
 Eindhoven University of Technology

MASTER

Evaluation of textual variability languages in the context of complex systems

Alvarez Morales, Javier

Award date:
2020

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/5327a012-c8ba-410a-8275-515254b0c7f5

Master thesis

Evaluation of textual variability languages
in the context of complex systems

Author:

Javier Alvarez Morales

Supervisors:

Dr.Ir. L.G.W.A Cleophas

l.g.w.a.cleophas@tue.nl

Eindhoven University of Technology

Dr. G. Kahraman

g.kahraman@tue.nl

Eindhoven University of Technology

Dr.Ir. R.R.H Schiffelers

ramon.schiffelers@asml.com

ASML / Eindhoven University of Technology

July 30, 2020

mailto:l.g.w.a.cleophas@tue.nl
mailto:g.kahraman@tue.nl
mailto:ramon.schiffelers@asml.com

Contents

Introduction i

1 Variability management in SPLE 1

1.1 An overview of the variability management process 1

1.1.1 Variability management tools and industry adoption 3

1.1.2 Conclusions . 4

2 Variability modelling language capabilities 5

2.1 Contribution . 5

2.2 Chapter organization . 6

2.3 VMLs considered . 6

2.4 VML capabilities considered in this evaluation 8

2.4.1 Configurable elements . 8

2.4.2 Data types . 9

2.4.3 Constraint support . 9

2.4.4 Configuration support . 10

2.4.5 Composition support . 10

2.4.6 Language specification . 11

2.4.7 Tool support . 11

2.5 Comparison between variability modelling languages 12

i

CONTENTS ii

2.5.1 Forms of variation, extensibility and references 12

2.5.2 Type system support . 15

2.5.3 Constraint support . 17

2.5.4 Configuration support . 18

2.5.5 Composition mechanisms . 19

2.5.6 Formal semantics . 21

2.5.7 Tool support . 21

2.6 Variability management aspects relevant for CPSs 28

2.6.1 Binding time . 28

2.6.2 Dynamic Software Product Lines . 29

2.6.3 Configuration optimization goals . 29

2.7 Conclusions . 30

3 Variability language expressiveness evaluation 32

3.1 Ontological considerations in variability modelling 33

3.2 Ontological expressiveness evaluation framework 34

3.3 Asadi’s et al. theoretical framework for variability 35

3.3.1 Variability patterns in ATVF . 36

3.3.2 Bunge-Wand-Weber ontological concepts 37

3.3.3 Structure and process of a domain in ATFV 39

3.4 Representation mapping of feature modelling using ATFV 41

3.4.1 Mapping ontological constructs representing structural variability sources 41

3.4.2 Mapping ontological constructs representing process variability sources 44

3.4.3 Variability sources representation mapping in Asadi’s et al. work . . . 50

3.4.4 Variability patterns in feature modelling 51

3.4.5 Feature modelling evaluation using ATFV 53

CONTENTS iii

3.5 VMLs expressiveness evaluation using ATFV 54

3.6 Conclusions . 55

4 Clafer evaluation using ASML’s variability model 58

4.1 ASML’s Software Product Line . 59

4.2 Overview of the VPO to Clafer transformation 61

4.3 Variability Parameters in Clafer . 63

4.3.1 Modelling VPs in Clafer . 63

4.3.2 Decoding VP definitions from a VP overviews file 65

4.4 VPO constraints in Clafer . 70

4.4.1 Boolean Expressions in Clafer . 70

4.4.2 Clafer constraints and variability model resolution 71

4.4.3 VPO constraints as propositional formulae in Clafer 73

4.4.4 VP Interface Constraints . 76

4.4.5 VPO hierarchical mappings . 78

4.4.6 Assignment expressions . 84

4.4.7 IF expressions . 85

4.4.8 Default values as guarded constraints in Clafer 91

4.5 Model transformation results . 92

4.6 Modelling SMDC specification using Clafer 93

4.6.1 SMDC configuration file . 94

4.6.2 Modelling the SMDC specification in Clafer 97

4.6.3 Analysis of SMDC specifications in Clafer 99

4.7 Clafer missing constructs . 100

4.8 Clafer’s toolset evaluation . 101

4.9 Conclusions . 102

CONTENTS iv

5 Conclusions 104

Introduction

Modern software-intensive systems exhibit exponential growth in size and heterogeneity [1].
Increasingly powerful and versatile hardware, along with fast-moving and highly competitive
markets demand innovative software engineering methodologies. Software product line en-
gineering (SPLE) offers a systematic approach to reuse and manage software artefacts—e.g.
requirements, architecture, code, test cases. A software product line (also known as software
product family) can be defined as “a set of software-reliant systems that share a common
managed set of features satisfying a particular market or mission area, and are built from a
common set of core assets in a prescribed way” [2]. This approach of software development
has proved to shorten development time and reduce costs while improving the overall quality
by means of reuse [3].

Problem context

In the context of modern complex systems—such as the lithography machines designed and
built by ASML—variability management methodologies face challenges that remain unad-
dressed by “traditional” SPLE techniques. The behaviour of complex systems is difficult to
model due to the dependencies, relationships, or other types of interactions between their
parts and with their environment [4]. These systems are usually also “variable-intensive”
because they need to accommodate diverse application and deployment scenarios [1]. Fur-
thermore, today’s stakeholders and customers expect flexibility in even more dimensions
(e.g. features, context awareness, processing power, etc.). The increasing system complexity
and variability requirements in ASML’s products demand innovative approaches to handling
variability.

Lithography machines are heterogeneous systems, integrating mechanical, electrical/electron-
ics and software systems. The system’s precision level is achieved using dozens of intercon-
nected computers running hundreds of parallel processes, meeting strict timing requirements
and implementing advanced control techniques. Complex systems which integrate computa-
tion, physical processes and networks are called Cyber-physical systems (CPSs) [5]. A key
element in the design of CPSs is the study of joint dynamics; computers, software, networks
and physical processes are often modelled together using the so-called hybrid models [5]. The
variability in application and deployment scenarios add to the already inherently complex
software that controls CPSs.

i

INTRODUCTION ii

Problem Description

This works focuses on the problem of variability representation, which is the first step in the
variability management process. There is a need for formal description of variability among
different systems to apply computer-assisted analysis techniques that will ultimately enable
the systematic reuse of engineering artefacts. Reuse is a key factor in shortening engineering
development cycles, reducing costs and improving product quality.

This work proposes the following path: systematic literature review, the application of a
theoretical expressiveness evaluation framework, and the selection and practical evaluation
of a variability modelling language at ASML. Firstly, we will analyze the comparison of recent
textual variability languages based on the systematic literature review by Eichelberger et al.
in [6] and expanded by ter Beek et. al in [7]; we further expanded these works by adding
tool support as an evaluation criterion. Secondly, Asadi’s et al. theoretical framework for
variability (ATFV) will be used to assess the expressiveness of fourteen VMLs. Based on
the capabilities in the literature survey, the expressiveness provided by using ATFV and the
robustness of the toolset, one VML will be selected and evaluated using ASML’s variability
models. Thirdly, we will verify if the selected variability language has the necessary constructs
to represent large variability models such as ASML’s, and if tools are robust enough to deal
with them.

Specifically this work aims to address the following (research) questions:

• RQ1: Can we effectively evaluate the existing variability modelling languages using the
aforementioned approaches?

• RQ2: Is the selected variability modelling language expressive enough to represent
ASML variability models?

• RQ3: Are the tools of the selected variability modelling language robust enough to deal
with the variability models at ASML?

Thesis organization

Chapter 1 presents an overview of the variability management process in the context of SPLE
and the importance of variability management tools for industry adoption. This context is
important for understanding the role of variability modelling within the variability manage-
ment process.

Next, the most relevant capabilities of fourteen textual variability languages are compared
based on the work of Eichelberger et al. [6] and ter Beek et al. [7]. Tool support was
added as an evaluation criterion due to its relevance for industry adoption in general, and
for the practical aspect of our evaluation in particular. The recently proposed High-Level
Variability Language (HLVL) was added for completeness and also because of it is presented
as an intermediate representation for other variability languages. Finally, Eichelberger’s et

INTRODUCTION iii

al. and ter Beek’s et al. assessment was revised; the results of all of this are presented in
Chapter 2.

Furthermore, Asadi’s et al. theoretical framework for variability (ATFV) is expanded and
then used to provide an alternative and more detailed assessment of feature modelling. This
mapping is then extrapolated to the fourteen VMLs considered in Chapter 2. The value of
this proposal as an evaluation framework is discussed in Chapter 3

Chapter 4 then presents a model transformation from the ASML variability models to the
chosen variability language. Missing constructs in the target language are identified through
this process (RQ2). Furthermore, robustness of the chosen variability language tools is eval-
uated by performing analysis in the translated models to address RQ3.

Finally, the conclusions of our work and a definitive answer for RQ1 are presented in Chapter
5, where we address the implications for ASML and discuss future work opportunities.

Acknowledgements

I would like to thank to my thesis supervisors Dr.Ir. Loek G.W.A Cleophas, Dr. Gökhan
Kahraman, and Dr.Ir. Ramon R.H Schiffelers for their feedback and support during this
work. In particular to Dr.Ir. Cleophas, for patiently reading every draft of this work and
providing not only helpful insights but encouraging words.

To ASML for giving me the opportunity of this challenge. Special thanks to Pieter Kunst
from the configuration management team at ASML, who answered many questions related to
the company’s variability models; and to Micha l Antkiewicz from the University of Waterloo,
who always replied to my emails about the Clafer language and its toolset.

This work is specially dedicated to my wife Aileen, who is always there when I feel over-
whelmed and doubtful. Thank you for proof-reading this document and asking the right
questions to improve its contents.

Chapter 1

Variability management in SPLE

Identifying and managing commonalities and variability in software product lines is usually
referred to as variability management [8]. Variability management comprises domain and ap-
plication engineering processes [3]. The domain engineering process is responsible for defining
commonality and variability of the product line, and for establishing reusable artefacts. The
application engineering process is responsible for deriving product line applications from
those reusable artefacts. Application engineers bind existing software components according
to application-specific needs, maximizing the benefits of reusable artefacts [9].

1.1 An overview of the variability management process

A traditional software product line is composed of three main parts: problem space, solution
space and a mapping between these two spaces [9]. The problem space is captured in the
variability model. The actual artefacts used to build the product variants form the solution
space. To enable software product derivation, the links between configurable elements in the
model and the artefacts implementing those elements should be explicitly documented. This
mapping information is frequently referred to as configuration knowledge [10]—dependencies
and constraints among elements in the variability model are considered configuration infor-
mation as well.

The variability modelling process defines and documents variabilities and commonalities
among a set of products; although some approaches, such as decision modelling, focus only on
documenting variability [11]. A variability model represents the variability between a set of
products so that it provides the information at a system’s level and facilitates comprehension
of variability [12].

The variability modelling process needs to answer two basic questions: 1. What varies? and
2. How does it vary? [9]. The answer to the first question leads to a set of variable items or
variable properties of an item called variation points. By answering the second question, the

1

CHAPTER 1. VARIABILITY MANAGEMENT IN SPLE 2

possible instances of a variable item or a variable property, the variants, are identified.

Once the system’s variation points and variants are defined, the domain engineering process
identifies their dependencies and constraints. These constraints may be between two variants,
between a variation point and a variant, or between variation points. Variation points, vari-
ants and constraints comprise a variability model, which is formally defined using a variability
modelling language (VML).

The process of resolving all the variability within a variability model is known as product
derivation. When a derived product satisfies all the variability model constraints, we say
that it is a valid product—otherwise it is invalid [3].

Several variability modelling techniques have been developed over the last three decades [12].
Feature modelling and decision modelling have become the most popular [13]. The majority of
existing variability languages support at least one of these approaches, with feature modelling
being the most widely supported [14].

Feature modelling has its origins in Feature-Oriented Domain Analysis (FODA) [15]. Feature
models capture features, which are defined as “end-user visible characteristics of systems in
the domain” [13]. Features are organized hierarchically in a feature tree, and feature groups
represent choices between multiple sub-features [12]. Constraints and dependencies between
features can typically be expressed in distinct constraint formalisms. Feature models are used
to model both the commonality and the variability of a set of products. Product derivation
is performed by selecting features from the feature model.

Decision modelling focuses on decisions that distinguish the products of a product line; its
main goal is to support product derivation. Decisions can be defined as differences among
systems [13], i.e., what needs to be decided upon when configuring a system. Decision
models do not document commonality—a characteristic that differentiates them from feature
models. The mapping of decisions to reusable assets is, therefore, a central concept in decision
modelling. Dependencies and constraints between decisions can be defined using constraint
languages as in feature models.

Commonality and variability between software systems is modelled through variability mod-
els, forming the so-called problem space. The set of common artefacts implementing the
functionality described in a variability model is the solution space. In order to automatically
build products from the software artefacts using configurations derived from a variability
model it is necessary to define a mapping between problem and solution space. The cor-
rect traceability between elements represented in a variability model and the implementation
artefacts has been identified in the literature as one of the most important challenges in
variability management [14].

After mapping the problem space to the solution space, a mechanism to build the product
needs to be defined. This mechanism has three inputs: a product configuration derived from
the variability model (problem space), a set of common artefacts (solution space) and the
mapping information of configurable items to artefacts. Techniques such as cloning, con-
ditional compilation, conditional execution, polymorphism, module replacement and runtime

CHAPTER 1. VARIABILITY MANAGEMENT IN SPLE 3

reconfiguration are variability realization examples, each one with a different level of complex-
ity. Factors like code granularity, change frequency and binding time should be considered
when deciding which mechanism to use; no single approach is appropriate for every situa-
tion. These realization techniques are independent of the variability representation and can
be combined to effectuate the variability specified in the model. For instance, two different
SPLs could represent variability using feature models, yet one uses conditional compilation
and module replacement while the other relies completely on runtime reconfiguration to ef-
fectuate the variability.

1.1.1 Variability management tools and industry adoption

A plethora of variability modelling languages and tools have been developed over the last
three decades, however, these tools rarely go beyond basic proof-of-concept implementation
and most of them have had minimal industry success [14]. Variability management tools
used in the industry are frequently developed internally and thus meet companies’ variability
requirements, but rarely work in different contexts and domains [16, 17]. In some cases,
custom tools do not completely follow a particular variability modelling approach (e.g. fea-
ture modelling). Moreover, variability models are often not used; instead, the configuration
knowledge is described directly in the code, through simple XML files or DSLs [14]. These
solutions might initially solve the variability management problem, but often fall short as the
configuration knowledge increases.

The vast majority of open-source variability management tools have been developed as part
of an academic project, given that internally developed custom tools are rarely shared by
companies. Thus, their evaluation is usually limited to academic tools. Scientific papers
seldom provide an in-depth analysis of the presented tools and their limitations; instead, toy
examples are often used to highlight the advantages (and sometimes a few shortcomings)
of the presented proposal. Quality attributes relevant to the practical use of tools such as
usability, scalability, integration, and performance are usually not included in these studies;
let alone feedback from end-users [14]. This situation is understandable; academic projects
often have limited budgets and tight deadlines. With such limited resources, developing fully-
fledged toolsets for their language proposals or providing a thorough evaluation of them is
not feasible.

An example of a successful variability management tool, designed and developed outside
academia, is KConfig—the Linux Kernel configuration management tool. The kernel devel-
opers designed the KConfig language as an explicit variability specification for the Linux
Kernel [18]. The KConfig model closely resembles and can be represented as a feature model
[19]. The Linux variability management system has proven to be effective in handling the
Kernel’s complexity and its exponential growth in size; the code base has more than 15,000
configuration options and an immense number of possible product configurations [20]. Al-
though KConfig provides a working solution for the Linux kernel domain, it cannot be easily
applied in other contexts. This variability language only incorporates simple nested configu-
ration elements called configs and a basic constraint language to restrict the options on those
configs, which is not expressive enough for different domains.

CHAPTER 1. VARIABILITY MANAGEMENT IN SPLE 4

Three main challenges in variability management tools have been identified in the literature:
scalability of variability models, consistency and correctness verification and mapping prob-
lem and solutions space [14]. Both the language and the tools must incorporate features that
allow scaling the variability models in a principled manner. Otherwise, the variability man-
agement software easily becomes an ad-hoc collection of tools using an inscrutable patchwork
of techniques. Applying automated reasoning techniques to ensure consistency and correct-
ness of the variability models requires that the language provides well-defined semantics.
When consistency and correctness of the models are not effectively verified, the tools quickly
fall into disuse. The problem of mapping between problem and solution spaces is not even
addressed by many tools [14]. For those that incorporate some mapping information, the
used techniques vary.

1.1.2 Conclusions

This chapter provided a brief description of the variability management process in SPLE.
Additionally, a few challenges on the adoption of variability management tools by the industry
were described. The purpose of this chapter was to locate variability modelling within the
wider context of variability management.

In the next chapter we focus on analysing the capabilities of fourteen variability modelling
languages, which will provided us with an overview of the state recent variability modelling
languages.

Chapter 2

Variability modelling language
capabilities

Dozens of visual and textual variability modelling specifications have been proposed during
the last three decades, each one offering distinctive capabilities as variability modelling needs
evolve. This chapter will provide an overview and a comparison of those main characteristics
using recent language proposals.

Textual representation of variability improves interoperability with other tools by facilitating
model transformations—an important requirement when working with large and complex
models. It also enables the use of existing tools for editing and manipulating textual state-
ments [21]. Even though visual variability representations—like FODA—provide an impor-
tant cognitive advantage, they become unpractical as the models grow. With an appropriate
textual representation, visualization tools can be built on top, improving usability and en-
hancing the user’s experience. Hence, only text-based variability languages are considered in
the presented overview.

2.1 Contribution

Several published works evaluate the capabilities of different variability languages [6, 7, 22–
24] based on different evaluation criteria. This chapter is the result of a literature study and
provides a comparison of the capabilities offered by fourteen variability modelling languages
proposed over the last two decades. The purpose of the information presented in this chapter
is to provide a useful overview of the main characteristics offered by the included VMLs; it
does not pretend by any means to give a detailed description of every language.

This chapter is based on the systematic literature review conducted by Eichelberger et al.
in [6] and then updated by ter Beek et al. in [7]. These publications provide a succinct
yet complete overview of the most relevant capabilities offered by the VMLs proposed in

5

CHAPTER 2. VARIABILITY MODELLING LANGUAGE CAPABILITIES 6

recent years. Our contributions here, compared to [6] and [7], consist of: 1) incorporating
the recently proposed High-Level Variability Language (HLVL); 2) adding tool support as a
criterion for comparison; and 3) revising the support level granted to some VMLs in certain
categories after a careful review of the language’s references.

We argue that toolset support is a critical aspect for industry adoption because companies
need to be certain that a variability language will work in their use case before integrating
it as part of their workflow. Because companies rarely consider a new variability language if
they need to develop tools from scratch to simply evaluate it, tool support provided by each
variability language is presented in detail in this chapter.

2.2 Chapter organization

The remainder of this chapter is organized as follows:

• Section 2.3: presentation of the fourteen VMLs included in this evaluation.

• Section 2.4: description of capabilities selected in this evaluation.

• Section 2.5: comparison of the VMLs based on the considered capabilities.

• Section 2.6: introduction of other capabilities specifically relevant to cyber-physical
systems.

• Section 2.7: chapter’s conclusions and discussion of promising language proposal in the
context of ASML.

2.3 VMLs considered

The list of fourteen textual variability languages is shown below. Items 1–11 were originally
presented by Eichelberger et al. in [6], ter Beek et al. updated the evaluation of Clafer to
consider its behavioural extension (item 11), added PyFML and VM (items 12–13) in [7],
the HLVL (item 14) is incorporated in this work. It presents a brief description of the VMLs
considered in this evaluation and includes the main references used in each case. When
another publication was consulted, the appropriate reference is provided in the running text.

1. Feature Description Language (FDL) [25]: textual language that supports basic feature
modelling.

2. Forfamel [26]: feature modelling language that is part of the Kumbang modelling frame-
work [27].

CHAPTER 2. VARIABILITY MODELLING LANGUAGE CAPABILITIES 7

3. Batory’s tree grammars: as introduced by Batory in [28], it defines a cardinality-based
feature modelling language.

4. Variability Specification Language (VSL) [29]: it is part of the Compositional Variabil-
ity Management (CVM) framework which provides advanced constructs for composition
of feature models.

5. Simple XML Feature Model (SXFM) [30]: an XML-based representation of feature
models used in the software product line online tools website1

6. FAMILIAR [31]: a DSL that allows combining and analyzing feature models. Enables
management of large scale variability models.

7. Text-based Variability Language (TVL) [32]: the first textual feature modelling lan-
guage. It incorporates aspects that are not part of FODA [15] such as feature attributes,
cardinalities and modularization.

8. µTVL [33]: a variation of TVL implemented for the ABS, a language for Abstract
Behavioural Specification. It removes some characteristics present in TVL, but incor-
porates the possibility of working with multiple trees in a single model.

9. VELVET [34]: a TVL-inspired language with several extensions and reimplemented
from scratch. It is integrated as part of Feature IDE.

10. Integrated Variability Modeling Language (IVML) [35, 36]: IVML is part of the EASy-
Producer framework, which aims to provide a complete tool for managing SPLs. This
framework has been developed by the Software Systems Engineering group at the Uni-
versity of Hildesheim in Germany. IVML follows the decision modeling rather than
feature modelling paradigm.

11. Clafer [37, 38] is a language proposal combining behaviour, structure, and variability
using an integrated notation. However, a subset of the language can be used to model
feature and decision models. Clafer was designed by researchers from the University of
Waterloo and the IT University of Copenhagen.

12. PyFML [39]: a simple textual feature modelling language based on and implemented
in Python.

13. Variability Modeling (VM) [40]: a variability language designed and implemented with
specific requirements for the video domain. This project was a joint effort between
academia and industry.

14. The High-Level Variability Language (HLVL) [41]: aims to be a standard variability
language that can be used as an intermediate representation of models specified in other
variability languages.

1http://www.splot-research.org/

CHAPTER 2. VARIABILITY MODELLING LANGUAGE CAPABILITIES 8

2.4 VML capabilities considered in this evaluation

The capabilities considered in this comparison are grouped in seven categories: configurable
elements, data types, constraint support, configuration support, language specification, com-
position support and tool support. Each evaluation category is described in this section.

2.4.1 Configurable elements

Most of the variability languages support feature modelling, in which the basic configura-
tion element is the feature, and features can be grouped in feature groups. Among these
groups, optional, alternative and multiple selection is possible. Over time, more informa-
tion was incorporated to variable items through cardinalities and attributes; new constructs
such as variability extensions and references enable more expressive ways to relate different
configurable elements in a variability model.

• Optional : A configurable element can be optionally selected.

• Alternative: Among a group of variable elements, one and only one must be selected.

• Multiple selection: More than one element can be selected from a group.

• Extension: It is possible to extend a base variability model.

• Attributes: Data attached to the basic variability unit

• Cardinalities: How many instances of a configurable element are allowed.

• References: Alias for an variable element that is not locally defined.

Similar to the concept of class extension in object-oriented programming, some variability
languages allow to define a base variability model and then provide mechanisms to extend this
base definition—sometimes in a different file or module. This capability enables working with
open variability models and software ecosystems [42]. We encompassed all these mechanisms
under the extension capability.

Attributes are often supported as attached information to the basic variability unit. These
attributes usually use the numeric data types provided by the language (e.g. integers or
reals), such numeric attributes are often used to model quantitative aspects of variability,
enabling single- or multi-objective optimization. Sometimes strings are attached to variable
elements to provide a brief description.

Cardinality-based feature models introduced the concept of cardinalities as an extension of
feature modelling [43]. Cardinality denotes how many instances of a configurable element
can be part of a configuration and it is expressed indicating a lower- and a upper-bound;
lower-bound n and upper-bound m is specified as [n..m]. Optional ([0..1]) and mandatory

CHAPTER 2. VARIABILITY MODELLING LANGUAGE CAPABILITIES 9

([1..1]) variability can be specified on atomic features (i.e. features that are not decomposed
further). When applied to a feature group, alternative ([1..1]) and multiple selection (e.g.[0..*]
or [1..*]) can be modelled using cardinalities. Cardinalities are more expressive than feature
groups in feature modelling when dealing with multiple selection. For instance, only through
using cardinalities is it possible to enforce the selection of at least two and at most seven
elements in a group containing of say ten elements ([2..7]).

A number of languages support the notion of references. On a feature tree, references can
be used to point to a feature defined in a different branch or even in a different tree (when
multiple models are supported). Additionally, references allow the sharing of configurations
between multiple variability models.

2.4.2 Data types

Typed variables are used to model variability (e.g. decision modelling) or to define attributes
(e.g. feature models with attributes). Three different categories of data types are distin-
guished in [6]:

• Predefined : Basic data types predefined in the language. These data types are also
found in most programming languages. E.g. string, boolean, integer, float.

• Derived : Data types derived from a basic type. E.g. sets of predefined types

• User-defined : A data type with a user-defined domain. E.g. enumerations.

Predefined data types are the most widely supported and mainly used to express attributes
attached to variable items.

Eichelberger et al. does not provide a clear definition of the derived data types in [7], however,
containers and constrained variables were identified as derived data types in their evaluation.
A container is a set of configurable elements of the same type while constrained variables are
those which their domain is reduced by a constraint—e.g. limit an integer to only positive
numbers.

When the domain is entirely defined by the user, such as in enumerations, it is classified as a
user-defined type. Compound data structures containing different predefined data types are
considered user-defined as well.

2.4.3 Constraint support

Diagrammatic variability representations (such as feature modelling) often supports requires
(element A requires element B) and excludes (element A excludes element B) constraints.
Eichelberger et al. refers to these two constructs as basic constraint support [6]. This capa-
bility is considered supported if the language provide explicit construct to express them.

CHAPTER 2. VARIABILITY MODELLING LANGUAGE CAPABILITIES 10

Propositional logic is supported by most of the textual VMLs to specify dependencies and
constraints. Boolean values represent variants and these are related using and (∧), or (∨), not
(¬) and implies (=⇒) operators. A boolean variable appearing in a propositional formula
indicates that its associated variant must be part of a configuration. On the contrary, when
the same boolean variable is negated, it means that such variant must be excluded. Even
though simple constraints can be represented using propositional logic, sometimes language
designers include the required and excludes constructs in addition to propositional logic, just
as syntactic sugar.

First-order logic incorporates the quantification operators for all (∀) and exists (∃) into the
variability language. The former requires that a (sub-)constraint holds for all the config-
urable elements while the latter requires that such (sub-)constraint holds for at least one
configuration.

As part of the constraint language, relational and arithmetic expressions might be supported.
Relational expressions relate two variables using equal (==), greater than (>), greater or
equal than (≥), less than (<) and less or equal than (≤) operators. Arithmetic expressions
offer the possibility of deriving new values from an arithmetic formulae which might include
operators such as addition or subtraction. Both relational and arithmetic expressions are only
applicable to numeric or string data types and may be used in combination with propositional
or first-order logic.

2.4.4 Configuration support

The basic configuration support offered in textual variability languages is the value assign-
ment, i.e. relate a variable with one of its domain values. This support can be explicit (e.g.
a statement to select features) or implicit (e.g. in terms of constraints).

Based on value setting operations, many languages incorporate the concept of partial and
complete configuration into the language, allowing the designation of a range of value assign-
ments as a configuration managed separately. Partial configurations enable the configuration
of large variability systems in several stages (known as staged configurations [44]): the ap-
plication engineer can load a configuration to set most of the variables and then fine-tune
the remaining values manually. The final configuration can then be stored as a complete
configuration and reused whenever needed.

Finally, it is possible to define default values in some VMLs. Default values can be overwritten
during the model configuration, otherwise used as part of a final configuration. Similar to
partial and complete configurations, default values simplify the configuration process.

2.4.5 Composition support

Scalability is essential for a variability modelling approach as the complexity of most real-
world product lines will not be handled effectively if the solution does not scale [45]. This

CHAPTER 2. VARIABILITY MODELLING LANGUAGE CAPABILITIES 11

category determines whether or not a variability language enables scalability of models by
providing composition and modularization mechanisms.

2.4.6 Language specification

The degree of formality used for language specification is another evaluation criteria. Three
different resources have been identified for that purpose: examples, grammars, and formal
semantics [6]. Examples are the simplest way to informally explain how to build syntactically
(structure) and semantically (intended meaning) correct models. A language grammar defines
a set of rewrite rules for generating a syntactically valid program (or model). A grammar is
oftentimes provided as part of the language specification to describe it more accurately than
using examples only. Finally, formal semantics provide meaning to language constructs using
a mathematical model.

When formal semantics are provided for a particular language, it is considered formally spec-
ified. If a complete grammar for the language is included in the consulted references, the
formal specification is considered partial. Examples are not considered as a formal specifica-
tion, and thus, marked as non-supported.

2.4.7 Tool support

As explained in Chapter 1, tool support is a crucial factor for the adoption of a new vari-
ability language, particularly in an industrial context. Most of the language specifications
accompanied with tools, never go beyond the initial version while more robust solutions often
are not maintained anymore after a certain point. It has been identified that tool support
is crucial, particularly for large-scale systems [46]. Large-scale systems require scalable mod-
elling approaches, which can be enabled only by the adequate tools [47]. Furthermore, this
work includes a practical evaluation of a variability language using ASML’s models, hence,
its incorporation as an evaluation criterion.

The following four levels of tool support are considered:

• Full support : The following requirements shall be met

– Syntax validation.

– Configuration support.

– Constraints evaluation.

• Partial support : Only some of the requirements defined in the previous bullet are
supported.

• Non-verifiable support : The tools could not be installed following the provided instruc-
tions or throw critical errors when executed.

CHAPTER 2. VARIABILITY MODELLING LANGUAGE CAPABILITIES 12

• No support : Only a language specification, but no tool support, is provided by the
authors.

Full support is granted to a tool when three requirements are covered: syntax validation,
configuration support and constraints evaluation. For an arbitrary model using any construct
in the language specification, the tools shall determine whether or not it is syntactically
correct. Syntax verification might be done by different means, e.g. live validation as part
of an editor or during the compilation of the model using the command line. Configuration
support means that the user can assign variants to variation points to resolve variability and
derive a model instance (i.e. a product configuration). Finally, the tools shall evaluate the
constraints and ensure that all the model instances satisfy them. These tree requirements
ensures that an user can perform one of the elementary activities in variability management,
namely, to generate a valid software configuration from a variability model.

2.5 Comparison between variability modelling languages

Table 2.1 shows the supported characteristics for each VML evaluated, the elements in green
are those that were included or changed from the results presented by Beek et al. in [7]. The
four levels of support and their associated notation are the following:

• Direct support(+): A language construct supporting the evaluated capability is clearly
identified in the available literature.

• Indirect support (±): Certain characteristic cannot be one-to-one mapped to a language
concept, yet it is supported by the language, e.g. requires and excludes constraints
might not be part of the language concepts but still supported through propositional
logic.

• Unclear (?): Indications that a characteristic is supported are found in the literature,
but it is not completely clear given the lack of a detailed description. This case is
common in those cases where language constructs are only explained by means of simple
examples.

