
 Eindhoven University of Technology

MASTER

A Domain-Specific Query Language to Investigate Industrial Network Security Data

Pejathaya Murali, S.

Award date:
2020

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/93e125da-7d9f-4f4a-bc80-15967f90cb74

A Domain-Specific Query
Language to Investigate

Industrial Network
Security Data

Master Thesis

Sashaank Pejathaya Murali

Department of Mathematics and Computer Science
Security and Privacy Research Group

Supervisors:
Dr. Luca Allodi

Dr. Mario Dagrada

Eindhoven, August 2020

Abstract

Over the years, cyber attacks targeting OT-environments such as industrial control systems (ICS)
have been surging in number. Intrusion detection systems (IDS) monitor network activities, and
report events such as alerts and network logs. An important role of security analysts is to analyze
events raised by an IDS to gauge the presence of adversarial activity. Unfortunately, an IDS can
generate numerous events per day including false alarms, making the life of security analysts
cumbersome if they have to address every one of them. In the process of prioritizing events,
some critical events might be overlooked. Furthermore, the data collected by an IDS is raw and
unstructured from different data sources and therefore complicated with complex relationships.
Therefore, there is a need for defining a simple, yet expressive way to query this complex data,
in order to ease the task of security analysts. This thesis aims at assisting security analysts with
their task of identifying and investigating OT security incidents by providing an abstraction to
the underlying data, with a usable and expressive query language.

A Domain-Specific Query Language to Investigate Industrial Network Security Data i

Acknowledgements

I would like to thank my supervisor, Prof. Luca Allodi, for being my constant source of inspiration
throughout my Masters program, right from his courses, to the way he guided me through my
summer internship and my Masters thesis.

I would like to truly thank my graduation tutor, Mario Dagrada for his continuous help,
patience and guidance during this project. This project would not have been successful without
him.

I would also like to thank all my colleagues at Forescout Technologies B.V., for their con-
structive reviews and feedback, in helping me achieve better results. Especially, Elisa Costante
for giving me this opportunity and trusting me with this project.

My biggest thanks goes to my family who have continuously supported me throughout all
these years, even if we were miles apart. I would not have been able to write these lines without
them.

Last but not the least, a special thanks to my best friend, well-wisher and pillar of strength,
Sangavi, for her unlimited support and encouragement throughout my Masters program.

A Domain-Specific Query Language to Investigate Industrial Network Security Data ii

Contents

Contents iii

List of Figures vi

List of Tables vii

1 Introduction 1
1.1 Problem Statement . 2

1.1.1 Research Question . 3
1.1.2 Proposed Solution . 3

1.2 Thesis Organization . 4

2 Background 5
2.1 Operational Technology (OT) . 5

2.1.1 Industrial Control Systems (ICS) . 5
2.2 Intrusion Detection Systems . 6

2.2.1 Intrusion Data Sources . 7
2.3 Summary . 7

3 State of the Art 8
3.1 Related Work . 8
3.2 Initial Requirements for the Prototype . 9
3.3 Overview of Existing Query Languages . 11

3.3.1 Ranking Methodology . 11
3.3.2 Selection Procedure . 11

3.4 Conclusion . 16

4 The Proposed Solution 17
4.1 Use Case Scenarios in the OT/IT environment 17

4.1.1 Typical Use Case Scenario in an OT/IT environment 17
4.1.2 Extended Use-Cases . 18

4.2 Proposed Existing Solution - A Starting Point . 20
4.2.1 Limitations of the existing solution . 20
4.2.2 Bridging the Gap by IIQL . 21

4.3 Proposed Extension to EQL . 21
4.3.1 Plan to Extend EQL to IIQL . 21
4.3.2 Solving the problem with the operators proposed 21
4.3.3 Example Queries with Use Cases and Added Value 22

A Domain-Specific Query Language to Investigate Industrial Network Security Data iii

CONTENTS

4.4 Basic Mode of IIQL . 24
4.5 Investigation Mode of IIQL . 25
4.6 General Architecture . 26

4.6.1 Knowledge Graph Model for IIQL . 27
4.7 Grammar and Parse Tree of IIQL . 28

4.7.1 Grammar . 28
4.7.2 Abstract Syntax Tree - Example . 29

4.8 Translation of IIQL to Cypher . 30
4.9 The IIQL prototype . 31

4.9.1 An example IIQL query in Basic Mode . 31
4.9.2 Example IIQL queries in Advanced Mode 32
4.9.3 Interpreting the Data Model with IIQL 35

5 Case Studies: IIQL in Practice 37
5.1 IIQL - Case Studies . 37

5.1.1 Investigation of Stuxnet Attack with IIQL 37
5.1.2 MITRE ATT&CK Case Studies . 41

6 Validation of IIQL 49
6.1 User Studies . 49

6.1.1 Validation Questionnaire . 49
6.2 Results from the Survey . 50

6.2.1 Overview of User Performance . 50
6.2.2 Expressiveness . 50
6.2.3 Usability . 50
6.2.4 Accuracy . 51

6.3 Summary of Validation . 51
6.3.1 Other Remarks from Experts . 51

7 Conclusions 52
7.1 Query Performance . 52

7.1.1 Performance in the Neo4j graph database 52
7.1.2 Performance in the SQL database . 52

7.2 Query Complexity . 54
7.2.1 Comparison with SQL . 54
7.2.2 Comparison with Cypher . 54
7.2.3 Conclusion . 54

7.3 Answering the Research Question . 57
7.3.1 Recalling the Research Question . 57
7.3.2 The Developed Prototype . 57
7.3.3 Advantages of IIQL . 57
7.3.4 Limitations of IIQL . 57

7.4 Future Work . 58
7.4.1 Automated Prioritization of Attack Paths 58
7.4.2 Time Filtering of Events . 58
7.4.3 Aggregated Statistics of Events per Asset 58

Bibliography 59

A Domain-Specific Query Language to Investigate Industrial Network Security Data iv

CONTENTS

A Detailed Literature Overview 62
A.1 Query Languages for Relational Databases . 62

A.1.1 Structured Query Language (SQL) . 62
A.2 Query Languages for NoSQL Databases . 62

A.2.1 Query Languages for Graph Databases . 62
A.2.2 Query Languages for the Semantic Web 63

A.3 Query Languages for Distributed Search and Analytics Engines 64
A.3.1 Splunk’s Search Processing Language (SPL) 64
A.3.2 ElasticSearch . 64

A.4 Company Specific Query Languages . 65
A.4.1 Microsoft’s Advanced Hunting Query Language 65
A.4.2 Nozomi’s Network Query Language (N2QL) 65
A.4.3 Endgame’s Event Query Language (EQL) 65

A Domain-Specific Query Language to Investigate Industrial Network Security Data v

List of Figures

2.1 ICS Network Architecture of an enterprise . 6

4.1 Attack Reachability between two devices . 18
4.2 Proposed General Architecture . 26
4.3 Knowledge Graph Model for IIQL . 27
4.4 Example Grammar Parse Tree . 30
4.5 IIQL Query Processing . 31
4.6 An example IIQL query in Basic Mode . 32
4.7 An example Influencer query . 32
4.8 An example Explore query . 33
4.9 An example Investigate query . 33
4.10 Another example Investigate query . 34
4.11 An example Path query . 35
4.12 Another example Path query . 35
4.13 An example Action query . 35
4.14 Display of underlying data schema . 36

5.1 Subgraph showing the path between the three devices 39
5.2 Subgraph showing the path between the four devices 40
5.3 Influentiality of the four devices . 40
5.4 Device causing two reconnaisance alerts . 42
5.5 Context around the device . 43
5.6 Path between the PDC and other devices . 43
5.7 Devices using remote discovery protocols . 44
5.8 Device trying to connect to internet connected devices 45
5.9 Engineering Workstation . 45
5.10 Data Historian . 46
5.11 Devices involved in reconfiguration alerts . 47
5.12 Devices involved in DOS alerts . 47
5.13 Devices involved in firmware updates . 48

7.1 IIQL Query Performance in Neo4j . 53
7.2 IIQL Query Performance in SQL . 53

A Domain-Specific Query Language to Investigate Industrial Network Security Data vi

List of Tables

3.1 Overview of existing query languages in literature 8
3.2 Requirements for Prototype . 10
3.3 Ranking of Query Languages for Selection Procedure 11
3.4 Ranking of Query Languages for Final Lot . 13
3.5 Requirements supported by existing query languages 14
3.6 Selection Procedure with Metrics . 15

4.1 Proposed New Operators to EQL . 22
4.2 Proposed New Function to EQL . 22
4.3 Basic Operators present in EQL . 25
4.4 Pipe Commands present in EQL . 25
4.5 Transpilation of IIQL operators . 26
4.6 List of concepts and attributes of data model . 28

6.1 Number of correctly answered questions per user 50

7.1 IIQL queries and equivalent SQL queries . 55
7.2 IIQL queries and equivalent Cypher queries . 56

A Domain-Specific Query Language to Investigate Industrial Network Security Data vii

Chapter 1

Introduction

The number of cyber-attacks targeting industrial networks and, in general, Operation Technology
(OT) systems, is on the rise. The most renowned attack on an industrial network is the Stuxnet1

attack. Stuxnet was a malware that targeted an Iranian nuclear enrichment facility, that aimed
to infiltrate and control the facility. It self-replicated by using a zero-day exploit in the Windows
Active Directory in the lookout for the Siemens STEP 7 software, which was used to manipulate
the Programmable Logic Controllers (PLCs) that managed the centrifuges of the uranium cooling
system. The compromised PLCs were then manipulated by the malware to change the rotational
speed of the centrifuges, eventually leading to breakage. The network was infected with the
malware by a USB drive, which managed to stay unnoticed and the changes of the centrifuges
were also not monitored.

The security of an industrial networks is paramount for the following reasons:

� Industrial networks use legacy systems with outdated software that maybe vulnerable.

� Proprietary protocols that are used by the internal systems are insecure, i.e, there is no
authentication or encryption of any sort.

The main objective2 of adversaries who target OT networks is to disrupt the internal working
of the industrial systems, ultimately causing damage. OT networks are mostly targeted by
attackers that have a military or a political cause. These threat actors maybe either state-
sponsored, hacktivists or just competitors. These attacks are often carefully planned and highly
elaborate, in order to gain access into the industrial network.

Although it is difficult to defend against these cyber-attacks, it is however greatly possible to
detect them by means of intrusion detection systems (IDS). The role of an IDS is to monitor the
network and raise alarms if it detects any kind of malicious or suspicious activity. OT-specific
Network IDS (OT-NIDS) aim at reducing the threat exposure of OT networks by monitoring
network activities, fingerprinting network devices and alerting in case of suspicious activities.
Unfortunately, NIDSs generate thousands (if not millions) of event logs per day including false
positives, making it hard for the security analyst to single out relevant information in case of
an incident. A complementary issue in the standard security workflow involving OT networks
is that security analysts usually lack OT domain-specific knowledge and thus struggle with
understanding the meaning and implications of alerts coming from the OT network. Oftentimes,

1https://spectrum.ieee.org/telecom/security/the-real-story-of-stuxnet
2https://www.trendmicro.com/vinfo/pl/security/news/cyber-attacks/why-do-attackers-target-

industrial-control-systems

A Domain-Specific Query Language to Investigate Industrial Network Security Data 1

https://spectrum.ieee.org/telecom/security/the-real-story-of-stuxnet
https://www.trendmicro.com/vinfo/pl/security/news/cyber-attacks/why-do-attackers-target-industrial-control-systems
https://www.trendmicro.com/vinfo/pl/security/news/cyber-attacks/why-do-attackers-target-industrial-control-systems

CHAPTER 1. INTRODUCTION

a security analyst might also overlook some critical events that get drowned in the ocean of logs
generated. The data collected by an IDS is raw and unstructured, and may also come from
different data sources and in different data formats. These data sources are often isolated from
each other, having complicated relationships among one another. Thus, there is a need for a
high-level way to be able to query this complex data that provides abstraction to the underlying
complexity and also to be able to be used on multiple data sources directly, thereby providing
abstraction also to the native language of the backend database. Furthermore, there is also a
need for situational awareness or context around the data, for the security analyst to be able
to obtain an overview of the assets and the events generated around them. Therefore, defining
a query language that can query the OT security data for intuitive testing and analysis of the
security of OT environments is indispensable.

1.1 Problem Statement

Directly exposing a complex query language such as SPARQL [41] or Cypher [32], to a security
analyst would not be ideal because of the complexity and the steep learning curve for each
language.

Moreover, there are some other problems associated with querying data collected by an IDS to
investigate security incidents. The following sections describe some of the commonly encountered
problems during incident investigation.

Abstraction

Some events generated by an IDS might be too detailed and elaborate, for a security analyst
to be able to detect threats. This would require deep technical knowledge of the network and
industrial processes. Possession of this deep domain knowledge cannot be expected out of all
analysts. Furthermore, the abundant OT security information is often too detailed and difficult to
be interpreted by the analyst, in a short time. Sometimes, the amount of events generated by the
IDS is so huge that the analyst might get drowned and exhausted in the process of investigation.
Thus, there is a need for security domain-specific knowledge to not be fully exposed to the
analyst, in order for him to able to quickly query for what he wants without being lost in the
sea of information.

Context

The concepts or entities (such as assets, alerts, network logs, vulnerabilities and so on) from
the data collected by an IDS are often isolated, because they are aggregated from different data
sources and are available in different data formats. Additionally, the relationships among these
entities are difficult to access as the data sources are separated from each other. For instance, let
us take the example of a single alert from an IDS. There will be a queue of events and a security
analyst cannot afford to waste too much time in deeming whether this alert is a threat to the
organization or not. Therefore, a thorough analysis of the context around this alert is important
for him to draw conclusions. From the context around the alert, he would be able to find out
details such as:

� Who the attacker is?

� Who the target is?

� What type of attack it is?

A Domain-Specific Query Language to Investigate Industrial Network Security Data 2

CHAPTER 1. INTRODUCTION

� How long this event has persisted?

� What the motive of the attacker was?

� If the attack was successful or not?

� What vulnerability was exploited?

Thus, there is a need to provide situational awareness or context to the analyst, so that he is
fully aware of what exactly is happening in the network.

Exploration

Because of the huge amount of unstructured data, that is also isolated, it is hard to navigate across
the underlying data model fully, even more so, in the presence of time constraints. Furthermore,
it is also quite difficult to validate the investigation hypothesis of the analyst, because of the
inability to explore across the relationships from one entity to another and the occurence of
alternative scenarios of a possible cyber-attack. Therefore, there is a need to not only provide
context around the data, but also it is equally important to provide ways to explore between the
entities and relationships in the underlying data.

1.1.1 Research Question

Thus, the above problem statement can be formulated into a two-fold research question as follows:

1. Is there a simple, yet expressive, way to query the data collected by an IDS for security
incident investigation?

2. Does this solution allow the security analyst to investigate the context around the data,
while offering abstraction of the underlying data and its complexity?

