore,
these events need to be scoped somehow. For instance, admission for any shop is handled by at most one
Admission Controller node, sending all these events to all Admission Controller nodes will result in unneeded
message processing. Since customers are only shopping at a single shop, all events generated by changes in
any customers’s shopping run can therefore be scoped to both the customer and the shop. Both of these objects
have identifiers which are good candidates to be used to scope the messages.

When using the customers’s identifier as the topic, discovery of new customers becomes an issue. When cus-
tomers arrive the Admission Controller cannot be aware of their arrival until it is notified. This discovery message
could be sent over the same Publish-Subscribe middleware using, for instance, the shop identifier as the topic.
Since shop identifiers are the second option as potential topics, it will be simpler to only use shop identifiers as
the topics and send all messages related to changes in customers’s shopping runs for that shop using the shop
identifier as the topic. An extra advantage is that this works well with how the shops are distributed between Ad-
mission Controller nodes. They can simply subscribe to the relevant topics by using the identifiers of the shops
they are admitting customers for. The Admission Controller thus does not need a separate mechanism for the
discovery of new customers.

Another advantage of using shop identifiers as topics is that this ensures a predictable amount of topics, since
the amount of shops is known. If the customers’s identifiers would be used the number of topics is unpredictable.
Since all published messages pertain to changes in the lifecycle of some customer, the used topics could be a
combination of both the shop identifier and the lifecycle phase messages sent on that topic will be about. This is
a viable option, but deemed unnecessary since the amount of messages per customer is low and the overhead
incurred from dealing with these extra messages is negligible.

The data sent over the Publish-Subscribe middleware will be an abstraction of the structure provided by the
interfaces, specifically sent message consist of the following attributes:

• The identifier of the shop (the topic)

• The identifier of the customer

• The phase of the shopping run the customer will now be in, e.g. “shopping” when the customer gets admit-
ted

Even though the data is available in the datastores and thus in a shared data space, the messages should still
include the data as described above, to ensure that the relevant components can act as quickly as possible
without having to execute lookups in the datastores.

CHAPTER 3. SYSTEM ARCHITECTURE 41

The interfaces listed in Section 3.1.1 are specified such that direct communication between these components
can occur. The QueueManager and Admission Controller are communication using somePublish-Subscribemid-
dleware so some of these interfaces are implemented asmessages sent over themiddleware. Specifically:

• Admission Controller :: ChangePhase(CustomerIdentifier, ShopIdentifier, LifecyclePhase)

• Customer Container :: ChangePhase(CustomerIdentifier, LifecyclePhase)

In all cases, both the Customer Container and Admission Controller will be subscribing to and publishing lifecycle
changes for customers within shops. Even though the communication between the Customer Container and
Admission Controller is handled by Publish-Subscribe middleware, the contents of their communication follows
a request-response structure.

For a change requested by the customer (specifically: arrive, finish) the Customer Container sends the event
and awaits the reply (itself is a message) from the Admission Controller on what the actual new phase of that
customer will be before applying and persisting the lifecycle phase change.

This structure must be followed since it must be possible for a newly arrived customer to “skip” a phase. It must
be possible for a newly arrived customer to be admitted immediately, skipping “Arrived”. Or after having finished
browsing be admitted to payment services immediately, skipping “Done”.

3.3.2 Stock and general module

For issuing reservations, a very clear request-response structure exists. For any change regarding stocks, some-
thing is the source of the change, for instance: a customer requesting a reservation, or the Customer Container
signaling that a customer is attempting payment.

Each component handling requests in turn call other components, thus encapsulating their services, a quintessen-
tial attribute of a Service Oriented Architecture (SOA) as described by van Steen and Tanenbaum14. A different
composition style, like Publish-Subscribe was considered, but a SOA was deemed a better fit since there is no
referential coupling in the communication between the components.

Other advantages like reduced overhead (since a SOA does not require amessage broker like a Publish-Subscribe
architecture) and the loose coupling of components provided the final push. Due to the same reasoning also
holding for the general module, it will also be composed as a SOA.

For most calls it is impossible or undesirable to add all data needed to handle the request to the request. For
instance, when issuing a new reservation. When issuing new reservations, the entire contents of the shopping
basket needs to be taken into account in order to determine whether the request is permissible. When this infor-
mation would be included in the customer’s reservation request, somemanner is needed of ensuring the request
is not manipulated. Some requests do contain all information needed for processing like updating shops, making
a REST architecture a viable alternative to SOA. However, for all requests issued by the customer, it is undesirable
to use this data since there is no way outside of comparing it to persisted state to guarantee that the customer
did not maliciously modify its local state.

It might appear that it is preferable to have the Log Aggregator ingest log items from the Publish-Subscribe mid-
dleware since no explicit notifications are needed. However, this would require the Log Aggregator nodes to be
aware of all shops, in order to subscribe to the appropriate topics and perform some coordination to ensure each
message is only handled once, since each Log Aggregator would receive each message sent.

3.3.3 Examples

In the following section three exampleswill be provided to give an overviewon how the componentswork together
to achieve the desired functionalities. Specifically, an example of a shopping run and reservation of multiple prod-
ucts will be shown. To simplify, all interactions with datastores have been left out. Communication between the
Customer Container and Admission Controller always uses the Publish-Subscribe middleware. Sent messages
are depicted as direct communication between these two components.

Each example will be accompanied by a Message Sequence Chart (MSC). Within these MSCs, the names of the
components will be abbreviated by taking the first letter of each word in the name, e.g. a component named
“Better Component” will be abbreviated to “bc”.

CHAPTER 3. SYSTEM ARCHITECTURE 42

Shopping run

This example will focus on showing how customer’s basic shopping runs work. This example shows the main
interactions between the Customer Container, Queue Manager, and Admission Controller without all the details
regarding stock and statistics. The following scenario is laid out and visualized in Figure 3.4:

1. Two new customers c, c′ arrive at shop s.

2. The Customer Container sends messages over the Publish-Subscribe middleware to notify the appropriate
Admission Controller of the arrivals.

3. The Admission Controller determines c can be admitted immediately, but c′ must be queued.

4. The Admission Controller requests the Queue Manager to add c′ to the admission queue for shop s.

5. The Admission Controller notifies the Customer Container that c is admitted, and c′ is arrived (enqueued).

6. After some time the Admission Controller determines the next customer can be admitted.

7. The Admission Controller requests the QueueManager to return the customer at the head of the queue and
to remove that customer from the queue.

8. The Admission Controller sends amessage over the Publish-Subscribe middleware to notify the admission
of c′.

Note, to reduce complexity of the diagram and make it more concise, the second queuing step for the payment
services has been left out since it is identical to the admission into the shop, except it admits to payment services
instead.

Reserving of product

This example shows the interaction between components when interacting with the stock module. It specifi-
cally shows the interactions between the Customer Container, Reservation Controller, and Shop Keeper. Show-
ing clearly the link between the product and customer lifecycles. The following scenario is visualized in Fig-
ure 3.5.

1. A customer c gets admitted into shop s.

2. c reserves a number of product p, and gets returned all reservations.

3. c then extends a single of the previously generated reservations, r2.

4. Payment is then attempted, updating all products at the Shop Keeper. This is done by changing all n in-
stances of each reserved product type at once.

5. Payment (not shown) fails.

6. After the failure occurs, all products are placed back.

7. c can only depart, no further attempts on payment can be made.

Generating statistics

This example will show how the statistics are generated. It specifically shows the interactions between the Cus-
tomer Container, Shop Keeper, and Log Aggregator. Showing how the events propagate from the Customer
Container and Shop Keeper to the Log Aggregator. To make the MSC more readable, the parameters for the
CustomerPhaseChange and ProductPhaseChange have been left out. The following scenario is visualized in
Figure 3.6.

1. A customer c gets admitted into shop s.

2. The admission event is then sent to the Log Aggregator. Note, the arrival event should also have been sent.

3. c then places a number of reservations, where each reservation event gets sent to the Log Aggregator.

4. c finishes shopping (not pictured), which gets sent to the Log Aggregator.

5. For all reservations c placed, the Shop Keeper changes the phase and notifies the Log Aggregator.

CHAPTER 3. SYSTEM ARCHITECTURE 43

ChangePhase(c, s, ’arrived’)

Arrive(s)

Id

AddCustomer(s, ’admitted’, c′)

ChangePhase(c′, s, ’arrived’)

Arrive(s)

Id′

Browsing

ChangePhase(c, ’browsing’)

Arrived

ChangePhase(c′, ’arrived’)

AdmitNext(s, ’admitted’)
c′

Browsing

ChangePhase(c′, ’browsing’)

c:Customer c’:Customer cc ac qm

Figure 3.4: Message Sequence Chart describing part of a basic shopping run.

CHAPTER 3. SYSTEM ARCHITECTURE 44

ChangeProduct(p, ‘reserve’, 1)

Reserve(p, s)

rn

Reserve(p, s)

rn

ChangeProduct(p′, ‘reserve’, 1)

Extend(p′, s, r2)

Extend(p′, s, r2)

ChangeProduct(p, ‘attempt’, n)

Attempt(c)
finish

ChangeProduct(p, ‘hand back’, n)

Fail(c)

Admitted

c:Customer cc rc sk

loop

loop

loop

Figure 3.5: Message Sequence Chart describing reservation flow.

CHAPTER 3. SYSTEM ARCHITECTURE 45

CustomerPhaseChange

ProductPhaseChange

ChangeProduct(p, ‘reserve’, 1)

Reserve(p, s)

rn

CustomerPhaseChange

ProductPhaseChange

ChangeProduct(p, ‘attempt’, 1)

Finish(c)

AdmitCustomer(c)

qm cc rc sk sa

loop

loop

Figure 3.6: Message Sequence Chart describing the flow of statistics to the Log Aggregator.

Chapter 4

Implementation

In this chapter an implementation of the architecture described in the previous chapter is presented. This imple-
mentation provides most of the required features, but must be seen as a proof-of-concept and is definitely not
feature complete. At first the commonalities between all parts of the system will be described, including commu-
nication, and database technologies. Then the implementation of all components will be discussed. Lastly, the
specifics of how to deploy the system on a Kubernetes cluster will be presented.

4.1 Environment

All components are implemented in the Go (or Golang) programming language. Go is a C like programming
language released by Google on November 10, 2009. It is designed specifically to create server programs deploy-
able onmultiprocessor architectures. The Go version used is 1.14.2 dated April 8, 2020. Go uses a concept called
Goroutine, which is a function that can run concurrently with other Goroutines. Goroutines can be thought of
as lightweight threads. Goroutines communicate using a concept called “channel”. Channels are strongly typed
synchronized conduits through which data can be sent. These channels can be written to by multiple producers
and read by multiple consumers to facilitate creating of complex structures. Every piece of data can be read
only once. When multiple consumers are reading data from the channel, sending data over that channel will be
delivered to at most one consumer. As long as there is at least one consumer, delivery is guaranteed.

4.2 Deployment

The deployment environments specified in the requirements were of great influence on the chosen architecture.
Consequently, the deployment environments were also of great influence on the implementation. For the imple-
mentation the task was set to not only provide a working implementation, but also determine how to properly
deploy it on a Kubernetes cluster.

Kubernetes clusters provide abstractions to the infrastructure they are deployed on. If a system can be deployed
to one Kubernetes cluster it should be deployable on other Kubernetes clusters with at most minor modifications
to the deployment configuration. Eventix uses DigitalOcean as their PaaS provider. It turned out DigitalOcean
recently started offering hosted Kubernetes clusters, making deployment of a Kubernetes cluster easy. Even
though it does not matter who provides the Kubernetes cluster, the system was still deployed to a managed
DigitalOcean Kubernetes cluster.

