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Abstract

Human posture recognition is an attractive and challenging topic with a wide range of applications.
Current solutions rely on high-resolution cameras, depth cameras, or body sensor network to
provide accurate posture recognition. The main drawback of cameras is the privacy concerns
related to their use and body sensor networks are not suited for long term use due to the high
number of sensors used. Emerging technologies for privacy-preserving posture recognition show
promising results.

One of these technologies is the thermopile array sensor that provides low-resolution thermal
images. The goal of this research was to develop a privacy-preserving room-wide posture recog-
nition system using thermopile array sensors. The challenge with using low-resolution thermopile
array sensors is that as the distance to the sensor increases, the noisier and less detailed the images
become.

Three methods of using localization for posture recognition were explored to improve the
accuracy of the system. The localization uses the positions and angles of arrival of the sensors for
its estimations. The thermal images are used to determine the angle of arrival. Eight postures were
used to compare the methods. The proposed system achieved an accuracy of 93.3%, which shows
that privacy-preserving room-wide posture recognition can achieve high accuracy using thermopile
array sensors.
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Chapter 1

Introduction

Human posture recognition is an attractive and challenging topic with a wide range of applications
in the areas of personal health care, human-computer interaction (HCI), environmental awareness,
and surveillance systems. The application of human posture recognition in assisted living is gaining
increased interest as the number of elderly is continuing to grow with the estimate that globally
there will be 2.1 billion elderly in 2050 [27]. Coinciding with the increase in elderly people, there
is a strong desire from the elderly to continue living independently at home. It is known that the
elderly have a higher risk of falling and sustaining an injury due to falling. The risk of falling
increase with their age and so does the mortality rate of fall-related injuries [21]. Indoor posture
recognition systems can be used to monitor the activities of the elderly and detect accidental falls.

Another application for human posture recognition is smart buildings that are becoming more
prevalent in recent years with the advancement of Internet of Things (IoT) and the integration of
building automation systems. One of the challenges in smart buildings is adapting room conditions,
such as lighting, heating, ventilation and air condition, to the preference of the users and the
activities that take place within the room. Human posture recognition is the basis of human
action recognition that offers methods to determine the activities within a given area.

There are generally two approaches when it comes to posture recognition systems. The camera-
based approach uses the images captured by different types of cameras to determine the posture,
while the sensor-based approach uses inertial-based sensors as a basis for posture recognition.
Both approaches are briefly introduced in the next section.

1.1 Existing solutions

Most early human posture recognition solutions use RGB cameras to extract the silhouette of
the human body from the captured images [9, 11, 12]. Cameras have the problem of being
perceived as privacy-invasive due to their size and purpose among other disadvantages, such as
high computational cost, and sensitive to lighting conditions. With the introduction of cost-
effective depth cameras, such as the Microsoft Kinect, many researchers have used these sensors in
their posture recognition systems [1, 4, 23, 24, 28] as they are able to provide real-time 3D data and
insensitive to lighting changes [3]. The Kinect gained more popularity as it became able to create
human skeletons constructed by the estimation of 3D joint positions from its depth sensor [25].
Recently, time-of-flight (TOF) sensors have been used for posture recognition [5]. These sensors
use a different approach from depth cameras to construct a depth image of its surroundings at
high frame rates.

Wearable sensors or inertial sensors are used in inertial-based human posture recognition sys-
tems. A combination of accelerometers and gyroscopes are used to form a wireless body area
network that is worn by the user [13, 15, 29]. Wearable sensors have been used to solve some of
the problems of the camera systems as they are not sensitive to lighting conditions, can freely move
with the user, and are not considered privacy invasive, but they have their own problems with
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CHAPTER 1. INTRODUCTION

sensor drift over time and require the users to correctly place and maintain the sensors making
them not suitable for long term applications.

1.2 Proposed solution

In the last couple of years, thermopile array sensors have come down in price making them a
suitable alternative for the above-mentioned sensors for the applications of presence detection,
fall detection, and posture recognition systems [2, 7, 10, 16, 26]. These sensors measure the
temperature in the area by using a number of thermopiles that detect an object’s infrared energy.
These sensors are ideal for embedded applications in assisted living and smart buildings due to
their small size, low energy consumption, and ability to detect stationary objects. The privacy of
the users is preserved by the low resolution of these sensors compared to cameras.

The main goal of this research is to develop a privacy-preserving room-wide human posture
recognition system using low-resolution thermopile array sensors and distributed neural networks.
The whole system forms a wireless sensor network. The posture data is captured by the sensors
at different angles and this information is processed to be used in the posture recognition. A
localization algorithm is used to estimate the location of the person based on the positions of the
sensors and the posture data. This location is used to perform the recognition locally if the person
is close to a sensor. Otherwise, global posture recognition is used to recognize the posture. The
localization is also used to deal with the fuzzy images that are captured when the person stands
further away from the sensors.

1.3 Report layout

The remainder of this report is organised as follows. Chapter 2 describes the shortcomings of
the current solutions, intrduces the goal of this research and the challanges. The related work is
presented in Chapter 3. In Chapter 4, the proposed solution is explained. The experiments that
were performed and their results are described in Chapter 5. Chapter 6 consists of the conclusions.

Distributed Human Posture Recognition using Thermopile Array Sensors 3



Chapter 2

Problem statement

2.1 Research motivation

Human posture recognition is the basis for human action recognition and both have a wide range
of applications in multiple areas. Improving posture recognition will have the potential to enhance
the functionalities of these systems in all application areas, such as assisted living [7, 24, 10], smart
buildings [2] and action recognition [1, 4, 11].

As mentioned in Chapter 1, the majority of the posture recognition system are camera-based
due to their successful results, ease of use, and availability. While camera-based solutions continue
to improve, they are becoming a less appealing option for certain applications due to privacy con-
cerns. Cameras are relatively large and their shapes are recognisable making them be considered
privacy invasive. The high resolutions of cameras are another reasons for the privacy concerns as
their images contain detailed information about the people that are in the frame. Most research on
camera-based solutions focuses on single subject posture recognition within a limited area, often
a few meters from the centre of the FOV of the camera(s) used [3]. Many posture recognition
applications would benefit from room-wide recognition (e.g. assisted living, smart buildings, etc.).

Sensor-based solutions are not considered privacy-invasive. One of the benefits of sensor-based
solutions is that they are not limited to a given area by using wearable sensors; however, their
main drawback is the high number of sensors used [29, 15, 13]. These sensors have to be positioned
correctly and maintained, which is often the responsibility of the user. This makes sensor-based
solutions ill-suited for long term use.

Thermopile array sensors are an alternative for posture recognition solutions as they solve
some of the issues of the other sensors and enable new application scenarios. The privacy concerns
with camera-based solutions is not an issue with thermopile array sensors due to their small size
and low resolution. An example of a thermal image captured by these sensors is shown in Figure
2.1. This figure shows a person that spread both arms out wide. Due to the low resolution, no
discernible details of the person, such as gender and age, can be extracted from this image.

While thermopile posture recognition solutions show promising solutions there are some limit-
ations with these sensors:

• Using the thermal images from these sensors makes posture recognition more challenging.

• Postures with slight differences are difficult the distinguish due to the low resolution of the
thermal images.

• The thermal images have a higher noise ratio compared to cameras.

• Details in the thermal images are lost at smaller distances compared to cameras.

Some of the limitations can be overcome by using multiple sensors to provide additional details.
The solution proposed by Burns et al. [2] has trouble recognizing certain postures, which is

likely due to the sensor configuration as it only uses two sensors on perpendicular axes. Another
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Figure 2.1: Example of a thermal image captured using a thermopile array sensor

limitation resulting from the low resolution is that as the distance to the sensor increases, it
becomes more challenging to distinguish the posture. Gochoo et al. [7] proposed a solution using
three sensors at different axes with promising results at a distance of 1.5 meters from the sensors,
where the postures are still easily recognizable.

The aim of this research is to develop a proof of concept for a privacy-preserving room-wide
posture recognition system. The system uses thermopile array sensors to capture the posture data
and performs the recognition in a distributed way. Interest for this research was initially sparked
from the results of the proposed system of Gochoo et al. [7], which uses multiple thermopile array
sensors to perform posture recognition at a fixed position. What this concept misses is the ability
to recognize postures at larger distances such that it can be used for room wide recognition. An
initial test shows that posture recognition can be performed at larger distances using a single low
resolution thermopile array sensor on simple but distinct postures. What the test also shows is
that the accuracy of the recognition drops as postures are captured at increasing distances. The
details of this test are described in section 5.3.1.

The main research question that is answered in this research is formulated as follows.

RQ. How to improve the accuracy of a room-wide posture recognition system using thermopile
array sensors?

2.2 Research challenges

Existing solutions have shown that posture recognition using thermopile array sensors is possible
with high accuracy when the recognition is performed at a fixed position. The goal of the research
is to recognize the postures of people at any position in the area. At larger distances, the noise
in the thermal images increases while the level of details decreases. Posture recognition of more
complex postures becomes challenging at these distances. To achieve these this goal, using only a
single thermopile array sensor is not enough, because of its low resolution. Therefore, a distributed
posture recognition system is proposed.

Distributed posture recognition

Yang et al. [29] explored offloading some of the computation by having the sensors determine
whether the data should be sent to the central computing unit, reducing the workload of the
central unit and the used bandwidth. The research of Bi et al. [1] shows that distributed posture
recognition is possible using the PCANN architecture; however, they only distributed the image
from a single camera over multiple nodes in the WSN. Before the distributed posture recognition
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can be performed, the images have to be obtained by the classification device. This architec-
ture reduces the workload and the memory consumption of the sensor nodes, but increases the
bandwidth used by the system as the images are transmitted twice over the network. The goal
of this research is to perform posture recognition on images produces by multiple sensors locally.
By performing the local posture recognition on the sensors reduces the used bandwidth, and the
workload and memory consumption on the central unit. Through this reduction, it is possible to
deploy the central unit on an embedded platform, making remote deployments easier.

Long distance recognition

The radiation received by the thermopile array sensor is reduced at greater distances. Combined
with the fact that the individual thermopile elements cover a larger area at these distances results
in fuzzy images. Posture recognition on these fuzzy images is challenging as it is difficult to
distinguish between the different postures. The theory is that location data can be used to
improve the recognition. This additional data could be extracted from the thermal information of
the thermopile array sensors or from additional sensors added to the system. Another option is
to pre-process the obtained images to remove some of the noise from the image.

6 Distributed Human Posture Recognition using Thermopile Array Sensors



Chapter 3

Related work

3.1 Camera-based solutions

3.1.1 Regular camera-based solutions

Kyaw K. Htike et al. [11] proposed a real-time human posture recognition system for video sur-
veillance using a single static camera to detect four postures (standing, sitting, lying down, and
crawling). The video feed from the camera was sampled at 6 frames per second (fps) as many
frames at higher frame rates are redundant or very similar. In the data pre-processing, the body
silhouette was extracted using several algorithms such as background extraction, Otsu threshold-
ing, and median filtering were used. Four classifiers (K-means, Fuzzy C-means, Multi-Layer Per-
ceptron (MLP) Neural Network, and Self Organizing Maps) were evaluated and compared. The
MLP neural network achieved the highest accuracy of 96% while the other classifiers performed
worse with K-means, Fuzzy C-means, and Self Organizing Maps achieving accuracies of 31%, 33%,
and 86% respectively.

