
 Eindhoven University of Technology

BACHELOR

Understanding LEDA crypt and the weak keys attack

Portegijs, Iris

Award date:
2021

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/0915672b-a5f7-42ef-8ffd-08c99e4aa630


Understanding
LEDAcrypt and the weak

keys attack

Bachelor Final Project

Iris Portegijs

Department of Mathematics and Computer Science

Supervisor and second corrector:
Prof. Dr. Tanja Lange
Dr. Alberto Ravagnani

Eindhoven, February 2021

1



Summary

This thesis investigates the post-quantum cryptosystem LEDAcrypt and the weak keys attack
against it. First some prior knowledge about cryptology, coding theory, circulant matrices and
ISD algorithms is explained. The working of LEDAcrypt is described, followed by the explanation
about the working of the weak keys attack. To find which keys are the weak keys, a program is
developed to find data about the success rate of the attack for certain types of keys. The data is
analyzed and it shows that keys with many consecutive non-zero elements or non-zero elements in
regular positions can be broken by the weak key attack.
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Chapter 1

Introduction

The topic of this thesis, LEDAcrypt, belongs to the area of applied discrete mathematics, more
precisely into the areas of cryptology and coding theory.

Coding theory protects data from errors. When sending information, it may happen that
some bits are changed. This means that the original message may not be equal to the received
information. Although it is not possible to prevent these errors, there exist ways to detect and
correct them. This often happens by adding redundancy to the message, so the receiver can check
if structure in the received word is still correct or not. If this is not the case, they know that an
error occurred, and can find where this error happened.

Cryptology is the combination of cryptography, the discipline that designs cryptosystems, and
cryptanalysis, the discipline that tries to break those cryptosystems. Cryptosystems are used to
protect information against attackers. They ensure that no-one can read a message except for the
intended receiver, no-one can modify the information and the receiver can check if the message is
really from the sender and not from some attacker. Thus a cryptosystem ensures confidentiality,
integrity and authenticity. In cryptology, the sender, receiver and attacker are often given names,
to make talking about them easier. In this thesis, they will be called A (or Alice), B (Bob) and
E(Eve), respectively. Safe communication between Alice and Bob is often achieved by using keys
to encrypt and decrypt information.

Many cryptosystems that are used on the internet today use two large primes as keys. When
these primes are multiplied, computers cannot recover those two primes from the number that was
generated in a fast way, and this makes these cryptosystems safe. Quantum computers however,
can do prime factorization, which means that those cryptosystems can be broken. When the
reality of quantum computers being used came into sight, cryptologists around the world were
invited to help with developing new cryptosystems. NIST (The National Insitute of Standards
and Technology of the United States) announced a competition to develop and standardize new
cryptosystems of all sorts. LEDAcrypt is such a new cryptosystem.

LEDAcrypt stands for Low-dEnsity parity-check coDe-bAsed cryptographic systems. It uses
QC-LDPC codes as described in chapter 2. It was developed for the NIST post-quantum contest in
2017 by Marco Baldi, Alessandro Barenghi, Franco Chiaraluce, Gerardo Pelosi and Paolo Santini.
LEDAcrypt was one of the eighteen submissions in the category Public-key Encryption and Key-
establishment Algorithms in the second round of NIST.[10] Unfortunately, it did not make it to
the third round. LEDAcrypt was designed as a safe option to send a key to another person, after
which this key can be used in a symmetric-key cryptosystem. LEDAcrypt’s Key Encapsulation
Module (LEDAcrypt KEM) was designed so that the key cannot be read by an attacker. [4]

Unfortunately, an attack was developed against LEDAcrypt in 2020 [2]. This attack found
the structure in certain weak keys that could be used to recover those keys much faster than was
expected. To find out how the attack works exactly, this attack was simulated in this thesis for
very small cases, with the goal to find out which keys are weak keys.

In chapter 2, mathematical topics that need to be known to understand LEDAcrypt will be
described. Then LEDAcrypt will be explained in chapter 3, followed by an explanation of the
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weak keys attack in chapter 4. Then the methodology of the research is introduced in chapter
5, after which the results are analysed in chapter 6. Both of these chapters are the author’s own
work.
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Chapter 2

Prior knowledge

It is expected that the reader of this thesis knows some basic linear algebra, like matrix multipli-
cation, inverses of a matrix and solving linear equations. It is also expected that the reader has
some knowledge about fields and rings. Other topics that the reader might not have heard of or
topics that need further attention are explained in this chapter.

2.1 (Quasi)-Cyclic matrices

Circulant matrices are matrices where shifting the first row gives the second row, shifting the
second row gives the third, etc. A circulant matrix looks like this:

a0 a1 a2 · · · ap−1
ap−1 a0 a1 · · · ap−2
ap−2 ap−1 a0 · · · ap−3

...
...

...
. . .

...
a1 a2 a3 · · · a0


Under the standard addition and multiplication operations of modulo-2 matrices, the set of

p×p binary circulant matrices forms an algebraic ring, where the zero element it the all-zero matrix
and the identity element is the identity matrix. Addition of two binary circulant matrices A and
B forms indeed a new circulant binary matrix, and associativity and commutativity regarding
addition are inherited from the general matrix addition. Multiplication is less obvious however.
We look at the multiplication of p×p circulant matrices A and B to see if the result C is circulant
as well.


a0 a1 · · · ap−1
ap−1 a0 · · · ap−2

...
...

. . .
...

a1 a2 · · · a0




b0 b1 · · · bp−1
bp−1 b0 · · · bp−2

...
...

. . .
...

b1 b2 · · · b0

 =


c0,0 c0,1 · · · c0,p−1
c1,0 c1,1 · · · c1,p−1

...
...

. . .
...

cp−1,0 cp−1,1 · · · cp−1,p−1

 ,

where ci,j = ap−ibj +ap−i+1bj−1+ · · ·+ap−i−1bj+2 =
∑p−1

k=0 aj−i−kbk. Note that all the indices
are modulo p, the index for a in this equation equals p+j− i−k for k > j− i. Note that the value
for cij depends only on j− i and thus c(i+1)(j+1) = cij for all 0 ≤ i, j < p, again with indices taken
modulo p thus C is also circulant. Because the multiplication works as well, the binary circulant
matrices form a ring. This ring is isomorphic to the polynomial ring F2[x]/〈xp + 1〉 where the
zero element is the zero polynomial and the identity element is the constant polynomial, with
standard addition and multiplication modulo xp + 1 and with all coefficient in F2. More precisely,
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the matrices can be mapped to a polynomial with the following map:

A =


a0 a1 · · · ap−1
ap−1 a0 · · · ap−2

...
...

. . .
...

a1 a2 · · · a0

↔ a0x
0 + a1x

1 + ...+ apx
p−1 = a(x) (2.1)

This is useful for the computation of keys and checking invertibility, since it is cheaper to per-
form manipulations on polynomials than it is to perform manipulations on matrices in a program.

Quasi-cyclic codes are defined in section 2.4. These codes are defined via matrices that consist
of blocks of smaller circulant matrices. Because of their use for quasi-cyclic codes, we will call
those matrices quasi-cyclic matrices. This is an example of a (p+ 1)× 2(p+ 1) quasi-cyclic matrix
C consisting of two cyclic blocks, A and B.