• No support (−): There is no indication that the considered aspect is currently supported
by the language.

For the toolset evaluation, the notation is used as follows: Full (+), partial (±), non-verifiable
(?) and no (−) support.

2.5.1 Forms of variation, extensibility and references

All the evaluated VMLs directly or indirectly support the three basic forms of variation
(optional, alternative and multiple selection). Most of the specifications support cardinalities

CHAPTER 2. VARIABILITY MODELLING LANGUAGE CAPABILITIES 13

forms of variation data types constraint expressions configurations

VML

op
ti

on
al

al
te

rn
at

iv
e

m
u

lt
ip

le

ex
te

n
si

on

A
tt

ri
b

u
te

s

ca
rd

in
al

it
ie

s

re
fe

re
n

ce
s

p
re

d
efi

n
ed

d
er

iv
ed

u
se

r-
d

efi
n

ed

si
m

p
le

p
ro

p
os

it
io

n
al

fi
rs

t-
or

d
er

re
la

ti
on

a
l

ar
it

h
m

et
ic

d
ef

au
lt

va
lu

es

as
si

g
n

va
lu

es

p
ar

ti
al

co
m

p
le

te

co
m

p
o
si

ti
on

fo
rm

al
sp

ec
.

to
ol

su
p

p
or

t

FDL + + + - - - - - - - + - - - - + ± - - - ± -
Forfamel + + + + + + + - - + - + + + + - + - + - ± -

Tree-grammars + + + - - + - - - - - + - - - - ± - - - - -
VSL + + + + + + + + - + + ? ? - ? + + + + + - ?

SXFM + + + - - + - - - - - + - - - - ± - - - - +
FAMILIAR + + + - - - ? + + - - + - - - - + + + + - ±

TVL + + + ? + + + + - + - + - + + - + - - - + ±
µTVL + + ± + + + - + - - + + - + + - ? + + - + +
Clafer + + + + + + + + + + - + + + + - + + + + + +

VELVET ± + + + + ± + + - - - + - + - - + + ± + - -
IVML + + + + + ± + + + + - + + + + + + + ± + - +

PyFML + + + - + + - + - - + + - + + + + - - - - ±
VM + + + - + + - + - - + + - + + + + + ± + - ?

HLVL + + + - + + - + - - + + - + + - + + + - - ?

Table 2.1: Variability language capabilities and supported characteristics based
on Table 1 in [7]. Added or updated values are shown in green

and attributes while around half of them incorporate variability extension mechanisms and
references.

FDL supports optional, alternative and multiple selection explicitly. It incorporates the
selection constraints one-of (one and only one) and more-of (one or more) for feature groups
[25]. Eichelberger et al. state in [6] that these constraints on feature group constructs imply
certain lower an upper bounds, hence, cardinalities are implicitly supported. However, these
two constraints represent the cardinalities [1..1] and [1..*] only. We consider that cardinality is
supported if it is possible to specify arbitrary bounds, which is not the case for this language,
and hence unsupported. Neither data types nor references nor attached information are
supported by FDL.

Forfamel supports the basic forms of variation using cardinalities. Features are represented
using extendable types and can be referenced. Further, each feature has an arbitrary number
of attributes, such attributes might be numeric or a user-defined set of values (i.e. enumera-
tion).

Batory’s tree grammars (abbreviated as tree-grammars from now on) explicitly express
optional and alternative selection as well as cardinalities [28]. Multiple selection is indirectly
supported using cardinalities. Data types, references and attached information are not sup-
ported. SXFM follows a rather similar approach, with the only difference being that it only
supports feature groups with numeric cardinalities [30].

VSL supports cardinality based feature modelling; Optional and alternative selection are in-
corporated explicitly while multiple selection using cardinalities. A special kind of references
referred to as configuration links are supported. Using these configuration links the config-

CHAPTER 2. VARIABILITY MODELLING LANGUAGE CAPABILITIES 14

uration for a target feature model can be derived from a source configuration model; these
links define a mapping between source and target models, allowing automatic configuration
derivation [48].

FAMILIAR does not support cardinalities or attached information, only simple constraint
constructs. When dealing with complex data types (like sets), that information is stored as
a reference rather than values (akin to Java) [31], however, there is no clear indication that
references to arbitrary data types are supported.

TVL supports optional and alternative selection explicitly and multiple selection using car-
dinalities attached to feature groups. According to the examples in [32] forward definitions
are allowed using the “include” keyword, but it is not explicitly indicated if later extensions
and refinements of feature models are supported.

µTVL offers almost the same support that TVL regarding the forms of variation. However,
TVL specifies multiple selection through the someOf construct while µTVL indirectly sup-
ports it using cardinalities. Further, references are not supported in this language proposal.

Clafer supports all the forms of variability explicitly. Extension is possible through inheri-
tance using abstract clafers, which can be used as an extensible class. Besides feature groups,
cardinalities can be attached to abstract features, limiting the number of concrete clafers
that can be instantiated. References can be defined to any arbitrary data type (including
references to clafers). Integers and Strings can be used as attached information.

Features are by default optional in VELVET. The keyword mandatory must be used to
denote non-optional features, thus, optional is considered as indirectly supported. The base
feature model definition can be specified in a file, and refined in different files—allowing
extensibility. Group selection might be constrained using someof ([1..*]) and oneof ([1..1]),
but arbitrary lower and upper bounds are not supported. It is possible to defined named
constraints in VELVET, which can be then referenced from other parts of the model.

IVML represents variability using typed decision variables. Decision variables are grouped
using compounds—a container type similar to structs or records in programming languages.
Extensibility is supported through compounds refinement. Using the refines keyword,
additional elements can be added to a base compound creating an extended version—akin
to subclassing in object-oriented languages [36]. Cardinalities are indirectly supported in
containers (sequences and sets), where the number of selectable elements from a container
can be restricted using attached constraints. Further, user-defined typed variables (meta-
attributes) can be added to decision variable attributes. These meta-attributes allow the same
level of expressiveness as decision variables and can be used to add any kind of variability
information, e.g. binding time [7].

PyFML enables all the basic forms of variability through cardinalities, which are explicitly
supported on basic features. Beek et al. assessed cardinalities as non-supported for PyFML in
[7] without any rationale behind that decision. This evaluation was changed after consulting
[39] where it is explicitly mentioned that instance cardinalities are supported. Arbitrary
attributes can be attached to features—boolean, integers, floating and string values. Yet,

CHAPTER 2. VARIABILITY MODELLING LANGUAGE CAPABILITIES 15

it is not necessary to specify the data type in the attribute declaration—dynamic typing is
supported as in Python.

VM expresses features trees in the so-called “Relationship” block, where the hierarchical
and group relations between features are defined. Cardinalities are explicitly supported for
feature groups and individual features as well. Cardinalities can be specified in single features
to support multi-features (also called clone enabled features), specifying a lower and upper
bound of the number of clones a such feature allows. Attributes are defined in the “Attributes”
block and associated with individual features defined in the Relationships block. These
attributes might be of type boolean, integer, float, string and enum.

HLVL enables basic forms of variability through cardinalities. Two different kind of attached
information are supported: attributes and comments. Attributes might be boolean, integer
and symbolic; symbolic attributes are represented by a set of strings, what is commonly know
as enumerations in other languages. Integer attributes might be bounded to a range of values
or set to a fixed value.

2.5.2 Type system support

The specific data types supported by each VML are listed in Table 2.2. Additionally, it is
identified where these typed variables are used on each case.

The first observation is that the majority of the evaluated VMLs provide some predefined
data types, excepting FDL, Forfamel, Tree grammars and SXFM. Among the languages with
predefined data types, boolean, strings, integers and floating point2 types are commonly
supported. µTVL, Clafer and HLVL do not support floats, and Clafer does not support
booleans either. The languages which do not support predefined data types use feature and
feature group constructs (sometimes referred to as features types) only. Attributes are not
supported by any of the VMLs without predefined data types support.

IVML provides two kind of container types: sequences and sets. Container elements can
be of any supported data type. Both sequences and sets can contain an arbitrary num-
ber of elements; sequences can contain duplicates while sets cannot [36]. FAMILIAR
provides sets that store references to variables of any type [31]. An important difference
between IVML and FAMILIAR regarding containers is that IVML stores data while FA-
MILIAR only store references—all the variables contained in FAMILIAR’s sets need to
be previously declared. Additionally, IVML supports derived data types by aliasing pre-
defined types using typedef —akin to C/C++. Additionally, a constraint can be used to
restrict the values of the derived types. For instance, an arc degree type can defined as
typedef degree Integer with (degree >= 0 and Degree <= 360)

According to [6] and [7], Clafer support sets (i.e. containers). However, sets are internally
used during the instance resolution process but not available as a language construct for the
end-user [49]. Thus, Clafer sets are considered non-supported in our assessment. However,

2Real or Float is used depending on the language’s keyword. Both represent floating-point data types.

CHAPTER 2. VARIABILITY MODELLING LANGUAGE CAPABILITIES 16

Language predefined derived user-defined Applies to

FDL - - - -

Forfamel - - Enum
Attribute,
user feature

Tree Grammars - - - -

VSL
Boolean, Integer,

Float, String
- Enum

Parameter,
user attribute

SXFM - - - -

FAMILIAR
Boolean, Integer,

Real, String, Enum,
model, configuration

container -
Feature, model,
configuration

TVL
Boolean, Integer,

Real
-

Enum, Struct,
constant

Attribute

µTVL Boolean, Integer - - Attribute

Clafer Integer, String, clafer constrained basic type
enum,

clafer as a compound
clafer

VELVET
Boolean, Integer,

Float, String
- - Attribute

IVML
Boolean, Integer,

Real, String
container,
typedef

Enum,
compound

Decision variable,
meta-attribute

PyFML
Boolean, Integer,

Float, String
- - Attribute

VM
Boolean, Integer,

Real, String
- Enum Attributes

HLVL
Boolean, Integer,
comment (string)

- Symbolic (Enum) Items, Attribute

Table 2.2: Type system support based on Table 3 in [6]. Updated and added values
are in green

similar to IVML, Clafer can define derived data types by relating constraints to integer
variables to limit their domain. Eichelberger et al. indicates in [6] that data types are
applied to features in Clafer which is slightly inaccurate. The concept of feature does not
exist in this language, but clafers can be used to model features; hence, the data types are
applied to clafer. Both the lack of sets support and the application of data types was updated
in Table 2.2.

User-defined data types are mainly supported through enumerations as observed in Table
2.2. Besides, compound data types are also supported by TVL, Clafer and IVML. IVML’s
compound data type groups multiple type variables into a single element. Clafer and TVL
use clafers and structs for the same purpose. These compounds allow combining semantically
related variable elements during the modelling process. Clafer and IVML support compound
nesting (compound as a member of another compound), which allows to naturally represent a
system’s decomposition during the modelling process. Additionally, TVL provides the const
qualifier which sets a variable to a fixed value that is not allowed to change (semantics are
equivalent to const in the C language).

Typed variables are primarily used to define attributes. Some languages like FAMILIAR,
IVML, Clafer and HLVL also use typed variables to model variable elements. FAMILIAR
use the so-called complex data types to represent feature models (e.g. Feature model, Feature,

CHAPTER 2. VARIABILITY MODELLING LANGUAGE CAPABILITIES 17

Constraint are complex types). IVML follows a decision modelling paradigm. Variability is
modelled through decision variables and can be optionally associated to an arbitrary number
of attributes (know as meta-attributes). All the supported type variables in IVML can be
used in both decision variables and meta-attributes. Clafer uses clafers (compound types)
as basic modelling unit which can contain basic-type variables (integer and string) to model
feature attributes.

It is noticeable that FDL, Tree grammars and SXFM do not support any type variables. This
is because typed variables are used to represent attributes in feature modelling, and none of
these languages support attributes. These VMLs support textual representation of feature
diagrams in their original form (i.e. as proposed in FODA [15]), providing only the necessary
constructs to represent features, feature groups (AND-, OR- and XOR-groups) and simple
constraints (requires and excludes).

2.5.3 Constraint support

Almost all the languages considered support propositional logic for constraints specification;
except FDL which only supports simple dependencies. Language designers often decide to
integrate redundant constraint constructs as syntactic sugar for propositional logic, resulting
in more concise constraint expressions. For instance, requires and excludes constraints (simple
dependencies) are a special case of propositional logic and it is not necessary to support both,
however, µTVL, PyFML, VM and HLVL do it.

Forfamel uses the Kumbang Constraint Language [50], which supports first-order logic, re-
lational, arithmetic and cardinality expressions. This constraint language provides functions
that allows to obtain the number of instances or the presence of a particular feature.

VSL provides an extended set of simple dependencies (needs, excludes, alternatives, suggests,
impedes). Additionally, simplified propositional formulae, and arithmetic expressions are
supported in constraints.

Tree Grammars, FAMILIAR and SFXM provide full propositional logic. Beek et al.
evaluates SFXM propositional logic support as unclear in [7]. Whether or not is supported
cannot be concluded from the SFXM reference consulted [30]; however, after evaluating the
associated toolset, it was clear than propositional logic is supported by the language.

TVL, µTVL and VELVET specify constraint expressions in terms of propositional formulae
with relational expressions for integer attributes. Besides, µTVL provides the constructs
“require” and “exclude” for simple dependencies.

Clafer constraints are syntactically close to those of Alloy (one of its backend solvers); it sup-
ports first-order logic including propositional clauses, relational and arithmetic expressions.
It is indicated by Beek et al. in [7] that simple constraints are incorporated into Clafer.
However, no indication of simple constraint constructs were found neither in the consulted

CHAPTER 2. VARIABILITY MODELLING LANGUAGE CAPABILITIES 18

references nor in the language grammar3. Eichelberger et al. also consider simple constraints
unsupported by Clafer in [6].

IVML’s constraint language is built upon the Object Constraint Language (OCL) [51] with
additions for default values and value assignments. Thus, IVML also supports first-order
logic on containers in combination with propositional, relational, and arithmetic expressions.
Both Clafer and IVML use constraints for the restriction of existing types.

PyFML, VM and HLVL support propositional logic with relational and arithmetic ex-
pressions but no first-order logic. VM provides a unique construct called delta values.
A delta reduces the domain of a numeric variable. For instance, consider the expression
int vehicle.speed [0..130] indicated that the variable vehicle.speed can take
values between 0 and 130 (it is a constrained integer variable). However, the following ex-
pression int vehicle.speed [0..130] delta 5 is internally interpreted by the tool
as int vehicle.speed [0, 5, 10, ..,130]. VM’s delta is construct used to define
a set of linear constraints in a concise way, which is not found in any other of the considered
languages.

2.5.4 Configuration support

Besides configurable elements, their attributes and dependencies, a VML should provide
constructs for defining configurations. The main mechanisms for configuration definition is
the value assignment. Moreover, a variability language may also provide support for defining
default values, partial or complete configurations. Default values are taken by variables unless
a different value is set during the configuration. Partial and complete configurations allow
the user to assign a value to a set of the model’s variables at once.

ter Beek et al. marked all the configuration-related capabilities for Tree-grammars and
SXFM as non-supported in [7] without providing any rationale for this conclusion. This
lack of configuration support effectively means that these languages are not able to resolve
variability from the model, and therefore product configurations cannot be derived. This was
a clear indication of an inaccuracy because deriving product configurations is an mandatory
requirement for any SPL. After diving into the references it was found that value assignment
is indirectly supported by both languages.

Tree-grammars language does not support value assignment explicitly. However, variables’
domains can be restricted through propositional logic expressions, providing an implicit mech-
anism for variable assignment.

SXFM language does not support any configuration construct as part of its definition. The
S.P.L.O.T website4, which uses SXFM as a backend, provides a visual configuration tool.
The user can select values for all the variabilities defined in the model using the configurator.
Then, the user can generate an output file in XML or CVS containing pair-wise values.

3https://github.com/gsdlab/clafer/blob/master/src/clafer.cf
4http://www.splot-research.org/

https://github.com/gsdlab/clafer/blob/master/src/clafer.cf

CHAPTER 2. VARIABILITY MODELLING LANGUAGE CAPABILITIES 19

FDL supports value assignment (using the include constraint) and the possibility of defining
default values within a feature group. However, based on the specification published in [25],
it is unclear how the conditional value assignment, i.e. the default value, is implemented.
The satisfaction rules listed in Fig. 10 in [25] shows that the default construct is translated
as true and added to the constraint expression using a conjunction, which suggests that the
conditional assignment of default values have no impact in the satisfiability problem.

Forfamel allows the user to specify of values through constraints. Even though it does not
support default values, it is possible to specify complete configurations using the Kumbang
Configurator [27]. The Kumbang configurator is a configuration tool for SPLs that uses the
Kumbang language. Even though Forfamel and Kumbang are different languages, both are
part of the Kumbang modelling framework and thus, complete configuration capability is
considered covered.

FAMILIAR enables the explicit creation of configurations for a given feature model through
configuration variables. A specific configuration allows the selection and deselection of fea-
tures. Although not explicitly stated in literature, these configuration variables could be use
to define partial configurations in FAMILIAR.

TVL, µTVL and VELVET, PyFML, HLVL, VM and Clafer support assignments based
on constraints, which implicitly fix a configurable element (e.g. attributes or variation points)
to a value. Value assignments are done, in all cases, as part of a boolean expression using the
equallity operator (==). Besides basic assignments, VELVET and Clafer enable partial and
complete configurations through inheritance and constraints. µTVL uses the Product Selec-
tion Language (PSL)—a separate language specification—to select features and set attributes
of those features, which provides the capability to specify partial and complete configurations
as well.

It is reported by ter Beek et al. in [7] that VELVET supports default values, however, we
did not found any evidence of that in [34].

2.5.5 Composition mechanisms

In large variability models containing thousands of variabilities composition mechanisms sup-
port is crucial. Modelling a complex system on a VML that does not support composition
is similar to develop their software in an object-oriented language using a single class defini-
tion. Six out of the fourteen VMLs considered in this work support a composition mechanism,
namely, VSL, FAMILIAR, VELVET, Clafer, IVML and VM.

As in most programming languages, composition is achieved through a modular design. Mod-
ules are built independently, then, these can be referenced and used as part of a new module’s
definition. TVL and IVML support this form of composition. TVL provides the keyword
include, akin to C/C++, which includes the contents of the referenced file into the current
specification. Under the hood, the include statement is replaced with the file’s contents, a
simple yet efficient mechanism that allows the users to work on a modular design.

CHAPTER 2. VARIABILITY MODELLING LANGUAGE CAPABILITIES 20

Similarly, IVML provides the import statement, which allows the user to import an existing
project to the current one. IVML’s import provides more advanced functionality than TVL’s
include statement. IVML toolset verifies a project’s consistency before importing it; if it
contains errors, the import operation fails. Furthermore, IVML provides the keyword conflicts
to explicitly indicate incompatibility among projects. The conflicts annotation specifies that
two projects cannot be composed (i.e. it is not possible to import one project into the other),
it is even possible to mark specific project’s versions as incompatible.

Greatly inspired by object-oriented languages, VSL, Clafer and VELVET support inheritance,
allowing hierarchical composition of variability models. Inheritance is the mechanism of
basing an object (child object) upon another object (parent object). The child object, in
an object-oriented program, acquires all the properties and behaviours of the parent object.
Analogously, the derived object in a variability specification inherits all the variable items
and constraints from the base object.

VSL is part of the Compositional Variability Management (CVM) framework which supports
the combination of several feature models into a global variability model. The framework
provides advanced constructs to achieve modularity like feature links (for setting cross-tree
dependencies among feature models), configuration links to derive model configurations from
a source to a target model (i.e. sub-models in the composition) and the possibility of setting
public and private variability elements (to restrict data access between models). The language
borrows and adapts several concepts from OO languages, like “interface for variability” and
the possibility of specifying private and public elements in a feature model to restrict data
access [48].

Clafer supports composition on type level (clafers are used as a containment structure) and
on model level via inheritance. A clafer is used to contain variabilities (optional elements
or groups of elements with different cardinalities) and define clafer context constraints(i.e.
valid inside the clafer defintion). The variability model can be split into different clafers; each
clafer can be referenced from another one, which enables design modularity. Furthermore, a
clafer definition can extend or specialize an existing definition (called super clafer), giving the
possibility of defining a hierarchical structure and a layered design. Clafer defines abstract
and concrete clafers, which can be intuitively and approximately understood as classes and
objects, respectively. A concrete clafer is an instance of an abstract clafer as an object is a
class instance. Concrete clafers can be inherited from abstract and concrete definitions, while
abstract clafers only allows abstract clafers as the base definition.

Similarly, VELVET enables single inheritance, allowing to extend an existing definition by
adding new features and constraints. Besides, VELVET supports multiple inheritance, which
occurs when an object is derived from multiple base definitions. Multiple inheritance needs
to merge the base feature models first, which requires (1) the union of all features and (2)
the union of all constraints [34].

CHAPTER 2. VARIABILITY MODELLING LANGUAGE CAPABILITIES 21

2.5.6 Formal semantics

Clafer, TVL and µTVL provide a formal language description while FDL and Forfamel
provide a partial formal description. Clafer, TVL and µTVL provide a set of mathematical
definitions as a formal specification in [37], [32] and [33], respectively. FDL provides a set
of normalization, expansion and satisfaction rules. Normalization and expansion rules are
applied to the model to resolve variability, ending with an expression in a disjunctive normal
form representing the set of all possible configurations. Model constraints can be interpreted
using the satisfaction rules, yielding true or false for every disjunct defined in the previous
step. These rules provide, to some extent, a formal description of FDL’s semantics. and thus,
indirect support was granted to this language. Similarly, Forfamel provides a translation to
the Weight Constraint Rule Language (WCRL) [26]. A mapping from a feature model with
constraints to a constraint satisfaction problem is also considered an indirect description of
Forfamel formal semantics.

2.5.7 Tool support

The tool support offered by each VML considered in this evaluation is listed below:

• Full support : SXFM, µTVL, Clafer and IVML

• Partial support : FAMILIAR, TVL and PyFML

• Non-verifiable support : VSL, VM and HLVL

• No support : FDL, Forfamel, Tree-grammars and VELVET

Full-support

SFXM is used as the backend language for the S.P.L.O.T (Software Product Line Online
Tools) website (see Figure. 2.1) , which provides full support for the variability language. The
online toolset allows the user to specify feature models with constraints and provide some
feature model statistics, e.g. total number of features and cross-tree constraints. Feature
model analysis is also provided and includes a model’s consistency, its number of core and
dead features, and the number of valid configurations. The model is consistent if it has one or
more model instances, and it is inconsistent otherwise. Core features are those which appear
in all model instances while dead features do not appear in any (i.e. cannot be selected due
to constraints). The number of valid instances is only provided for small models (less than
100 features). For medium size models (between 100 and 300 features) only an indication is
shown (e.g.“more than a million instances”). When big models (more than 300 features) are
analyzed, the analysis keeps running indefinitely or it shows the message “the model is too
big”.

5Link: https://drive.google.com/file/d/1TmxB4fR4oTeBgk4Z6vbfr0R5xEkMUrJ7/view?usp=sharing

CHAPTER 2. VARIABILITY MODELLING LANGUAGE CAPABILITIES 22

VML Toolset related links

SXFM Online toolset: www.splot-research.org

µTVL
ABS project page: http://abs-models.org
Toolset installation (Docker): https://abs-models.org/getting started/docker/

IVML
Project page: https://sse.uni-hildesheim.de/en/research/projects/easy-producer/
Eclipse update site: https://projects.sse.uni-hildesheim.de/easy/
Source code repository: https://github.com/SSEHUB/EASyProducer

Clafer

Project page: https://www.clafer.org/
Software installation: https://www.clafer.org/p/software.html
Documentation (including wikipage): https://www.clafer.org/p/documentation.html
Source code repository: https://github.com/gsdlab/clafer

VSL
Project page: http://www.cvm-framework.org/
Eclipse update site (broken): http://swt.cs.tu-berlin.de/ moreiser/eclipse/

FAMILIAR
Project page: https://familiar-project.github.io/
Binaries installation:
https://github.com/FAMILIAR-project/familiar-documentation/tree/master/installation

TVL Project page and tool download: https://projects.info.unamur.be/tvl/

PyFML Python script source: Google Drive link 5

HLVL Source code repository: https://github.com/angievig/Coffee/tree/master/HLVL

VM
Project page: https://mao2013.github.io/VM/
Eclipse update site: http://mao2013.github.io/VM/vmUpdateSite/

Table 2.3: Relevant toolset links for each VML. Last consulted: 27/06/2020

Figure 2.1: S.P.L.O.T. feature model editor. Website: www.splot-research.org

Furthermore, the S.P.L.O.T website keeps a repository of user’s feature models (1,774 as of
the writing this work), and it was used for the tool’s evaluation. Besides the feature model

www.splot-research.org
http://abs-models.org
https://abs-models.org/getting_started/docker/
https://sse.uni-hildesheim.de/en/research/projects/easy-producer/
 https://projects.sse.uni-hildesheim.de/easy/
https://github.com/SSEHUB/EASyProducer
https://www.clafer.org/
https://www.clafer.org/p/software.html
https://www.clafer.org/p/documentation.html
https://github.com/gsdlab/clafer
http://www.cvm-framework.org/
http://swt.cs.tu-berlin.de/~moreiser/eclipse/
https://familiar-project.github.io/
https://github.com/FAMILIAR-project/familiar-documentation/tree/master/installation
https://projects.info.unamur.be/tvl/
https://drive.google.com/file/d/1TmxB4fR4oTeBgk4Z6vbfr0R5xEkMUrJ7/view?usp=sharing
https://github.com/angievig/Coffee/tree/master/HLVL
https://mao2013.github.io/VM/
http://mao2013.github.io/VM/vmUpdateSite/
www.splot-research.org

CHAPTER 2. VARIABILITY MODELLING LANGUAGE CAPABILITIES 23

analysis, the website includes a section named Automated Analysis with more advanced
analysis capabilities, however, that functionality is currently broken. This site has been in
development since 2009, but it has not been updated since 2015.

µTVL is part of the Abstract Behavioral Specification (ABS) language, which provides a
toolset that fully supports µTVL. For our testing, the browser-based IDE locally running
on Docker6 was used. This installation provided a set of examples that were used for this
evaluation. The main goal of the ABS language is to specify behavioural models and µTVL
is used only when variability is needed, thus, only a subset of the examples include feature
models.

IVML is part of EASy-Producer, a framework for managing SPLs developed by the Software
Systems Engineering group7 at the University of Hildesheim in Germany. IVML and its
toolset have been in development since 2011; the last published paper and tool’s update date
from 2018.

EASy-Producer is deployed as an Eclipse plugin. An IVML editor is included as part of the
plugin, which provides code highlighting and automatic syntax checking (See Figure 2.2). A
detailed manual8 shows how to setup an example project using the framework. Besides the
example used in the manual, the Eclipse installation provides several reference projects from
which the PL_SimElevator was also used during our tool’s assessment.

Figure 2.2: EASy-Producer, IVML editor

The framework not only allows to specify variability through IVML files but also supports
the instantiation process of the software product line. Instantiation is supported by providing
specific approaches to use the variability information to build a product from a set of artifacts.
For instance, the Velocity Instantiator—which is part of EASy-Producer—adds pre-processor
functionality (similar to C\C++) to Java code. In the Figure 2.3, lines 5–6 shows a Java
snipped containing reference to variable elements. The references use the currency symbol
($).

6https://abs-models.org/getting started/docker/
7https://sse.uni-hildesheim.de/en/
8Available here: https://projects.sse.uni-hildesheim.de/easy/docs-git/docRelease/user guide.pdf

https://sse.uni-hildesheim.de/en/
https://projects.sse.uni-hildesheim.de/easy/docs-git/docRelease/user_guide.pdf

CHAPTER 2. VARIABILITY MODELLING LANGUAGE CAPABILITIES 24

Figure 2.3: EASy-Producer, VIL build script example

The instantiation steps in the software product line are specified using the Variability Im-
plementation Language (VIL). The VIL is a textual language for the specification of build
information and tasks executed during the instantiation process. Fig. 2.3 shows an exam-
ple VIL build script, this script specifies source and destination folders (lines 5–6), clean up
tasks (lines 8–12) and the instantiator selection (line 15). VIL specification is independent
of IVML.

Even though EASy-Producer is a prototypical tool, it offers an Eclipse-based integrated
framework for managing SPLs. Beyond variability specification and resolution using IVML,
it offers some product building mechanisms—like the Velocity Instantiator or the VIL build
scripts—which none of the other analyzed tools included. The IVML specification as well
as its associated tools have evolved throughout the years. The first attempt to install the
Eclipse plugin failed due to a server issue, however, after reaching out to the developers at
the University of Hildesheim, the problem was fixed in a couple of days.

Clafer development—for both the language and its toolset—was a joint effort by the GSD
group9 (now WISE lab10) at University of Waterloo and the former MODELS group 11 at IT
University of Copenhagen. Clafer was actively developed from 2012 until 2018; researchers
and students (both Masters and PhD) ascribed to these educational institutions were in-
volved. Now the project is considered “finished”. The following assessment applies to the
Clafer 0.4.5 release.

The Clafer toolset has two core elements: a compiler and an instance generator. The compiler
transforms a Clafer model to different output formats. The output formats can be used by
the instance generator (.als file for Alloy and .js file for Chocosolver), as an intermediate
representation (JSON) or by visualization tools (html or dot files). Clafer model instances
are obtained using the instance generator. Optionally, optimal instances can be derived using
this generator. These optimal instances are derived based on specification goals defined in the
model. These goals are defined using functions to maximize or minimize a numeric attribute

9https://gsd.uwaterloo.ca/
10https://uwaterloo.ca/waterloo-intelligent-systems-engineering-lab/
11Broken link:https://www.itu.dk/research/models/wiki/index.php/Process and System Models Group

https://gsd.uwaterloo.ca/
https://uwaterloo.ca/waterloo-intelligent-systems-engineering-lab/
https://www.itu.dk/research/models/wiki/index.php/Process_and_System_Models_Group

CHAPTER 2. VARIABILITY MODELLING LANGUAGE CAPABILITIES 25

defined in the model.

Clafer’s tools are provided as web-based or binary distributions. The web-based tools can be
run locally or online—hosted by the University of Waterloo. Pre-built binaries are available
for Windows, Linux and OSx (with exception of release 0.5.0 which only provides Linux
binaries); build from source code is also an option. Additionally, an implementation of Clafer
in JetBrains Meta-Programming System (MPS) is also available. The web-based toolset
includes:

• Clafer IDE: An IDE for Clafer including an editor, compiler, and instance generator.

• Clafer Configurator: Allows to work with multiple configurations at the same time.
It provides a better visualization for configurations (See Fig.2.4).

• Clafer MOO Visualizer: It allows to visualize and analyze tradeoffs among several
model instances using the multi-objective optimizer.

Figure 2.4: Clafer configurator (online tool)

Similar to IVML and the EASy-Producer framework, Clafer visual tools improve user expe-
rience compared to its counterparts which only provide command-line tools. Additionally,
Clafer’s compiler and instance generator can also be run from the command-line and store
the output to a text file, which is particularly useful when working with large models.