Ninghang Hu et al. [12] describe a posture recognition system using a top view camera that is
able to recognize six postures (standing, sitting, bending, pointing, stretching, and walking). The
posture recognition is performed using a Posture Descriptor that assigns a matching score to an
image for each posture category that it was trained with. These scores are considered the feature
vector for the standard Support Vector Machine (SVM). The average accuracy of the system is
79.75%, which is an improvement of 23% over similar solutions.

Kamal Sehairi et al. [24] propose an elderly fall detection system based on multiple shape
features and motion analysis. Background subtraction is used to determine the silhouette from
which the head position is estimated. The vertical velocity of the head was calculated using a
finite state machine that determined the direction of movement. This velocity and other features
extracted from the camera feed was used in three classifiers (Radial basis function SVM, K-Nearest
Neighbours, and Backpropagation Neural Network) to detect whether the subject has fallen. The
highest accuracy of 99.61% was achieved with BPNN and a global error rate of 1%.

Rafik Gouiaa [9] developed a human posture recognition system by combining a single camera
with four IR lights. The camera and the lights were mounted on the ceiling with the lights in the
corners. The lights cast an IR shadow on the ground in succession that is used in combination with
the silhouette, extracted through background subtraction, for the recognition. The silhouette and
cast shadow are than rescaled and a Euclidean distance transform is applied to obtain the feature
vector. A weighted KNN was used for the classification for each cast shadow and a weighted
majority vote scheme determines the final posture prediction of the nine postures. The average
accuracy of the system was 94.22% when picking K=3.

The main issue with these works is that they require extensive pre-processing algorithms, which
require a lot of computational power, to perform posture recognition. Privacy is also a concern
with these solutions as they capture identifiable images of everyone in view.

Distributed Human Posture Recognition using Thermopile Array Sensors 7
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3.1.2 Kinect-based solutions

Chen Chen et al. [4] propose a real-time human action recognition system based on depth motion
maps (DMMs). The DMMs are created using the depth images of a Kinect over a period of
time to capture the motion energy from an action. The system uses the DMMs from the x, y,
and z-axis concatenated and normalized as the feature vector for the l2-regularized collaborative
representation classifier. The average accuracy of the classifier was 90.5%.

Orasa Patsadu et al. [23] compared four classification methods: BPNN, SVM, decision tree,
and naive Bayes on their performance in human posture recognition. The classification methods
were tested on three postures (standing, sitting, and lying down) with 1200 samples for each of
the postures that consisted of the 3D body joint positions obtained by the Kinect SDK. Of the
four tested classification methods, BPNN has the highest accuracy of 100%.

Wen-June Wang et al. [28] proposed a human posture recognition system based on the depth
images from the Kinect sensor. The system is designed to recognize five postures: sitting, standing,
stooping, kneeling, and lying. The system is divided into four steps. First, the system extracted
the silhouette from the depth image. Secondly, A horizontal projection is made of the silhouette to
determine if the subject is in the kneeling posture. Thirdly, a star skeleton is created by determ-
ining the upper and lower body ratios, and the centre of gravity. A learning vector quantization
(LVQ) neural network is used for the classification of the sitting, stooping, and lying postures.
In the final step, a vertical projection of the silhouette is created and used with the horizontal
projection to distinguish between the standing and non-forward sitting posture. The average ac-
curacy of this system is higher than 99% and is able to achieve this accuracy while recognizing
the postures at multiple angles from the Kinect sensor.

Tianyu Bi et al. [1] have proposed a distributed ANN architecture, Parallel Channel Artificial
Neural Network (PCANN), for image recognition on resource-constrained IoT devices. They
showcased a system that used the depth images for a Kinect camera for human posture and action
recognition. The system separates a single machine learning model into several small connected
modules that were deployed on the IoT devices. The system was used to classify four postures (
right arm raised, left arm raised, one person standing, and two persons standing) and five actions
(moving left, moving right, waving up, waving down, and standing) and the data-set consisted
of 1800 samples for posture recognition and 1000 samples for action recognition collected from
a large number of volunteers, both male and female. The depth images were pre-processed to
extract the area of the human from the depth images after which an optional processed would
use projection-based feature extraction to reduce the size of the feature set. These feature-sets
were then split across the different modules that were part of the input layer. The output of each
module is sent to the next module until the final module, that houses the output layer of the mode,
receives all its inputs and performs the final classification. The system has an average accuracy of
93.83% for both the human posture and human action recognition.

The recognized postures of these systems are relatively simple compared to the other related
works. The Kinect camera is a large piece of equipment that needs to be connected, by cable, to a
computer and power source. This makes these systems impractical to be used in certain scenarios.
Privacy is still a concern with the Kinect as it is easily spotted and recognized as a camera and it
has a high resolution.

3.1.3 Time-of-Flight-based solutions

Giovanni Diraco et al. [5] investigated the use of Time of Flight (ToF) cameras as a privacy-
preserving solution for human posture recognition. A ToF camera was wall-mounted near the
ceiling in two rooms to detect four postures in four levels of detail starting from posture recognition
on simple postures, such as standing and sitting. To more complex postures such as sitting on
the chair with arms along the body. The system was able to recognize up to 19 postures on the
highest detail level. For the classification of the postures an SVM with a Radial Basis Function
(RBF) was used and two descriptors, a volumetric-based and a topological-based, were used for
the feature extraction. The system has an average accuracy of 96% for the first two detail levels,
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92% for the third level, and 96% for the highest detail level at short distances (≤ 3m) using the
volumetric descriptor.

Though the Diraco claims that this solution is privacy-preserving, a clear silhouette of the
subject can be seen in the images. The used cameras required a wired connection to the central
computing unit that did all the data processing and posture recognition.

3.2 Sensor-based solutions

Allen Y. Yang et al. [29] propose a human action recognition system using wearable motion
sensor networks and a distributed sparsity classifier. The sensors network consists of five sensor
nodes containing an accelerometer and gyroscope were placed on the waist and limbs. The system
deploys a local classifier on the sensors and a global classifier on the server. The local classifiers
determine whether the measured data is part of an action and transmit the data to the server,
which uses the received data from all sensors to perform the action recognition. Thirteen actions
can be recognized with an average accuracy of 93%.

Ye Liu et al. [15] developed an efficient algorithm for temporal patterns recognition for sensor-
based activity recognition. The algorithm uses low-level action and the relations between them to
convert them into temporal patterns of high-level actions. These temporal patterns are then used
as the feature vectors for the classification methods used (SVM, NB, and kNN). The algorithm
was tested on a data set containing body sensor data of five activities of daily living: relaxing,
early morning, coffee time, sandwich time, and clean up. The output of the algorithm was used in
three classification methods: SVM, NB, and KNN. With a pattern dimension ≥ 3, all classification
methods have an accuracy of higher than 90% and NB has the best performance with an average
accuracy of 98%.

Jian Huang et al. [13] propose a human posture recognition and indoor localization system
using a wireless wearable sensor system. The posture recognition system consists of a wireless
sensor network (WSN) containing five sensors placed on the waist and the lower limbs. The sensor
nodes are built with an accelerometer, gyroscope and magnetometer. The features chosen for the
posture recognition are the pitch angles of the waist and tight sensor node using these features the
system was able to recognize five postures, namely standing, sitting, squatting, supine, and prone,
with an average accuracy of 100%.

These solutions use multiple sensors that are placed at specific points on the human body.
When these sensors are not accuracy placed, the pattern recognition algorithms can produce
incorrect results. The user of these solutions has to maintain and correctly place these sensors
making them inconvenient to use.

3.2.1 Thermopile-based solutions

Munkhjargal Gochoo et al. [7] have developed a multi-sensor human posture recognition system
that uses three grid-EYE sensors on different axes. The sensors on the x-axis and y-axis were
placed 0.9m above the ground while the z-axis sensors were places 2.7m above ground. Four
volunteers (two males, two females) in their mid-twenties to mid-thirties were used to create the
data set of eight postures (stand, hand raised, akimbo, wide open arms, squat, toe touch, crawl
and Lie) resulting in 15063 samples for each sensor. 46x16 heat maps were created by stitching
the samples of the sensors together and enlarging them. The deep convolutional neural network
(DCNN) used these heat maps as input. The experiment achieved an average accuracy of 99.95%
over all eight postures.

Matthew Burns et al. [2] proposed a single component activity recognition system using two
thermopile array sensors. These sensors have a resolution of 32x31 pixels with one mounted on the
ceiling and the other in the corner of the room. The activities that were recognized are opening
and closing fridges, using fridge, using coffee cupboard and sitting at the table. The activity
recognition was divided into the posture recognition and the nearest object recognition. For the
posture recognition, the feature sets both sensors were combined into a single feature set. The
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nearest object recognition determined the shortest distance between the subject and the objects
and whether that distance was small enough to the object such that it should be considered for
the activity. A single subject was used to create the data-set of 586 feature-sets. The Random
forest algorithm was used for the recognition of the single component activities and achieved an
accuracy of 91.47%.

The thermopile array sensors used by Burns have a high resolution compared to those used by
Gochoo. Both works use a central computation unit with high computational power to process the
data and perform the posture recognition. The work of Burns also has a problem with recognizing
certain postures due to occlusion, while the work of Gochoo has not been tested with occlusion or
other factors that introduce noise into the thermal images of the sensors.
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Chapter 4

Posture recognition system

The proposed room-wide posture recognition is described in this chapter. This first few sections
described the common posture recognition solutions and compare them with the proposed system.
The rest of the sections describe the proposed system in more detail.

4.1 System Analysis

The most basic form of posture recognition uses a single camera to recognize the posture at a fixed
position. The camera is generally placed on a wall facing the position such that the full posture
is captured. An illustration of a typical posture recognition setup is shown in Figure 4.1. There
have been several research studies [3, 11, 12, 24] exploring posture recognition using a single high
resolution camera. Generally, there are four steps in the posture recognition. The captured data is
pre-processed to extract the silhouette using a number of algorithms. A feature set is created from
this silhouette which is then used in a machine learning algorithm, such as Support Vector Machine
(SVM), Neural network (NN), K-Nearest Neightbours (KNN) to perform the posture recognition.
These systems have high accuracy when recognizing simple postures with standing, sitting, lying
down, pointing and arms wide as common postures used for the recognition. The disadvantage
of these systems is that the performance is highly dependent on the lighting conditions and the
algorithms used to extract the silhouette.

Figure 4.1: Example of a single sensor setup for posture recognition

One of the solutions to recognize more complex postures is to use multiple sensors to increase
the information that captures the postures. These sensors can be configured to capture the posture
from multiple angles or they can be placed next to each other, as can be seen in Figure 4.2. The
information of the multiple sensors is combined differently depending on the sensors used. With
the second configuration, it is often the case that different types of sensors are used. A popular
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setup for posture recognition is the Microsoft Kinect that consists of a high-resolution camera and
a depth sensor [1, 3, 9, 28].