C =
(
A B

)
=


a0 a1 · · · ap b0 b1 · · · bp
ap a0 · · · ap−1 bp b0 · · · bp−1
...

...
. . .

...
...

...
. . .

...
a1 a2 · · · a0 b1 b2 · · · b0


It is important to note that all information of a circulant or a quasi-cyclic matrix is stored in any
single row. The Hamming weight w(r) of a row r is the number of non-zero entries. In quasi-cyclic
matrices, each row has the same weight, so we refer to the row weight of M as the weight of the
matrix w(M).

2.2 Support

The support of a matrix A is defined as supp(A) = {(i, j) | ai,j 6= 0}. In this thesis, only circulant
matrices will be considered, for which all information is captured by the first row and thus the
support will be defined as supp(A) = {i | ai 6= 0} as opposed to the standard definition. In this
definition the position is more important than the value of the ai, because for binary matrices this
value will only be 0 or 1, and in the support only the ai = 1 will be included. Note that for this
definition, the support contains all the information about the circulant matrix. For the attack
matrices defined over the integers (see chapter 4 for details), the values of the ai do not matter
either, only the positions of the non-zero entries are interesting. By the isomorphism in equation
2.1, the support of a polynomial a(x) =

∑
i aix

i can be defined as supp(a) = {i | ai 6= 0}. Note
that here the position is again more important than the term itself. The size of the support, i.e.
the number of elements in the support will be noted as |supp(A)| or |supp(a)|.

2.3 Cryptology

In this section the basic topics of cryptology needed for the understanding of this thesis are
described. This and more information can be found in [16].

There are two kinds of cryptosystems. Symmetric cryptography uses a secret key that is known
to both the Alice and Bob, a so called ’shared secret’. In figure 2.1 Alice and Bob use the shared
key k to encrypt the message m and decrypt the ciphertext c. Eve can intercept c, but as long as
Eve does not know the shared secret, she cannot recover m and therefore the systems is safe.

The other type of cryptosystems are the public key cryptosystems. In these cryptosystems,
Alice and Bob both have a public key (pkA and pkB , respectively), that is available for everyone,
and a secret key (skA and skB , respectively), that nobody else knows. Alice uses the public key
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A E B

c
c = Enck(m) m = Deck(c)

Figure 2.1: Symmetric Cryptosystem

A E B

c
c = EncpkB

(m) m = DecskB
(c)

Figure 2.2: Public Key Cryptosystem

of Bob to encrypt m, and Bob uses his own secret key to decrypt c. Eve can see the ciphertext
again, but since she only knows pkB and does not know skB , she cannot read m. See figure 2.2

Well-known public key cryptosystems are Diffie-Hellman key exchange [5] and RSA[13]. Peter
W. Shor found an attack using a quantum computer that breaks these cryptosystems [14]. To
prepare for the post-quantom world, cryptographers are developing various types of cryptosystems
that can withstand attacks with quantum computers. These types can use various mathematical
structures, code-based cryptosystems are among these types [10].

2.4 Coding theory

This section covers the basics of coding theory and explains linear codes and Quasi-Cyclic Low-
Density Parity-Check codes (QC-LDPC codes), which are used in LEDAcrypt. Information on
coding theory can be found in [15] and [12].

In this thesis, only linear codes over F2 are considered. These are subspaces of the vector space
Fn
2 . Such a code C is denoted as C(n, k) if its dimension is k. When two parties communicate

they use C ⊂ Fn
2 as the set of acceptable code words. If c ∈ C gets sent but x 6= c is received, the

receiver needs to correct x to c. This is called decoding.
An important definition in coding theory is the Hamming distance. The Hamming distance

between two code words x = (x1, x2, ..., xn) and y = (y1, y2, ..., yn) is defined as follows: d(x, y) =
|{0 ≤ i ≤ n | xi 6= yi}|. The minimum distance is the minimal Hamming weight between any two
code words, i.e. min{d(x, y) | x, y ∈ C, x 6= y} . When the minimum distance is 1, e.g. when
C = Fn

2 and all vectors of length n are correct code words, an error moves from one valid code word
to another and the receiver will not notice that there was an error and recover the wrong input.
Error-correcting codes can detect and correct errors because they add redundancy to the message,
i.e. they add bits such that n > k. These extra bits are given a certain structure, depending on
the message. Because of this, the minimum distance is increased, and a check is put into place,
that can be used to see if an error occurred, because then the structure would not be correct
anymore. For linear codes, this check can be done using a parity check matrix P . This matrix
is given, before sending someone information you agreed on how to encode/decode. Any correct
code word c satisfies Pc = 01 , thus C is defined as the kernel space of P . If an x is found such
that this equation does not hold, i.e. Px = s 6= 0, an error has occurred. Now we look at what
happens when we check x, i.e. Px = P (c + e) = Pc + Pe = 0 + Pe. We call this the syndrome
s = Pe. The parity check matrix P gives all the information about the code, and can be used to
describe it.

Good codes permit efficient decoding, meaning that for a limited number of errors these errors
can be quickly found and corrected. In this thesis we do not consider decoding of efficient codes,
but consider the general case in the section 2.6.

Low-Density Parity-Check codes (LDPC codes) are a special type of linear block codes, that
have a sparse parity-check matrix P , meaning that P has only very few non-zero elements in each

1vectors are seen as column vectors, but we use w(c) to denote the column weight.
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row or column. As the name suggests, a Quasi-Cyclic Low-Density Parity-Check code is an LDPC
code with a quasi-cyclic parity check matrix. Such a code is used in LEDAcrypt.

2.5 Code-based cryptology

Code-based cryptology was introduced by McEliece in 1978 [8]. A more general version of his
cryptosystem, Niederreiter’s cryptosystem, will be described in chapter 3.

Code-base cryptology uses codes and hides the structure of the code by modifying the parity-
check matrix. The public key is a scrambled version K of the original parity-check matrix P ; the
secret key is P and the knowledge of how K relates to P .

In the setting of code-based cryptology plaintexts are vectors e of weight t. It is possible to
encode messages into fixed-weight vectors but in chapter 3 we will see in LEDAkem that this
encoding step is not necessary in modern cryptosystems. The ciphertext in Niederreiter’s scheme
is the syndrome s = Ke of e. Decryption means recovering e from s, which should be hard given
K but easy given P , so P describes a code with good error-correction algorithms. The goal is
again to find e such that t is minimal.

2.6 ISD algorithms

This section is about ISD algorithms. The information in this section follows [6]. ISD stands for
Information Set Decoding. This group of algorithms can be used to find close code words in a
given code. I.e. for a received word x ∈ Fn

2 , it tries to find code word c, where x = c + e and
w(e) = t is minimal (so t errors occurred when sending c). With known x and s, the goal is to
find the c closest to x, i.e. the c for which d(c, x) is minimal, since this is probably the right word
that was sent. The distance is minimal for a minimal number of errors, i.e. for an e with minimal
weight. Thus, the ISD algorithm tries to find the e with minimal weight from the known s. We
will look at three ISD algorithms in this section: Brute force attack, Prange and Lee-Brickell. We
will describe them from the point of view of an attacker on the Niederreiter scheme, thus use K
for the parity-check matrix.

