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Abstract

In an urbanizing modern day society the modeling of pedestrian dynamics has many fields of
applications such as city infrastructure design and safety planning. One way to model diluted,
single pedestrian flows is force-based modeling. This method expresses the individual dynamics
in an interplay of, so called, ”social forces”. The problem is reasonably well understood when
it comes to modeling of individual dynamics along straight paths in terms of the typical fluctu-
ations that such motions feature. This thesis proposes a model that quantitatively reproduces
the fluctuations of single pedestrian dynamics on curved base-paths. Modeling forces are used
to confine pedestrians to a motion and account for the stochastic behaviour of pedestrians. A
covariant derivative is introduced that enables a natural generalization of the force-based straight
path dynamics to curved paths. Several differential geometry concepts are used to accomplish
this. The model is quantitatively validated with two real life experiments. Compared are the
empiric and simulated distributions of velocity and position fluctuations. The comparison of the
model with the experiments shows good resemblance with real life pedestrian dynamics limited to
the diluted scenario.
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1. Introduction

More than half of the world population lives in cities [1]. United Nation studies suggest that
this portion grows towards 75% in 2050 [2]. Meanwhile, this is only 3% of the planet’s land
surface. This massive influx to the urban-population will not contribute to the fluency in which
people flow through the city. Consequences of large and dense crowd flows can be accidents,
congestions (Figure 1.1), queues and traffic jams. With pedestrian traffic as main traffic in cities,
it is important that the flows of pedestrians are smooth.

In order to control these flows, it is important to understand
the dynamics of single pedestrians. The behaviour of pedestri-
ans, whether as crowds or as individuals, can be modeled. These
models help to predict how pedestrian flows will react to certain
situations. Examples of applications are city planning and evac-
uation planning [3].

The modeling of pedestrian dynamics has numerous fields of
‘ {) research. This thesis focuses on the modeling of typical fluctu-

i : ‘ ations that pedestrian motions feature. A common way of doing
a]’:ltghgls‘ﬁib}l;’izst nggo‘friii Junetion 50 s describing pedestrian motions as if they would be subject
Source: Sean Pavone/Shutterstock. ~ t0, so called ”social forces”. This has already been applied to

straight paths [4]. However, paths of pedestrians are not gener-
ally straight. In this thesis, a model is proposed that quantitatively reproduces fluctuations of
single pedestrians around generic curved base-paths.

For curved base-paths, the dynamics become very complex. Therefore, base-paths are taken
to be geodesics. Geodesics are paths that a person would follow if he keeps going straight ahead.
In our physical space geodesics are straight lines. But if the geometry is changed, geodesics are
no longer necessarily straight lines. For switching between the different geometries, differential
geometry tools are needed.

The conceptual frame work is presented in Chapter 2 in order to create a good intuitive under-
standing of the modeling idea. All technical aspects, among others the differential geometry tools,
that has to be understood are explained in the theoretical background (Chapter 3). Subsequently,
the model is proposed in Chapter 4. The simulation procedure is discussed in Chapter 5. After
this, the model is validated. In this chapter, the model is quantitatively compared with two real
life experiments. The results are discussed and a conclusion is drawn in Chapter 7.




2. Conceptual framework

In this chapter, the modeling concept is explained and the challenge for this thesis becomes clear.
The conceptual framework creates a better understanding of the subject.

Suppose a ball is given a kick on a flat surface in a force free environment. The ball would
follow a straight path. The motion of the ball is governed by Newton’s second law:

F =ma. (2.1)

In Equation (2.1), m and @ are the mass and acceleration respectively and F represents the sum
of all forces active on the mass. The ball that was kicked on the flat surface does not experience
any forces so it has constant velocity (a = 0). If forces are added, the velocity’s magnitude and
direction can be changed and therewith the dynamics of the ball.

Force based modeling treats single pedestrians as active particles governed by Newtonian dy-
namics. This method uses force to model the dynamics of a particle.

Without forces, every particle follows straight paths. In reality, pedestrians perturb from these
straight paths due to social forces, geometrical constraints or internal forces. Social forces are
forces that guide behavioural changes [5]. Think, for instance, of a sidestep to go back to the
path that you intend to follow or the avoidance of another pedestrian. The following question
arises: which forces does a particle need to increase resemblance of its dynamics with a real life
pedestrian?

A realistic model that describes the fluctuations of pedestrian dynamics quantitatively has
already been proposed for diluted straight paths [4]. This model assumes that there is no correla-
tion between the longitudinal and transversal dynamics. Therefore, the dynamics in the different
directions are modeled independently according to

T=u (2.2)

_ (2.3)
i = —4au(u® — ui) + o, W (2.4)
b= —28y — 2uv + o, W (2.5)

Here, x, the longitudinal coordinate, and y, the transversal coordinate, are Cartesian coordin-
ates with corresponding velocities u and v. In Equation (2.4) and (2.5), it can be seen that
the acceleration in the different coordinate directions is determined with a collection of modeling
forces.

The lateral dynamics are determined by three forces. The first two forces are the result of a
harmonic confinement potential which consists of a position potential (®,) and a velocity potential
(®,), where

®,(y) =By* and @,(v) = p’. (2.6)

These potentials cause the particle to move to the desired straight path when it is perturbed
from it. The confinement potential well can be compared with an U-shaped slope. A visualization
of this is shown in Figure 2.1a.



(b)

Figure 2.1: Visualization of confinement potential with a trajectory that converges to a desired
straight path (a). In (b): A circular potential with the desired circular path at its bottom. Visible
are the spurious fluctuations in blue.

The third force that controls the lateral dynamics is a stochastic force. With purely determ-
inistic dynamics, every particle with the same starting position and velocity will follow the same
trajectory. However, in reality pedestrians might exhibit different trajectories when they have
the same initial conditions. The third lateral force is random noise that should account for the
stochastic behaviour that pedestrians have.

According to Equation (2.4), the longitudinal dynamics is controlled by two forces. The first

modeling force is the longitudinal propulsion force is given by f(u) = —4au(u? — uf,) and is the
result of a longitudinal velocity potential (®,,), where
P, (u) = a(u® —ul)’. (2.7)

The longitudinal propulsion force keeps the particle moving around the same velocity in longitud-
inal direction. This desired velocity is represented by parameter u,. The other parameter, o, is a
scale parameter. When the particle is moving too slow or too fast, this force causes an acceleration
or a deceleration respectively. Real life pedestrians also create this force intrinsically to overcome
friction. The second force that determines the longitudinal dynamics is again random noise.

Equations (2.2)-(2.5) describe the dynamics of pedestrians along straight paths. A straight
path is the result of force-free motion in flat space. In order to adapt this model for curved paths
the first intuitive approach would be to extend the confinement potential along a curved path.
This would mean that the particle is constantly forced to a desired curved path. Take for example
a circle as desired curved path. In order to confine the particle to the circle, a circular harmonic
potential can be added with the desired circle at its bottom. Suppose a ball is given a kick in an en-
vironment where solely the confinement force works on the ball. The ball will follow a path similar
to the path shown in Figure 2.1b. It can be seen that the trajectory of the ball fluctuates along the
base-path but the fluctuations stay on the outer side of the circle. This is a result of the curving
of the potential. Since the fluctuations are expected to be symmetric on both sides of the circle,
the fluctuations are spurious. Clearly this is not the way to adapt the model for curved base-paths.

An alternative approach is needed. Until now, straight lines were defined to be the result of
force-free motion in flat space. What if a force-free motion is performed in curved space? The
resulting path is no longer a straight line. Take, for example, the polar parametrization of R2. This
is a simple and common coordinate system where the coordinate lines are curved. Figure 2.2 shows
that a straight line in the polar parametrization looks like circle when it is observed in Cartesian
coordinates. Straight lines can be redefined such that straight lines are the result of force-free
motion in curved space. Consequently, paths that look curved can still satisfy the definition of a
straight line. For example, if force-free paths in the polar parametrization (Figure 2.2b) are defined
to be straight, the circle is in Figure 2.2a is also straight. As a result, the harmonic confinement



potential in Figure 2.1b is now centered around a straight path. The fluctuation will no longer be
spurious.

circlein (x, y) straight line in (©, r)
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Figure 2.2: A circle in Cartesian coordinates (a) corresponds to a straight line in polar coordin-
ates (b).

The discussed model for fluctuations of single pedestrian dynamics (Equations (2.2)-(2.5)) is
intended for straight paths. If the concept ‘straight’ is defined wisely, any curved path can be
straight. The mathematical field of differential geometry provides tools that are needed for the
new definition of straight.

The redefinition of straight alters the acceleration vector a. With the new acceleration vector,
the equation of motion based on Newton’s second law could be derived. After that, modeling
forces could be added to make the model more realistic.



3. Theoretical background

In this chapter, several technical and mathematical concepts will be elaborated that will be needed
for the construction of the model.

3.1 Differential geometry

As explained in the conceptual framework (Chapter 2), differential geometry is the field of
mathematics that is needed to make a connection between different parametrizations. Differential
geometry uses techniques from calculus to investigate all kinds of properties of smoothly varying
manifolds. In the following subsections, several concepts are discussed that are important for the
understanding of the mathematical model.

3.1.1 Curvilinear coordinates

A point x in the n-dimensional Euclidean space (R™) are most often represented in its Cartesian
coordinates ' € R. That are the coordinates relative to the standard basis {e; = %},i =
1,2,...,n, where e; are the basis vectors with the i-th entry equal to 1 and the other entries equal
to 0. As a result: x = z’e;. In the latter expression, the Einstein summation convention is used
(z'e; = ), z'e;). The Einstein summation convention will also be used in the remainder of this
report.

Sometimes, it is useful to use other coordinate systems. If a coordinates system does not have
straight coordinate lines it is called a curvilinear coordinate system. Well known examples of cur-
vilinear coordinates are spherical coordinates, cylindrical coordinates in R3 or polar coordinates
in R?. Suppose a curvilinear coordinate system with basis {&;},i = 1,2, ...,n. Point x can also be
expressed in curvilinear coordinates: x = z'e; = ¢'@;, where ¢* are the curvilinear coordinates.