To ensure enough capacity exists to run all the tests, and to mimic an actual production environment, a three
node cluster was created. In the cluster every node consists of 3 virtual CPUs, 8GB of memory and 120GB disk,
resulting in a total cluster capacity of 12 virtual CPUs, 24 of memory and 480GB of disk. The components do
not need to store much data themselves. Almost all data is stored in databases. Kubernetes provides a disk
abstraction called “Persistent Volume”, which in the case of a DigitalOcean managed Kubernetes cluster always
get mapped to block storage external to the cluster.

4.2.1 Containerization

As per the Kubernetes documentation, many different container runtimes are supported20. At first it appeared
that the runtime the Kubernetes cluster uses impacts the tools needed to construct the images. However, further

46

CHAPTER 4. IMPLEMENTATION 47

inspection of the available documentation showed that the deployed runtime is only of minor influence on which
types of images to run.

Docker21 was chosen as the containerization platform since Eventix already used Docker and Docker images can
be used on DigitalOcean Kubernetes clusters.

Using Docker forces requirements on building the image, namely that the containers must be based on Docker
images. For building Docker images, a so called “Dockerfile” needs to be provided which contains build instruc-
tions for a Docker runtime to create the actual images. By ensuring the structure of the components is similar,
only a single Dockerfile was needed. The used Dockerfile can be found in Appendix A.

After these images have been created, they need to be made available to the cluster using what Docker calls
a registry. This registry contains a collection of uploaded images. As long as the registry is accessible by the
Kubernetes cluster, it can then pull images from this registry. A public registry exists, called Docker hub. But
since Eventix preferred not to have these images public, a private registry was used, also hosted on DigitalOcean
infrastructure.

4.3 Communication

Since the system consists of a mixed Service Oriented and Publish-Subscribe architecture, the communication
is alsomixed. Services are either called directly or are sendingmessages over the Publish-Subscribe middleware.
In order to keep the structure of exchanged data consistent, Flatbuffers22 was chosen as the data interchange
for both the middleware messages and as the format of data sent in the requests and responses when calling
other services.

4.3.1 Publish-subscribe middleware

For the Publish-Subscribe middleware an existing project called NATS Streaming23 is used. NATS Streaming
provides aPublish-Subscribemiddleware layerwith strong guarantees, specifically at least once delivery, ensuring
that each message is guaranteed to be delivered to every interested party. NATS Streaming was chosen since it
provides high quality libraries for Go, provides an at-least-once delivery guarantee, and is easily deployable on a
Kubernetes cluster using a configuration provided by the NATS developers.

4.3.2 Service communication

The communication between services occur using a Remote Procedure Call mechanism, many different RPC
technologies exists. In this project, gRPC24 (using a Flatbuffer as serialization technology) is used. gRPC was
chosen over other prevalent RPC protocols, like JSON-RPC25, since gRPC has good library support for easy inte-
gration in Go. Due to reduced overhead it provides higher throughput and quicker response times. The overhead
is reduced due to efficient data (de)serialization, and the usage of HTTP/2 over HTTP for efficient transport26. At
first, the benefits of using HTTP/2 over HTTP were considered to be negligible, since the cited source focussed
on website load times and found HTTP/2 only could potentially improve these load times. After verifying the
performance however, it was found that HTTP/2 outperformed HTTP for our usecase. Combining this speed
increase with the more efficient (de)serialization solidified the choice for gRPC.

gRPC services require two specifications in an IDL: the format of the data transferred, and the specification of
the interfaces. Appendix F contains an example of how these are structured.

4.4 Databases

As discussed in Section 3.2.1 different components have different requirements for the datastores. For simplicity
sake and ease of implementation, the fewest number of different datastores (databases) was used. Two different
databases, ClickHouse27 for the Log Aggregator and Dgraph28 for the rest are used. ClickHouse is a columnar
storage OLAP database which can be queried using a SQL like language. Dgraph in turn, is a fast and scalable
graph database providing distributed ACID transactions.

The advantage of both databases is that they can natively run onKubernetes using a configuration provided by the
developers of each project. However, the provided configuration of ClickHouse assumes the cluster is hosting
ClickHouse to be used by services external to the cluster. Access from services internal to the cluster did not
perform as expected. Therefore, ClickHouse was installed on a machine external to the cluster. Dgraph however,
was installed on the Kubernetes cluster using the developer provided configuration.

CHAPTER 4. IMPLEMENTATION 48

ClickHouse, was originally developed by Yandex and released as open source software on June 15, 2016. It is
specifically intended for low data consistency, high throughput, read heavy data processing. In other words, it
is well suited for generating statistics from raw data. Each event the Log Aggregator receives is added to the
appropriate table containing all events of that type, which then automatically get aggregated into tables in a
format such that the desired statistics can be quickly queried. Appendix B.2 contains the schema of the tables.
How the schema is used is explained in Section 4.5.3. Since the Log Aggregator also needs to provide metrics
to administrators, a dashboard solution was implemented, specifically Grafana. This will be further explained in
Section 4.5.3.

Dgraph, is an open source graph database created by Dgraph Labs and published in December 2015. The main
reason Dgraph was chosen was the potentially complex nested structure of products, sub-products, and their
constraints. Since all other data: queues, lists of reservations, and settings can also be stored as a graph. No
other database was considered for storing these types of data. Dgraph uses the Raft consensus algorithm29

to achieve consensus. Raft ensures consensus exists on which transactions to commit in which order, thus
ensuring linearizability of operations is achieved.

Dgraph queries are declarative and describe the desired structure and contents of the response. For modifying
data, Dgraph can use either RDF N-Quads or JSON to specify the new data. Only RDF N-Quads are used. A data
change request in Dgraph consists of multiple queries andmultiple mutations. The result of the query will always
be the state of the data before the mutations are applied. This enables the usage of the result of the query in the
mutations as well as retrieving data relevant to the mutation since the result of the query is returned after the
change request has been executed.

Every query, both change requests and simple retrieve queries, need to be wrapped in a transaction. A single
transaction can contain multiple queries and change requests. To achieve Linearizability of operations, Dgraph
only allows one transaction tomutate the same data concurrently. If two transactions aremutating the same data
concurrently, one of the transactions is automatically aborted. In order to deal with this behavior, an exponential
randomized backoff retry procedure is implemented. Still this does not guarantee the transaction is executed
eventually. Therefore, a transaction needs to be attempted for a limited number of times or for a limited amount
of time.

Go has a concept called “context”. This context is generally used for request-response interactions and is used
to provide context to the requests. Contexts are an in-memory key-value store and can be “cancelled”. When a
context is cancelled the request it is associated with should be viewed as cancelled as well. Contexts can be
either manually or automatically cancelled. Automatic cancellation can occur when a deadline has been reached.
Any interaction with Dgraph requires a context object. When available an existing context with deadline is used, or
a new one is created and sent along with the transaction. When the context deadline is exceeded the exponential
backoff will terminate. In order to deal with the issue of unreliable transaction commits, while still having some
guarantee on themaximumduration of any request, the deadline of these contexts is set to 15 seconds by default.
Any request, including queries to Dgraph, can therefore take at most 15 seconds.

Both databases are only internal facing, only services from inside of the cluster can execute queries and request
mutations on the databases. Components can access these databases directly instead of having to access
them through other components. By accessing the data directly overhead on data access is removed. Expos-
ing the databases directly to customers poses security risks since it allows any customer, including malicious
customers, to modify data. To still enable customer interaction, all customer requests are issued by customers
to the Customer Container. The Customer Container then forwards these requests to the appropriate compo-
nents. The components then modify the data directly when needed. No database is thus exposed to customers
or administrators directly.

4.5 Components

In the following section a proof-of-concept implementation of each of the components described in the previous
chapter is presented. For this proof-of-concept a very optimistic approach is taken, it is assumed errors rarely
happen. Therefore, error recovery and verification are not implemented.

4.5.1 Customer Container

As described in Section 3.1.1, an implementation of the Customer Container requires a persistent connection to
each customer. For the connection with the customer, the proof-of-concept will make use of WebSockets since
an efficient implementation was available, and WebSockets are supported by many modern browsers.

CHAPTER 4. IMPLEMENTATION 49

Figure 4.1: Screenshot of the interface. Figure 4.2: Basic dashboard built using Grafana

As described, messages sent over the Publish-Subscribe middleware are sorted by topics, where the shop iden-
tifier is used as the topic. When a new customer connects to the Customer Container, it checks whether it has a
subscription to the topic belonging to that shop. Iff it does not, it subscribes to that topic.

Every request placed by a customer, is first verified whether the customer is at a point in their shopping run where
placing this request is permitted before it is forwarded to the correct component. Before the response is returned
to the customer, it is first persisted to ensure it cannot be lost. To ensure customers can actually recover from
networking issues. The recovery procedure is implemented as described in Section 3.1.1. The only difference is
that the reservations are always retrieved. Not just when session recovery is attempted.

This is done to ensure that the frontend application does not need to store any state except the identifier. Simpli-
fying any (eventual) frontend application. For the demo frontend a very small library was written, which provides
an abstraction to the actual communication. This library can be used as a base for a full implementation.

User interface

Even though content delivery was explicitly not taken into account, an interface still needed to be served for demo
and testing purposes. This interface can be seen in Figure 4.1.

4.5.2 Policy Distributor

The Policy Distributor is tasked with ingesting settings provided by the administrators and ensuring these set-
tings get stored somehow. Since this component is one of the few external facing components, it only receives
requests intermittently, and it needs to interface with other systems a different request format was used. Flat-
buffers, though efficient, are not readable due to Flatbuffer being a binary format. Furthermore, Flatbuffers are
not commonly used as amessaging format between different systems, since the format of themessages is very
strict and needs to be known to both systems.

A very popular option is JSON. Requests and responses in JSON can contain more data than the other system
needs. Furthermore, the structure of the data is less strict, the order of keyswith the samenesting does notmatter.
Any extra data can be ignored by the other system. These features make JSONwell suited for a data interchange
language for interoperable systems. The Policy Distributor provides a web-server with a single endpoint, a POST
endpoint. This endpoint accepts a JSON object which contains all shop settings including products, stocks, and
admission policies. The deletion and retrieval endpoints were omitted since they were not required by any of the
requirements, even though they are trivial to implement.

For every request, the Policy Distributor marshals the JSON object into RDF N-Quads for storage in Dgraph. The
schema of the data stored in Dgraph can be found in Appendix B.1. Requests are only verified to contain a JSON
object in the correct structure.

4.5.3 Log Aggregator

The Log Aggregator is performing two tasks: taking in log events and storing them in a database, and disclosing a
basic statistic to the Admission Controller. As explained in Section 4.4, ClickHouse is used to store the number of
product instances and customers in each of their respective lifecycles. This is achieved by logging the differences
in amounts per lifecycle phase.

CHAPTER 4. IMPLEMENTATION 50

Taking a customer that is admitted as an example. The Log Aggregator will insert a single tuple into Click-
House, containing a timestamp and that the amount of “waiting” customers has decreased by one, while the
amount of browsing customers has increased by one. These changes are then aggregated automatically by
ClickHouse.

ClickHouse has a limitation however, for performance reasons it requires bulk inserts. Strictly speaking, each
event can be inserted separately, but this has a high performance penalty.

In order to deal with this all inserts are chunked and regularly inserted into ClickHouse. Since there is a possibility
that between insertions the Log Aggregator experiences a fatal error, log messages could be lost. To mitigate
this issue, all events are first stored in a local key-value store, Badger30. Badger is part of Dgraph and is used
to actually store the graph data on each node in the Dgraph cluster. In the Log Aggregator, it is only used as a
quick persistent datastore to store the log events until they are inserted into ClickHouse. After events have been
inserted into ClickHouse they are removed from Badger.

On boot the Log Aggregator starts a periodic process. This process is responsible for generating and commit-
ting ClickHouse transactions. This process has a period of five seconds. The process attempts to commit any
running transactions. When successful and Badger is cleared. Finally, new transactions are started. The process
starts two transactions, one for inserting customer lifecycle log-items, and one for inserting product lifecycle
log-items.