2.6.1 Brute force attack

A brute force attack tries all possible outcomes, until the right one is found. In this setting, the
algorithm picks t random columns from K, adds these columns and then compares them to s. If it
is equal then e is found, if not, the steps are repeated with another combination of columns from
K. The cost of this algorithm is

(
n
t

)
, the number of possible sums of t columns in a matrix with

n columns. This takes a lot of computations and is thus not ideal, especially not for large keys.

2.6.2 Prange

In 1962, Prange initiated a more efficient ISD algorithm [11]. Instead of performing a brute force
attack on the entire matrix K, some columns are not included in the brute force attack. First,
the algorithm modifies K, i.e. K ′ = UKW where W is a randomly chosen permutation matrix,
and U (which is invertible) is chosen such that K ′ has the form K ′ = (X | In−k). The ciphertext
s is updated to Us. The attack will succeed, if the permutation pushed all the error positions in
s into the last n− k positions. This can be seen by inspecting the weight of s′. If w(s′) = t then
e′ = (0 . . . 0 | s′) satisfies s′ = K ′e′ and applying W−1 to e′ gives e. The costs of this algorithm is

(n
t)

(n−k
t )

, which is a great improvement from the brute force attack.
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2.6.3 Lee-Brickell

Lee and Brickell presented an even more efficient ISD in 1988 [7]. Similar to Prange’s algorithm, K
is permuted and brought into the same systematic form. A difference between the two algorithms
is that the Lee-Brickell algorithm does not require all the errors to be in In−k. Instead, it allows b
errors in X. The algorithm picks b columns from X and calculates their sum xb. Then it checks the
weight of s+xb. We know that w(e) = t and that Prange looks for an s′ with w(s′) = t. Permitting
errors in the first k positions means that the weight of s′ does not instantly reveal success. If the
b positions in X were indeed error positions in the permuted e then s′ + xb is the syndrome of
e′ + f , where f has a 1 in exactly the b positions chosen to get xb, thus if w(s′ + xb) = t− b then
e′ = f + (0|s′ + xb).
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Chapter 3

LEDAcrypt

A defining feature of LEDAcrypt is the use of quasi-cyclic matrices. Interesting about this is
that all information in such a matrix can be stored in a single row instead of the whole matrix.
Algorithm 1 shows how to generate a circulant matrix from a list l. This is later used in the
generation of the key.

Algorithm 1: GenerateCirculantMatrix

input : length of rows/columns of the matrix: p,
list with non-zero and zero elements of length p: l

output: p× p circulant matrix with top row l: M
1 M = Matrix()()
2 for i in range(p) do
3 for j in range(p) do
4 M(i)((j + i) mod p)← l(j)
5 end

6 end
// return M

The most important variables of the keys are the number of cyclic blocks in the keys, n0, and
the dimension of those blocks p × p, where p is chosen such that 2 is the generator of F∗p and dv
(odd number), the Hamming weight of the matrix H, where H is the parity check matrix of a
Low-Density Parity-Check code as described in chapter 2. Q acts as the generator matrix of that
code.

The LEDAcrypt key generating algorithm uses the key generating algorithm of Niederreiter [9],
a variant of the key generating algorithm of McEliece [8]. This algorithm is described in algorithm
2. In this algorithm, the sparse binary matrix Q distributes its weight over its cyclic blocks such

that Q has weight dv, i.e. w(Q) =

(
m0 m1

m1 m0

)
, where m0 + m1 = dv. In the following chapters,

we choose m0 = dv −m and m1 = m.
The reason that p must be chosen such that 2 is the generator of F∗p, is that this, in combination

with an odd weight, ensures that a matrix does not have repeated entries, thus guaranteeing that
the matrix is non-singular. Therefore H0 and H1 are non-singular. For the cyclic blocks of Q
however, the weight might not be odd and this condition does not hold. Because the total weight
of Q is odd however, this condition of p guarantees that the quasi-cyclic matrix is non-singular
(by theorem 1.1.3 and theorem 1.1.4 in [4]). So both H and Q are non-singular as required for
the decoding of LEDAcrypt.
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Algorithm 2: Niederreiter Key Generation

input : number of cyclic blocks in key: n0,
length of blocks: p,
weight of blocks of H: dv,
weight of blocks of Q: m and dv −m

output: public key: M ,
secret key (H,Q)

// All matrices are objects over F2

// Generating matrix H

1 h0 ← GenerateRandomList(p, dv) /* Skip this line if you have a fixed h0 */

2 H0 ← GenerateCirculantMatrix(p,h0)
3 h1 ← GenerateRandomList(p, dv) /* Skip this line if you have a fixed h1 */

4 H1 ← GenerateCirculantMatrix(p,h1)

5 H ←
(
H0 H1

)
// Generating matrix Q

6 q00 ← GenerateRandomList(p, dv −m) /* Skip this line if you have a fixed q00 */

7 Q00← GenerateCirculantMatrix(p,q00)
8 q01 ← GenerateRandomList(p,m) /* Skip this line if you have a fixed q01 */

9 Q01← GenerateCirculantMatrix(p,q01)
10 q10 ← GenerateRandomList(p,m) /* Skip this line if you have a fixed q10 */

11 Q10← GenerateCirculantMatrix(p,q10)
12 q11 ← GenerateRandomList(p, dv −m) /* Skip this line if you have a fixed q11 */

13 Q11← GenerateCirculantMatrix(p,q11)

14 Q←
(Q00 Q01
Q10 Q11

)
// The secret key is (H,Q)

// Generate public key M

15 L← H ·Q = (L0L1) /* L0 and L1 are p× pmatrices */

16 L−11 ← Inverse(L1)

17 M ← L−11 · L/* with all elements modulo 2 */

// The public key is M

3.1 LEDAcrypt KEM

LEDAcrypt can be used by Alice to sent a key to another person (Bob) safely, so that there
is a shared secret that can be used in symmetric-key-cryptography. To make sure nobody but
the intended receiver can read this shared secret, this information is encoded using the Key
Encapsulation Module (LEDAcrypt KEM). In algorithm 4 an error vector is encrypted with Bob’s
public key. This c is the encapsulated temporary key, i.e. the key that is shared with Bob to be
used for further (symmetric) communication. Bob will decrypt it using his secret key, find e and
hash this using SHA-3 hash function to get K. Thus after this step, both Bob and Alice know K.
The decapsulation of the KEM is not shown here, since it is straightforward what happens there.
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Algorithm 3: GenerateRandomList

input : length of the list: p,
weigth of the list: w

output: list of length p with w non-zero elements: l
1 lp = list()
2 lp ←RandomSample (p, w) /* Picks w unique random numbers in range 0 to p */

3 for i in range p do
4 if i in lp then
5 l[i]← 1
6 else
7 l[i]← 0
8 end

9 end
// return l

Algorithm 4: LEDAcrypt Key Encapsulation Module (KEM)

input : length of blocks: p,
weight of blocks of H: dv,
public key: M

output: encapsulated temporary key: c,
temporary key: K

1 e←GenerateRandomList(2p, dv)

2 e> ←Transpose (e)

3 c←M · e>
// c is the encapsulated temporary key

4 K ←SHA3(e)
// K is the temporary key

13



Chapter 4

Weak keys attack

The attack described in this chapter was developed in [2]. It was published in 2020 by Daniel Apon,
Ray Perlner, Angela Robinson and Paolo Santini (who was one of the creators of LEDAcrypt).