An extensive documentation accompanies the Clafer toolset. The documentation comprises
21 academic publications (including a PhD dissertation), tutorials and a Wiki page with a
repository of examples (see link to documentation in Table 2.3). These documents detail
the language design, tools usage, and illustrate useful design patterns by modelling different
use cases. The tool’s installation documentation details all the steps for installation of the
tools on different platforms. As part of the tool’s assessment, the browser-based version—
which can be run locally using a Redis server12—was successful installed in a Windows and a

12https://redis.io/

https://redis.io/

CHAPTER 2. VARIABILITY MODELLING LANGUAGE CAPABILITIES 26

Linux machine by following the instructions provided in their website. Among all the VMLs
considered in this evaluation, Clafer is by far the most exhaustively documented.

Behavioural modelling support constructs were integrated in release 0.5.0 of the Clafer com-
piler. It is mentioned by the Clafer designers in [37] that this release can output desugared
clafer models and generate HTML. Furthermore, it is stated that “an experimental generator
of Alloy input is also included in the release” [37]. We found the description of “experimen-
tal” ambiguous, so, we tested this version of the Clafer compiler. To do that, we used the
pre-build binaries provided in the website13 using a Linux computer. The compiler generates
an Alloy file as output, however, this file contains errors. We used the behavioural models
available in the Wiki page and examples in [37]; alloy files with errors were found in all
cases. Clafer developers confirmed by email that the Alloy translation is indeed not working.
Therefore, the translation from Clafer models to Alloy, described as experimental, is better
described as not working. It would be interesting to investigate what is missing exactly to
get it to work, but that was not assessed as part of this evaluation.

IVML and Clafer toolsets have been developed iteratively, delivering new features and bugs
fixes in several software releases through the years. Source code is available as an open-source
project (Table 2.3 includes links to their code repositories). EASy-Producer uses Apache
License 2.0 while Clafer is licensed under the MIT License. Both licenses are almost equally
permissive. Besides allowing modification and redistribution of the source code, private and
commercial use is permitted with no obligation of sharing the modified source code. These
licenses would facilitate industry adoption, since many companies do not want to be forced
to release their modified source code.

Partial-support

FAMILIAR, TVL and PyFML languages provide tools with partial support. According to
the project website, FAMILIAR is integrated into Feature IDE—an Eclipse-based framework
used to create feature models using visual notation—however, the FAMILIAR plugin has been
broken since 2013 (as stated in the FAMILIAR README file14). Thus, only the command
line tools were tested. A reference TVL parser in Java (deployed as a JAR file) is available
in the project page. Finally, PyFML tool is implemented in a single Python script shared
through Google Drive (see Table 2.3 for the link). PyFML implementation is by far the most
minimal implementation among the evaluated tools.

The FAMILIAR command line tool starts an interactive session on the terminal using the
input model, which allows the user to manipulate the input model further (e.g. merge or
split different FMs, assigning variables, or query configuration information). This tool was
tested using the examples presented in [31]. FAMILIAR prototypical implementation uses
Xtext—a framework for developing DSLs—which automatically generates a parser from a
grammar description. Syntax error messages on the command line tool are those directly
provided by the Xtext parser, which are verbose and difficult to understand when the user is

13https://gsd.uwaterloo.ca/clafer-tools-binary-distributions.html
14https://github.com/FAMILIAR-project/familiar-documentation/tree/master/installation

https://gsd.uwaterloo.ca/clafer-tools-binary-distributions.html
https://github.com/FAMILIAR-project/familiar-documentation/tree/master/installation

CHAPTER 2. VARIABILITY MODELLING LANGUAGE CAPABILITIES 27

not familiar with the Xtext output. Model configurations can be validated explicitly using
the isValid command.

A TVL parser is also provided as a command line tool. It supports most of the language
constructs but unlike FAMILIAR, no interactive terminal session is supported. The syntax
error messages lack useful information. For instance, if an unknown data type is used, the
error message describes the problem accurately but it does not show the line where the issue
was found. If a semicolon is missing, it causes a Java exception pointing to the problematic
line but without any description of the problem. The tool offers the possibility of checking
model constraints’ satisfiability; however, it does not support numerical (int or float) values.
If the TVL model contains numerical attributes, its satisfiability cannot be checked.

PyFML script is provided with no documentation. It has two Python dependencies that
must be installed manually (xtext and python-constraint modules). The script does not
read the input model from the command line, it should be added directly into the Python
script as an object definition. The minimal example included in the script yields six different
product configurations. However, the tool throws three exceptions while parsing the example
provided in Listing 8 found at [39]. Since the test example used for evaluation was obtained
from the language’s paper and the errors found were related to the parser implementation,
this indicates that the tool has some critical bugs; thus, it was not investigated further.

FAMILIAR and TVL provide a prototypical command line tool that can be used to model
small examples and provide insights about the language usage. However, at this early stage of
development, the lack of integration with existing tools and precarious debugging information
make them challenging to use in an industrial setting. Even more challenging, PyFML’s
parsing issues make it incapable of dealing even with toy examples, so its industrial application
is out of the question.

Non-verifiable support

VSL, VM and HLVL claim tool support, but it could not be verified. VSL is part of the
CVM framework, which is deployed as an Eclipse plugin. However, the Eclipse update
site provided in the project page (see Table 2.3) is broken. VM tool is also an Eclipse
plugin and its update site is functional. However, dependency errors were found during
the installation—apparently some plugin files are missing in the server—which prevented its
completion. Finally, HLVL tool is implemented in Java and its source code is available in a
code repository. The repository does not provide pre-built binaries or build instructions.

In all these cases, the contact people (taken from the project page or the paper with the
language proposal) were contacted asking for support but we did not get a reply. Additionally,
older Eclipse versions were used as an attempt to get VM and VSL installed—sometimes
plugins have dependencies to a particular Eclipse version. None of these strategies helped to
fix the installation issues.

CHAPTER 2. VARIABILITY MODELLING LANGUAGE CAPABILITIES 28

No support

FDL, Forfamel and Tree-grammars explicitly state in their presenting papers that tools
are not provided. Supposedly, VELVET was integrated into FeatureIDE. VELVET examples
were opened using FeatureIDE to find that there is no support for them. VELVET files
are opened as generic text files with neither code highlighting nor syntax check; the model’s
consistency verification is also missing. After contacting VELVET authors, they pointed out
that it was possible to convert VELVET to the current FeatureIDE internal representation.
Following the import procedure described in [52], it was found that VELVET is no longer
supported as a valid import format. Therefore, VELVET does not provide tool support
(anymore).

2.6 Variability management aspects relevant for CPSs

Besides the capabilities already explored, ter Beek et al. mention in [7] the concepts of bind-
ing time, dynamic software product lines (DSPL) and multi-objective optimization as other
important concerns regarding language design that are not considered in the evaluation pre-
sented in Table 2.1. Binding time and DSPL introduce dynamic aspects of variability, while
multi-objective optimization is a valuable configuration support mechanism when dealing
with large and complex configurations. For these reasons, these three aspects are relevant in
the context of cyber-physical systems.

2.6.1 Binding time

Obtaining a valid product configuration may not be the only concern in the variability man-
agement process; when it happens is also relevant in certain domains. Two different points in
time are clearly identified: the definition time, when the system configuration is determined,
and the binding time, when it is applied [7]. The configuration or binding of variants might
occur at three different moments: design-, build-, and runtime. Build time generally refers
to the compilation process where variability is resolved using compiler parameters, and it is
effectuated through conditional compilation—the term build time or compile time is often
used interchangeably. Design time requires that the variability (in source code or models)
is resolved before the executables are generated. When the product configuration is known
before compilation, variability can be resolved and variants selected at design time. Runtime
is defined as any moment after the system’s power-up, when the software is running. The
configuration definition normally takes place during the design or build-time. This configu-
ration might be applied to the system very late, e.g., through programmatic binding when
the variant is needed.

In complex systems—such as those at ASML—some configuration information is only avail-
able at runtime, hence, modelling variants’ binding time as part of the variability information
is relevant.

CHAPTER 2. VARIABILITY MODELLING LANGUAGE CAPABILITIES 29

2.6.2 Dynamic Software Product Lines

In the context of CPS, software is becoming increasingly complex, with extensive variation
in both requirements and resource constraints. Since it has become almost impossible to
foresee all the software functionality or variability that an SPL requires, there is a need for
software that is capable of adapting to the system’s context. Dynamic SPLs (DSPLs) aim
to face these new challenges using runtime variability binding. Runtime binding may occur
first during software initialisation, and then during normal operation to adapt to changes in
environment [53].

A DSPL can be perceived as a single system—rather than a set of systems—adapting its
behaviour using runtime variability binding. To accomplish this, all the valid adaptations
should be accessible during the system’s operation. A DSPL uses reference architectures—a
template for a set of concrete architectures in a particular domain—as the system architec-
ture, and provides explicit and deterministic support for the entire range of adaptation [54].
The set of possible system adaptations is called adaptability scope [55]. In practice, hybrid ap-
proaches between DSPL and SPL—such as enabling limited runtime reconfigurations during
the system’s initialization—can be used.

In the context of ASML, where it is desirable to have contiguously running systems, the
possibility of performing runtime system’s reconfigurations would prove very valuable.

2.6.3 Configuration optimization goals

During product configuration, it is often desired to consider non-functional (i.e. qualitative)
parameters associated with the variable items. This need has been addressed by attributed
feature models [56], where “price tags” are attached to features, denoting the feature’s impact
on some quality attribute of the resulting variant. When attributed feature models are used,
a multi-objective optimisation problem may arise. This occurs when the user is interested
in maximising or minimising functions over multiple product quality attributes, e.g. energy
consumption, cost or response time, to name a few.

The Variability Modeling (VM) [40] and Clafer [37] languages are examples of variability
languages that support single- and multi-objective optimisation goals. The VM is a textual
variability language designed for the video domain—its name also stands for Video Modeling.
It addressed unique requirements like video sequence variants synthetization. For example,
the video sampling configurations may use certain numerical values as feature attributes; then
objective functions (minimise or maximise functions) can be specified, forcing the selection of
some values and restricting the configuration space. Similarly, Clafer supports minimise and
maximise functions over numerical feature attributes, which assists the user during product
derivation by reducing the configuration options when one or more optimisation goals are
specified.

When dealing with large variability models from which gazillion configurations can be derived,
modelling qualitative aspect associated to variants can help to reduce the configuration space.

CHAPTER 2. VARIABILITY MODELLING LANGUAGE CAPABILITIES 30

Moreover, in the context of ASML, where numerical attributes such as time are not qualitative
but functional, these optimization capabilities could be used to derive configurations that
reduce the system’s response time.

2.7 Conclusions

This chapter expanded the systematic literature analysis reported in [6] and updated in [7] by
adding the HLVL and incorporating tool support as an evaluation criterion. A review of the
references for each language specification rendered some inaccuracies in the evaluation of FDL,
Tree-grammars, SXFM, Clafer, VELVET and PyFML. The capabilities of the considered
languages, as well as corrections to the above–mentioned proposals, are presented in Table
2.1.

All the evaluated languages support the basic forms of variation already presented in FODA
[15], namely, optional, alternative, and multiple selection. Most languages incorporate cardi-
nalities and attributes, which were not part of feature modelling in its original proposal. The
majority of specifications provide predefined data types (e.g. integer, string), mainly used
as attributes attached to variable items. This possibility of specifying numeric attributes to
variable items opens interesting possibilities: Clafer and VM incorporate multi-objective op-
timization capabilities to their toolsets whilst IVML and VSL use this capability to indicate
binding time of the variable elements—as explored in Section 2.6. Constraint expressions
are enabled by propositional logic in almost all languages; most of them support relational
and arithmetic logic as well. Configuration is mainly supported through value assignment;
more than a half of the proposals support partial and complete configurations while only
five support default values. Composition mechanisms—a crucial element to build scalable
models—is present in under half of the VMLs only. A few proposals include formal language
specification and full tool support. The lack of formal language specification causes ambigu-
ities in interpretation, which is evidenced by the amount of “unclear” (?) evaluation results
in Table 2.1.

The most relevant inaccuracy found in the evaluation presented by ter Beek et al. in [7]
was that Tree-grammars and SXFM do not provide any configuration capability. ter Beek’s
et. al. assessment turned out to be false, since both of the proposals provide configuration
mechanisms indirectly; otherwise resolving variability in a model using these languages would
not be possible.

The toolset support evaluation criterion added to previous works in this chapter is important
for selection of the variability language to be used at ASML. This is an important requirement
because evaluating the language in a real scenario uncovers limitations and strengths that
would otherwise remain hidden. In our evaluation, we found that even though ten out of
fourteen languages claimed to provide tools, only four actually proved full support. Moreover,
it was observed that toolsets of different languages stopped being supported sometime after
the publishing of their work. Our evaluation shows that regardless of what is claimed in the
publications, testing the toolsets before planning their use is always necessary.

CHAPTER 2. VARIABILITY MODELLING LANGUAGE CAPABILITIES 31

Evaluating the candidate VMLs at the onset showed that their development did not go beyond
the first publication; with tool support being either limited or nonexistent. Two notable
exceptions are IVML and Clafer. In both cases, the language and its associated toolset
have been developed over a span of several years, with more capabilities added gradually.
IVML is focused on providing advanced composition mechanisms for the easy integration
and derivation of multi-product lines. Besides IVML, VSL and VELVET provide advanced
composition mechanisms; however, only IVML includes a framework that implements such
capabilities. Clafer is a lightweight language capable of integrating structural and behavioural
models along with variability. The possibility of modelling all these different aspects in an
integrated way enables its application in multiple domains. For instance, Clafer has been used
to model variability of cryptographic components [57] and complex software architectures
with variability in the automotive domain [58].

IVML and Clafer support most of the capabilities evaluated in the presented survey and
are thus, considered two promising languages in the context of ASML. IVML’s composition
mechanisms allow the splitting of large variability models—such as ASML’s—into different
models, which permits a more modular solution where components can be easily aggregated
and analyzed as a whole. Besides variability modelling, Clafer incorporates several modelling
approaches into a single language; this opens the possibility of specifying hybrid models—
which model different aspects of a system like physical processes, system’s composition and
behaviour—which is relevant for cyber-physical systems such as lithography machines at
ASML.

Literature review enhanced with tool support assessment as one of the proposed aspects of
VML evaluation yielded Clafer and IVML as the two most salient options based on capabilities
considered relevant for ASML. The comparison of capabilities presented here is based on the
systematic literature analysis carried out by Eichelberger et al. in [6] and a practical tool
support assessment. The value of comparing VMLs capabilities, as is the purpose of this
chapter, lays in enabling a more comprehensive and unbiased evaluation of the vast universe
of options available. The approach thus far presented in this chapter proves valuable in
the evaluation of variability modelling languages because we could reduce the options from
fourteen to two (RQ1). To ensure completeness in our evaluation, we must continue applying
the theoretical and practical language expressiveness evaluation. In the next chapter, we will
focus on a theoretical assessment of VML expressiveness using ontological theories.

Chapter 3

Variability language expressiveness
evaluation

This chapter presents an expressiveness evaluation of VMLs using a theoretical framework.
The expressiveness of a language can be informally understood as “the breadth of ideas that
can be represented and communicated in that language” [59]. An expressiveness evaluation
measures the range of ideas expressible in a language. It follows from the definition that to
evaluate the expressiveness of a variability language, we must first define the different forms
of variability that exist or are perceived to exist in the real-world systems. Then, evaluate
the capability of such language to express those forms of variability. Most of the works that
presented variability languages were found to do so using toy examples that highlighted their
advantages; however, a deeper dive rendered hidden shortcomings that the authors failed
to address. Asadi’s et. al theoretical framework for variability was used to provide a more
objective evaluation and assess expressiveness in the broadest sense possible.

This framework, strongly rooted in Wand and Weber’s ontological expressiveness framework,
nonetheless postulate a novel idea: to consider the dynamic aspect of variability when evalu-
ating variability language expressiveness. The lack of clarity in Asadi’s et al. definitions and
examples make their presented ideas hard to grasp. The ontological concepts used do not
detail important implications explained in other more foundational works, and as a conse-
quence of this, several misinterpretations were found in Asadi’s et al. work and other papers
referencing it [60].

This work clarifies important ontological implications in Asadi’s et al. framework by in-
corporating concepts from foundational ontologies [61–63] to improve understanding of the
dynamic aspect of variability as proposed by Asadi et al in [64]. Moreover, a different and
more detailed mapping (between feature modelling and the ontological concepts) is proposed
so that more insights are gained from the evaluation. Finally, since the importance of dynamic
aspects in variability modelling is not evident at first sight, rationales for their relevance in
the context of ASML are provided.

32

CHAPTER 3. VARIABILITY LANGUAGE EXPRESSIVENESS EVALUATION 33

This chapter is organized as follows:

• Section 3.1 provides a brief introduction to ontologies and their applications in Com-
puter Science. A justification for the selection of Asadi’s et al. framework is also
provided.

• Section 3.2 introduces the ontological expressiveness evaluation framework in a broad
sense, as it is used to evaluate expressiveness of different conceptual languages.

• Section 3.3 presents Asadi’s et al. framework in detail. The ontological concepts used
in the framework are expanded using foundational ontological evaluation frameworks
for conceptual modelling.

• Section 3.4 provides a detailed mapping of feature modelling using the Asadi’s frame-
work, and the results compared with those presented in [64]

• Section 3.6 presents the chapter conclusions.

3.1 Ontological considerations in variability modelling

Ontology is “the branch of philosophy that seeks to articulate models of the real world in
the broadest sense possible” [65]. Ontological studies have been done over a long period of
time and developed in western philosophy at least since Aristotle [65]. Ontology’s aim for
generality distinguishes it from several specific scientific disciplines (e.g., physics, biology,
chemistry), which focus on conceptualizing phenomena in their respective domain. However,
many ontological principles—like the selection of concepts and hypothesis, or the axiomatic
reconstruction of scientific theories—are applicable in scientific research [66]. An ontological
theory provides a set of ontological concepts from which a systematic approach to understand
the structure and behaviour of real-world phenomena can be developed [62]. Hence, an
ontology can be used as a reference model to investigate and conceptualize different aspects
of the real-world systems.

Since the late sixties, ontological theories have been used in some fields such as artificial intel-
ligence and data modelling. In computer science applications, ontologies are usually limited
to a specific domain, where the term domain ontologies is adopted [66]. Furthermore, these
domain ontologies are usually understood as dictionaries or taxonomies with no philosophical
stand about the reality they intend to represent [63].

On the other hand, foundational ontologies are domain-independent and formally defined
models of categories that are philosophically sound [66]. These ontologies can be used to build
conceptualizations about specific science and engineering domains [67]. Two outstanding
foundational ontologies can be found in computer science: the Bunge-Weber-Wand (BWW)
ontology [61] and the Unified Foundational Ontology (UFO) [66]; these works reflect the need
to go back to develop ontological theories in their original sense [63]. There is one outstanding

CHAPTER 3. VARIABILITY LANGUAGE EXPRESSIVENESS EVALUATION 34

difference between these two ontologies: the BWW ontology is an adaptation and extension
of the previously developed Bunge’s ontology while UFO was developed from scratch [66].

According to Guizzardi et. al, the formal language type (i.e. domain-independent or a
domain-specific) is the most relevant aspect to be considered in the selection of an ontol-
ogy [68]. Domain-independent languages should be evaluated using foundational ontologies
whilst domain-specific languages are compared using domain ontologies. Most VMLs are
domain-independent languages; however, they incorporate specific constructs for variability
modelling. For that reason, the ontology selected should be domain-independent but provide
concepts that can be used to represent variability.

It can be argued that some VMLs—most of them created as part of industrial projects—
are domain-specific languages. However, these domain-specific languages are, by design,
expressive enough for their particular needs. Their expressiveness is implicitly evaluated by
their ability to represent the forms of variability in their domain. Our ontological evaluation
aims to assess language expressiveness in a more general sense. Hence, a domain-independent
ontology is used as the base for our analysis.

A thorough search of the relevant literature yielded two evaluation frameworks based on a
domain-independent ontology (in both cases, the BWW is used) that also include variability
concepts: Reinhartz-Berger et al. [69] and Asadi et al. [64]. Reinhartz-Berger et al. focus
on system’s behaviour variability patterns whilst the framework presented by Asadi et al.
include both dynamic (behavioural) and static (structural) variability aspects. Since we
aim to evaluate expressiveness in the broadest sense possible, Asadi’s et al. framework was
selected for this work.

3.2 Ontological expressiveness evaluation framework

An ontological expressiveness theory is a framework to analyze the expressiveness of concep-
tual modeling languages. The expressiveness framework built by Wand and Weber is based
on their representation model and the concepts in their ontology [62]. Such an expressive-
ness evaluation framework has been used as a formal reference model to evaluate conceptual
models and their associated languages [60, 63, 70, 71].

The formal models proposed by Wand and Weber are based on the fundamental premise
stating that: “A formal system has the necessary and sufficient properties to represent real-
world meaning”1 [61]. The formal representation model focuses on the relationships between
the set of ontological constructs and the modelling language constructs used to describe real-
world phenomena [61]. This formal model is based upon the premise that: “An information
system is an artefactual representation of a real-world system as perceived by someone, built
to perform information processing functions” [61]. In general, any artefactual description
of real-world phenomena is termed as a conceptual model: “Conceptual modelling is the
activity of formally describing some aspects of the physical and social world around us for

1We change the term “physical-symbol system” to “formal system” in the presented definition

CHAPTER 3. VARIABILITY LANGUAGE EXPRESSIVENESS EVALUATION 35

purposes of understanding and communication” [72]. This representation model’s premise
deemed Information Systems as conceptual models that captures specific aspects of real-
world systems. Therefore, Wand and Weber’s formal model can then be used to evaluate
conceptual modelling languages.

The ontological expressiveness of conceptual modeling languages can be evaluated using a
bi-directional mapping between the language’s constructs and a set of ontological constructs:
representation mapping specifies if and how an ontological construct is represented by lan-
guage constructs, and interpretation mapping specifies if and how a language construct repre-
sents a real-world (i.e. ontological) construct [62]. After the mapping is determined, assessing
the expressiveness of the examined language consists of assessing the presence or absence of
any of the four observable defects in conceptual modeling languages [62]: construct deficit,
construct excess, construct redundancy and construct overload (see Fig.3.1). If the language
exhibits a construction deficit, then the language is ontologically incomplete. The ontological
clarity of the language is weakened when construction excess, construction redundancy, or
construction overload defects are observed [62].

Language Construct

Ontology Construct

Construct Deficit Construct Excess Construct Redundancy Construct Overload

Ontologically incomplete Ontologically unclear

Representation
mapping

Interpretation
mapping

Figure 3.1: Defects in conceptual modelling proposed in [62]

The mapping should be internally consistent. This means that it must preserve and retain
the relationships among ontological concepts and those among conceptual modelling language
concepts [63]. For instance, in the BWW ontology things possess properties, this “possession
relation” must be maintained in the conceptual conceptual model representing both things
and properties.

3.3 Asadi’s et al. theoretical framework for variability

Asadi’s et al. theoretical framework for variability (ATFV) provides a reference model to
evaluate variability modelling languages based on ontological considerations. This framework
is based on two variability categories: variability sources and variability patterns. A variability
source is an element in which variability occurs. A subset of the ontological concepts in the
BWW ontology are used to identify variability sources. A variability pattern represents
a recurring type of variability between two sets of phenomena [64]; here a phenomenon
represents a variability source identified in the framework. Based on the previously described
ontological expressiveness evaluation framework, the ATFV uses two criteria: variability
completeness and variability clarity. Completeness criterion is used to investigate whether

CHAPTER 3. VARIABILITY LANGUAGE EXPRESSIVENESS EVALUATION 36

a particular language has constructs to represent all the variability concepts—i.e. sources
and patterns. Clarity means that there is a one-to-one mapping among modelling language
constructs and variability patterns considered in the framework [64].

First the variability patterns in ATFV are introduced. Then, the ontological concepts used
to represent the variability sources are presented in detail. For the ontological analysis, we
provide further details from the BWW ontology [61], Wand and Weber’s ontological expres-
siveness framework [62] and their formal models [61]—information not explicitly provided in
Asadi’s et al. paper [64]. Expand the information about the BWW ontology was deemed nec-
essary to have better understanding of the ontological implications when language constructs
are mapped to ontological concepts.

3.3.1 Variability patterns in ATVF

In the context of this evaluation framework, the term phenomena refers to “any possible
observation that can be made about the domain or part of it” [64]. Here, a domain is
considered with respect to a particular software product, i.e. a different domain is assigned to
each product in a software product line. Thus, “phenomena in a domain” refers to “observable
aspects in a product”. These domains must exhibit similarity to some extent, otherwise
modelling them as a software product family would not make sense. The following definitions
are taken from [64].

Considering two sets of phenomena S = {s1, s2, ..., sn} belonging to domain D1 and T =
{t1, t2, ..., tm} belonging to a domain D2, the following similarity scenarios between these two
sets are identified.

Definition 1 (Equivalent Sets of Phenomena): S is equivalent to T (S ≡ T), if an only
if there is a mapping between elements in S and elements in T .

Definition 2 (Similar Sets of Phenomena): S is similar to T with respect to p (S ∼=p T),
if an only if there is a subset of S (i.e. S′ ⊂ S) and of T (i.e. T ′ ⊂ T) which are equivalent,
i.e.t S′ ≡ T ′. p is the equivalent subset (i.e. p ≡ S′ ≡ T ′).

Definition 3 (Completely Dissimilar Sets of Phenomena): S is completely dissimilar
to T (S 6= T), if an only if there are no subsets of S and of T which are equivalent.

Based on Definitions 1-3, four similarity patterns are defined:

1. Full similarity double side - when a set of phenomena S and set of phenomena T are
equivalent (i.e., S ≡ T).

2. Full similarity one side - when a set of phenomena S and set of phenomena T are
similar (i.e., S ∼=p T) and either S′ ⊂ S and S′ ≡ T or T ′ ⊂ T and S ≡ T ′.

3. Partial similarity - when a set of phenomena S and set of phenomena T are similar
(i.e., S ∼=p T) and there is no subset in one domain that is equivalent to the entire set

CHAPTER 3. VARIABILITY LANGUAGE EXPRESSIVENESS EVALUATION 37

in the other domain.

4. Complete dissimilarity - when two sets of phenomena are completely dissimilar.

With the exception of full similarity double side, the other three similarity patterns represent
the variability patterns considered in ATFV.

3.3.2 Bunge-Wand-Weber ontological concepts

The Bunge-Wand-Weber ontology is based on a subset of Bunge’s ontology, adapted and
extended by Yair Wand and Ron Weber to address Information Systems (IS) representation
issues [61]. Bunge’s ontology has been widely used in science because it is “well formalized as
an axiomatic system, using a set theory representation” [63]. A set representation is necessary
for our analysis since the variability patterns described previously are defined over two sets.
Additionally, “Bunge models the world as a world of systems” [62], a fundamental view
that provides relevant concepts to different computer science domains. It has been shown
that Bunge’s ontology, as adapted for IS, provides a valuable reference for the evaluation of
modelling languages and methods [73–75].

We now introduce the ontological constructs as presented in [62]. A subset of those concepts,
used in Asadi’s et al. paper [64], is shown in Table 3.1. These concepts are sufficient to
explain the structural variability sources considered in the ATFV but does not cover all the
fundamentals aspects required to fully understand the process variability sources, including
the ordering variability pattern. The remaining of the concepts dealing stable and unstable
states as well as internal and external events will be introduced later. Additionally, the
state-tracking formal model [62], as proposed by Wand and Weber, will be also introduced
to support the analysis of the dynamic aspects of variability.

A more detailed explanation of the ontological concepts (Table 3.1) and their relationships,
as presented by Wand and Weber in [63], is provided in the remainder of this section.

In Bunge’s ontology [65], the world is made up of things that exist physically in it [63]. A thing
is the basic building block in the ontology; all the other concepts are built upon it. Things
possesses properties and are know through them, i.e. to distinguish one thing from other
thing we need to look at their properties. Properties in general are those owned by things,
e.g. “colour”, “shape”, “country of origin”. An individual property is a particular value of
the property in general, such as “color:orange”, “shape:circular” or “country of origin:the
Netherlands”. An intrinsic property is that of a single thing, such as “colour”, whereas a
mutual property exists between two or more things, e.g. “manufactured by”. When we say
“this pen is manufactured by machine A”, the “manufactured by” property only exist between
the pen (thing) and machine A (thing).

A thing can be uniquely identified in the world through its individual properties because
no two things can share all of them. When representing existing properties of a thing in a
conceptual model, it is not possible to represent all properties; instead, some relevant prop-

CHAPTER 3. VARIABILITY LANGUAGE EXPRESSIVENESS EVALUATION 38

Ontological Construct Explanation

Thing
A thing is the elementary unit in this ontological model.
The real world is made up of things. A composite thing
may be made up of other things (composite or primitive).

Properties

Things possess properties, A property in general is modelled via an
attribute function that maps the thing into some value,
i.e. an individual property. A property of a composite thing that
belongs to a component thing is called a hereditary property.
Otherwise, it is called an emergent property. A intrinsic property
is inherent to an individual thing.
A property that is meaningful only in the context of two or
more things is called a mutual or relational property.

State
The vector of values for all attribute functions of a thing is the state
of the thing.

Conceivable state space
The set of all states that the thing might ever assume is
the conceivable state space of the thing

State law
A state law restricts the values of the properties of a thing to a subset
that is deemed lawful because of natural laws or human laws.

Lawful state space
The lawful state space is the set of states of a thing that comply with
the state laws of the thing. The lawful state space is usually a
proper subset of the conceivable state space.

Event
An event is a change of state of a thing it is effected via a
transformation (see below)

Event space
The event space of a thing is the set of all possible events that can
occur in the thing

Transformation
A transformation is a mapping from a domain comprising states to
a co-domain comprising states.

Lawful transformation A lawful transformation defines which events in a thing are lawful.

Lawful event space The lawful event space is the set of all events in a thing that are lawful

History
The chronologically ordered states that a thing traverses are the history
of the thing.

Table 3.1: BWW ontology concepts part I, as presented in [62]

erties are modelled using attributes. Attributes are a human-created abstraction mechanism
to represent a set of identifiable properties existing in the real-world [63]; e.g. colour is not
a property of an object that exist in the real world, there are several chemical properties of
the material that make it, let us say orange, the tag ‘orange’ is a human-created abstraction
that simplifies the task of identify an object. Additionally, attributes like “price” have no
meaning in the natural world, only exist within our human societies, and for that reason we
represent them in our conceptual models.

Things can be combined to form a composite thing. Composite things can be decomposed
in their parts, that are in turn either composite things or simple things—if they cannot be
decomposed any further. As matter in the universe, things cannot be created or destroyed,
but only change their properties, combined to form composites, or separated into their com-
ponents [63].

A property in general is represented by a state function; state function values are individual

CHAPTER 3. VARIABILITY LANGUAGE EXPRESSIVENESS EVALUATION 39

properties. A set of state functions form a model or functional schema. A model can represent
similar things, while a thing may be described using different models. A state of a thing is
the set of values for all the state functions representing such thing. The set of all possible
states obtained from a model is the conceivable state space.