The curvilinear basis vectors can easily be expressed in the standard basis vectors. This is a
matter of chain-rule:

€;

0 000 v (3.1)
dqt  O0q* OxJ oq*

A differentiable manifold M is topological space that locally resembles an Euclidean space. A
practical example is the surface of the earth that locally looks like R2. A more trivial example is
R? which locally resembles R?. Each coordinate system has a diffeomorphism ¢, that gives the
coordinates of a region 2, on manifold M: ¢, : 2, C M — R". For instance, the map ¢, for the
Cartesian coordinates maps a point p € M to its Cartesian coordinates: ¢, (p) = x € R™.

If two mappings cover an overlapping region on a manifold (2, N Qg # 0), a smooth diffeo-
morphism or coordinate transformation exists between the two charts. This coordinate transform-
ation is given by

b=0dsody': pa(QNQp) CR™ = ¢5(Q NQp) CR™ 125y = dgo b, (z), (3.2)

where x,y € R™ are coordinates in coordinate chart ¢, and ¢g respectively [6]. Note that the
coordinate charts ¢, (2,) and ¢5(23) are denoted as ¢, and ¢z by abuse of notation.

3.1.2 Pull-back and push-forward

Suppose a smooth mapping between two manifolds M and N with dimM = dimN = n:
¢ : M — N. The map ¢ that maps points on M to points on N is called a push-forward. If ¢
is a diffeomorphism, the map can be reversed: ¢~ ! : N — M. The inverse mapping is used to
pull-back points to manifold M. One can also think of manifolds M and N as two coordinate
charts ¢, and ¢5. In this case, the coordinate transformation ¢ = ¢zo¢;! is used to push-forward
coordinates.

As mentioned before, every point on a manifold locally resembles R™. When this Euclidean
space is extended, a tangent space is created. For the example of the manifold that is the surface
of the earth, the tangent space at a point p is the tangent plane (R?) at that point. For the trivial
example of the flat plane, the tangent space at a point p is the same flat plane. A tangent space at



point p € M is denoted as TM,,. The dimension of a tangent space is the same as the dimension
of the manifold.

Vectors v € TM C R™ can also be pushed-forward from manifolds M to manifold V. This is
done with the map

¢x : TM, CR™ = TNy(,) CR" 1 v i @i (V) = Jpv, (3.3)

where Jy is the Jacobian matrix of map ¢ between the manifolds.

3.1.3 Metric tensor

If line segments are pushed forward to other coordinate charts, they can be squished together
or stretched out. Meanwhile, it is still the same line segment so its length should not change. A
notion of length is created by the metric tensor. The metric tensor is given by:

9ij = (ei, €;) ihj=1,2,..,n (3.4)

where (-,-) : TM,, x TM,, — R" is the inner product operator and e; are the basis vectors of the
coordinate chart. The metric tensor output is dependent on the sizes of and the angle between
the basis vectors. For example, the metric tensor in matrix form for two-dimensional Cartesian

coordinates is given by:
10
9ij = (O 1) . (3.5)

The inverse of the metric tensor is denoted by ¢*/. Contraction between the metric tensor and
its inverse gives the Kronecker delta (g;pg" = 5;)

The length of unit vectors are often called Lamé coefficients [7]. The Lamé coeflicients H; are
given by

(Hl)Q = Gii = (ei,ei) (Z = 1,2, ,n) (36)

To determine the length of a vector, solely the components of a vector is not enough. The
length of the basis vectors is also of importance. Therefore, the Lamé coefficients are used to
determine the length of vectors [8]. Take for example the length of vector v in basis {e;}i=12,. n-
Vector v is given by the contraction of the vector components with the basis vectors:

. . e,

v=1'e; = Hﬂ/lﬁi (3.7)
where v are the components of vector v relative to the given basis. The division by H; ensures
that 7+ has length 1. Therefore the magnitude of v is

v| = \/H2(v1)2. (3.8)

3

3.1.4 Covariant derivative

In pedestrian dynamics velocities, and therewith the derivative operator (8%), play an import-
ant role. The ordinary derivative operator can be used on flat manifolds. In this context, flat
means that vectors do not change over the manifold. The Cartesian coordinates are an example
of this. The basis vector e, is for example the same everywhere in R2. In curved space, on the
other hand, the magnitude and direction of basis vectors vary over the space. Since the ordinary
derivative operator does not work in curved space, another derivative operator is needed that cor-
rects for the changing basis vectors. This operator is called the covariant derivative. The covariant
derivative of vector u in the direction of v is given by:



9 »
Veu= 8—: + ukuJF}Cjei, (3.9)

Where chj are called connection coefficients or Christoffel symbols of the second kind. As can be
seen in this equation, the covariant derivative consists of two parts. The first part (2—3) is the
ordinary derivative of vector u in the direction of v. The second part is a correction term that
takes the change of basis vectors into account. The Christoffel symbols are determined by

Vejei = I’fjek. (310)

This equation shows that if basis vector e; is transported in the direction e;, the change of
basic vector e; is given by the vector Ffjek. The Christoffel symbols are not uniquely defined.
The alternative name connection coefficients suggests that Christoffel symbols determine how
different tangent spaces are connected on a manifold. By defining the way Christoffel symbols are
calculated, the connection is defined. The most common connection is the Levi-Civita connection.
This connection computes the Christoffel symbols by

1
Iy = 59“ (0igej + 0jgei — Ougij) - (3.11)

The Levi-Civita connection is also the connection that is used in this thesis until further notice.
From Equation (3.10) and (3.11), it follows that the Christoffel symbols are equal to 0 for flat
space. As a consequence, the covariant derivative acts like an ordinary derivative in flat space.

The covariant derivative can also be pushed forward to other coordinate charts. This push-
forward induces a relation between Christoffel symbols in different coordinate charts given by

FicJ = Ték (S]ﬂ’bs;nfim + 8355) ’ (312)

where T' = Jy, S = Jy-1 = [Js] ™', 6 Qo — Qp and ¥, and ffj the Christoffel symbols in the
coordinate charts ¢, and ¢g respectively.

3.1.5 Parallel transport and Geodesics

The covariant derivative can be used when it comes to transporting over a manifold. Suppose
vector u is transported over a manifold in the direction of v from tangent space to tangent space.
The tangent spaces are connected via the Levi-Civita connection. A covariant derivative equal to
0 means that vector u does not change when it is observed in each tangent space. This concept is
also called parallel transport. The parallel transport of vector u in the direction of v is given by:

Veu=0. (3.13)

Suppose that u is a velocity vector. If this velocity vector is transported parallel in its own
direction, the velocity vector does not change. This means the motion has no acceleration and is
therefore force-free. In Chapter 2, force-free motions resulted in straight paths. However, if the
concept of parallel transport is used in curved space, the resulted path is not necessarily straight.
The resulted path is called a geodesic.

For a clear visualization a comparison can be made: Suppose a person starts walking straight
ahead in a hilly area. The trajectory of the person looks straight until he encounters a mountain.
The trajectory will be curved over the mountain. The trajectory of this person is not a straight
path but it is a geodesic: the ’straightest’ path.

From Equation (3.13), a differential equation could be made. If x is the velocity vector, the
covariant derivative in its own direction is given by:
Vid = (i* + TFi'il)e, =0 = &F +TEi'd = 0. (3.14)

Since k = 0,1, ...,n the latter equation is a system of n differential equations. This system is
also called the geodesic equations.



3.1.6 Example Polar Coordinates
In this subsection, the previous explained concepts will be applied to polar coordinates to im-
prove the understanding of the theory.

Suppose a flat space (R?) with the Cartesian coordinate chart and the polar coordinate chart.
This means that R? is parametrized by Cartesian coordinates ((x!,2?) = (z,y) € R? with basis
{e;,e,}) and polar coordinates ((¢*,¢*) = (r,0) € R? with basis {é,,ég}) respectively. The

coordinate transformation ¢ : @ — ¢ between these coordinate charts is given by

¢:{x:r0059 (3.15)

y=rsiné
and its corresponding inverse ¢~ ! : ¢ — z by

ot {T: IRy (3.16)

0= arctan%

Not all coordinate lines of the polar coordinates are straight and therefore this is a curvilinear
coordinate system. Suppose that a straight line is now defined as a line that looks straight in
the Cartesian coordinate chart. Since this chart is the most customary, this is the accustomed
definition of a straight line.

The basis vectors of the polar coordinates (€, and €p) can be expressed in the Cartesian
coordinate basis vectors by

&, = aa—xei = cos (0)e, + sin (0)e,, (3.17)
r

. 0! .

ép = 50 e; = —rsin(0)e, + rcos (0)e,. (3.18)

Because of the definition of a straight line, the basis vectors in Cartesian coordinates do
not vary in length over the chart. Therefore, the metric in Cartesian coordinates is given by
gij = (e;,e;) = 0;;. With this metric tensor and Equations (3.17) and (3.18), the metric for polar
coordinates can be calculated:

s = (€1,6;) = [}) 72] . (3.19)

Another result of the way straight lines were defined are the Christoffel symbols. Because
the metric and the basis vectors in Cartesian parametrization do not depend on the position, the
Christoffel symbols are equal to 0. Equation (3.11) confirms this. The Christoffel symbols in polar

coordinates can be calculated with Equation (3.11) or (3.12). The resulted non-zero Christoffel
= =6 =9
symbols are Ty, = —r, T,y =T, = i

Now the Christoffel symbols are known, the geodesic equation (Equation (3.14)) can be derived.
The geodesic equation in Cartesian coordinates is simply given by:

i=0Njj=0. (3.20)

This clearly is the equation of a straight line. The geodesic equation in polar coordinates is
given by: _
. . 907
P2 = 0N+ L =0, (3.21)
r
Solutions of Equation (3.21) clearly do not look straight when observed in the polar coordinate
chart. In Cartesian coordinates however, they look straight.



More interesting is the case where straight lines are defined to be force free motions in the
polar coordinate chart instead of the Cartesian chart. This means, straight lines are redefined
to be lines that look straight in the polar coordinate chart (Figure 2.2b). As a consequence, the
magnitude of the polar coordinate basis vectors are the same everywhere in R? and the metric
tensor in this chart is given by g;; = d;;. The Christoffel symbols in coordinates are equal to 0.
The Christoffel symbols in the Cartesian chart can be calculated with Equation (3.12) and are

given by:
—xzy? —y° 222 y+y> —z?
F” ,ya m3+29;y2 and F” _1:3 712y . (322)
e A et povcy

The corresponding geodesic equation is given by:

4
T
T

_MQ_E 1‘34’21’!!2 .2:0
AP Y (3.23)
SArY — Y = 0

Solutions of this equations are straight lines. However, the solutions do not look straight in
Cartesian coordinates (Figure 2.2a).