The attackers found that there exist classes of weak keys in LEDAcrypt, keys that can be
recovered in much less time than was assumed at first. Protecting LEDAcrypt against the attack
would require a change in the cryptosystem (an alteration that has been made later) but nonethe-
less, LEDAcrypt was not chosen as one of the round three candidates for NIST’s competition [1].
This change in structure caused a resemblance to one of the other round two candidates, BIKE [3],
which has made it to the third round. In this section, the attack will be explained.

This attack uses ISD algorithms, as the ones described in chapter 2 to find a low-weight code
word, after which the key can be recovered. This is possible because the structure of the key
cannot be hidden completely. As we now know, ISD algorithms can be performed much faster
when one knows (or assumes) that certain positions contain zeros. The attack guesses the most
probable positions of the non-zero elements of the key, and then performs the ISD on the other
positions, to find the actual key. This replaces the random guesses. Instead they make an attack
key L′, the support of which hopefully will contain the support of L. Then an ISD algorithm is
performed on the complement of these positions and so the key can be found if the support of L
is indeed contained in the support of L′, i.e. if supp(L) ⊆ supp(L′).

But how can such an L′ be found? The chance that one guesses an L′ that works for a secret
key is very slim. Of course L′ will not be guessed directly, instead h′0, h′1, q′00, q′01, q′10 and q′11
will be chosen such that a good L′ will be generated. But how does one choose those polynomials
correctly? The answer to this problem is to use consecutive sparse polynomials. Before this
statement can be elaborated, some more thought needs to be put in the properties of consecutive
sparse polynomials and their support, so it will be easier to understand the attack. The sections
about these topics, section 4.1 and section 4.2 explain the thought process needed, written in my
own words.

4.1 Sparse polynomials

A sparse polynomial is a polynomial with few non-zero terms, where few is not defined precisely.
In this thesis, this definition will suffice. A consecutive sparse polynomial is a sparse polynomial,
where the non-zero terms have consecutive exponents.
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In this section the following notation and polynomials will be used.

f(x) =

k∑
i=0

aix
i, (4.1)

g(x) =

l∑
i=0

bix
i, (4.2)

h(x) =

m∑
i=0

cix
i, (4.3)

with f , g and h polynomials with integer coefficients (i.e. ai, bi, ci ∈ Z ∀i). The degrees of the
polynomials f , g and h are k, l and m, respectively. This means that for f(x) k is the largest i for
which ai 6= 0. The same holds for l and m. The smallest i for which ai, bi and ci are not 0 will be
0 for all three polynomials. Note that this can be assumed without loss of generality, since if this
were not the case, one could multiply the entire polynomial with x−j , such that this smallest i
would be 0 and the degree would be updated to a smaller number, namely k − j for f .

Let h(x) = f(x) · g(x). The number of non-zero terms of f , g and h will be called ft, gt and
ht, respectively. Note that these equal the number of elements in the supports of f , g and h. For
the attack, the most interesting thing to find out about the sparse polynomials are these numbers
ft, gt and ht and the relations between them. This is what this section will focus on.

First, it needs to be noted that the upper bound of ht is ft · gt. This can be deduced from
looking at the number of multiplications when generating h from f and g.

h(x) = f(x) · g(x)

= (a0x
0 + a1x

1 + ...+ akx
k)︸ ︷︷ ︸

ft non-zero terms

· (b0x0 + b1x
1 + ...+ blx

l)︸ ︷︷ ︸
gt non-zero terms

= a0x
0 · (b0x0 + b1x

1 + ...+ blx
l)︸ ︷︷ ︸

gt multiplications

+...+︸ ︷︷ ︸
ft of such terms

akx
k · (b0x0 + b1x

1 + ...+ blx
l)︸ ︷︷ ︸

gt multiplications

Figure 4.1: Proof for ht ≤ ft · gt

Thus, the total number of multiplications is ft · gt. These multiplications might each cause a
unique term in h, but if there are multiple terms with the same exponents, the number of non-zero
terms in h is smaller than this ft · gt.

In this proof, it was not considered whether f and g were consecutive polynomials or not. Now,
the difference between those two cases can be explained. Suppose that f and g are not consecutive
polynomials, i.e. ft < k + 1 and gt < l + 1. The multiplication of f and g takes on the same
form as in the equations 4.1 and again ht ≤ ft · gt. For the consecutive case however, i.e. when
ft = k + 1 and gt = l + 1, a lot of terms will overlap. The term in h with the smallest exponent
will be the constant term, since x0 · x0 = x0+0. But since the polynomials are consecutive, the
terms of h will be consecutive as well. The smallest term will appear where the smallest term of f
and the smallest term of g were multiplied, and the same goes for the largest terms. This means
that h will have (k+ l)+1 terms. Thus, for ft = k+1 and gt = l+1, ht = (k+ l)+1 = ft +gt−1.
This is a relatively small number of non-zero terms and for this property, these polynomials are
used in the attack.

4.2 Properties of the support under reduction and lift

Note that the result in the former section can be translated into a property of the support. If
|supp(f)| = k + 1 and |supp(g)| = l + 1, then |supp(f · g)| = k + l + 1. Now we look at another
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property of the support. First a polynomial r is considered. This polynomials is defined over F2

and will thus be of the form r(x) =
∑

i aix
i where ai ∈ {0, 1}. Now we will lift r to Z and call

it r′. Thus r′ will be of the form r′(x) =
∑

i a
′
ix

i where a′i ∈ Z. Since 0 ∈ F2 lifts to 0 ∈ Z and
1 ∈ F2 lifts to 1 ∈ Z, the support of r′ equals the support of r.

Now consider polynomial s′, defined over Z. It is of the form s′(x) =
∑

i b
′
ix

i, with b′i ∈ Z. If
s′ is reduced modulo 2, it becomes a polynomial s of the form s(x) =

∑
i bix

i where bi ∈ {0, 1}.
However, since there might be some even b′i, not all terms of s′ appear in s. Let’s take s′(x) =
2x+ 3x2 +x5 + 7x6. Then s(x) = x2 +x5 +x6. The supports of s′ and s are supp(s′) = {1, 2, 5, 6}
and supp(s) = {2, 5, 6}. Thus in this case supp(s) ( supp(s′).

Since all the polynomials (and thus the entries of the matrices as well) are defined over F2,
all the entries are either 0 or 1. If two entries are added (corresponding to adding two terms in
the polynomials) a cancellation will happen and a 0 will appear, instead of a 2. For the same
polynomials and matrices defined over Z however, this cancellation will not happen and the 2 will
just stay in its place. This means that when cancellations happen for a polynomial p defined over
F2, the support of the polynomial p will be smaller than the support of the same computation
performed on the lifted polynomials.