With the increased focus on privacy-preserving methods of posture recognitions more low-
resolution sensors are used. These sensors do not have the details needed to recognize more
complex postures on their own, but by using them in the first configuration, as shown in Figure
4.2a, they can overcome their lack of detail. The research of Burns et al. [2] and Gochoo et al. [7]
are examples of how the first configuration can be used for posture recognition. Other reasons to
capture the postures from multiple angles, even with high-resolution sensors, is to capture postures
of which certain details are occluded from the view of a single sensor.

A derivative of the second configuration is shown in the research of Gouiaa [9] which uses a
high resolution camera sensor in combination with four IR lights to perform posture recognition at
a fixed position. The IR lights are mounted in the corners of the room against the ceiling and the
camera is mounted in the centre of the ceiling. Posture recognition was performed by combining
the silhouette and the IR shadows cast on the floor by the different IR lights in succession. The
main challenge of these systems is how to combine the outputs of the different sensor and their
placement to obtain the desired input for the ML algorithm.

(a) Multi-angle
configuration

(b) Parallel sensor
configuration

Figure 4.2: Examples of sensor configurations for multi-sensor posture recognition

Posture recognition has come a long way in the last few years and is used in an increasing
number of use cases. Several of the more recent use cases, such as smart buildings, assisted living,
require that the postures are recognized in larger areas. As mentioned in the previous chapter,
posture recognition systems generally use one of two approaches. The first approach uses camera
sensors to capture the posture data and the second approach uses inertial sensors. Most of the
current solutions that use the first approach have focused on posture recognition at a fixed position
or within a small area. While most solutions that use the second approach can be used in any area
as long as the user stays within the range of the communication method used to communicate
with the sensors, they have the disadvantages that a large number of sensors have to be worn by
the users. The second approach is not considered privacy-invasive, but they do require a daily
routine from the users to function.

Localization

There are several reasons to use localization for posture recognition:

• The location can be used in the training of the ML model and in recognizing the posture by
using it as input for the ML model.

• In situations where multiple users are partially occluded, the localization can be used in the
pre-processing of the sensor data to separate them.

• Localization can be used to train ML models specialized for different locations and the model
for the recognition can be selected based on the location.
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The main envisioned use case for this system is to control the HVAC system of a smart building
per room by recognizing the postures of the people present in the different rooms. The first step
in doing this is pre-processing the captured data to separate each occupant from the data. Low-
resolution sensors are used to make the system privacy-preserving increasing the chance that when
several occupants are standing in the room and occluding parts of each other in the images. This
increases the difficulty of the separation process. When knowing the locations of the occupants of
the room, the separation process can use this information to make the process more accurate. An
example of this situation is illustrated in Figure 4.3.

Another reason for using the location is that when the distance to the low-resolution sensors
increases, details of the posture is lost and a large portion of the images only contains noise which
either has to be filtered out through pre-processing or by using a more complex and larger neural
network model. The location can be used to train more specialized models at certain positions to
improve the accuracy of the recognition and less complex model can be used making the system
more efficient and use fewer resources.

There are a significant number of methods to estimate the location and most of them require
additional sensors to be added to the system. Kemper et al. [14] propose a localization method
that uses thermopile array sensors to estimate the location. The method uses multiple sensors for
the localization and estimates the location using the position of the sensors and the angle at which
the person is detected. This angle consists of the angle of the sensors in relation to the edges of
the room and the Angle of Arrival (AoA), which is calculated from the data of the sensors. The
accuracy of the proposed method has room for improvement as the measured maximum error was
80cm with an average error of 34cm. While this localization method is not as accurate as other
methods it does not require additional sensors.

Figure 4.3: Example of an occlusion situation. From the viewpoint of the sensors closest to the
door, a single shape is shown, the other sensors have a clearer view of the situation.

Adaptive system

One of the ways that a posture recognition system can be made adaptive is in the number of
sensors used for the recognition. Multiple machine learning models are used to perform the
posture recognition in the proposed system. This choice was based on one of the experiments that
compared the accuracy of a system that used multiple models, each trained on the data set at a
given position, against the performance of a single model trained on the data from all positions.
Details of this experiment are given in section 5.7.5.

The noise in the data captured by the thermopile array sensors increases as the distance
between the sensor and the person grows larger. The reasons for the increase in noise are:

• The IR radiation emitted by the human body is captured at a reduced intensity by the
sensors. Making it harder to differentiate the human shape from the background.
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• Only a small portion of the data captured by the sensor represent the shape of the human
body.

A large portion of the posture recognition is performed on noisy data. To deal with the amount
of noise, either the noise should be filtered out (i.e. by background extraction algorithms) or larger
ML models are needed to accurately recognize the postures. Another method of reducing the noise
is performing posture recognition using only the sensors that are close to the person.

In an experiment, it was observed that when a person was close to one of the sensors that the
performance of using a single sensor was similar to that of using all sensors for the recognition.
Machine learning models trained for these scenarios have a smaller input that contains less noise
resulting in smaller models. The adaptive system chooses the best ML model based on the location,
making the system more efficient in terms of the resources used. This allows for distributed posture
recognition by performing the recognition on the sensor node when the person is close to it. An
example of an adaptive system is shown in Figure 4.4.

Figure 4.4: Example of a deployed adaptive system. The grey areas denote where the only the
closest sensor is used for the posture recognition and the crosses represent the positions at which
posture recognition is performed.

4.2 System design

The posture recognition system consists of multiple thermopile array sensor based wireless sensor
nodes that form a wireless network with a central computing unit to perform posture recognition
within a specified recognition area. The sensor nodes are placed such that all of them cover the
recognition area in its entirety, effectively capturing the posture from multiple angles. There are
several positions within the recognition area at which the postures are recognized. To aid with the
recognition at these positions, the location of the users is estimated using an algorithm based on
the work of Kemper et al. [14]. This algorithm uses the information collected from the thermopile
array sensors and therefore does not require additional sensors. Posture recognition is performed
using multiple Convolutional Neural Networks (CNN). Selecting which CNN to use depends on
the location of the person and the distance to the closest sensor node. When the person is close
to a sensor node, the recognition is performed using only the heatmap collected from that sensor
and at larger distances, the recognition is performed using the heatmaps from all sensors. The
framework for the posture recognition of the proposed solution is shown in Figure 4.5.

The posture recognition process consists of four steps. In the first step, the sensors data is
collected and pre-processed to create the heatmap and the data for the next step. In the second
step, the information is used to perform the localization. The third step consists of selecting the
correct CNN based on the estimated location and the final step uses this CNN to perform the
posture recognition.
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Local posture

recognition

Global posure

recognition

20° 21°

Localization

Figure 4.5: Posture recognition framework of the system

4.2.1 Data pre-processing

The first step in processing the data is to convert the sensor data of each sensor into a heat-
map. Thermopile array sensors consist of a number of sensing elements. These sensing elements,
called thermopiles, capture the infrared (IR) radiation emitted in its Field-of-View (FoV). The
sensor translates the captured radiation into temperature readings. Each of the thermopiles in the
sensors has its own FoV which combined form the FoV of the sensor. The temperature readings
are used to create a heatmap where the colours red and blue represent the highest and coldest
temperature. A minimum and maximum temperature are used when translating the temperature
readings into pixel values. When this minimum and maximum temperature is static, the images
change significantly when the conditions within the room or the distance between the subject and
the sensor changes. To create more consistent images regardless of the conditions in the room and
the distance to the sensor, the minimum and maximum temperatures are equal to the minimum
and maximum temperature in the sensor readings for each image. As the distance to a sensor
increases the details of the posture are less distinct with unscaled images, the scaling helps to
bring out those details and creates more uniform images across all positions. This method does
increase the intensity of the noise in the temperature data. The size of the heatmaps depends on
the number of elements in the sensor and their configuration.

The second step is to use the created heatmap to determine the angle of arrival for each of
the sensors and estimate the location using the angles and positions of the sensors. The final step
uses the heatmaps to recognize the posture. A more detailed description of the second step can
be read in section 4.3 and the details of selecting the correct CNN is described in section 4.5.

4.3 Localization algorithm

The performance of the posture recognition can be improved when the location of the person is
known. By using the location to select the CNN that can is best suited for the recognition. The
localization algorithm is based on the proposed algorithm of Kemper et al. [14] as this algorithm is
based on thermopile array sensors. Therefore, no additional sensors are needed to add localization
to the system and the pre-processing steps are not computationally intensive. This algorithm uses
the location and positions of multiple sensors to triangulate the location of the users, as shown
in Figure 4.6a. The localization is based on an arbitrary origin point and definition of the x-axis
and y-axis. The variables that describe the location of a sensor are xi and yi , while θi describes
the Angle of Arrival. The angle of the sensor, Θi , is determined from the x-axis , which always
is positioned on the right side of the sensor, and is physically limited between 0° and 180°. Since
the angle of the sensor is determined from the right side of the sensors results in a negative AoA
if the person is positioned within the FoV of the sensor on the right side. A visualization of these
parameters is shown in Figure 4.6b. The location of the person is captured in the variables X and
Y . The system of equations described in the paper of the algorithm can be converted into the
following minimization problem:
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(a) Localization algorithm
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Figure 4.6: Visualizations of the localization algorithm and its parameters

min
N∑
i=1

(Y − X · tan(Θi + θi ) − yi + xi · tan(Θi + θi ))2 (4.1)

One of the limitations of this algorithm is the use of the tangent function, which is undefined when
the input is 90° and results in an unusable estimation of the location. When the combined angle
of the sensor is 90° then it is save to assume that the person is standing at the same position as
the sensor on the x-axis. So to cope with the limitation of the equation, the initial guess of X is
set to the location of the sensor on the x-axis xi and the information of that sensor is removed
from the minimization problem.

4.3.1 Determining the Angle of Arrival

What the algorithm of Kemper et al. [14] does not specify is the method of obtaining the Angle of
Arrival (AoA) from the images generated from the sensors, as this is very specific to the sensors
used and the implementation of the algorithm. The determination of the AoA is closely tied to
the Field-of-View (FoV) of the sensor and in the case of thermopile array sensors, the FoV of each
sensing element. Other factors that have to be taken into account are the number of thermopile
elements and their configuration on the sensor. The configuration is commonly represented by a
m × n grid.

The main factor that influences the AoA calculation is whether the number of columns, n, is
even or odd. When n is odd then there is a column of elements that represents the centre of the
sensor and when n is even then there is no such column. A centre line can be appointed to the
heatmaps of thermopile sensors where n is even. Both cases are visualized in Figure 4.7.

The Angle of Arrival is obtained from these images and should be close to the centre of the
silhouette to get the most accurate result. Using the hottest pixel to determine the AoA is the
most intuitive method. The hottest pixels resides in a column of pixels and the index of this
column is used to determine the AoA using the following formula:

θrawcc (i) =


f · (c − i), if i < c

−f · (i − c), if i > c

0, if i = c

where i represents the index of the column (4.2)
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(a) odd number of pixels with centre
pixels

(b) even number of pixels with centre line

Figure 4.7: Sensor image illustrating the centre line within the image.