The geodesic equation is of high importance because its solutions are straight lines. Tools as
the covariant derivative, Christoffel symbols, metric tensor and pull-back/push-forward are needed
to move the geodesic equation to different coordinate charts.

3.2 Tubular neighborhood

Suppose a smooth curve in R", v : [sg,s1] =& R™ : s — 7(s), where v(s) are the Cartesian
coordinates of the curve, sp,s1 € R and s € [sg,s1] C R the parameter of the curve. A tubular
hyperspace X, is the collection of points that are at a distance h from curve v [9]. The region
inside X}, is called the tubular neighborhood of v with radius h. In R3, this looks like a circle that
follows a curve (Figure 3.1a).

(a) (b)
Figure 3.1: A tubular surface around a curve in R? (a) and a collection of curves parallel to the
bold curve (b).

From this point on, only the two dimensional case will be considered since the pedestrian
motions in this thesis will be two dimensional. In R2, X, is also a curve at distance h from . In
Figure 3.1b, several tubular hyperspaces are displayed that are parallel to the bold curve.



3.2.1 Coordinate frame

A coordinate chart, ¢, can be made that covers the tubular neighbourhood of a curve where
the tubular hyperspaces will form coordinate lines. Since the hyperspaces are all parallel to curve
v, the first basis vector, T, is a tangent vector of the curve:

!
T = “//(S) , (3.24)
[ (s)]
where the prime (') denotes the derivative with respect to s. The division by |y/(s)| ensures that
T has unit length. This tangent vector is dependent on s. Therefore T = T\(s).
The other basis vector, N, is normal to T and curve ~:

N — (TT21> 7 (3.25)

where T? denote the components of T. This normal vector is obtained by a clockwise rotation of
the tangent vector by 7 radians. Vector N = N(s) can describe the tubular hyperspace X, as
follows:

Xn(s) =~(s) + hN(s). (3.26)

The latter formula can only describe tubular hyperspaces X, for |h| not too large. Figure
3.2 shows an example of a curve with a tubular hyperspace X where |h| is too large. Because
of the curvature of the ellipse, the parallel curve intersects itself. The curvature k& and radius of
curvature R are given by [7]

Yo (8) 7y (8) — 72 ()7, () 1
(v ()% + (v, ()22 R(s) = -— (3.27)

k(s)’
where v, and vy, are the x and y component of v respectively. A safe upper bound for |h| is the
minimal radius of curvature:

k(s) =

|h| < hmax = min  R(s). (3.28)

5€[s0,51]

Figure 3.2: An ellipse with a curve parallel to it (Xj). The curve X}, intersects itself since |h|
is too large.

Coordinate chart ¢, : ., — R? covers the region (2, between X_j_  and X, The
coordinates of ¢., are (s',s?) = (s, h). Coordinate h indicates on which parallel curve X}, a point
lies. The other coordinate, s, is the parameter of the curve and indicates how far on Xy (s) the
point lies.

max *

10



3.2.2 Coordinate transformation

A coordinate transformation ¢ exists between coordinate chart ¢, and the Cartesian coordinate
chart in the region Q.. Map ¢ : ¢4(Q2,) = ¢2(,) : s = x = ¢(s), where ¢, represents the
Cartesian coordinate chart and z,s € R? are coordinates in charts ¢, and ¢., respectively, is given
by:

6(s,h) = X (s) = 7(s) + hN(s). (3.29)

3.2.3 Pull-back

With the coordinate transformation in Equation (3.29) points and vectors can be pushed
forward from chart ¢., to the Cartesian chart. For a pull-back, the inverse mapping ¢! is needed.
However, it is not always possible to derive an expression for ¢~!. The Newton-Raphson method
will help with an approximate but accurate pull-back.

Newton-Raphson method
The two dimensional Newton-Raphson method is an iterative method for solving solutions in
the form f(x) = 0. If x¢ is an approximate solution, then the sequence

Xpi1 = Xp — J (%) (xp) p=1,2,.. (3.30)
converges to a solution of f(x) = 0 [10]. In Equation (3.30), J~! represents the Jacobian of f with

respect to x.

In the case that this method is used to pull-back a known point (Z) from the Cartesian co-
ordinate chart to chart ¢, function f is given by

£ = (s) — i (3.31)

The Newton-Raphson approximates the roots of f and therewith solutions of ¢(s) = & where
s=¢"1(2).

The Newton-Raphson method has quadratic convergence [11] which means
|8 — spp1] ~ |8 — sn? (3.32)

where § is a root of f and s, the approximation of root §.

3.3 Stochastic differential equations

The geodesic equation (Equation (3.14)) form the base of the model for fluctuating pedestrian
dynamics. In order to simulate trajectories of pedestrians, the geodesic equation has to be solved.
In R?, this is a system of four ordinary differential equations (ODE). Several modeling forces will
be added to this equation to, among other things, take the stochastic behaviour of pedestrians
into account. The stochastic terms that these modeling forces contain, cause the system of ODE’s
to become a system of stochastic differential equations (SDE). The required knowledge about
stochastic differential equations will be discussed in this chapter.

3.3.1 Brownian motion
A Brownian motion is a continuous stochastic process W with the following properties [12]:

i W(0) =0;
i W(t)—W(s) ~N(0,t—s), for any 0 < s < t;

i W(ty) — Wi(to), W(ta) — W(t1), -+ ,W(tx) — W(tx—1) are independent random variables for
each k>2and 0=ty <t; < - < tg.

For a two-dimensional stochastic process, W (t), to be a two-dimensional Brownian motion,
both components, W1 (t) and W(t), should be independent one-dimensional Brownian motions.
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3.3.2 Construction of an SDE

Let z(t) be a function satisfying the following ordinary differential equation:

da(t) _
o = a(t, z(t)) (3.33)

with initial value 2(0) = x¢ and a(t, z(t)) an arbitrary function. This differential equation has the
following solution:

¢
x(t) = zo —|—/ a(t,z(1))dr. (3.34)
0
Suppose that a(t,z(t)) is now a continuous stochastic process of the following form:

a(t, X (1)) = f(t, X () + g(t, X (£))n(t), (3.35)

where f and g are arbitrary functions and 7 is Gaussian white noise. This means that n(t) ~
N(0,1) for all ¢t. Note that function z is now a random variable X. The ODE in Equation (3.33)
transforms in a stochastic differential equation given by

P — 5. X(0) + ot X000, (3.36)

The Gaussian noise term is regarded as the derivative of a Brownian motion (n(t) = W (t))
[13]. The stochastic differential equation can be written as

dX (1) .

S = 6 X(0) + 90, X)W (1), (3.37)
A solution of this SDE is given by
X(t)=Xo+ /01 f(r, X (1))dr + /Olg(T,X(T»dW(T), (3.38)

where Xy = X(0).
The two integrals in this equation are supposed to be well defined. The latter integral is
referred to as an It0 integral.

3.3.3 Numerical method for approximating SDE’s

Suppose the stochastic differential equation

dX (t) = f(t, X ())dt + g(t, X ())dW (t), X(0)=X© (3.39)

where X (t), f(t,X(t)) and g(¢t, X (t)) are n-dimensional vectors, g(t, X (t)) is a n X n-matrix and
W (t) a n-dimensional Brownian motion. This can also be written as

n
dX(t) = fult, X (O)dt + Y gin(t, X (£)dWi(®),  Xi(0) = X[ (3.40)
k=1
where ¢ = 1,2,--- ,n. For the approximation of the solution, the interval [0, 7] is divided into N

equal intervals with length h = T/N.
A simple numerical method for approximating the solution of stochastic differential equations
is the Euler-Maruyama scheme [14]. The Euler-Maruyama scheme is given by

2 — o)y, (jh, m(j)) ht igik (jh7$(j)) AW, (3.41)
k=1

where AW,gJ) = Wi ((j+1)h) — Wy (jh) and £\9) represents the numerical approximation of X (jh).
Note that 0 < j < N.

The Euler-Maruyama method is has a strong order convergence of 0.5. Although this method
is very efficient, more accurate methods exist. The stochastic Runge-kutta (SRK) method, for
example, has strong order of convergence 1.0 [15].
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4. Model

In this section, the mathematical model will be constructed step by step. The goal is to model
diluted pedestrian dynamics fluctuating around curved paths. First a relatively simple model will
be used to model force-free pedestrian dynamics on circular paths. Then, generic curved paths will
be considered. After this, the modeling forces (lateral confinement, longitudinal propulsion and
white noise) based on the discussed model for fluctuating pedestrian dynamics around straight
paths (Chapter 2, [4]) will be introduced. The modeling forces will be added to create a realistic
model for fluctuating pedestrian dynamics.

4.1 Force free equations

To begin, motions of pedestrians will be considered where no forces are present. The path
that a pedestrian desires to follow is referred to as base-path. Since pedestrians follow geodesics
when moving in a force-free environment, the base-path and parallel paths need to be a geodesics.
As explained in the conceptual framework, Chapter 2, pedestrians are compared with particles
governed by Newtonian dynamics. The Cartesian coordinate system best resembles the physical
space concerning velocities and length. Therefore the particles are considered to move in the
Cartesian representation of R2.

4.1.1 Example circular trajectories

Suppose pedestrians desire to follow a circular path. Then, a circular base-path is demanded to
be a geodesic. In order to define a circle to be a geodesic in a simple way, the coordinate chart has
to be found where it looks like a straight line. Then, straight lines can be redefined to resemble
force-free motions in this coordinate chart. Luckily, circles are not complex trajectories. The
suitable coordinate chart is already known: the polar coordinate chart. The example of the polar
coordinates has already been elaborated in Section 3.1.6. In the explained setting, the geodesic
equation in Cartesian coordinates is given in Equation (3.23). In Figure 4.1, examples of solutions
of the geodesic equation can be seen in polar coordinates as well as Cartesian coordinates. Also,
the velocity plot is shown for each solution.