4.3 Choosing L′

These properties are taken into account when choosing a useful L′. The polynomials for the attack

matrices H ′ =
(
H ′0 H ′1

)
and Q′ =

(
Q′00 Q′01
Q′10 Q′11

)
are chosen as consecutive sparse polynomials

with degree bp4c + ε where ε may be zero. (In the cases that were modeled in chapters 5 and 6,
ε = 1, because the number of non-zero elements in L′ was too small to have a successful attack.).
The chance that all or many of the non-zero elements in h′0, h′1, q′00, q′01, q′10 and q′11 are contained
in the support of these consecutive polynomials is quite big, since every non-zero entry has an at

least
p
4

p = 1
4 chance of being in the first quarter of the polynomial. Thus it is not a very bold

assumption when one assumes that all (or nearly all) of the non-zero elements are contained in
the supports of the polynomials.

Then L′ is generated using these polynomials of H ′ and Q′. According to the statements in
section 4.1, |supp(L′0)| = |supp(H ′0Q

′
00 + H ′1Q

′
10)| will equal 2(p

4 + ε) + 1, which is roughly p
2 . If

all non-zero elements of the polynomials of the key were indeed contained in the supports of the
polynomials of the attack key, then all non-zero elements in L will appear in the positions that are
contained in the support of L′ and thus it is expected that the other p

2 positions in the key will
contain zero elements. This means that around half of the columns of the matrix can be excluded
from the guessing of the ISD algorithm, i.e. the matrix X as described in section 2.6 will have
size p

2 × p. Therefore the ISD algorithm can be sped up quite a lot and it is relatively easy to find
the key.

This would be the best case scenario for the attacker. As an user of LEDAcrypt, it is quite the
opposite. But how can you choose your key such that it cannot be found by this attack? In the
next chapter I consider different user strategies for choosing a key and how this affects the success
probability of the attack.
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Chapter 5

Methodology

In order to understand the LEDAcrypt system and the attack better, it is easiest to start looking at
very small cases. In order to do this, different programs were developed to simulate the generation
of keys, the KEM (this method was explained in algorithm 4), how to measure the safety of keys
against an attack and how to gather that data. The goal of gathering the data is to be able
to find the weak keys in the small cases, so some conclusions can be made that will also hold
for the large cases that were suggested by the creators. This chapter presents and explains an
algorithm developed to measure the effectiveness of the attack as well as the strategies we defined
for choosing keys that will be tested. The last section explains the approach in how we structure
gathering the data to make it easier to compare strategies.

5.1 Measuring the effectiveness of the attack

Chapter 4 explained that the attack succeeds if the attacker manages to correctly guess where
the non-zero elements appear (and thus knows positions guaranteed to be zero). This is done
by guessing possible polynomials whose supports hopefully contain the support of the actual
polynomials used in the key. For the small cases with size p = 11 and p = 13, the polynomials that
we used for the attack were h′0 = h′1 = q′00 = q′01 = q′10 = q′11 = x0 + x1 + ...+ xb

p
4 c+1. The attack

key was generated using the Niederreiter Key Generation algorithm as described in algorithm 2
but with all matrices defined over Z instead of over F2 and with these fixed polynomials. Steps 16
and 17 will be omitted, because the inverse over Z cannot be computed and M will not be used
for this attack.

The indices of the non-zero elements of all the rows of this attack key are stored as a list of sets
(every set gives the indices of one row of the attack key). This list of sets will be used to check if
the support of the first row of a generated key is a subset of the checklist. If this is the case, the
key can be restored using the ISD algorithm and the attack is successful. The checklists for the
cases p = 11 and p = 13 can be found in chapter A. Note that the algorithm does not accept a
few non-zero elements to be outside of the support of L′, whereas the original would still be able
to break the keys for which this would happen, if they used Lee-Brickell as described in 2.6.

In analyzing the effectiveness of the attack, target keys will be generated using certain input
polynomials, for example for a given h0 and q00. The other polynomials will be randomly gen-
erated. This will be done by the function GenerateKeyFromInput as shown in algorithm 5,
which uses these polynomials to generate the key L as described in chapter 3.

If the support of the first row of L is a subset of a set in the checklist, it counts as a success.
The code runs a number of times to try a lot of different keys and the indices of non-zero elements
appearing in any of those keys (also those that do not get attacked successfully) and the number
of successes are kept in the final output list N . So, after running this code, one can see the success
rate of the attack for a certain strategy of making keys. The input polynomials and the number
of runs are used as input, and the list N is the output. See algorithm 6 for this code.
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Algorithm 5: GenerateKeyFromInput

input : input used to generate key: ph0, ph1,pq00, pq01, pq10, pq11 /* list with correct

length and weight or ’R’ for random */

output: matrix L generated from the input

// Generate H0

1 if ph0 = ’R’ then
2 h0 ← GenerateRandomList(p, dv)
3 H0 ←GenerateCirculantMatrix (h0)

4 else
5 H0 ←GenerateCirculantMatrix (ph0)
6 end
7 if ph1 = ’R’ then
8 h1 ← GenerateRandomList(p, dv)
9 H1 ←GenerateCirculantMatrix (h1)

10 else
11 H1 ←GenerateCirculantMatrix (ph1)
12 end

// Generate Q00

13 if pq00 = ’R’ then
14 q00 ← GenerateRandomList(p, dv −m)
15 Q00 ←GenerateCirculantMatrix (q00)

16 else
17 Q00 ←GenerateCirculantMatrix (pq00)
18 end

// Generate Q01

19 if pq01 = ’R’ then
20 q01 ← GenerateRandomList(p,m)
21 Q01 ←GenerateCirculantMatrix (q01)

22 else
23 Q01 ←GenerateCirculantMatrix (pq01)
24 end

// Generate Q10

25 if pq10 = ’R’ then
26 q10 ← GenerateRandomList(p,m)
27 Q10 ←GenerateCirculantMatrix (q10)

28 else
29 Q10 ←GenerateCirculantMatrix (pq10)
30 end

// Generate Q11

31 if pq11 = ’R’ then
32 q11 ← GenerateRandomList(p, dv −m)
33 Q11 ←GenerateCirculantMatrix (q11)

34 else
35 Q11 ←GenerateCirculantMatrix (pq11)
36 end

// Generate L

37 H ←
(
H0 H1

)
38 Q←

(Q00 Q01
Q10 Q11

)
39 L← H ·Q /* with all elements modulo 2 */
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Algorithm 6: MeasureAttack

input : Number of runs: r,
input used to generate key: ph0, ph1,pq00, pq01, pq10, pq11 /* list with correct

length and weight or ’R’ for random */

output: List with number of appearances of non-zero elements per position and number
of successes: N

1 s = false /* Boolean */

2 N = list(0) /* N is a list of length p · n0 + 1 filled with zeros */

3 C = list(set()) /* See appendix A for the versions of this checklist */

4 for i in range(r) do
5 L← GenerateKeyFromInput(ph0, ph1,pq00, pq01, pq10, pq11)
6 l = list()
7 for j in range(p · n0) do
8 if L[0][j] == 1 then
9 l← l|j /* The position of the non-zero element is appended to l */

10 N [j]← N [j] + 1 /* N keeps track of the postions */

11 end

12 end
13 for k in range(p) do
14 if l SubsetOf(C[k]) then
15 s← True
16 end

17 end
18 if s== True then
19 N [p · n0]← N [p · n0] + 1 /* Update the number of successes */

20 end

21 end
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After the testing of this code and gathering some data by hand, the code was extended to be
able to gather more data in one go and to immediately save the data in a .csv file. To do this, the
code took the input from a two-dimensional array D, which needed to be prepared beforehand.
Every row of D was an input line for the measuring of the effectiveness of the attack. To the
function MeasureData a few lines were added to open a .csv file, to write all the elements of N
in that file, seperated by semicolons and to close the file. A for-loop was used to go through every
row of D and thus to gather a lot of data at once.