1.1.2 Proposed Solution

We want to enable security analysts (end users) to search within the entirety of data collected
by an Intrusion Detection System (IDS) from different data sources, with queries ranging from
simple free-text to advanced search queries. The outcome of this project would be that it returns
and contextualizes the most relevant results, greatly improving a security analyst’s investigation
workflow within a Security Operations Center (SOC). Besides, we also wish to incorporate built-
in functions, keywords or filters that are domain-specific.

Therefore, the main aim of this project is to define how to query the data collected by an
IDS using a syntax that should be simple (for usability), yet flexible and expressive enough to
support all the required use cases (that shall be mentioned in the Chapter 3). In essence, we wish
to define a domain-specific query language called the ”Incident Investigation Query Language
(IIQL)” that is simple and easy to use (compared to all other existing query languages) that can
be later translated to a more complex query language such as Cypher [32] depending on the OT
security data model and backend. Thus, with this project we aim at providing security analysts
with a solution that can support their identification and investigation of OT security incidents.

A Domain-Specific Query Language to Investigate Industrial Network Security Data 3

CHAPTER 1. INTRODUCTION

1.2 Thesis Organization

This thesis is structured as follows:
Chapter 2 introduces technology and terminology that will be used repeatedly throughout

this thesis, to provide necessary background to the reader.
Chapter 3 elaborates on the literature survey performed for this research, detailing on the

existing query languages.
Chapter 4 discusses the proposed solution for solving the research question by leveraging an

existing query language without reinventing the wheel.
Chapter 5 presents the case studies performed to evaluate the developed prototype with a

real-world scenario.
Chapter 6 discusses the results from the validation of the developed prototype with internal

domain experts.
Chapter 7 concludes the research conducted with scope for possible future work.

A Domain-Specific Query Language to Investigate Industrial Network Security Data 4

Chapter 2

Background

This chapter is meant to introduce some background terminology in order to understand this
research work such as industrial control systems (ICS) and Operational Technology (OT) incid-
ents. It provides detailed information on the technologies used in this thesis and the research
conducted.

2.1 Operational Technology (OT)

Operation Technology1 refers to the hardware and software that manages the control of physical
devices in an industrial enterprise. Typically, these enterprises maybe oil, gas or nuclear plants.
Initially, OT security was not important, as OT systems were not connected to the Internet, and
thus the attack surface of OT was minimal and unexposed to external threats. However, the
increasing need for connectivity has converged traditional IT (Information Technology) and OT
systems together, thereby increasing the attack surface of OT networks.

2.1.1 Industrial Control Systems (ICS)

Industrial Control Systems (ICS)2 collectively refer to different types of control systems that
include hardware that operate or automate industrial processes. Some types of ICS systems are:

� Supervisory Control and Data Acquisition (SCADA) systems are devices that provide
control on a supervisory level. They are used to monitor devices on field sites.

� Distributed Control Systems (DCS) are devices that provide control on field or local level,
unlike SCADA.

� Programmable Logic Controllers (PLC) are devices that automate physical processes by
receiving signals from sensors and actuators at the local management level.

� Human Machine Interfaces (HMI) are devices that offer a user interface for human users
to operate controllers and for adjusting parameters in the industrial environment.

� Data Historian is a centralized database server for logging all information within an indus-
trial setting.

1https://www.i-scoop.eu/industry-4-0/operational-technology-ot/
2https://www.trendmicro.com/vinfo/us/security/definition/industrial-control-system

A Domain-Specific Query Language to Investigate Industrial Network Security Data 5

https://www.i-scoop.eu/industry-4-0/operational-technology-ot/
https://www.trendmicro.com/vinfo/us/security/definition/industrial-control-system

CHAPTER 2. BACKGROUND

Fig 2.1 below shows an example ICS network architecture of an enterprise, organized by the
Purdue Reference Model 3. In the Purdue Architecture, levels 0 to 3 comprise OT and higher

Figure 2.1: ICS Network Architecture of an enterprise

levels comprise IT. As can be seen in the figure:

� Level 0 comprises the devices that perform the actual physical processes

� Level 1 consists of the PLCs that control the devices in Level 0.

� Level 2 comprises the SCADA systems that supervise the devices in Level 1. They consist
of DCSs and HMIs.

� Level 3 comprises the manufacturing operations systems that manage the workflow of
production. This level contains the Data Historian to log the operational data.

� Level 4 consists of the corporate network that handles business logistics of the enterprise,
such as Enterprise Resource Planning (ERP) and Security Incident and Event Management
(SIEM). This level contains devices that are connected to the Internet, performing reporting
and management.

2.2 Intrusion Detection Systems

An Intrusion Detection System (IDS) is a piece of hardware or software that monitors systems
to detect suspicious or malicious activity. It can be Host-based or Network-based. Host-based
IDSs (HIDS) monitor individual devices, such as, an antivirus software and Network-based IDSs
(NIDS) monitor network traffic. The role of a security analyst is to analyse the events/logs
generated by an IDS and make a decision or perform further investigation accordingly.

3https://en.wikipedia.org/wiki/Purdue_Enterprise_Reference_Architecture

A Domain-Specific Query Language to Investigate Industrial Network Security Data 6

https://en.wikipedia.org/wiki/Purdue_Enterprise_Reference_Architecture

CHAPTER 2. BACKGROUND

2.2.1 Intrusion Data Sources

An IDS may collect unstructured data from diferent data sources [24]. A HIDS may inspect data
from sources such as audit logs, database logs or firewall logs. An NIDS can monitor data from
packet capture logs or other network based data sources. Sometimes, these different data sources
maybe isolated or scattered from each other and maybe available in different databases (like SQL
or NoSQL) and different data formats (like JSON, XML). Some of the different databases4 that
maybe involved are:

Relational Databases

Relational Databases are databases in which data is fit under pre-defined categories, having a
set of tables, consisting of rows (data instances) and columns (categories). Some examples of
relational databases are Microsoft SQL Server, MySQL, Oracle Database and so on.

NoSQL Databases

NoSQL (Not-Only SQL) databases are databases that store large amounts of data in different
formats such as JSON and not just in the form of tables. Some examples of NoSQL databases
are MongoDB, HBase and Couchbase.

Graph Databases

Graph databases are also a kind of NoSQL databases, in the sense that data is not stored as
tables, but in the form of nodes (entities) and edges (relationships) as a graph. Some examples
of graph databases are Neo4j, AllegroGraph, Virtuosa, OrientDM and so on.

2.3 Summary

As we can see, this chapter introduces the OT environment, ICS network architecture, the concept
of IDS and how they collect data from different data sources, with introduction to different types
of databases. The amalgamation of IT with OT has exposed ICS networks to a larger attack
surface. Thus, it is vital to have an IDS (or more) deployed in an ICS network to monitor
network traffic and to be able to quickly respond to incidents.

4https://www.tutorialspoint.com/Types-of-databases

A Domain-Specific Query Language to Investigate Industrial Network Security Data 7

https://www.tutorialspoint.com/Types-of-databases

Chapter 3

State of the Art

There are different query languages for querying different kinds of databases, suited to different
needs and users. This chapter mentions some of the existing query languages with a focus on
the technologies used by security analysts to query security data models and gives a comparative
overview of the prevalent query languages based on certain parameters explained below. The
spectrum of query languages that are mentioned in this section are classified into four major
categories such as query languages for relational databases, NoSQL databases, search engines
and company specific query languages. These categories were formulated based on previous
work [13].

3.1 Related Work

A good amount of literature was studied for surveying existing query languages. A detailed
overview of this exhaustive list of technologies is presented in Appendix A. This section provides
a summarized overview of the existing technologies for querying databases in literature, along
with their features and limitations with respect to the problem that is being addressed in this
research. This information is tabulated in Table 3.1 below.

Table 3.1: Overview of existing query languages in literature

Categories
of Query

Languages

Query
Language (s)

Advantages

Limitations
(with respect

to the problem
to be addressed)

Query Language
for Relational
Database

SQL
Basic operations within
relations (basic filtering)
and basic joins are possible

Expensive
joins across tables
to obtain context
information

Query Languages
for Graph
Databases

Neo4j’s Cypher,
Oracle’s PGQL,
MITRE’s CyQL,
Diffbot QL,
Facebook’s GraphQL,
Apache’s Gremlin

Context information
can be obtained (data
organized as graphs with
nodes and relationships)

Steep learning curve,
complex language and
syntax

A Domain-Specific Query Language to Investigate Industrial Network Security Data 8

CHAPTER 3. STATE OF THE ART

Query Languages
for Semantic Web

SPARQL,
RQL

Context information can be
obtained (data organized as
entity-relationship ontologies)

Steep learning curve,
complex language and
syntax

Query Languages
for Search Engines

Splunk’s
SPL,
ElasticSearch’s
Kibana and DSL

Easy to use syntax with basic
filtering, keyword searching
and piping

Context information
obtained is limited
because there is no
possibility of
exploration
between entities,
Steep learning curve

Company Specific
Query Languages

Nozomi’s
N2QL

Supports basic filtering,
advanced searching
and context information
can be obtained

This language is
proprietary and
closed-source

Microsoft’s
AHQL

Supports basic filtering,
advanced searching
and context information
can be obtained

This language is
proprietary and
closed-source

Endgame’s
EQL

Easy to use syntax and
supports
basic filtering, advanced
searching,
multiple database backends
and it is not tightly coupled
to the underlying schema

No provision to obtain
context information
and exploration
between entities

3.2 Initial Requirements for the Prototype

The main goal of this research is to define a query language that solves the problem of context,
abstraction and exploration to aid a security analyst to investigate incidents more efficiently.
Forescout Technologies1 came up with an initial set of requirements to be achieved with the
prototype. The following Table 3.2 tabularizes the basic requirements of the query language that
is to be defined, along with some example use-cases. Additionally, these requirements are later
used to compare the existing query languages in literature, against each other.

1https://www.forescout.com/

A Domain-Specific Query Language to Investigate Industrial Network Security Data 9

https://www.forescout.com/

CHAPTER 3. STATE OF THE ART

Table 3.2: Requirements for Prototype

Requirement Example
Standard full-text search
(Searching for a specific keyword)

Search for the keyword “Axis” in the
data to find all Axis cameras

Basic filtering (==, !=, AND, OR)
within a single concept
(e.g. device or alert)

Find a PLC with IP address 192.0.1.2

Find all devices running Windows

Find all cameras with vendor ’XXX’

Advanced search among different concepts
(e.g. devices, alerts,
vulnerabilities, network logs)
(with context)

Find EWS initiating port scans

Find malfunctioning devices

Find all devices with ’CVE-XXX’
Querying abstracted OT operations
(with just using a keyword,
without knowing the underlying
event types)

Find all write operations done by PLCs

Looking for user/hostname activity
(for entire context around data for
forensic investigation)

Look for all concepts related to user “admin”

Looking for exploitable paths
between two assets or
from one asset to other assets
in the network

Detect exploitable attack path from a given PLC

A Domain-Specific Query Language to Investigate Industrial Network Security Data 10

CHAPTER 3. STATE OF THE ART

3.3 Overview of Existing Query Languages

The existing query languages in literature discussed in Section 3.1 above are evaluated against the
initial requirements listed in Section 3.2 above. This section gives an overview of the evaluation,
weighing their pros and cons.

3.3.1 Ranking Methodology

Since there is a myriad of existing query languages, there is a need to narrow down our research
to a few specific ones, that can be used to support our requirements for IIQL. For this reason,
we have an initial ranking procedure in which 14 languages discussed above are first ranked
according to how many of the requirements they each satisfy, followed by a selection procedure
where we zero down on them further to pick one from the final lot to build IIQL from. In table
3.5, they are scored based on a ’YES’ (a score of 1) or ’NO’ (a score of 0) and their average score
is computed to find out how many languages can be considered for the next selection procedure.
The average scores for the languages can be seen in 3.3. As can be seen from the table, in order

Table 3.3: Ranking of Query Languages for Selection Procedure

Ranking Query Languages
Average
Score

1 Cypher, CyQL 0.83

2
SQL, ELK, SPL,
EQL, N2QL, AHQL

0.3

3
PGQL, Gremlin, SPARQL,
RQL, GraphQL, DQL

0.16

to reduce the number of query languages to consider for the next selection procedure, the lowest
ranked query languages (ranked 3rd) with a score of 0.16, can be discarded. Thus we are left
with only 8 languages to consider for the selection procedure.

3.3.2 Selection Procedure

Table 3.6 tabulates the 8 query languages from the previous ranking step, weighing their pros
and cons in the form of certain metrics (with scores allotted to each metric). The authors of
[21, 18, 7, 20] use metrics such as Expressiveness, Query Complexity, Learning Curve and so on,
to compare query languages with each other. Some of these parameters were refined to compare
the 8 query languages in this step, as explained in detail below:

1. Query Complexity: This parameter refers to how long or how difficult the query lan-
guage syntax is to understand. This metric is measured by how hard it is to craft queries
efficiently. It is denoted as ’LOW’, ’MEDIUM’ or ’HIGH’ with scores of 3, 2 and 1 respect-
ively (because the less complex the language is, the easier it is to grasp) .

2. Documentation Support: This parameter refers to how much documentation support
is available online to learn the language and use it. It is represented as ’LOW’, ’MEDIUM’
or ’HIGH’ with scores of 1, 2 and 3 respectively.

3. Industry Use: This parameter refers to the degree of industry usage of the particular
query language. It is denoted as ’LOW’, ’MEDIUM’ or ’HIGH’ with scores of 1, 2 and 3
respectively.

A Domain-Specific Query Language to Investigate Industrial Network Security Data 11

CHAPTER 3. STATE OF THE ART

4. Open Source: This parameter refers to whether the query language implementations (for
lexer, parser and so on) are open source (the code is freely available) or not. It is denoted
as ’YES’ or ’NO’ with scores of 1 and 0 respectively.

5. Expressiveness/Selectivity: This metric refers to how powerful and precise the queries
can be formulated. This is an intuitive measurement, that is closely related to the func-
tionality, depending on the variety of ideas that can be represented and communicated in
that language. It is denoted as ’LOW’, ’MEDIUM’ or ’HIGH’ with scores of 1, 2 and 3
respectively.

6. Support for complex operations: This metric refers to whether the query language
provides support for operations such as joins, aggregation, negation, recursion and nesting
queries. It is denoted as ’YES’ or ’NO’ with scores of 1 and 0 respectively.

7. Support for Database Backends: This metric refers to whether the query language has
support for more than one database backend. This essentially means whether the language
offers an abstraction layer that can be used to translate it to another native query language
depending on the database backend. It is denoted as ’YES’ or ’NO’ with scores of 1 and 0
respectively.

8. User Knowledge: This metric refers to the amount of user knowledge or training that is
required to use the query language. This parameter is closely related to query complexity.
Sometimes, a user needs to have domain knowledge as well to query effectively, in case
of languages such as EQL, N2QL and AHQL. Hence, this metric is measured by adding
both the complexity of the query language and the domain knowledge (if required). It is
denoted as ’LOW’, ’MEDIUM’ or ’HIGH’ with scores of 3, 2 and 1 respectively (because
the less training, the faster the language can be adopted).