An event is a change in the state of a thing and it is effected via a transformation. Change
can be either quantitative or qualitative. When change occurs in one or more individual
properties is quantitative, if general properties are acquired or lost the change is qualitative.
Qualitative change usually correlates to change on the behaviour of a thing [63]. The set of
all the possible events that can occur in a thing is called (conceivable) event space.

A state law is any restriction on the values of the state functions of a thing. The lawful
state-space is the set of states that comply with the state laws of a thing and it is a proper
subset of the conceivable state-space. Similarly, a lawful transformation define which events
in a thing are lawful. The set of all the lawful events comprises the lawful event-space. The
set of laws that a thing adheres to determines its behaviour.

The set of states or events traversed by a thing in a chronological order represents its history.
Either states or events can be used to specify the history of a thing because an ordered set
of states implicitly define a set of events and vice versa.

Importantly, the BWW ontology claims to provide necessary concepts to describe real-world
systems; however, whether or not these concepts are sufficient is an open research question
[61].

3.3.3 Structure and process of a domain in ATFV

Asadi’s et al. framework postulates that variability among products domains might occur in
both static (i.e. its structure) and dynamics (i.e. its processes). The structure of a domain is
composed by things, properties and lawful state space whereas its lawful event space and the
ordering between these events describes the process of a domain. The previously described
variability patterns (full-similarity one side, partial similarity and complete dissimilarity)
are common for both the structure and the process of domains. Additionally, the ordering
variability pattern is found in processes. This pattern captures the fact that two systems
might allow the same state transitions but the sequence of those transitions for a particular
run (i.e. its history) might differ. The structural variability is represented using the three
common variability patterns over two sets of things, properties or (lawful) states. Similarly,
process variability is obtained comparing two sets of lawful events using the common vari-
ability patterns and the variability ordering pattern. The ordering pattern only indicates if
two sets of events happen in the same order or not.

The ordering variability pattern is not formally described by Asadi et al. in [64]. First,
they present an example where three scientific conferences (A, B and C) are described.
Each conference’s description includes a set of things (e.g. papers, demos), properties (e.g.
Paper’s title), lawful state space (e.g. Paper-status) and lawful event space. The lawful

CHAPTER 3. VARIABILITY LANGUAGE EXPRESSIVENESS EVALUATION 40

event space is specified as transitions between paper’s states. For instance, the following
set of events are defined for Conference A: Paper{(Submitted → Accepted), (Submitted →
Rejected), (Submitted → Short Paper Accepted)}, each event has an explicit initial state
(e.g. Submitted) and a final state (e.g. Accepted). The ordering pattern between events is then
explained as follows: “assume that determining the program of conference A involves an order
Workshop → Tutorial → Main Conference and for conference B Main Conference →
Workshop → Tutoral. Although both the conferences contain the same set of events, the
ordering of events is different”.

We consider the ordering pattern explanation in Asadi’s et al. paper rather confusing. In
their example, they defined the lawful event space as transitions between paper’s states, e.g.
(Submitted → Accepted), where each event has an initial state (e.g. Submitted) and a final
state (e.g. Accepted). Then, three different conference’s “events” are used as an example to
explain the ordering concept: Workshop, Tutorial and Main Conference. Apparently, these
elements are now considered events, not defined as a transition between an initial and a final
state but rather as a label representing a set of activities (e.g. Workshop). It is not clear the
relation of this example with what is usually represented in variability models.

Instead, we use state machines to explain the notion of ordering. Using this representation
states retain its ontological meaning; each state represent a unique set of properties obtained
from the set of state functions (model). Similarly, the transitions between states are related to
events in the ontological sense; they represent change in properties since initial and final states
are always different. Consider the two state machines depicted in Fig. 3.2 representing System
A (left) and System B (right). Both systems have the same lawful state and event spaces—
only lawful states and events are modelled. A finite sequence of transitions in a state machine
is called a trace. Similar to the concept of history of a thing, traces represent chronologically
ordered transitions between states, therefore, we related the ontological concept of history to
a trace in the state machine representation.

Even though the set of states and events are the same for both systems (listed in the right
side of Fig. 3.2) , their initial state is different and therefore, the sequence of state transitions
differ as well.

S1 S2 S3 S1 S2 S3

System A System B

State space: {S1, S2, S3}

Event space: { {S1->S2},
{S2->S1},
{S2->S3},
{S3->S2} }

Figure 3.2: State machines for two different systems

Consider the trace for System A: tA = {{S1 → S2}, {S2 → S1}}, and the trace for System
B: tB = {{S2 → S1}, {S1 → S2}}. We define the ordering pattern as the order function,
such that b = order(tx, ty), where tx and ty are two traces and b is a boolean value. The
order function yields true if and only if tx and ty contain the same set of events in the same

CHAPTER 3. VARIABILITY LANGUAGE EXPRESSIVENESS EVALUATION 41

order, otherwise false. Using the provided example, order(tA, tB) yields false because the
two traces contain the same events but in a different order.

We have now introduced the ontological concepts representing variability sources and the dif-
ferent variability patterns used in ATFV. The presentation of ontological concepts presented
by Asadi’s et al. in [64] was expanded using the BWW ontology. Additionally, a more formal
definition of the ordering pattern than the one presented in [64] was provided. In the next
section we apply Asadi’s et. al framework to provide an alternative representation mapping
of feature modelling to that presented by them.

3.4 Representation mapping of feature modelling using ATFV

Asadi’s et al. representation mapping between variability sources and feature model con-
structs proved to be oversimplified and in need of clarification. An understanding of all the
implications of their proposal calls for detailed explanations which are missing in their orig-
inal work, and are necessary in order to avoid ontological inconsistencies in the mapping of
concepts. For this reason, we will first build a detailed mapping expanding the explanation
of key concepts when necessary, providing the rationale behind all decisions and using simple
feature models as examples to support our arguments. Though lengthy, this level of detail is
necessary in order to ensure accuracy and improve clarity.

The remaining of the section is organized as follows:

• Subsection 3.4.1: Maps the structural variability sources to feature modelling con-
structs.

• Subsection 3.4.2: Details the concepts comprising process variability by introducing
the state-tracking model and determines whether or not feature modelling is able to
represent those concepts.

• Subsection 3.4.3: Presents Asadi’s et al. mapping of variability sources (for both struc-
tural and process variability).

• Subsection 3.4.4: Maps the general variability patterns to feature modelling constructs.

• Subsection 3.4.5: Summarizes the results obtained in this mapping.

3.4.1 Mapping ontological constructs representing structural variability
sources

As discussed in previous chapters, feature modelling (FM) is the most widely used approach
and it is supported by almost any variability management tool. A representation mapping
of feature modelling concepts, as presented in its original proposal [15], is addressed in this
section.

CHAPTER 3. VARIABILITY LANGUAGE EXPRESSIVENESS EVALUATION 42

The running example

The basic representation unit in FM is the feature. A feature is defined as “user-visible
aspects or characteristics of the domain” [15]. Feature groups relate a set of features to form
a tree-like structure called feature model. A single feature may be mandatory or optional ;
features can be grouped in OR groups or alternative groups. Cross-tree constrains are defined
between any pair of features in the feature model (e.g. requires and excludes relations). A
simple feature model of a IoT computer using a visual notation is shown in Fig. 3.3; it
incorporates all the elements previously described.

IoT computer

Wireless
communication Processor MemoryLibraries

Multi
Core

Single
Core

Analytics LoggingLight control

Alternative OR

Excludes Requires

Mandatory

Optional External Internal

Figure 3.3: Example Feature Model from an IoT computer

Starting by considering an IoT computer (root node in the feature model), it represents
a physical item in the real-world, therefore, it is related to the ontological concept of a
thing. The mandatory feature “Wireless communication” refers to the capability of the IoT
computer to communicate wirelessly with other devices. Wireless communication can be
deemed a property of the IoT computer (thing). The Wireless communication feature can
be mapped to the concept of thing as well, if it is interpreted as a wireless communication
(hardware) module.

The Processor is a property in general while Single-core and Multi-core are individual prop-
erties related to it. As in the case of the Wireless communication feature, if we interpret the
Processor feature as the actual integrated circuit, it can be seen as a physical thing.

The duality described above constitutes an issue with the ontological interpretation of fea-
ture models; namely, the concept of feature is overloaded. A feature can be seen as a thing
or a property. Whenever we face this ambiguity, we interpret features as properties, more
precisely, attributes—since it is a human-created abstraction. In the original proposal, fea-
tures are defined as “user-visible aspects or characteristics of the domain” [15]. Sometimes
it is convenient to represent a system’s composition to describe two different domains. To
continue with the running example: the IoT computer has a processor, both the IoT com-
puter and the processor are physical objects (i.e. things). However, in the context of feature
modelling, when we say that an “IoT computer has a processor” we are not interested in
the composition relation between these two physical objects. We use this description as an

CHAPTER 3. VARIABILITY LANGUAGE EXPRESSIVENESS EVALUATION 43

attribute function or a property in general describing an user-visible aspect of the system
being modelled. In the example, two domains can be distinguished by the processor type:
single-code or multi-core, which represent attribute values or individual properties.

The IoT computer includes three optional Libraries: Analytics, Light control and Logging.
In this case, Libraries is a property in general, while each specific instance is an individual
property. Similarly, memory represents a memory type and it might be internal memory
(mandatory) or external memory (optional). Even though memory represents a physical
object, it is interpreted as a property that describes the domain of IoT computers for the
same reasons discussed above.

This mapping is internally consistent with the BWW ontology. In the ontology, things have
properties while in the feature model feature-things also relate to feature-properties. The
possession relationship is expressed through the hierarchical structure in the feature tree; an
IoT computer (root node) possesses all the properties expressed in the lower levels on the
tree. The same hierarchical structure is used to relate a property in general to an individual
property. A property in general (feature group) comprises a set of individual properties
(features included in the feature group); the hierarchical structure in feature trees describes
this relationship consistently.

Now let us consider the information derived from a feature model. After all the required
decisions in a feature model have been made, we are left with a model instance—also called
product configuration in the context of SPL. For example: we must select a feature from an
alternative group—this is a required decision. We relate the ontological concept of a state
with a configuration derived from a feature model. A state is ontologically defined as an set
of individual properties of a thing. A configuration is also a set of individual properties of a
thing—represented by the root node in the feature model.

The feature model’s constraints reduce the number of possible configurations (i.e. states).
For instance in Fig. 3.3, the constraint “Libraries:Logging requires Memory:External”
enforces the inclusion of both features in a configuration in order to be considered valid. Like-
wise, the constraint “Processor:Single Core excludes Library:Analytics” invalidates all
the configurations that include both features. These constraints reduce the set of all possi-
ble configurations to a subset of valid configurations. Thus, in feature models, constraints
relate to the state law ontological concept. The conceivable state space corresponds to all
the possible configurations while the lawful state space is represented by the set of valid
configurations—i.e. configurations satisfying all the constraints in the model.

The domain of the feature model, represented by the root node name, was related to the on-
tological concept of thing. A feature group represents a property in general while its elements
represent individual properties. A product configuration is mapped to the ontological concept
of state while a constraint represents a state law. All the possible configurations derived from
a feature model conform the conceivable state space while all the valid configurations com-
prise the lawful state space. It is thus confirmed that feature modelling is expressive enough
to represent structural variability sources as proposed in Asadi’s et al. framework.

CHAPTER 3. VARIABILITY LANGUAGE EXPRESSIVENESS EVALUATION 44

3.4.2 Mapping ontological constructs representing process variability sources

Before analyzing process variability sources, we need to explain the formal state-tracking
model proposed by Wand and Weber [61]. The analysis presented thus far is based on a
representation model that address the problem of statically representing the essential aspects
of real-world systems as conceptual models, however, when the concept of change comes into
play—the essence in process variability–this model results insufficient. The state-tracking
model is based on the premise that “an information system is a state-tracking mechanism
for the real-world systems it is intended to model”[61]. The state-tracking model must meet
the following four requirements in order to faithfully represent a real-world system: mapping
requirement, tracking requirement, reporting requirement and sequencing requirement.

The mapping requirement is defined as follows [61]: “a one-to-many mapping must exist from
the set of real-world system states into the set of information system states”. In the context
of SPLE, the real-world system refers to a computer running a software product while the
information system is the variability model used to build it. Since we already mapped the
ontological concepts of state to product configuration, it follows that a real-world system state
is a software product—one built from a set of software assets and a configuration—running
on a computer system. There is a one-to-one mapping between a software product (real-
world) and a variability model instance (information system) because every software product
in a SPL is built from one and only one configuration. Thus, there is a one-to-one mapping
between real-world and model states in our current analysis.

Both one-to-many and one-to-one mappings ensure that at least one information system state
exists for every state in the real-world, which is relevant for the remaining requirements.
As Wand and Weber explain in [61], the mapping requirement was loosened in order to
consider those real-world systems in which a single state is represented by multiple states
in the information system. The case of a payment system was used as an example: a real-
world transaction may be represented by multiple states in the information system due to
its implementation details. The system may batch the transactions to improve software
efficiency; in that case, one transaction is represented by two states—waiting-transaction and
processed-transaction. Thus, a one-to-one mapping (as the one we provided) is a more faithful
representation of the real-world compared to one-to-many mapping (as in this example),
therefore it is more accurate and still compliant with mapping requirement.

The tracking requirement states that: “When the real-world system changes states, the infor-
mation system must be able to change from a state that corresponds to the initial real-world
system state to a state that corresponds to the subsequent real-world system state” [61]. In
other words, every change of state in the real-world system correlates with a change of state
in the information system, and initial and final states must be clearly identified. These two
requirements are important to map the ontological concept of event.

An event is a change in the state of a thing. We have concluded that the state of a thing
is represented by a product configuration in an SPL, therefore, we can relate the ontologi-
cal concept of event to a change in a product configuration. A configuration change in an
SPL may be offline or online. Offline configuration changes happen in the traditional SPL

CHAPTER 3. VARIABILITY LANGUAGE EXPRESSIVENESS EVALUATION 45

approach where the application engineer derives a configuration from the variability model;
then that configuration information is used to build a software product from a common set
of artifacts. The derivation of a product configuration involves a series of transitions from
one configuration to another until the final configuration is obtained. However, the software
structure does not change after the software product is built from that final configuration.
On the other hand, online configuration changes happen at runtime; the software undergoes
structural changes while running in the hardware platform.

The variable modules in a software product can be bound at three different moments: design
time, build time and runtime. Design time means that the variable artefacts (e.g. source
code modules) are selected before building the product (e.g. compiling the source code
into a binary file). Build time binding means that the variable items are select when the
product is built, for example, compiler flags can be used to either include or remove code
fragments. Finally, modules can be bound at runtime under certain scenarios; a common one
is when the information required to resolve variability is available at runtime only. Design
and build time binding are offline configuration changes, while runtime binding represents
online configuration changes.

The concepts of binding time and Dynamic Software Product Lines (DSPLs), mainly explored
in academia, address some of the challenges of online configuration changes (see Chapter 2,
Section 2.6). Runtime variability is the key element that sets DSPLs apart from the original
SPLE approach [53]. In the current analysis, we exclusively consider runtime (i.e. online)
configuration changes to represent the ontological concept of event. This decision is based
on two reasons. First, online configuration complies with the tracking requirement in Wand
and Weber’s state-tracking model because changes occur in the real-world system, while
offline configuration changes do not represent real-world system events. Second, the ordering
variability pattern proposed in Asadi’s et al. framework is only relevant at runtime; the
order in which the offline configuration is changed is not relevant because only the final
configuration is used to build the software product.

Given a set of valid configurations (lawful state space) derived from a feature model, would
the transition between any pair of valid configurations correctly model a conceivable event
space? Yes, however, this consideration is of limited application because there is no construct
that allows us to reduce such event space to a subset considered lawful (i.e. define a lawful
event space). This is important because in the real-world system, not all the transitions
between states are possible.

In feature modelling we do not find any construct that represents a runtime transition between
an initial configuration (initial state) and a final configuration (final state)—i.e. the event
representation we have built. Thus, we conclude that the ontological concept of event is
not represented in feature modelling. Since all the remaining concepts in process variability
(event law, lawful event space and the ordering pattern) are built upon the concept of event,
those are therefore not represented in feature modelling either.

In order to make this analysis useful for the evaluation of other VMLs (other than feature
modelling), we continue our analysis to build a consistent interpretation of these ontological

CHAPTER 3. VARIABILITY LANGUAGE EXPRESSIVENESS EVALUATION 46

constructs based on the mapping presented thus far. In order to do so, we now present
the two remaining requirements for the state-tracking model before diving into the ordering
variability pattern.

The reporting requirement states that [61]: “If an external (input) event occurs in the real-
world system, an external (input) event that is a faithful representation of the real-world
external event must occur in the information system”. This means that runtime configura-
tion changes caused by a change in the system’s environment need to be represented in the
variability model. Still, there is a missing requirement to ensure that our model faithfully
represents the transitions occurring in the real-world system.

The sequencing requirement states that [61]: “The order in which external events occur in
the information system must be the same as the order in which external events represented by
these information-system external events occur in the real-world system”. This requirement
enforces that the variability model keeps track not only of the events in the real-world system,
but also the order in which these events occur. Two systems might have the same valid
configuration space and the same set of valid transitions within that valid configuration
space, but the order in which these transitions occur might be different, giving rise to the
variability ordering pattern proposed by Asadi et al.

We have concluded that the ontological concept of event can be relate to an online configu-
ration change. Now we refine this mapping further, and argue that the concept of internal
event can be related to runtime variability binding.

Runtime variability binding and internal events

The ontological concept of internal event is defined in the BWW ontology as: “an event that
arises in a thing, subsystem, or system by virtue of transition laws in the thing, subsystem,
or system” [61]. As an example, consider the feature model with four generic features (A, B,
C, D) in Figure 3.4. This small feature tree has only four valid configurations (C1-C4); each
configuration is represented as a set of features, each feature is mapped to a software module
with the same name—each module implements the associated feature. A software product
can be generated from each configuration using a set of software modules implementing all
the functionality defined in the feature model. Due to information being unknown during
design or build time, it is the case that some variable items are bound at runtime. During
runtime binding, dependencies may affect the order in which these modules are bound.

Fig. 3.5 below shows two different binding sequences. Each module in the sequences has
two timing values: ti and tf , representing the time when the binding started and finished,
respectively. The binding operation time is a non-zero value calculated as tf − ti. The
systems that allow runtime binding oftentimes have some dependencies between modules. A
simple dependency such as B after A, means that module B can start the binding operation
only after module A is bound, i.e. Bti > Atf . We call these kind of dependencies between
dynamically bounded modules ordering constraints because they affect the order in which
the variants are bound to the system.

CHAPTER 3. VARIABILITY LANGUAGE EXPRESSIVENESS EVALUATION 47

FM

A FG

C D

Alternative

B

(C1) {A, B, C}
(C2) {A, B, D}
(C3) {A, C}
(C4) {A, D}

Final FM configurations

(pC1) {A}
(pC2) {A, B}

Examples of partial FM
configurations

Figure 3.4: Minimal FM to exemplify variability ordering and binding time

Fig. 3.5 (left) shows the runtime binding of a software product, built from the FM in Fig.
3.4 and the configuration {A, B, C}. First, module A is bound, followed by B and then
C. Each time a module’s binding process is done, there is a transition between one partial
configuration to another, until the final configuration (in this case {A, B, C}) is reached;
this particular order complies with the ordering constraints shown at the top of the diagram.
These transitions between configurations are represented at the bottom of Fig. 3.5 (left)
using gray arrows; a partial configuration (state) is marked in orange (e.g. pC1), and the
final configurations in green (e.g. C1).

Time

A

B

C

D

A

B

C

tai taf tbi tbf tci tcf Time

A

B

C

D

A

B

C

tai taf tbi tbftci tcf
(pC0) (pC1) (pC2) (C1)

(C1) {A, B, C}

(pC1) {A}
(pC0) {}

(pC2) {A, B}

(pC0) (pC1) (C1)

(C1) {A, B, C}

(pC1) {A}
(pC0) {}

(C2) {A, C}

B after A
C after B

Ordering constraints:
C after A
B after C

Ordering constraints:

(C2)

Figure 3.5: Runtime binding of configuration {A,B,C} with different ordering
constraints (dependencies)

Fig. 3.5 (right) shows the same software product with different ordering constraints, causing
a different set of partial configurations and therefore, a different set of transitions. Modules
A, C and B are bound in that particular order.

This small example uncovers and highlights differences between two systems that seem iden-
tical if we only look at the feature model configurations. This difference between two systems
is identified by the order variability pattern, but it is not possible to represent it using feature

CHAPTER 3. VARIABILITY LANGUAGE EXPRESSIVENESS EVALUATION 48

modelling.

In order to define events more accurately, we need to introduce the concepts of unstable and
stable states. The BWW ontology provides the following definitions: “an unstable state is a
state that as a consequence of the system’s transition laws, will be transformed into another
unstable state or a stable state. A stable state is a state that will remain the same, unless an
external action coming from the system’s environment forces it to change” [61]. We relate
partial and final configurations in SPLs to the ontological concepts of unstable and stable
states, respectively. Let us clarify this proposed mapping using the following example: in the
modules’ binding sequences shown in Fig. 3.5, both systems start with the same unstable
state (pC0, i.e. no modules present) and end in the same stable state (C1, {A,B,C}). A
system that uses dynamic binding of (variable) software modules always traverses a set of
unstable states until the final state is reached. Some VMLs incorporate a language construct
to represent binding time information, opening the possibility to differentiate the two binding
sequences by attaching a binding time to each module. The second scenario, when there is
a transition between two stable states (i.e. two final configurations) due to a change in the
system’s environment leaves the realm of SPLs to enter that of Dynamic SPLs.

Reconfiguration in DSPL and external events

The key idea behind Dynamic Software Product Lines is to allow the system to transition
between final configurations at runtime. A transition between two (final) configurations is
called dynamic reconfiguration [54] and it is triggered by a context change, i.e. “a change that
takes place in the external environment of a system” [76]. Fig. 3.6 shows a dynamic system
reconfiguration from C1 to C2. As in the definition of stable state discussed earlier, here a
change in a final configuration is triggered by a change in the system context or environment.

An external event is defined in the BWW ontology as “an event that arises in a thing,
subsystem, or system by virtue of the action of some thing in the environment of the thing,
subsystem, or system” [61]. We can then relate the concept of dynamic reconfiguration, in
the context of DSPL, to an external event in the BWW ontology.

Finally, the sequence of runtime transitions that the system undergoes is related to the onto-
logical concept of history, which was previously defined (in Table 3.1) as: “the chronologically
ordered states that a thing traverses”. We will use this concept to define the ordering vari-
ability pattern next.

In summary, thus far we have mapped the following ontological concepts: :

• Event: A runtime change in software configuration. These changes are triggered by
internal or external events.

• Unstable state: Partial configurations (variants still need to be bound to the system).

• Stable state: Final configuration (all the mandatory variants are bound to the system).

CHAPTER 3. VARIABILITY LANGUAGE EXPRESSIVENESS EVALUATION 49

Time

A

B

C

D

A

B

C

tai taf tbi tbf tci tcf
(pC0) (pC1) (pC2) (C1)

B after A
C after B

Ordering constraints:

D after B
C

D

(pC2) (C2)

External
Event

(C1) {A, B, C}

(pC1) {A}
(pC0) {}

(pC2) {A, B}

(C2) {A, B, D}

tdi tdftuci tucf

Figure 3.6: Transition between two final configurations in a Dynamic Software
Product Line

• Internal event: Binding of a variable element at runtime. An internal event is a
transition from one unstable state to another unstable state or to a stable state.

• External event: Change between two final configurations due to a change in the
environment of the system.

• History: An ordered sequence of runtime changes in a software configuration.

S0 S1

S3

S2

S4

S5

{} {A}

{A,C}

{A,B}

{A,B,C}

{A,B,D}
Trace A: {S0,S1, S3, S4}
Trace B: {S0, S1, S2, S4}

Figure 3.7: Transition between two final configurations in a Dynamic Software
Product Line

As we proposed earlier, we represent states and events using a state machine. A state ma-
chine includes unstable and stable states; transitions between states are internal and external
events. Fig. 3.7 shows part of a state machine defined for the feature model in Fig.3.4. Each
state has configuration information attached to it; unstable states are represented in orange
and stable states in green. This diagram represents part of the lawful event space of the
system.

The ordering variability pattern indicates whether or not two different systems with the same

CHAPTER 3. VARIABILITY LANGUAGE EXPRESSIVENESS EVALUATION 50

configuration reach that state undergoing the same sequence of transitions (i.e. whether
their history is the same or not). As in the previous example, two systems can reach the final
configuration {A,B,C} by following two different traces, trace A and trace B in Fig. 3.7. In
that case, the ordering pattern would yield false.

As mentioned earlier, since events are not representable in feature modelling, the ordering
variability pattern cannot be represented either, because order is evaluated over a set of
events. However, the completed representation mapping for process variability presented in
this section will be useful to evaluate other VMLs that support the same or new constructs
beyond those supported by feature modelling.

Now that we used ATFV for to build a representation mapping for feature modelling, let us
introduce Asadi’s et al. proposal so that we can show the need we identified for a more detail
mapping.

3.4.3 Variability sources representation mapping in Asadi’s et al. work

Asadi et al. use their proposed framework to evaluate feature modelling in [64]. In their
representation mapping of variability sources, they use the ontological concept of “natural
kinds” that we have not mentioned thus far. Let us then first introduce the concept of natural
kinds so that we can discuss the mapping provided by Asadi et al.

Asadi et al. use the concept of natural kinds, taken from Bunge’s ontology and explained by
Wand and Weber as follows: “A set of things adhering to the same laws is called a natural
kind. Since laws relate properties, a natural kind implies a set of properties as well. As laws
determine possible states, a natural kind is a set of things that exhibits like behaviour” [63].

The term natural kind is borrowed from philosophy. In its original context, the discussion
about what is and what is not a natural kind may be subject of intense debate [77]. A sim-
plified approach to understanding it is the following: Natural kinds are classification schemes
that exist in nature as opposed to other classification schemes that are merely arbitrary. In
the natural world, examples of natural kinds would be insect and bird, but not butterfly or
eagle, or insects-living-in-the-Amazon and eagles-born-in-America, which are non-natural or
“artificial” kinds [77].

This concept was incorporated by Mario Bunge in his ontology to formulate the principle of
nominal invariance: “Rather than assigning things a new name on every change of a property,
Bunge advocates keeping the name of a thing until it changes its natural kind (principle of
nominal invariance): A thing, if named, shall keep its name throughout its history as long as
the latter does not include changes in natural kind—changes which call for changes in name”
[63]. As a closer example applied to our domain, the concept of “computer” can considered
a natural kind. Every computer adheres to a set of laws that allows it to read data, process
it, and output a result. Changing its processor model or increasing its memory capacity do
not change its intrinsic laws, therefore, it can still be called a computer.

CHAPTER 3. VARIABILITY LANGUAGE EXPRESSIVENESS EVALUATION 51

The proposed mapping of feature modelling to Asadi’s framework presented in [64] is as
follows: “According to definitions for features, we can conclude a feature is a particular set
of properties or processes of one or more products in a product family. To interpret features
based on Bunge’s ontology, we can relate features to natural kinds because natural kinds are
used to define things with a set of common properties that adhere to the same laws including
both transition and state laws. Hence, the natural kinds similar to features can be used to
represent both the processes (lawful event space and time) and structure (things, properties,
and lawful state space) of the domain.”

Then, their conclusion is: “considering the ways features and natural kinds can be related,
we propose that a ‘good’ set of features is required to represent all sources of conceptual
variability including things, properties, lawful state space and lawful event space” [64].

We found the proposed mapping too general because although mapping features to the con-
cept of natural kinds is correct in some scenarios, there are others were a feature represents
an individual property. For instance, a feature can represent an optional backup computer
(natural kind) but it can also be memory size (individual property). In such instances, Asadi’s
proposed mapping proves inaccurate.

A set of features can represent things, properties and (when considering constraints among
them) a lawful state space. No explicit behavioural representation was found in feature
models, however. If by relating a feature (or a set of features) to the concept of natural
kinds it is claimed that behaviour is represented in feature models, this representation is at
best implicit. With an implicit representation it is not possible to check dynamic aspects the
systems, such as the proposed ordering variability pattern.

3.4.4 Variability patterns in feature modelling

Now we present the mapping between variability patterns and variability constructs in feature
modelling.

Fig. 3.8 is a visual representation of the four similarity patterns presented in 3.3.1. If the full
similarity double side is omitted, we are left with the three variability patterns considered in
Asadi’s et al. framework.

S
Full-similarity double side Full-similarity one side

p

Partial similarity Complete dissimilarity

TS

T

ST TS

Figure 3.8: Visual representation of similarity patterns

Asadi’s et al. postulates in [64] that optional features, XOR (alternative), and OR feature
groups are sufficient to represent all the variability patterns in the framework. In order to
delve deeper into Asadi’s et al. proposed mapping, let us clarify their postulates graphically.

CHAPTER 3. VARIABILITY LANGUAGE EXPRESSIVENESS EVALUATION 52

Fig. 3.9 represents the feature model constructs to be mapped. Three hypothetical features
(A, B and C) are modelled. Each diagram includes example configurations for two different
systems (X and Y).

FM

A CB

FM

A CB

FM

A CB

Optional
feature XOR feature group OR feature group

Cx: {A, B, C}
Cy: {B, C}

Full-similarity one side

Cx: {A}
Cy: {C}

Complete dissimilarity

Cx: {A, B, C}
Cy: {B, C}

Full-similarity one side

Cx: {A}
Cy: {C}

Complete dissimilarity

Cx: {A, B}
Cy: {A, C}

Partial Similarity

(1) (2) (3)

System X configuration: Cx
System Y configuration: Cy

Legend

Figure 3.9: Variability patterns mapped to FM constraints. 1) optional, 2) XOR
group, 3) OR group.

Using the optional construct (Fig. 3.9 (1)), configuration Cx includes optional feature A
while configuration Cy does not. Note that for an optional feature to make sense, we need at
least one mandatory feature. If only an optional feature were modelled, one of the systems
would be represented with that feature while the other would have an empty set of features.
Having at least one mandatory feature, this construct represents the full-similarity one side
variability pattern.

When a set of features are modelled as an XOR group, one and only one feature must be
selected from that group. When two different systems are modelled using this construct, it
yields the complete dissimilarity pattern.

Finally, the OR construct (see Fig. 3.9 (3)) allows selection of one or more items from the
group, which enables expression of the three different variability patterns. In the case of
Cx and Cy, it is possible to select a disjoint subset of features from the group, yielding the
complete dissimilarity pattern. Cy might be a subset of Cx, expressing the full-similarity one
side pattern. Finally, if a subset of Cx and a subset of Cy are equivalent sets, we obtain the
partial similarity pattern.