5.2 Strategies

When choosing polynomials for generating keys for LEDAcrypt, one can have different strategies.
Obviously, the preferred key is one that can not be broken with the attack, but how to know which
keys meet that demand? To try to find out which keys are ’good’ and which keys are ’bad’, the
code described above is used to measure how well certain groups of keys perform when they are
attacked. These different groups of keys correspond to possible strategies when choosing how to
generate keys and to make them easily distinguishable, all strategies were given a name. They
will be explained in this section.

All-knowing Alice

Alice is familiar with a lot of cryptosystems and although she and her friend Bob have been the
victims of many successful attacks of Eve in all these systems, they always manage to find a way
to secure their communication. Therefore, it is assumed that Alice, as the experienced user of
cryptosystems, will use a very safe strategy. She generates her keys completely at random in order
to protect her bits. All the other strategies will be compared to this one, since this is probably
the safest one.

Consecutive Charlie

Charlie is not experienced at all and prefers simple keys. She will choose to put the non-zero
elements of her polynomials in one consecutive block.

Split Simon

Simon’s strategy resembles the one from Charlie, but instead of using one consecutive block, Simon
splits his block into two smaller blocks by putting one or more zeros in between.

Regular Ron

Unlike Charlie and Simon, Ron does not necessarily keep his non-zero elements in blocks. Rather,
he splits them up in multiple groups, or separates them all. The number of zeros in between
blocks or single non-zero elements has a certain regularity to them. Either every ’hole’ has the
same number of zeros or some of them do. This strategy also tries out some irregular holes, Ron
is secretly admiring Alice and tries to be like her sometimes.

5.3 Structure in the data

In order to get useful data, some structure was added to the data. For every strategy of choosing
keys, the same type of structure was used so the strategies can be compared. For every strategy,
the data is divided among different phases. These different phases are described below.

Phases in the test and what they can show:
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Parameter value for first set Value for second set
n0 2 2
p 11 13
dv 3 5
m0 1 2
m1 2 3

Table 5.1: Parameter sets used for LEDAcrypt in this thesis

I Only fixing h0 or h1. This shows the influence of h0 and h1 and possible shifts in these
polynomials

II Fixing combinations of h0 and h1 (how much do these affect the results?)

III Only fixing one polynomial of Q. This shows the influence of the polynomials of Q

IV Fixing combinations of two polynomials of Q.

V Fixing h0 in combination with one or two polynomials of Q. This will tell us about the
influence of combinations of polynomials.

Results and analysis of the data found will be given in the next chapter.

5.4 Applying the methology to a larger case

In this thesis, we consider LEDAcrypt with two sets of parameters, see table 5.1.

In practice, LEDAcrypt would not use polynomials of such small lengths, since there is not
much information that can be sent with these and Eve can easily do a brute force attack, when
having access to enough computational power. In the specification for LEDAcrypt [4], we find the
parameters for different levels of security (different NIST categories). The following parameters
are used for NIST category 1.

n0 = 2 In this thesis and in the attack paper, only this case was considered, but the attack and
the measuring of the attack would work for the larger n0 as well

p = 14939 Note that this is 1000 times larger than the cases we will consider in detail in the next
chapter

dv = 11 This means that less than 1 on 1000 positions in the polynomial is a non-zero element.
The cases that are considered in this report have almost 1 on 2

m0 = 4 and m1 = 3 Note that the weight of Q is now smaller than the weight of H

Since the ratio between p and dv differs so much with the p = 11 and p = 13 case, we thought
it would be interesting to try to attack a key of this large size. To do this, the checklist would
have to be generated first. Unfortunately, we immediately ran into a memory error, my laptop was
not able to do calculations with matrices of that size. Thus, instead of computing with matrices,
we rewrote the checklist generating algorithm so it would work with lists of positions of non-zero
elements. After a few tests, this method worked, but when performed on the p = 14939 case, it
took more than 3 days and then the file (which was more than 1GB in size) with the checklist was
still not complete. Then we ran the code again, but only for the first row of the checklist. This
worked perfectly, but cannot be attached as attachment, because Overleaf cannot handle that.
Because of these problems, with the time and computational power on hand, we did not manage
to run for the large case and gather data on that.
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Chapter 6

Results

Using algorithm 6 data for every strategy and phase was gathered. For the p = 11 case 135
different lines of data were gathered. For p = 13 case 202 lines were gathered. All this data was
divided and stored by strategy and phase. Then it was analyzed and visualized.

In this section the data that was gathered for the attack on keys with the parameter sets
described in table 5.1 will be discussed per strategy, and the strategies will be compared at the
end. Sections will first discuss the p = 11 case, and will then discuss the p = 13 case and compare
the two. The strategies of Alice and Charlie will be described completely, so the idea about the
gathering and analyzing of the data is clear. The other strategies will be compared to these two,
so it is important to cover them. For the other strategies only the very remarkable results will be
highlighted. A few terms that will be used in this chapter are ’shifts’, ’blocks’ and ’holes’. With a
’shift of one position’ is meant that the positions of the elements of the polynomial are mapped one
position to the right. When no shift is mentioned, the first element of the polynomial is non-zero.
A ’block of size four’ means four consecutive non-zero elements. A ’hole of size three’ are three
consecutive zero elements between non-zero elements or blocks. Note that if the program that
would gather the data would run again, slightly different success rates may be found. Since the
program works with randomness, results may vary around the ’true’ success rate. Repeating the
process a number of times will give more information about this ’true’ success rate, but requires
a lot of computational time.

6.1 Alice

For both p = 11 and p = 13, Alice has no fixed polynomials, but uses randomly generated
polynomials. This is expected to be the best strategy. For p = 11, the data shows that the attack
will find 0.35% of all random keys (average of 0.333%,i.e. the result for 1000000 tries and 0.36%).
Considering that there are 222 = 4194304 possible keys, this means that about 1453327 keys can be
found. Although not all of those possible keys can be generated from H and Q, so the actual value
will be lower. The result for Alice in the p = 13 case is a bit lower, the success rate is now 0.19%
(average of 0.14% and 0.23%, the result for 1000000 tries). To check whether the distribution
of weights in Q affects the success rate, we checked Alice but with slightly different parameters.
Instead of using m0 = dv −m and m1 = m, we used m0 = m and m1 = dv −m. As you can see
in figure 6.1, the results are relatively close to each other. That Alice has a smaller success rate
can be caused by the length. There are much more possible keys with length 13 (226 > 222).