9. General Purpose/Domain Specific: This parameter refers to whether the query lan-
guage is a general purpose one with a score of 1 (if it is applicable to any domain, such as
SQL) or if it is specific to a certain domain with a score of 0 (such as CyQL).

10. Database Dependence: This metric refers to how much the query language relies on
the underlying database. This quantity is measured as follows: ’LOW’ implies that the
query language can be used with any database and ’HIGH’ implies the query language must
have a specific database backend to work precisely. It is denoted as ’LOW’, ’MEDIUM’ or
’HIGH’ with scores of 3, 2 and 1 respectively (because the lesser the DB dependence is,
the better the language can be used across other DBs).

Thus, in this selection procedure, each of the 8 languages were given a score according to its
metric (as explained above) and the average of the total score for 10 metrics for each language
was calculated and tabulated in table 3.4. As can be seen from the table, in order to further
filter out the query languages to pick for the final lot, the last 3 classes of languages that are
ranked 4th, 5th and 6th with scores of 1.4, 1 and 0.9 can be discarded. Thus we are left with
only 4 languages to consider for the selection procedure.

A Domain-Specific Query Language to Investigate Industrial Network Security Data 12

CHAPTER 3. STATE OF THE ART

Table 3.4: Ranking of Query Languages for Final Lot

Ranking Query Languages
Average
Scores

1 SQL 2
2 ELK 1.7
3 EQL, SPL 1.6
4 Cypher 1.4
5 CyQL 1
6 N2QL, AHQL 0.9

A Domain-Specific Query Language to Investigate Industrial Network Security Data 13

Table 3.5: Requirements supported by existing query languages

Query Languages for Graph Databases
Query Languages
for the Semantic Web

Query Languages
for Search Engines

Company Specific Query Languages

Requirements SQL Cypher PGQL CyQL DQL
Graph
QL

Gremlin
SPAR
QL

RQL SPL

ELK
(Kibana
and
DSL)

Endgame’s
EQL

Nozomi’s
N2QL

Microsoft’s
AHQL

Full
Text
Search

YES YES NO YES NO NO NO NO NO YES YES NO NO NO

Advanced
Search
among
concepts
(with
context)

NO YES NO YES NO NO NO NO NO NO NO NO NO NO

Basic
Filtering
(AND, OR,
==, !=)
for main
concepts

YES YES YES YES YES YES YES YES YES YES YES YES YES YES

Related
Concepts
Exploration

NO YES NO YES NO NO NO NO NO NO NO NO NO NO

Attack
Reachability/
Attack Paths

NO YES NO YES NO NO NO NO NO NO NO NO NO NO

Querying
abstracted
OT
operations

NO NO NO NO NO NO NO NO NO NO NO YES YES YES

Table 3.6: Selection Procedure with Metrics

Metric SQL Cypher CyQL SPL ELK EQL N2QL AHQL
Query
complexity

LOW HIGH MEDIUM MEDIUM MEDIUM MEDIUM MEDIUM MEDIUM

Documentation
Support

HIGH HIGH LOW HIGH HIGH HIGH LOW LOW

Industry
Use

HIGH HIGH LOW HIGH HIGH LOW LOW LOW

Open
Source

YES YES NO NO YES YES NO NO

Expressiveness HIGH MEDIUM MEDIUM MEDIUM MEDIUM HIGH MEDIUM MEDIUM
Support
for
Complex
Operations

YES YES YES YES YES YES YES YES

Support
for
Database
Backends

YES NO YES NO NO YES NO NO

User
Knowledge

LOW HIGH HIGH HIGH HIGH HIGH HIGH HIGH

General
Purpose/
Domain
Specific

General
Purpose

General
Purpose

Domain
Specific

General
Purpose

General
Purpose

Domain
Specific

Domain
Specific

Domain
Specific

Database
Dependence

HIGH HIGH HIGH LOW LOW LOW HIGH HIGH

CHAPTER 3. STATE OF THE ART

3.4 Conclusion

As can be seen from table 3.4, Cypher, ELK’s QLs, Splunk’s SPL and SQL support all or most
of the requirements and are ranked high in the selection procedure as well. However, all of them
(except SQL) have a steep learning curve and they all have an extensive code base to build
our own domain specific query language from. Additionally, Splunk is proprietary as well, and
not open source. SQL on the other hand, can not be used for non-relational databases. Thus,
Endgame’s EQL (ranked 3rd with a score of 1.6) is the best solution, as it has a relatively smaller
code base with simple Python helpers to build our own language from. Furthermore, it is not
tightly coupled to a particular kind of database and it can be translated to multiple database
backend languages.

A Domain-Specific Query Language to Investigate Industrial Network Security Data 16

Chapter 4

The Proposed Solution

This chapter introduces some detailed use-cases that were aimed to be achieved with the project.
Furthermore, it chooses one of the existing solutions discussed in the literature overview, justifies
the choice and explains how it will be extended to achieve the required use cases. Finally, it
concludes by covering the steps taken to implement IIQL (extending EQL) and the transpilation
of IIQL to Cypher (the native database backend query language of Neo4j) and SQL. In order to
build our own domain-specific data model driven language, it is natural that we can base our
language from an existing solution for reasons to be easily integratable, rather than to build a
new language from scratch, thereby reinventing the wheel.

4.1 Use Case Scenarios in the OT/IT environment

This section discusses a common use-case scenario in the daily-life of a security analyst who
investigates incidents in any IT/OT network. Moreover, it also introduces some other use cases
relevant to incident investigation in IT and OT networks which will serve as a basis for validating
the proposed query language prototype in Chapter 6.

4.1.1 Typical Use Case Scenario in an OT/IT environment

The following subsection mentions an example classic use case scenario in an OT/IT incident
investigation environment and how the developed prototype will aim to achieve it.

A typical use-case scenario for a security analyst would be to either start with an asset/device
or an alert, in case he wants to know the vulnerable devices in the network, or how an alert is
related to another. The functionality of finding attack paths/attack reachability is one of the
values that is being added via IIQL. This essentially means finding the sequence of vulnerabilities
that an adversary could exploit for lateral movement through the network. For example, a literal
translation of a query that can be answered could be ”Show me how an attacker can get from this
device to this?”. This answers the question of how adversaries can potentially leverage multiple
vulnerabilities to incrementally penetrate a network.

Example Use Case

An analyst might want to investigate the source of an alert and check if the alert exploits any
known vulnerabilities of the target device in the network. The result that would be obtained is
shown in Fig. 4.1. Therefore, the analyst can now see an attack path with which an attacker

A Domain-Specific Query Language to Investigate Industrial Network Security Data 17

CHAPTER 4. THE PROPOSED SOLUTION

Figure 4.1: Attack Reachability between two devices

might have penetrated the network. So a prediction that the analyst can make is that the
attacker could have exploited the vulnerability in the ‘esf1’ device (which is the source device of
the alert) and attacked the ‘exp-svr’ device in the same subnet (which is the destination device
of alert) exploiting one of the two vulnerabilities it has. Thus, in this way, attack paths can be
mined from the data. An analyst could also obtain entire context information such as the roles
of the devices, how alerts are related, and what vulnerabilities are present in the device.

4.1.2 Extended Use-Cases

In addition to the above, the following set of extended use cases were envisioned for the proposed
query language prototype.

A. Network Analysis

The primary use case here is to enable proactive investigation by querying all data collected by
an IDS. The use cases of this category fall in two sub-categories namely: Security and OT related
use cases.

Security-related use cases

The security-related use cases are generic, and can be applicable to both IT and OT scenarios.
Some of them are to be able to:

� Search for all devices with a certain CVE ’CVE-XXX’ within a network.

� Search for all the Programmable Logic Controllers (PLCs) that are vulnerable in the net-
work (and also obtain related information such as alerts, change logs and so on).

� Search for all the Engineering Workstations initiating a port scan (and also obtain related
information such as their alerts and vulnerabilities).

� Find all outdated Windows (older than Windows 10) devices in a network.

A Domain-Specific Query Language to Investigate Industrial Network Security Data 18

CHAPTER 4. THE PROPOSED SOLUTION

OT-related use cases

The OT-related use cases are applicable specifically to the OT environment. Some of them
are to be able to:

� Find devices performing reconfiguration operations (such as firmware download or upload).

� Find devices performing write operations (such as write registry).

� Find malfunctioning devices connected to a particular workstation.

B. Investigation

The primary use case here is to enable reactive investigation activities from pre-identified issues
(such as via the correlation algorithms). The use cases of this category fall under two sub-
categories namely:

Investigation-related use cases

The investigation-related use cases are generic and applicable in both IT and OT environments.
Some of them are to be able to:

� Find exploitable or attack paths starting from a particular device. This functionality can
be used to gauge the attack reachability from an asset to another asset in the network.

� Find all information related to a particular device. This essentially is one of the main
research goals of this project, showing the entire context around a device.

Forensic-related use cases

Forensic-related use cases are again very generic and broad, and can be applied to both OT
and IT security environments. These use-cases are context-related as well. Some of them are to
be able to:

� Retrieve activities related to a specific user (such as look for “admin” user and retrieve all
related information such as alerts and devices).

� Retrieve all activities related to a host name.

C. Search Solutions

The search solutions that we aim to achieve from this project.

1. Full-text search, such as look for “device AND CVE-XXX ”. Although this is less precise
and it is difficult to express complex queries thereby adding performance issues. The
primary use case here is to enable free text search in the available data. Some of the
possible use cases may be as follows:

� Search for “download” and find all concepts containing the word “download” with
their relationships (devices, related CVEs, aggregated alerts and so on).

� Search for “maintenance” and find all concepts related to a device under possible
maintenance.

A Domain-Specific Query Language to Investigate Industrial Network Security Data 19

CHAPTER 4. THE PROPOSED SOLUTION

� Search for “rpc” to find all concepts related to RPC calls (devices, related CVEs,
aggregated alerts and so on).

2. Advanced structured queries, such as ”device(role=plc, is vulnerable=True) JOIN device(ip=10.1.2.3)”.
This solution is more precise and it is easier to express more complex queries, but this would
require the knowledge of the query language.

4.2 Proposed Existing Solution - A Starting Point

Thus, as can be seen from the literature overview in the previous chapter, EQL by Endgame is
the most promising existing solution that we can build upon because:

� The parser and the abstract syntax tree (AST) is open source and a lot of documentation
is available.

� In some query languages, a good understanding of the data schema is necessary for formu-
lating precise queries. However, EQL is schema-optional, which means one can use it with
whatever schema one has at hand. There is no need to have a predefined schema to use
EQL. Also there are helper tools for translating schemas (such as JSON to XAML) as well.

� It supports multiple database backends and conversion between data formats. EQL is used
mainly for security events stored in the JSON format, but it can also be used for other
data formats (as long as we provide the data as a list of Python dictionaries and have the
key-value pairs be compatible with the JSON data format). Additionally, EQL can be used
as a higher level language and can be translated to another language.

� It features ‘eqllib’ that is a library of event-based analytics to detect adversary behaviours
that is mapped to MITRE’s ATT&CK framework. Also, keyword mappings are possible
to any security event dataset.

4.2.1 Limitations of the existing solution

As mentioned in Table 3.5, the existing solution (EQL) supports all of the use cases except:

1. Standard full-text search

2. Advanced Search with context

3. Related concepts exploration

4. Attack paths discovery

Thus, in order to achieve the use cases we need, we will have to extend the current EQL imple-
mentation to:

1. Translate it into the native DB language.

2. Modify it to introduce a full text search module.

3. Modify it to facilitate related concepts exploration and finding attack reachability between
assets.

A Domain-Specific Query Language to Investigate Industrial Network Security Data 20

CHAPTER 4. THE PROPOSED SOLUTION

4.2.2 Bridging the Gap by IIQL

Thus, as can be seen from the above use-cases (in Section 4.1, in an IT/OT security environment,
it is paramount to have context information around a concept, such as a device or an alert. This
is not possible in any of the query languages covered in the literature overview, except Cypher
for Neo4j. IIQL would essentially do a translation between a high level easy syntax to the native
backend Cypher. The main purpose of IIQL is that the security analyst is not exposed to the
syntax of the native backend query language, i.e, Cypher. It encapsulates the knowledge of the
different relationships present in the underlying data model. IIQL is domain specific and allows
flexible ad-hoc queries to query the unified data model that correlates alerts to devices and
vulnerabilites. It poses as a middle-tier component that translates EQL (high level language)
queries to the lower level Cypher.

Solving the problem with IIQL

1. IIQL will be a declarative/ non- procedural query language, where one specifies what needs
to be done (i.e. a simple one line query) rather than exactly how to do it (a more elaborate
Cypher query)

2. IIQL will increase the clarity of analytic queries against our OT security data model,
especially as the model becomes more complex. It does this by encoding cyber semantics
into the query language itself, encapsulating and hiding many of the constraints that must
be expressed in the native graph database queries. This greatly helps reduce the learning
curve and increase the productivity of security analysts.

3. IIQL will provide full scope of adversary activities (Exploitation Paths)

4. IIQL will provide relevance to known vulnerability paths (Attack Reachability)

5. IIQL will provide situational awareness (Subnet information and what devices has what
vulnerabilities)

4.3 Proposed Extension to EQL

This section proposes and describes the new operators that were added to EQL, in order to
achieve the use cases in an OT security environment and provide ease-of-use to a security analyst.

4.3.1 Plan to Extend EQL to IIQL

IIQL (extended EQL) can be used in two modes, namely, the Basic Mode (for basic operations as
mentioned in table 4.3) and the Investigation/Advanced Mode (for context-aware capabilities).
The table 4.1 enlists the proposed operators along with the use-cases that they aim to achieve
and table 4.2 mentions the proposed function, with their respective functionality and syntax.

4.3.2 Solving the problem with the operators proposed

Thus, the operators proposed above collectively solve the main problems such as context and
exploration, including the specific use-cases (mentioned in Table 4.1) that we aim to solve. The
problems, however, cannot be solved by other languages considered in the literature overview
chapter including EQL by itself (due to its limitations mentioned in section 4.2.1), except the
query languages for graph databases. Nevertheless, these will have a steep learning curve because
of their syntax.

A Domain-Specific Query Language to Investigate Industrial Network Security Data 21

CHAPTER 4. THE PROPOSED SOLUTION

Table 4.1: Proposed New Operators to EQL

Operator Functionality Syntax
Use-case (s)
Achieved

investigate

Can be used for
context information
involving specific
concepts

| investigate concept names
separated by commas

Advanced
search among
different concepts
and entire context
around data

find/explore

Can be used to perform
a free text search and
fetching all context
around it

find <concept name>”text”
explore ”text”

Standard full-text
search and entire
context around data

path

Can be used to get the
underlying subgraph
connecting one concept
to another concept

path [start concept where expr]
[end concept where expr]

Exploitable paths
between assets and
alert chains
between assets

action

Can be used to find out
if a device is performing
a specific action specified
in the keyword

| action <keyword>
Querying for
abstracted operations

filter

Can be used to filter
out results based on
concept name and
respective attribute

| filter <concept name>.
<attribute><comparison operator>
<value>

Advanced search
/filtering
between concepts

influencer

Can be used to find out
the most influential
device in the network
(which is the one
with the most
number of relationships
or events)

| influencer | head n
Abstraction of
entire context
around assets

Table 4.2: Proposed New Function to EQL

Function Purpose Syntax

duration()

Can be used to find out the links or devices
that are available or persistent for the
longest time in the network (after computing the
difference between the first seen and the last seen
timestamps of the link or device).

duration(last seen, first seen)

4.3.3 Example Queries with Use Cases and Added Value

This subsection explains some of the use cases that can be covered with the newly proposed
operators with example queries that can be formulated along with the added value that each
operator would bring to an OT security analyst.