When the Log Aggregator receives a log-item it uses one of the running transactions to insert the data, as well as
inserting it into Badger.

Crash recovery consist of inserting all events contained in the key-value store into ClickHouse. ClickHouse inserts
are idempotent. Little care has to be taken to ensure duplicate events are not inserted.

Appendix B.2 contains the schema stored in ClickHouse. It consists of two tables to store all log events, and
two views that aggregate the results which can be used by the Admission Controller and Grafana as a basic
dashboard.

Provided statistic

One of the responsibilities of the Log Aggregator is to provide a basic statistic to the Admission Controller. This
is not supposed to be an important responsibility of the Log Aggregator and the implementation reflects this.
This statistic is implemented as a simple query which the Admission Controller executes itself directly. The Log
Aggregator implementations does not provide a gRPC service to query this data.

Dashboard

Even though it was not strictly specified, a basic dashboard was created to visualize the number of customers
in each lifecycle, and track the number of instances of products. This only serves to show the potential of the
stored log entries and the derivable statistics, not to be a complete dashboard. A screenshot of this dashboard
is shown in Figure 4.2.

4.5.4 Shop Keeper

The Shop Keeper needs to store the number of instances per phase of the lifecycle per product and use this
information togetherwith the deployed settings to determinewhether stock can be handed out. For every lifecycle
phase except “available” and every product, an integer is stored depicting the number of product instances that
are currently in that phase, i.e. counters for the number of products in each phase.

For each of the product lifecycle transitions, as shown in Figure 3.3 and described in Section 3.1.2, some values
need to be incremented or decremented on every request:

For the defined phase changes the following needs to happen:

• MakeReservation: increment the reserved products counter.

• UndoReservation: decrement the reserved products counter.

• FinishBrowsing: decrement the reserved products and increment the attempted products counters.

• SucceedToPay: decrement the attempted products and increment the sold products counters.

• FailToPay: decrement the attempted products counters.

CHAPTER 4. IMPLEMENTATION 51

As can be seen, the availability is neither incremented nor decremented. The availability is computed from the
other fields and the policies setup. The policies determine whether the reserved, pending, and sold counts need
to be taken into account when determining the availability. It is therefore possible for two products having exactly
the same stock, and reserved, pending, and sold counts to still have a different availability.

These counts are stored in Dgraph. When these counts need to be updated, it is important all updates occur atom-
ically. Otherwise products can oversell. Assuming a customer has finished shopping, all of his reserved products
must transition to “pending”. If at first, the reserved count was decremented before the pending count was incre-
mented, the availability of that product (temporarily) increases by the difference. Therefore, the increases and
decreases should occur at once, atomically.

A distinction is made between “MakeReservation” and all other changes. For “MakeReservation“ it is important to
verify whether enough product is available. For all other changes, this check is not needed since these requests
never decrease the actual availability. It might be the case that they decrease the reported availability, since this
is derived from the stock and a combination of the “reserved”, “pending”, and “sold” counters.

In order to implement all requirements pertaining to availability, three booleans are stored per product. A boolean
for expressing whether the number of reserved, pending, or sold products should be taken into account when de-
termining the availability of a product. When requesting a reservation, a single change request is issued contain-
ing a query that calculates the appropriate value for the availability. As specified in the architecture, products are
reserved one at a time. Consequently, it is sufficient to check whether the availability is greater than zero.

When the availability is greater than zero, the reservation count is incremented. Otherwise this count is not incre-
mented.

For the other phase changes, it is first determined which field needs to be incremented, and which field needs to
be decremented. A query is then constructed which updates the relevant counters.

4.5.5 Reservation Controller

In the basic case, the Reservation Controller receives requests from the Customer Container, calls the Shop
Keeper, generates a random identifier (the reservation), stores the results, and returns the result to the Customer
Container. As soon as sub-products get involved, the situation gets quite a bit more complex. For this proof-
of-concept an implementation of sub-products could not be completed due to implementation problems. Im-
plementing a Reservation Controller that can handle sub-products and issue reservations using the architecture
presented in Section 3.1.2 is left as future work.

Due to this omission, the implementation of the Reservation Controller is quite simple. For a new reservation
request, the Reservation Controller requests the Shop Keeper whether stock is available. Iff so, a reservation is
generated and linked to the requesting customer.

For any of the customer lifecycle changes, the Reservation Controller retrieves all issued reservations for that
customer, derives the number of reserved instances per product, and requests the Shop Keeper to change that
amount for each of the products.

4.5.6 Queue Manager

As stated previously, the Queue Manager provides two services: adding customers to queues, and admitting
customers from the queues.

As an underlying datastructure the Queue Manager makes use of (singly) linked lists, where every element of the
list points to its successor. The linked list was chosen since it was the easiest datastructure to serialize in Dgraph,
where it is persisted. Privilege levels where not implemented, but could be implemented by altering the queries
used for adding to and admission from queues.

Only arrival monotonous queue admission is implemented. This is enabled by the strong consistency provided
by Dgraph. Because of this choice the weaker admission requirements (ma1,ma2,ma3) are implemented as
well.

Both the adding and removing of customers to queues are implemented as a single transaction containing a
single mutation. When combined with only a single Admission Controller handling a shop results in adding cus-
tomers in arrival monotonic order.

In total, two references to elements in the linked list are stored. A reference to the head and a reference to the tail.
These serve to aid with quick admission from and admission into the queues respectively. For admission into
the queues, the tail element is needed, if this was not implemented, the entire list needs to be traversed in order

CHAPTER 4. IMPLEMENTATION 52

to find the last element. Storing it directly is easier. Admission of a customer is simply adding a successor to the
current tail of the queue and updating the tail reference to the newly added element.

Admission from a queue is exactly the opposite. The head of the queue is replaced by its successor and the
customer contained in the old head is returned to the Admission Controller. Appendix C contains the query and
mutations used for admitting a customer from a queue.

4.5.7 Admission Controller

Previously, it was explained that stores should be distributed over all Admission Controller nodes in such a way
that every store has a single Admission Controller node responsible for admission. Due to the way the Admission
Controller is deployed, each Admission Controller node has a sequential integer identifier. This identifier starts
from zero. Using this index (i), the total number of Admission Controller pods (n), and the uid of stores (u) a
simple method is used to distribute the stores over all Admission Controller nodes. A uid is a unique integer
identifier assigned by Dgraph to every node in the graph. An Admission Controller node is responsible for a
store iff i ≡ u (mod n). Even though this procedure works reasonably well for distributing the stores initially (on
boot). It does not take into account possible load caused by the shops. For a full-fledge implementation a better
distribution scheme needs to be implemented.

In order to admit customers, the Admission Controller must be aware of the amount of customers per lifecycle
phase per store. It simply tracks these numbers using integers. When it receives a message over the Publish-
Subscribe middleware notifying a lifecycle change, it increments and decrements these counters where needed.
For any lifecycle change, it decrements the counter for the previously held lifecycle phase, while incrementing the
counter for the new lifecycle phase.

When an arrival message is received, it first checks whether the customer can be admitted immediately. Iff
so, it immediately sends a message over the Publish-Subscribe middleware that the customer’s new status is
“shopping”.

When the customer cannot be admitted immediately, it requests the Queue Manager to add the customer to
a queue. Then it sends a message over the Publish-Subscribe middleware that the customer’s new status is
“arrived”.

Regardless of what the Admission Controller will reply, the Admission Controller always register a customer has
arrived. Only in the case the customer has been admitted immediately, it will also register a customer has been
admitted. Consequently, regardless of the response, the counts are always accurate. The procedure is applied
when customers finish shopping and want to be admitted to payment services, only using different lifecycle
phases.

In order to achieve this, the Admission Controller needs the policies to contain the following four variables:

• Phase: which phase this policy is applied to.

• Max: the maximum amount of customers that can be in the phase at the same time.

• AdmitPerMinute: the amount of customers that can be admitted per minute.

• Admission: who to admit, since privilege levels are not implemented only “any” and “none” are used. When
none is chosen, all customers are immediately added to the queues and admission is halted.

These policies are cached locally by the Admission Controller. Updates to these policies can occur at any point
in time. Therefor all Admission Controller nodes start polling the database at boot. They check whether the set
of shops distributed to them has changed, applies any changes in the admission policies, starts admission for
new stores, and stops admission for stores that are no longer in the set.

To limit the rate of the number of customers that can start browsing, tickers are started which send an event
(tick)
AdmitPerMinute times per minute. For every tick, an event is sent over a channel. A pool of workers listens
to these events and when an event is received checks whether customers are awaiting admission. If so, the
customer at the head of the queue is retrieved from the Queue Manager (which updates the queue by removing
the head) and an admission message is sent for that customer over the Publish-Subscribe middleware. To en-
sure monotonic admission, separate Goroutines handle the admission into the shop and admission to payment
services.

Since NATS streaming provides at-least-once delivery, the Admission Controller must be able and cope with du-
plicate messages. This is implemented by simply keeping track of which customer and lifecycle combinations
have been seen. If a duplicate message is detected, it is ignored.

CHAPTER 4. IMPLEMENTATION 53

Since it is not guaranteed that a query in Dgraph will succeed within the allotted time.

The requirements for store admission are a superset of the requirements for payment services admission. There-
fore, the implementation is agnostic towhich phase in the lifecycle it is handling. Thus both of the lifecycle phases
in need of admission are handled by the same implementation.

4.6 Kubernetes deployment specifics

One of the main concepts behind Kubernetes is that all infrastructure resources, collectively called resource
objects, can be declaratively specified and then automatically deployed in a platform agnostic manner. These
resource objects not only include deployed containers, but also (persistent) storage and specifics on network
communication. The purpose of this project is to not only create a solution that solves the issues but which also
can be run on a Kubernetes cluster.

Two main parts of deploying the entire system to a Kubernetes cluster will be of particular focus: container
deployment and container communication.

4.6.1 Container deployment

In Kubernetes, the unit of deployment is called a “pod”. A pod consists of multiple containers that are highly cou-
pled and share resources. It is also possible to assign containers to perform startup tasks before the main con-
tainers start in order to prepare the local environment for the application containers. Kubernetes uses controllers
to actual control the deployment of these pods, all of which are tailored to different workloads. The following is
a summary of the Kubernetes documentation:

• ReplicaSet: maintains a stable set of pods at any given time.

• ReplicationController: provides similar functionality to the combination of a Deployment+ReplicaSet.

• Deployment: provides updates to Pods and ReplicaSets. Used to declaratively describe desired state and
let the cluster determine the specifics.

• StatefulSet: same as a Deployment, except each pod gets a sticky identity, providing stable network iden-
tifiers and re-attachable storage, as well as ordered and graceful scaling. Re-attachable means, that when
a pod called “POD-2” crashes, and a new pod with the same name is started, all disks attached to the old
“POD-2” are now attached to the new pod.

• DaemonSet: ensures every node (machine) in the cluster runs an instance of the specified pod.

• Jobs: deploys a certain number of pods which perform a task that should terminate and ensures that a set
amount of them terminate successfully.

• Garbage Collection: used to delete orphaned resources, for instance Pods, whose parents (a ReplicaSet
for instance) already have been removed, but are still running themselves.

• TTL Controller: creates Jobs and automatically removes resources after some Time To Live (TTL) has
passed.

• CronJob: creates Jobs on a repeating schedule.

From these controllers, two are used: the Deployment and the StatefulSet. The developer provided configuration
for Dgraph utilizes a DaemonSet to ensure that all cluster nodes have a local instance available to them to ensure
that all pods on that node have access to a local copy of the graph database.

The Admission Controller and Log Aggregator are deployed using StatefulSets, while all other components make
use of Deployments. StatefulSets where chosen since these components are stateful.