6.2 Charlie

As mentioned in the last chapter, Charlie likes consecutive blocks. Thus she chooses her polyno-
mials such that all non-zero elements are in one block.
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Figure 6.1: Comparing Alice for different weigth distributions of Q

Phase 1

The influence of a fixed h0 or h1 is shown for the first time. Charlie also tries out a shift for the
p = 13 case, just to check if it has influence. As you can see in figure 6.2, the values are still quite
close to each other, although the p = 13 case has a lower success rate again for the h0 case, but
not for h1. The shifted h0 does not have a very large influence, which is as expected, since the
keys are cyclic and the attack checks every row of the key. Fixing just one polynomials does not
affect the success rate very much, the values are still in the same range as for Alice.
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Figure 6.2: Influences of Charlie’s h0 or h1 on the success rate
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Phase 2

In this phase the combination of a fixed h0 and h1 is discussed. As can be seen in figure 6.3, this
gives a much better chance for the attack to work. Around 2% of the keys is now found, which is
a lot. Since there are 6 non-zero elements fixed (for the p = 11 case) and because these are fixed
in consecutive blocks, like the polynomials h′0 and h′1 have, the chance that the non-zero elements
appear in the beneficial positions for the attack is quite high. Shifts of both of the polynomials
or of h1 (and thus shifts of h0 too, since we saw in the previous section that there is not much
difference between those two polynomials) do not affect the success rate very much, as expected.

Interesting is that the success rates for the p = 13 case are much lower. This happens because
fixing both h0 and h1 means fixing 10 non-zero elements. This would mean a higher success rate,
if the attack keys had a large support that could contain these non-zero elements. The attack
keys h′0 and h′1 have weight b 134 c+ 1 = 4, which means that fixing 5 non-zero elements lowers the
chance of an successful attack. The shift for h1 seems to have a small positive influence on the
success rate.
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Figure 6.3: Influences of Charlie’s h0 and h1 on the success rate

Phase 3

In phase 3, all the polynomials for Q will be considered and compared. The weights of the
polynomials of Q are smaller than the weights of the polynomials of H, but the success rates are
not noticeably smaller than those for the polynomials of H. In figure 6.4, is is clear to see that
there is not much difference between the values for q00, q01 and q10. It also seems like the success
rate for q11 is smaller than the others (although not that much smaller for the p = 13 case). The
numbers of non-zero elements in q11 and q00 are the smallest, but there should be no difference
between q00 and q11. This might just have been an unlucky set of keys, which we noticed quite
late. In figure 6.5, we can see that a shift of one position in the p = 13 case does not cause for
large differences in success rates.

Phase 4

Now the combinations of polynomials of Q are considered. For the p = 11 case, it vaguely
looks like the number of fixed non-zero elements increases the chance of success for the attack,
but these differences are so small that one cannot conclude this with confidence. Interesting
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is that the combinations of qii’s cause much less of a problem for the safety of the key than
the combinations of hi’s did. The p = 13 case shows almost no variation in the success rates
between the different combinations. For both cases, the difference between the success rates for
combinations of polynomials of Q and single polynomials is very small. Therefore, we can conclude
that the qii’s do not impact the success of the attack very much.
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Figure 6.6: Combinations of polynomials of Q for Charlie

Phase 5

Now combinations of h0 and the polynomials of Q are considered. No shifts were checked, because
earlier phases showed no real difference in those cases. In the figures 6.7 and 6.8 the combinations
of multiple polynomials for p = 11 and p = 13 are shown.

This last phase seems to confirm that for p = 11 the number of fixed non-zero elements causes
the largest changes in the success rate. Combinations of h0 and q01 or q10 (5 fixed non-zero
elements) give success rates of about 0,6%, whereas h0 and q00 or q11 (4 fixed non-zero elements)
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give only 0,26%. Both of these values are significantly less than the values found in phase 2 (6
fixed non-zero elements).

Combinations of three polynomials follow the same trend with low success rates for the com-
bination of h0, q00 and q11 and a high success rates for the combination h0, q01 and q10. The
values for the success rates in this phase also exceed those of phase 4, that have a maximum for
the number of fixed non-zero elements at 4.

For p = 13 however, the number of fixed non-zero elements keeps exceeding the number of
non-zero elements in the attack polynomials, making it harder for the attack to succeed. A very
low success rate of 0.08% is found for the combination of h0 and q10 (8 fixed non-zero elements).
The combinations of three polynomials give very stable outcomes.
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Figure 6.7: Charlie’s combination of h0
and a polynomials of Q
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Figure 6.8: Influences of shifts in the
polynomials of Q

6.3 Simon

Simon does not use one consecutive block, but instead splits it up into two blocks by adding zero
elements. We expected these to be better keys than Charlie’s. Since there are not many interesting
splits to try for 1 or 2 non-zero elements, phases 3 and 4 are not very interesting for this case.

Phase 2

The data in all the phases confirms our expectations, so we will not discuss everything. An
interesting observation in figure 6.9 is the drop in the success rate for a hole of size 3 however.
Apparently this causes a spread of non-zero elements, such that some are not contained in the
support of the attack polynomials. The hole of size 4 however, causes a spread so wide that some
elements modulo p get back into the support. Thus; the size of holes also matters.

6.4 Ron

Ron goes a bit further than Simon and divides his non-zero elements into more than two blocks. To
try to get the safest keys possible, he tries out different sizes for the holes and even uses irregular
hole size sometimes, to be as much as Alice as possible.

26



h0
hole 2

h0
hole 3

h0
hole 4

0

20

40 39

10

25

Keys

#
o
f

su
cc

es
se

s
fo

r
1
0
00

0
tr

ie
s

Simon phase 2

Figure 6.9: Simon phase 2 with h1 = x0 + x1 + x3

Phase 1

When looking at the sizes of the regular holes in figure 6.10 (i.e. the holes between two non-zero
elements have the same size), it can be seen that for p = 11 there is a dip for the holes of size 2,
but with the regular holes of size 1 and 3, the success rate is similar to that of Alice and Charlie.
The values for p = 13 somewhat resemble Charlie and Alice as well. What can explain this, is that
if you have two polynomials with only non-zero elements on the even positions (so holes of size 1),
all the non-zero elements after multiplication or addition will appear on the even positions. The
odd positions are not touched, but this means that this resembles the consecutive case, but then
with zero elements between the non-zero elements. More general: for a fixed size of holes k,

h(x) = f(x) · g(x) =
∑
i

ai(k+1)x
i(k+1) ·

∑
j

bj(k+1)x
j(k+1) =

∑
i,j

ai(k+1)bj(k+1)x
(i+j)(k+1) (6.1)

This means that all the positions 1, 2, · · · k, k + 2, · · · are not included in this equations and thus
the support of the product remains very small. On top of that, a lot of cancellations can happen.
If the holes not too large (causing wide-spread positions of non-zero elements) then these keys of
Ron are quite unsafe.

Now the polynomials with non-regular sized holes are considered. In figure 6.12 h0’s are
considered where the non-zero elements are separated by blocks of size 2, 1, 2 and 1 (in that
order). Another polynomial has blocks (two blocks of size 2, and one single non-zero element)
separated by holes of size 1 and 4. The success rates for these non-regular polynomials are again
around the 0.25%. The polynomials shown in figure 6.11 all hover around the 0.34% success rate
that was also seen in the other strategies, except for the last polynomials, where relatively large
holes are used. Spreading the non-zero elements so far, might lead to less cancellations and, more
importantly, makes it harder for the consecutive attack polynomials to catch the non-zero elements
from the key in their support.