When the previously described constructs are combined in a bigger (and more realistic)
feature tree, not only variability but also similarity is modelled. Combining these constructs
enables the description of two different systems by choosing the same set of features in some
cases (commonality) while selecting different options in others (variability).

Fig. 3.10 shows the combination of an optional feature and an XOR group. Two differ-
ent variability patterns results from using the XOR group for modelling variability and the
optional feature for commonality. When feature A is included in both systems, it yields par-
tial similarity; when omitted, complete dissimilarity is obtained. Conversely, full-similarity
one side is obtained when the XOR group models commonality (feature B is part of both
configurations in the example shown in Fig. 3.10). This small example shows that by com-
bining different variability constructs it is possible to express variability patterns that are

CHAPTER 3. VARIABILITY LANGUAGE EXPRESSIVENESS EVALUATION 53

FM

A

XOR group and
optional feature

Cx: {B}
Cy: {C}

Complete dissimilarity

FG

B C

Cx: {A, B}
Cy: {A, C}

Partial Similarity

Cx: {A, B}
Cy: {B}

Full-similarity one side

Figure 3.10: Combining different FM constraints derive in more variability pat-
terns

not expressable by its constituent parts, such as partial similarity in this case.

Optional and XOR groups have a one-to-one mapping to variability patterns while OR
groups have a one-to-many mapping. Based on Asadi’s et. al evaluation framework, it
is concluded that these constructs are complete since all the variability patterns can be
represented. Clarity on the other hand, is not accomplished because OR groups can represent
more than one variability pattern. Taking Asadi’s et al mapping a step further, we showed
that by combining variability constructs (e.g. optional and XOR groups) new variability
patterns—not individually expressible—can be represented. This means that the postulated
mapping is only valid when the constructs are analyzed in isolation but may change when
they are combined.

3.4.5 Feature modelling evaluation using ATFV

Table 3.2 shows the results of our representation mapping for feature modelling. Contrary
to the mapping proposed by Asadi et al., the result of our evaluation showed that feature
modelling cannot represent the concepts of events and lawful event space. Moreover, instead of
claiming that all the concepts that comprise structural variability are mapped to “features”,
we provide a more detailed mapping of each element to a particular construct in feature
modelling (distinguishing, for instance, single features and feature groups). Even though
process variability is not supported in feature modelling, we provided an interpretation of
these ontological concepts—consistent with the mapping developed for feature modelling—in
subsection 3.4.2. This interpretation provides a conceptual reference that can be used to
evaluate other VMLs.

The result of the mapping for the variability patterns is the same as that obtained by Asadi
et al. [64]. We explained this mapping using a visual representation and argued that this
mapping is valid only when feature modelling constructs are considered individually, but
change when combined (e.g. optional and XOR group).

CHAPTER 3. VARIABILITY LANGUAGE EXPRESSIVENESS EVALUATION 54

Framework concepts Feature modelling construct
V

a
ri

a
b

il
it

y
so

u
rc

es

Structure

Thing Root node in the feature model.
Properties in General Feature group
Individual properties Single Features (leaf nodes in the feature tree).
State Set of features (configuration) derived from the FM.
Conceivable state space Set of all product configurations
State Law Constraints among features
Lawful state space Set of all valid product configurations

Process
Events Non-supported
Lawful Event Space Non-supported

Variability
Patterns

Full-similarity one side Optional, OR group
Partial Similarity OR group
Complete dissimilarity XOR, OR group
Ordering Non-supported

Table 3.2: Feature modelling mapping using ATFV

The result of assessing feature modelling using ATFV is that the language is ontologically
incomplete because there are no language constructs that represent process variability sources
(events and lawful event space) and the ordering variability pattern. Furthermore, the lan-
guage is also unclear because the OR group (multiple selection) can be used to represent more
than one variability pattern—a construct overload defect. It is important to note that if we
only consider structural variability, the language is ontologically complete. We can conclude
from that that this language is sufficient if we are only interested in modelling static aspects
of variability.

3.5 VMLs expressiveness evaluation using ATFV

In Chapter 2 we compared the capabilities of fourteen languages, the results of which were
summarized in Table 2.1. Based on this comparison, let us explore how these languages stand
on the Asadi’s expressiveness framework by looking into the representation of variability
patterns and variability sources.

All the evaluated languages support (directly or indirectly) the three basic forms of variability
constructs in feature modelling: optional, alternative (XOR) and multiple selection (OR),
therefore, all the evaluated languages are as expressive as feature modelling with respect to
the variability patterns full-similarity one side, partial similarity and complete dissimilarity.

Twelve out of fourteen evaluated languages are based on the feature modelling approach; the
concepts of features and features groups are directly supported by them. IVML follows the
decision modelling approach instead of feature modelling, however, the equivalence between
variability represented as variable features and decision variables has been shown by Czarnecki
et. al in [13]. Clafer supports feature modelling by using modelling patterns as shown in [37].
Thus, all the evaluated languages can express the ontological concepts of things, properties

CHAPTER 3. VARIABILITY LANGUAGE EXPRESSIVENESS EVALUATION 55

in general, and individual properties represented by feature and feature groups.

The ontological concept of state was mapped to a set of properties derived from a feature
model after resolving all variability (i.e. a product configuration). Since all fourteen languages
are able to resolve variability by supporting at least one mechanism to derive configurations,
all VMLs can express the concept of state as well. Similarly, all the languages support
specification of constraints, thus, all languages express state laws and as a consequence,
define a lawful state space.

All VMLs considered in Chapter 2 are capable of representing the same constructs of feature
modelling considered in our representation mapping. Therefore, it can be concluded that all
of them are expressive enough to represent structural variability using ATFV.

Process variability, on the other hand, includes the ontological concepts of lawful event state
and the ordering variability pattern. The concepts of event, conceivable event space and event
law (also called transition law) are implicit in lawful event space. As concluded in section
3.4.2, none of these are supported by feature modelling.

Among the consulted language specifications, IVML and VSL include the concept of binding
time into the language. IVML uses annotations—attributes attached to decision variables or
projects—to specify binding times [36]. VSL also offers the possibility of specifying upper and
lower bounds for binding times, and attaching them to variable items [78]. In both cases, the
binding time is specified as an attribute to a variable element in the model. We can assume
that other languages (ten out of fourteen in our survey) that support the specification of
attributes to arbitrary variable items can also specify binding time.

The last version of Clafer introduces the operator -->, which represent a temporal constraint
between two predicates. “The meaning of X --> Y is that if X holds in a state then Y must
hold in the next state” [37]. Clafer also incorporates patterns to express more complicated
temporal constraints; for instance, the expression always A between B and C enforces that
action A always occurs between B and C. A complete modelling example of a state machine
is presented in [37].

Even though Clafer integrates temporal constructs into the language specification, it is im-
portant to note that full tool support is missing. It is stated that as part of release 0.5.0
of Clafer compiler “an experimental generator of Alloy input is also included in the release”
[37], however, based on our tool support assessment presented in Chapter 2, here experimen-
tal means not working. Although the tools are not available, a deep understanding of the
modelling capabilities offered by Clafer with behaviour is certainly a topic worth of further
exploration; it is, however, lengthy enough for a full master project onto itself.

3.6 Conclusions

In our literature study, we encountered either a lack of formality in the evaluation of expres-
siveness of variability languages, or no assessment whatsoever. Asadi et al. adapted Wand

CHAPTER 3. VARIABILITY LANGUAGE EXPRESSIVENESS EVALUATION 56

and Weber’s ontological expressiveness evaluation framework [62] to variability modelling
languages in [64]. Asadi’s et al. main contributions are that they use ontological concepts to
model variability sources, and add a set of variability patterns to create a consistent frame-
work to assess expressiveness of variability languages. From their work, they derived process
variability to point out the existence of variability in the dynamics of systems. In this chap-
ter, we expand upon Asadi’s et al. work in [64] by clarifying confusing ontological concepts,
providing an alternative and more detailed mapping of feature modelling, and extrapolating
this analysis to the fourteen languages compared in Chapter 2. This analysis will be applied
towards the selection of a VML to be used at ASML.

The ontological concept of event and the ordering variability pattern were further clarified by
using the state-tracking formal model proposed by Wand and Weber in [61]. We postulated
that in the ontological sense, an event represents a runtime transition between two valid
configurations defined in the variability model—i.e. a runtime reconfiguration. This idea
has been previously explored in Dynamic Software Product Lines but it was not present in
Asadi’s et al. work. Furthermore, we also proposed that the ordering variability pattern
evaluates whether or not two systems traverse the same sequence of runtime reconfigurations
in the same order.

Our mapping of feature modelling using ATFV rendered it expressive enough to represent
structural variability (things, properties and lawful state space) but not process variability
(lawful event space and ordering variability pattern). Hence, our work shows feature modelling
(as presented in its original approach [15]) cannot express dynamic aspects of the domain, as
concluded by Asadi et al.

Based on the survey presented in Chapter 3, the analysis of feature modelling was extrapo-
lated to the fourteen languages. We concluded that they can represent structural variability
based on ATFV. The capability of adding attributes to variability items—not present in the
original feature modelling proposal—can be used to specify its binding time—which is dy-
namic information. Only Clafer incorporates temporal aspects to the language, introducing
the possibility of modelling dynamic aspects of variability.

A key interest of ASML’s customers is for lithography machines to be continuously running
due to the high cost associated with interrupting production; hence, the ability of changing
a machine’s configuration without restarting the system is a highly desirable one. The cur-
rent variability modelling approaches—even the most recent proposals—focus only on static
aspects of variability, thus, the goal of dynamic configuration of such complex systems is
still far on the horizon. Only by integrating dynamic information to variability models is it
possible to achieve highly configurable and continuously running systems. Our work sheds
light on the importance of developing languages that support dynamic variability further.

The value of ATFV lies in its formal approach to addressing the challenge of expressiveness
evaluation by building on previous work as opposed to other authors that build a proposal
from scratch (e.g. [79]). Using a pre-existent, well-founded, and systematized ontological
framework gives ATFV a solid foundation upon which to specialize in the direction of VMLs
analysis. In the same spirit, the work presented in this chapter builds upon Asadi’s et al.

CHAPTER 3. VARIABILITY LANGUAGE EXPRESSIVENESS EVALUATION 57

work because it is our belief that advancement in any field is mostly the result of collective,
iterative effort rather than fresh strikes of individual genius. Hence, we see more value in
refining and clarifying confusing ideas rather than discarding them completely before they
have been fully explored.

ATFV as used to evaluate the fourteen languages considered in this work, shows an overlap
in expressiveness. Most of the languages provide almost the same expressiveness that feature
modelling does. Thus, rather than developing new variability languages that are yet another
variation of feature modelling, an interesting research direction for ASML could be to focus
on integrating dynamic information into existing languages—be they internally or externally
developed. The value of this evaluation approach is that it highlights the absense of dynamic
aspects of variability—a gap in most of the language proposals—which the previous evalu-
ation in Chapter 2 did not identify. Since system dynamics is a fundamental aspect in the
analysis of CPSs such as ASML’s lithography machines, this element also proves valuable as
an evaluation criteria (RQ1).

In Chapter 2 we concluded that Clafer supported most of the capabilities considered; its
support for multiple modelling approaches opens the possibility of specifying hybrid models—
relevant for cyber-physical systems—and includes robust tool support. IVML provides similar
capabilities, but instead of integrating multiple modelling approaches, its value centers around
providing advanced composition mechanisms. As discussed in this chapter, based on ATFV,
Clafer stands out among the other specifications by integrating a temporal dimension into
the language—something that introduces new possibilities for expressing process variability.
Since it is not possible to unequivocally determine suitability of a modelling language without
carrying out an in-depth practical assessment, we argue that the above rationale constitutes
enough evidence to support the selection of Clafer as the language to be thoroughly evaluated
in chapter 4.

Chapter 4

Clafer evaluation using ASML’s
variability model

In this chapter, Clafer is used to model one of the ASML’s Software Product Lines and the
System Manager Driver Specification (SMDC) files. Variability models of four different ma-
chine families (EXE, NXE, NXT DRY and NXT WET) are transformed into Clafer models.
For SMDC files, only a mapping from SMDC constructs to Clafer is provided. The purpose
of this study is to evaluate the expressiveness of the Clafer language and the scalability of its
toolset in ASML’s setting.

By developing a model transformation from ASML’s variability representation to Clafer,
missing constructs in the target language are identified. ASML’s variability models are
large, and provide an adequate setting to evaluate the Clafer toolset scalability using a real
industrial environment—an evaluation that, to the best of our knowledge, has not been done
in the past.

Mapping the concepts from SMDC to Clafer constructs allow us to evaluate Clafer both as
a structural and variability modelling language. SMDC specifications define system drivers
and dependencies among them; variability is specified by a set of inclusion conditions based
on VP-values. Then, the information derived from such models and its possible applications
are briefly discussed.

This chapter is organized as follows:

• Section 4.1: Description of the VP-based variability model.

• Section 4.2: An overview of the model transformation—including the framework used
to implement it—is presented.

• Section 4.3: Explains how VP definitions are modelled in Clafer. Then, the transfor-
mation of each kind of VP is detailed.

58

CHAPTER 4. CLAFER EVALUATION USING ASML’S VARIABILITY MODEL 59

• Section 4.4: Presents an overview of Clafer constraints expressions and its instance
generator. Afterwards, it is detailed how VPO’s hierarchical and interface constraints
are represented as Clafer’s constraints.

• Section 4.5: The results of the model transformation are presented.

• Section 4.6: Models all the SMDC specification constructs in Clafer.

• Section 4.7: The missing Clafer’s constructs to model ASML’s variability model and
SMDC files are summarized and some alternatives outlined.

• Section 4.8: Clafer toolset suitability for modelling variability of ASML’s large systems
is briefly discussed.

• Section 4.9: Final remarks and conclusions about this modelling experiment are pre-
sented.

4.1 ASML’s Software Product Line

ASML’s TWINSCAN software is an SPL that supports a large variety of platforms, machine
models and optional features. The basic variability unit in ASML’s variability model is the
Variability Parameter (VP). Variability parameters (VPs) are variables that can be evaluated
to a set of predefined VP-values; i.e. VPs represent variation points while VP-values specify
their variants.

Currently, there are three different VP types: System Variability Parameters (SVPs), Prod-
uct Variability Parameters (PVPs) and Element Variability Parameters (EVPs). PVPs are
further divided into protected and non-protected (See Fig. 4.1). SVPs are the highest hier-
archy among the three categories and represent a commercial value—hardware and software
options that the customer can optionally buy.

ASML’s variability model defines VP interfaces, which contain a set of—semantically related—
PVPs or EVPs and, optionally, dependencies among them. Unlike SVPs, each PVP or EVP
definition in the model is always contained in a VP interface. Optional dependencies be-
tween VPs of the same category (either PVP or EVP), defined as part of the VP interface
specification are called interface or horizontal constraints throughout this document.

SVPs are mapped to protected PVPs through SVP2PVP mappings while EVP values are
derived from PVPs using PVP2EVP mappings; We call these hierarchical mappings.

There are two main scenarios for paid software functionality (SVPs): optional and config-
urable features. Optional features support specialised hardware or provide application-specific
software functionality requested by the end customer; enabled or disabled are the only alter-
natives. Configurable items refer to software functionality with several operational modes;
this might be due to hardware variations or not. The available software modes depend on the
software license bought by the user. Protected PVPs are derived from SVPs values and thus,

CHAPTER 4. CLAFER EVALUATION USING ASML’S VARIABILITY MODEL 60

VP

EVPPVPSVP

VP Interface

1

1...*

Protected PVP Non-protected PVP

Sales EMCF

Machine EMCF

Figure 4.1: UML diagram - ASML’s variability parameters types

represent the same paid options, but at the product level. Usually a single SVP is mapped
to more than one protected PVPs.

Non-protected PVPs deal with software variability with no commercial value. The differ-
ence in HW versions (not detectable by software) or user preferences are the most common
variability sources. Non-protected PVPs can be modified by the customer.

Finally, EVPs were introduced to decouple external and internal configuration elements.
EVPs represent the internal machine configuration directly tied to software modules. EVPs
are primarily used to manage variability at the implementation level, improving software
maintainability.

Machine configurations—i.e. a mapping between VPs and VP values—are supplied in an
EMCF (Encoded Machine Configuration File). There are two different EMCF types: Sales
and Machine EMCFs. Sales EMCFs contain SVP values only and are further divided into
certified and non-certified. Certified sales EMCFs are “read-only” configurations, generated
by the sales department. Non-certified sales EMCFs are generated using CM tools and can
be modified. The certified versions are used by end-customers while non-certified versions
are used within ASML for testing and development purposes. On the other hand, Machine
EMCFs only contain non-protected PVP values—not included in Sales EMCFs—and can
be modified by both ASML engineers and the customer. Protected PVPs assignments are
derived from SVP values and SVP2PVP mappings. EVP assignments are determined from
protected and non-protected PVPs. Protected PVPs’ and EVPs’ values are not contained in
EMCFs. If for any reason, a protected PVP or a EVP value is not derived from an SVP2EVP
or a PVP2EVP mapping respectively, its default value is used.

CHAPTER 4. CLAFER EVALUATION USING ASML’S VARIABILITY MODEL 61

Default values—also called safe values—are included as part of PVP and EVP definitions.
When a VP value is neither specified in the EMCF nor derived from a mapping or constraint,
the default value is used. A valued VP can be either pinned or overruled. When a VP is
pinned, a new value is assigned to it, ignoring mappings or constraints affecting this variable;
only Machine EMCFs and non-certified Sales EMCFs can be pinned. When a VP is re-
assigned to its default value, it is overruled. Overrule operation is only available for certified
sales ECMFs. Pinning and overruling VP operations must be manually performed using the
EMCF_edit tool, which is provided by the ASML’s configuration management team. These
operations are mostly used for debugging configuration issues.

4.2 Overview of the VPO to Clafer transformation

The Configuration Management (CM) team at ASML is responsible for all the VP information—
variability models, tools and documentation. Each lithography machine family has its own
VP-based model, available through the VP overviews—an internal website where the list
of VP definitions and their dependencies can be easily navigated. VP Overviews (VPO)
data can be downloaded as XML files—which contain the same information available in the
website. Furthermore, the structure of VPO files is specified in an XML Schema Definition
(XSD) file; a standard specification that is often used to auto-generate parsers for any file
compliant with the schema.

There is a VPO file for each machine type, which encodes the whole variability model—i.e.
VP definitions, hierarchical mappings and horizontal constraints. Every VPO file contains
two non-empty sets of SVP definitions and Functional Cluster definitions (FC). Each FC
definition has a non-empty set of Building Blocks (BBs), which in turn contain at least one
VP interface definition (see Fig. 4.3).

The Eclipse Modeling Framework (EMF) was selected to develop the model transformation
from VPO to Clafer. EMF is a robust framework that supports a tools ecosystem for model-
based software development. Moreover, EMF is used in different projects within the ASML
R&D team; this guarantees the software is pre-approved for installation on the company’s
computers—which might be a relevant roadblock otherwise. Furthermore, EMF is capable of
automatically generating an ECORE model from an XSD definition. In turn, this ECORE
model was used to generate Java code for accessing VPO files programmatically.

Two alternatives were considered for the VPO to Clafer transformation: a Model to Model
(M2M) and a Model to Text (M2T) transformation. The M2M transformation requires the
additional effort of defining an ECORE metamodel for the Clafer language, but this op-
tion ensures that the generated Clafer models are always syntactically valid—assuming the
ECORE model is correct. The M2T transformation does not require specifying a model for
the target language, and the output model is directly written to a text file during the trans-
formation. Considering the project’s time constraints and given that Clafer is a minimalist
language with very few constructs and simple syntax, the M2T approach was chosen.

CHAPTER 4. CLAFER EVALUATION USING ASML’S VARIABILITY MODEL 62

VPO model

Functional Cluster
(FC)

1

1..*

11

*

1..*

VP Interface

1

1..*
SVP2PVP mapping

1

SVP definition

+ Name: String

+ Description: String

+ Variants: Set<String>

1..*

Building Block
(BB)

Figure 4.2: VPO files - Basic structure

Xtend was the programming language selected to perform the VPO to Clafer model transfor-
mation. Xtend is a flexible and expressive dialect of Java, which compiles into readable Java 8
compatible source code [80]. Xtend provides a high-level of abstraction and fewer constructs
compared to Java, making it a powerful language and relatively easy to learn. One particu-
larly useful feature for M2T transformation are the template expressions. Xtend’s template
expressions provide powerful string manipulation constructs and an automatic string output
concatenation mechanism resulting in concise and expressive code for out model transforma-
tion.

Moreover, due to its Java interoperability, it provides full access to Java libraries. This is
important since Xtend’s constructs are limited and Java provides useful libraries for our
transformation (e.g. regular expressions libraries).

There are two types of elements involved in the VPO to Clafer transformation: VP definitions
and constraints. In a VPO file, all the VP information and constraints are contained in either
SVP definitions or VP interfaces.

From an SVP definition, its name, description, the list of variants and, if defined, the
SVP2PVP mappings are decoded during the VPO2Clafer transformation.

VP interfaces contain a non-empty set of PVP or EVP definitions. Optionally, these interfaces
contain horizontal constraints (also called interface constraints) and hierarchical mappings.
Horizontal constraints specify dependencies among different subsystems variabilities (mapped
to different VPs) while hierarchical mappings related VPs at different abstraction levels.

A VP interface might hold a list of PVP definitions (Fig. 4.3 left) or EVP definitions (Fig.

CHAPTER 4. CLAFER EVALUATION USING ASML’S VARIABILITY MODEL 63

4.3 right), hierarchical mappings are then SVP2PVP and PVP2EVP, respectively. Similar
to SVPs, name, description and variants are decoded from PVP or EVP definitions. The
boolean attribute protected is also decoded from PVPs because it is relevant information to
build the variability model in Clafer.

SVP2PVP mapping Interface Constraint
(PVP2PVP)

VP Interface

1..*

11 1

* *

PVP2EVP mapping Interface Constraint
(EVP2EVP)

VP Interface

1..*

11 1

* *
EVP definition

+ Name: String

+ Description: String

+ Variants: Set<String>

PVP definition

+ Description: String

+ protected: Boolean

+ Variants: Set<String>

+ Name: String

Figure 4.3: VP interface containing PVP definitions (left) or EVP definitions
(right).

VP definitions in VPO files contain more attributes that are not decoded during the VPO2Clafer
transformation. These attributes are informative and do not provide variability information.
The developed model transformation is limited to translate relevant variability and dependen-
cies information from the model—non-essential information such as the description attribute
is also included as context for each variable.

4.3 Variability Parameters in Clafer

This section is divided in two parts. First, Clafer’s basic modelling constructs are described
and applied to model the VP’s definitions. Second, using the VP objects modelled in Clafer,
it is detailed how the VP definition information is obtained from the VPO files and translated
to Clafer.

4.3.1 Modelling VPs in Clafer

The basic modelling unit in Clafer (the language) is the clafer—which stands for class,
feature, reference. A clafer is a generic data type that can be used to represent feature
models; however, it is flexible enough to build class diagrams and state machines as well.
A Clafer model is built from a tree of clafer declarations that represent domain concepts
and relations among them. Clafer allows arranging models into multiple specialization and
extension layers via constraints and inheritance.

There are two basic types of clafers: abstract and concrete. An abstract clafer cannot have
direct instances on its own but only via concrete clafers which extend it via a generalization
relation (similar to abstract classes in OO languages). A clafer (abstract or concrete) is used as

CHAPTER 4. CLAFER EVALUATION USING ASML’S VARIABILITY MODEL 64

a containment structure; it might contain basic type variables, other clafers, groups of clafers
or references. Groups contain a set of elements commonly used to model atomic features—
features that cannot be divided further—which together specify a variable’s domain.

The Clafer constructs are exemplified by modelling ASML’s VPs. Consider the follow defi-
nition:

1 abstract VP_DEFINE
2 VP_name -> string
3 Description -> string
4
5 xor kind
6 SVP
7 PVP
8 EVP

Listing 4.1: Basic VP definition using an abstract clafer

ASML’s software variability is modelled by a set of VPs, each one defining a range of possible
VP values. There are three different kinds of VPs: SVP, PVP and EVP. Each VP has a
unique name and includes a brief description as part of its definition. We start modelling
these elements as an abstract clafer shown in Listing 4.1. VP_DEFINE contains the VP
name, its description and the VP kind. In Clafer, containment is syntactically represented
via indentation. VP_DEFINE shows two levels of containment, the first level defines the
elements included in the top clafer (VP_name, Description and xor kind, a xor group
with name kind), the second indentation for SVP, PVP and EVP elements indicates that those
elements are contained within the xor group.

Clafer provides five group cardinality constructs to restrict the number of children ele-
ments that can be selected : xor = 1..1, or = 1..*, mux = 0..1, opt = 0..* and
range n..m, where n, m are integer literals defining the lower and upper bounds, respec-
tively. The first four elements are syntactic sugar for the most used cardinality settings, which
can be also expressed using range. Since every VP has one and only one type associated with
it, xor is used in all cases.

Now inheritance is used to refine the basic VP definition.

1 abstract SVP_DEFINE: VP_DEFINE
2 [SVP]
3
4 abstract NON_SVP_DEFINE: VP_DEFINE
5 VPi_name -> string

Listing 4.2: SVP and NON-SVP definitions

Clafer inheritance is done using the type annotation: 〈new clafer〉 : 〈super clafer〉. The
new clafer specializes the (existing) super clafer—similar to class generalization in object
oriented modelling. In Listing 4.2, SVP_DEFINE (line 1) and NON_SVP_DEFINE (line 4)

CHAPTER 4. CLAFER EVALUATION USING ASML’S VARIABILITY MODEL 65

are derived from VP_DEFINE, inheriting all its elements. NON_SVP_DEFINE includes a new
string variable (VPi_name on line 5), used to store the VP interface name.

Constraint expressions in Clafer are surrounded by square brackets. The constraint [SVP]
in Listing 4.2 line 2 is satisfied only if the element SVP is selected from the kind group. Notice
that the SVP container’s name on the constraint expression (i.e. the group’s name, kind) is
omitted; the Clafer compiler looks automatically in all the nested elements when clafer context
constraints are used. Alternatively, the modeller could prepend the container’s name to
the constraint expression ([kind.SVP]), which is syntactically correct and semantically
equivalent.

1 abstract EVP_DEFINE: NON_SVP_DEFINE
2 [EVP]
3
4 abstract PVP_DEFINE: NON_SVP_DEFINE
5 [PVP]
6 xor protected
7 Y
8 N
9 abstract PROTECTED_PVP_DEFINE: PVP_DEFINE

10 [Y]
11
12 abstract UNPROTECTED_PVP_DEFINE: PVP_DEFINE
13 [N]

Listing 4.3: EVP and PVP definitions

Listing 4.3 shows further refinements to define EVPs (line 1) and PVPs (line 4). Both
EVP_DEFINE and PVP_DEFINE specialize NON_SVP_DEFINE and contain a constraint for
setting the VP kind (similar to SVP_DEFINE). The PVP definition is further refined in two
derived versions, protected (line 9) and non-protected (line 12).

4.3.2 Decoding VP definitions from a VP overviews file

Thus far, the Clafer model contains only abstract clafers that represent the different VP
types. Bear in mind that abstract definitions do not represent VP instances but VP classes.
Each VP definition found in the VPO file is then translated to a concrete clafer in the output
model, representing VP instances. First, the SVPs decoding process is described, then PVPs
and finally EVPs.

Listing 4.4 shows an SVP definition for the NXT-WET machine type. The resulting el-
ement in the output model is shown in Listing 4.5. The clafer definition is derived from
SVP_DEFINE (line 1) and extended with three variants (lines 6–8). The first two variants
('Y' and 'N') are obtained from the input model while the third variant is introduced during
the transformation.

CHAPTER 4. CLAFER EVALUATION USING ASML’S VARIABILITY MODEL 66

1 <SVP Name="2D_BARCODE_READER" Description="2D Barcode Reader" Microhelp="TBD">
2 <VARIANT Name="N" Description="No" />
3 <VARIANT Name="Y" Description="Yes" />
4 <CONTROLS Kind="PVP">
5 <VP Name="BC2D_READER" VPInterface="BCCMxVPxTYP" />
6 </CONTROLS>
7 </SVP>

Listing 4.4: Example SVP definition in VPO file

1 SVP_2D_BARCODE_READER: SVP_DEFINE
2 [VP_name = "2D_BARCODE_READER"]
3 [Description = "2D Barcode Reader"]
4
5 xor variant
6 N
7 Y
8 SVP_UNDEFINED
9

10 [SVP_UNDEFINED]

Listing 4.5: Example SVP definition translated to Clafer

ASML’s machine configuration files allow undefined SVPs. It was decided to model each
SVP’s undefined state explicitly by adding an extra variant, SVP_UNDEFINED (see Listing
4.5 line 8). Then, all the SVPs were set as undefined by default (constraint shown on line
10). The main reason to do so is to simplify the constraint evaluation, which was found to be
the main challenge for Clafer’s tools. VP_name and Description are set using constraints
on line 2 and line 3 respectively.

Unlike previous definitions, this is a concrete clafer (abstract keyword is absent). The
substring “SVP_” is appended to the SVP’s name during the model transformation because
Clafer’s ID cannot start with numbers (2D_BARCODE_READER is an invalid identifier); the
same operation is applied to all SVPs (whether or not its name start with a digit) to keep a
consistent name convention.

There are two elements showed in Listing 4.4 that are not decoded because they do not contain
essential variability information: the Microhelp attribute (line 1) and the CONTROLS struc-
ture (lines 4–6). The microhelp provides complementary description information, although
sometimes it is not defined (as in the running example). The CONTROLS structure specifies
the kind PVP (line 4), meaning that this SVP belongs to at least one SVP2PVP mapping
defined in the model—but it does not provide the actual mapping. Inside the CONTROLS
structure there is a list with all the PVPs controlled by this SVP (line 5), in this example,
only one element is defined, but it might be—and usually are—many more. It is clear that
none of these elements provide essential variability or constraint information, thus, they are
not translated.