1. Operator: investigate

A Domain-Specific Query Language to Investigate Industrial Network Security Data 22

CHAPTER 4. THE PROPOSED SOLUTION

Use case #1: Find for all devices with a certain CVE
Example Query:

vu l n e r a b i l i t y where name conta in s ”CVE−2014” | i n v e s t i g a t e dev i c e

Use case #2: Find devices performing write operations (e.g., write registry)
Example Query:

opera t i on where name conta in s ” wr i t e ” and f i l e p a t h conta in s ”\\MACHINE\\” |
i n v e s t i g a t e dev i c e

Expected Usage: This operator is useful to an analyst if he wants to narrow down his
search for context information for one or more concepts only (for e.g. if he wants to just
look for context with alerts and vulnerabilities or only alerts)

2. Operator: find/explore
Use Case #1: Find all information related to a particular device (not necessarily only
links), i.e. show the context around a device with respect to a single concept i.e. ’device’
Example Query:

f i nd dev i ce ”exp−svr ”

Use Case #2: Retrieve activities related to a specific user (e.g., look for “admin” user
and retrieve all related information such as alert and devices)
Example Query:

exp lo r e ”admin user ”

Expected Usage: This is useful to an analyst if he wants to perform a full-text search
with entire context around nodes having the text (for e.g. if he wants to search for all
details about a particular device i.e. its vulnerablilities, alerts and roles)

3. Operator: path
Use Case: Find subgraph from one device to another
Example Query:

path by l i n k [dev i c e where name = ”exp−svr ”] [dev i c e where name = ” e s f 1 ”]

Expected Usage: This operator is useful to an analyst if he wants to assess the reach-
ability from one device to another specific device or to all devices in the network, for e.g.
from one vulnerable device to another vulnerable or normal device and vice-versa.

4. Operator: influencer
Use Case: Find the top 5 devices in the network that have the most number of relation-
ships/events
Example Query:

dev i ce where t rue | i n f l u e n c e r | head 5

Expected Usage: This operator is useful to an analyst if he wants to narrow down his
investigation of devices, which are not very useful and focus on the ones that dominate the
network.

A Domain-Specific Query Language to Investigate Industrial Network Security Data 23

CHAPTER 4. THE PROPOSED SOLUTION

5. Operator: action
Use Case: Find if a device is performing a reconfiguration operation
Example Query:

dev i ce where t rue | ac t i on r e con f

Expected Usage: This operator is OT-specific, it is useful to an analyst if he wants to
search for devices that perform specific actions, such as dangerous operations, thereby also
providing abstraction to the underlying event types in the IDS.

6. Operator: filter
Use Case: Filter alerts by high-severity
Example Query:

dev i ce where r o l e == ’ p l c ’ | ac t i on dangerous | f i l t e r a l e r t . s e v e r i t y > 2

Expected Usage: This operator is useful to an analyst if he wants to filter out the large
number of results obtained from the previous operator chained to it, by a specific concept
and attribute.

7. Function: duration
Use Case #1: Find the top 5 persistent links in the network
Example Query:

l i n k where durat ion (l a s t s e e n , f i r s t s e e n) | head 5

Use Case #2: Find the least 5 active devices in the network
Example Query:

dev i ce where durat ion (l a s t s e e n , f i r s t s e e n) | t a i l 5

Expected Usage: This function is useful for an analyst if he wants to know the longest
active links or devices in the network. This is useful in case he wants to know the devices
that were involved in the most persistent links to look into the bytes exchanged, for how
long the devices were connected, what roles they were playing and their network logs or
vulnerabilities. With this function, he can also find out the most inactive devices on the
network.

4.4 Basic Mode of IIQL

The following table 4.3 lists the basic operators that are already present in EQL for us to
incorporate in IIQL. The operators that can be used in this Basic Mode can also be used to
query the PostgreSQL database with the OT security data, in addition to querying the Neo4j
database.
From table 4.1, the ’find’ operator (that is newly proposed) can be added and used in this
basic mode for free-text search of context information within a single concept as opposed to the
’explore’ operator that can be used in the investigation mode (for entire context information
across concepts)

Pipes

EQL queries can include pipes (|) for aggregations, statistics and filtering of results. Table 4.4
below lists the pipe commands already present in EQL.

A Domain-Specific Query Language to Investigate Industrial Network Security Data 24

CHAPTER 4. THE PROPOSED SOLUTION

Table 4.3: Basic Operators present in EQL

Operators Example Queries
Boolean

operators
(and, or, not)

Host where Name contains ’svr’ and/or criticality >2
Role where not sdID == ’plc’

Value
comparisons

(<,<=, ==, != , >=, >)

Host where criticality >= 2
Role where sdID = ’plc’

Wildcard
Matching

IPAddress where sdID contains ’10.1.’

Joins
join by

Vulnerability [Host where Name == ’exp-svr’]
[Role where sdID == ’windows ws’]

Table 4.4: Pipe Commands present in EQL

Pipe Operators Purpose Example Query

count
Returns the number
of occurences

Host where Name contains ‘svr’ | count

sort
Sorts results according
to the criteria

Link where true | sort tx bytes

head
Outputs the first N
results

Host where criticality >0 | head 5

tail
Outputs the last N
results

Host where criticality >0 | tail 5

4.5 Investigation Mode of IIQL

All other proposed operators in Table 4.1 except ’find’, such as ’investigate’, ’explore’, ’path’ ,
’action’ and ’influencer’ can be used in the investigation mode of IIQL, because these operators
give more insight to the security analyst by providing more context-oriented information. The
transpilation of IIQL operators to the respective native languages of the backend databases,
in the two available modes is shown in Table 4.5. As we can see from the table, some of the
operators in the Investigation Mode cannot be transpiled to SQL, as they are context-oriented
operators, and take into account the nodes and relationships of the underlying data.

A Domain-Specific Query Language to Investigate Industrial Network Security Data 25

CHAPTER 4. THE PROPOSED SOLUTION

Table 4.5: Transpilation of IIQL operators

IIQL Modes Operators Neo4j SQL

Basic Mode

- Sort

- Head

- Tail

- Logical AND,
OR, NOT

YES YES

Advanced Mode

- Explore

- Path

- Action

- Investigate

- Influencer

YES

PARTIALLY

(only Investigate
and Action)

4.6 General Architecture

The general architecture proposed for the project is shown in Fig. 4.2 below. (Note: The grey
color-coded parts is out of scope of this research/work).

Figure 4.2: Proposed General Architecture

The different components of the architecture are described below:

1. Unified Data Model: To ingest and unify all the OT network security data collected
from different sources, in a single model.

2. Unified Database: The database backend that IIQL will query. It consists of data fitted
against the unified data model.

3. IIQL Translation engine: To translate the domain-specific IIQL into the native database

A Domain-Specific Query Language to Investigate Industrial Network Security Data 26

CHAPTER 4. THE PROPOSED SOLUTION

language such as Neo4j’s Cypher query language [31] as there is an existing Neo4j database
from which we started work on.

4. Frontend: To visualize the results of the queries as graphs or tables.

4.6.1 Knowledge Graph Model for IIQL

IIQL can be used on any data model or database; however Fig. 4.3 depicts the underlying data
model that IIQL was used on, expressed as a graph of nodes (entities) and edges (relationships).
Table 4.6 below shows the list of concepts and attributes that are available for the user to query
for.

Figure 4.3: Knowledge Graph Model for IIQL

A Domain-Specific Query Language to Investigate Industrial Network Security Data 27

CHAPTER 4. THE PROPOSED SOLUTION

Table 4.6: List of concepts and attributes of data model

Name Description Attributes to query

device Network hosts

name
main role
os version
ip
purdue level
vendor

alert Alerts

event type id
event name
src port
dst port
severity
timestamp

hostchangelog
Logs indicating some
changes in a host

event name
event type id
new value
old value
timestamp

link Network links

first seen
last seen
rx bytes
tx bytes
ports

vulnerability
Vulnerabilities associated
to devices

name
cvss
matching confidence
vendor

l7protocol Application protocols name
user Users user id

indicator Indicators of compromise
name
indicator type

network operation
Network operations
(DNS resolution,
authentication,. . .)

event type id
severity
timestamp

4.7 Grammar and Parse Tree of IIQL

An external dependency for IIQL (extended EQL) is the Python library Lark. Lark generates a
parser generator for the below grammar, which IIQL uses to parse queries. The grammar and
the parser are by EQL, which IIQL uses, to check the syntax of the input query. If there is a
syntactic error, it is thrown to the user.

4.7.1 Grammar

EQL’s already existing grammar was modified with the new operators that were proposed to be
added to it. A snippet of the EQL grammar modified is shown below.

A Domain-Specific Query Language to Investigate Industrial Network Security Data 28

CHAPTER 4. THE PROPOSED SOLUTION

d e f i n i t i o n s : d e f i n i t i o n *

? d e f i n i t i o n : macro | constant

macro: ”macro” name ” (” [name (” , ” name) *] ”) ” expr
con s t an t : ” const ” name EQUALS l i t e r a l | ” const ” name CONTAINS l i t e r a l

q u e r y w i t h d e f i n i t i o n s : d e f i n i t i o n s p iped query
p iped que ry : base query [p ipe s]

| p ipes
ba s e que ry : sequence

| j o i n
| f i nd
| exp lo r e
| path
| event query

event que ry : [name ”where”] expr
f i n d : ” f i nd ” name l i t e r a l
e x p l o r e : ” exp lo r e ” l i t e r a l
path : ”path” j o i n v a l u e s ? subquery by subquery by+
p i p e s : p ipe+
p i p e : ” | ” name [s ing l e a tom s ing l e a tom+ | exp r e s s i on s]

j o i n v a l u e s . 2 : ”by” exp r e s s i on s
subquery by: subquery named params? j o i n v a l u e s ?
subquery : ” [” event query ”] ”

// Expres s ions
e x p r e s s i o n s : expr (” , ” expr) * [” , ”]

// Need to r ecove r these tokens
EQUALS: ”==” | ”=”
CONTAINS: ” conta in s ”
COMP OP: ”<=” | ”<” | ”!=” | ”>=” | ”>”
? comp op: EQUALS | COMPOP | CONTAINS
NOT OP: ”not”
? s i n g l e a t om : l i t e r a l

| f i e l d
| b a s e f i e l d

b a s e f i e l d : name
f i e l d : FIELD
l i t e r a l : number

| s t r i n g

4.7.2 Abstract Syntax Tree - Example

EQL’s parser recognizes the tokens of the input IIQL query in terms of EQL’s grammar structure
and maps them to an abstract syntax tree. The abstract syntax tree generated for the example
IIQL query:

dev i ce where i p add r e s s conta in s ’ 10 . ’ | ac t i on r e c o n f i g

is shown in Fig. 4.4 As can be seen from the figure, every IIQL query is a piped query which
may contain a base query and pipes. The base query contains an event query that consists of the
main concept name and attribute, along with the condition. The event query is the main aspect
of this language, because every IIQL query must contain an event query at the basic level (for
primary filtering). The pipes contain the particular pipe that consists of a name (of the pipe)
and expression (value passed to the pipe).

A Domain-Specific Query Language to Investigate Industrial Network Security Data 29

CHAPTER 4. THE PROPOSED SOLUTION

Figure 4.4: Example Grammar Parse Tree

4.8 Translation of IIQL to Cypher

Fig. 4.5 shows the process of how the IIQL query formulation, translation, and execution hap-
pens. The analyst formulates a query in IIQL, which is first parsed by EQL’s parser according
to the IIQL grammar, after which an Abstract Syntax Tree is generated. This is essentially
the syntactic check of the input IIQL syntax. Once the syntax is checked, the query is then
translated by the translation engine to the native database query language of Neo4j (Cypher) by
modifying and embedding the tokens of the input IIQL query into the respective Cypher query.
This allows for formulating flexible and expressive queries while still maintaining a simple and
readable syntax.

A Domain-Specific Query Language to Investigate Industrial Network Security Data 30

CHAPTER 4. THE PROPOSED SOLUTION

Figure 4.5: IIQL Query Processing

4.9 The IIQL prototype

This section elaborates on the developed prototype with the different operators supported with
screenshots of the results. The IIQL engine can display results in three formats namely,

1. JSON list

2. JSON table

3. JSON graph format (with nodes and relationships)

4.9.1 An example IIQL query in Basic Mode

Use Case

Get devices starting with OS ’Windows’ sorted by Purdue Level and return the top 4 results.

IIQL Query

dev i ce where o s v e r s i o n conta in s ’Windows ’ | s o r t pu rdue l ev e l | head 4

Results

The screenshot in Fig. 4.6 is from the Command Line Interface (CLI) of the IIQL engine.

A Domain-Specific Query Language to Investigate Industrial Network Security Data 31

CHAPTER 4. THE PROPOSED SOLUTION

Figure 4.6: An example IIQL query in Basic Mode

4.9.2 Example IIQL queries in Advanced Mode

1. Operator: Influencer

Use-Case: Get top 5 influential devices
Query:

dev i ce where t rue | i n f l u e n c e r | head 5

Result: The screenshot in Fig. 4.7 is from the Command Line Interface (CLI) of the IIQL
engine. It shows the top 5 devices with the most number of connections in the network. The
’count’ header represents the number of relationships of the particular device (whose respective
’id’ in the network is displayed as well).

Figure 4.7: An example Influencer query

2. Operator: Explore

Use-Case: Free-text search of a device
Query:

exp lo r e ’ exp−svr ’

A Domain-Specific Query Language to Investigate Industrial Network Security Data 32

CHAPTER 4. THE PROPOSED SOLUTION

Result: The screenshot in Fig. 4.8 is from the Neo4j GUI. The central purple node is the device
’expsvr’ and the entire first-order context around is it displayed in the form of alerts(in red),
operations(in orange), host-change logs(in yellow), links (in dark blue), roles (in pink) and so
on.

Figure 4.8: An example Explore query

3. Operator: Investigate

Use-Case #1: Investigate a given device for vulnerabilities and network logs in the network
Query:

dev i ce where name == ’ c e l s i u s m’ | i n v e s t i g a t e operat ion , v u l n e r a b i l i t y

Result: The screenshot in Fig. 4.9 is from the Neo4j GUI. The yellow nodes represent the
operations/network logs and the green nodes represent the vulnerabilities around the device
’celsius m’ (in purple).