Phase 2

Now we will consider combinations of h0 and h1. In figure 6.13 very large differences in success
rates are shown. In this bar graph, combinations of two regular polynomials are shown, where the
holes of both polynomials are equal and h1 is shifted. The regular holes of size 1 give a success
chance of a little over 1%, which means the keys are not safe. As soon as the size of the holes are
increased however, the success rate drops down to 10 successes for holes of size 2 and no successes
for holes of size 2. Larger holes increase the chance of non-zero elements appearing outside the
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support of L′. The shifts of the polynomials do not change the results. A similar thing happens
for p = 13, although less extreme. In figure 6.14 the difference between the holes of size 1 and the
holes of size 2 is notable, but not as extreme as for the p = 11 case. A more compact h1 can also
cause a lower success rate.

Phase 3

In figure 6.15 a clear distinction between success rates is shown. Shifts for h1 do not cause large
success rates, but if you mirror h0 = x0 +x3 +x5 and shift 1, so h1 = x1 +x3 +x6 then the success
rates go up. This regularity also causes cancellations, which might be why the success rate is so
high.

The other cases of Ron show more of the same, higher success rates than we would have
expected at first. With a few very low success rates for polynomials with large holes like in figure
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Figure 6.15: Ron phase 3 with h0 = x0 + x3 + x5

6.13. Thus these phases will not be shown anymore.

6.5 Comparing the strategies

In this section the four strategies will be compared to see which one is the safest. In the other
section, the shifts and other variations within the strategies are analysed, in this section the most
basic polynomials that fit the strategy will be considered but some references to the previous
section might be made.
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Phase 1

In figure 6.16 we can see the comparison of Alice to the other strategies and it is interesting to
see that Alice does not have the lowest success rate compared to the other strategies. This can
be explained with the fact that Alice contains weak keys as well as good keys. Since they are
randomly generated, you have a chance that a weak one is generated. Since the keys are so short,
p = 11, and the weight dv = 3 is very high in comparison to the length, the chance that the
non-zero elements end up in a consecutive block is quite high. Thus, Alice also contains keys from
Charlie and Ron, and this can cause the success rate to be higher than suspected. For p = 13 we
can see results that would be expected, with Alice the best. You would expect a decrease from
Alice on, but the numbers are so close that it is inconclusive.
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Figure 6.16: Comparing the strategies for phase 1

Phase 2

Figure 6.17 very clearly shows that Charlie is not the right choice for your keys, there is a clear
increase in the success chance. Here we can see that Ron is indeed worse than Simon (for the
regular holes polynomials that were used for this graph).

Phase 3

It is interesting to see in figure 6.18 that for p = 11, Simon has the highest success rates. The
difference between 38 and 43 is not big enough to draw conclusions. Since w(q00) = 1, one cannot
split non-zero elements here. Thus there is no data for q00 for Simon and Ron. The reason why
the data for Ron for q01 is missing is that this case would be equal to the Simon case, since there
are only two non-zero elements in q01. The same holds for q00 in the p = 13 case.

Phase 4

Figure 6.19 does not really show something new here, although Simon is again a bad strategy to
pick. This can be explained with the cancellations that still happen because the non-zero elements
are still quite densely together. Charlie probably had a lucky run here, you would expect that
success rate to be higher. For p = 11, Ron’s cases would equal Simon’s cases, which is why no
data was gathered for Ron here.
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Figure 6.17: Comparing the strategies for phase 2
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Figure 6.18: Comparing the strategies for phase 3

Phase 5

We look at figure 6.20 and can see very clearly that the number of non-zero elements clearly
influences the success rates for p = 11, but not for p = 13. There are very low values for p = 13,
Charlie is especially low this time, but this is probably a lucky run.

In figure 6.21 three polynomials are fixed instead of two. This gives very high values for both
cases. In both figures, no data was gathered for Simon in the p = 11 case including q00 due to
the single non-zero element in that polynomial. For Ron’s data, the fact that q00 could not be
modified to his preference was ignored.
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Figure 6.19: Comparing the strategies for phase 4
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Figure 6.20: Comparing the strategies for phase 5
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Chapter 7

Conclusion

The data in this thesis shows that the weak keys attack can indeed break certain keys. The keys
of Charlie and the regular keys from Ron are weak. The keys of Simon are a bit better. The small
cases with p = 11 and p = 13 can show us a little bit about the influence of splitsing polynomials
for example, but it cannot give us a clear view on the real life cases, for example the one with
p = 14939. We saw that for both cases (but for p = 11 in a greater extent) the number of bad
keys is larger, simply because the chance that non-zero elements form consecutive blocks is large
because of the ratio between the length and the weight of the polynomials. This causes the attack
to have a larger success rate for Alice than was expected. For p = 13 in particular, fixing the
polynomials fixed more non-zero elements than non-zero elements in the supports of the attack
polynomials. This causes a lower success rate of the attack for all strategies than were expected.

Since the data does show that the attack can break certain keys, it is not safe to use LEDAcrypt
in the form that was described in this thesis.
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Appendix A

Checklists for the attack

A.1 Checklist for p = 11

check = [{0,1,2,3,4,11,12 ,13,14 ,15},

{1,2,3,4,5,12 ,13,14,15 ,16},

{2,3,4,5,6,13 ,14,15,16 ,17},

{3,4,5,6,7,14 ,15,16,17 ,18},

{4,5,6,7,8,15 ,16,17,18 ,19},

{5,6,7,8,9,16 ,17,18,19 ,20},

{6,7,8,9,10,17,18 ,19,20,21},

{0,7,8,9,10,11,18 ,19,20,21},

{0,1,8,9,10,11,12 ,19,20,21},

{0,1,2,9,10,11,12 ,13,20,21},

{0,1,2,3,10,11,12 ,13,14,21}]

A.2 Checklist for p = 13

check13 = [{0,1,2,3,4,5,6,13 ,14,15,16 ,17,18,19},

{1,2,3,4,5,6,7,14 ,15,16,17 ,18,19,20},

{2,3,4,5,6,7,8,15 ,16,17,18 ,19,20,21},

{3,4,5,6,7,8,9,16 ,17,18,19 ,20,21,22},

{4,5,6,7,8,9,10,17,18 ,19,20 ,21,22,23},

{5,6,7,8,9,10 ,11,18,19 ,20,21,22 ,23,24},

{6,7,8,9,10,11,12 ,19,20,21 ,22,23,24 ,25},

{0,7,8,9,10,11,12 ,13,20,21 ,22,23,24 ,25},

{0,1,8,9,10,11,12 ,13,14,21 ,22,23,24 ,25},

{0,1,2,9,10,11,12 ,13,14,15 ,22,23,24 ,25},

{0,1,2,3,10,11,12 ,13,14,15 ,16,23,24 ,25},

{0,1,2,3,4,11 ,12,13,14 ,15,16,17 ,24,25},

{0,1,2,3,4,5,12,13,14 ,15,16 ,17,18,25}]
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