Trajectories in polar coordinates Trajectories in Cartesian coordinates Velocities of particles
2.25
bool ™ particle 1 15 61 —— particle 1
particle 2 10 5 particle 2
B — particle 3 05 44 — particle 3
1.50 Fli
0.0 ‘S
125 > 8 )
-0.5 . g
100 _10{ — particle 1 1
0.75 15 particle 2 0
050 0/ — particle 3 -1
0 2 4 6 8 10 12 -3 -2 -1 0 1 2 3 0 2 4 6 8 10 12
© X time
(2) (b) ()

Figure 4.1: Examples of trajectories along geodesics in polar coordinates (a), in Cartesian
coordinates (b) and the corresponding velocity magnitudes (c).

The different trajectories in Figure 4.1b are the result of different initial conditions of the
particles. The particles that follow a spiral in Figure 4.1b do not follow a circle. However, these
trajectories are still geodesics because they resemble straight lines in the polar coordinate chart
(Figure 4.1a).

In Figure 4.1c, the magnitudes of the velocity of each particle can be seen. The particle that
follows the circle has a constant velocity. The particles that follow a spiral on the other hand, are
accelerating or decelerating. Take for example the outwards spiraling ‘particle 2’. This particle
constantly moves to a greater circle but keeps the angular velocity constant. Because a greater
circle covers more distance and the particle covers that distance in the same amount of time, the
particle has to accelerate. Likewise, ‘particle 3’ is decelerating.
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4.1.2 Energy conservation

From the pedestrian point of view, it does not make sense to accelerate when a straight path
is followed in a force-free environment. Perturbations from a curved base-path should not lead to
accelerations. To keep energy and velocity conserved another connection has to be chosen. That
means that the Levi-Civita connection (Equation (3.11)) is no longer valid and another way of
determining the Christoffel symbols is needed.

The circular geodesic equation in polar coordinates endowed with the Levi-Civita connection
is given by:
F=0
.. . 4.1
{ o (41)

As mentioned before, the Cartesian coordinate chart is the coordinate chart that best resembles
the physical space. Therefore, velocities and line segments should be observed in the Cartesian
chart. For the definition of geodesics, the metric in polar coordinates was defined to be g;; = d;;.
However, when it comes to measuring the length of vectors the Lamé coefficients are used with
respect to a Cartesian metric of g;; = d;;. The Lamé coefficients (Equation (3.6)) in the polar
coordinate chart are given by:

H.=1 and Hy=r (4.2)

The resulting length of velocity vector v = (i,0) is |v|*> = 72 + (rf)2 which is a result of
Equation (3.8). The physical velocity component in the angular direction is thus given by 6. For
energy conservation the physical velocity component (ré, unit [ms~!]) should be conserved instead
of the angular velocity (6, unit [s~1]). The geodesic equation (Equation (4.1)) evolves in:

=0
L N . : 4.3
{i(r@)zr@+7’"9=0=>9+i7"0=0 (4.3)

Equation (3.14) shows how the Christoffel symbols play a role in the geodesic equation. The

obtained Christoffel symbols from Equation (4.3) are ffe = fzr = 5. The push-forward of these
Christoffel symbols (Equation (3.12)) are given by

L [0 % y_[ % -
Lii=1_ 2r and Lii=1_"% 0’” (4.4)
2r2

272 2

and the corresponding geodesic equation by

45
j=— % 4 Ly (45)

=Gy — T‘%g'f
7‘2

In Figure 4.2, three trajectories of particles are shown in polar coordinates and Cartesian
coordinates. The particles in this figure have the same initial conditions (i.e. starting position and
velocity) as the particles in Figure 4.1. The velocity plot (Figure 4.2¢) shows that the magnitude
of the velocity and therewith the energy is now conserved. Also in Figure 4.2b, it can be seen
that ‘particle 2’ that spirals outwards does not accelerate anymore the way it did as it makes less
rotations in the same amount of time.
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Trajectories in polar coordinates Trajectories in Cartesian coordinates Velocities of particles

5 5
500 —— particle 1 2.0 —— particle 1 . —— particle 1
particle 2 15 particle 2 particle 2
175 . . 3 .
—— particle 3 10 —— particle 3 —— particle 3
1.50 > 2
05 S
S s > o1
0.0 g
1.00 0
-0.5
-1
0.75 _10
-2
0.50 s
-3
0.0 25 5.0 75 10.0 125 15.0 175 -2 -1 o 1 2 3 o 2 4 6 8 10 12
X time
(a) (b) (©)

Figure 4.2: Examples of trajectories along geodesics in polar coordinates (a), in Cartesian
coordinates (b) and the corresponding velocity magnitudes (c).

4.1.3 Generic curves

The coordinate chart that makes circles in the Cartesian chart look like straight lines is well-
known (Section 3.1.6). In a similar fashion, elliptical coordinates can be used to let a ellipse look
a straight line, as will be continued in Chapter 6. But what if the desired path is a randomly
curved path?

Take a generic curve 7 that serves as base-path. As explained in Section 3.2.1, coordinate chart
¢~ has coordinate lines that are parallel to curve 7. That makes chart ¢, a good candidate to use
for the definition of geodesics. The basis vectors of chart ¢, are the tangent and normal vectors
of curve v and the coordinates s and h represent the progression over the curve and the distance
from the curve respectively. The basis vectors can be obtained from Equations (3.24) and (3.25)
and the coordinate transformation between the Cartesian coordinates and the coordinate chart
¢~ from Equation (3.29).

For example, let v be the parabola-shaped curve given by:

(s) = (s,5%) —2<s<2 (4.6)

The corresponding basis vectors for ¢, are given by:

1 1 1 2s
T(s) = ——— and N(s) = ——— . 4.7
) Vis? +1 (25) ®) Vis? +1 <—1> 1)
The coordinate transformation ¢ is given by:

_ 2hs
r= VAas2+1 +s

_ ___h 2
y= VA4s2+1 +s

o(s,h) : { (4.8)

The minimal radius of curvature of the parabola is 1/2 which is achieved at the bottom of the
parabola. Therefore coordinate h is in the interval [—%, %] In Figure 4.3, the curve is shown in
the Cartesian coordinate chart as well as the chart ¢,. A (s, h) coordinate frame is also plotted in
the Cartesian coordinates. It is clearly visible that the tangent vectors and normal vectors form

the basis vectors of the (s, h)-parametrization.
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curve y in the Cartesian coordinate chart curve y in chart ¢, with coordinates (s,h)

0.41

0.21

=1 TR Ll VTR Iy

—-0.24

- Y(s)

01 —0.4 4 == N
- T
-3 -2 -1 0 1 2 3 -20 -15 -1.0 -05 00 05 10 15 20

X S

(a) (b)

Figure 4.3: Parabola-shaped curve v in the Cartesian coordinate chart (a) and in chart ¢, (b).
Normal (N) and tangent vectors (T) are displayed at several points on the curve.

The curve v can be defined to be a geodesic. This is done similarly as it was done in the

circular trajectory example. The Christoffel symbols in coordinate chart ¢, (I‘ij) are defined to

be equal to 0: I:fj = 0. The Christoffel symbols can be pushed-forward to the Cartesian chart
with Equation (3.12). The Christoffel symbols in the Cartesian chart are denoted by I‘fj

The geodesic equation in chart ¢, is given by:

§=0
{B:o . (4.9)

Two solutions of geodesic Equation (4.9) with different initial conditions are shown in Figure
4.4. In Figure 4.4b, it can clearly be seen that the two trajectories look like straight lines in chart
¢~. The velocity plot in Figure 4.4c shows that Equation (4.9) does not conserve energy. The same
problem was encountered in the polar coordinates example. Instead of conserving the coordinate
velocity (§ =0A h= 0), the physical velocity components should be conserved:

d . d ;

In order to calculate the Lamé coefficients, first the coordinate transformation ¢ is rewritten as

Dz(8,h) = v.(s) + AN (s)

by (8,h) =7y (s) + hNy(s) (4.11)

(s, h): {
in which IV, and N, are the  and y components of N respectively. The Jacobian of this mapping

_ (0be Onde _ (14(s) +ANL() No(s)
J¢_<3s¢y 3Z¢y> (71’/(5)+hN1’/(3) Ny(s))’ (4.12)

in which 0; represents the derivative with respect to ¢. The basis vectors of chart ¢., & and &y,
can now be expressed in the Cartesian basis vectors by (Equation (3.1))

R oz’
€= 95O T s@z€s + Osdyey, (4.13)
R Oz’
&= e = Nu(s)e + Ny(s)e,. (4.14)
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Trajectories in Cartesian coordinates

w
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N
N

>
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o e/ — V(s)
—— particle 1
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X
(a)
Trajectories in chart ¢, Velocity of the particles
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>
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s time
(b) (c)

Figure 4.4: Examples of trajectories along geodesics in Cartesian coordinates (a), in chart ¢~ (b)
and the corresponding velocity magnitudes (¢). In the Cartesian chart, the s;h-coordinate frame
is plotted in light blue.

From the last equation, it can be observed that the length of é; is the same as the length of
N which is equal to 1. The corresponding Lamé coefficient, Hy, is therefore equal to 1. With
Equation (3.6), the other Lamé coefficient can be determined. The resulted Lamé coefficients are

Hs = \/(as¢$)2 + (as¢y)2 (415)
Hy, =1. (4.16)

The physical velocity component H, nh = his easily conserved with the equation h = 0. The
conservation of the physical velocity component H$ results from the expansion of %(Hsé) =0:

i+ as¢m(8s)2¢z + 8s¢y(as)2¢y 32 + as¢xasah¢x + as¢yasah¢y Sh _

i e 0. (4.17)
The Christoffel symbols can be obtained from this equation resulting in
. amam)%gymﬁmﬁ% Oa#20:0n 402 6,00 0n T
Lij = | 0,620,006 +0.6,0.0n0y 0 and Ty =0. (4.18)

2H?