Figure 4.9: An example Investigate query

Use-Case #2: Investigate a device for all concepts it has a direct relationship with.
Query:

A Domain-Specific Query Language to Investigate Industrial Network Security Data 33

CHAPTER 4. THE PROPOSED SOLUTION

dev i ce where i p add r e s s == ’ 192 . 168 . 25 . 104 ’ | i n v e s t i g a t e

Result: The query returns the entire context, consisting of all alerts, change logs, risks, roles,
etc. that is linked to ’192.168.25.104’ (central node in purple). The screenshot in Fig. 4.10 is
from the Neo4j GUI.

Figure 4.10: Another example Investigate query

4. Operator: Path

Use-Case #1: Find exploitable paths between a specific device and all the other devices in the
network.
Query:

path by l i n k [dev i c e where i p add r e s s == ’ 1 0 . 1 . 0 . 1 ’] [dev i c e where t rue] |
i n v e s t i g a t e v u l n e r a b i l i t y

Result: The screenshot in Fig. 4.11 is from the Neo4j GUI. We can see the subgraph that
shows us two exploitable paths between the device ’10.1.0.1’ (boxed) and all other devices in the
network.
Use-Case #2: Find alerts connecting by source and destination from one device to others in
the network.
Query:

path by a l e r t [dev i c e where r o l e == ’ dcs ’] [dev i c e where t rue]

Result: The screenshot in Fig. 4.12 is from the Neo4j GUI. We can see the subgraph that shows
us how the central device is connected to other devices in the network through alerts (in pink).

5. Operator: Action

The ’action’ operator makes use of the abstraction of events (event taxonomy) such as alerts,
host change logs and network logs in Forescout’s IDS (SilentDefense). The operator searches for

A Domain-Specific Query Language to Investigate Industrial Network Security Data 34

CHAPTER 4. THE PROPOSED SOLUTION

Figure 4.11: An example Path query

Figure 4.12: Another example Path query

events with the respective regular expression mentioned in the abstraction for each event type.
Use-Case: Get devices starting with IP Address ’10.*’ performing a reconfiguration operation
such as firmware upload, download and so on.
Query:

dev i ce where i p add r e s s conta in s ’ 10 . ’ | ac t i on dangerous

Result: The screenshot in Fig. 4.13 is from the Command Line Interface (CLI) of the IIQL
engine. The two devices in the network, which are involved in dangerous operations (alerts in
red) are shown.

Figure 4.13: An example Action query

4.9.3 Interpreting the Data Model with IIQL

A noteworthy feature of IIQL is that, it automatically interprets and learns the underlying data
model. Therefore, the user can view the list of available concepts and their attributes in JSON
formate to query in Neo4j. This feature is leveraged from the base language it was developed
from - EQL. A screenshot of the schema displayed in the IIQL Engine CLI is shown in Fig. 4.14.

A Domain-Specific Query Language to Investigate Industrial Network Security Data 35

CHAPTER 4. THE PROPOSED SOLUTION

The concepts and the attributes under each concept, along with their data types, can be seen in
the image.

Figure 4.14: Display of underlying data schema

A Domain-Specific Query Language to Investigate Industrial Network Security Data 36

Chapter 5

Case Studies: IIQL in Practice

This chapter describes in detail how the developed query language prototype was applied to
investigate a real-time OT incident, namely the Stuxnet malware incident. The chapter also
discusses how this prototype could be used to develop playbooks to identify the presence of
MITRE ICS ATT&CK Tactics and Techniques in an organization’s network.

5.1 IIQL - Case Studies

This section describes how the IIQL prototype was used to investigate the OT incident - the
Stuxnet Malware Attack and investigate the presence of a MITRE ATT&CK TTP in an organ-
ization’s network.

Technologies used

� Command Line Interface of the developed prototype - the IIQL transpilation engine built
completely with Python 3.7.

� Neo4j Graph Database populated with the appropriate dataset for visualization.

5.1.1 Investigation of Stuxnet Attack with IIQL

This is a detailed case study where IIQL is used to analyze an attack scenario step-by-step in
the industrial domain.

Aim

The goal of the case study is to showcase the power of IIQL to investigate the Stuxnet malware
attack.

Dataset Used

The Stuxnet Dataset (containing 57 hosts and 1452 alerts)

A Domain-Specific Query Language to Investigate Industrial Network Security Data 37

CHAPTER 5. CASE STUDIES: IIQL IN PRACTICE

Methodology

An analyst investigating this dataset, can use the following sequence of IIQL queries. The equi-
valent Cypher queries are also mentioned. For context-oriented queries, SQL queries cannot be
formulated because there is a need to take into account, nodes and relationships for contextual
information, which is possible in graph databases and not possible in relational databases.
There are multiple scenarios to analyze, but the method followed here investigates the spread of
the Stuxnet malware from the devices in the higher Purdue Levels, where it originated, to the
critical PLCs in the lower levels.

Investigating the critical assets in the network

In order to identify the critical assets, we look for those with a high or medium risk factor with
possible known vulnerabilities. The IIQL query used (to query the Neo4j graph database) is:

r i s k where r i s k l a b e l in (’ High ’ , ’Medium ’) | i n v e s t i g a t e dev i c e

The equivalent Cypher query for this IIQL query is:

MATCH p = (n : r i s k)−−(: d e v i c e) WHERE n . r i s k l a b e l in [’ High ’ , ’Medium ’] RETURN p

This query returns all the PLCs in Purdue Level 1. These can be further investigated for
vulnerabilities.
Then, we want to look for vulnerable devices. The IIQL query used for this is:

vu l n e r a b i l i t y where t rue | i n v e s t i g a t e dev i c e | s o r t cvs s | head 10

The equivalent Cypher query for this IIQL query is:

MATCH p = (n : v u l n e r a b i l i t y)−−(: d e v i c e) RETURN p ORDER BY n . cvs s DESC LIMIT 10

This query returns 6 vulnerable devices in the 192.168.5.1/24 subnet. Device with IP “192.168.5.62”
has several vulnerabilities with high CVSS scores.

Investigating upto the point of malware infection

Now we want to investigate if this device with IP “192.168.5.62” is linked to any devices per-
forming dangerous operations. The IIQL query for this is:

path by l i n k [dev i c e where i p add r e s s == ’ 192 . 1 68 . 5 . 6 2 ’] [dev i c e where t rue] |
ac t i on dangerous

The equivalent Cypher query for this IIQL query is:

MATCH p = (b :d ev i c e)−−(: l i n k)−−(c : d e v i c e)−−(a : a l e r t) WHERE b . i p add r e s s = ”
192 . 1 68 . 5 . 6 2 ” AND a . ev en t type i d =˜ ” i t l o p s pdop (. *) ” RETURN p

The device was indeed sending device reprogram commands to the PLCs. One of these PLCs
(“192.168.5.41”) were found to be linked to a non-vulnerable device “192.168.5.105”. This sub-
graph obtained from the Neo4j GUI is shown in Fig. 5.1.
Now, we want to explore (free-text query) this non-vulnerable device “192.168.5.105” to obtain
information about its role, activities, etc. The IIQL query for this is:

exp lo r e ’ 1 92 . 168 . 5 . 1 05 ’

A Domain-Specific Query Language to Investigate Industrial Network Security Data 38

CHAPTER 5. CASE STUDIES: IIQL IN PRACTICE

Figure 5.1: Subgraph showing the path between the three devices

The equivalent Cypher query for this IIQL query is:

c a l l db . index . f u l l t e x t . queryNodes (”nodes ” , ” 192 . 168 . 5 . 1 05 ”) y i e l d node match p = (
node)−−() r e turn p

An alert was found for this device which indicated that it was trying to access a blacklisted
domain, outside the organization’s network. Next, we want to find the source of this blacklisted
domain access alert. The IIQL query for this is:

dev i ce where t rue | ac t i on b l a c k l i s t

The equivalent Cypher query for this IIQL query is:

MATCH p = (n :d ev i c e)−−(a : a l e r t) WHERE a . ev en t type i d =˜ ” i t l s e c u d b .* ” RETURN p

The source “192.168.5.162” and two other devices with similar alerts in Purdue Level 3 was
found. In total 4 devices and 2 alerts were found using this query.
Now we want to check if these 4 devices are related in any way. The IIQL query for this is:

path by l i n k
[dev i c e where i p add r e s s == ’ 192 . 168 . 5 . 1 62 ’] [dev i c e where t rue]

The equivalent Cypher query for this IIQL query is:

MATCH p = (b :d ev i c e)−−(: l i n k)−−(c : d e v i c e) WHERE b . i p add r e s s = ” 192 . 168 . 5 . 1 62 ”
RETURN p

Indeed “192.168.5.162” is related to the three devices via links. This subgraph obtained from
the Neo4j GUI is shown in Fig. 5.2.
Next, we want to check the number of relationships (influentiality) of each of the 4 devices found
in the previous step. The IIQL query for this is:

A Domain-Specific Query Language to Investigate Industrial Network Security Data 39

CHAPTER 5. CASE STUDIES: IIQL IN PRACTICE

Figure 5.2: Subgraph showing the path between the four devices

dev i ce where i p add r e s s in
(’ 192 . 168 . 25 . 104 ’ , ’ 1 92 . 168 . 25 . 6 2 ’ , ’ 1 92 . 168 . 5 . 1 05 ’ ,
’ 1 92 . 1 68 . 5 . 1 62 ’) | i n f l u e n c e r

The equivalent Cypher query for this IIQL query is:

MATCH p = (n :d ev i c e)−−() WHERE n . i p add r e s s in [’ 1 92 . 168 . 25 . 104 ’ , ’ 1 92 . 1 68 . 2 5 . 62 ’ ,
’ 1 92 . 1 68 . 5 . 1 05 ’ , ’ 1 92 . 168 . 5 . 1 62 ’] RETURN count (p) as count , n . i p add r e s s

ORDER BY count

Thus, “192.168.25.104” is the most influential device having 1499 relationships. The results from
the CLI of IIQL engine is shown in Fig. 5.3.

Figure 5.3: Influentiality of the four devices

Finally, we further investigate this device. The IIQL query for this is:

dev i ce where i p add r e s s == ’ 192 . 168 . 25 . 104 ’ | i n v e s t i g a t e a l e r t

The equivalent Cypher query for this IIQL query is:

A Domain-Specific Query Language to Investigate Industrial Network Security Data 40

CHAPTER 5. CASE STUDIES: IIQL IN PRACTICE

MATCH p = (n :d ev i c e)−−(: a l e r t) WHERE n . i p add r e s s = ” 192 . 168 . 25 . 104 ” RETURN p

We see that “192.168.25.104” has been involved in a lot of events, tried to breach firewall rules
by attempting to contact internet hosts and is part of a huge malware peer-to-peer network of 8
hosts in 192.168.25.1/24 subnet.

Observations

1. It was observed that the devices with a vulnerability were performing device configuration
operations. Most of these operations were commanded by the master “192.168.5.62”. These
were critical assets present in the lower Purdue Levels (1 and 2).

2. The “192.168.5.105” device was a Level 3 device connected to the “plc” slave in Level 1.

3. Some cross-network flows were observed between this “192.168.5.105” and the malware-
infected device “192.168.25.104”.

4. This suggests that the infected “192.168.25.104” might have sent device reprogram com-
mands to disrupt the activities of the lowest level “plc” via “192.168.5.105” and “192.168.5.162”.

Possible Conclusion

Thus, this device with IP “192.168.25.104” could have been possible the point of infection of the
Stuxnet malware.

5.1.2 MITRE ATT&CK Case Studies

The ICS ATT&CK Matrix

The MITRE ICS ATT&CK framework [29] is used to model an adversary’s Tactics, Techniques
and Procedures (TTP) that the adversary uses in order to perform a cyber attack on an Indus-
trial Control Systems (ICS) Network. It is different from the Enterprise ATT&CK matrix in the
sense that it focuses on assets in the lower Purdue Levels such as PLCs, RTUs, SCADA masters
and other physical and logical control system devices. The ICS ATT&CK matrix is a subset
of the Enterprise ATT&CK matrix and is focused on Cyber Threat Intelligence (CTI) in ICS
Networks. The use-cases behind the motivation of this ATT&CK matrix is to model adversary
behaviour in an ICS network, effective Security Operation Center (SOC) investigation, Defense
Gap Enrichment as they call it, to name a few. This knowledge base can be used by us to
investigate activities pertaining to specific phases of the Cyber Kill Chain like Discovery, Exe-
cution, Lateral Movement to name a few. Each of these Tactics (Kill Chain Phases) has several
Techniques like Network Sniffing, Network Service Scanning (for Discovery), and so on. Each
Technique is an Attack Pattern in the data model. In this case study, we will use this Attack
Patterns along with other general queries to investigate some of these Tactics and confirm its
presence in the organization’s network.

Goal

The goal of this case study is create a playbook of some sort, that contains a list of generic
queries in IIQL to investigate the ICS ATT&CK TTPs, that can then be used across multiple
organizations and specialized by the security analyst, if needed. This playbook is not a complete
guide to investigate, analyze and defend against these Tactics, but rather a small and efficient

A Domain-Specific Query Language to Investigate Industrial Network Security Data 41

CHAPTER 5. CASE STUDIES: IIQL IN PRACTICE

starting point to confirm the presence of these Tactics in the network. It will identify devices
that might initiate these Tactics in the network. These devices will then have to be investigated
in detail by the security analyst to take meaningful course of action to defend against the attacks.
The three Tactics that were chosen to be evaluated using IIQL are Discovery, Initial Access and
Inhibit Response Function. The motivation behind this choice was that there was sufficient data
from the IDS pertaining to these tactics.

Tactic #1: Discovery

The ’Discovery’ tactic consists of techniques that attackers use to survey a network and select
their targets for further exploitation. From reading the techniques under this tactic, and their
description from the MITRE ATT&CK [29], the following keywords can be looked for: port scans,
ICMP ping scans and Domain Controller devices. The query sequence that can be followed to
find the presence of this tactic in the network can be:

1. Look for devices perform port scans using ’action’ operator.

2. Look for Domain Controllers (PDCs).

3. Look for devices involved in reconnaissance alerts using ’explore’ operator.
If the devices from steps 1,2 and 3 are same or related, then we have our targets for further
investigation.

Executing the IIQL playbook in the Stuxnet dataset

1. Technique identified: Network Service Scanning
IIQL query:

dev i ce where t rue | ac t i on por t s can

Result: Device (dcmcs01) with IP ’192.168.25.104’ has caused two alerts by port scanning (re-
connaissance). The screenshot from the Neo4j GUI is shown in Fig. 5.4.

Figure 5.4: Device causing two reconnaisance alerts

2. Technique identified: Control Device Identification
IIQL query:

dev i ce where r o l e == ’ windows pdc ’ | i n v e s t i g a t e

Result: On further investigating the ’windows pdc’ (’dcmcs01’) device, it was found that this
device was part of many alerts that were raised when it tried to connect to the internet-connected
devices and has been a part of a malware p2p network. The screenshot from the Neo4j GUI is

A Domain-Specific Query Language to Investigate Industrial Network Security Data 42

CHAPTER 5. CASE STUDIES: IIQL IN PRACTICE

Figure 5.5: Context around the device

shown in Fig. 5.5.
IIQL query:

path by a l e r t [dev i c e where r o l e == ’ windows pdc ’] [dev i c e where t rue]

Result: On seeing what devices are connected to this device, we can see two internet-connected
devices(with role “root-dns server”) with IP addresses “193.0.14.129” and “198.41.0.4” and a
device with unknown role (fishy) with IP address “198.32.64.12” through public communication
alerts and to some devices, in the “192.168.25.1/24” subnet, in Purdue Level 2 through malware
alerts (boxed in red in the image). The screenshot from the Neo4j GUI is shown in Fig. 5.6.