Even though the Log Aggregator operates in a stateless manner, it still is implemented as a StatefulSet due to the
fact that it temporarily stores the log-items in the key-value store. By utilizing a StatefulSet, the Badger database
can be stored on a persistent disk. When pod crashes and a new pod is deployed the disk of the crashed pod
is attached to the new pod. The Log Aggregator can then recover the data by simply retrieving the data in the
database and inserting it into ClickHouse.

Another advantage of StatefulSets is that the deployed pods receive incrementing integers as identifiers. This
information is mainly useful for the Admission Controller, which uses this identifier and the total number of de-
ployed pods in the StatefulSet to determine which shops are in their partition.

CHAPTER 4. IMPLEMENTATION 54

apiVersion: v1
kind: Service
metadata:
name: cc-ext
spec:
type: NodePort
ports:
- name: "sock"

port: 8000
targetPort: 8000
protocol: TCP

- name: "web"
port: 8001
targetPort: 8001
protocol: TCP

selector:
app: waas
tier: cc

apiVersion: networking.k8s.io/v1beta1
kind: Ingress
metadata:
annotations:

nginx.ingress.kubernetes.io/rewrite-target: /$1
nginx.ingress.kubernetes.io/configuration-snippet: |

proxy_set_header l5d-dst-override $service_name.$namespace.svc.cluster.local:$service_port;
grpc_set_header l5d-dst-override $service_name.$namespace.svc.cluster.local:$service_port;

name: ingress
spec:
rules:

- host: waas.openticket.tech
http:

paths:
- path: /(pd/.*)

backend:
serviceName: pd-ext
servicePort: 8003

- path: /(sock/.*)
backend:

serviceName: cc-ext
servicePort: 8000

- path: /(cc/.*)
backend:

serviceName: cc-ext
servicePort: 8001

Listing 4.1: Example of a Kubernetes service (left) and ingress (right) specification

All other components are deployed using Deployments, all using ReplicaSets.

An example of a Deployment and StatefulSet specification can be found in Appendix D.

4.6.2 Container communication

For container communication Kubernetes uses two different resource objects: “Service” and “Ingress”. A service
is a named combination of a “pod selector” and a set of ports. Pods can be labelledwithmetadata, a “pod selector”
then uses thismetadata tomatch a set of pods. A Service thenmakes the pods and those ports available to other
pods, using the provided name. An example service can be seen in Listing 4.1. This service defines that ports
8000 and 8001 of the podsmatching the labels defined in the “selector” field (“app” equals “waas” and “tier” equals
“cc”) are reachable from the common names, “cc-ext”.

Since Kubernetes uses DNS to resolve the pod to contact and gRPC only resolves this address once, load-
balancing does not exist by default. If for every request the hostname is resolved, Kubernetes will ensure that
the traffic gets load-balanced between all pods adhering to the service selector. Since it is preferred to have load-
balancing, the proof-of-conceptmakes use of a so called servicemesh31. A servicemesh is an infrastructure layer
that allows for control on how pods communicate. It can be used for structures like circuit breakers, where pods
are made unavailable to other pods when the component is throwing too many errors. Another feature of some
service meshes is support for canary releases. Many different service meshes exist. These service meshes were
only given a cursory examination. When choosing a servicemesh the ability of load-balancing gRPC requestswas
the main consideration. The service mesh that enabled this behavior with the least configuration was Linkerd32,
thus Linkerd was chosen and used as the service mesh.

A service by itself only creates a communication channel between pods within the cluster. It still is not possible
to contact any of the pods from outside of the cluster. For this Kubernetes makes use of another resource object,
called “ingress”. An ingress is a resource object describing how a specific service can be accessed from outside
of the cluster. Listing 4.1 contains the ingress specification for all services requiring an ingress including the
service of Listing 4.1.

An ingress is controlled by an Ingress controller, typically a web-server or an OSI layer 4/7 software load-balancer.
These listen to incoming requests from outside of the cluster and forward them to the appropriate services. For
the deployment of the proof-of-concept different ingress controllers were investigated. Specifically NGINX33, a
high performance webserver and reverse proxy, and Traefik34, which is a OSI layer 7 load balancer, were tested
and considered as the ingress controller. Even though Traefik providedmore features over NGINX, the final choice
was still NGINX. Since it provided a simpler solution, the project is more mature, and Eventix was already familiar
with NGINX.

The ingress of Listing 4.1 allows for three routes at the http://waas.openticket.tech domain. The following
services are made available:

1. pd-ext:8003 is made available at the path: /pd/, used for storing settings at the Policy Distributor.

CHAPTER 4. IMPLEMENTATION 55

2. cc-ext:8000 is made available at the path: /cc/, serving the simple interface provided by the Customer
Container.

3. cc-ext:8001 is made available at the path: /sock/, serving the websocket server for the Customer Con-
tainer.

Chapter 5

Validation

In this chapter, the proof-of-concept implementation will be validated to work as expected. At first, requirements
are listed that were not implemented in the proof-of-concept. Then the performance of the databases will be
discussed, whether they performed as expected. Lastly, the operations of the proof-of-concept will be verified.
This verification is done by executing two functional tests to verify whether requirements are properly imple-
mented.

5.1 Unimplemented requirements

In this section unimplemented requirements will be discussed. These can be broadly grouped in four different
“features”. In Section 6.2 possible implementations for these “features” will be presented.

The statistics are not present in this list. They were specified in the requirements to indicate their relevance to
a full-fledge system. But for any full-fledge system, these requirements should be expanded. Determining the
statistics to generate is not an architectural problem. Although the architecture might need to be redesigned
in order to be able to generate the new statistics. Since these expanded statistics requirements are currently
unknown, no plans can be presented on how to implement them.

Sub-products

Relevant requirements: sp2, sp3, sp5, sp6, sp7, sp8, and sp9

As stated in the previous chapter, sub-products could not be implemented. For the proof-of-concept implemen-
tation modeling the products and constraints as a DAG was attempted, which resulted in a complex process
of issuing reservations. Even when the iterative approach was used. The work on this approach could not be
finished.

Multiple shops

Relevant requirements: mt3

In the proof-of-concept, it is possible for shops to experience degraded performance due to the distribution of
shops not taking (the expected) load into account. This choice was made to ensure shopping runs could take
place and the Admission Controller could start admitting customers.

Customer feedback

Relevant requirements: cs5, ce9, ce10, ce11, and ce12

Currently, no customer feedback is implemented. After arriving, customers receive no feedback on their current
place in the queue and possible wait times. Furthermore, currently no limits are imposed on the amount of time
customers can spend in any phase of their lifecycles. The lifecycles of customers who have departed the shop
without notifying are currently not forced to progress to latex phases.

These requirements are not implemented due to setting different priorities.

56

CHAPTER 5. VALIDATION 57

Tie-breakers

Relevant requirements: tb2, tb3, tb4, and tb5

For this proof-of-concept only a single tiebreaker was considered. Nomethod could be devised to implement any
of the other tiebreakers without either sacrificing request duration and throughput of the Reservation Controller
dramatically, or making the Reservation Controller stateful.

It was deemedmore important to keep request durations as short as possible and to ensure asmany components
operate in a stateless manner, than to implement the other tiebreakers.

5.2 Database evaluation

Due to the choice of database being very important, it cannot be omitted from the evaluation of the proof-of-
concept. Two databases were chosen, ClickHouse and Dgraph, each of which will be discussed in separate
sections.

5.2.1 ClickHouse

The choice for ClickHouse is deemed a good choice. Analysis of the Log Aggregator logs shows that everything
that was sent to the Log Aggregator was inserted into ClickHouse. No issues where encountered while using
ClickHouse.

Clickhouse was not tested directly, but was tested through a load test of the Log Aggregator. A script was written
to attempt sending as many log items as possible sequentially and record the response times. The test was
executed locally on a development machine, but the ClickHouse server was the same as the one used by the Log
Aggregator deployed to the Kubernetes cluster.

The connection to the ClickHouse database was quite bad. This was done on purpose to provide a pessimistic
scenario. The networking delay was tested using the ping command for 100 pings at an interval of 0.1 seconds. It
reported a minimum, maximum, average round trip times and the standard deviation of: 23.340, 69.932, 29.506,
7.180 milliseconds respectively. To make matters worse, the (locally running) Log Aggregator was connected to
ClickHouse using an SSH port-forward, thus incurring extra overhead and increasing latency.

The load test attempted to send as many log-items to the Log Aggregator as possible for 60 seconds. The
following minimum, maximum, average response times, and standard deviation were found: 133, 34,2234, 468,
and 4,450 microseconds respectively. The total number of requests placed was 144,674. These numbers are
deemed more than sufficient for the proof-of-concept.

The expectation was that when the transaction commits, a slowdown would be detected. Since the Log Aggre-
gator commits every five seconds, between 11 and 13 periods with slow requests were expected.

Inspection of a plot of the request durations did not clearly show where the commits had taken place. Slow
requests where not grouped together.

5.2.2 Dgraph

Even though Dgraph provided the needed consistency constraints, it did not perform as expected. Dgraph per-
forms very well when reading data, i.e. when data access is read-heavy. Unfortunately, the interaction of the
proof-of-concept with Dgraph is write-heavy. Only recovery of lost sessions, and retrieving the a customers’s
reservations (for product lifecycle changes) only reads data, all other interaction also mutate data.

When Dgraph detects multiple concurrent mutations of the same data, transactions are aborted automatically.
To deal with this, two different retry schemes were tested: immediate retry and random exponential backoff.
Immediate retry only exacerbated the problem of aborting transactions, since more mutations were taking place
at the same time. The random exponential backoff resulted in much better performance. But did, of course, not
fully eliminate the issue. Due to the limited throughput and the retrying of transactions, the performance of the
system is not as expected.

Even with the exponential random backoff, throughput was 80 to 100 mutations per second at best. Which is not
enough to test an actual flash-crowd scenario.

CHAPTER 5. VALIDATION 58

Measure Raw measurements Without outliers

Number of measurements 10,000 9,980

Minimum rtt 0.333 ms 0.333 ms

Maximum rtt 4.08 ms 0.767 ms

Average rtt 0.495 ms 0.492 ms

Standard deviation 0.113 ms 0.082 ms

Table 5.1: RTT results between the test host and the cluster load balancer

5.3 Verification

Twodifferent scenarioswill be tested. Each scenariowill verify whether one of themore important responsibilities
of the system works as required. The first scenario tests admission control, ensuring order is kept. The second
scenario tests whether stocks are kept properly, ensuring stocks are not exceeded.

5.3.1 Testing setup

For the test, the proof-of-concept was deployed on a DigitalOcean managed Kubernetes cluster. This cluster
consists of three nodes, each having 4 (virtual) CPUs and 8GB of memory.

The tests executed are functional tests. Proper load tests cannot be run, since even the functional tests achieve
the maximum throughput of Dgraph.

The tests have been run on a single VPS, located in the same DigitalOcean data center as the Kubernetes cluster.
DigitalOcean provides guarantees on resource reservation. When a VPS is created, CPU and memory resources
are reserved for that VPS. This should result in consistent VPS performance. Testing using a DigitalOcean VPS
was chosen in order to achieve a high reliability of the network. Fewer hops between themachine running the test
and the Kubernetes cluster should result in smaller and less varying network overhead. This was measured by
testing the latency of the network connection by using the ping command which measures the round-trip-time
(rtt) between two network hosts.

The test involved measuring 10,000 rtts, at an interval 0.1 seconds using:
ping -c 10000 -i 0.1 waas.openticket.tech. From these raw results outliers where filtered by first calcu-
lating the quartiles and the Inter Quartile Range (IQR) between the first and third quartiles and then removing
measurements with a difference to the mean greater than 1.5 times the IQR. The following values where found
for the first and third quartiles respectively: q1 = 0.42, q3 = 0.559. The IQR derived from these quartiles is
IQR = q3 − q1 = 0.139. This test was run three times. Appendix G contains all the results. The results pre-
sented are the worst of the three tests. “waas.openticket.tech” was registered in DNS to point to the cluster’s load
balancer.