The variables c and f represent the centre column in the heatmap and the FoV of each ther-
mopile element respectively. The angle of the sensor is calculated from the right side of the sensor,
so the determined AoA has to be negative if the hottest pixel is on the right side of the centre
column, to get the correct angle for the localization.

A different formula is used when the heatmaps contain a centre line instead of a centre column.
The AoA is this case is based on the distance between the centre line and the centre of the column,
this adds half of the FoV to the distance compared to the calculation with a centre column. The
columns adjacent to the centre line have an AoA of half the FoV (f ). To capture this in a formula,
the variable c is equal to the index of the column to the right of the centre line, resulting in the
following formula:

θrawcl
(i) =

{
f · ((c − 1) − i) + f

2 , if i < c

−f · (i − c) − f
2 , if i ≥ c

where i represents the index of the column (4.3)

Basing the AoA solely on the hottest pixel has some disadvantages as the hottest pixel can be
located anywhere on the silhouette and is sensitive to noise, which results in inaccurate estimations.
The alternative is to use the hottest column to calculate the AoA as the hottest column will be
closer to the centre of the silhouette and is less sensitive to noise. While this improves the accuracy
of the estimations, they can be further improved by including the adjacent columns.

Due to the low pixels count, it is possible that the heat from a human body is captured by
adjacent pixels with a reduced temperature. Therefore, the accuracy of the AoA can be improved
by including the adjacent columns of the hottest column in the determination of the AoA. These
columns can then be used to estimate the centre of the silhouette by determining the concentration
of heat between these columns. The centre of heat can be determined in a similar fashion as the
centre of gravity is determined of an object consisting of multiple parts.

Determining which column is the hottest column is be based on the pixels values of the heatmap,
which uses the RGB standard for those values. Since high temperatures are represented with a
reddish colour in the heatmaps, the hottest column is determined based on the sum of the R
values of its pixels is the highest. The sums of R values of the hottest column and its neighbours
are stored in the variables hln, hhc , hrn. The distance of the neighbouring columns is equal to the
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FoV of the thermopiles. These sums are used to calculate the concentration of heat between these
columns. The formula used for this is derived from the formula that is used to calculate the centre
of gravity with the distances taken as the FoV of the thermopiles and the sums replace the weights
resulting in the following formula:

θdetail(hln, hhc , hrn) =
f · hn1 − f · hn2
hn1 + hhc + hn2

(4.4)

The final Angle of Arrival is the sum of the previous formulas:

θ = θraw + θdetail (4.5)

4.4 Convolutional Neural Network architecture

The posture recognition is based on the heatmap created from a single sensor or the concatenation
of the heatmaps for all sensors. The size of the heatmaps is dependent on the number of sensors
used in the system and even though low-resolution sensors are used, the pre-processing of these
heatmaps is complex when using regular neural networks. There is a type of neural networks that
is commonly used for analyzing visual imagery called Convolutional neural networks (CNN) that
requires far less pre-processing. That is the main reason for this system to use convolutional neural
networks for posture recognition. Compared to deep neural networks, a CNN has two additional
types of layers, the convolutional layer and the pooling layer. These two types of layers are used
to reduce the input image into a feature set that is smaller and captures the spatial and temporal
dependencies within the image. The aim of these layers is to reduce the memory footprint and
computational complexity.

Convolutional layers consist of a number of kernels and an activation function. Kernels are
m × n × d matrices that move over the image from left to right and top to bottom. While the
size of the kernel can be specified through the parameters of the layer, the depth of the kernel is
always equal to the depth of the input. The values of the kernels are learned during the training
of the CNN. The movement is controlled by the stride parameter which controls how many pixels
the kernels move between each convolution step. In each step, the dot product is calculated
between each kernel and input. It is possible that the size of the kernels do not perfectly fit the
input in which case padding can be applied. When no padding is applied then the parts of the
image were the kernel does not fit is discarded and this is called Valid Padding. Same padding
applies zero-padding to the images to ensure that the kernels perfectly fit the image. After all
convolutions steps have been taken and the outcomes of the kernels have been stacked along the
depth dimension, creating the activation map of the layer, the activation function of the layer is
applied.

Pooling layers consist of a filter that is used to down-sample the input. The size of the filter
is a parameter of these layers and determine the factor at which the input is down-sampled. The
filter moves over the input from in the same manner as the kernels do in the convolutional layers
and the same parameter is used to control the movement. There are three types of pooling layers,
the max, average, sum pooling. Max-pooling layers take the maximum values within the filter
area and projects it onto the output, while average-pooling layers compute the average and sum-
pooling layers simply use the sum of the values. Max-pooling layers are the most common pooling
layers in convolutional neural networks.

The architecture of CNNs used in this system was based on the one presented by Gochoo et
al [7]. This architecture was chosen as it was developed for posture recognition using thermopile
sensors and could easily be adapted to fit our use case. The architecture uses three convolutional
layers that are each followed by a max-pooling layer. After the last max-pooling layer, there are
three dense layers and an output layer. The input used by their system is larger than the input
that this system uses. Therefore, the feature extraction elements in the network should be changed
to better should the input resulting in halving the number of kernels for all convolutional layers.
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To make the system adaptive, two variations of the chosen architecture are needed to accept
both types of input. When the person is close to one sensor, only that heatmap is used, otherwise
the concatinated heatmap of the heatmaps of all sensors is used. The test setup used for the
verification of the system uses three thermopile array sensors that use a grid of 8× 8 thermopiles.
This results in the first variant of the architecture based on an input of 8 × 8 pixels, while the
second variant processes heatmaps of 24 × 8 pixels. The variations of the architecture are shown
in Figure 4.8.
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(b) Variant 2

Figure 4.8: The two variants of the CNN architecture

4.5 Adaptive ML Model Selection

For each of the positions in the recognition area, a separate CNN model is trained with training
data from that position. This makes the models more specialized and improves the accuracy of
the system. The location information is used to determine which trained CNN model to use for
the recognition. Directly using the location estimations to determine which CNN to use is not
possible as the estimations contain a small error. By dividing the recognition area into a grid that
separates the recognition positions and using the location estimations to determine in which grid
position they are, mitigating most errors in the estimations. A visualization of the grid is shown
in Figure 4.9. The CNNs are placed in the same grid to easily determine which CNN to use. This
results in the following formula so that the following formula can be used for determining the CNN
to use for the recognition based on the estimation location:

x = min(Nx , max(0, round(
xestimate − X

δx
))) (4.6)

y = min(Ny , max(0, round(
yestimate − Y

δy
))) (4.7)
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where X,Y are coordinates of the first point in the recognition area, N is the number of points
on a given axis, and δ is the distance between the recognition points. This allows for an error in
the estimation without affecting the accuracy of selecting the correct model. The min and max
functions ensure that a grid location is always chosen correctly.

The disadvantage of the specialized models is that they require more resources, which for a
centralized recognition is not an issue but for a distributed system is a disadvantage. Experiments
have shown that performing posture recognition with a single sensor has similar performance
compared to using all sensors when the person is close to that single sensor. This can be used to
reduce the resources required on the sensor nodes by reducing the number of models stored on
each node and reducing the size of those models. Figure 4.9 shows an example of a deployment of
the system were the coloured rectangles represent the positions where the posture recognition only
uses the image of the closest sensor. This example also shows that multiple sensors are considered
close to a single position. In these cases, the estimated location is used to determine which sensor
is closer to the person and that sensor is used for the posture recognition.

M

n

main sensor

sor

n

M

Figure 4.9: Example of an adaptive model selection setup

4.6 Integrated System

The deployment of the system is shown in Figure 4.10. It shows the topology of the software
components and their communication. The system is divided into a central computing unit and
multiple wireless sensor nodes.

Central computing unit functionality

The convolutional neural networks for the posture recognition are created and trained on the
central computing unit. The distribution of the trained models to the sensor nodes is also the
responsibility of the central computing unit. The other function of the central computing unit is
to perform global posture recognition. The posture recognition uses the heatmaps obtained from
all sensors and the location of the subject as input. Depending on the communication method
used, as described below, the central computing unit might also be responsible for performing the
localization estimations and determines whether the posture recognition is performed locally on the
sensor nodes or on the central computing unit. When a sensor node joins the network, it receives
its assigned convolutional neural networks and a configuration file, which contains information
about when local posture recognition is performed and at what rate the sensor information is
processed.
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Central computing unit
Wireless sensor node

Data receiverData transmitter

Global posture recognition

Additional data processing

Local posture recognition

Data processing Data capture

Model deployer

Model constructorModel trainer

Model implementer

Figure 4.10: Deployment view of the system. The wireless sensor node converts the temperature
data into a heatmap that is used to determine the AoA. Local posture recognition is performed
when the person is close to that sensor node. The central computing unit receives the result of
the local posture recognition. If the person is far from all sensors, the global posture recognition
is performed using the information from all sensor nodes.

Wireless sensor node functionality

The sensor node converts the raw thermal data of the sensor into an 8x8 heatmap where red
indicates the highest temperature and blue the lowest. This heatmap is used to determine the
angle of arrival, which is used in the localization estimation of the subject. Depending on the
chosen communication options, described below, the sensor node is responsible for determining
whether the posture recognition is performed locally.

Communication options

Communication with sensors is required to perform the recognition locally on the sensors. This
communication can be centralized by only allowing the sensors to communicate with the central
computing unit. This reduces the frequency of the communication but increases the amount of
data the needs to be transmitted to the central computing unit. Unnecessary communication also
takes place when the posture recognition is performed on locally at a sensor node. An alternative
is to have the sensors nodes communicated between themselves to determine the location and
where the posture recognition is performed. This reduces the amount of data the is transmitted
over the network as no unnecessary data is communicated.

This heatmap, as shown in Figure 4.5, is used as input for the local posture recognition. The
data processing is responsible for the creation of the additional data used in the global posture
recognition, which initially be the angle of arrival of the subject.

Distributed Human Posture Recognition using Thermopile Array Sensors 21



Chapter 5

Experimental Setup and Results

This chapter describes the experimental setup, the experiments that were performed and their
results. In Section 5.1, the selection process of the thermopile array sensor is explained. The
experimental setup used for the experiments is described in section 5.2. Experiments to explore
the performance of the chosen sensor are explained in section 5.3 and their results are presented.
The next section (5.4) describes the localization experiments and their results. The sensor con-
figuration used for further experiments is described in section 5.5. The test setups used for the
posture recognition experiments are described in section 5.6. The results of the posture recognition
experiments are shown in section 5.6.

The experiments described in section 5.7 have lead to the adaptive system. To test the per-
formance of this system, eight postures are selected and shown in section 5.8.1. The benchmarks
that the adaptive system is compared against are described in section 5.8.2. For these bench-
marks, a number of data sets are created from a sample set that contains all selected postures,
the creation of which is described in section 5.8.3. The final section 5.8 reveals the results of the
benchmarks and the adaptive system.