Figure 5.6: Path between the PDC and other devices

Conclusion: Therefore, we see that this particular device (dcmcs01) “192.168.25.104” has been
occurring in all the previous steps, being a Domain Controller as well as performing port scans
and also being involved in malicious alerts, thereby confirming the presence of this tactic in the
network.

A Domain-Specific Query Language to Investigate Industrial Network Security Data 43

CHAPTER 5. CASE STUDIES: IIQL IN PRACTICE

Tactic #2: Initial Access

The ’Initial Access’ tactic consists of techniques that an adversary may use as entry points to ob-
tain an initial foothold in the network. From reading the techniques under this tactic, and their
description from the MITRE ATT&CK [29], the following keywords can be looked for: Engin-
eering Workstations, Internet IPs, Public communication alerts, SMB protocol communication,
database servers and RDP/DCOM communication. The query sequence that can be followed to
find the presence of this tactic in the network can be:

1. Look for devices with links communicating via the SMB protocol.

2. Look for devices involved in public communication alerts using ’action’ operator.

3. Look for devices with RDP/DCOM protocol communication.
If any of the devices in steps 1,2 and 3 are either Engineering Workstations or Data His-
torians in the network, they are our targets for investigation.

Executing the IIQL playbook in the Stuxnet dataset

1. Technique identified: External Remote Services
IIQL query:

l 7 p r o t o c o l where name in (’SMB’ , ’RDP’ , ’DCOM’) | i n v e s t i g a t e dev i c e

Result: On querying for devices that use remote discovery protocols such as SMB,RDP and
DCOM, a number of devices were displayed. The screenshot from the Neo4j GUI is shown in
Fig. 5.7.

Figure 5.7: Devices using remote discovery protocols

2. Technique identified: Internet Accessible Devices
IIQL query:

dev i ce where t rue | ac t i on pub l i c

Result: Device (dcmcs01) with IP “192.168.25.104” has been causing these alerts trying to
connect to internet connected devices. The screenshot from the Neo4j GUI is shown in Fig. 5.8.

3. Technique identified: Engineering Workstation Compromise
IIQL query:

A Domain-Specific Query Language to Investigate Industrial Network Security Data 44

CHAPTER 5. CASE STUDIES: IIQL IN PRACTICE

Figure 5.8: Device trying to connect to internet connected devices

dev i ce where r o l e == ’ ews ’ | i n v e s t i g a t e a l e r t , ope ra t i on

Result: Device (mcs24) with IP “192.168.25.24” has the role of EWS (engineering workstation)
with OS ’Windows XP’. It has 7 network operations and 52 high-severity alerts. The screenshot
from the Neo4j GUI is shown in Fig. 5.9.

Figure 5.9: Engineering Workstation

4. Technique identified: Data Historian Compromise
IIQL query:

dev i ce where r o l e == ’ da taba s e s e rv e r ’ | i n v e s t i g a t e a l e r t

Result: Device (wn35) with IP “192.168.25.35” has the role of Database Server (data historian)
with OS ’Windows XP’. It has no network operations and 79 high-severity alerts. The screenshot
from the Neo4j GUI is shown in Fig. 5.10.

Conclusion: Both these devices (EWS and Data Historian) have repeatedly occurred in the
previous steps, suggesting that they were initial points of access, thereby confirming the presence
of this tactic in the network.

A Domain-Specific Query Language to Investigate Industrial Network Security Data 45

CHAPTER 5. CASE STUDIES: IIQL IN PRACTICE

Figure 5.10: Data Historian

Tactic #3: Inhibit Response Function

The ’Inhibit Response Function’ tactic consists of techniques that an attacker may use to hinder
the protection mechanisms from responding to failures. From reading the techniques under this
tactic, and their description from the MITRE ATT&CK [29], the following keywords can be
looked for: DOS alerts, dangerous operations, Device Reprogram alerts, Firmware Updates and
proprietary protocol communication (such as STEP7 messages in Stuxnet attack). The query
sequence that can be followed to find the presence of this tactic in the network can be:

1. Look for devices performing dangerous OT operations using ’action’ operator.

2. Look for devices involved in denial of service operations using ’action’ operator.

3. Look for devices performing firmware updates, downloads using ’action’ operator.
If any of the devices in steps 1,2 and 3 are same or related, they are our targets for
investigation.

Executing the IIQL playbook in the Stuxnet dataset

1. Techniques identified: Program Download and Device Restart/Shutdown
IIQL queries:

dev i ce where t rue | ac t i on r e c on f i g u r a t i o n

Result: These 5 devices have been involved in program upload and download operations. The
device ‘celsius m’ with IP Address “192.168.5.62” causes program upload alerts targeting PLCs
such as ‘as4’ and ‘as5’. This device uploads a program to the PLCs. The screenshot from the
Neo4j GUI is shown in Fig. 5.11.

2. Technique identified: Denial of Service
IIQL queries:

dev i ce where t rue | ac t i on den i a l

Result: Device (Celsius m) with IP “192.168.25.22” has caused DOS alerts targeting device
(prm28) with IP “192.168.67.28” which is a Windows workstation. This device uploads a pro-
gram from the PLCs. The screenshot from the Neo4j GUI is shown in Fig. 5.12.

A Domain-Specific Query Language to Investigate Industrial Network Security Data 46

CHAPTER 5. CASE STUDIES: IIQL IN PRACTICE

Figure 5.11: Devices involved in reconfiguration alerts

Figure 5.12: Devices involved in DOS alerts

3. Technique identified: Activate Firmware Update Mode
IIQL queries:

hostchange log where ev en t type i d conta in s ’ new fw ’ | i n v e s t i g a t e dev i c e

Result: Querying the network for assets that changed firmware. The screenshot from the Neo4j
GUI is shown in Fig. 5.13.

Conclusion: We see that the devices that have changed firmware (as4, as5) have also been
involved in program download alerts, thereby confirming the presence of this tactic in the net-
work.

Insights from the Analysis

Apart from Stuxnet, this playbook was tried on different real-world datasets. The common
insights from the analysis are as follows:

� Usually, it is the same set of devices involved in all the techniques for a given tactic. Most
of these devices were in the lower Purdue Levels as DCS masters, or EWS, or a PLC/RTU
sometimes.

A Domain-Specific Query Language to Investigate Industrial Network Security Data 47

CHAPTER 5. CASE STUDIES: IIQL IN PRACTICE

Figure 5.13: Devices involved in firmware updates

� These suspicious devices have a lot of host change logs for different client and server ports,
i.e, they have varied communication patterns.

� For the “Inhibit Response Function” tactic, the devices with host change logs pertaining
to ‘new fw’ were performing dangerous OT operations.

� Devices that use the “Discovery” tactic usually tend to cause a denial-of-service on the
network, thereby compromising the availability of other assets.

� For the “Initial Access” tactic, the suspicious devices always seem to have SMB/DCOM
as their client/server protocols.

Conclusion

The investigation of MITRE ATT&CK TTPs with IIQL provides cyber threat intelligence cap-
abilities, taking into account possible attack scenarios, and gives an idea of how prepared an
organization is to detect and respond to intrusions. In this way, an organization knows if it is
able to meet its cybersecurity needs and be ready if or when malicious actors strike. This provides
a roadmap for defenders to apply against their operational controls to weigh their strengths and
weaknesses against adversaries. It can be used to assess the gaps in their defense policies and
possible attack points in their network. Summarizing the advantages of using IIQL with MITRE
ATT&CK:

� Detailed insights into devices using the ATT&CK Tactics and their targets.

� Identify the point of breach in the network and how the attacker moved laterally from one
device to another and so on.

� Powerful post-mortem and proactive incident investigation.

A Domain-Specific Query Language to Investigate Industrial Network Security Data 48

Chapter 6

Validation of IIQL

This section describes how the proposed prototype was validated with some of the internal
domain experts at Forescout, in the form of an online survey.

6.1 User Studies

In order to validate the query language, a one-to-one interview was held with some experts in
Forescout. In this interview, a presentation containing the overview of IIQL, with its operators,
syntax and functionality with some sample queries and results, was given, followed by them
filling up an online survey. This survey had 17 questions in total, comprising 14 questions that
test their IIQL knowledge and 3 questions to gauge their overall user experience with IIQL.

6.1.1 Validation Questionnaire

This subsection enlists the sections of questions that were given to the domain experts in For-
escout to answer based on their user experience with IIQL.

1. For the initial set of use-cases, the users were asked to give the IIQL query for achieving
them. The equivalent Cypher and SQL query (if applicable for the use-case) were also
displayed for comparison. Some of the use-cases that were given to the user were:

� Find vulnerable PLCs;

� Find exploitable paths from one device to other devices in the network;

� Find devices that perform reconfiguration, connected to an engineering workstation;

� Find vulnerable Windows devices that perform port scans;

2. For certain queries, the users were asked to derive the use-case that they think the queries
would achieve, in natural language. Some of the queries that were given to the user were:

� device where role == ’plc’ | action dangerous | filter alert.severity > 2

� path by link [device where ip == ’192.168.5.62’] [device where true] | action dangerous

� vulnerability where true | investigate device | sort cvss | head 5

3. The rest of the questions were for understanding the users’ IIQL overall experience, thereby
intuitively measuring metrics such as:

A Domain-Specific Query Language to Investigate Industrial Network Security Data 49

CHAPTER 6. VALIDATION OF IIQL

� Expressiveness: The powerfulness of query formulation to match one’s needs. This
metric is basically the measure of the range of functionality that can be expressed.
The user can choose a score from a scale of 1 - 5.

� Usability: The ease of use of the query language. This metric is to measure the
learning curve. The user can choose from 3 options such as Easy, Medium or Hard.

� Accuracy: The degree to which the query results conform to the standard expected
outcome. This metric is to measure the overall satisfaction of the query results. The
user can choose a score from a scale of 1 - 5.

6.2 Results from the Survey

This section summarizes the results from the survey responses and derive final conclusions from
the developed prototype.

6.2.1 Overview of User Performance

The table 6.1 below depicts the number of correctly answered questions out of a total of 14
questions in the survey for each participant. As can be seen from the table, 5 out of 6 participants

Table 6.1: Number of correctly answered questions per user

Participant Correctly Answered Questions
1 14
2 14
3 14
4 14
5 13
6 14

got all 14 questions testing IIQL knowledge correct. The users were able to quickly grasp the
language, and its syntax.

6.2.2 Expressiveness

Out of 6 users, 3 gave a score of 5/5 and 3 gave a score of 4/5 for expressiveness of IIQL.
Therefore, the overall average score is 4.5/5. One of the users thought that the language could
have explored the possibility of filtering events (such as alerts) by timestamps.

6.2.3 Usability

Out of 6 users, 3 thought learning the syntax of IIQL (within an hour) was of ’Medium’ difficulty
and 3 thought it was of ’Easy’ difficulty. The common feedback that was received from the users
who chose ’Medium’ was that, there could have been a cheatsheet for IIQL with a graph of
the underlying data model consisting of a detailed list of concepts and attributes that can be
queried for, in order to know how the concepts were connected to each other. An inference of this
feedback is that, there has to be a minimal knowledge of the data model to make more specific
queries in IIQL.

A Domain-Specific Query Language to Investigate Industrial Network Security Data 50

CHAPTER 6. VALIDATION OF IIQL

6.2.4 Accuracy

Out of 6 users, 3 gave a score of 3/5, 2 gave a score of 5/5 and 1 gave a score of 4/5 for accuracy
of IIQL. Thus, the overall average score for accuracy is 4/5. Some of the user feedback obtained
from this respect is that:

� The functionality of the investigate, filter and action operators can be combined into one,
as they might be confusing sometimes.

� There could have been a possibility of using a filter operator, before a path operator, in
order to filter the results and then obtain a sub-graph from the smaller subset of the data.
In this way, the queries would perform faster on very large graph databases. However, in
the developed prototype, filtering can only be done after the path operator, owing to the
fact that it is based on the EQL syntax, and it has this limitation.

6.3 Summary of Validation

As mentioned above, a one-to-one interview was held with some experts in Forescout where
IIQL was presented to them, followed by them filling up an online survey (testing both their
knowledge of IIQL and overall experience with the language). The validation was done with the
initial set of sample use-cases; however, the results are not tailored to these set of use-cases alone
and can be extended. For instance, the operators such as influencer and the duration() function
were not part of the initial set of use-cases, yet can solve the issues of narrowing down focus for
investigation.

6.3.1 Other Remarks from Experts

Additionally, to score for Expressiveness of IIQL, the experts were asked to think of other use-
cases that they would like IIQL to achieve. One of them came up with the use-case of being
able to provide an aggregated statistics of the number of alerts per asset or group alerts by a
user-specified attribute. However, this is unfortunately not yet possible with the prototype and
can be seen as a scope for future work on the prototype.

A Domain-Specific Query Language to Investigate Industrial Network Security Data 51

Chapter 7

Conclusions

This chapter discusses the concluding remarks from the evaluation and validation steps of the
developed prototype, along with directions or ways to extend it further in future.

7.1 Query Performance

A number of sample IIQL queries were executed on different datasets on both the Neo4j and
SQL databases, and the process time for each query was measured. This section summarizes the
results obtained in the form of certain statistics.

7.1.1 Performance in the Neo4j graph database

Fig. 7.1 below shows the query process times for each type of IIQL query on Neo4j, on three
different datasets namely:

1. Dataset 1 (24 hosts, 1239 alerts)

2. Dataset 2 (57 hosts, 1452 alerts)

3. Dataset 3 (7899 hosts, 140448 alerts)

The process times are normalized within a scale of 0 to 1 in the chart, for better visualization,
because path by alert queries took a very long time to execute in two datasets. As can be
seen from the above chart 7.1, the path by alert queries take the most time to execute in all 3
datasets (because retrieving chains of alerts across hops takes a lot of time to execute). A more
specific query/use-case such as finding alert path between two specific devices like path by alert

[device where name == ’exp-svr’][device where name == ’fdm-svr’] can definitely fetch
results faster, instead of fetching all alert paths from a device to all other devices in the network.

7.1.2 Performance in the SQL database

Fig. 7.2 below shows the query process times for each type of IIQL query on SQL, on five
different datasets namely:

1. Dataset 1 (24 hosts, 1239 alerts)

2. Dataset 2 (57 hosts, 1452 alerts)

A Domain-Specific Query Language to Investigate Industrial Network Security Data 52

CHAPTER 7. CONCLUSIONS

Figure 7.1: IIQL Query Performance in Neo4j

3. Dataset 3 (7899 hosts, 140448 alerts)

4. Dataset 4 (4799 hosts, 5918191 alerts)

5. Dataset 5 (330 hosts, 341166 alerts)

Figure 7.2: IIQL Query Performance in SQL

As can be seen from the above chart 7.2, the query performance of most queries are more or
less the same, and naturally the performance time of Investigate + Filter and Action queries in
Dataset 4 (depicted in yellow) is the longest, because it is the biggest dataset compared to the

A Domain-Specific Query Language to Investigate Industrial Network Security Data 53

CHAPTER 7. CONCLUSIONS

other four (with almost 6M alerts). Again, more specific queries would definitely yield results
faster than generic queries.