1 <VPINTERFACE Name="WHPUxVPxCOSY">
2 <VP Name="WFR_TEMP_COND_SYSTEM"
3 Description="WH temperature conditioning type"
4 Number="11080"

CHAPTER 4. CLAFER EVALUATION USING ASML’S VARIABILITY MODEL 67

5 Kind="PVP"
6 Protected="true"
7 Default="CONVENTIONAL"
8 Type="Feature"
9 Microhelp="Indicates the wafer conditioning procedure

10 that will be used in the wafer handler."
11 DocId="D000350315"
12 Version="00">
13
14 <VARIANT Name="CONVENTIONAL"
15 Description="Slow performance type used for XTIII and below."
16 Number="11081" />
17 <VARIANT Name="TYPE_1"
18 Description="Fast performance type used for XTIV and higher."
19 Number="11082" />
20 <VARIANT Name="TYPE_2"
21 Description="Mk5 Store Unit conditioning active."
22 Number="11083" />
23 <VARIANT Name="TYPE_4"
24 Description="Mk5 Store Unit and pre-aligner conditioning

active"
25 Number="11085" />
26
27 <MMDEF>
28 <NXT1950Ai MmDefault="TYPE_1"
29 Source="CMIM_WHPUxVPxCOSY_mm_def.xml"
30 />
31 <NXT1960Bi MmDefault="TYPE_1"
32 Source="CMIM_WHPUxVPxCOSY_mm_def.xml"
33 .
34 .
35 <NXT2100i MmDefault="TYPE_4"
36 Source="CMIM_WHPUxVPxCOSY_mm_def.xml"
37 />
38 </MMDEF>
39
40 <CONTROLLED_BY Kind="SVP">
41 <VP Name="MES_MACHINE_TYPE" />
42 <VP Name="OFP_1" />
43 .
44 .
45 <VP Name="SNEP_C2D" />
46 <VP Name="TOP_PRODUCTS_NXT1965CI" />
47 </CONTROLLED_BY>
48
49 <CONTROLS Kind="EVP">
50 <VP Name="WFR_LOAD_PATH_THERMAL_COND" VPInterface="LOPWxEVPxWH" />
51 <VP Name="WH_HMAN_USAGE" VPInterface="WBTCxEVPxHTxCONF" />
52 <VP Name="WH_SU_TABLE_USAGE" VPInterface="WHSUxEVPxTABLE" />
53 </CONTROLS>
54 </VP>

Listing 4.6: Example of a protected PVP definition, including Machine default values.

Now, consider the VP interface containing a protected PVP definition shown in Listing 4.6.
At the top of the structure we find the VP interface, containing its name as an attribute

CHAPTER 4. CLAFER EVALUATION USING ASML’S VARIABILITY MODEL 68

(line 1). Inside, there is a PVP definition with several attributes (lines 2–12), from which
only name (line 2), description (line 3), kind (line 5) and protected (line 6) are decoded. The
default value (line 7) is a deprecated attribute—and hence ignored—because it was replaced
by machine model default (MMDEF) values (lines 27–38). The remaining parameters are
not translated either, because they do not carry relevant information for our analysis. Four
PVP’s variants are defined on lines 14–25; only their name attribute is decoded.

Right below the variants there is a MMDEF block (lines 27–38) defining the machine defaults
(some elements were removed to save space). When a PVP or an EVP does not have a value
or its value is overruled, their default value (also called safe value) is used. Instead of defining
a unique default value per PVP (a deprecated feature), the MMDEF list defines a default
value for each machine type. For instance, when the machine type is NXT1950Ai the default
value is TYPE_1 (line 28). These machine defaults values are originally stored in separate
XML files and encoded into the VPO file, the attribute Source indicates the name of such
an external file (line 29); again, an ignored attribute with no relevant information for our
analysis.

Unfortunately, Clafer does not support default values directly and therefore these are not
translated in the target model. Nonetheless, alternatives for indirect support are briefly
discussed in Section 4.7.

Finally, CONTROLLED_BY (lines 40–47) and CONTROLS (lines 49–53) structures are shown un-
der the PVP definition. CONTROLLED_BY defines a list of SVPs (line 40) used in a SVP2PVP
mapping, which define the value for the current PVP. Since it is a protected PVP, its value
is automatically derived from one or more SVPs. CONTROLS use was previously explained,
the only difference in this case is that now the mapped (or controlled) variables are EVPs
(as indicated on line 49), indicating that this PVP is part of a PVP2EVP mapping.

The resulting PVP definition in Clafer is presented in Listing 4.7. The protected attribute
(true in this case) determines which super clafer is used (i.e. protected or non-protected).
In the VPO constraint expressions (that will be explained later on), PVPs and EVPs are
referenced using an identifier of the form: VPi_name:VP_name. For example:

WHPUxVPxCOSY:WFR_TEMP_COND_SYSTEM

The VP reference name cannot be used as it appears in VPO files because the symbol “:” is
interpreted as a type annotation in Clafer, hence the colon is replaced by an underscore as
shown on line 1 in Listing 4.7. Notice that this might lead to ambiguity because the VP_name
also contains underscore characters. However, the name of both the VP and its associated
interface are stored inside the VP definition; which can be used to resolve ambiguity if needed.

1 WHPUxVPxCOSY_WFR_TEMP_COND_SYSTEM: PROTECTED_PVP_DEFINE
2 [VPi_name = "WHPUxVPxCOSY"]
3 [VP_name = "WFR_TEMP_COND_SYSTEM"]
4 [Description = "WH temperature conditioning type"]
5
6 xor variant
7 CONVENTIONAL
8 TYPE_1

CHAPTER 4. CLAFER EVALUATION USING ASML’S VARIABILITY MODEL 69

9 TYPE_2
10 TYPE_4

Listing 4.7: Protected PVP definition translated to Clafer

Lastly, an example VP interface containing an EVP definition is shown in Listing 4.8. The
main differences with respect to the previous PVP definition are the following:

• Protected attribute (line 6): Even though the attribute is included, it is deprecated for
EVPs. Still, some EVP definitions have different values in this field.

• Default value (line 7): The default attribute is deprecated for PVPs but not for EVPs.
On a well-formed VPO model, all the EVPs values are derived from PVPs or set directly
using a mapping (i.e. not depending on any PVP). If a particular EVP does not get a
value from a mapping, then its default value is used.

• MMDEF block: Machine defaults do not apply to EVPs, default attribute is used
instead (see previous bullet).

• CONTROLS block: EVPs are at the bottom of the VP hierarchy, thus, CONTROLS
block does not apply.

1 <VPINTERFACE Name="KDDAxEVPxRBF">
2 <VP Name="RBF_RELAXATION"
3 Description="Toggle relaxation of the RBF model."
4 Number="29160"
5 Kind="EVP"
6 Protected="false"
7 Default="DISABLED"
8 Type="Feature"
9 Microhelp="Toggle relaxation of the RBF model."

10 DocId="579758"
11 Version="00">
12
13 <VARIANT Name="DISABLED"
14 Description="Disable RBF Relaxation" Number="29161"
15 />
16 <VARIANT Name="ENABLED"
17 Description="Enable RBF Relaxation" Number="29162"
18 />
19
20 <CONTROLLED_BY Kind="PVP">
21 <VP Name="SWITCH_303" VPInterface="CMIMxVPxCFG" />
22 </CONTROLLED_BY>
23 </VP>

Listing 4.8: Example of an EVP definition

The resulting EVP definition in the output model is presented in Listing 4.9.

CHAPTER 4. CLAFER EVALUATION USING ASML’S VARIABILITY MODEL 70

1 KDDAxEVPxRBF_RBF_RELAXATION: EVP_DEFINE
2 [VPi_name = "KDDAxEVPxRBF"]
3 [VP_name = "RBF_RELAXATION"]
4 [Description = "Toggle relaxation of the RBF model."]
5
6 xor variant
7 DISABLED
8 ENABLED

Listing 4.9: EVP definition translated to Clafer

4.4 VPO constraints in Clafer

Clafer constraints are boolean expressions defined in a Clafer model that are required to
be true and are used for instance generation. A model instance is correct if and only if all
constraints hold. Constraints in Clafer have two different contexts: top-level or clafer level.
Top-level constraints are defined without indentation and must be true for each instance of
the model. Clafer level constraints are nested under a clafer’s definition and must be true for
each instance of the containing clafer. Both cases are shown below.

/*Top level constraint*/
[< boolean expression >]

/*Clafer context constraint*/
<clafer>

[< boolean expression >]

4.4.1 Boolean Expressions in Clafer

Clafer supports different categories of expressions that return a boolean value: boolean logic,
numeric comparisons, simply quantified and quantified with local declarations. Only the first
two categories are used in this project and specified below.

Boolean Logic

<boolean expression>:
if <boolean expression> then <boolean expression> else <boolean

expression>
<boolean expression> <=> <boolean expression>
<boolean expression> => <boolean expression>
<boolean expression> || <boolean expression>
<boolean expression> xor <boolean expression>
<boolean expression> && <boolean expression>
! <boolean expression>

Clafer supports the basic boolean operators: conjunction (&&), disjunction (||) and negation
(!). Besides, implication (=>), double-sided implication (<=>), exclusive disjunction (xor)

CHAPTER 4. CLAFER EVALUATION USING ASML’S VARIABILITY MODEL 71

and the if..then..else construct are also supported—all of them expressible using basic
boolean operators. The if construct does not support nesting. The VPO constraints heavily
rely on else-if constructs and nested if structures; neither of those are expressible with Clafer’s
if construct. Thus, this Clafer construct is not used in our model transformation.

Numeric comparisons

<boolean expression>:
<numeric expression> < <numeric expression>

<numeric expression> > <numeric expression>
<numeric expression> <= <numeric expression>
<numeric expression> >= <numeric expression>

Constraints involving numeric comparisons are useful to limit integer values. For instance, if
an integer variable represents the angle of rotation in degrees, its domain might be constrained
as follows:

[(degrees >= 0) && (degrees <= 360)]

Neither boolean variables nor boolean literals are part of the Clafer language. The lack of
boolean variables makes the model transformation more complex and results in very large
constraint expressions. Boolean literals—required in the model transformation—are modelled
with the following clafer:

Boolean
xor is

true
false

[is.true]

Constraints [Boolean.is.true] and [Boolean.is.false] evaluate to true and false
respectively, and are used as a replacement for boolean literals in our Clafer model.

4.4.2 Clafer constraints and variability model resolution

The simplified Clafer’s instance generation process in shown in Fig. 4.4. The Clafer model
is compiled into a Constraint Satisfaction Problem (CSP). A CPS is formally defined as a
triple 〈X,D,C〉, where [81]:

X = X1, ..., Xn is a set of variables

D = D1, ..., Dn is a set of all possible values that can be assigned to each variable

C = C1, ..., Cm is a set of constraints.

A value assignment is a variable-value pair 〈Xi, v〉, where Xi ∈ X and v ∈ Di. A constraint
Cj ∈ C defines a relation Rj between the set of variables tj , where tj ⊂ X. Rj is a k-ary

CHAPTER 4. CLAFER EVALUATION USING ASML’S VARIABILITY MODEL 72

Clafer model
Constraint

Satisfaction Problem
(CSP) specification

Clafer Model
instances

Compile

Decompile

CSP solutions

Solve using
Alloy* Analyzer or

Choco-solver

Figure 4.4: Simplified workflow for the Clafer instance generator.

relation between the subset of domains Dj , where the subset Dj ⊂ D corresponds to the
variables in tj .

A mapping from a subset of variables to a set of values in their respective subset of domains
is an evaluation. When the values assigned to the variables tj satisfy the relation Rj , we say
that the evaluation wj satisfies Cj .

A consistent evaluation does not violate any of the constraints in C. A complete evaluation
includes all variables in X. An evaluation is a solution of the CSP if it is consistent and
complete.

In our Clafer model, eachXi corresponds to a VP definition while its associated variants define
the domain Di. All the model constraints, translated from VPO hierarchical mappings and
interface constraints, form the set of constraints C.

The Clafer instance generator first transforms the Clafer model to a CSP specification (.als
format for Alloy* Analyzer and .js for Choco-solver). Then, one of the backend solvers
takes the CSP specifications and searches for all the solutions. Each solution found is then
translated back to Clafer and presented as a model instance. Each model instance specifies
a single value for each VP defined in the model.

VPO hierarchical and interface constraints reduce the set of all possible model instances to a
subset of valid instances, i.e. valid machine configurations. VP assignments are contained in
EMCFs, when those assignments are introduced to the Clafer model as additional constraints,
a single machine configuration is obtained. In the following subsection the transformation of
VPO constraints is detailed.

CHAPTER 4. CLAFER EVALUATION USING ASML’S VARIABILITY MODEL 73

4.4.3 VPO constraints as propositional formulae in Clafer

VPO model’s constraints can be expressed using only propositional formulae in Clafer. In
general, a proposition is a declarative sentence that is either true or false; thus, we model
propositions as boolean expressions that evaluate to true or false.

Consider an arbitrary variable VP with a domain V = {v1, ..., vn}. A proposition pi is defined
as (VP == vi) where vi ∈ V (the symbol == is used to represent the comparison operator).
pi yields true when the variant vi is selected for the variability parameter VP , false otherwise.

All the VPs in the model define a non-empty set of variants, from which one and only one
value must be selected (xor group has cardinality 1..1). Thus, all the CSP solutions require
that one variant is assigned to each VP in the variability model.

All the constraints in the VPO model are expressed using only propositions and the boolean
operators negation (¬), conjunction (∧), disjunction (∨) and implication (=⇒). The most
elementary constraint consists of a single proposition, which assigns a variant to a VP, we
call it assignment constraint. Assignment constraints are used when a VP value is fixed using
VPO constraints or when a machine configuration (i.e. an EMCF file) is integrated to the
Clafer model.

If a proposition is negated (¬pi), it means that such variant cannot be assigned to the VP, i.e.
(VP != vi). A negated proposition effectively removes a variant from the variable’s domain,
i.e. V = {v1, ..., vn}\{vi}.

An unguarded constraint expression consists of a non-empty set of propositions using nega-
tion, conjunction or disjunction operators. If the implication operator is used, a guarded
constraint expression is obtained. Consider three different VPs and the following proposi-
tions pi, pj , qk and rl. These propositions are translated as (VPp == vpi), (VPp == vpj),
(VPq == vqk) and (VPr == vrl), respectively.

pi ∧ qk ∧ ¬rl (4.1)

pi ∧ pj (4.2)

Eq. 4.1 sets VPp and VPq to a specific value and removes a variant from the domain values
of VPr. Equation 4.2 is unsatisfiable (i.e. it always yields false) because VPp—or any other
VP—cannot hold two values at the same time.

Now, consider the following guarded constraint expressions.

pi =⇒ rl (4.3)

pi =⇒ ¬rl (4.4)

((pi ∨ pj) ∧ qk) =⇒ rl (4.5)

Eq. 4.3 is equivalent to vpi requires vrl while Eq. 4.4 represents vpi excludes vrl . Most
of the constraints resulting from the transformation are guarded constraints. Among these
constraints, the left-hand side (lhs) expression usually contains multiple propositions and the
right-hand side (rhs) is an assignment constraint (e.g. Eq. 4.5).

CHAPTER 4. CLAFER EVALUATION USING ASML’S VARIABILITY MODEL 74

Strictly speaking, a propositional logic formula does not support the implication operator.
However, the following logical equivalence is used during the transformation of the variability
model to a CSP problem:

(p =⇒ q) ⇐⇒ (¬p ∨ q) (4.6)

The previously described guarded and unguarded constraints suffice to express all the VPO
model’s constraints in Clafer.

An assignment constraint, containing a single proposition, is expressed in Clafer as follows:

[<VP_name>.variant.<variant_name>]

The proposition from above means the variant <variant_name> is assigned to the VP
<VP_name>. A guarded constraint has the following form:

[<constraint_expression_lhs> => <constraint_expression_rhs>]

A minimal Clafer example that illustrates these guarded and unguarded constraints is pre-
sented in Listing 4.10. The dynamic dose controller VP (defined on lines 1–8) is set to
VERSION_1 using an unguarded constraint (line 11). The power dose limiting variable
(defined in lines 13–20) is set using guarded constraints that depend on the dynamic dose
controller’s value (two constraints defined on lines 24–27 and lines 29–33); these constraints
are part of a PVP2EVP mapping. Many mappings follow the same structure, but the guard
condition usually contains multiple variables.

1 CMEUxVPxDOSE_DYNAMIC_DOSE_CONTROLLER: PROTECTED_PVP_DEFINE
2 [VPi_name = "CMEUxVPxDOSE"]
3 [VP_name = "DYNAMIC_DOSE_CONTROLLER"]
4 [Description = "Dynamic dose controller"]
5
6 xor variant
7 NONE
8 VERSION_1
9

10 /*Assignment constraint*/
11 [CMEUxVPxDOSE_DYNAMIC_DOSE_CONTROLLER.variant.VERSION_1]
12
13 WDxEVPxPWRxLIM_WD_POWER_DOSE_LIMITING: EVP_DEFINE
14 [VPi_name = "WDxEVPxPWRxLIM"]
15 [VP_name = "WD_POWER_DOSE_LIMITING"]
16 [Description = "CPD Power controlling based on requested dose"]
17
18 xor variant
19 DISABLED
20 ENABLED
21
22 /*PVP2EVP mapping -Guarded constraints*/
23
24 [(!CMEUxVPxDOSE_DYNAMIC_DOSE_CONTROLLER.variant.NONE)
25 =>
26 WDxEVPxPWRxLIM_WD_POWER_DOSE_LIMITING.variant.ENABLED
27]

CHAPTER 4. CLAFER EVALUATION USING ASML’S VARIABILITY MODEL 75

28
29 [
30 CMEUxVPxDOSE_DYNAMIC_DOSE_CONTROLLER.variant.NONE
31 =>
32 WDxEVPxPWRxLIM_WD_POWER_DOSE_LIMITING.variant.DISABLED
33]

Listing 4.10: Simple guarded and unguarded constraints

Every VP in the Clafer model is either under-constrained, constrained, or over-constrained.
When a VP is under-constrained, it is possible to select more than one variant for the VP.
Under-constrained VPs either have no constraints or have some constraints that shrink their
domain to more than one element (using negated propositions, for instance). A VP which
only can take one variant is constrained. If there is an unsatisfiable constraint causing that
no variant can be selected, we say it is an over-constrained VP. A variability model with
over-constrained variables has no valid instances, i.e. the CSP has no solutions. Thus, it is
considered an invalid model.

Listing 4.11 shows an SVP definition (lines 1–8) with three constraints (A-C defined on lines
10–12 respectively) to illustrate each constraint scenario. When only constraint A is specified,
the SVP is under-constrained—either Y or PS can be selected. The same scenario occurs when
no constraints are specified. The constraint B ensures that only Y can be selected, which
makes the SVP constrained. SVP_SPOTLESS_NXE is still constrained if only constraint C
or both constraint A and B are specified.

1 SVP_SPOTLESS_NXE: SVP_DEFINE
2 [VP_name = "SPOTLESS_NXE"]
3 [Description = "Spotless NXE"]
4
5 xor variant
6 N
7 PS
8 Y
9

10 [!SVP_SPOTLESS_NXE.variant.N] /*Constraint A*/
11 [SVP_SPOTLESS_NXE.variant.Y] /*Constraint B*/
12 [SVP_SPOTLESS_NXE.variant.N] /*Constraint C*/

Listing 4.11: Example that illustrates the three different constraint scenarios

The remaining combination of constraints makes the variable over-constrained. It is impossi-
ble, for instance, that both Y and N are selected (constraints B and C). With the large set of
constraints contained in the VPO models, a minimal error in the implementation or even cer-
tain dependency scenarios—correctly translated—might lead to over-constrained—and thus
invalid—models. It is crucial to ensure that the constraints introduced to the target model
do not make the CSP problem unsatisfiable.

CHAPTER 4. CLAFER EVALUATION USING ASML’S VARIABILITY MODEL 76

4.4.4 VP Interface Constraints

Interface constraints are translated to both guarded and unguarded constraints. An example
of the latter is shown in Listing 4.13. Each constraint that the model needs to satisfy is
specified in the Condition attribute of each MUSTHOLD item (lines 2–10). Conditions have
two comparison scenarios: equal (==) and not equal (!=), which translate a proposition or
its negation in Clafer. The condition is given as a single string, which is parsed during the
model transformation.

1 <CONSTRAINTS Source="CMIM_GVxVPxMACHxTYPE_constr.xml">
2 <MUSTHOLD Condition="GVxVPxMACHxTYPE:MACHINE_ARCHITECTURE == NXT" />
3 <MUSTHOLD Condition="GVxVPxMACHxTYPE:MAX_WAFER_SIZE == 300MM" />
4 <MUSTHOLD Condition="GVxVPxMACHxTYPE:WAVELENGTH_RANGE == DUV" />
5 <MUSTHOLD Condition="GVxVPxMACHxTYPE:XT_ARCH_REVISION == NONE" />
6 <MUSTHOLD Condition="GVxVPxMACHxTYPE:NXT_ARCH_REVISION != NONE" />
7 <MUSTHOLD Condition="GVxVPxMACHxTYPE:NXE_ARCH_REVISION == NONE" />
8 <MUSTHOLD Condition="GVxVPxMACHxTYPE:QXT_ARCH_REVISION == NONE" />
9 <MUSTHOLD Condition="GVxVPxMACHxTYPE:QXE_ARCH_REVISION == NONE" />

10 <MUSTHOLD Condition="GVxVPxMACHxTYPE:EXE_ARCH_REVISION == NONE" />
11 </CONSTRAINTS>

Listing 4.12: Unguarded interface constraints example

The conditions shown in Listing 4.12 are translated as a set of unguarded constraints in
Clafer (Listing 4.13). Some variants names in the VPO specification (e.g., 300MM in Listing
4.12 line 3) start with a digit, which is an invalid identifier in Clafer. These invalid names
are detected and fixed by appending an ‘n’ character (see line 2 in the Listing below) during
the transformation process.

1 [GVxVPxMACHxTYPE_MACHINE_ARCHITECTURE.variant.NXT]
2 [GVxVPxMACHxTYPE_MAX_WAFER_SIZE.variant.n300MM]
3 [GVxVPxMACHxTYPE_WAVELENGTH_RANGE.variant.DUV]
4 [GVxVPxMACHxTYPE_XT_ARCH_REVISION.variant.NONE]
5 [!GVxVPxMACHxTYPE_NXT_ARCH_REVISION.variant.NONE]
6 [GVxVPxMACHxTYPE_NXE_ARCH_REVISION.variant.NONE]
7 [GVxVPxMACHxTYPE_QXT_ARCH_REVISION.variant.NONE]
8 [GVxVPxMACHxTYPE_QXE_ARCH_REVISION.variant.NONE]
9 [GVxVPxMACHxTYPE_EXE_ARCH_REVISION.variant.NONE]

Listing 4.13: Unguarded interface constraints translated to Clafer

VPO interface constraints might specify a block of MUSTHOLD elements guarded by an IF
condition (see Listing 4.14 lines 3 and 11). Horizontal constraints with if blocks are translated
as guarded constraints to Clafer; the output is shown in Listing 4.15. The MUSTHOLD con-
ditions in the given example contain ill-formed VP references. WP_SETPOINT_A_J_RATIO
(lines 7 and 19 in Listing 4.14) does not include its container VP interface name–more cases
were found in other VPO models. The implemented model transformation was enhanced to
keep track of the VP interfaces and its associated VPs. When an incorrect reference was
found, it was fixed by appending the VP interface name (see lines 7 and 20 in Listing 4.15).

CHAPTER 4. CLAFER EVALUATION USING ASML’S VARIABILITY MODEL 77

1 <CONSTRAINTS Source="CMIM_WPPACMxVPxCFG_constr.xml">
2
3 <IF Condition="(GVxVPxMACHxTYPE:NXT_ARCH_REVISION == REV1) OR
4 (GVxVPxMACHxTYPE:NXT_ARCH_REVISION == REV1_1) OR
5 (GVxVPxMACHxTYPE:NXT_ARCH_REVISION == REV2)">
6
7 <MUSTHOLD Condition="WP_SETPOINT_A_J_RATIO == VARIABLE" />
8
9 </IF>

10
11 <IF Condition="(GVxVPxMACHxTYPE:NXT_ARCH_REVISION != REV1) AND
12 (GVxVPxMACHxTYPE:NXT_ARCH_REVISION != REV1_1) AND
13 (GVxVPxMACHxTYPE:NXT_ARCH_REVISION != REV2) AND
14 (GVxVPxMACHxTYPE:NXT_ARCH_REVISION != REV3) AND
15 (GVxVPxMACHxTYPE:NXT_ARCH_REVISION != REV3_1) AND
16 (GVxVPxMACHxTYPE:NXT_ARCH_REVISION != REV3_2) AND
17 (GVxVPxMACHxTYPE:NXT_ARCH_REVISION != UNKNOWN)">
18
19 <MUSTHOLD Condition="WP_SETPOINT_A_J_RATIO == CONSTANT" />
20
21 </IF>
22
23 </CONSTRAINTS>

Listing 4.14: Guarded interface constraints example

1 /* VP interface CONSTRAINTS */
2 [
3 ((GVxVPxMACHxTYPE_NXT_ARCH_REVISION.variant.REV1) ||
4 (GVxVPxMACHxTYPE_NXT_ARCH_REVISION.variant.REV1_1) ||
5 (GVxVPxMACHxTYPE_NXT_ARCH_REVISION.variant.REV2))
6 =>
7 WPPACMxVPxCFG_WP_SETPOINT_A_J_RATIO.variant.VARIABLE
8]
9

10 /* VP interface CONSTRAINTS */
11 [
12 ((!GVxVPxMACHxTYPE_NXT_ARCH_REVISION.variant.REV1) &&
13 (!GVxVPxMACHxTYPE_NXT_ARCH_REVISION.variant.REV1_1) &&
14 (!GVxVPxMACHxTYPE_NXT_ARCH_REVISION.variant.REV2) &&
15 (!GVxVPxMACHxTYPE_NXT_ARCH_REVISION.variant.REV3) &&
16 (!GVxVPxMACHxTYPE_NXT_ARCH_REVISION.variant.REV3_1) &&
17 (!GVxVPxMACHxTYPE_NXT_ARCH_REVISION.variant.REV3_2) &&
18 (!GVxVPxMACHxTYPE_NXT_ARCH_REVISION.variant.UNKNOWN))
19 =>
20 WPPACMxVPxCFG_WP_SETPOINT_A_J_RATIO.variant.CONSTANT
21]

Listing 4.15: Guarded interface constraints example in Clafer

CHAPTER 4. CLAFER EVALUATION USING ASML’S VARIABILITY MODEL 78

4.4.5 VPO hierarchical mappings

The VPO hierarchical mappings (i.e SVP2PVP and PVP2EVP) use XML elements to split
the constraint expression—not a single string as in the interface constraints. Mapping’s
constructs are combined in different ways to form constraint expressions, resulting in many
more cases to handle compared to the interface constraints.

The NXT WET is used as the reference model for this section. This machine type has the
largest and most complex variability model; the remaining models represent a subset of the
scenarios considered for this one.

Almost all the SVP2PVP mappings are defined within VP interface elements, with the only
exception of a mapping linked to the SVP MES_MACHINE_TYPE. This machine type mapping
defines a large set of Named Expressions (NEs). These NEs are boolean expressions assigned
to variables and then used in many of the SVP2PVP mappings throughout the model—the
system’s variability is largely driven by the machine type.

First, we describe how NEs are decoded since model’s dependencies are built upon them.

Named Expressions and Named Expression Assignments

Named Expressions are boolean variables that depend on SVP or PVP values. NEs are defined
using the so-called Named Expression Statements (NESes), which declare and initialize them.
A NES starts with the expression keyword followed by a unique name, and then, a boolean
expression. Listing 4.16 shows the first lines of a machine type’s SVP2PVP mapping, which
contain mostly NESes. For clarity purposes, a human-readable format—provided as XML
comments in VPO files—is used to present mapping’s snippets. As a reference, Listing 4.17
shows the actual XML fragment for just the IS_1970_HYBRID assignment expression (lines
17–18 in Listing 4.16), which is the actual representation being parsed.

1 if defined(:MES_MACHINE_TYPE)
2 {
3 expression MMT_IS_SAWS_org = ("SAWS" in :MES_MACHINE_TYPE);
4 expression MMT_IS_1950_org = ("1950" in :MES_MACHINE_TYPE);
5 expression MMT_IS_1960_org = ("1960" in :MES_MACHINE_TYPE);
6 expression MMT_IS_1965_org = ("1965" in :MES_MACHINE_TYPE);
7 expression MMT_IS_1970_org = ("1970" in :MES_MACHINE_TYPE);
8 expression MMT_IS_1980_org = ("1980" in :MES_MACHINE_TYPE);
9 expression MMT_IS_2000_org = ("2000" in :MES_MACHINE_TYPE);

10 expression MMT_IS_2050_org = ("2050" in :MES_MACHINE_TYPE);
11 expression MMT_IS_2100_org = ("2100" in :MES_MACHINE_TYPE);
12
13 expression HAS_1970_OPTIONS = defined(:PEP_1970) || defined(:OFP_1) ||
14 defined(:OFP_2) || defined(:SNEP_C2D) ||
15 defined(:SNEP2000);
16
17 expression IS_1970_HYBRID = (MMT_IS_1950_org || MMT_IS_1960_org) &&
18 HAS_1970_OPTIONS;
19 expression MMT_IS_SAWS = MMT_IS_SAWS_org;

CHAPTER 4. CLAFER EVALUATION USING ASML’S VARIABILITY MODEL 79

20 expression MMT_IS_1950 = MMT_IS_1950_org && !IS_1970_HYBRID;
21 expression MMT_IS_1960 = MMT_IS_1960_org && !IS_1970_HYBRID;
22 expression MMT_IS_1965 = MMT_IS_1965_org;
23 expression MMT_IS_1970 = MMT_IS_1970_org || IS_1970_HYBRID;
24 expression MMT_IS_1980 = MMT_IS_1980_org;
25 expression MMT_IS_2000 = MMT_IS_2000_org;
26 expression MMT_IS_2050 = MMT_IS_2050_org;
27 expression MMT_IS_2100 = MMT_IS_2100_org;

Listing 4.16: Named expression statements example

1 <CONSTRAINTS Source="CMIM_WPPACMxVPxCFG_constr.xml">
2 <named_expr_stmt linenr="62">
3 <keyword>expression</keyword>
4 <name>IS_1970_HYBRID</name>
5 <operator>=</operator>
6 <mult_expr>
7 <par_expr>(
8 <mult_expr>
9 <named_expr>

10 <name>MMT_IS_1950_org</name>
11 </named_expr>
12 <operator>||</operator>
13 <named_expr>
14 <name>MMT_IS_1960_org</name>
15 </named_expr>
16 </mult_expr>
17)</par_expr>
18 <operator>&&</operator>
19 <named_expr>
20 <name>HAS_1970_OPTIONS</name>
21 </named_expr>
22 </mult_expr>
23 ;
24 </named_expr_stmt>

Listing 4.17: IS 1970 HYBRID definition in XML

The boolean expressions in the NES use a set a language constructs specified in the VPO’s
XSD file. Instead of presenting XSD fragments, the information was translated to the Backus-
Naur form (BNF) notation—an elegant and concise notation, widely used in programming
language theory. The syntactic structure of NES is shown in Listing 4.18.