5.1 Thermopile array sensors selection

A literature study was performed to determine which thermopile array sensors are suited for hu-
man posture detection. The sensors should either capable of human detection or human posture
detection, have a small footprint in terms of power consumption and size, and preserve the privacy
of the users. The sensors that were chosen are the FLIR Lepton [6], Melexis MLX90621 [17] and
MLX90640 [18], Panasonic Grid-EYE [22], and the Omron D6T [20]. The specifications of the
sensors are presented in Table 5.1. While the FLIR Lepton sensor has the highest resolution and
is able to detect humans at long distances, it is not suited for human posture recognition due
to privacy concerns related to its high resolution combined with the high price and power con-
sumption. The Omron D6T has the lowest resolution and the second-lowest power consumption;
however, it is unable to detect human postures due to its low-resolution. The other sensors have
solid specifications that meet the requirements and are capable of human posture detection. The
Melexis MLX90621 might have a hard time discerning postures that differ on the vertical axis
because it has a small vertical resolution and it has the lowest temperature accuracy of the three.
The images produced by the Melexis MLX90640 sensor have a higher resolution and temperature
accuracy compared to the Panasonic Grid-EYE but also has higher power consumption and price.
Of these two sensors, the Grid-EYE is the only one that has been used for posture recognition in
the work of Gochoo et al. [7]. The ambition of this research is to perform posture recognition with
a low-resolution sensor as this area of posture recognition has not been extensively researched.
This has resulted in the Grid-EYE sensor to be chosen for this research.

22 Distributed Human Posture Recognition using Thermopile Array Sensors



CHAPTER 5. EXPERIMENTAL SETUP AND RESULTS

Manufacturer FLIR Melexis Melexis Panasonic Omron
Sensor name Lepton MLX90640 MLX90621 Grid-EYE D6T
Resolution
(pixels)

80x60
160x120

32x24 16x4 8x8
1x8
4x4

Field of view
(HxV)

25°
50°
51°x38°
56°x42°

55°x35°
110°x75°

40°x10°
60°x15°
25°x120°

60°x60° 54°x5°
44°x45°

Frame rate 8.7Hz 0.5Hz - 64Hz 0.5Hz - 512Hz 1Hz or 10Hz 0.5 - 4Hz

Current
consumption

50mA
200mA* 25mA 9mA 4.5mA 5mA

Temperature
accuracy

+/-5°C +/-2°C +/-3°C +/-2.5°C +/-1.5°C

Sensing range -10°C - 400°C -40°C - 400°C -70°C - 380°C 0°C - 80°C 5°C - 50°C

Size
(mm)

10.5x12.7x7.14
9.3x9.3x11.25
9.3x9.3x5.70

9.15x9.15x4.85
9.15x9.15x11.15
9.15x9.15x14.15

11.6x8x5.3
18x14x10.7
18x141x8.8

Price $175 - $259 $47 - $51 $29 - $50 $22 - $32 $17 - $40

Table 5.1: Thermopile array sensor comparison (*with shutter active)

5.2 System setup

The scope of the prototype of the proposed system is limited to a single subject within a clean
rectangular room with 3 sensors. The central computing unit of the proposed system is imple-
mented on a personal computer that has an Intel P7350 CPU @ 2.0 GHz with 4 GB RAM. The
sensor nodes, as shown in Figure 5.1, consist of a Panasonic Grid-EYE sensor and Raspberry Pi
model 3B where Grid-EYE sensor collects the thermal data for the heatmaps and the Raspberry
Pi is responsible for the data processing, and communication with the central computing unit over
Wi-Fi. The central computing unit processes the heatmaps and location information of the sensor
nodes, perform the localization estimations, and the posture classification.

For the posture classification, multiple Convolutional neural networks (CNNs) are used. These
CNNs are modelled using the TensorFlow [8] platform, which is a machine learning platform
that provides Python APIs for various supervised learning methods and the same programming
language is used for the data processing. For communication between the central computing unit
and sensor nodes, the Message Queuing Telemetry Transport (MQTT) protocol [19] is used. While
this general setup is used for all experiments, the specific setup for the experiments differ on a
number of parameters. These parameters can be split into two categories. The first category is
hardware related and the second category is related to the CNN used and its training parameters.
The parameters that are hardware related are shown in Table 5.2 and the CNN related parameters
are shown in Table 5.3. Some of these parameters are used in the formulas described in the system
design and are included in the tables.

The chosen thermopile array sensor, the Panasonic Grid-EYE, consists of 64 thermopiles, each
having an FoV of 8° and they are configured in an 8 × 8 grid. This means that the heatmaps
generated from this sensor contain a centre line between the 4th and 5th column of pixels. This
information can be used to simplify the formulas in the localization algorithm. Since the heatmaps
contain a centre line, the formulas 4.3 and 4.4 are used to determine the Angle of Arrival. This
centre line is captured as the parameter c and is equal to 5 and the parameter f represents the FoV
of the thermopile elements, which is equal to 8. The formulas used in the localization algorithm
can be simplified using these parameter values to:
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Parameters Description
Number of sensors The number of sensors used in the test setup
Recognition area dimensions The dimensions of the recognition area, expressed in

meters. The dimensions are the combination of the
grid dimensions and the spacings

Number of recognition positons The number of positions in the recognition area.
Recognition position grid The dimensions of the grid in which the positions are

placed. The parameters Nx and Ny represent these
dimensions

Recognition position spacing The distance between two positions both in the ho-
rizontal and vertical direction, expressed in meters
and are represented by the parameters δx and δy

Table 5.2: Hardware related parameters of the experimental setup

Parameters Description
Number of CNNs The number of CNNs used to perform posture recognition.
CNN architecture
variants

Specifies which variants of the CNN architecture are used

Learning rate Determines the rate at which the weights in the layers are adjusted
during training. This parameter affects the training time and
performance of the network

Batch size Determines the size of data samples to use in a single training step.
This parameters affects how many samples are used to update the
weights in the layers.

Epochs Determines the number of steps that are taken during a training
phase. This parameter affect the training time and performance
of the network

Training steps A step in the training phase that uses a batch of samples to up-
dated the weight of the network based on the learning rate and
can be expressed in the multiplication of the batch size and epochs

Table 5.3: CNN related parameters of the experimental setup
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Wireless sensor node

Raspberry Pi Central computing unit
Panasonic Grid-EYE

IR array sensor

I2C WiFi

Figure 5.1: Block diagram of the wireless sensor node

θraw (i) =

{
8 · (4 − i) + 4, if i < 5

−8 · (i − 5) − 4, if i ≥ 5
where i represents the index of the column (5.1)

θdetail(hln, hhc , hrn) =
8 · hn1 − 8 · hn2
hn1 + hhc + hn2

(5.2)

5.2.1 Calibration

Another important aspect of the system is the calibration of the sensors, as the localization
algorithm is very sensitive to the location and angle of the sensors. The calibration is both a
physical and digital process. When the sensor physical position is determined, the horizontal angle
(Θ) of the sensor has to be adjusted such that it covers the whole recognition area. Determining
this physical angle precisely is a difficult and tedious task, which can be simplified by estimating
the physical angle and digitally tuning it. The process of digitally tuning the angle is explained
in the next paragraph.

At the start-up of the system, the locations of the sensors and their estimated angles are used to
digitally calibrate the system. A high temperature object is placed in the centre of the recognition
area to serve as a known reference point for the localization algorithm. A number of localizations
are performed to obtain the error distance between the known location and the location obtained
through the algorithm. Then the (digital) angles of the sensors should be changed in the opposite
direction of the estimated location towards the known location. This process is repeated until the
smallest error is found. This process can easily be automated to improve the calibration speed
and accuracy.

5.3 Experiments to understand the performance of Ther-
mopile Array sensors

5.3.1 Effective sensing distance of the Grid-EYE sensor

This first experiment was performed to test what the largest distance was to accurately perform
posture recognition with a single thermopile array sensor. A test setup was made with a single
wireless sensors node as described above is placed 90cm above the ground with a laptop for the
central computing unit. Two postures (standing and arms wide) were captured at six positions in
front of the sensor starting from 0.5m increasing by 0.5m up to 3 meters, as shown in Figure 5.2.
Initially, the heatmaps created from the sensor data was created using a constant minimum and
maximum temperature and results in the heatmaps created from the data at positions over 1.5
meters were the shape of the posture is barely distinguishable from the background noise. Using
the data process described section 4.2.1, the postures are distinguishable from the background,
but at distances larger than 1.5 meter from the sensor it become hard to distinguish the postures
from each other. Starting from 2.5 meter from the sensor the noise in the images seem to increase
significantly. The images taken at 0.5m from the sensor do not contain the full posture, most of
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the legs are missing for all postures and ends of the arms of the postures arms wide and arms up
are not captured. So only the images from 1m onward were used for the posture recognition.

For each of the distances and postures, 82 samples were taken creating a sample set of 820
samples. A data set was created using half of the sample set and still containing all postures and
distances. This data set was used to train a CNN using the second variant of the CNN architecture.
This CNN was trained once with 8000 training steps using batches of 100 data samples and once
using 20.000 steps using batches of 20. Four test sets were created from the same sample set. The
first two test sets contain the samples taken at 1 meter with the first set having only the standing
posture and the second set only the arms wide posture. The next two sets are similar to the last
two only this time they contain the respective samples taken at 1 and 1.5 meter. The final test set
contained both postures at all distances. The results of the posture recognition of both CNNs and
the different test sets are shown in Table 5.4. These experiments shows that it is possible to do
posture recognition with a single sensor when the person is standing close to the sensor. A final
training of the CNN was performed consisting of 820.000 training steps using a batch size of 20.
The results of the trained CNN show that with more training it would be possible to do posture
recognition at large distances.

recgonition

area

main sensorMM

positions

Figure 5.2: Test setup for sensing distance Grid-EYE

8000 training steps 20.000 training steps 820.000 training steps
standing at 1m 100% 100% 100%
arms wide at 1m 86.6% 100% 100%
standing at 1-1.5m 50.0% 50.0% 88.7%
arms wide at 1-1.5m 95.2% 100% 82.1%
all postures at 1-3m 57.9% 59.9% 65.0%

Table 5.4: Posture recognition results for sensing distance Grid-EYE experiment

5.3.2 Angled posture recognition

The use-cases of the posture recognition system in smart buildings or assisted living would benefit if
the posture can be recognized when the person is not directly facing any sensors. Two experiments
were performed to test whether this was possible. The first experiment was performed to test if
the front and back of the person could be detected, which should be possible in theory as the
front side of the person often shows more skin and therefore emits more IR radiation. The test
setup, as shown in Figure 5.4a, was used to capture a person facing the left-most sensor with
all sensors having a distance of 1m to the person. Instead of determining the minimum and
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0.5m 1m 1.5m 2m 2.5m 3m

Standing

Arms wide

Figure 5.3: Examples of the heatmaps of both postures at the different distances.

maximum temperature for the translation to the heatmaps, the min and max temperature were
determined by the min and max temperature found in the sensor data from all sensor nodes. With
this translation method, it was possible to see a difference between the front and back side of the
person. It would become more difficult to make the distinction between the front and back view as
the distance increases. A second experiment was devised to determine whether it was possible to
recognize the angle of the posture without using additional information. The postures (standing
and arms wide) were captured at a single position using the setup shown in Figure 5.4b. The
person would start with facing to the main sensor and then change his direction clockwise by 45°
increments until the person was facing the other sensor. The data set consists of 47 samples for
each posture and angle with a total size of 376 and a test set of the same size. The data samples
contain the angle at which they were taken and two CNN models were trained on this data, one
network is based on the second variant of the architecture, while the second network is based on the
fourth variant that uses the known angle as input instead of the location, as shown in Figure 4.8b
and 5.11b respectably. Both networks were trained with two sets or training parameters, training
for 20000 steps with a batch size of 20 and a learning rate of 0.001, and training for 7500 steps
with the same batch size and learning rate. The accuracy of the networks and training parameters
are shown in Table 5.5 and they show that it is possible to recognize postures at multiple angles.
However, knowing the angle needs more training as some angles, in this experiment the angles 45°
and 135° show a very similar image making them difficult to distinguish. Recognizing postures at
an angle was not further pursued in this research and the same holds for estimating the angle of
the posture from the obtained heatmaps.