7.2 Query Complexity

This section reiterates how IIQL was less complex and shorter in length than other languages
such as SQL and Cypher with some example queries.

7.2.1 Comparison with SQL

This subsection highlights how some IIQL queries are less complex and shorter when compared to
SQL queries. Table 7.1 enumerates some sample IIQL queries and their equivalent SQL queries.
From the table, one can infer that an 8 line SQL query can be achieved in a 2-3 line IIQL query.

7.2.2 Comparison with Cypher

This subsection elaborates on how some IIQL queries are less complex and shorter when compared
to Cypher queries. Table 7.2 enumerates some sample IIQL queries and their equivalent Cypher
queries. From the table, one may infer that a user need not completely know the underlying
data model to formulate IIQL queries (as opposed to formulating Cypher queries), and a very
minimal knowledge is only required.

7.2.3 Conclusion

As can be tangibly seen from both the tables 7.2 and 7.1, IIQL queries are way shorter and less
complicated and verbose than the respective Cypher or SQL queries, at the same time, expressive
as the Cypher or SQL equivalent as well.

A Domain-Specific Query Language to Investigate Industrial Network Security Data 54

CHAPTER 7. CONCLUSIONS

Table 7.1: IIQL queries and equivalent SQL queries

IIQL Query Equivalent SQL query
hosts where ip contains ’192.168’

| investigate links

SELECT hosts.ip, SUM(links.tx bytes) as total tx bytes,
ARRAY AGG (DISTINCT links.proto) AS protocols used
FROM hosts
INNER JOIN links
ON hosts.id = links.src host id
WHERE text(hosts.ip) LIKE ’%192.168%’
GROUP BY hosts.ip;

hosts where true

| action reconfiguration

SELECT distinct hosts.ip, hosts.purdue level,
hosts.os version,
hosts.criticality
FROM hosts
INNER JOIN alerts
ON (hosts.ip::inet - ’0.0.0.0’::inet) = alerts.src ip
OR (hosts.ip::inet - ’0.0.0.0’::inet) = alerts.dst ip
WHERE alerts.event type id ∼* ’...........’
OR alerts.event type id ∼* ’..........’
OR alerts.event type id ∼* ’..........’;

hosts where criticality >3
and main name contains ”celsius”
| investigate vulnerability
| filter vulnerability.cvss score >7

WITH A AS (SELECT ip,
jsonb array elements(cve info) AS cves,
criticality, main name
FROM hosts)
SELECT ip, ARRAY AGG(cves) cve info
FROM A WHERE (cves->>’cvss score’) >text(7)
AND criticality >3
AND text(main name)
LIKE ’%celsius%’
GROUP BY ip ;

hosts where main name
contains ’celsius’
| investigate alerts
| filter alerts.severity >3

SELECT hosts.ip, ARRAY AGG (alerts.event type id)
alert events
FROM hosts
INNER JOIN alerts
ON (hosts.ip::inet - ’0.0.0.0’::inet) = alerts.src ip
OR (hosts.ip::inet - ’0.0.0.0’::inet) = alerts.dst ip
WHERE text(hosts.main name)
LIKE ’%celsius%’
AND alerts.severity >3
GROUP BY hosts.ip;

A Domain-Specific Query Language to Investigate Industrial Network Security Data 55

CHAPTER 7. CONCLUSIONS

Table 7.2: IIQL queries and equivalent Cypher queries

IIQL Query Equivalent Cypher query

path by link
[device where ip == ’192.168.5.62’]
[device where true]
| action dangerous

MATCH p = (b:device)–(:link)–(c:device)–(d:alert)
WHERE b.ip = ”192.168.5.62”
AND
d.event type id =∼”...*”
RETURN p

path by alert
[device where main role == ’dcs’]
[device where true]

MATCH p = (:device)–(a:alert)–(b:device)–
(l:alert)–(c:device)–(m:alert)–(:device)
WHERE b.main role = ”dcs”
RETURN p

device where true
| action dangerous
| filter vulnerability.cvss == 10

MATCH p = (a:vulnerability)–(n:device)–(d:alert)
WHERE d.event type id =∼”...*”
AND
a.cvss = 10
RETURN p

explore ’exp-svr’

CALL db.index.fulltext.queryNodes(”nodes”,”exp-svr”)
YIELD node
MATCH p = (node)–()
RETURN p

device where true
| influencer
| head 5

MATCH p = (n:device)–()
RETURN count(p) as count, n.ip address
ORDER BY count
DESC LIMIT 5

path by link
[device where name == ’exp-svr’]
[device where true]

MATCH p = (:vulnerability)–(b:device)–
(:link)–(c:device)–(y:vulnerability)
WHERE b.name = ”exp-svr”
AND y.cvss >7
RETURN p

A Domain-Specific Query Language to Investigate Industrial Network Security Data 56

CHAPTER 7. CONCLUSIONS

7.3 Answering the Research Question

This section talks about how the developed prototype answers the research question of the
project, along with summarizing the pros and cons of the developed prototype.

7.3.1 Recalling the Research Question

The goal of this research was two-fold:

1. To develop a simple, yet expressive way to query the data collected by an IDS for convenient
security incident investigation.

2. In addition to the syntax, it should also allow the security analyst to be able to explore
the context around the data, at the same time, offer maximum abstraction to:

� The underlying data and its complexity.

� The native database backend language.

7.3.2 The Developed Prototype

The developed prototype of IIQL successfully answers the research goal of the project by provid-
ing abstraction, context and exploration of the underlying data, at the same time, having a
usable and expressive syntax.

7.3.3 Advantages of IIQL

Thus, the major advantages of IIQL are:

1. It provides abstraction to the underlying data and its complexity.

2. It provides abstraction to native database backend query languages.

3. It comprises of automated underlying data schema learning capabilities, to help the user
see what concepts and attributes they can query for.

4. It is simple and usable, yet has an expressive syntax.

5. It provides entire context around data collected from different sources.

6. It is easily extensible, and can be transpiled to any other query language in future.

7.3.4 Limitations of IIQL

Thus, the major limitations of IIQL are:

1. There is a need for a rich data model to successfully achieve exploration and to make the
fullest and the best use of IIQL.

2. Possibilities for automated prioritization of attack paths is yet to be explored.

3. Filtering of events by timestamps is yet to be explored.

4. Possibility of providing an aggregated statistics of events per asset, or grouping events by
a user-specified attribute is yet to be explored.

A Domain-Specific Query Language to Investigate Industrial Network Security Data 57

CHAPTER 7. CONCLUSIONS

5. Since IIQL is based on EQL, the syntax cannot be stretched much and it is confined to a
particular grammar, and for this reason, filtering cannot be done before another context-
related operator.

6. The translation of IIQL to SQL is still limited, owing to the fact that SQL is a relational
database, and not much context can be offered to the user, because that may involve
expensive joins across tables.

7.4 Future Work

Though the developed prototype answers the research question successfully, it still has room for
further improvement. Some of the possible directions of betterment may come from the following
aspects.

7.4.1 Automated Prioritization of Attack Paths

The prototype currently only allows the user to look for exploitable paths from one asset to other
assets, or between two specific assets in the network. However, it would be more useful if there
was a mechanism to automatically output the list of exploitable paths in the network ordered by
criticality of the path. The more critical assets and the more critical the vulnerabilities involved
in the path are, the more priority it shall be given. This feature would make a security analyst’s
job all the more easier, to narrow down and focus on the paths that are the most critical, instead
of starting investigation on the less critical paths.

7.4.2 Time Filtering of Events

The prototype currently offers only the possibility of sorting links or assets that are the most
active or inactive in the network, by their timestamps but no possibility for filtering events by
time, which is a very useful feature. Displaying only alerts within a particular time interval is
very powerful as it enables the security analyst to narrow down his focus on the alerts that have
occured contiguously than the alerts that have occured much later. Additionally, this will also
reduce the number of alerts displayed to the user as well, thereby avoiding clutter and allowing
more readability.

7.4.3 Aggregated Statistics of Events per Asset

The prototype currently does not offer the possibility of providing an aggregation of events per
asset or grouping events by a user-specified attribute. For instance, to be able to find all devices
involved in a dangerous operation grouped together by the type of dangerous operation that they
are involved in (such as firmware download). This feature would be useful to an analyst if he
wants to view the aggregated statistics of events per asset in the network.

A Domain-Specific Query Language to Investigate Industrial Network Security Data 58

Bibliography

[1] Serge Abiteboul, Dallan Quass, Jason McHugh, Jennifer Widom, and Janet L Wiener. The
lorel query language for semistructured data. International journal on digital libraries,
1(1):68–88, 1997. 64

[2] Renzo Angles, Marcelo Arenas, Pablo Barceló, Aidan Hogan, Juan Reutter, and Domagoj
Vrgoč. Foundations of modern query languages for graph databases. ACM Computing
Surveys (CSUR), 50(5):1–40, 2017. 63

[3] Apache. Apache lucene - query parser syntax. https://lucene.apache.org/core/2_9_4/
queryparsersyntax.html. [last accessed: 2020-02-07]. 65

[4] James Bailey, François Bry, Tim Furche, and Sebastian Schaffert. Web and semantic web
query languages: A survey. In Reasoning Web, pages 35–133. Springer, 2005. 63, 64

[5] Chris Bizer. Triql-a query language for named graphs. http://www. wiwiss. fu-berlin.
de/suhl/bizer/TriQL/, 2004. 64

[6] Scott Boag, Don Chamberlin, Mary F Fernández, Daniela Florescu, Jonathan Robie, Jérôme
Siméon, and Mugur Stefanescu. Xquery 1.0: An xml query language. 2002. 64

[7] Angela Bonifati and Stefano Ceri. Comparative analysis of five xml query languages. ACM
Sigmod Record, 29(1):68–79, 2000. 11

[8] Jeen Broekstra and Arjohn Kampman. Serql: A second generation rdf query language. In
Proc. SWAD-Europe Workshop on Semantic Web Storage and Retrieval, pages 13–14, 2003.
64

[9] Stefano Ceri, Sara Comai, Ernesto Damiani, Piero Fraternali, Stefano Paraboschi, and Let-
izia Tanca. Xml-gl: a graphical language for querying and restructuring xml documents.
Computer networks, 31(11-16):1171–1187, 1999. 64

[10] James Clark, Steve DeRose, et al. Xml path language (xpath) version 1.0, 1999. 64

[11] Alin Deutsch, Mary Fernandez, Daniela Florescu, Alon Levy, and Dan Suciu. Xml-ql: A
query language for xml, 1998. 64

[12] DiffBot. Introducing the diffbot knowledge graph. https://blog.diffbot.com/

introducing-the-diffbot-knowledge-graph/, 2018. [last accessed: 2020-02-07]. 63

[13] Science Direct. Query languages - an overview. https://www.sciencedirect.com/topics/
computer-science/query-languages, 2016. [last accessed: 2020-02-18]. 8

A Domain-Specific Query Language to Investigate Industrial Network Security Data 59

https://lucene.apache.org/core/2_9_4/queryparsersyntax.html
https://lucene.apache.org/core/2_9_4/queryparsersyntax.html
https://blog.diffbot.com/introducing-the-diffbot-knowledge-graph/
https://blog.diffbot.com/introducing-the-diffbot-knowledge-graph/
https://www.sciencedirect.com/topics/computer-science/query-languages
https://www.sciencedirect.com/topics/computer-science/query-languages

BIBLIOGRAPHY

[14] ElasticSearch. Kibana query language. https://www.elastic.co/guide/en/kibana/

current/kuery-query.html. [last accessed: 2020-02-07]. 64

[15] ElasticSearch. Query dsl. https://www.elastic.co/guide/en/elasticsearch/

reference/7.5/query-dsl.html. [last accessed: 2020-02-07]. 64

[16] Jonathan Robie et al. Xql. https://www.w3.org/TandS/QL/QL98/pp/xql.html. [last
accessed: 2020-02-18]. 64

[17] Facebook. Graphql. https://graphql.org/. [last accessed: 2020-02-17]. 63

[18] Peter Haase, Jeen Broekstra, Andreas Eberhart, and Raphael Volz. A comparison of rdf
query languages. In International Semantic Web Conference, pages 502–517. Springer, 2004.
11, 64

[19] Florian Holzschuher and René Peinl. Performance of graph query languages: comparison of
cypher, gremlin and native access in neo4j. In Proceedings of the Joint EDBT/ICDT 2013
Workshops, pages 195–204, 2013. 63

[20] Kevin Hutt. A comparison of rdf query languages. In Proc. of 21th Computer Science
Seminar, Hartfort, Connecticut, pages 1–7, 2005. 11, 64

[21] Matthias Jarke and Yannis Vassiliou. A framework for choosing a database query language.
In Readings in Artificial Intelligence and Databases, pages 363–375. Elsevier, 1989. 11

[22] Gregory Karvounarakis, Sofia Alexaki, Vassilis Christophides, Dimitris Plexousakis, and
Michel Scholl. Rql: a declarative query language for rdf. In Proceedings of the 11th inter-
national conference on World Wide Web, pages 592–603, 2002. 64

[23] Michael Kay. XSLT: programmer’s reference. Wrox Press Ltd., 2001. 64

[24] Ansam Khraisat, Iqbal Gondal, Peter Vamplew, and Joarder Kamruzzaman. Survey of
intrusion detection systems: techniques, datasets and challenges. Cybersecurity, 2(1):20,
2019. 7

[25] Microsoft. Learn the advanced hunting query language. https://docs.microsoft.com/en-
us/windows/security/threat-protection/microsoft-defender-atp/advanced-

hunting-query-language, 2019. [last accessed: 2020-02-07]. 65

[26] Microsoft. Overview of kusto. https://docs.microsoft.com/en-us/azure/kusto/

query/, 2019. [last accessed: 2020-02-07]. 65

[27] Libby Miller, Andy Seaborne, and Alberto Reggiori. Three implementations of squishql,
a simple rdf query language. In International Semantic Web Conference, pages 423–435.
Springer, 2002. 64

[28] MITRE. Mitre attack. https://attack.mitre.org/. [last accessed: 2020-02-12]. 65