Unfortunately, a deeper investigation in the network behavior could not be performed. The DigitalOcean provided
load balancers is not accessible and networking within the cluster is handled by a combination of Kubernetes
services and the service mesh. This makes the networking characteristics behind the load balancer difficult to
investigate.

The minimum, maximum, and average rtts, as well as the standard deviation are presented in Table 5.1 for both
the raw and cleaned measurements.

These results show that the delays between two hosts are comparatively small, and the network is performing
quite consistently.

5.4 Functional tests

In this section two functional tests and their results are presented. The two tests focus on two of the more
important responsibilities of the system: admission control and stock keeping.

CHAPTER 5. VALIDATION 59

50 100 150 200

200

400

600

800

1,000

t, timestep

s(
t)
,n

um
be

ro
fc

us
to
m
er
s

Figure 5.1: Plot of the sigmoid function used to determine the number of customers

5.4.1 Admission control

This test will determine whether the system can admit customers in the same order as they arrived in, arrival
monotonically.

The scenario tested is described by the following steps:

1. A customer arrives.

2. After being admitted into the shop, the customer browses for three seconds. No reservations are placed.

3. The customer signals he/she has finished shopping.

4. After being admitted to payment services, the customer attempts payment for five seconds.

5. The customer signals he/she will depart.

Anecdotal evidence from Eventix states that the total number of customers over time during a flash-crowd event
can be modeled using a sigmoidal function. The number of arriving customers is low at first, increases quickly,
and decreases gradually after the peak in arriving customers has been reached.

For this test the following sigmoidal function was used:

s(t) = 520 ∗ (tanh(
t− 120

60
)) + 502

A plot of the sigmoidal function can be found in Figure 5.1.

A script was created that executes a scenario a number of times for a certain amount of timesteps. For this
test the timestep chosen was one second. The amount of new scenarios started per timestep was given by
bs(t) − s(t − 1) + 0.5c for any step t ∈ N+, i.e. the nearest integer rounding of the difference between two
timesteps.

The script was run for 232 timesteps, 1 6 t 6 232, resulting in the scenario having been played 1000 times, with
a maximum of nine started scenarios in a single second.

Four Queue Manager nodes where deployed. Only a single Admission Controller node was deployed since only a
single store will be part of the tests. For all other relevant components enough capacity was ensured. Specifically
four Customer Container and four Log Aggregator nodes were deployed.

Since the implementation of the admission into the shop and admission to payment services is the same, only
store admission will be verified. For the test, admission to payment services is setup to be immediate.

The policies setup for the test allow for an absolute maximum of 20 shopping customers and admits customers
at a rate of 300 customers per minute. No customer is admitted immediately. Every customer is only admitted
at a schedule of 300 per minute and until the maximum of 20 has been reached.

CHAPTER 5. VALIDATION 60

Results

There are two places where arrival can be determined: at the Customer Container or at the Admission Controller.
Different Customer Container nodes can be experiencing different load. Using the Customer Container to de-
termine the arrival order of customers is therefore not very reliable. Furthermore, only log items can be used
to reliably determine when a customer was admitted. Since multiple Customer Container nodes are generat-
ing these log items, determining the precise order in which they were generated is not feasible with the current
implementation.

Therefor the Admission Controller was chosen to provide the information on when customers arrived and when
they were admitted. The Admission Controller requests the Queue Manager to add customers to queues and
request the Queue Manager to admit customers from queues. This makes the Admission Controller the ideal
candidate for determining whether the order is being kept.

When comparing the arrivals and departures of customers, only one discrepancy could be found. All other cus-
tomers were in the correct order.

This one discrepancy was a scenario that was aborted due to Dgraph not being able to add this simulated cus-
tomer to a queue. Earlier attempts at running this test found all 1000 customers were added to queues and
admitted from queues successfully. These results prove that the proof-of-concept implementation can admit
customers in arrival monotonic order.

Analysis of the log files, and the entries stored by the Log Aggregator show however that the Admission Controller
node was not keeping up. Many scenario instances were waiting minutes before receiving the confirmation that
they were added to a queue. This also showed an error in the Log Aggregator implementation, since at some
point the Log Aggregator reported more than 20 browsing customers.

This can be explained by the fact that the Log Aggregator rounds the timestamp of the logged items to the nearest
second. The Customer Container notifies the Log Aggregator of lifecycle changes. Since different customers are
connected to different Customer Container nodes, it is possible the “finish” event was logged after the “browsing”
event, resulting in an over reporting of the number of browsing customers.

5.5 Exceed stocks

This test will verify whether stocks are not exceeded when placing reservations and whether products follow the
correct lifecycle. To do this the following scenario will be tested:

• A customer arrives.

• On admission, the customer attempts to reserve two instances of the same product.

• After the second successful attempt, the last reservation is released.

• The customer signals he/she has finished browsing.

• The customer signals he/she has departed the store.

Departing a store is counted as having paid for the reserved products.

As stated before, Dgraph does not support multiple transactions mutating similar data. Multiple instances of this
scenario will not be run in parallel. In almost all preliminary tests, running multiple concurrent scenarios resulted
in too many aborted transactions to make the results usable. The scenario script could have been made more
robust, in order to deal with these abortions. Dealing with these abortions would mean even more requests and
transactions would be created, only exacerbating the problem of aborting transactions.

Instead of running the scenario in parallel, 50 of them were run sequentially. When a scenario has finished, the
next scenario starts. All scenarios are trying to reserve the same product with a stock of 80, ensuring some
reservation attempts must fail. Furthermore, for the test it is required that all lifecycle counters are taken into
account when determining whether a product is available.

The values reported to the Log Aggregator are used to determine whether stock is exceeded. At no point in time
can the number of reserved+pending+sold products be greater than 80.

As with the other scenario, it must be ensured enough capacity exists in other components to not be of influence
on the scenarios. For the two components involvedwith this test, the Reservation Controller and the Shop Keeper,
four nodes where deployed. The load on the Log Aggregator and the Customer Container also impact this test.

CHAPTER 5. VALIDATION 61

Four Customer Container and four Log Aggregator nodes were deployed to ensure enough capacity existed to
not be a bottleneck in the test.

The Admission Controller was setup in such a way that immediate admission was allowed. No queueing was
needed in this scenario.

Results

It can be verified in two ways whether stocks are not exceeded. The first, is by counting how many reservations
were received and how many were handed back by the test script. Calculating the running sum shows that the
total number of issued stock never exceeds 80.

The second way, is by checking the logs aggregated by the Log Aggregator. By, again, calculating a running sum,
the number of products in each lifecycle phase at each point in time can be determined. This also showed that
the stocks were never exceeded.

Chapter 6

Conclusion

In this project, an attempt was made to solve the problems of handling flash-crowds and issuing reservations
for products having complex stocks. In this chapter, the architecture and the proof-of-concept implementation
will be evaluated. Another look will be given to the requirements. Analyzing them to see whether relaxing certain
requirements could improve the quality and usability of the project.

At first, the performance found in the tests described in the previous chapter is discussed. Then possible future
work is laid out. Specifically, four unimplemented features are discussed and possible solutions are presented.
Finally, recommendations on possible next steps for continuing this project are given.

6.1 Performance discussion

The results of the functional tests described in Chapter 5 show that the proof-of-concept implementation is func-
tional. However, it is also clear that the throughput is quite low. A maximum of nine customers arriving in a
second cannot be called a flash crowd. Neither is only being able to reliably handle a single concurrently shop-
ping customer.

Therefore, it cannot definitively be concluded that the designed architecture can properly deal with flash crowds.
Many attempts of improving throughput were attempted, but without the desired results. In the attempts it be-
came obvious, and as stated in Chapter 5, that the throughput of Dgraph is the main bottleneck. Choosing a
different database which provides both the needed consistency guarantees and a higher throughput should re-
sult in throughput improvements.

Another method of improving throughput is by changing the data access. Listed below are ideas on how through-
put can be increased in the order and stock modules.

Order module

The ordermodule needs to ensure that order is kept and customers are added to queueswhen appropriate.

By weakening the requirements for direct admission (ce1, cp1), the responsibilities of the Admission Controller
can be reduced to only admitting customers on a fixed schedule. This removesmuch of the load of the Admission
Controller and thus increasing the maximum number of customers that can be admitted per minute by a single
Admission Controller.

Another possible optimization is to split the complete queue in smaller sub-queues and joining the sub-queues
periodically. This would decrease the number of mutations that are updating similar data, increasing the total
throughput.

Stock module

As stated in Chapter 3, for keeping stock very strong consistency is needed. This will also need to hold when
dealing with stocks that cannot oversell.

By making the Shop Keeper stateful and dividing the stock between all Shop Keeper nodes, throughput might
be increased. Assume a stock of n, with c deployed Shop Keeper nodes. Each Shop Keeper node can then be
responsible for n

c of the total stock. Each Shop Keeper should then ensure that locally the stock is not exceeded.

62

CHAPTER 6. CONCLUSION 63

The Reservation Controller can then iterate over some set of Shop Keeper to see whether stock exists for reser-
vations before issuing a reservation. Dynamic policies can be created that merge multiple Shop Keeper nodes
when their stock drops below a certain threshold.

Since this (aswith the optimizations for the ordermodule) decreases the amount of possible transaction conflicts,
total throughput should rise.

6.2 Future work

In this section, possible solution to three of the fourmissing features described in Section 5.1 are presented.

Sub-products

For implementing sub-products, two approaches might be possible. The simplest approach is to restrict nesting
of sub-products and simply counting the number of attached products per level for every reservation. Determining
whether to issue a reservation with respect to the constraints only requires checking these counts.

Another more complex approach, is to use a generic structure of storing the products and the constraints. For
instance, modeling the products, sub-products, and the constraints between them as a tree or a DAG. Using a
DAG is not advisable even though it can express very complex constraints, when nodes in the graph are either
products or constraints. For the proof-of-concept, an implementation using a DAGwas attempted, but this proved
to have too many edge cases to implement properly in the time allotted.

Multiple shops

Two possible solutions are presented to ensure shops operate without degraded performance when one shop is
experiencing a flash-crowd. The first solution is to create a better distribution scheme. Preferably a distribution
scheme that also works well on runtime.

The second solution would be to use more intelligent load balancing. Currently, all customers are handled by the
same set of Customer Container nodes. If shops had a bias towards a certain subset of the Customer Container
nodes performance of other shops should not degrade. This could be applied to all components. This solution
also requires improvements on the distribution of shops to ensure load is balanced better.

Customer feedback

A possible solution to providing an approximate “place in queue” and “time to admission” to customers, is to let the
Customer Container derive the required values. This can be implemented, by only storing one extra integer with
all arrived customers. This integer would contain the number of customers that have arrived before the currently
arriving customer. Resulting in each customer for a shop receiving an incrementing integer value.

On admission, the Admission Controller must then add this integer. Since all Customer Container nodes have a
subscription to the stores of all customers it has connections with. It can simply calculate the spot in the queue
for each of its customers. From this spot, it can then derive the approximate wait time.

The following is a possible implementation for forcing customers to the next lifecycle phase. After arrival, the
Customer Container can retrieve the maximum durations of each of the lifecycle phases and derive deadlines
from these durations. Using these timers, the Customer Container can always force lifecycle phase changes for
customers exceeding those deadlines.

6.3 Recommendations

Many lessons were learned from designing the architecture subject to the requirements and the subtle interac-
tions between these requirements. From the lessons learned, improvements can be distilled that would benefit
the project.

• Evaluate the requirements. Try to weaken them where possible. Of specific focus should be requirements
dealing with admission, sub-products, and tiebreakers. These heavily influence the architecture. Restating
these requirements and altering the architecture accordingly can result in improvements in the operations
of the system.

CHAPTER 6. CONCLUSION 64

• Research a different method of storing data. Many of the issues experienced while implementing were
caused by the way data was stored. A mixed stateless/stateful approach as listed in Section 6.2. Using
Dgraph is not specifically advised against, but looking into other databases might result in easy improve-
ments in terms of reliability and predictability of the system.