7500 training steps 20000 training steps
main sensor 65.4% 100%
all sensors 100% 100%

(a) posture recognition using angle as input

7500 training steps 20000 training steps
main sensor 100% 100%
all sensors 100% 100%

(b) posture recognition without using angle as input

Table 5.5: The accuracy of the posture recognition at an angle from the main sensor. All angles
(0°, 45°, 90°, 135°) were used to get these results.

Distributed Human Posture Recognition using Thermopile Array Sensors 27



CHAPTER 5. EXPERIMENTAL SETUP AND RESULTS

rs

ons

nition

sensor

(a) Test setup 1

n

or

(b) Test setup 2

Figure 5.4: Test setups for recognizing posture at various angles

5.4 Localization experiments

In this section, the experiments related to the localization algorithm are described. In the first
subsection, the experiments related to using the hottest pixel to determine the Angle of Arrival are
explained. The second section describes the experiments that use the hottest column to determine
the AoA. Section 4.3 explains in detail how these two values are used in the determination of the
AoA.

5.4.1 Determining Angle of Arrival based on the hottest pixel

The initial idea was to use the hottest pixel to determine the AoA since this was the method
used in Kemper’s paper. The heatmaps obtained by the thermopile array sensors are 8x8 pixels
corresponding to the 8x8 sensing elements that have an FoV of 8°. The angle of the sensor is
calculated from the right side and this translates to the AoA being negative on the right side of
the image and positive on the left side. The image does not have a centre pixel so the split is
made between the 4th and 5th column of pixels. The AoA has to be able to be zero when the
subject is standing in the centre of the image to get accurate results. Each pixel has an field of
view that is used to translate the position of the hottest pixel to an angle from the centre of the
image. Three options of translating the position and FoV to the angle of arrival were tested.

The first two options base the translation on the edges of the hottest pixel while the third
option uses the centre of the pixel. The first option sets the AoA to zero when the hottest pixel
is adjacent to the centre line, located between the 4th and 5th column, and increases the angle
by 8° for each column of pixels to the side of these two columns. The second option increases the
angle by 8° for each column, including the 4th and 5th columns. The third option is silimar to
the second option only the angle for the fourth and fifth column is set to four degrees. Figure 5.5
shows the AoA for each column of pixels obtained by these three options.

Two experiments were performed to evaluate the different options of translation from pixel to
AoA. In the first experiment three sensors were used to estimate the location of the subject at
two positions, the configuration and resulting estimations are shown in Figure 5.6. The second
experiment used a similar setup to perform location estimation at 4 positions. The errors measured
in the first experiment were between 12cm and 50cm, with the maximum error for position 1 was
lower at 35cm. Option 3 showed the highest accuracy in the first experiment with the first option
having the worst accuracy. For the second experiment, the measured errors also showed a large
variance between the different positions and the used AoA method. This time the measured errors
were between 18cm and 92cm over all positions, but at position 2 they were between 18cm and
26cm, while at position 4 the minimum error was 84cm. This experiment showed a different result
with the first AoA option being the most accurate overall and the third option having the highest
overall error. Figures 5.6a and 5.6b give a visual representation of the setups and the results of the
first and second experiment respectively. The second AoA option was chosen to be implemented
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centre line

24 16 8 0 -24-16-8-0

(a) option 1

centre line

32 24 16 8 -32-24-16-8

(b) option 2

24 20 12 4 -24-20-12-4

centre line

(c) option 3

Figure 5.5: The three translation options for the AoA. Each image represents the pixels in an 8×8
heatmap. The number at the bottom of each column represents the distance, in degrees, between
the centre line of the image and the column, which translates to the value used for the AoA.

as it performed better on average in both tests with the first option being the second best.

After these experiments, a third one was performed using only two sensors to see whether the
performance of the localization would be worse. The sensors were placed 90° from each other to
estimate the location at three points and for each of these points, 10 measurements were taken.
This experiment uses the first AoA option since the results of the previous experiments were not
available yet. The results are shown in Figure 5.6c and they are better compared to the other two
tests with no errors at the first position. The errors for the second position were between 10cm
and 17cm, while for the third position a maximum error of 53cm was measured with a minimum
of 24cm. The largest factor that contributed to the good performance of this test was that the
system was better calibrated and one of the positions was placed in the centre of both sensors
which resulted in no error in the estimations of that position. This would indicate that the actual
sensor angles of the previous sensors differed from the angles used in the algorithm. The larger
errors at the third position indicate that the distance of the positions in relation to the sensors
also have an impact on the accuracy of the estimations. This can be explained by the fact that
the hottest pixel would move within the shape of the posture resulting in a change in the AoA
for one or more sensors. At short distances, this changed AoA would have a small impact on the
location estimation.

(a) results experiment 1 (b) results experiment 2 (c) results experiment 3

Figure 5.6: Visual representations of the three localization experiments.
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5.4.2 Determining Angle of Arrival based on the hottest column

After calibrating the angle of the sensors, the estimated locations still have a maximum error
of 70cm. This prompted the search for alternative methods of determining the AoA to further
improve the localization. The first option that was explored was the inclusion of neighbouring
pixels of the hottest pixel in the determination. A more accurate AoA would be determined
by using the hottest pixels for the initial AoA guess and then improve the guess with the heat
information in the neighbouring pixels. With the exploration of how to use the neighbouring pixels
to improve the AoA it became clear that using the hottest pixel for the initial guess did not have
the desired accuracy and the neighbouring pixels did not have a large impact on the accuracy. The
second option that was explored was using the hottest column for the initial guess and improve
the guess with the heat information in the neighbouring columns.

The hottest column is determined by the highest sum of the red values of pixels in a column.
Determining the AoA using the same formula but basing it on the hottest column significantly
improved to the accuracy of the localization algorithm. Two methods of using the neighbouring
columns were tested based on the sum of red values in the pixels, the heat sum. The first method
would offset the initial guess by a maximum of 4° towards the neighbouring column that has
the highest heat sum. The offset value is proportional to the difference in heat sums between
the hottest column and its hottest neighbour. The second method is based on the idea using in
the calculation of the centre of gravity, by shifting the AoA in the direction where the heat is
concentrated. Multiple data sets of the posture recognition experiments were used to test both
methods. The results varied between the data sets, but the results show that the first method in
certain scenarios has a smaller maximum error while the second method is almost always more
accurate on average. The second method was chosen to be implemented as it has a higher average
accuracy.

5.5 Sensor configuration experiment

One of the design choices when there are multiple sensors in a system, is how to place them. Two
configurations were tested, one where a front, side and angled view of the posture was captured
and the other configuration captured the front view and two angled views of the posture, both
configurations can be seen in Figure 5.7. For each of these configurations a data set of two
postures was captured at each position in the recognition area. A single CNN was trained on the
data sets for all positions for each configuration using the heatmaps of all sensors. The results
show that the difference in performance between these is small with an accuracy of 97.5% for the
first configuration and 98.3% for the second configuration. The second sensor configuration was
chosen because of its slightly higher accuracy.
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main sensorMM

(b) configuration 2

Figure 5.7: Sensor configurations
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5.6 Test setups for the integrated system

There are multiple test setups that were used for the posture recognition experiments. These
setups differ in their sensor configuration and recognition area. A sensor configuration defines
the number of sensor nodes used and their positions in relation to the recognition area. The
recognition areas define an area in which an number of positions are defined including the spacing
between them. The multiple test setups use two sensor configurations and t5ree recognition areas.

An area of 0.5 by 3 meter forms the first recognition area where five positions in a line are
defined, spaced 0.5m apart. The second recognition area is 1.5 by 2 meter and contains 15 positions
that form a 3 × 5 grid. The positions are spaced 0.5m apart. The final recognition area is 1.5 by
1.5 meter and contains nine positions. These positions are placed in a 3 × 3 grid and the distance
between them is 0.5 meter. For the recognition areas that contain multiple lines of positions, two
distinctions are made. The centre line of positions in the area are considered the one-dimensional
(1D) positions, while all positions are considered the two-dimensional (2D) positions.

The two sensor configurations differ in the number of sensor nodes that are used. The first
configuration uses a single sensor node, while the second configuration uses three sensor nodes
which on most experiments were as described in the next few sentences. The main sensor node
was placed in the centre of the recognition area facing the area such that all positions were in the
FoV. The other two sensor nodes were placed at the corners of the area on the opposite side. The
distance between the sensors and the recognition area can differ per experiment, but most of the
experiments use a distance of 1.5 meter for all sensors. A sensor node is depicted in Figure 5.10.

M

sensors
positions

main sensorM

(a) Setup 1 with a recognition
area of 0.5m by 2m and a sensor

distance of 1m.

(b) Setup 2 with a recognition
area of 1.5m by 2m and a sensor

distance of 1m.

n

main sensorMM

(c) Setup 3 with a recognition
area of 1.5m by 1.5m and a

sensor distance of 1.5m.

Figure 5.8: Overview of the different test setups

The test setup used for the final posture recognition experiments use the final recognition area
and the second sensor configuration, a physical version of this setup is shown in Figure 5.9. An
overview of the all test setups is shown in Figure 5.8 where the 1D positions are marked blue.
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Figure 5.9: Physical testbed using 3 sensor nodes
and a laptop for the central node

Figure 5.10: Wireless sensor node consisting of
a Raspberry Pi 3 model B and the AMG8833
breakout board.

5.7 Posture recognition experiments using the integrated
system

The first round of posture recognition experiments consists of six experiments. These experiments
test different aspects of the recognition system using two postures (standing and arms wide) as
test data. The following list gives an overview of these six experiments.

• Experiment 1 - Use multiple sensors to recognize postures at multiple distances from the
main sensor.

• Experiment 2 - Uses multiple sensors to perform posture recognition at a larger set of posi-
tions. These positions are at different distances from the main sensor in both the horizontal
and vertical direction.

• Experiment 3 - Uses the same setup as the second experiment and introduces localization
as input for the CNN.

• Experiment 4 - For each position in the recognition area, a CNN is trained and the CNN
used for posture recognition is selected based on the estimated location.