1
2 <name>::= type:String
3 <key>::= type:String
4 <value>::= type:String
5
6 <named_expression_statement>::= "expression" <name> "=" <expression_group>
7
8 <expression_group>::= <def_expr> |
9 <par_expr> |

10 <mult_expr> |
11 <named_expr> |
12 <oit_expr> |

CHAPTER 4. CLAFER EVALUATION USING ASML’S VARIABILITY MODEL 80

13 <neg_expr> |
14 <bin_expr> |
15 <in_expr>
16
17 <def_expr> ::= "defined" "(" <key> ")"
18
19 <par_expr> ::= "(" <expression_group> ")"
20
21 <mult_operator> ::= "&&" | "||"
22
23 <mult_expr> ::= <expression_group> <multiple_operator> <expression_group>
24
25 <named_expr> ::= <name>
26
27 <oit_expr> ::= "one_is_true" "(" 1*<expression_group> ")"
28
29 <neg_expr> ::= "!" <expression_group>
30
31 <bin_operator> ::= "==" | "!=" ; "equal" or "not equal" operators
32
33 <bin_expr> ::= <key> <bin_operator> <value>
34
35 <in_expr> ::= <in_string_expression_group> | <in_list_expression_group>
36
37 <in_string_expression_group>::= type:String "in" <key>
38
39 <in_list_expression_group>::= <key> "in" "[" <value_list> "]"
40
41 <value_list>::= 1*<value>

Listing 4.18: Named Expressions Statements grammar in BNF format

Three different string elements are used in NESes. <name> is an NE identifier, <key>
refers to a VP name, and a VP variant’s name is represented by <value> (lines 1–3
in Listing 4.18). Eight different constructs can be used as part of the boolean expres-
sions (expression group in Listing 4.18, lines 8–15), their semantics are—informally—
described as follow:

• Define expression (def expr): Returns whether or not a value has been assigned to
an SVP (e.g. Lines 1 and 13 in Listing 4.15).

• Parenthesis expression (par expr): Add parenthesis to a sub-expression. It is used
to enforce a precedence order in the expression evaluation (e.g. Lines 3–11 in Listing
4.16).

• Multiple expression (mult expr): Defines a composed boolean expression using con-
junction or disjuction. An <expression group> is used in the left- and right-hand
side sub-expressions; a recursive definition (see Lines 13 and 17 in Listing 4.16, for an
example).

• Named expression (named expr): Reference to a previously defined boolean expres-
sion. Lines 17 - 27 in Listing 4.16 show NE as part of NEs statements.

CHAPTER 4. CLAFER EVALUATION USING ASML’S VARIABILITY MODEL 81

• One-is-true expression (oit expr): Returns true if at least one of the sub-expressions
yields true.

• Negation expression (neg expr): Logical negation of the value returned by the sub-
expression.

• Binary expression (bin expr): Checks the value assigned to a VP, using the equal
and not equal comparison operators.

• In expression (in expr): There are two types of in expressions: string and list.

– In-string expression takes an arbitrary string and a VP name as inputs. It
returns true when the input string is a sub-string of the value assigned to the
specified VP, otherwise false.

– In-list expression requires a VP reference and a list containing a sub-set of its
associated VP values. It returns true if the value assigned to the referenced VP is
in the given list.

Translating Named Expressions Statements as Clafer constraints

All the NESes found in the VPO model are decoded during the model transformation using a
recursive implementation, which returns the equivalent Clafer constraint as a string. During
the decoding process, when an expression is defined recursively (e.g. <mult_expr>, Listing
4.18 line 23), the recursive calls return the translated sub-expressions as a strings, then these
are concatenated using the specified logic operator. There are non-recursive definitions (e.g.
in_expr or bin_expr) that guarantee the recursion always ends. Once a NES is decoded,
the result is stored in a hash table. This table is used later during the transformation when
an NE is referenced, i.e. when it appears as a term in another boolean expression.

Next, it is provided an example for each element of the expression group. First, the original
expression in VPO is shown, and then its equivalence in Clafer.

Define expression

The define-expression only applies to SVPs. It was decided to model undefined SVPs explic-
itly which makes the translation of this expression rather straightforward:

defined(:<SVP_name>)

translates to

[!<SVP_name>.variant.SVP_UNDEFINED]

CHAPTER 4. CLAFER EVALUATION USING ASML’S VARIABILITY MODEL 82

Named expression

A named expression is a string key that refers to a previously defined boolean equation.
All the NESes decoded during the model transformation process are stored in a hash table.
When a named-expression is processed, the retrieved <key> string is used to perform a look-
up in the hash-table, returning the associated Clafer constraint if found or throwing an error
otherwise. Listing 4.16, lines 19–27 show examples of NE used as part of assignments.

Multiple expression

The multiple expression has a fixed structure with two sub-expressions related by a conjunc-
tion or a disjunction. Each sub-expression generates a recursive call; the returned strings are
then concatenated using the “&&” or “||” operator.

MMT_IS_1950_org || MMT_IS_1960_org

translates to

[
(SVP_MES_MACHINE_TYPE.variant.NXT1950AI) ||
(SVP_MES_MACHINE_TYPE.variant.NXT1960BI)

]

One-is-true Expression

The elements of the list are decoded and concatenated using the || operator.

one_is_true(MMT_IS_SAWS,MMT_IS_1470)

becomes

[
(SVP_MES_MACHINE_TYPE.variant.SAWS ||
SVP_MES_MACHINE_TYPE.variant.NXT1470D ||
SVP_MES_MACHINE_TYPE.variant.NXT1470E)

]

Notice that the named expression that appears in the VPO expression (MMT_IS_1470) is
translated as:

SVP_MES_MACHINE_TYPE.variant.NXT1470D || SVP_MES_MACHINE_TYPE.variant.NXT1470E

In the example for the In-String expression it will be explained how this is determined.

Negation Expression

The sub-expression is resolved recursively and the “!” is appended to the returned value.

CHAPTER 4. CLAFER EVALUATION USING ASML’S VARIABILITY MODEL 83

!one_is_true(MMT_IS_SAWS,MMT_IS_1470)

is transformed to the constraint

[
!(SVP_MES_MACHINE_TYPE.variant.SAWS ||

SVP_MES_MACHINE_TYPE.variant.NXT1470D ||
SVP_MES_MACHINE_TYPE.variant.NXT1470E)

]

Binary Expression

Binary expressions are transformed to Clafer constraint with a single proposition or its nega-
tion.

<key> == <value> and <key> != <value>

are translated to Clafer as

<key>.variant.<value> and !<key>.variant.<value>

Example:

:RETICLE_HEATING_WILDCARD == 'Y'

is equivalent to the Clafer constraint

[SVP_RETICLE_HEATING_WILDCARD.variant.Y]

In-String expression

The expression <string> in <key> is translated as:

<key>.variant.<value_1> || ... || <key>.variant.<value_n>

Example:

expression MMT_IS_1470_org = ("1470" in :MES_MACHINE_TYPE)

is transformed to

SVP_MES_MACHINE_TYPE.variant.NXT1470D ||
SVP_MES_MACHINE_TYPE.variant.NXT1470E

The input string <string> ("1470" in the example)is a substring of each variant’s name in
the set {<value_1>, ..., <value_n>}, which is the set of all machines types in the example
above. If there is no variant name with a sub-string <string>, the decoding function
returns false (i.e. Boolean.is.false). In the expression used as example, two machine
types contained the substring “1470”, NXT1470D and NXT1470E.

CHAPTER 4. CLAFER EVALUATION USING ASML’S VARIABILITY MODEL 84

In-List expression

The expression <key> in [<value_##>+], where <value_##>+ represents a non-empty
subset of variants of the variable <key>, is translated to a disjunction of propositions, a
proposition for each variant of the input subset.

Example.

DOSEMAPPER in ['Y','S']

is equivalent to

SVP_DOSEMAPPER.variant.Y || SVP_DOSEMAPPER.variant.S

4.4.6 Assignment expressions

An assignment expression (AE) has the following structure:

<key> = <value> [guard]

Assignment Expressions are straightforwardly mapped to assignment constraints in Clafer.
If the AE defines a guard condition, it appears as a guarded constraint expression in the
output model.

An Assignment Expression without a guard.

<key> = <value>

is transformed to

[key.variant.value]

A guarded Assignment Expression.

<key> = <value> [<constraint_expression>]

is transformed to

[<constraint_expression> => key.variant.value]

The constraint expression used as a guard is decoded from group_expression in the VPO
model.

If a VPO mapping contains a set of assignments affecting the same VP, implicit constraints
must be considered. The ASML’s CM tools evaluate assignment expressions in a mapping
from top to bottom; the first condition met determines which assignment is executed.

Consider the PVP2EVP mapping in the Listing 4.19 below. It has three assignments, two
guarded (lines 3–7) and an unguarded (line 9). If the guard condition on line 4 holds, the
first assignment (line 3) is executed—ignoring the remaining assignments. If not, the second
assignment is evaluated and so on; the last unguarded assignment (line 9) is applied if no
guard condition holds. This ordered evaluation is preserved by adding extra propositions to
the guarded expressions in the output model.

CHAPTER 4. CLAFER EVALUATION USING ASML’S VARIABILITY MODEL 85

1 mapping PWASxEVPxCFG
2 {
3 PWASxEVPxCFG:PWAS_CH1_SS_COILS_THERMAL_CHAR = 'CHARACTERISTICS_SET_1'
4 [WPPAxVPxHW:WP_CH1_SS_ACTUATOR_VERSION == '1'];
5
6 PWASxEVPxCFG:PWAS_CH1_SS_COILS_THERMAL_CHAR = 'CHARACTERISTICS_SET_2'
7 [WPPAxVPxHW:WP_CH1_SS_ACTUATOR_VERSION == '2'];
8
9 PWASxEVPxCFG:PWAS_CH1_SS_COILS_THERMAL_CHAR = 'CHARACTERISTICS_SET_1';

10 }

Listing 4.19: Assignment expressions in a PVP2EVP mapping

The same mapping in Clafer is presented in Listing 4.20. The first assignment (lines 1–5) is
translated directly from the input statement. The second assignment (lines 6–11) is executed
only if the first guard condition does not hold and the second does. The third assignment
(lines 12–17) occurs only if the two previous guard conditions yield false. All the constraints
in the output model are evaluated (they cannot be “skipped”). The evaluation order is
achieved by making the guard conditions mutually exclusive. Mutual exclusion requires to
add extra negated propositions to the guard expressions—see lines 7, 13 and 14.

1 [
2 (WPPAxVPxHW_WP_CH1_SS_ACTUATOR_VERSION.variant.n1)
3 =>
4 PWASxEVPxCFG_PWAS_CH1_SS_COILS_THERMAL_CHAR.variant.CHARACTERISTICS_SET_1
5]
6 [
7 !(WPPAxVPxHW_WP_CH1_SS_ACTUATOR_VERSION.variant.n1) &&
8 (WPPAxVPxHW_WP_CH1_SS_ACTUATOR_VERSION.variant.n2)
9 =>

10 PWASxEVPxCFG_PWAS_CH1_SS_COILS_THERMAL_CHAR.variant.CHARACTERISTICS_SET_2
11]
12 [
13 !(WPPAxVPxHW_WP_CH1_SS_ACTUATOR_VERSION.variant.n1) &&
14 !(WPPAxVPxHW_WP_CH1_SS_ACTUATOR_VERSION.variant.n2)
15 =>
16 PWASxEVPxCFG_PWAS_CH1_SS_COILS_THERMAL_CHAR.variant.CHARACTERISTICS_SET_1
17]

Listing 4.20: Assignment expressions translated in Clafer

4.4.7 IF expressions

Hierarchical mappings use IF Expressions (IFEs)—an if..then..else construct. The if condi-
tion is an <expression_group> (see definition on lines 8–15 in Listing 4.18). Inside the
if blocks, assignment expressions are found.

Consider the IFE shown in Listing 4.21. The import statement (line 2) makes all the named
expressions defined in MES_MACHINE_TYPE available for this mapping; there is no need to
translate this instruction since all the NEs are always available during the transformation.

CHAPTER 4. CLAFER EVALUATION USING ASML’S VARIABILITY MODEL 86

Lines 6 and 7 define a local NES used on line 12. All the locally defined NESes are also stored
during the model transformation because they might be referenced in another mapping.

1 <!--
2 import "MES_MACHINE_TYPE";
3
4 mapping KCRHEXxVPxCALIBxREUSE
5 {
6 expression HAS_RHRR = (defined(:RETICLE_HEATING_WILDCARD) &&
7 (:RETICLE_HEATING_WILDCARD == 'Y'));
8 if (MMT_IS_SAWS)
9 {

10 KCRHEXxVPxCALIBxREUSE:RETICLE_HEATING_REC_REUSE = 'DISABLED';
11 }
12 else if (HAS_RHRR)
13 {
14 KCRHEXxVPxCALIBxREUSE:RETICLE_HEATING_REC_REUSE = 'MODE0';
15 }
16 else
17 {
18 KCRHEXxVPxCALIBxREUSE:RETICLE_HEATING_REC_REUSE = 'DISABLED';
19 }
20 }
21 -->

Listing 4.21: If-then-else construct used in a VPO mapping

Clafer’s if construct cannot be used in this case, the else-if block (lines 12–15) is an if nested
in the else block and the native Clafer’s expression does not support nesting. Therefore,
the if-then-else construct is transformed as a set of guarded assignments. The presented if
example is an alternate representation of the list of guarded assignments presented earlier.
The second assignment (line 14) is done only when the first if condition is false and the
second is true. When no if condition holds, the assignment in the else block is effectuated.
The resulting Clafer constraints are shown in Listing 4.22.

1 [
2 (SVP_MES_MACHINE_TYPE.variant.SAWS)
3 =>
4 KCRHEXxVPxCALIBxREUSE_RETICLE_HEATING_REC_REUSE.variant.DISABLED
5]
6
7 [
8 !(SVP_MES_MACHINE_TYPE.variant.SAWS) &&
9 (!SVP_RETICLE_HEATING_WILDCARD.variant.SVP_UNDEFINED &&

10 (SVP_RETICLE_HEATING_WILDCARD.variant.Y))
11 =>
12 KCRHEXxVPxCALIBxREUSE_RETICLE_HEATING_REC_REUSE.variant.MODE0
13]
14
15 [
16 !(SVP_MES_MACHINE_TYPE.variant.SAWS) &&
17 !(
18 !SVP_RETICLE_HEATING_WILDCARD.variant.SVP_UNDEFINED &&

CHAPTER 4. CLAFER EVALUATION USING ASML’S VARIABILITY MODEL 87

19 (SVP_RETICLE_HEATING_WILDCARD.variant.Y)
20)
21 =>
22 KCRHEXxVPxCALIBxREUSE_RETICLE_HEATING_REC_REUSE.variant.DISABLED
23]

Listing 4.22: If-then-else construct translated to Clafer

IF expressions in VPO models support nesting and can be of an arbitrary size; these ex-
pressions are decoded recursively during the model transformation. Nested IF expressions
prepend the condition specified in the containing if block. Listing 4.23 shows a template of
a nested IF expression; tags are used to represent if conditions and variable assignments.

1 <!--
2 if (<cond_1.0>)
3 {
4 if(<cond_1.1>)
5 {
6 <assignment_1.1>;
7 }
8 else if (<cond_1.2>)
9 {

10 <assignment_1.2>;
11 }
12 else
13 {
14 <assignment_1.3>;
15 }
16 }
17 else
18 {
19 if(cond_2.1)
20 <assignment_2.1>;
21 }
22 -->

Listing 4.23: Nested If-then-else construct in VPO, generic example

The resulting Clafer constraints are provided in Listing 4.24—the tags are capitalized to
indicate it is the same VPO expression translated to Clafer. The three guard constraint
expressions in the first nested block prepend the outer if condition (<cond_1.0>) with a
conjunction (lines 2, 8 and 14). Each assignment in a nested IF expression considers both
inner and outer(s) if conditions. The last assignment prepends the outer else condition (i.e.
the negation of the corresponding if condition) to the guard expression (line 20).

1 [
2 (<COND_1.0> && <COND_1.1>)
3 =>
4 <ASSIGNMENT_1.1>
5]
6
7 [
8 (<COND_1.0> && (!<COND_1.1> && <COND_1.2>))
9 =>

CHAPTER 4. CLAFER EVALUATION USING ASML’S VARIABILITY MODEL 88

10 <ASSIGNMENT_1.2>
11]
12
13 [
14 (<COND_1.0> && (!<COND_1.1> && !<COND_1.2>))
15 =>
16 <ASSIGNMENT_1.3>
17]
18
19 [
20 (!<COND_1.0> && <COND_2.1>)
21 =>
22 <ASSIGNMENT_2.1>
23]

Listing 4.24: Nested If-then-else construct translated to Clafer

The implemented transformation decode nested if statements with an arbitrary structure.
Each time a (nested) IF expression is found, the decoding function is called recursively,
passing on the guard constraint expression of the current block. When the guard expression
is generated for an assignment in an nested if block, the passed constraint is added as a sub
expression.

Internal variables defined within hierarchical mappings

VPO models for NXT machines also define internal variables within if expressions (See listing
4.25). Internal variables are defined by assignment expressions where the <key> is not a
reference to an existing VP but a new variable. Internal variables, by convention, start
with an underscore character. These internal variables are then used as part of constraints
expressions throughout the model.

1 if (MMT_IS_2100)
2 {
3 _TPT = 'E';
4 _OVL = 'OVL8';
5 _REV = 'REV4_1';
6 }
7 else if (MMT_IS_2050)
8 {
9 _TPT = 'E';

10 _OVL = 'OVL7';
11 _REV = 'REV4';
12 }
13 else if (MMT_IS_2000 || HAS_SNEP_2000)
14 {
15 _TPT = 'STD_D';
16 _OVL = 'OVL6';
17 _REV = 'REV3_2';
18 }
19

CHAPTER 4. CLAFER EVALUATION USING ASML’S VARIABILITY MODEL 89

20 .
21 .
22
23 else if (_TPT == 'STD_D')
24 {
25 if (HAS_PEP_2E)
26 {
27 _TPT = 'E';
28 }
29 else if (!HAS_TPT_C)
30 {
31 _TPT = 'D';
32 }
33 else
34 {
35 _TPT = 'C';
36 }
37 }

Listing 4.25: If-then-else with internal variable’s assignment

Internal variables required additional decoding considerations because their variants are not
explicitly defined in one place. Listing 4.25 shows the beginning and the end of an IF ex-
pression containing internal variables (_TPT, _OVL and _REV). The IF expression is decoded
following the same procedure described previously, with the only difference that new internal
variables and their values are stored during the transformation. When the parsing is done, a
new concrete clafer with all the internal definitions is created (see Listing 4.26 for an exam-
ple). Then, a set of guarded constraints derived from the if-then-else structure are written
to the output model, ensuring the internal variables a set to a value.

1 MACHINE_TYPE_INTERNALS
2 xor TPT
3 E
4 STD_D
5 STD_C
6 B
7 PEP_A
8 A
9 D

10 C
11
12 xor REV
13 REV4_1
14 REV4
15 REV3_2
16 REV3_1
17 REV3
18 REV2
19 REV1_1
20 REV1
21
22 xor OVL
23 OVL8

CHAPTER 4. CLAFER EVALUATION USING ASML’S VARIABILITY MODEL 90

24 OVL7
25 OVL6
26 OVL4
27 OVL5
28 OVL3
29 OVL2
30 OVL2A
31 OVL1
32 }

Listing 4.26: Internal variables modelled in Clafer

Internal variables can be re-assigned in the SVP2PVP mappings. In Listing 4.25 line 27
_TPT should have the value 'STD_D' (see condition on line 23) and is reassigned to 'E'.
These reassignments are problematic in the Clafer model because they lead to unsatisfiable
constraints. The _TPT re-assignment gets translated as the following guarded constraint
(only the relevant part of the LHS expression is shown):

[
... & MACHINE_TYPE_INTERNALS.TPT.STD_D & !HAS_PEP_2E)
=>
MACHINE_TYPE_INTERNALS.TPT.E

]

The _TPT variable needs to be assigned to a single value, which means that the con-
straint above is satisfied by assigning 'E' to _TPT variable and making the proposition
MACHINE_TYPE_INTERNALS.TPT.STD_D false. However, _TPT was set to STD_D in the
first place by the following constraint:

[
((!SVP_MES_MACHINE_TYPE.variant.NXT2050EI) && SVP_MES_MACHINE_TYPE.

variant.NXT2000DI) || SVP_SNEP2000.variant.Y))
=>
MACHINE_TYPE_INTERNALS.TPT.STD_D

]

If the right-hand side of the implication is false, the left-hand side must yield false as well. If
either SVP_MES_MACHINE_TYPE.variant.NXT2000DI or SVP_SNEP2000.variant.Y
is false, the lhs of the expression is false. This meaning that either the machine type is
different from NXT2000DI or the the SNEP2000 is not selected (i.e. it is set to 'N').

All the SVP values are directly read from the machine configuration file and translated as
setting constraints. Consider the following setting:

[SVP_MES_MACHINE_TYPE.variant.NXT2000DI]
[SVP_SNEP2000.variant.Y]

The above constraints select the machine type NXT2000DI and include the SNEP2000
feature. The TPT variable re-assignment constraint required that either NXT2000DI or
SNEP2000 are not selected, while the machine configuration is selecting both. These con-
tradictory requirements make the constraint problem unsatisfiable; therefore, there is not a
single valid instance that can be generated from this model.

CHAPTER 4. CLAFER EVALUATION USING ASML’S VARIABILITY MODEL 91

When a re-assignment is found, the guard conditions of both the first and the second as-
signment need to be re-written to make them mutually exclusive. Alternatively, a new fresh
variable can be introduced for each re-assignment. Neither of these strategies were imple-
mented as part of this work. This far-from-trivial functionality was deferred in the first
iterations of the model transformation because it does not have a large impact, only a few
variable’s reassignments were found in the NXT_WET machine. As it was found later, the
Clafer tools could not handle all the constraints obtained from model, so, adding more con-
straints would not provide useful information for our analysis using the available tools. In
the final version of the model transformation, internal variables reassignments were removed
from the output model.

4.4.8 Default values as guarded constraints in Clafer

A naive approach to set default values in Clafer might be to use guarded constraints inside the
VP definition (see Listing 4.27, lines 13–19). The left-hand side of the implication specifies a
machine type variant; the right-hand side sets the default value in the current VP definition.
Since only one machine variant can be selected, this mapping is consistent.

1
2 WHPUxVPxCOSY_WFR_TEMP_COND_SYSTEM: PROTECTED_PVP_DEFINE
3 [VPi_name = "WHPUxVPxCOSY"]
4 [VP_name = "WFR_TEMP_COND_SYSTEM"]
5 [Description = "WH temperature conditioning type"]
6
7 xor variant
8 CONVENTIONAL
9 TYPE_1

10 TYPE_2
11 TYPE_4
12
13 [SVP_MES_MACHINE_TYPE.variant.NXT2000DI => TYPE_2]
14 [SVP_MES_MACHINE_TYPE.variant.NXT2050EI => TYPE_4]
15 [SVP_MES_MACHINE_TYPE.variant.NXT1965CI => TYPE_1]
16 [SVP_MES_MACHINE_TYPE.variant.NXT1980DI => TYPE_2]
17 [SVP_MES_MACHINE_TYPE.variant.NXT1950AI => TYPE_1]
18 [SVP_MES_MACHINE_TYPE.variant.NXT1960BI => TYPE_1]
19 [SVP_MES_MACHINE_TYPE.variant.NXT1970CI => TYPE_2]

Listing 4.27: Machine defaults expressed as constraints in Clafer

However, the PVP defined in Listing 4.27 is assigned to a value as part of a SVP2PVP map-
ping. One constraint of that mapping is shown in Listing 4.28. Assume a particular machine
configuration in which NXT2000DI machine type is selected, the default constraints set the
value TYPE_2 for the current example (see Listing 4.27 line 13). In the same configura-
tion, the values for the internal variables (MACHINE_TYPE_INTERNALS) are such that the
lhs of the guarded constraint in Listing 4.28 yields true. The mapping constraint sets the
PVP to the value TYPE_4. This pair of constraints are equivalent to the internal variable
reassignment, and leads to unsatisfiability.

CHAPTER 4. CLAFER EVALUATION USING ASML’S VARIABILITY MODEL 92

1 [
2 ((MACHINE_TYPE_INTERNALS.OVL.OVL7 || MACHINE_TYPE_INTERNALS.OVL.OVL8) &&
3 !SVP_MES_MACHINE_TYPE.variant.SAWS)
4 =>
5 WHPUxVPxCOSY_WFR_TEMP_COND_SYSTEM.variant.TYPE_4
6]

Listing 4.28: A SVP2PVP constraint setting a variable with a default value also defined.

As a result, this approach for setting default values does not work. It would be necessary
to include setting constraints for default values only if the variable does not have a value
already; there is not construct in the language to determine that without using the backend
solvers.

4.5 Model transformation results

The number of VPs (divided by category) and constraints translated in the model transfor-
mation is shown in Table 4.1. NXT machines have more years in the market and therefore,
their variability model is considerably larger compared with the latest models (NXE and
EXE).

Machine type

Decoded items NXT WET NXT DRY NXE EXE

SVPs 177 175 44 45

PVPs 708 704 573 569

EVPs 1707 1694 1295 1305

VP interface constraints 107 107 60 61

SVP2PVP constraints 725 721 356 326

PVP2EVP constraints 4113 4069 2613 2443

Table 4.1: VPs and constraints decoded from the VPO2Clafer transformation

The Clafer toolset could not handle ASML’s variability models. Once all the VPO constraints
were included in the model transformation, compilation time increased to unpractical levels.
While investigating the issue, it was found that the more variables a constraint includes,
the more time it takes to compile it; i.e. multi-variable constraint expressions increased
compilation time drastically.

Micha l Antkiewicz—one of the main Clafer developers—helped brainstorming the issue in
an exchange of several emails from which two ideas came out. The first one is to ensure
that all the elements in the model have unique names and skip the variable name resolution
check—compiler option --skip-resolver. This should speed up the compilation process.
The second is to profile the Clafer compiler to find the bottleneck and fix it; a more elaborate
and time consuming endeavor.

CHAPTER 4. CLAFER EVALUATION USING ASML’S VARIABILITY MODEL 93

Only the first option was implemented; the variability model for the EXE machine was
compiled in 4 days, 21 hours and 31 minutes (!). This option did not fix the issue for the
remaining larger models, which were left compiling for a couple of weeks until the process
was interrupted.

The compiled Clafer model for the EXE machine was used to generate model instances. This
time the process ran for 15 days with no results. The constraint problem is apparently too
large and complex for the tools to manage it efficiently. It is possible that some unsatisfiable
constraints in the model caused the instance generator to not find a single solution in all this
time. However, given the time that it took to compile these models it would be unfeasible to
troubleshoot a potential issue such as this.

The Clafer instance generator was tested using the NXT_WET model containing only the VP
interface constraints but not the hierarchical mapping constraints. The model was compiled
and let run for 45 hrs. 149,888 configurations were found during that time, showing that
Clafer tools are able to generate instances when fewer constraints are included.

Importantly, we found out during conversations with configuration management domain ex-
perts that the current variability models have missing constraints. Hence, invalid configura-
tions can be derived from them. When a machine has a configuration that yields to a failure,
ASML engineers rely on manual procedures to fix it. This is one of the most relevant issues
the company is interested in addressing.

4.6 Modelling SMDC specification using Clafer

In order to evaluate the structural and variability modelling capabilities of Clafer, the Sys-
tem Manager Driver Control (SMDC) component was selected. The SMDC is a TWINSCAN
software component that specifies the initialization and termination of all drivers; the infor-
mation of which is contained in a SMDC configuration file. SMDC files describe the drivers
applicable for a specific machine configuration and the dependencies among them.

SMDC files contain variation points based on VP-values. Drivers’ definitions can be condi-
tionally included based on the VP values defined in the machine configuration. The descrip-
tion of the SMDC files presented in this section, including the fictitious examples used to
illustrate the SMDC constructs, are taken from ASML’s EPS System Manager Driver Control
document [82].

We use Clafer to model both the SMDC specification and its variability. Using the SMDC
specification, it is evaluated to what extent Clafer can integrate structural modelling and
variability using a real scenario. Unlike for ASML’s variability model in Sections 4.3 and 4.4,
we only provide a conceptual mapping between SMDC and Clafer constructs; the SMDC to
Clafer model transformation remains as future work.

The presented section is divided into three subsections. Subsection 4.6.1 introduces the
structure of a SMDC configuration and the constructs used in it; it also provides a minimal

CHAPTER 4. CLAFER EVALUATION USING ASML’S VARIABILITY MODEL 94

SMDC configuration example. Subsection 4.6.2 shows how these constructs can be modelled
in Clafer. Finally, Subsection 4.6.3 provides final remarks about the information that can be
obtained from SMDC configurations using the Clafer toolset.

4.6.1 SMDC configuration file

Every SMDC file contains the following five sections:

• Driver definitions: Define all the (non-virtual) drivers defined for this platform (we
call these individual drivers).

• Virtual definitions: A virtual driver comprises one or more individual driver’s defi-
nitions.

• Operational dependencies: Define dependencies between drivers during normal op-
eration.

• Initialize dependencies: Define initialization dependencies between drivers.

• Re-initialize dependencies: A more restrictive dependency compared to operational
and initialize dependencies. Re-initialize dependencies determine whether or not a
driver needs to be re-initialized after another driver is initialized or terminated.

Each individual driver definition has two mandatory fields: a name and a description. Op-
tionally, the driver can be split into an arbitrary number of phases, each of which is identified
by a name and separated from each other by a comma. Both the driver description and its
phases are string names enclosed in double quotes. The rationale behind dividing a driver
initialization into phases is to specify dependencies between these phases rather than between
the whole initialization, enabling fast startup of the machine.

Driver definitions might be guarded using an if construct. The driver definition is included or
removed depending on the VP value specified in the guard condition, we call these inclusion
conditions.

Each driver in the system has two states: terminated (default state) and initialized, the
SMDC module is responsible for initializing and terminating all the drivers in the system. The
transition between terminated and initialized states, and the transition between initialized
and terminated states have predefined timeout values. In a SMDC configuration file, it is
possible to update predefined initialization and termination timeout values for any driver.

A virtual driver comprises one or more drivers, however, it behaves as an individual driver for
other systems. When a virtual driver is initialized, all their referenced drivers are initialized.
Likewise, terminating a virtual driver results in the termination of all its individual drivers.

As indicated by the bullet list above, there are three different kind of dependencies between
drivers: initialize, operational and reinitialize dependencies. Let us consider the dependency

CHAPTER 4. CLAFER EVALUATION USING ASML’S VARIABILITY MODEL 95

Terminated

Initialized

Initializing
Terminating

Figure 4.5: SMDC driver states

Time

B

A

Terminated Inialized

Terminated Initialized

Init dependency

Time

B

A

Terminated Initialized

Terminated Initialized

Operational Dependency

wait
Init

Waiting time due to operational dependency

wait

Waiting time due to init dependency Initializing (transition)

Figure 4.6: Initialization dependencies (left) and operational dependencies (right)

A depends on B for two arbitrary drivers A and B. An initialize dependency means that
A can start initialization only after B has been initialized (Fig. 4.6 left). Operational
dependencies are slightly different, driver A can reach the initialization state only after B
has been initialized (Fig. 4.6 right). Under certain scenarios, drivers are forced to delay
initialization or prolong the initialization phase due to initialize and operational constraints
respectively.

Time

B

A

Initialized

Initialized

Re-initialize Dependency

Terminated

Term. Initialized Term.

Initialized

Init

1 2
Terminating (transition)
Initializing (transition)

Figure 4.7: Re-init dependencies. 1) Reinit on termination, 2) Reinit on initial-
ization

Re-init dependencies are more complex. Driver A should be re-initialized if driver B is
initialized or terminated. The initialization sequence for both scenarios is shown in Fig. 4.7.