• Research how to improve the Kubernetes deployment by researching available tooling. Many tools and
techniques exist to facilitate running workloads on Kubernetes. Each have different advantages and dis-
advantages. A set of tools was chosen that provided satisfactory functionality and behavior, but did not
attempt to find the “best” tools and techniques. Researching different tools and techniques can result in a
better deployment, making partitioning of components easier.

6.4 Conclusion

In this thesis, an architecture designed for handling flash crowds and issuing reservations is presented, each
subject to many different policies. An implementation of this architecture solves major issues for companies
selling popular products with strictly limited, unreplenishable stock.

A proof-of-concept of this architecture was created and verified whether it could solve the issues of properly
handling flash crowds and issuing reservations. Even though the performance was deemed insufficient, it was
shown to have implemented the desired behaviors.

The next steps should be to evaluate the outcome of this project, whether the ideas behind the architecture and
the implementation are deemed correct and suitable, evaluating the requirements, altering requirements where
needed, and perform more research on Kubernetes tooling.

Bibliography

[1] M. Mannion and B. Keepence, “Smart requirements,” SIGSOFT Softw. Eng. Notes, vol. 20, no. 2, p. 42–47, Apr.
1995. [Online]. Available: https://doi.org/10.1145/224155.224157 1.2.1

[2] D. Gifford and A. Spector, “The twa reservation system,” Communications of the ACM, vol. 27, no. 7, pp. 650–
665, 1984. 1.3.1

[3] J. Eklund, “The reservisor automated airline reservation system: Combining communications and comput-
ing,” IEEE Annals of the History of Computing, vol. 16, no. 1, pp. 62–69, 1994. 1.3.1

[4] M. Oloyede, S. Alaya, and K. Adewole, “Development of an online bus ticket reservation system for a trans-
portation service in nigeria,” Development, vol. 5, no. 12, 2014. 1.3.1

[5] D. Bermbach and J. Kuhlenkamp, “Consistency in distributed storage systems,” in Networked Systems,
V. Gramoli and R. Guerraoui, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 175–189. 1.3.1,
3.2.1

[6] J. Elson and J. Howell, “Handling flash crowds from your garage,” 01 2008. 1.3.2, 2.1.2

[7] J. R. Hamilton et al., “On designing and deploying internet-scale services.” in LISA, vol. 18, 2007, pp. 1–18. 1.3.2

[8] X. Chen and J. Heidemann, “Flash crowd mitigation via adaptive admission control based on application-
level observations,” ACM Trans. Internet Technol., vol. 5, no. 3, p. 532–569, Aug. 2005. [Online]. Available:
https://doi.org/10.1145/1084772.1084776 1.3.2

[9] Z. Zeng and B. Veeravalli, “Rate-based and queue-based dynamic load balancing algorithms in distributed
systems,” in Proceedings. Tenth International Conference on Parallel and Distributed Systems, 2004. ICPADS
2004. IEEE, 2004, pp. 349–356. 1.3.2

[10] M. J. Fischer, N. A. Lynch, J. E. Burns, and A. Borodin, “Distributed fifo allocation of identical resources using
small shared space,” ACM Trans. Program. Lang. Syst., vol. 11, no. 1, p. 90–114, Jan. 1989. [Online]. Available:
https://doi.org/10.1145/59287.59292 1.3.2

[11] D. Clegg andR. Barker,CaseMethod Fast-Track: A RadApproach. USA: Addison-Wesley LongmanPublishing
Co., Inc., 1994. 2

[12] P. Achimugu, A. Selamat, R. Ibrahim, and M. N. Mahrin, “A systematic literature review of software
requirements prioritization research,” Information and Software Technology, vol. 56, no. 6, pp. 568 – 585,
2014. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0950584914000354 2

[13] C. Szyperski, Component Software: Beyond Object-Oriented Programming, 2nd ed. USA: Addison-Wesley
Longman Publishing Co., Inc., 2002. 3, 3.1

[14] M. van Steen and A. Tanenbaum, Distributed Systems, 3rd ed., 2 2017, self-published, open publication. 3,
3.3.1, 3.3.2

[15] “What is kubernetes?” Jun 2020, accessed: 2020-06-29. [Online]. Available: https://kubernetes.io/docs/
concepts/overview/what-is-kubernetes/ 3

[16] A. Wiggins, The Twelve-Factor App, accessed: 2020-06-01. [Online]. Available: https://12factor.net/ 3

[17] P. b. R. Daigle, “Building twelve factor apps on heroku,” Aug 2016, accessed: 2020-06-09. [Online]. Available:
https://blog.heroku.com/twelve-factor-apps 3

[18] M. Fowler, “The basics of web application security,” accessed: 2020-06-29. [Online]. Available: https:
//martinfowler.com/articles/web-security-basics.html 3.1.1

65

https://doi.org/10.1145/224155.224157
https://doi.org/10.1145/1084772.1084776
https://doi.org/10.1145/59287.59292
http://www.sciencedirect.com/science/article/pii/ S0950584914000354
https://kubernetes.io/docs/concepts/overview/what-is- kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is- kubernetes/
https://12factor.net/
https://blog.heroku.com/twelve-factor-apps
https://martinfowler.com/articles/web-security-basics.html
https://martinfowler.com/articles/web-security-basics.html

BIBLIOGRAPHY 66

[19] A. Fox and E. A. Brewer, “Harvest, yield, and scalable tolerant systems,” in Proceedings of the Seventh Work-
shop on Hot Topics in Operating Systems. IEEE, 1999, pp. 174–178. 3.2.1

[20] “Container runtimes,” Jun 2020, accessed: 2020-07-09. [Online]. Available: https://kubernetes.io/docs/
setup/production-environment/container-runtimes/ 4.2.1

[21] “empowering app development for developers,” accessed: 2020-07-09. [Online]. Available: https:
//www.docker.com/ 4.2.1

[22] “Overview,” accessed: 2020-07-10. [Online]. Available: https://google.github.io/flatbuffers/ 4.3

[23] “Introduction,” accessed: 2020-07-10. [Online]. Available: https://docs.nats.io/nats-streaming-concepts/
intro 4.3.1

[24] “grpc - a high-performance, open source universal rpc framework,” accessed: 2020-07-14. [Online]. Available:
https://grpc.io/ 4.3.2

[25] “Rpc 2.0 specification,” accessed: 2020-07-14. [Online]. Available: https://www.jsonrpc.org/specification
4.3.2

[26] H. de Saxcé, I. Oprescu, and Y. Chen, “Is http/2 really faster than http/1.1?” in 2015 IEEE Conference on Com-
puter Communications Workshops (INFOCOM WKSHPS), 2015, pp. 293–299. 4.3.2

[27] “Clickhouse dbms,” accessed: 2020-07-10. [Online]. Available: https://clickhouse.tech/ 4.4

[28] D. Labs, “A distributed, fast graphql database with graph backend,” accessed: 2020-07-10. [Online]. Available:
https://dgraph.io/ 4.4

[29] D. Ongaro and J. Ousterhout, “In search of an understandable consensus algorithm,” in 2014 USENIX Annual
Technical Conference (USENIX ATC 14). Philadelphia, PA: USENIX Association, Jun. 2014, pp. 305–319.
[Online]. Available: https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro 4.4

[30] D. Labs, “Badger db,” accessed: 2020-07-21. [Online]. Available: https://dgraph.io/badger 4.5.3

[31] W. Li, Y. Lemieux, J. Gao, Z. Zhao, and Y. Han, “Service mesh: Challenges, state of the art, and future research
opportunities,” in 2019 IEEE International Conference on Service-Oriented System Engineering (SOSE), 2019,
pp. 122–1225. 4.6.2

[32] “Homepage,” accessed: 2020-07-21. [Online]. Available: https://linkerd.io/ 4.6.2

[33] “High performance load balancer, web server, & reverse proxy,” Jun 2020, accessed: 2020-07-12. [Online].
Available: https://www.nginx.com/ 4.6.2

[34] C. Team, “Traefik, the cloud native edge router: Containous,” accessed: 2020-07-12. [Online]. Available:
https://containo.us/traefik/ 4.6.2

https://kubernetes.io/docs/setup/production-environment/ container-runtimes/
https://kubernetes.io/docs/setup/production-environment/ container-runtimes/
https://www.docker.com/
https://www.docker.com/
https://google.github.io/flatbuffers/
https://docs.nats.io/nats-streaming-concepts/intro
https://docs.nats.io/nats-streaming-concepts/intro
https://grpc.io/
https://www.jsonrpc.org/specification
https://clickhouse.tech/
https://dgraph.io/
https://www.usenix.org/conference/atc14/technical-sessions/ presentation/ongaro
https://dgraph.io/badger
https://linkerd.io/
https://www.nginx.com/
https://containo.us/traefik/

Appendix A

Dockerfile

This appendix contains the Dockerfile used to build the images for the seven components. A Dockerfile contains
a number of steps that need to be taken in order to generate a Docker image. The steps in this Dockerfile are split
into two groups: building a binary, and configuring an image.

Docker images tend to be quite large since they often contain many tools. Images need to be small for ease
and speed of deployment. To achieve this, a common image called “golang:1.14” is used to build the binary and
then generate an image based on a much smaller base image. The “golang:1.14” is quite large at 809MB. The
Go compiler generates a statically linked binary. Therefore, the binary can be added to on an “empty” image.
Resulting in an image containing just the binary. Instead of using an “empty” base image, “alpine” was chosen
as a base image. It is possible to execute programs in a running container. Of course, only programs present
in the image the container is based on can be used. Being able to execute other programs in containers, like a
basic shell, is a good debug tool to have. Since the images are based on “alpine” instead of “scratch” (the “empty”
image) all tools offered by the alpine Linux distribution can be used.

The first steps in the Dockerfile describe how to build the binary. By default the Go compiler adds debug headers
to the binary. Since these headers are not needed, they are stripped away. To build the actual image, a new base
is selected, “alpine”, and the binary is copied over to it. Finally, some environment variables are set, to facilitate
deployment without much configuration.

The images resulting from these steps where between 16MB and 21MB large.

FROM golang : 1 . 1 4 . 2 AS build

Copy the current folder contents
WORKDIR $GOPATH / src / opentickets . tech / $BUILD_NAME
ADD . .

USER root

Run the installer
RUN GOOS=linux GOARCH=amd64 CGO_ENABLED=0 go build −mod vendor −ldflags="-w␣-s" \

−o /go / bin / docker_app

Build a new image, copy everything over and set the entrypoint , use alpine
FROM alpine
COPY −−from=build /go / bin / docker_app / app
EXPOSE 5000/tcp

Spec required environment variables
ENV LOG_LEVEL=info \

GRAYLOG_LOCATION='' \
GRAYLOG_LOG_LEVEL=info \
LOG_DISCARD='' \
AC_TICK_DURATION=50 \
AC_ADDR =:1236 \
CC_ADDR =:1235 \
PD_ADDR=:8003 \

67

APPENDIX A. DOCKERFILE 68

QM_ADDR =:1234 \
RC_ADDR =:1238 \
SK_ADDR =:1237 \
SA_ADDR =:1239 \
LISTEN=:8001 \
STORE_NAME=arstarst

STOPSIGNAL 15

Set the actual execution
CMD ["/app"]

Appendix B

Database specifications

This appendix contains the schemas deployed to the Dgraph and ClickHouse databases. Note, originally shops
were called stores. Since this caused confusion with the word datastore, store was replaced by shop. In most
parts of the implementation, including the schemas, store is still used instead of shop.

B.1 Dgraph schema

The terminology here will be ambiguous. Dgraph schemas have a notion called “type” and these “types” contain
properties that also have a type. When the word type is used in the context of Dgraph “types”, they will always be
quoted. When type is not quoted, it is related to the type of a property.