• Experiment 5 - Improves the system for the previous experiment by using an improved
localization method and a different recognition area.

• Experiment 6 - Simulates a system that uses a smaller CNN for the positions that are close
to a sensor.

To show the performance of the posture recognition system, the number of postures that can
be recognized by the system was gradually increased from two to eight. The performance of each
set of postures is compared using the benchmarks described in section 5.8.2.

5.7.1 Posture recognition at multiple distances results

The setup as shown in Figure 5.8a was used to capture two postures (standing and arms wide) at
the position closest to the main sensor. While capturing the posture data the volunteer was facing
the main sensor. Two data sets were created using this data, one set only contained the heatmaps
from the main sensors and the other set contained the heatmaps from all sensors. A CNN based
on the second variant of the architecture was trained on the first data set and one based on the
first variant was trained on the second data set. For the training of both networks a learning
rate of 0.001, batch size of 20, and the models were trained for 20.000 steps. The accuracy of
both networks is based on the confusion matrix that shows what the recognized postures are and
whether the postures were correctly recognized. The results were as expected with both models
having an accuracy of 100%, as shown in Table 5.6.
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Accuracy
Main sensor 100%
All sensors 100%

Table 5.6: Accuracy’s of the second posture recognition experiment

5.7.2 Posture recognition at multiple positions results

This experiment uses the setup shown in Figure 5.8b, which is an evolution on the setup used for
the initial test. The sensors were placed 1m from the closest recognition position and the samples
were taken with the volunteer facing the main sensors at all positions. In this experiment 4260
samples were captured, 142 for each posture at each position. From this sample set, four data sets
were created, which can be split into two groups. The first group only contains the samples that
were taken at the 1D positions and the second group contains all samples. For each group the
sets similar to the previous experiments with one set containing only the heatmaps of the main
sensors. This time four CNNs were trained using the same variants and training parameters as
the previous experiment. The results of all are shown in Figure 5.7.

Main sensor All sensors
1D positions 99.2% 90.0%
2D positions 89.6% 92.0%

Table 5.7: Accuracy’s of the second posture recognition experiment

The expectation was that the accuracy would drop as the initial experiment showed similar
results. Another interesting comparison with the initial experiment is that positions of that
experiment are the same as the 1D positions for this experiment. The results at the 1D positions
are significantly high than the results of the initial test which can be attributed to different training
parameters, the batch size in particular. Other contributing factors are a larger number of samples
to train with and cleaner samples. In the initial experiments, an additional heat source, a lamp,
was captured in the samples, as shown in Figure 5.3 on page 27.

5.7.3 Posture recognition using location as input results

The next step was to introduce the location into the posture recognition process. This information
needed to be stored in such a way that they could easily be retrieved when training the CNNs.
The localization was performed after the samples for a posture at a position were captured and the
AoA was solely based on the hottest pixel. An additional row of pixels was added to the bottom
of the heatmaps to store the estimated location in. The estimation location was stored as two
separate values, one for the location on the x-axis and one for the location at the y-axis. When
training and validating the CNNs, this additional row would be separated from the heatmaps and
the location was extracted.

Similar to the previous experiments, four data sets were created using the sample set, but
this time the known location would be stored in the additional row of pixels for the training
and validation sets. The architectures of the CNNs used for this experiment were different than
the previous experiments. These architectures, the third and fourth variant, add the (estimated)
location to the feature set after the last max-pooling layer, as shown in Figure 5.11. The training
parameters for the CNNs were the same as in the previous experiment The expected accuracy of
this experiment should be high than that of the previous experiment; however, the accuracy of
using the location as input for the CNN, as shown in Table 5.8 was slightly worse than without
using that information. The main reason for the decreased accuracy can be found in the low
accuracy of the estimated locations. While the estimations of the positions ≤ 2 meters were
accurate with a small error margin, beyond this distance the accuracy dropped significantly with
a maximum error of 1 meter.
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(a) Variant 3
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(b) Variant 4

Figure 5.11: The two variants of the CNN architecture

Main sensor All sensors
1D positions 91.3% 89.0%
2D positions 89.9% 86.9%

Table 5.8: Accuracy’s of using location as input for posture recognition
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5.7.4 Posture recognition using location to select the ML model results

To confirm whether the postures could be accurately recognized at all distances, multiple CNNs
were trained on the data captured at each location. The accuracy’s of these networks are shown in
Table 5.9 and they show that without using the location as input and training the networks of each
location is more accurate than training a single model for all locations. Making the recognition
use these networks to recognize the postures in a single data set was a bit of a challenge of its own.
The estimated locations are not very accurate so the models should be correctly selected even with
an error in the localization. Resolving the estimated location to an identifier that allows for some
error in the locations was performed by converting the estimated location into a grid location.
This grid was defined using the formulas 4.6 and 4.7 which in this setup allows the estimated
location within a minimum area of 0.25m by 0.25m around the actual location to be recognized
by the model trained for the actual location. To ensure that all locations are recognized the areas
for the positions at the edge of the recognition area also cover the areas outside of the recognition
area. A visualization of the recognition area of this setup and the areas for the different models is
shown in Figure 5.12 and the formula used is shown in 5.3 and 5.4. This method is based on the
actual location of the first position, defined as X and Y in the formulas, which has to be known
on the central computing unit and the sensors nodes.

x = min(3, max(0, round(
xestimate − X

0.5
))) (5.3)

y = min(5, max(0, round(
yestimate − Y

0.5
))) (5.4)

When simply selecting the correct model for each sample in the data set requires a long time
to recognize the whole set as the models need to be reloaded into the system for each sample. So
the samples in the set were first sorted per model and then the recognition was performed on the
samples for each model in succession. The results were combined afterwards to produces the final
result of the input data set. The accuracy of using this method to select the CNN model based
on the location is shown in Table 5.9 and is worse than that of the manual selection, as expected
since the estimated locations were not accurate enough.

Manual model selection Automated model selection
Main sensor All sensors Main sensor All sensors

1D positions 100% 100% 79.9% 75.8%
2D positions 99.7% 99.8% 66.0% 72.9%

Table 5.9: Accuracy’s of using multiple models for posture recognition

Figure 5.12: Recognition area used for the fourth experiment overlaid with the automated model
selection areas
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5.7.5 Posture recognition using the final recognition area results

This experiment improves on the results of the previous experiments by decreasing the recognition
area and using the improved localization algorithm based on the hottest column and concentration
of heat. Another improvement over the previous experiments is the use of the calibration method
described in section 5.2.1. The setup used in this experiment is shown in Figure 5.8c and a
sample set of 3510 samples was captured. The recognition area was decreased as the localization
algorithm performed worse at the positions furthest away from the main sensor and the posture
recognition at the same positions was less accurate. Another reason for reducing the recognition
area is that at a distance of 1 meter between the sensors and their closest position is a too short
of a distance to capture the postures in their full detail. Most noticeable, at the positions to the
left and right of the position in front of the main sensor, the samples for the arms wide posture
captured at these two positions were missing one of the arms. The resulting recognition area is
the previous area minus the front and back row of positions reducing the 3 × 5 area into a 3 × 3
area. The sensors configuration remains the same but the distance is increased to 1.5 meter.
The maximum measured location estimation error was reduced to 17cm with this setup and the
improved localization algorithms.

data sets training set test set validation set

front row positions
1D positions
2D positions

352
1058

40
118

388
1164

All positions
1D positions
2D positions

352
1058

40
118

388
1164

Single positions
1D positions
2D positions

3521

3521
401

401
1164
3492

1for each model/position

Table 5.10: The training, test, and validation set sizes for the sample set of the fifth experiment

This sample set was used to recreate data sets that follow the line of progression of the ex-
periments. The sample split is made between the 1D and 2D positions. So one set contains the
postures captured at the positions in the front row, closest to the main sensor. Another set con-
tains the posture data from all positions and a copy of this data set is created. Finally, a data
set for each position is created. All data sets are split into training, test, and validation sets with
a 45%, 5%, 50% split. For the training and test sets of the copy of the data set containing all
position, the actual location is used as the estimated location which is stored in the additional
row of pixels. An exception is made for the validation sets of the single position sets, these are
combined into a single test set. The sizes of these sets are given in Table 5.10.

In total 30 CNN models are trained, four for the front row positions, four for all positions,
four for all positions with localization, and 18 total for the individual positions. The training
parameters for all CNN are a learning rate of 0.001, batch size of 20, and the number of epochs
was chosen to get the training steps closest to 9000. The results of this experiment are shown in
Figure 5.13

The results show an increase in accuracy for all data sets. The conclusion of this experiment is
that using the location in the posture recognition does improve the accuracy. The highest gain in
performance is achieved by using multiple models in the recognition. Another interesting finding
of previous experiments is that in certain cases it is beneficial to only use the heatmap from the
main sensor instead of using all sensors.
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Figure 5.13: Accuracy’s of the fifth experiment

5.7.6 Posture recognition using adaptive ML model selection results

The purpose of this experiment was to explore using only the heatmaps of a single sensor for
the recognition. In the previous experiments, in particular experiments 2 and 3, show that the
performance of the recognition in some cases is better when using only a single sensor compared
to using all sensors. This was most noticeable when the person is close to a sensor. The time
needed to properly design a system that detects when a person is close to a sensor and adapt the
recognition process to that information was not available. Therefore a simulation of such a system
was designed. The sample set of the previous experiment was used to create a new data set. Figure
5.14b shown the separation of the recognition area when the closest positions to the sensors are
separated. This separation only has a single position that uses the heatmaps of all sensors for the
posture recognition. For the simulation, another separation was used that divides the recognition
area into equal parts. This separation is shown in Figure 5.14a and one section consists of the
row of position closest to the main sensor. The second section consists of the positions closest to
the other two sensors. The remaining section consists of the middle positions of all columns. The
choice for this separation was made because all sections are of equal size and would give a better
indication of the overall performance of such a system. This separation results into four data sets,
one for the section for each sensor and the section in the middle. The data set for each of the
sensors only contain the heatmaps from that sensor and the other data set contains the heatmaps
from all sensors and the sizes of these data sets is given in Table 5.11. These data set contain the
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2D positions, no 1D version was made.

Data sets training set test set validation set
sensor 1 264 30 291
sensor 2 264 30 291
sensor 3 264 30 291
centre positions 264 30 291

Table 5.11: The training, test, and validation set sizes for experiment 6

A CNN based on the second variant of the architecture is trained on the data sets for each of
the sensors and for the remaining data set a CNN based on the first variant of the architecture is
trained. The accuracy of the simulated adaptive system is based on the average accuracy of the
different CNNs, the results of which are shown in Table 5.12.