The Christoffel symbols can be pushed forward to the Cartesian chart and the geodesic equation
can be derived (Equation (3.14)):

{x+ e =0 (4.19)

g+ T]a'el =0

Because the Christoffel symbols are often complex expressions, they will simply be denoted by Ffj
During simulations, the Christoffel symbols are numerically determined in chart ¢, with Equation
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(4.18) and numerically pushed forward to the Cartesian chart with Equation (3.12). More about
the simulations follows in Chapter 5.

To continue with the parabolic curve, two solution of the new geodesic equation, endowed
with the energy conserving connection, with different initial conditions are shown in Figure 4.5.
In Figure 4.5¢, it can be seen that the velocity stays constant and hence the energy is indeed
conserved.

Trajectories in Cartesian coordinates

w
L

N
N

>
14
N LA — vis)
— particle 1
S 5 1 5 —— particle 2
X
(a)
Trajectories in chart ¢ Velocity of the particles
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—— particle 2
0.2 1.2
2
< 00 -g 1.0
9]
>
—0.2 — v(s) 0.8
—— particle 1
—0.4 1 —— particle 2 06
-20 -15 =10 =05 0.0 0.5 1.0 15 2.0 0 1 2 3 4 5 6 7 8
s time
(b) (c)

Figure 4.5: Example of trajectories along geodesics endowed with the energy conserving connec-
tion in Cartesian coordinates (a), in chart ¢, (b) and the corresponding velocity magnitudes (c).
In the Cartesian chart, the s,h-coordinate frame is plotted in light blue.

4.2 Confinement potential

Now that there is a force-free model that can be used for force-free trajectories along geodesics,
modeling forces should be added to let the resulting trajectories resemble real-life pedestrian
trajectories. The left hand side of Equation (4.19) represents the acceleration along a geodesic.
As Newton’s second law suggests, the modeling forces should be added on the right hand side
of Equation (4.19). The modeling forces that are added in the upcoming sections are based on
the existing model for fluctuating pedestrian dynamics along straight paths [4]. This model is
explained in Chapter 2 and displayed in the Equations (2.2)-(2.5).

The first modeling forces are the resulting forces of two harmonic confinement potentials. Like
the model for straight paths, this is a position potential and a velocity potential. The resulting
forces are working in the transversal direction (i.e. normal to the base-path). The coordinate that
h in chart ¢, represents the lateral distance from the base-path . The position potential is given
by

®,(h) = Bh? (4.20)

in which g is a scale parameter. The resulting force is

— V), = —2Bhé), = —28hN,(s)e, — 2B8hN,(s)e,. (4.21)
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The transversal velocity is is given by Hph = h. In Cartesian coordinates this velocity com-
ponent is obtained by the inner product of the velocity vector in Cartesian coordinates and the

unit vector normal to the curve. Let u = (;) = (Z) Then,

Vi = (u,N) = uN,(s) + vNy(s) (4.22)

is the velocity in the normal direction.
The velocity potential,
Py, = ,UVE, (423)

creates the following force:

—Voy, =-2uV,é, =—-2uV Ny(s)ey —2uV i Ny(s)ey

—2p(uN, + vINy) (%z) . (4.24)

The equation of motion is originated from the geodesic Equation (4.19). With the confinement
potential forces included, particles would behave according to

{X - . (4.25)

u= —Ffjuiujek -V, —Voy

This equation is in vector notation and is a system of four ordinary differential equations.

Trajectory with confinement

>
14
N s
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B 2 S
X
(a)
Trajectory in chart ¢, with confinement Velocity of the particle
0.4 18 V”
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0.2 1.6
/\ /\ é\ 15
< 0.0+ \%4 314
V 2.
-0.2 1 12
— v(s) .
04/ —— trajectory )
1.0
-20 -15 -10 -05 0.0 0.5 1.0 15 2.0 0 2 4 6 8
s time
(b) (c)

Figure 4.6: A simulated trajectory of the equation of motion with the confinement force. The
scale parameters are set to 8 = 10 and p = 0.5. The trajectory is shown in Cartesian coordinates
(a) and in chart ¢, (b). The magnitude of the velocity and the velocity parallel to the curve are
plotted in (c).
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A solution of Equation (4.25) for the parabolic curve v from previous section is shown in Figure
4.6. The starting position of the particle is at a lateral distance to the curve. The position potential
pushes the particle to the curve which causes the particle to accelerate in the normal direction.
This acceleration can be seen in Figure 4.6¢. In this figure, also the longitudinal velocity, V|, is
plotted which is the velocity parallel to the curve. It can be seen that the longitudinal velocity
stays constant during the simulation so the acceleration is solely in the normal direction. The
position potential causes the particle to oscillate along the curve. The velocity potential damps
this oscillation.

4.3 Longitudinal propulsion

The second modeling force is a longitudinal propulsion force. The role of this force is to keep
the longitudinal velocity around a desired value. When a particle propagates too fast over the
desired curve, this force slows the particle down and vice versa. As a result, perturbations in the
longitudinal velocity are damped.

The longitudinal propulsion force is a resulting force of a longitudinal velocity potential. This
potential has a potential well centered at a preferred longitudinal velocity. The model for straight
paths, has a longitudinal velocity potential with a double potential well: one well centered at a
preferred velocity and the other well centered at the negative preferred velocity. In this model
however, particles are considered to move in one direction only. That is why the well at the negative
preferred velocity is not necessary. The harmonic longitudinal velocity potential is obtained by a
second order Taylor expansion of Equation (2.7) around the preferred velocity:

Sy, =4aVi (V) —V,)* (4.26)

In this equation, V|| is the longitudinal velocity, V,, is a parameter that represents the preferred
velocity in the longitudinal direction and « is a scale parameter. The longitudinal velocity is
obtained similarly as the transversal velocity:

Vi =, T) = uly(s) +vTy(s). (4.27)
The resulting force of this potential is called the longitudinal propulsion force:

Yy, = ~SaV(V] ~ ;)T
4.28
= —8aV} (uT, +vTy — Vp) (Tf) . (4.28)

T,

The longitudinal propulsion force is included in the equation of motion as follows

v (4.29)
u = —Pijuzujek - V(I)h - VCI)VL - V(I)VH

Figure 4.7a shows the trajectory of a particle that moves according to Equation (4.29) over
the parabolic curve «. The starting position is again at a lateral distance to the curve. The
confinement forces cause a damped oscillation around the curve. In Figure 4.7b, it can be seen
that the initial longitudinal velocity is lower than the desired longitudinal velocity. The propulsion
force accelerates the particle such that its velocity converges to the desired value.
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Trajectory with longitudinal propulsion Velocity of the particle
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Figure 4.7: A simulated trajectory of the equation of motion with the confinement force and
longitudinal propulsion force. The scale parameters are set to § = 10, ¢ = 0.5 and a = 0.1 and
the preferred velocity to V,, = 1.0. The trajectory is shown in Cartesian coordinates (a). The
magnitude of the velocity and the velocity parallel to the curve are plotted in (b).

4.4 Noise

The final modeling component is a noise term. This term accounts for the stochastic velocity
fluctuations that pedestrians have. The noise is considered to be Gaussian white noise which
means that it is Gaussian distributed and centered at zero. The equation of motion with the noise
term included is given by

X=u
: . . (4.30)
u=-Tjuve, — V&, —Voy, —Voy +oW

where W(t) is a 2-dimensional Brownian motion and o is a 2 x 2-matrix that contains the scale
parameters of the noise. Note that the derivative of a Brownian, W (t) = n(t), is Gaussian
distributed. Assumed is that there is no correlation between the dynamics in different directions.
As a result, the off-diagonal elements of o are equal to 0. Furthermore, the noise is considered to
be isotropic. Therefore the diagonal elements of o are the same:

o= <g 2) . (4.31)

This results in the following equation of motion:

xmu oo . (4.32)
u = —Fijuzujek — V(I)h — V(I)VL — V(I)VH + oW

The Noise term makes the equation of motion into a to a system of four stochastic differential
equations. The theory of stochastic differential equations is discussed in Section 3.3.

In Figure 4.8a, two numerical solutions of Equation (4.32) are shown. The simulation procedure
is discussed in Chapter 5. The scale parameter o for particle 1 and particle 2 are set to 0.4 and 0.1
respectively. In Figure 4.8b, it can be seen that the velocity of particle 2 has smaller fluctuations
because of the lower scale parameter. The confinement force and the longitudinal propulsion force
keep the velocity perturbations within bounds.
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Trajectories with noise Velocity of the particles
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Figure 4.8: Two simulated trajectories of the equation of motion with the confinement force,
the longitudinal propulsion force and the noise. The scale parameters are set to 8 = 10, u = 0.5
and o = 0.1 and the preferred velocity to V,, = 1.0. For ‘particle 1’, the scale parameter for the
noise is set to 0 = 0.4 while this parameter for ‘particle 2’ is set to ¢ = 0.1. The trajectories are
shown in Cartesian coordinates (a). The magnitude of the velocities are plotted in (b).
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5. Simulations

In the proposed model (Chapter 4), the dynamics of particles behave according to Equation (4.32).
Several aspects on how simulations are performed will be elaborated in this chapter.

5.1 Numerical integration method

The equation of motion (Equation (4.32)) is a system of four stochastic differential equations.
Section 3.3 contains the theory about stochastic differential equations. Simulations are performed
by solving the equations of motion numerically. The numerical method that is used for approxim-
ating the system of stochastic differential equations is the Runge-kutta algorithm SRI2 proposed in
[15]. This method derived from the deterministic Runge-kutta for ordinary differential equations
and has a strong order of convergence of 1.

The length of the discretization step during simulations is chosen to be % seconds. This time
step is based on the sampling frequency of data acquisition [16][17]. Unless stated differently, the
initial conditions for the position (z, y) and velocity (u, v) are chosen on the base path and with
velocity V}, in the direction of the curve.

5.2 Calculations

The simulations are performed in python. A simplified version of the python code can be found
in Appendix C.
Prior to simulations the following functions have to be defined:

e The function of the base path ~y(s);

e The tangent vector T(s) (Equation (3.24));

The normal vector N(s) (Equation (3.25));

The coordinate transformation ¢(s, h) (Equation (3.29));

The derivatives of ¢(s, h) (%7 g—i, gi‘f and aizai)?

e The Jacobian of ¢ (Jy) and its inverse Jy-1;
e The derivatives of J,-1 (%J¢71 and %Jd)—l).