Dgraph supports a small set of primitives for properties: string, float, int, geo, dateTime, and bool. All except
geo are self explanatory. Properties of type geo depict coordinates and allow for spatial queries to be run on the
database.

The only thing needed to get up-and-runningwith a Dgraph schema, is simply listing a set of properties with a type.
Since Dgraph uses a declarative query language the entire structure of the response must be explicitly described
in the query. Since this can be quite involved, Dgraph has introduced the notion of “types”.

“Types” are simply groupings of properties. When types are properly used, queries can be simplified by adding the
keywords expand(_all_). When this keyword is added to a query, all properties of that type are automatically
added to the response. It is similar to SELECT * FROM ... in SQL.

When a property depicts a relation like the “admission_policy” property, for instance, it does not point to a type,
instead it points to a “uid”. A uid is an identifier generated by Dgraph and serves as an identifier to uniquely
identify a node. Within a “type”, the type of a property depicting a relationship can use a “type” as the property
type. Within “Store”, the type of “admission_policy” is “Policy”. Using this information, Dgraph can determine that
when a query retrieving is retrieving a “Store” and its “admission_policy” property, the “type” of “admission_policy”
is “Policy”.

To model arrays, Dgraph requires the type of the property is infixed between brackets. An example of this can be
seen in the “reservations” property, which is an array of the type uid.

The schema listed contains the structure originally intended to be used for sub-product handling. Since this
implementation was never fully finished it is not fully described in the report. By renaming the “type” called “Node”
to “Product” and removing the “children”, “min”, “max”, and “unique” properties, the Schema is a drop in replacement
for the current schema and implementation while improving on readability of the schema. This change was not
applied in order to reduce the time spent on implementation. All extra properties are ignored by the proof-of-
concept implementation.

Define Directives and index
children : [uid] .
reservations : [uid] .
customers : [uid] .
xid : string @index (exact) .

max_size : int .
flow : int .

69

APPENDIX B. DATABASE SPECIFICATIONS 70

admission : int .
admit_per_minute : int .
open_at : DateTime .
admit_at : DateTime .
categories : [int] .
privilege_determination : int .
max_shopping : int .
max_returns : int .

customer : uid .
succ : uid .
head : uid .
tail : uid .

type Link {
succ : Link
customer : Customer

}

phase : int .

type Policy {
xid
max_size : int
phase : int
flow : int
admission : int
admit_per_minute : int
open_at : DateTime
admit_at : DateTime
categories : [int]
privilege_determination : int
max_shopping : int
max_returns : int

head : Link
tail : Link

}

placement_update_every : int .

opens : DateTime .
closes : DateTime .
min : int .
max : int .
unique : int .
admission_policy : uid .
payment_policy : uid .

type Store {
xid
placement_update_every : int
opens : DateTime
closes : DateTime

min : int
max : int
unique : int

admission_policy : Policy
payment_policy : Policy

children : [Node]

customers : [Customer]
}

APPENDIX B. DATABASE SPECIFICATIONS 71

privilege : int .
status : int .
store : string .

type Customer {
xid
privilege : int
status : int
store : string
reservations : [Reservation]

}

requires_reservation : bool .

stock : int .
reserved : int .
pending : int .
sold : int .

includes_pending : bool .
includes_reserved : bool .
includes_sold : bool .

type Node {
xid
children : [Node]
requires_reservation : bool

includes_pending : bool
includes_reserved : bool
includes_sold : bool

min : int
max : int
unique : int

stock : int
reserved : int
pending : int
sold : int

}

node : uid .

valid : bool .
modifiable : bool .

type Reservation {
xid
node : Node

}

B.2 Clickhouse schema

Listed below is the schema used by ClickHouse. Two tables and two “realized views” are used. A table is similar to
a table in SQL. A “realized view”, though similar, is different to SQL views, they are somewhat similar tomaterialized
views. Realized views are similar tomaterialized views in that both are tables that contain the data without having
to query the table they are based on. Contrary tomaterialized views, materialized views are updated automatically
by ClickHouse.

The tables store the log items aggregated by the Log Aggregator. Specifically they contain each change in the
product and customer lifecycles. For instance, when a customer changes lifecycle phase from “Waiting” to

APPENDIX B. DATABASE SPECIFICATIONS 72

“Browsing”. A tuple is inserted into the “customer_events” table with a -1 for the “waiting” column and a +1 for the
“browsing column”. This tuple is then aggregated by the “customer_stats” realized view. This view aggregates
the sum for each of the columns named after lifecycle phases of the “customer_events” table. Exactly the same
approach is used for products, through the “product_events” and “product_stats” table and realized view.

Customers generate events relevant to the status of a shop. However, the events generated by a specific cus-
tomer are not relevant for a shop, the combination of events generated by all customers of that shop is. Therefore,
only the customer identifier is used to group the “customer_stats” by. The “customer” field could have been elimi-
nated from the “customer_events” table, but it proved to be a valuable debugging tool, so it was kept. Furthermore,
it can be used to resolve conflicts between customers on who got admitted when.

For products a similar reasoning applies. However, here the aid of having the “customer” field in the “customer_events“
table was negligible, so it was omitted. Although it can be easily added in order to resolve conflicts between cus-
tomers regarding who got reservations.

CREATE TABLE IF NOT EXISTS customer_events
(

customer FixedString(36),
store FixedString(36),
waiting Int,
browsing Int,
done Int,
paying Int,
departed Int,
action_time DateTime64(6, 'UTC')

)
ENGINE = SummingMergeTree() ORDER BY (customer, store, action_time);

CREATE MATERIALIZED VIEW IF NOT EXISTS customer_stats
ENGINE = AggregatingMergeTree() PARTITION BY toYYYYMM(action_time) ORDER BY (action_time)

AS
SELECT toStartOfSecond(action_time) as action_time,

store as store,
sumState(waiting) AS waiting,
sumState(browsing) AS browsing,
sumState(done) AS done,
sumState(paying) AS paying,
sumState(departed) AS departed

FROM customer_events
GROUP BY action_time, store;

CREATE TABLE IF NOT EXISTS stock_events
(

product FixedString(36),

reserved Int,
pending Int,
sold Int,
action_time DateTime64(6, 'UTC')

)
ENGINE = SummingMergeTree() ORDER BY (action_time, product);

CREATE MATERIALIZED VIEW IF NOT EXISTS stock_stats
ENGINE = AggregatingMergeTree() PARTITION BY toYYYYMM(action_time) ORDER BY (action_time)

AS
SELECT toStartOfSecond(action_time) as action_time,

product product,
sumState(reserved) AS reserved,
sumState(pending) AS pending,
sumState(sold) AS sold

FROM stock_events
GROUP BY action_time, product;

Appendix C

Dgraph change request example

Depicted in this appendix is a Dgraph change request. As explained in Chapter 4, Dgraph change requests consist
of queries and mutations. Mutations contain descriptions on the data to mutate, and the data to delete and can
make use of the result of the queries. Furthermore, eachmutations can have an associated condition. Amutation
with an associated condition is only applied iff the condition holds.

The example change request is the admission of a customer from a queue. Queues are implemented as linked
lists since these allow fast appends and where easily modelled in Dgraph. Two operations are needed for the
linked list. Appending a customer to the end of the list, and removing the head of the queue and replacing it with
its successor. This change request deals with the second operation.

For this operation, the customer currently at the head of the queue needs to be retrieved, and the head of the
queue must be replaced by the successor of the current head. If the current head does not have a successor, it
must follow that the head is also the tail of the list. Since the tail of the list is stored with the head of the list (for
admission into the queue) it must also be removed when the head is removed.

Therefore, the change request consists of one query, and twomutations. The query attempts to retrieve the head,
the customer contained in, the head’s successor, and the tail. The firstmutation will replace the head of the queue
with the head’s successor iff there is a successor. While the second mutation removes both the head and the tail
iff the head has no successor. The current head of the queue is returned, since the result of queries before the
mutations were executed is returned as part of the response.

As explained, each store has two queues, each subject to their own policies. The two queues for a shop are
stored as part of the policy they are subject to. Each policy has been given an identifier to be able and easily find
it. This identifier is the shop identifier suffixed by the word “admission”, or “payment” for the policies controlling
shop admission and admission to payment services respectively.

Properties retrieved by queries can be used in mutations when they are marked as variables. Variables are de-
picted by an identifier, followed by the keyword “as”, followed by the property.

The first mutation handles removing the head, this is simply done by setting the new head to the successor of
the current head. The policy (containing the head property) is depicted by uid(Obj), the property to mutate by
<head>, and the new head by uid(NHead). The second mutation deletes both the head and the tail, since neither
is needed anymore.

Conditions on mutations were found to be somewhat limited. They work best when checking the cardinality of
the result. Since every element in the linked list has at most one successor, it suffices to check whether the
cardinality of the amount of retrieved successors (the NHead variable) is equal to either zero or one.

C.1 Query
query i d ($ id : s t r i n g) {

h (func : eq (x id , $ id)) {
Obj as u id
head {

customer {
x i d

}

73

APPENDIX C. DGRAPH CHANGE REQUEST EXAMPLE 74

succ {
NHead as u id

}
}

}
}

C.2 First mutation
Condition @if(eq(len(NHead),1))

Set uid(Obj) <head> uid(NHead) .
Delete -

C.3 Second mutation
Condition @if(eq(len(NHead),0))

Set -
Delete uid(Obj) <tail> * .

uid(Obj) <head> * .

Appendix D

Deployment and StatefulSet example

This appendix contains the YAML files needed to deploy the Customer Container, and the Log Aggregator. These
were chosen since they depict the two different manners used to deploy to Kubernetes, a Deployment and a
StatefulSet for the Customer Container and Log Aggregator respectively.

Though these two deployment primitives serve completely different purposes, their definition is similar. Both
contain metadata, which is useful to identify a (set of) pod(s). Both contain a specification of the containers
they will run, contained in the “spec” field, and this structure is even similar for both the Deployment and the
StatefulSet.

A specification consists of a name, the name of the image for which a container must be started, network ports
that can be exposed, and environment variables with their values for configuration. The difference (in this case) is
in the specification of a “PersistentVolumeClaim” (PVC) using the volumeClaimTemplates field of the StatefulSet.
A PVC is a persistent disk, potentially external to the Kubernetes cluster, that is attached to a container at some
path in its filesystem. The volumeClaimTemplates field describes a template to a PVC, to be attached to all
deployed containers of the Log Aggregator.