[29] MITRE. Attck for industrial control systems. https://collaborate.mitre.org/

attackics/index.php/Main_Page, 2020. [last accessed: 2020-06-03]. 41, 42, 44, 46

[30] MySQL. Mysql. https://www.mysql.com/. [last accessed: 2020-02-18]. 62

[31] Neo4j. Cypher query language. https://neo4j.com/developer/cypher-query-

language/. [last accessed: 2020-02-07]. 27, 62

A Domain-Specific Query Language to Investigate Industrial Network Security Data 60

https://www.elastic.co/guide/en/kibana/current/kuery-query.html
https://www.elastic.co/guide/en/kibana/current/kuery-query.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.5/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.5/query-dsl.html
https://www.w3.org/TandS/QL/QL98/pp/xql.html
https://graphql.org/
https://docs.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-atp/advanced-hunting-query-language
https://docs.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-atp/advanced-hunting-query-language
https://docs.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-atp/advanced-hunting-query-language
https://docs.microsoft.com/en-us/azure/kusto/query/
https://docs.microsoft.com/en-us/azure/kusto/query/
https://attack.mitre.org/
https://collaborate.mitre.org/attackics/index.php/Main_Page
https://collaborate.mitre.org/attackics/index.php/Main_Page
https://www.mysql.com/
https://neo4j.com/developer/cypher-query-language/
https://neo4j.com/developer/cypher-query-language/

BIBLIOGRAPHY

[32] Steven Noel, Eric Harley, Kam Him Tam, Michael Limiero, and Matthew Share. Cy-
graph: graph-based analytics and visualization for cybersecurity. In Handbook of Statistics,
volume 35, pages 117–167. Elsevier, 2016. 2, 3, 63

[33] Nozomi. Nozomi networks guardian community edition. https://community.

nozominetworks.com/assets/Guardian-CommunityEdition-QuickStart.pdf, 2019. [last
accessed: 2020-02-07]. 65

[34] Oracle. Pl/sql. https://www.oracle.com/nl/database/technologies/appdev/plsql.

html. [last accessed: 2020-02-18]. 62

[35] PostgreSQL. Postgresql: The world’s most advanced open source relational database.
https://www.postgresql.org/. [last accessed: 2020-02-18]. 62

[36] Andy Seaborne. Rdql. https://www.w3.org/Submission/RDQL/, 2004. [last accessed:
2020-02-18]. 64

[37] Splunk. The power of splunk search. https://www.splunk.com/en_us/resources/

search-processing-language.html, 2018. [last accessed: 2020-02-07]. 64

[38] Apache Tinkerpop. The gremlin graph traversal machine and language. http://tinkerpop.
apache.org/gremlin.html. [last accessed: 2020-02-17]. 63

[39] Karsten Tolle and Fabian Wleklinski. Trust and context using the rdf-source related storage
system (rdf-s3) and easy rql (erql). In Berliner XML Tage, volume 11, page 13, 2004. 64

[40] Oskar van Rest, Sungpack Hong, Jinha Kim, Xuming Meng, and Hassan Chafi. Pgql: a
property graph query language. In Proceedings of the Fourth International Workshop on
Graph Data Management Experiences and Systems, pages 1–6, 2016. 63

[41] W3C. Sparql query language for rdf. https://www.w3.org/TR/rdf-sparql-query/, 2013.
[last accessed: 2020-02-07]. 2, 64

[42] Wikipedia. Sql. https://en.wikipedia.org/wiki/SQL. [last accessed: 2020-02-07]. 62

[43] Ross Wolf. Introducing event query language. https://www.elastic.co/blog/

introducing-event-query-language, 2019. [last accessed: 2020-02-07]. 65

A Domain-Specific Query Language to Investigate Industrial Network Security Data 61

https://community.nozominetworks.com/assets/Guardian-CommunityEdition-QuickStart.pdf
https://community.nozominetworks.com/assets/Guardian-CommunityEdition-QuickStart.pdf
https://www.oracle.com/nl/database/technologies/appdev/plsql.html
https://www.oracle.com/nl/database/technologies/appdev/plsql.html
https://www.postgresql.org/
https://www.w3.org/Submission/RDQL/
https://www.splunk.com/en_us/resources/search-processing-language.html
https://www.splunk.com/en_us/resources/search-processing-language.html
http://tinkerpop.apache.org/gremlin.html
http://tinkerpop.apache.org/gremlin.html
https://www.w3.org/TR/rdf-sparql-query/
https://en.wikipedia.org/wiki/SQL
https://www.elastic.co/blog/introducing-event-query-language
https://www.elastic.co/blog/introducing-event-query-language

Appendix A

Detailed Literature Overview

This appendix elaborates on the existing query languages in literature, surveyed for this research.

A.1 Query Languages for Relational Databases

This section talks about the most widely used query language for querying relational databases.
These databases have data organized in tables, in the form of rows and colummns.

A.1.1 Structured Query Language (SQL)

SQL [42] is a query language used to query relational databases. Many implementations of
SQL exist, including MySQL [30], PostgreSQL [35], PL/SQL [34] (by Oracle) and so on. These
languages provide language constructs for basic filtering and joins, and some of these variants
such as PostgreSQL provides full-text searching capabilities but they all lack constructs for
constraint chaining. Furthermore, context information between tables require expensive joins
and they are almost impossible to perform in relational databases using SQL.

A.2 Query Languages for NoSQL Databases

This section talks about query languages which are used to query data that is modeled in means
other than the tabular relations in relational databases. The different languages listed below are
classified into two sub-categories namely query languages for graph databases and the semantic
web.

A.2.1 Query Languages for Graph Databases

Query languages for graph databases provide constructs for chaining constraints among nodes
but there is a need for the security analyst to learn a new native query language, depending on
the graph database. Some of the query languages used to query graph databases are described
below.

Neo4j’s Cypher Query Language

Neo4j invented Cypher [31], a declarative, SQL-inspired query language that is used to query
graph databases. However, evaluating path queries is NP-hard due to the fact that Cypher allows

A Domain-Specific Query Language to Investigate Industrial Network Security Data 62

APPENDIX A. DETAILED LITERATURE OVERVIEW

path unwinding [2].

Oracle’s PGQL

Oracle developed Property Graph Query Language (PGQL) [40] which is an intuitive SQL-like
pattern-matching query language. It has support for regular path queries, path finding and graph
construction.

MITRE’s CyGraph Query Language (CyQL)

Noel et al. [32] from MITRE Corporation, developed a domain specific query language (CyQL)
for their graph database called CyGraph, based on Cypher, relying on matching sub-graph
patterns of interest, used for deriving attack paths. Although the underlying CyQL data model
is a graph data model comprising entities and relationships, CyQL provides an extra layer of
abstraction for CyGraph to support multiple backend data engine implementations, each with
their own native query language. Although full-text search is supported, the major drawbacks
of CyQL are that it is not open source and it is quite complex (which is precisely what we do
not want to expose analysts to and that is what we aim to achieve with IIQL).

DiffBot Query Language (DQL)

Diffbot [12] developed a query language for its knowledge graphs that are created by encom-
passing the whole web, that is flexible to perform granular searches to find specific information,
or to accumulate massive datasets for broader analysis. DQL is mostly used for marketing and
sales, recruiting and business intelligence because it is used to gain information about people,
companies, products and articles. Thus, it cannot be incorporated for our OT security data
model.

Facebook’s GraphQL

Facebook created GraphQL [17], a query language for APIs that are not specific to graph data-
bases. Users get to define the structure of the data they want and they get exactly what they
asked for. However, the output of a GraphQL query is a set of graphs rather than a result set
with properties inside the vertices and edges.

Gremlin

Gremlin [38] is the query language for Apache TinkerPop. It is a graph traversal language that
can be used for both OLTP and OLAP databases. It is Groovy-based, but allows developers to
write Gremlin queries natively in modern programming languages such as Java, JavaScript and
Python. Furthermore, Gremlin performs better than Cypher in the case of Friend of a Friend
(FOAF) queries [19] and its expressivity and semantics is equivalent to SPARQL [2].

A.2.2 Query Languages for the Semantic Web

Numerous languages have been developed for data retrieval on the Semantic Web. The famous
ones are described below, classified under two sub-categories according to the data formats they
retrieve from: RDF and XML [4].

A Domain-Specific Query Language to Investigate Industrial Network Security Data 63

APPENDIX A. DETAILED LITERATURE OVERVIEW

RDF Query Languages

1. SPARQL: SPARQL [41] is by far the most widely used query language used to retrieve
and manipulate data stored in Resource Description Framework (RDF) format. It is mainly
designed to query complex entity-relationship models (ontologies). However, there is no
support for path expression and fuzzy (non-boolean) queries.

2. RQL: RQL [22] With RQL, access to data and schema can be combined in all manners
and it is far more expressive than most other RDF query languages [4, 20].

Apart from the above, there are many other languages to query RDF data, mostly based on
the above two languages. SquishQL [27] and RDQL [36] were designed for ease-of-use and limited
functionality such as selection and extraction. TriQL [5] extends RDQL by constructs supporting
querying of named graphs, allowing for better filtering. SeRQL [8] supports many of the basic
RDF-query features such as path expressions, boolean constraints and optional matching [18].
eRQL [39] is a simplification of RQL based on a keyword-based interface supporting mostly
one-word and neighbourhood queries, mostly used for search engines.

XML Query Languages

There are numerous languages to query XML data formats but most of them are only proposed
theoretically as ideas in academia and not really adopted by the community/industry. The ones
that are adopted are namely, XPath [10] (only used for selection and extraction), XSLT [23] (a
loosely-typed, scripting language used for transforming/formatting XML data), and XQuery [6]
(a strongly-typed query language which provides support for joins and recursions, as opposed
to XPath). Some of the other theoretically proposed XML query languages are LOREL [1],
XML-QL [11], XML-GL [9] and XQL [16].

A.3 Query Languages for Distributed Search and Analyt-
ics Engines

Distributed search and analytics engines like Splunk and ElasticSearch provide searching lan-
guages based on keywords and shell-like piping syntax. However, they lack support for exploring
related concepts and looking for exploitable paths between assets. Furthermore, there is a need
for the security analyst to learn the native query language.

A.3.1 Splunk’s Search Processing Language (SPL)

Splunk [37] came up with its own searching language that can be used to analyze and visualize
massive amounts of data. SPL supports full-text searching, basic filtering and advanced searching
but it is not open source (it is very expensive) and querying over large amount of data might
affect speed and performance.

A.3.2 ElasticSearch

ElasticSearch is an open source search engine that consists of primarily two query languages
namely the Query Domain Specific Language (DSL) [15] and the Kibana Query Language (KQL)
[14]. The former is based on JSON and supports a large number of queries such as compound,
match-all, multi-match, full-text, range and geo queries but is less flexible and all data is indexed,
which in turn causes an index overhead. The latter is the default query language in ElasticSearch,

A Domain-Specific Query Language to Investigate Industrial Network Security Data 64

APPENDIX A. DETAILED LITERATURE OVERVIEW

that is based on Lucene Query Language (LQL) [3]. It features autocomplete and an easy-to-use
syntax but cannot search on nested objects.

A.4 Company Specific Query Languages

A.4.1 Microsoft’s Advanced Hunting Query Language

Microsoft [25] developed a query language for advanced threat hunting in Microsoft Defender
Security Centre that is based on the Kusto query language [26]. It works on their advanced threat
hunting schema. This language can be used to retrieve either event information or information
about machines and other entities. It supports basic filtering, advanced searching and querying
abstracted operations. However, there is no support for full-text searching capabilities and there
is a need to understand Microsoft’s data schema to create queries spanning multiple tables.

A.4.2 Nozomi’s Network Query Language (N2QL)

Nozomi [33] developed their own simple query language (N2QL) that is used to query their IoT
security database. This language is inspired by the Linux terminal scripting languages with piping
where the output of a command is the input of the next command. This achieves complex data
processing with composition of many simple operations. It contains support for basic filtering,
advanced searching across concepts and querying abstracted operations but it does not allow for
full-text searching. Naturally, there is a need to understand Nozomis’s IoT security data model,
in order to effectively use queries.

A.4.3 Endgame’s Event Query Language (EQL)

Endgame [43] developed an Event Query Language for threat hunting and real-time detection.
It is schema-optional (i.e, EQL does not require the data schema to be specified upfront, but it
contains features to map data to a schema for effective querying), it supports multiple database
backends (i.e, it provides means to translate it to other native query languages, based on the
database backend) and also supports conversion between multiple data formats. Additionally,
it also features an EQL Analytics library (eqllib) that is a library of event-based analytics to
detect adversary behaviors that map to MITRE’s ATTACK framework [28]. It is open source
and supports field lookups, comparisons, boolean logic, wildcard matching and function calls
but it does not support full text keyword searches and finding attack paths/attack reachability,
which are two of the use-case requirements of IIQL. (The latter, however, will almost never be
supported in anything except CyQL.)

A Domain-Specific Query Language to Investigate Industrial Network Security Data 65

	Contents
	List of Figures
	List of Tables
	Introduction
	Problem Statement
	Research Question
	Proposed Solution

	Thesis Organization

	Background
	Operational Technology (OT)
	Industrial Control Systems (ICS)

	Intrusion Detection Systems
	Intrusion Data Sources

	Summary

	State of the Art
	Related Work
	Initial Requirements for the Prototype
	Overview of Existing Query Languages
	Ranking Methodology
	Selection Procedure

	Conclusion

	The Proposed Solution
	Use Case Scenarios in the OT/IT environment
	Typical Use Case Scenario in an OT/IT environment
	Extended Use-Cases

	Proposed Existing Solution - A Starting Point
	Limitations of the existing solution
	Bridging the Gap by IIQL

	Proposed Extension to EQL
	Plan to Extend EQL to IIQL
	Solving the problem with the operators proposed
	Example Queries with Use Cases and Added Value

	Basic Mode of IIQL
	Investigation Mode of IIQL
	General Architecture
	Knowledge Graph Model for IIQL

	Grammar and Parse Tree of IIQL
	Grammar
	Abstract Syntax Tree - Example

	Translation of IIQL to Cypher
	The IIQL prototype
	An example IIQL query in Basic Mode
	Example IIQL queries in Advanced Mode
	Interpreting the Data Model with IIQL

	Case Studies: IIQL in Practice
	IIQL - Case Studies
	Investigation of Stuxnet Attack with IIQL
	MITRE ATT&CK Case Studies

	Validation of IIQL
	User Studies
	Validation Questionnaire

	Results from the Survey
	Overview of User Performance
	Expressiveness
	Usability
	Accuracy

	Summary of Validation
	Other Remarks from Experts

	Conclusions
	Query Performance
	Performance in the Neo4j graph database
	Performance in the SQL database

	Query Complexity
	Comparison with SQL
	Comparison with Cypher
	Conclusion

	Answering the Research Question
	Recalling the Research Question
	The Developed Prototype
	Advantages of IIQL
	Limitations of IIQL

	Future Work
	Automated Prioritization of Attack Paths
	Time Filtering of Events
	Aggregated Statistics of Events per Asset

	Bibliography
	Detailed Literature Overview
	Query Languages for Relational Databases
	Structured Query Language (SQL)

	Query Languages for NoSQL Databases
	Query Languages for Graph Databases
	Query Languages for the Semantic Web

	Query Languages for Distributed Search and Analytics Engines
	Splunk's Search Processing Language (SPL)
	ElasticSearch

	Company Specific Query Languages
	Microsoft's Advanced Hunting Query Language
	Nozomi's Network Query Language (N2QL)
	Endgame's Event Query Language (EQL)