These functions are needed to do computations during the simulations. The part in Equation
(4.32) which is the most computational expensive are the Christoffel symbols. Every time step,
the computation of the Christoffel symbols takes place according to the following steps:

1. Suppose the positional coordinates of chart ¢ (s, h) are known. The Christoffel symbols in
=k . .
chart ¢., I';; are computed with Equation (4.18).

2. The Christoffel symbols in the Cartesian chart, Ffj are computed with Equation (3.12).
The numerical values of the modeling forces in the equation of motion are computed with Equations
(4.21), (4.24) and (4.28).

For all the computations, the positional coordinates in chart ¢, (s, h), must be known. The
coordinate transformation is well defined (¢ : (s,h) — (z,y)), however it is not trivial that an
expression for the inverse exists. For an approximate but accurate pull back of coordinates x

and y, the Newton-Raphson method is used. This method is explained in Section 3.2.3. The
coordinates s; = (s;, h;) at time step ¢ = 2,3, ... are determined with the following steps:

1. (Si,hi) = (si—lahi—1)7 |éz - Si| ~3- 1072 m;
2. (si,hi) = NR(s;, hi), |8i —si| ~9-107% m;

3. (Si, hz) = NR(Si, hi), |§z — Si‘ ~8-1077 m,
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where NR(-) is an iteration of the Newton-Raphson method (Equation (3.30)) and (s;-1,h;—1)
are the coordinates at time step 7 — 1. The first distance between the exact coordinate §; and the
approximation s; is based on the discretization step size of % s and the typical walking velocity
of around 1 ms™!. The second and third distances are based on the quadratic convergence of the
Newton-Raphson method (Equation (3.32)).

For first time step (¢ = 1), the process 5.2 is not possible. For the approximation of coordinate
81, a kd-Tree is used. The nodes of a fine (s, h)-coordinate frame are converted back to (z,y)-
coordinates. A simplified visualization of the nodes around a parabolic-shaped base-path can be
seen in Figure 5.1. Given a point in Cartesian coordinates, the kd-Tree is able to efficiently find
the approximate nearest neighbouring node [18]. The approximate nearest node serves as initial
guess for §;. The fineness of the (s, h)-coordinate frame is chosen such that the average closest
node is less then 1072 m away.

v(s) with nodes of s,h-grid

44 — y(s)
nodes of the s,h-grid

X
Figure 5.1: A parabolic-shaped base-path with the nodes of a (s,h)-coordinate frame. For
visualization purposes, the coordinate frame is not fine. The collection of nodes is used during the
kd-Tree nearest node approximation to approximate the initial coordinates (s, h).
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6. Validation

The model proposed in Chapter 4 will be validated here. The goal of the model is that it is
statistically indistinguishable from reality. This will be investigated by a quantitative comparison
of pedestrian dynamics fluctuations with two experiments. In the first experiment, the velocity and
position of single pedestrians walking over an elliptical trajectory were measured. The comparison
with this experiment will be elaborated in Section 6.1. In the second experiment, pedestrians were
tracked during the Glow event in Eindhoven [19]. This experiment will be elaborated in Section
6.2.

6.1 Ellipse experiment

The first experiment was performed at TU/e location “de Markthal” where the velocities and
position of pedestrians were measured using Kinect ("Microsoft) depth-cameras [16]. Pedestrians
were assigned to follow large elliptical paths, crossing a virtual line on the top and bottom of their
path under diluted conditions. A sketch of the top view of this experiment is shown in Figure
6.1. The test originally aimed at quantifying the capability of the tracking sensor to measure
pedestrians crossing a line. The fact that pedestrians walk over curved paths makes the data
suitable for the quantitative comparison with the proposed model.

o
K
.
.

Figure 6.1: A sketch of the top view of the ellipse experiment. Pedestrians (blue) walking in
elliptical trajectories while crossing a vertical line (red) at the bottom and top of their path [16].

6.1.1 Refinement of the data set

In Figure 6.2a, the trajectories of the experiment can be seen. Visible are a lot of measurements
outside the range of the elliptical trajectory. In order to extract the relevant data from this
experiment, the data set should be refined.

The blue rectangle in Figure 6.2b is considered to be the range in which the pedestrians that
participated in the experiment were walking. Measured trajectories outside the blue rectangle are
removed. Also the short trajectories (i.e. trajectories with less than 250 measurement points) are
removed. The remaining trajectories are displayed inside the blue rectangle.

Measured during the experiment are, among other things, the vertical and horizontal velocity
components and the vertical and horizontal position of the pedestrians. All unreliable measurement
points are also removed from the data set. This are all measurement points where the velocity is
faster than 10 ms™! (necessarily measurement errors).
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Figure 6.2: All measured trajectories during the ellipse experiment (a) and the refined data set

(b).

For simplicity reasons, the whole data set is translated such that the average (z,y)-coordinate
of the measurements coincides with the origin.

6.1.2 Average path

The model needs a base-path « for the simulations. This curve will correspond with the average
path of the experiment. In order to find an average path, for each data point the angle between
the connection with the origin and the horizontal axis is computed according to:

6 = arctan <£) (6.1)

T

where x and y are the horizontal and vertical coordinates of the data point respectively.

Because the elliptical-like trajectories of the experiment are periodic, the average path will be
estimated with the first six terms of a Fourier series:

6
£(0) = a0+ _[an cos (nf) + by sin (nd)]. (6.2)
n=1

This function is fitted for the x-coordinates of the data points as well as the y-coordinates as
function of #. The coefficients of the fitting function f are rounded off and negligible coefficients
are neglected. The resulting average paths are:

x(0) = 0.01sin(260) 4+ 0.01sin (40) 4+ 1.68 cos (6) + 0.01 cos (26)
+(0) = £0.29 cos (36) + 0.07 cos (50) + 0.02 (6.3)
y(0) = 1.2sin(0) + 0.02sin (20) + 0.19sin (30) + 0.04 sin (56) + 0.01 cos (36)

where 6 € (—m,7]. The fit functions z(#) and y(#) are shown in Figure 6.3. Also curve ~ is
shown together with the data points of the experiment. The curve 7(s) will be used for the model
proposed in Section 4, where s = 6.
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Average x(0) Average y(©) Measurements experiment with average path

Data points s

—— Average path

Data points
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—— Average path

(a) (b) ©)
Figure 6.3: Graphs of the data points with the average paths of z(0) (a), y(#) (b) and the plot
in Cartesian coordinates with the average path v = (z(0), y(9)) (c).

6.1.3 Calibration of the model

For a comparison between the model and the data of the experiment, a calibration of the model
is needed. The parameters of the model, {«a, 8, i, V}, 0}, should be estimated in order to produce
comparable trajectories.

The parameter V,, is the preferred velocity in the longitudinal direction. The value of V,, is
considered to be the average longitudinal velocity of the experimental data which results in

V, = 1.14ms™* (6.4)

The key of the quantitative comparison will be the relevant probability functions of the position
and velocity of the pedestrians. The relevant observables are the transversal and longitudinal
velocity (V. and V| resp.) and the deviation from the average path (h). Equations for the
transversal and longitudinal dynamics can be obtained by:

Vi = (a,N) = —28h — 2uV| + oW (6.5)

and ) .
Vi = (0, T) = —8aV (V| — V,) + oW. (6.6)

The velocity fluctuations of pedestrians that are investigated have a typical frequency around 1
Hz. Because the terms (I'};u’u?, T) and (I'};u‘u’/,N) should compensate the fact that the path
is curved, they have a periodicity equal to the periodicity of the curve. This can also be seen in
Figure 6.4. In this figure, the numerical value of the terms (I'j;u’u/, T) and (I'};u‘u’, N) are shown
during a simulation along the base path. The period of the Christoffel symbol terms is around
10 seconds which corresponds to 0.1 Hz. Since this is much smaller than the typical frequency of
velocity fluctuations, the contribution to the distribution of the dynamics is neglected. Therefore,
terms (I}j;u‘u’, T) and (T§;u'u?, N) are left out Equations (6.6) and (6.5).

Periodicity Christoffel symbols

— Ml T

— Tfu'd-N

numerical value
S
vl

o 5 10 15 20 25 30
time

Figure 6.4: The numerical value of the terms the Christoffel terms (I'};u‘u/, T) and (I'f;uu?, N)
is plotted against the time during a force-free simulation along the base path Equation (6.3)).
Visible is the periodicity of these terms with a period around 10 seconds.

In the stationary regime, the probability distribution of the transversal velocity and transversal
deviation from the base-path, P(h, V] ), follow the well-known Fokker-Planck equation (e.g. [4] or
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[20]) with solutions

P(h,V1) = P()P(V1) = N exp [_ v, (Vi) _ Mh(h)]

0?/2 0?/2

(6.7)

2 4Bp ’

=Nexp |-V — ——h?
Xp o2 1 o2

where @y, and @, are the confinement potentials (Equations (4.23) and (4.20)) and A a normal-
isation constant. A potential can be constructed according to ®(-) = —In (P(-)). The empiric and
analytical potential of the transversal dynamics should be similar in order to make a comparison.
Therefore, the ratios i—‘; and 222 are compared with the observables according to

2
—In (P (V1)) = 5V + K (6.8)

and 5
—In (Pegp(h)) = Ui;/f + K. (6.9)

The constants K7 and Ky are normalisation constants and Peyy(a) is the empiric probability
function of observable a obtained from the experimental data. In Figure 6.5, the latter relations
are compared. The ratios (27—’; and 45—2“ are fitted such that the empiric potential and analytical
potential of the model are similar. The resulting estimated ratios are

2p
— ~4.83 6.10
= (6.10)
and 48
Ho
w2~ 20.94. (6.11)
, Transversal velocity potential Deviation potential
o] " R © —In[Pexp(h)]
5 . . — —In[P(h)] °
— ) —~ 37
& 4 : &
o j
T3 T2
Lo .
" o =In[Pexp(V1)] o
o1 — —In[P(V1)]
oy
5 0 o 1 ; o4 02 oo 02 oa
Transversal velocity V deviation h
(a) (b)

Figure 6.5: The transversal velocity potential is achieved from the empiric probability function
with the analytical velocity potential fitted (Equation (6.8)) (a). The deviation potential is also
achieved empirically. The fitted analytical deviation potential is also plotted (Equation (6.9)) (b).