D.1 Deployment
apiVersion: apps/v1
kind: Deployment
metadata:
name: cc
labels:

app: waas
tier: cc

spec:
replicas: 1
selector:

matchLabels:
app: waas
tier: cc

strategy:
type: Recreate

template:
metadata:
labels:

app: waas
tier: cc

spec:
containers:
- image: registry.digitalocean.com/waas/cc

imagePullPolicy: Always
name: cc
env:
- name: CLICKHOUSE_ADDR
value: 10.110.16.6:9000

- name: SOCKET_PREFIX

75

APPENDIX D. DEPLOYMENT AND STATEFULSET EXAMPLE 76

value: sock
- name: REST_PREFIX
value: cc

- name: QM_ADDR
value: qm:1234

- name: sk_ADDR
value: sk:1237

- name: STAN_ADDR
value: stan:7222

- name: NATS_LOC
value: nats.nats

- name: DGRAPH_ADDR
value: dgraph-dgraph-alpha.dgraph:9080

- name: RC_ADDR
value: rc:1238

- name: SA_ADDR
value: sa:1239

ports:
- containerPort: 8000
- containerPort: 8001

restartPolicy: Always

D.2 StatefulSet
apiVersion: apps/v1
kind: StatefulSet
metadata:
name: sa
labels:

app: waas
tier: sa

spec:
replicas: 3
selector:

matchLabels:
app: waas
tier: sa

serviceName: sa
template:

metadata:
labels:

app: waas
tier: sa

spec:
containers:

- image: registry.digitalocean.com/waas/sa
imagePullPolicy: Always
name: sa
env:
- name: CLICKHOUSE_ADDR

value: 10.110.16.6:9000
- name: LOG_LEVEL

valueFrom:
configMapKeyRef:
name: configuration
key: log_level

volumeMounts:
- name: badger

mountPath: /db
restartPolicy: Always

volumeClaimTemplates:
- metadata:

name: badger
spec:

accessModes: ["ReadWriteOnce"]

APPENDIX D. DEPLOYMENT AND STATEFULSET EXAMPLE 77

resources:
requests:
storage: 1Gi

Appendix E

List of requirements

This appendix contains a listing of all requirements. Each requirement is accompanied by a short message
describing whether the requirement has been implemented.

cs1 any customer can immediately choose a product [MUST]
Implemented!

cs2 limit reservation burstiness, any customer can choose some limited amount of product per interval [COULD]
Not implemented

cs3 any customer can choose up to a strictly limited amount of product [MUST]
Not implemented

cs4 any customer can choose up to a strictly limited amount of a single product [MUST]
Not implemented

cs5 any customer can choose products within a certain fixed shopping window [MUST]
Not implemented

cs6 any customer can only choose product that was not shown as sold-out to any customer [MUST]
Not implemented

op1 any customer can get up to the amount of product that has not been purchased yet [MUST]
Implemented!

op2 any customer can get up to the amount of product that has neither been purchased nor is awaiting payment
success [MUST]
Implemented!

op3 any customer can get up to the amount of product that has neither been purchased, is awaiting payment
success, nor has been placed in baskets yet [SHOULD]
Implemented!

op4 any customer can get up to some amount of product, allowing for some overselling percentage [COULD]
Strictly speaking, this requirement has been implemented. But it needs to be setup manually, by increasing avail-
able stock.

sp1 A product can have either a strictly limited, or unlimited stock [MUST]
Implemented!

sp2 A product contains multiple sub-products [MUST]
Not implemented

sp3 A product contains required sub-products [MUST]
Not implemented

sp4 A product contains optional sub-products [MUST]
Not implemented

sp5 A product contains a set of sub-products from which a minimal amount of products need to be chosen. i.e.
from 10 sub-products, at least two must be chosen [COULD]
Not implemented

78

APPENDIX E. LIST OF REQUIREMENTS 79

sp6 A product contains a set of sub-products from which a maximum amount of products can be chosen. i.e.
from 10 sub-products, at most five can chosen [COULD]
Not implemented

sp7 A product contains sub-products which can be purchased a limited amount of times, i.e. when composing a
product, certain sub-products can be added a bounded number of times [COULD]
Not implemented

sp8 For some n,m ∈ N, n > m; When n customers want to reserve the same (sub-) product p, with ap = m, a
tiebreaker exists to determine who will get the (sub-) products [COULD]
Implemented!

sp9 For some n,m ∈ N, n > m; When n customers want to reserve the same product p having required sub-
products, with ap = m, a tiebreaker exists to determine who will get the products and the sub-products [COULD]
Not implemented

ce1 customers are admitted immediately [MUST]
Implemented!

ce2 customers are admitted never [MUST]
Implemented!

ce3 customers are admitted iff privileged [COULD]
Not implemented

ce4 customers are admitted in (near) arrival monotonic order [SHOULD]
Implemented!

ce5 customers are admitted in random order [COULD]
Not implemented

ce6 customers are admitted in some pre-/yet to- be determined order [COULD]
Not implemented

ce7 customers are admitted only while the capacity of the store is not exceeded [MUST]
Implemented!

ce8 customers are admitted with a constant flow [SHOULD]
Implemented!

ce9 customers abandoning shopping runs does not lead to changes in service [SHOULD]
Implemented!

ce10 customers can know when they approximately will be admitted [SHOULD]
Not implemented

ce11 customers can know how many other customers are also awaiting to be admitted [COULD]
Not implemented

ce12 customers cannot know when they approximately will get admitted [COULD]
Not implemented

ce13 customesr cannot know how many other customers are also awaiting to be admitted [COULD]
Not implemented

cp1 any customer can pay [MUST]
Implemented!

cp2 no customer can pay [MUST]
Implemented!

cp3 in some pre-/yet to- be determined order [COULD]
Not implemented

cp4 only privileged customers can pay [COULD]
Not implemented

tb1 no customer gets a final product unless the complete product can be reserved [MUST]
Implemented!

tb2 random customers will get the final products [COULD]
Not implemented

APPENDIX E. LIST OF REQUIREMENTS 80

tb3 customers admitted the earliest get the final products [COULD]
Not implemented

tb4 customers admitted the latest get the final products [COULD]
Not implemented

tb5 customers having the highest value of products in their basket will get the final products [COULD]
Not implemented

ma1 c2 arrives more than 1 second after c1 [MUST]
Not implemented

ma2 c2 arrives more than 250 milliseconds after c1 [SHOULD]
Not implemented

ma3 c2 arrives more than 100 milliseconds after c1 [COULD]
Not implemented

dp1 application runs on Linux [MUST]
Even though the application is containerized, these containers are linux based, so the system can run natively on
Linux as well

dp2 application runs on Windows [WON’T]
Implemented!

dp3 application is containerized [SHOULD]
Implemented!

dp4 application runs in a Kubernetes cluster [SHOULD]
Implemented!

dp5 application scales with load [SHOULD]
Implemented!

dp6 application is failure resilient [MUST]
Implemented!

mt1 application handles a single store [MUST]
Implemented!

mt2 application handles multiple shops [SHOULD]
Implemented!

mt3 when a single store is experiencing a flash crowd, others shops should remain unaffected depends ver:mt1
[SHOULD]
Implemented!

mt4 store operators can have a guaranteed number of customers in their store [SHOULD]
Implemented!

mt5 store operators can have a guaranteed limit on waiting times [WON’T]
Implemented!

me1 application works without supervision, based on some pre-specified operation policies [SHOULD]
Not implemented

me2 application keeps track of metrics [MUST]
Implemented!

me3 application keeps track of total number of waiting customers depends ver:me2 [MUST]
Implemented!

me4 application keeps track of total customer influx depends ver:me3 [SHOULD]
Implemented!

me5 application keeps track of total customer outflux depends ver:me3 [SHOULD]
Implemented!

me6 application keeps track of number of waiting customers per shop depends ver:me2 [SHOULD]
Implemented!

APPENDIX E. LIST OF REQUIREMENTS 81

me7 application keeps track of customer influx per shop depends ver:me6 [SHOULD]
Implemented!

me8 application keeps track of customer outflux per shop depends ver:me6 [SHOULD]
Implemented!

mc1 Products can only be purchased from shops they are offered in [MUST]
Implemented!

mc2 Customers have a limited amount of retries for achieving a successful payment [SHOULD]
Not implemented

Appendix F

Flatbuffer and gRPC example

This appendix contains an example of the Flatbuffer IDL used by components to communicate and contains
a specification of the gRPC service. The listed specification lists a number of “tables” and is followed by the
declaration of a gRPC service.

Tables are comparable to structs in C and depict the structure of the data. Flatbuffers require the use of tables.
Even bare properties, a string for instance, needs to be encapsulated in a table. The example lists 3 tables which
are used for the communication between the Customer Container and the Reservation Controller.

Properties in tables can have many different types, many numeric scalars of different bit lenghts, booleans,
strings, vectors of some type, and references to other tables. Vectors are simply the type of the elements of
the vector infixed between brackets.

The “rpc_service” block describes a service called “Cc” to be implemented by the Reservation Controller, i.e. these
are the methods provided by the Reservation Controller to the Customer Container. The “Reserve” call (for in-
stance) requires an instance of a table called “ReservationRequest” as part of the request and that a “Reservation”
table instance is added as part of the response.

The table name prefixed with “services.any.” points to tables listed in a different namespace. The contents of the
tables in this namespace are not listed.

gRPC offers support for sending or retrieving multiple tables for a single request. An example of this is also listed
below, the “Reservations” call retrieves all reservations for a customer. (streaming: "server") describes that
the component providing the “Cc” service (Reservation Controller in this case) returns multiple instances of a
“Reservation” table. If “server” was replaced with “client”, the client can send multiple any.services.Strings
and get returned a single “Reservation”.

i nc l ude " any . fbs " ;
namespace se rv i ces . ccrc ;

t ab l e Reservat ionRequest {
path : [s t r i n g] ;

r e t r i e v e : bool ;

customer_id : s t r i n g ;
s t o r e _ i d : s t r i n g ;

p r i v i l e g e _ c a t : i n t ;
p r i v i l e g e : i n t ;

}

t ab l e Reservat ion {
i d : s t r i n g ;
r e se r va t i on : s t r i n g ;
c h i l d r en : [Reservat ion] ;
v a l i d : bool ;
mod i f i ab le : bool ;

}

82

APPENDIX F. FLATBUFFER AND GRPC EXAMPLE 83

t ab l e Reservat ionSet {
r ese r va t i ons : [Reservat ion] ;

}

r pc _se r v i ce Cc {
Reserve (Reservat ionRequest) : Reservat ion ;
Reservat ions (se rv i ces . any . S t r i ng) : Reservat ion (streaming : " se rve r ") ;
F i n i sh (se r v i ces . any . S t r i ng) : se r v i ces . any . EmptyResponse ;
Pay (se rv i ces . any . S t r i ng) : se r v i ces . any . EmptyResponse ;

}

Appendix G

Ping tests

In this appendix the results of the ping tests are described. These served to determine whether networking issues
could play a role in the perceived performance of the proof-of-concept when testing for correctness.

Each test consisted of 10,000 pings, with an interval of 0.1 seconds, to the load-balancer in front of the cluster.
Though this test does not definitively prove that networking delays and related issues are not a major factor in
communication with the cluster, the topic cannot be investigated deeper. Since the load-balancer and networking
communication within the cluster cannot be investigated.

In total three tests were run, at around 8:30, 12:00 and 18:30 on a Saturday from the same machine as the func-
tional tests were run from. The command used was: ping -c 10000 -i 0.1 waas.openticket.tech. These
times were selected to see whether this was of influence on the results. The expectation was that at different
times of the day, the datacenter where the proof-of-concept is hosted would be experiencing different load, which
would show in the results.

For each test, the results are given. For each test the results were also cleaned, all measured rtts with a difference
to the mean greater than 1.5 times the IQR were removed.

As expected, the tests executed later in the day showed a slowdown. However, the differences are negligible, the
uncleaned 18:30 average rtt is around 4% slower than the uncleaned average at 8:30.

G.1 8:30 results

Measure Raw measurements Without outliers

Number of measurements 10,000 9,945

Minimum rtt 0.272 ms 0.272 ms

Maximum rtt 3.97 ms 0.701 ms

Average rtt 0.474 ms 0.471 ms

Standard deviation 0.100 ms 0.073 ms

IQR: 0.115

G.2 12:00 results

Measure Raw measurements Without outliers

Number of measurements 10,000 9,925

Minimum rtt 0.283 ms 0.283 ms

Maximum rtt 3.97 ms 0.725 ms

Average rtt 0.489 ms 0.486 ms

Standard deviation 0.095 ms 0.078 ms

84

APPENDIX G. PING TESTS 85

IQR: 0.121

G.3 18:30 results

Measure Raw measurements Without outliers

Number of measurements 10,000 9,980

Minimum rtt 0.333 ms 0.333 ms

Maximum rtt 4.08 ms 0.767 ms

Average rtt 0.495 ms 0.492 ms

Standard deviation 0.113 ms 0.082 ms

IQR: 0.139

	Introduction
	Requirements
	System architecture
	Implementation
	Validation
	Conclusion
	Bibliography
	Dockerfile
	Database specifications
	Dgraph change request example
	Deployment and StatefulSet example
	List of requirements
	Flatbuffer and gRPC example
	Ping tests