M

n

main sensor

sor
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M

(a) Separation based on distance to the
sensors and equally size sections

M

n

main sensor

sor

n

M

(b) Separation based on distance to the
sensors

Figure 5.14: The two options for separating the recognition area for the adaptive system

This simulation shows that the adaptive system can achieve a similar performance as a system
that uses multiple models. The benefit of the adaptive system is that smaller models are used for
when the person is closer to a sensor and these models can be placed on their respective sensors
nodes to perform the recognition locally.

sensor 1 sensor 2 sensor 3 centre
individual elements 100% 100% 100% 100%
whole system 100%

Table 5.12: Adaptive system simulation results

5.8 Final Experiments and their results

With the system design finished and tested, the performance of the system with more postures
needs to be validated. More postures were added in increments of two postures resulting in three
validation posture sets consisting of four, six, and eight postures. The postures were added in
increments to observe the changes in performance. Section 5.8.1 describes which postures are se-
lected for each of the posture sets. Four benchmarks are used to compare the performance of the
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adaptive system to existing solutions and other solutions that use localization for posture recog-
nition. Further details of these benchmarks can be found in section 5.8.2. For these benchmarks,
a sample set of 14040 samples, containing all eight postures, was created using the setup shown
in Figure 5.17a. The process of creating the data sets for the different benchmarks and sets of
postures is given in section 5.8.3. The results of all benchmarks are described in section 5.8.4.

5.8.1 Postures

To test the performance of the system eight postures were selected to be used in the posture
recognition. The selected postures are: standing, arms wide, arm out, cheerleader, squat, tree,
arms up, and leaning forward. An overview of the different postures is shown in Figure 5.15 and
their heatmap representations are shown in Figure 5.16.

(a) standing (b) arms wide (c) arm out (d) cheerleader

(e) squat (f) tree (g) arms up (h) leaning forward

Figure 5.15: Overview of the postures

(a) standing (b) arms wide (c) arm out (d) cheerleader

(e) squat (f) tree (g) arms up (h) leaning forward

Figure 5.16: Examples of the heatmaps of each posture

The postures that are included in the three validation sets are given in the following list:

• Four postures - standing, arms wide, arm out, and cheerleader

• Six postures - standing, arms wide, arm out, cheerleader, squat, and tree

• Eight postures - standing, arms wide, arm out, cheerleader, squat, tree, arms up, and leaning
forward

Distributed Human Posture Recognition using Thermopile Array Sensors 39



CHAPTER 5. EXPERIMENTAL SETUP AND RESULTS

5.8.2 Benchmarks

Four benchmarks were designed to compare the posture recognition system against. These bench-
marks simulate existing solutions and different approaches to improve the performance by using
localization. A list of the benchmarks is shown below:

• Benchmark 1 - Simulates a system that recognizes the postures at a fixed position using a
single CNN. For this benchmark, there are two 2D positions that are to the left and right of
the fixed position.

• Benchmark 2 - Simulates a system that uses a single CNN to recognize the postures at
multiple positions.

• Benchmark 3 - Simulates a system that uses a single CNN to recognize the postures at
multiple positions. This CNN uses the estimated locations as input

• Benchmark 4 - Simulates a system that uses a CNN for each position to recognize the
postures. The estimated location is used to select which CNN is used for the recognition.

• Adaptive system - Simulates the proposed system that uses two types of CNN for posture
recognition. For positions close to a sensor a CNN is used that is trained on the data for
that sensor and for other position a CNN is used that is trained on the data of all sensors.
The estimated location is used to select which CNN is used for the recognition.

For each of these benchmarks, there are four results which are a combination of two parameters.
The parameters are which sensors are used for the posture recognition and which positions are
included in the data set. There are two options for the sensors used, which are the main sensor
and all sensors. Only the main sensor is used in the first option and all sensors are used in the
second option. The positions in a recognition area are split into two categories, 1D positions and
2D positions. The 1D positions are shown as blue in Figure 5.17 and represent the positions that
vary in one dimension. The 2D positions vary in two dimensions and are equal to all positions in
the recognition area, shown as black in Figure 5.17. The same figure shows the setups that are
simulated in the different benchmarks.

5.8.3 Data sets

For the training and validation of the system, a sample set was captured using the setup shown in
Figure 5.17a. A single volunteer was used to capture the posture data of all positions and postures.
The postures were captured with the volunteer facing the main sensor at all positions. At each
position, the volunteer was asked stand a the position and hold each posture for 20 seconds while
occasionally making small movements. The small movements were used to introduce noise into the
images. The movements for postures were the arms are not next to the body consisted of moving
the arms up and down, and leaning from side to side. For the other postures, the only leaning
from side to side was performed. The sample set captured using this method consists of 14040
heatmaps, 195 samples for each position and posture. These 24×8 heatmaps are the concatenation
of the 8 × 8 heatmaps of the sensors based on their number in the sensor configuration.

This sample set was used to create the data sets for the adaptive system and the benchmarks
used to compare its performance. The data set for each benchmark is split into a one-dimensional
and two-dimensional version. For each of the data sets, a training, test and validation set was
created with a split of 0.45, 0.05, and 0.5. These sets were created for each set of postures and an
overview of them can be found in their respective tables, Table 5.13, Table 5.14, and Table 5.15.
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Figure 5.17: Visual representations of the five configurations for the final posture recognition
experiments. The different positions are shown as circles (blue 1d, black 2d)

benchmarks training set test set validation set

Benchmark 1
1D positions
2D positions

352
1058

40
118

388
1164

Benchmark 2
1D positions
2D positions

1058
3175

118
353

1164
3492

Benchmark 3
1D positions
2D positions

1058
3175

118
353

1164
3492

Benchmark 4
1D positions
2D positions

3521

3521
401

401
1164
3492

Adaptive system
1D positions
2D positions

10582

10582
1182

1182
11642

11642

1for each model/position
2for each sensor and the centre positions

Table 5.13: The training, test, and validation set sizes for all benchmarks with four postures
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benchmarks training set test set validation set

Benchmark 1
1D positions
2D positions

529
1587

59
177

582
1746

Benchmark 2
1D positions
2D positions

1587
4762

177
530

1746
5238

Benchmark 3
1D positions
2D positions

1587
4762

177
530

1746
5238

Benchmark 4
1D positions
2D positions

5291

5291
591

591
1746
5238

Adaptive system
1D positions
2D positions

15872

15872
1772

1772
17462

17462

1for each model/position
2for each sensor and the centre positions

Table 5.14: The training, test, and validation set sizes for all benchmarks with six postures

benchmarks training set test set validation set

Benchmark 1
1D positions
2D positions

705
2116

79
236

776
2328

Benchmark 2
1D positions
2D positions

2116
6350

236
706

2328
6984

Benchmark 3
1D positions
2D positions

2116
6350

236
706

2328
6984

Benchmark 4
1D positions
2D positions

7051

7051
791

791
2328
6984

Adaptive system
1D positions
2D positions

21162

21162
2362

2362
23282

23282

1for each model/position
2for each sensor and the centre positions

Table 5.15: The training, test, and validation set sizes for all benchmarks with eight postures

5.8.4 Results

During the training of the CNNs for the benchmarks using the first validation posture set, it
became apparent that the training parameters from the previous experiments did not result in
the desired performance. The biggest drop in performance was seen in benchmark 3, having
only an accuracy of 75%. Training this model with a higher number of epochs did improve the
performance. So to keep the training steps equal to the previous experiments, a learning rate of
0.1 was chosen for all further training. This resulted in a performance that was more in line with
the expected performance compared to the previous experiments, described in section 5.7. The
results for each validation set are shown in Figure 5.18 for the validation set with four postures,
Figure 5.19 for the validation set with six postures, and Figure 5.20 for the final validation set.

The accuracy when increasing the number of postures does decrease, but not in the manner
that was expected. Recognizing the posture at the position in front of the main sensor remains
the same, at 100%. It was assumed that the accuracy would decrease slightly because some of
the postures were harder to recognize. It is odd that the accuracy of the front row of positions
are close to that of the accuracy of all positions even though it contains fewer positions. With
the eight posture version, it would seem that only using the main sensor for posture recognition
has a larger negative effect on the accuracy of the recognitions which might be caused by an
increase in noise with the data of the final to postures. Another possibility is that some postures
are more difficult to recognize as they are similar to the other postures. What does remain true
over all increments of postures is that a higher accuracy is achieved when using multiple models
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over only using the location as input for a single model. The finding of the sixth experiments,
that using the adaptive system to achieve similar accuracy’s as the multi-model, does not hold
when adding more postures to the system. The accuracy of the adaptive system seems more
in line with the single model system. Improving the performance of the adaptive system lies in
the separation of the recognition area and the training of the models and the architectures used
for those modes. It is likely that using the separation shown in Figure 5.14b would have a high
accuracy as the separated positions are closer to the sensors giving the models more details to
work with. Further improvements could be achieved by improving the architecture of the CNN
for single sensor recognition and improving the training parameters for all CNN models.
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Figure 5.18: Recognition accuracy of the benchmarks for the four postures
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Figure 5.19: Recognition accuracy of the benchmarks for the six postures
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Figure 5.20: Recognition accuracy of the benchmarks for the eight postures
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Chapter 6

Conclusions

In this chapter the work is evaluated, the observations are discussed and some recommendations
are given for future work.

The aim of this research was to investigate the possibilities to use the location of the subject
in combination with thermopile array sensors to provide accurate posture recognition within a
room. The first task was finding the largest distance at which thermopile array sensor can be
used for posture recognition. This distance was found to be 3 meters at which the noise and
details of the posture were insufficient for posture recognition. Secondly, a localization algorithm
was implemented that uses the heatmaps of multiple thermopile array sensors to estimate the
location of the subject. This algorithm was improved by basing the Angle of Arrival on the
hottest column and calculating the concentration of heat surrounding that column. Two system
were designed and implemented that use the localization algorithm to improve the accuracy of the
posture recognition. One system uses the estimated location as input for the ML model and the
other system uses a ML model for each location and uses the estimated location to select which
ML model to use for the recognition. To compare the performance of these two systems, two
benchmark systems were designed and implemented that did not use the localization.

The final aim was to design a adaptive system were the posture recognition of positions close
a particular sensor is performed on the resource-constrained devices housing that sensor. This
system uses smaller models for these positions such that they can fit on these constrained devices.
The performance of all systems are evaluated and compared leading to the conclusion that using
a CNN model for each positions and selecting the correct one based on the estimated locations
achieved the highest accuracy. Another important conclusion is that recognizing postures at an
angle is possible, but further research is needed to be able to recognize these angled postures at
any position in a room. The noise in the heatmaps of the thermopile array sensor at distances
over 2 meter is limiting the performance of the posture recognition and research into reducing
the noise or extracting the shape of the posture needs to be done. This should also improve the
performance of the proposed system and should allow for larger recognition areas. The adaptive
system has a lower accuracy than the system that uses all sensors for all positions, but it allows
for distributed posture recognition. Further research into the adaptive system

The main contributions of this thesis are:

• Provides evidence that posture recognition at various positions in two dimensions is possible
when using thermopile array sensors.

• Provide an implementation for a localization algorithm based on the output heatmaps of
thermopile array sensors.

• Implement a system that uses the location and Convolutional Neural Networks for room-wide
posture recognition.

• Show that using the location improves the accuracy of the posture recognitions.
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• Design an adaptive system to use the location to reduce the complexity of the CNN models.

• Show that high accuracy can be achieved for posture recognition system using thermopile
array sensors.
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