The same can be done for the longitudinal dynamics (Equation (6.5)). In the stationary regime,
the probability of the longitudinal velocity is distributed according to [4]

Py, V)

P(Vi) = N exp [—02/2} — Nexp

8an2

o2

(V) = Vp)? (6.12)

where N is a normalisation constant and Py, the longitudinal velocity potential of Equation (4.26).

The ratio i—% is compared to the empirical distribution function of the longitudinal velocity by

8
—In (Peap(V))) = =5 V2 (V) = V3)” + Ko, (6.13)
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Constant K3 is again for normalisation. Similarly as for the transversal dynamics, the ratio i—%
is fitted. The empiric potential with the fitted analytical potential is shown in Figure 6.6a. The
resulting value of the ratio is

S8a
— R~ 2.52. (6.14)
o)
Longitudinal velocity potential Longitudinal velocity - time correlation
) 10° 4
o o —In[Pexp(V))] T T TT——/——
s e — =In[P(V)] 5
— K ~
x4 g 1
£ ] ¢
I 34 : 10714
| Ny .
s, |
1 S «  Measurements
—— Model analysis
oA
0‘.0 0j5 110 1j5 210 ZtS 10 O.IOO OAIZS OAISO 0A|75 lAIOO 1.‘25 1.‘50 1.‘75 2.60
longitudinal velocity V| time
(2) (b)

Figure 6.6: In (a), the longitudinal velocity potential is plotted for the experimental values
and the analytical values of the model. The analytical longitudinal velocity potential is fitted to
resemble the empirical potential. In (b), the empirical time correlation is shown for observable
(V — Vp) and the the analytical time correlation (~ exp (—8aV;’t)) is fitted.

To complete the parameter estimation, a time correlation function is used. First, Equation
(6.5) is written as

d 9 .
o (V) = Vp) = =8aV2 (V) = V,,) + oW. (6.15)
According to this equation, the time correlation function of (VH — Vp) should decay as exp (—8an2t).
Since « is the only unknown parameter in this equation, it can be estimated by a comparison with
the time correlation of the experimental data.

The time correlation function Cz(¢) for a generic observable Z is [4]

) = E, [ézo : ég} ~E, [Ez} ‘E, {Eg} 616
N (to) - N(2)

where E., denotes the average over the trajectory ensemble and function N(t) is given by

N(t) = E, {(éz ~E, [EZDQ} . (6.17)

[1]:

Y
t

[1]

! —E[2]]

Denoted is =] for the value of observable = that trajectory v has at time ¢. Also, =
is denoted for the fluctuating component of =.

The empirical time correlation function of observable (V” - Vp) is shown in Figure 6.6b. To
obtain the empirical time correlation function, the high frequency fluctuations were filtered out
the measured longitudinal velocity. The dynamics of pedestrians have fluctuations of 0-2.5 Hz
[16]. Fluctuations with higher frequencies are the result of measurement noise. Therefore, all
frequencies larger then 2.5 Hz are filtered out using the Fourier transform.

The vertical axis is logarithmic scaled so the analytical time correlation is a straight line.
Parameter « is fitted in such a way that the analytical time correlation resembles the empirical

time correlation in the beginning. The resulting value of « is

o~ 0.046 m2s (6.18)
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With Equations (6.10), (6.11), (6.14) and (6.18) the parameters of the model can be estimated.
The resulting values of the parameters can be found in Table 6.1.

Table 6.1: The values of the parameters of the model. Longitudinal propulsion scale parameter
o, transversal confinement scale parameters 3 and u, preferred longitudinal velocity V,, and noise
scale parameter o.

Parameter Value Unit

e} 0.046 m—2s
B8 2.17 m?s
N 0.35 st
Vo 1.14 ms !
o 0.38  ms3/?

6.1.4 Comparison

The model proposed in Section 4 with curve 7(s) from Equation (6.3) and the estimated
parameters of Table 6.1 is used for long simulations. In figure 6.7a, an example of a simulation by
the model is shown as well as a measured trajectory.

PDF of vV,
f . Experiment data
Simulated trajectory xperim
10 Simulations
1.54
1.0 = 0.8
0.5 -
—— Measurement Sos
Iy
> 001 o —y(S) !
o4 —— Simulation 04
-1.04 02
154
T T T T T 0.0 il
-2 -1 0 1 2 00 05 10 15 2.0 25
X Vi
(a) (b)
PDF of V| PDF of deviation (h)
12 Experiment data Experiment data
Simulations » \ Simulations
1.0 3
2.0
0.8
S g
T o6 &
1.0
0.4
02 0.5 \
0.0 0.0
-15 -1.0 -0.5 0.0 0.5 1.0 15 2.0 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8
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Figure 6.7: In (a), an example of a simulated trajectory along the average path + is displayed. (b)-
(d) show the probability density functions of the longitudinal velocity V|, the transversal velocity
V| and the deviation h. The blue histograms are empirically determined from the experiment data.
The orange histograms are obtained from the simulations. The curves through the histograms are
the kernel density estimations.

The probability density functions of the relevant observables are obtained from the simulations
by the model. The relevant observables are the longitudinal velocity V}, the transversal velocity
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V) and the deviation from the curve h. The probability density functions are shown in Figure
6.7b, 6.7c and 6.7d. It can be seen that the probability distributions of the simulations and
the experiment data are very similar. These graphs substantiate that the model is statistically
indistinguishable from the experiment.

6.2 Glow experiment

Another experiment that has been performed is a experiment during the Glow festival in
November 2017 (Eindhoven, the Netherlands) [19]. The velocity and position of pedestrians was
tracked while pedestrians were walking in a corridor. The experiment took place for a couple of
days so a lot of data is available. However, only a small portion (1 minute) will be used in this
thesis for a glance of the model performance. In Figure 6.8a, the measured trajectories are shown.
Most of the trajectories start at the bottom of the figure and the pedestrians walk upwards. It
can be seen that there is a large obstacle in the middle of the corridor because all trajectories
avoid the middle. Interesting are the trajectories that start below the obstacle. These paths are
curved as the pedestrians must curve their trajectory to avoid the obstacle. The bending of the
paths makes this experiment suitable for validation of the proposed model. Neglected will be the
fact that the pedestrian motions are not diluted.

Refinement of the data set

For the refinement of the data, all measured trajectories outside the red vertical lines in Figure
6.8a is considered to be noise. Furthermore all short trajectories (i.e. trajectories that cover less
than 10m vertical distance) and trajectories that are downwards are removed from the data set.
Finally the data points that contain measurement errors are removed.

Trajectories from Glow experiment Trajectory selection
144 12 .

® selection1
® selection 2
selection 3

® selection 4

124 10

104

(a) (b)
Figure 6.8: In (a): The whole data set. Visible is noise outside the red vertical lines. In (b): all
trajectories after the refinement of the data set divided into four selections. Selection 1 is displayed
in dark blue and passes the obstacle on the left hand side. Selection 2 is displayed in green and
passes the obstacle on the right hand side. Selections 3 and 4 in orange and purple respectively,
pass the obstacle at the boundaries of the corridor.

Average path

For the model to work, a curve -y is needed which serves as base-path. Since this experiment takes
place in a broad corridor, there are several different paths next to each other. In order to find
an average path, selections of trajectories needs to be made in which the trajectories look similar.
Four selections have been made:
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Selection 1: trajectories that pass the obstacle on the left hand side and close to the obstacle
(at a distance of 0.5m at height y = 6m);

Selection 2: trajectories that pass the obstacle on the right hand side and close to the obstacle
(0.9m at height y = 6m);

Selection 3: trajectories that pass the obstacle on the left hand side and close to the boundary
of the corridor (0.9m at height y = 6m);

Selection 4: trajectories that pass the obstacle on the right hand side and close to the
boundary of the corridor (0.9m at height y = 6m).

In Figure 6.8b, the four selections are shown in dark blue, green, orange and purple.

The average path will be estimated with the first terms of a Fourier series:

_ i{ Cos<ny>+bnsm(n?8y)} (6.19)

The function g is fitted for the x-coordinates of the data points as function of the y-coordinates.
The period of function g is equal to 18 which is larger than the length of the corridor. After
rounding off the coefficients and neglecting the negligible coefficients, the resulting average paths
are:

i (s) = {y(s) =0.48cos (Fs) +0.14 cos (2Fs) +4.97 (6.20)

(9)—0.25sin(37r )+03251n( )—5—015111( s)
Ya(s) = —0.55cos (5s) — 0.62cos (27s) — 0.19 cos (2T s) + 7.75 , (6.21)

vs(s) = {x(s) i 0.43cos (§s) + 4.1 (6.22)
y(s) =s

ra(s) = {:;(s) = 0.32sin (§s) + 0.18sin (%°s) — 0.56 cos (Fs) + 0.12cos (3Ts) + 8.3 (6.23)

(s)=s

where v1(s), v2(s), v3(s) and ~4(s) are the average paths for selection 1, 2, 3 and 4 respectively.
The advantage of the fact that all average paths are periodic is that simulations encounter the
same corridor over and over again. The average paths are displayed in Figure 6.9.
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Figure 6.9: The measured trajectories of the glow experiment visualized in light colors. The
average path of each selection is displayed in darker colors.

Calibration of the model

Again, the parameters of the model, {«, 8, 1, V,, 0}, should be estimated for a good validation.
This will be done four times (once for each selection) and similarly as in Section 6.1.3. The data at
y < 2 and y > 10.5 will not be considered for the parameter estimation as well as the comparison
because the trajectories are clearly distributed differently in this area.

The empirical potentials and time correlation with the analytical fits that are used for the
parameter estimation can be found Appendix A. With the fitted ratios for the longitudinal and
transversal dynamics, the values of the parameters can be estimated. The estimated values of the
parameters can be found in Table 6.2.

Table 6.2: The values of the parameters of the model used for the glow experiment. A distinction
is made between trajectory selection 1 an selection 2. The parameters are the Longitudinal propul-
sion scale parameter «, transversal confinement scale parameters 5 and pu, preferred longitudinal
velocity V,, and noise scale parameter o.

Parameter selection 1 selection 2  selection 3 selection 4 Unit

a 0.029 0.040 0.033 0.046 m2s

8 1.40 0.67 0.55 0.47 m2s

u 0.26 0.23 0.29 0.31 g1

V, 1.25 1.13 1.25 1.09 ms~ !

o 0.29 0.30 0.32 0.31 ms—3/2
Comparison

The estimated parameters of Table 6.2 and the curves of Equations (6.20) and (6.21) are used
in the proposed model of Section 4. Long simulations have been performed. Only the data of
the simulations is used that cover the relevant part of the corridor. Several of the simulated
trajectories can be seen in Figure 6.10.

Figure 6.11 shows the obtained probability density functions of the relevant observables of
selection 1 (V), Vo and h) in comparison with the corresponding empiric density functions. The
probability density functions of the experiment data and the simulations are alike, but not the
extent of the ellipse experiment. Plausible is that the the widths of the selection are too wide. As
a consequence, pedestrians do not fluctuate along the base-path but along a parallel path.

Furthermore, the fact that interactions with other pedestrians, obstacles and walls is neglected,
can cause deviations between the simulations and the measurements. Because of the diluted
conditions in the ellipse experiment, interactions were not present there.
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Lastly, in the size of the data set is room for improvement. If the whole duration of the
experiment is used, the resemblance could be different.

The probability density functions of the other selections are shown in Appendix B. In the other
selections, it can also be seen that the empiric and simulated probability density functions show
worse agreement.

Simulated trajectories

12

10

Figure 6.10: Simulated trajectories for the glow experiment in different selections. Simulated
trajectories of selection 1 are shown in dark blue and selections 2, 3 and 4 in green, orange and
purple respectively. In the lighter colors, the measured trajectories are shown.
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Figure 6.11: The probability density functions of selection 1 of the observables: longitudinal
velocity V) (a), transversal velocity V| and deviation from the average path h.
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7. Discussion and conclusion

This thesis proposes a model that quantitatively predicts fluctuations of pedestrian dynamics
in curved and diluted pedestrian flows. The proposed model is force-based which already has
been applied to straight paths [4]. With differential geometry, straight lines were redefined to
be, possibly curve, geodesics. This made it possible to create a model for curved base-paths.
Confinement forces, longitudinal propulsion and Gaussian noise are the added modeling forces for
realistic pedestrian behaviour.

The proposed model was validated in Chapter 6 using the data of two experiments. The
quantitative comparison with the ellipse experiment showed a good agreement between the empiric
and simulated probability density functions of relevant fluctuations. The investigated fluctuations
that pedestrian motions feature are fluctuations in longitudinal velocity, transversal velocity and
deviation relative to the base-path.

The comparison with the experiment during Glow 2017 on the other hand, showed worse
agreement. Probable causes are the choice of trajectory selection, the quantity of data that was
investigated or the interactions that pedestrian might have with other pedestrians, obstacles or
walls during the experiment. Still, the results are promising and the validation of the proposed
model with this experiment is worth using for further research.

Limitations

The model that is proposed in this thesis shows promising results regarding the quantitative
comparison with real life data. The produces distributions of relevant fluctuations agrees with the
distribution of real life pedestrian fluctuations. However the model has some limitations that are
noteworthy to discuss:

e One limitation is that the model is limited to the diluted scenario. Other pedestrians could
affect the fluctuations of pedestrian dynamics such that the model would not be able to
adapt. In reality, pedestrians interact with obstacles or other pedestrians very often;

e The model assumes that the potentials of the modeling forces are uniform over the base-path.
However, in many scenarios pedestrians should be confined differently at certain sections of
the base-path. For example, when a narrow corridor is approached, the confinement potential
is expected to become steeper;

e The model needs a base-path for simulations. In reality, most pedestrians do not always stick
to a certain base path. For instance, when the corridor of the glow experiment is crossed
from left to right, the trajectory does not belong in one of the selections (Figure 6.8b).

Further research

The limitations of the model generate ideas for further research. The limitation of the model to
diluted conditions arises the question how other pedestrians or obstacles curve the intended path
of a pedestrian. In other words, how do pedestrians or obstacles affect the geometry? An answer
to this question is needed to bring the proposed model to dense pedestrian flows.

Secondly, From the data acquisition of the Glow event, it could be seen that the properties of
the trajectories change over the course of the corridor. For example, the trajectories of a selection
converge when the obstacle is approached. The parameters of the model could be made time or
position dependent for a better correspondence with the real life data.

To conclude, the proposed model, limited to diluted conditions, seems able to quantitatively

reproduce the fluctuating behaviour of single pedestrians in curved motions. However, further
research is needed to bring the model to more complex pedestrian situations.
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A. Appendix: Calibration (Glow)

This Appendix contains the empiric potentials (transversal deviation, transversal velocity and
longitudinal velocity) of the Glow experiment (Section 6.2). The analytical potentials of the
model are scaled such that it more or less coincides with the empiric potential. Also, the time
correlation of the longitudinal velocity is shown with the analytical time correlation fitted. These
fits are used for the estimation of the parameters. The parameters are estimated for each selection
(Figure 6.8b) separately.
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Figure A.1: The graphs of the empirical longitudinal velocity potential (a), transversal velocity
potential (b), deviation potential (c) and Vj-time correlation (d) with the corresponding analytical
fits used for the parameter estimation of selection 1 of the Glow experiment.
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Figure A.2: The graphs of the empirical longitudinal velocity potential (a), transversal velocity
potential (b), deviation potential (c) and Vj-time correlation (d) with the corresponding analytical
fits used for the parameter estimation of selection 2 of the Glow experiment.
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Figure A.3: The graphs of the empirical longitudinal velocity potential (a), transversal velocity
potential (b), deviation potential (c) and Vj-time correlation (d) with the corresponding analytical
fits used for the parameter estimation of selection 3 of the Glow experiment.
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Figure A.4: The graphs of the empirical longitudinal velocity potential (a), transversal velocity
potential (b), deviation potential (c) and Vj-time correlation (d) with the corresponding analytical
fits used for the parameter estimation of selection 4 of the Glow experiment.
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B. Appendix: Comparison (Glow exper-

iment)

This Appendix contains the probability density functions of the longitudinal velocity, transversal
velocity and transversal deviation of the Glow experiment (Section 6.2). The probability distri-
bution is shown for the measurements as well as the simulations by the calibrated model. The
distribution functions for selection 1 can be found in Figure 6.11. The probability functions of the
other selections can be found here.
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C. Appendix: Pseudo-code simulations

The pseudo-code in Figure C.1 shows the relevant function that are needed during simulations.
The first function that is defined (Christoffel(s,h)) computes the Jacobian matrix, the inverse
Jacobian matrix and relevant derivatives. Then the function computes the Christoffel symbols in
the (s, h)-parametrization according to Equation (4.18) and converts them to Cartesian coordinates
with Equation (3.12).

The second function (model(z,t)) contains all computations needed for the equation of motion
(Equation (4.32)). First it converts the (z,y)-coordinates to (s, h)-coordinates with the Newton-
Raphson method. A detailed description of this can be found in Chapter 5. Then, the Christoffel
symbols are determined with the function Christoffel(s,h). Next, the numerical values of
the confinement and propulsion force will be calculated with the Equations (4.21), (4.24) and
(4.28). Finally, the function computes the accelerations in = and y. In the last lines, the Einstein
summation convention is used by abuse of notation and C[k,i,j] is denoted for Ffj.

The first guess of the s and h coordinate is done with the kd-Tree method (denoted as
phi-inv(xi,yi)). This is elaborately explained in Chapter 5.

The function Noise(x,t) contains the noise parameters o.

Lastly, the equation of motion, which is a system of four SDE’s will be solved with the Runge-
kutta algorithm SRI2 (Chapter 5).

def Christoffel(s,h): # Calculates Christoffel symbols

# Compute relevant function wvalues
Compute J(s,h)

Compute J_inv (s,h)

Compute J_inv_s(s,h)

Compute J_inv_h (s, h)

# Compute Christoffel symbols in (s,h)
Compute C_sh = Array ([[[C.s_ss(s,h),C_s_sh(s,h)],[C_s_hs(s,h),0]],[[0,0],[0,0]]])

# Push Christoffel symbols forward to (z,y)

Contract C = J % J_inv % J_inv % C.sh + J * J_inv_i
return C

de

-

model (z,t):
x,y,xdot ,ydot = z

# Compute coordinates s and h

(s,h)=(d[’s’],d['h’]) # Obtain previous value of (s,h)

(s.,h) = Newton(s,h,x,y) # Newton Raphson method to approzimate current (s,h)
(s,h) = Newton(s,h,x,y)

d[’s’],d['h’]=s,h # Store (s,h) for next timestep

# Compute Christoffel symbols
C = Christoffel(s,h)

# Compute values of confinement and propulsion

Confinementx = 2%Nx(s)x*(betaxh+mux(Nx(s)*xdot+ydot*Ny(s)))
Propulsionx = 8xalpha*Vp**2xNy(s)*x3%(—xdot*Ny(s)+ydot*Nx(s)—Vp)
Confinementy = 2xNy(s)#(betaxh+mux(Nx(s)*xdot+ydot«Ny(s)))
Propulsiony = 8xalpha*Vp#x2xNx(s)*x3%(—xdot*Ny(s)+ydot*Nx(s)—Vp)

# Compute values of zddot and yddot (FEinstein summation by abuse of notation)
xddot = —C[0,i,j]xdot"i xdot” i — Confinementx — Propulsionx
yddot = ~C[1,i,j]xdot”i xdot i Confinementy Propulsiony

return [xdot,ydot,xddot,yddot]

# First initial guess of (s.h) with kd—tree
(s0,h0) = phi_inv(xi,yi)
d = dict(s=s0,h=h0) # Store initial guess for first time step

# Define noise matriz
def Noise(x,t):
return np.diag ([0.0, 0.0, sigma, sigma])

# Solve system of SDE’s with initial values with SRI2 scheme
solution = sdeint.itoSRI2(model, Noise, initial values, evaluation time)

Figure C.1: Pseudo-code for the simulations of the proposed model. The procedure is explained
in Chapter 5 and the model is explained in Chapter 4.
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