CHAPTER 4. CLAFER EVALUATION USING ASML’S VARIABILITY MODEL 96

When a driver initialization is divided into phases, dependencies can be specified among them
rather than on the whole driver initialization. This strategy helps improve the initialization
speed by minimizing the waiting time due to dependencies.

1 DRIVER_DEFINITIONS
2 DEFINE: AM "Air Mounts"
3 DEFINE: WH "Wafer Handler"
4
5 # Driver IR is only conditionally available.
6 if INT_RETICLE_INSP_SYSTEM == PRESENT
7 DEFINE: IR "Int. Rtcl Inspect System"
8 endif
9

10 DEFINE: AC "Alignment Scan Control" 300
11 DEFINE: AF "Alignment Subsystem" 300 600
12
13 DEFINE: WS "Wafer Stage"
14 "phase_A" phase_B" 90, "phase_C" 30 60
15
16 VIRTUAL_DEFINITIONS
17 WW "Wafer subsystem" : WH, WS
18
19 OPER_DEPENDENCIES
20 AC: AF, AM
21 WS: WH
22
23 INIT_DEPENDENCIES
24 AM: AF
25 WS: WH
26 WS "phase_B": IR
27 WS "phase_C": AF
28
29 REINIT_DEPENDENCIES
30 WS: AC

Listing 4.29: Example SMDC specification

A minimal example of a SMDC file, including all the elements previously described, is shown
in Listing 4.29. Driver definitions are included in lines (1–14), simple driver definitions (i.e.
those containing only mandatory information) are shown in lines 2, 3 and 7. The definition
in line 7 is included only when INT_RETICLE_INST_SYSTEM (a Variability Parameter) has
the value PRESENT—an inclusion condition. Definitions in lines 10, 11 and 13–14 define new
timeout values. AC (line 10) and AF (line 11) drivers define an initialization timeout of 300
seconds. Additionally, AF specifies a termination timeout value of 600 seconds. Driver WS
definition in lines 13–14 is split into phase A, phase B and phase C. An initialization timeout
value is defined for phase B while both initialization and termination timeouts are specified
for phase C.

A virtual driver definition that includes drivers WH and WS is shown in lines 16–17.

A set of operational dependencies (lines 19–21), init dependencies (lines 23–27) and reinit

CHAPTER 4. CLAFER EVALUATION USING ASML’S VARIABILITY MODEL 97

dependencies (lines 29–30) are included in Listing 4.29 as well. All dependencies have the
same syntactic structure, the dependent driver is followed by a colon and then a list of the
drivers it depends on, separated by commas. When a driver is split into phases, dependencies
can be specified on them. For instance, init dependencies are specified in all theWS driver
phases. Line 25 specified a dependency on phase A (when the phase name is omitted, the
first phase is implicitly chosen). Dependencies on phase B and phase C are defined in lines
26 and 27.

4.6.2 Modelling the SMDC specification in Clafer

Before building a driver definition, we define the three abstract clafers shown in Listing 4.30.
Lines 1–3 model the timeout values as an abstract clafer that contains an integer variable
(line 2) and a constraint (line 3); this constraint reduces the domain of variable timeout to
positive numbers only. It is important to note that the constraint uses the keyword this,
which refers to the containing object. Since the constraint is nested under the variable
definition, this refers to the variable timeout. Using relational logic, timeout values must
be greater than zero.

The abstract driver definition is specified in the DRIVER_DEFINE in lines 5–6. Only two
mandatory elements are related to the driver definition: its name (implicitly specified by the
concrete clafer’s name when this abstract definition is instantiated) and a description (line
6). Finally, a driver phase definition is shown in line 8. DRIVER_phase implicitly defines
the phase name during instantiation as well.

1 abstract Timeout
2 timeout -> integer
3 [this > 0]
4
5 abstract DRIVER_DEFINE
6 Desc -> string
7
8 abstract DRIVER_phase

Listing 4.30: Abstract clafers to model SMDC driver definition

The WS definition was taken from Listing 4.29 lines 13–14, and their dependencies from lines
21, 25–27 and 30 are used as an example. This driver was chosen because it incorporates
different phases, new timeout values and all dependency types.

Listing 4.31 shows the ABS_WS driver definition modelled in Clafer. The description is set
in line 2. Phase A (line 4), phase B (line 10) and phase C (line 19) are instantiated from
the DRIVER_phase abstract clafer. Phase B defines an init timeout in lines 11–12. Init
and terminate timeout values for phase C are defined in lines 20–21 and 23–24, respectively.
Timeout clafers are first instantiated and then a constraint is used to set their values.

All dependencies are modelled as references using the -> operator. A reference is a pointer to
any existing clafer definition. The three WS init dependencies are: a dependency on ABS_WH

CHAPTER 4. CLAFER EVALUATION USING ASML’S VARIABILITY MODEL 98

in line 7, on ABS_IR in line 16–17 and on ABS_AF in line 26. The driver ABS_IR is optionally
defined, thus, the dependency on this driver has an inclusion condition. The implementation
of an inclusion condition has two components: first, the reference declaration is made optional
using the ? operator (line 16); second, a constraint relates the condition to the existence of
the reference using a bidirectional implication (line 17). When the condition yields true, the
optional reference (id02) is included.

1 abstract ABS_WS : DRIVER_DEFINE
2 [Desc = "Wafer Stage"]
3
4 phase_A: DRIVER_phase
5 INIT_DEPS
6 /*Init dependency WS: WH*/
7 id01-> ABS_WH
8
9

10 phase_B: DRIVER_phase
11 phase_B_init: Timeout
12 [phase_B_init.timeout = 90]
13
14 INIT_DEPS
15 /*Init dependency WS "phase_B": IR*/
16 id02 -> ABS_IR ?
17 [INT_RETICLE_INSP_SYSTEM.variants.PRESENT <=> id02]
18
19 phase_C: DRIVER_phase
20 phase_C_init:Timeout
21 [phase_C_init.timeout = 30]
22
23 phase_C_end:Timeout
24 [phase_C_end.timeout = 60]
25
26 OPER_DEPS
27 od01-> ABS_WH
28
29 REINIT_DEPS
30 rd01-> ABS_AC

Listing 4.31: Driver definition in Clafer. It contains three phases and all the kind of
dependencies

Similarly, operational and reinit dependencies are defined in lines 26–27 and 29–30, respec-
tively. This approach uses hierarchical decomposition to associate dependencies to each driver
definition or its individual phases; all the dependency information is encoded inside driver
definitions in this way.

Listing 4.32 shows DRIVER_DEFINITIONS where all the specified abstract driver definitions
are instantiated inside. Each abstract clafer defined in the minimal SMDC example is instan-
tiated to a concrete clafer. Note that the IR definition is optional, so, an inclusion condition
is used (lines 5–6).

CHAPTER 4. CLAFER EVALUATION USING ASML’S VARIABILITY MODEL 99

1 DRIVER_DEFINITIONS
2 AM:ABS_AM
3 WH:ABS_WH
4 AF:ABS_IR ?
5 [INT_RETICLE_INSP_SYSTEM.variants.PRESENT <=> IR]
6 AC:ABS_AC
7 AF:ABS_AF
8 WS:ABS_WS

Listing 4.32: Instantiation of abstract driver definitions

The virtual driver definition in the SMDC example can be represented in Clafer as shown in
Listing 4.33.

1 abstract ABS_VIRTUAL : VIRTUAL_DRIVER_DEFINE
2 [Desc = "Wafer subsystem"]
3 REF_WH -> DRIVER_DEFINITIONS.WH
4 REF_WS -> DRIVER_DEFINITIONS.WS

Listing 4.33: Virtual Driver abstract definition

As for the individual driver definitions, virtual driver (abstract) definitions can be instantiated
in a clafer constainer as shown in Listing 4.34.

1 VIRTUAL_DRIVER_DEFINITIONS
2 VIRTUAL:ABS_VIRTUAL

Listing 4.34: Virtual Driver instantiation

An more extensive example of an SMDC specification and its translation to Clafer is shown
in Appendix A.

4.6.3 Analysis of SMDC specifications in Clafer

The presented Clafer model encodes all the driver’s information contained in a SMDC file
with the inclusion conditions based on VP-values. If the information about the VPs (included
in the SMDC file) and their dependencies are part of the Clafer model, the Clafer instance
generator derives all the possible combinations of VP values that satisfy such dependencies.
Based on the different VP-values and the inclusion conditions, all the possible SMDC file
versions can be generated.

Driver states (initialized and terminated) and transitions between them could be also mod-
elled in the Clafer model. Then, driver dependencies could be expressed as constraints instead
of as references. For instance, an init dependency can be easily modelled using a logical im-
plication: the initialization transition of the dependent driver on the left-hand side and the
initialized state of the driver it depends upon on the right-hand side. If each driver is linked
to a state, and its dependencies are constraints between them, the instance generator can
find all the valid combinations of driver states for each SMDC file version.

CHAPTER 4. CLAFER EVALUATION USING ASML’S VARIABILITY MODEL 100

Unfortunately, reinit dependencies cannot be expressed using Clafer constraints. Reinit de-
pendencies require specifying a set of state transitions in the dependent driver and proposi-
tional logic cannot be used to express such dynamic behaviour. This results on some instance
containing an invalid combination of driver’s states due to missing reinit dependencies. Mod-
elling driver states explicitly would be useful only if we can verify properties using a temporal
logic. It would be extremely interesting to attempt to verify behavioral properties in all the
different variants of an SMDC file and determine if there are some variants which violate one

The possibility of generating all the valid SMDC file instances using Clafer can be used to
uncover inconsistencies due to changes in inclusion conditions or in the variability model. For
instance, circular dependencies (A depends on B, and B depends on A) or dependencies to
nonexistent drivers (derived from incorrect inclusion conditions).

4.7 Clafer missing constructs

Three VPO language constructs were missing in Clafer: Boolean variables, boolean literals
and default values. The lack of boolean literals was solved by modelling them as an XOR
group with a constraint selecting the true literal. In VPO models, the result of a boolean
expression is stored in boolean variables (known as named expressions). Boolean variables
make constraint expressions more concise; sub-expressions can be stored in variables and then
used as part of a larger boolean equation. Because Clafer does not support boolean variables,
translated named expressions were stored during the model transformation, and then, each
variable use was replaced with its definition. The constraints in the output model are equiva-
lent to those in the VPO files, but sometimes quite large and thus, less readable. The lack of
Boolean variables and literals does not represent an issue for the model transformation; the
information represented by these constructs was successfully translated to the target model.

On the other hand, the default values cannot be represented in Clafer directly. Two strategies
were considered during the development of this project as indirect support for default values.
The first strategy consists of generating an initial version of the variability model without
default values. Then, use the Clafer instance generator to obtain all the valid model instances,
from which the under-constrained VPs can be identified. Knowing the under-constrained set
of variables, extra constraints are inserted into the initial model to assign default values to
them. A similar strategy to this is what is currently implemented at ASML: when undefined
VPs are detected in a—faulty—machine configuration, the configuration management module
throws an error, prompting the user to run the asm_upgrade_config tool to assign default
values to the undefined variables. A second strategy consists of evaluating the constraints
during the model transformation to identify under-constrained VPs and then insert additional
constraints to set default values where needed. This second alternative is more convenient
from the user’s perspective—the default values are assigned automatically without further
steps—although the implementation of this strategy is far from trivial. VPO constraints only
require propositional logic, and most of the VP variable assignments occurs either in single
assignment constraints or on the right-hand side of an implication operator inside a guarded
assignment constraint. Thus, this implementation may be feasible, but is left as future work.

CHAPTER 4. CLAFER EVALUATION USING ASML’S VARIABILITY MODEL 101

4.8 Clafer’s toolset evaluation

The Clafer tools deal with small to medium–size models properly, but they are not efficient
enough to manage large models including many multi-variable constraint expressions. When
all the VPs and constraints available from the VPO were included in the Clafer model,
compilation time and instance generation time skyrocketed.

The Clafer toolset does not translate the counterexamples and conflicting constraints gen-
erated by the Choco-solver1 back to Clafer. This is a crucial feature when troubleshooting
large models. A conflicting constraint makes the constraint problem unsatisfiable and no
instances are generated from the model. These problematic constraints are relatively easy
to find manually on small models, but it is an insurmountable endeavor when dealing with
large models like those at ASML.

Four valuable characteristics were found in Clafer tools. First, the toolset is freely available to
run online; this is quite useful for rapid prototyping. Second, tool usage and implementation
is well documented in the Clafer wikipage—which also has plenty of model examples. Third,
Clafer’s developers were quite responsive and open to answering questions—even thought the
project is officially finished and they are not working on its development anymore. Lastly,
the project is open source and has a permissive license; any company can use the source code
with no obligation of sharing the modified code.

Based on the results obtained from this work, it is concluded that Clafer toolset is not robust
enough to handle the variability model at ASML. Using it would require optimizing the
compiler and probably integrating a SAT solver to analyze the ASML models in a reasonable
time. Translating all the debugging information provided by the backend solvers—something
that is not currently implemented—is important in order to facilitate the debugging process
of variability models.

1the backend solver used in this study

CHAPTER 4. CLAFER EVALUATION USING ASML’S VARIABILITY MODEL 102

4.9 Conclusions

In this chapter we implemented a model transformation from ASML’s variability models to
Clafer, and provided a conceptual mapping from SMDC specification to Clafer. ASML’s
variability model is composed of a large set of Variability Parameters (SVPs, PVPs and
EVPs) with constraints and dependencies. All VP attributes are either string or integer
type, which are directly supported in Clafer. Four abstract clafers were used to model SVP,
protected PVP, non-protected PVP and EVP types. From these abstract objects, all the VPs
were generated, using an XOR group to define the variants associated to each VP. Therefore,
it was found that Clafer is expressive enough to represent all the variability constructs in the
VPO models (RQ2).

Default values support is missing in Clafer—other constructs like boolean variables and liter-
als are indirectly supported. As it is, the lack of default values support is the weakest point
of this variability language in the context of ASML. It is important to note that this is a
missing configuration support capability (as already identified in Chapter 2, Table 2.1) and
not a variability expressiveness issue.

A comprehensive evaluation of a variability modelling language demands robust tools that
enable model analysis to derive useful information. A variability language’s suitability cannot
be determined only by its capacity to express variability of a domain. It must also provide
insights about the system by performing computer-aided analysis (based on the variability
specification) that would otherwise be impossible—or quite difficult—to be derived manually.

The Clafer compiler and instance generator were used to analyze the output models. The
Clafer toolset handles large models without failures, but it turned out to be extremely slow
for our use case. Skipping the name resolution step in the compiler helps speed up the
process, but a more comprehensive analysis—such as compiler’s profiling—is required for
further optimization. Thus, the tools’ speed is the most important limiting factor that makes
them not robust enough for their use in ASML’s context (RQ3).

Clafer’s constraint language is very expressive, supporting propositional, relational, arith-
metic and first-order logic. For ASML’s variability model, propositional logic suffices. Under
certain scenarios, SAT solvers deal with propositional satisfiability problems more efficiently
than more advanced CSP solvers [83], such as those used by the Clafer toolset as backends.
An interesting enhancement of Clafer tools would be to add a SAT solver that is optionally
used when the analyzed models contain propositional logic only.

Clafer claims to be expressive enough to integrate structural modelling with variability. This
aspect was explored in Section 4.6 by modelling the System Manager Driver Control specifi-
cation in Clafer. The Clafer language can be used to represent all the elements in a SMDC file
and integrate the variability information as inclusion conditions. The instance generator can
be used to find all the possible variations of an SMDC file based on its inclusion conditions.
The file variations found are then used to identify structural inconsistencies in the original
file.

CHAPTER 4. CLAFER EVALUATION USING ASML’S VARIABILITY MODEL 103

The analysis of this exercise proves that Clafer 0.4.5 is not fully useful in the ASML context.
Even though it was found this is not a suitable language, this exercise’s relevance lies in the
identification of issues in ASML’s current models. For instance, domain experts consulted
pointed out that the current variability models have missing constraints, making it possible
for invalid machine configurations to be derived. One approach to tackling this issue could
be to generate all the possible configurations from the current variability model; then, using
these configurations, use ASML’s simulators to detect the invalid ones. Another approach,
could be to use both behavioural and variability modelling to verify the behavioural prop-
erties among all the possible configurations of a system. All the configurations that violate
those behavioural properties would be marked invalid. The invalid configurations detected
using any of these approaches, could then be a starting point to adding some of the missing
constraints to the variability model.

This chapter presented the last component of our evaluation proposal to determine whether
or not the selected VML, could be used at ASML. The evaluation result is negative due to
missing configuration support and lack of tool robustness. However, our evaluation results
point to alternative strategies for configuration support and specific tool enhancements that
would make the proposed VML applicable for ASML.

Chapter 5

Conclusions

A fundamental question in variability management—addressed by both academia and industry—
is how to represent variability. Many ideas on the subject have been developed in academia
over the last 30 years. At the same time, variability management has become an increasingly
complex problem in the industry. Academia takes on this challenge by generating a myriad
of new ideas and methodologies. Companies tackle variability management by developing
customized processes and tools that evolve as their specific variability requirements change.
Looking beyond their specific needs and incorporating academic ideas is often experienced as
disruptive or risky to implement.

In this context, our goal (RQ1) was to conduct an effective evaluation of the existing VMLs
in three stages: 1) a literature review, 2) a formal framework to evaluate variability language
expressiveness and 3) a practical assessment of one VML using ASML variability models. This
approach proved effective in evaluating existing VMLS; we argue its usefulness as follows.

The practical evaluation component of our proposal answers the question: can an existing
VML represent all the constructs in our variability models? Using these models a definite
answer is effectively reached, an answer that is only valid for a particular domain in a specific
point in time. Our conclusion was that Clafer is expressive enough to represent variability
constructs and constraints, but the current lack of default values support—a configuration
capability—must be integrated into the language to fully express all the constructs found in
ASML’s variability models (RQ2). Furthermore, this practical assessment also showed that
the evaluated Clafer toolset (0.4.5) is not robust enough to efficiently deal with the number
of multi-variable constraints in the ASML variability models used in our evaluation (RQ3).

The systematic literature review component in our proposal yields a set of VML capabilities
considered relevant based on academic research and an initial tool support assessment. This
approach provides a reference model that can be used to reduce the VML options based on
our requirements. In our assessment, it yielded Clafer and IVML as the two most promising
options. Moreover, as a reference model, our approach has the added benefit that it also
presents variability language capabilities that were not being considered as part of the re-

104

CHAPTER 5. CONCLUSIONS 105

quirements of our domain, prompting the question: are we following the best approach to
model variability?

As we consider the challenge of variability representation from a wider perspective, it becomes
inevitable to consider the matter in more depth and ask ourselves: what are all the forms of
variability existing in the real-world that we are trying to represent? The question of what
exist in the world is the subject of ontologies, hence the inclusion of ontological expressiveness
theories as part of our evaluation proposal. Ontological analysis pointed to the existence of
the dynamic dimension of variability; a paradigm shift from the static view of variability
modelling prevailing in most VMLs. With this shifted perspective, we can look back to our
domain-specific variability requirements and recognize new possibilities for addressing our
current challenges and foresee new paths forward.

Future work

Both Asadi’s et. al evaluation framework and the Clafer modelling language point to the
same aspect: the dynamic dimension of variability. ATFV does it by proposing process
variability and Clafer by adding a temporal dimension to the language, yet in both cases, the
applicability of this work is not clearly defined. The current ASML variability model allows
the derivation of invalid configurations; so the possibility of verifying dynamic properties
among all the variations of a specification would enable a systemic way of detecting these
invalid configurations. This is what the results of our evaluation point to, but it is a possibility
that requires further research and tools development in order to be validated.

Appendix A. Example SMDC file
modelled in Clafer

This appendix includes an imaginary SMDC specification file (Listing 5.1). This specification
file is translated to a Clafer model shown Listing 5.2.

1 # SMDC imaginary example file
2
3 DRIVER_DEFINITIONS
4 DEFINE: AC "Alignment Scan Control" 300 # Initialize timeout of 5
5 # minutes, default timeout
6 # (30 seconds) for terminate.
7 DEFINE: AF "Alignment Subsystem" 300 600 # Initialize timeout 5 min,
8 # terminate timeout 10 min.
9 DEFINE: AM "Air Mounts"

10 DEFINE: ID "Image Sensor Scan Control"
11 DEFINE: IF "Image Sensor Subsystem"
12 DEFINE: KS "Swap Control"
13 DEFINE: MI "M. System Interferometers"
14
15 # Drivers IR, PS and RV are only conditionally available.
16 if INT_RETICLE_INSP_SYSTEM == PRESENT
17 DEFINE: IR "Int. Rtcl Inspect System"
18 DEFINE: PS "Rtcl Particle Scanner"
19 DEFINE: RV "Reticle Mover"
20 endif
21 DEFINE: RH "Reticle Handling"
22 DEFINE: SNM "Synchronisation Control"
23 DEFINE: SOM "Synchronisation Driver (T) M"
24 DEFINE: WH "Wafer Handler"
25 DEFINE: WS "Wafer Stage"
26 "phase_A" 20, phase_B" 90, "phase_C" 30 60 #term timeout on C
27
28 VIRTUAL_DEFINITIONS
29 WW "ww" : WH, WS
30
31 OPER_DEPENDENCIES
32 AC: AF, SNM, WS
33 AF: MI, SOM
34

106

CHAPTER 5. CONCLUSIONS 107

35 INIT_DEPENDENCIES
36 ID: IF
37
38 # Driver RS may only start if:
39 # Drivers AM and MI have already been initialized.
40 RS: AM, MI
41
42 # Driver WS has been initialized if:
43 # Steps "phase_A", "phase_B" and "phase_C" are initialized.
44 # Step "phase_B" may be init'ed after MI and phase_A have been initialized
45 # Step "phase_C" may be init'ed after AM and phase_B have been initialized
46 WS "phase_B": MI
47 WS "phase_C": AM
48
49 REINIT_DEPENDENCIES
50 ID: IF 19
51 KS: WS "phase_B"

Listing 5.1: Example SMDC specification

1 /*
2 * Clafer instance generator found
3 * two different instances of this model.
4 */
5
6 /* Abstract clafers for SMDC drivers definitions */
7
8 abstract Timeout
9 timeout -> integer

10 [this > 0]
11
12
13 abstract DRIVER_DEFINE
14 Desc -> string
15
16
17 abstract DRIVER_phase
18
19 abstract VIRTUAL_DRIVER_DEFINE
20 Desc -> string
21
22
23 /*Abstract Clafer for VP definitions*/
24 abstract VP_DEFINE
25 VP_name -> string
26 Description -> string
27
28
29 /*VP definitions*/
30 INT_RETICLE_INSP_SYSTEM: VP_DEFINE
31 [VP_name = "Reticle"]
32 [Description = "Internal reticle inspection system"]
33
34 xor variants

CHAPTER 5. CONCLUSIONS 108

35 PRESENT
36 ABSENT
37
38 /*
39 * Driver definitions
40 */
41
42 abstract ABS_AC : DRIVER_DEFINE
43 [Desc = "Alignment Scan Control"]
44
45 init: Timeout
46 [init.timeout = 300]
47
48 OPER_DEPS
49 OD01 -> ABS_AF
50 OD02 -> ABS_SNM
51 OD03 -> ABS_WS
52
53 INIT_DEPS /*NONE*/
54 REINIT_DEPS /*NONE*/
55
56
57 abstract ABS_AF : DRIVER_DEFINE
58 [Desc = "Alignment Subsystem"]
59
60 init: Timeout
61 [init.timeout = 300]
62
63 end: Timeout
64 [end.timeout = 600]
65
66 OPER_DEPS
67 OD01 -> ABS_MI
68 OD02 -> ABS_SOM
69
70 INIT_DEPS /*NONE*/
71 REINIT_DEPS /*NONE*/
72
73 abstract ABS_AM : DRIVER_DEFINE
74 [Desc = "Air Mounts"]
75
76 OPER_DEPS /*NONE*/
77 INIT_DEPS /*NONE*/
78 REINIT_DEPS /*NONE*/
79
80 abstract ABS_ID : DRIVER_DEFINE
81 [Desc = "Image Sensor Scan Control"]
82
83 OPER_DEPS /*NONE*/
84 INIT_DEPS
85 ID01 -> ABS_IF
86 REINIT_DEPS
87 RD01 -> ABS_IF
88
89 abstract ABS_IF : DRIVER_DEFINE
90 [Desc = "Image Sensor Subsystem"]

CHAPTER 5. CONCLUSIONS 109

91
92 OPER_DEPS /*NONE*/
93 INIT_DEPS /*NONE*/
94 REINIT_DEPS /*NONE*/
95
96
97 abstract ABS_KS : DRIVER_DEFINE
98 [Desc = "Swap Control"]
99

100 OPER_DEPS /*NONE*/
101 INIT_DEPS
102 ID01 -> ABS_AM
103 ID02 -> ABS_MI
104 ID03 -> ABS_WS.Phase_B
105 REINIT_DEPS /*NONE*/
106
107 abstract ABS_MI : DRIVER_DEFINE
108 [Desc = "M. System Interferometers"]
109
110 OPER_DEPS /*NONE*/
111 INIT_DEPS /*NONE*/
112 REINIT_DEPS /*NONE*/
113
114 abstract ABS_IR : DRIVER_DEFINE
115 [Desc = "Int. Rtcl Inspect System"]
116
117 OPER_DEPS /*NONE*/
118 INIT_DEPS /*NONE*/
119 REINIT_DEPS /*NONE*/
120
121 abstract ABS_PS : DRIVER_DEFINE
122 [Desc = "Rtcl Particle Scanner"]
123
124 OPER_DEPS /*NONE*/
125 INIT_DEPS /*NONE*/
126 REINIT_DEPS /*NONE*/
127
128 abstract ABS_RV : DRIVER_DEFINE
129 [Desc = "Reticle Mover"]
130
131 OPER_DEPS /*NONE*/
132 INIT_DEPS /*NONE*/
133 REINIT_DEPS /*NONE*/
134
135 abstract ABS_RH : DRIVER_DEFINE
136 [Desc = "Reticle Handling"]
137
138 OPER_DEPS /*NONE*/
139 INIT_DEPS /*NONE*/
140 REINIT_DEPS /*NONE*/
141
142 abstract ABS_SNM : DRIVER_DEFINE
143 [Desc = "Synchronisation Control"]
144
145 OPER_DEPS /*NONE*/
146 INIT_DEPS /*NONE*/

CHAPTER 5. CONCLUSIONS 110

147 REINIT_DEPS /*NONE*/
148
149 abstract ABS_SOM : DRIVER_DEFINE
150 [Desc = "Synchronisation Driver (T) M"]
151
152 OPER_DEPS /*NONE*/
153 INIT_DEPS /*NONE*/
154 REINIT_DEPS /*NONE*/
155
156 abstract ABS_WH : DRIVER_DEFINE
157 [Desc = "Wafer Handler"]
158
159 OPER_DEPS /*NONE*/
160 INIT_DEPS /*NONE*/
161 REINIT_DEPS /*NONE*/
162
163
164 abstract ABS_WS : DRIVER_DEFINE
165 [Desc = "Wafer Stage"]
166
167 Phase_A: DRIVER_phase
168 Phase_A_init:Timeout
169 [Phase_A_init.timeout = 20]
170
171 INIT_DEPS /*NONE*/
172
173 Phase_B: DRIVER_phase
174 Phase_B_init:Timeout
175 [Phase_B_init.timeout = 90]
176
177 INIT_DEPS
178 ID01 -> ABS_MI
179
180
181 Phase_C: DRIVER_phase
182 Phase_C_init:Timeout
183 [Phase_C_init.timeout = 30]
184 Phase_C_end: Timeout
185 [Phase_C_end.timeout = 60]
186
187 INIT_DEPS
188 ID02 -> ABS_AM
189
190
191 DRIVER_DEFINITIONS
192 AC:ABS_AC
193 AF:ABS_AF
194 AM:ABS_AM
195 ID:ABS_ID
196 IF:ABS_IF
197 KS:ABS_KS
198 MI:ABS_MI
199
200 IR:ABS_IR ?
201 [INT_RETICLE_INSP_SYSTEM.variants.PRESENT <=> IR]
202 PS:ABS_PS ?

CHAPTER 5. CONCLUSIONS 111

203 [INT_RETICLE_INSP_SYSTEM.variants.PRESENT <=> PS]
204 RV:ABS_RV ?
205 [INT_RETICLE_INSP_SYSTEM.variants.PRESENT <=> RV]
206
207 RH:ABS_RH
208 SNM:ABS_SNM
209 SOM:ABS_SOM
210 WH:ABS_WH
211 WS:ABS_WS
212
213 /*
214 * VIRTUAL DRIVERS DEFINITIONS
215 */
216 abstract ABS_WW : VIRTUAL_DRIVER_DEFINE
217 [Desc = "ww"]
218 REF_WH -> DRIVER_DEFINITIONS.WH
219 REF_WS -> DRIVER_DEFINITIONS.WS
220
221
222 VIRTUAL_DRIVER_DEFINITIONS
223 WW:ABS_WW

Listing 5.2: SMDC specification example modelled in Clafer

References

[1] M. Galster, D. Weyns, M. Goedicke, U. Zdun, J. Cunha, and J. Chavarriaga, “Variability
and complexity in software design: Towards quality through modeling and testing,” ACM
SIGSOFT Software Engineering Notes, vol. 42, pp. 35–37, Jan. 2018.

[2] P. C. Clements and L. Northrop, Software Product Lines: Practices and Patterns, ser.
SEI Series in Software Engineering. Addison-Wesley, August 2001.

[3] K. Pohl, G. Böckle, and F. J. v. d. Linden, Software Product Line Engineering: Foun-
dations, Principles and Techniques. Berlin, Heidelberg: Springer-Verlag, 2005.

[4] Wikipedia contributors, “Complex system — Wikipedia, the free encyclopedia,” 2020,
[Online; accessed 2-February-2020]. [Online]. Available: https://en.wikipedia.org/w/
index.php?title=Complex system&oldid=935566621

[5] P. Derler, E. A. Lee, and A. Sangiovanni Vincentelli, “Modeling cyber–physical systems,”
Proceedings of the IEEE, vol. 100, no. 1, pp. 13–28, Jan 2012.

[6] H. Eichelberger and K. Schmid, “Mapping the design-space of textual variability mod-
eling languages: a refined analysis,” International Journal on Software Tools for Tech-
nology Transfer, vol. 17, pp. 559–584, Oct. 2015.

[7] M. H. t. Beek, K. Schmid, and H. Eichelberger, “Textual variability modeling
languages: An overview and considerations,” in Proceedings of the 23rd International
Systems and Software Product Line Conference - Volume B. New York, NY,
USA: Association for Computing Machinery, 2019, p. 151–157. [Online]. Available:
https://doi.org/10.1145/3307630.3342398

[8] J. van Gurp, J. Bosch, and M. Svahnberg, “On the notion of variability in software
product lines,” in Proceedings Working IEEE/IFIP Conference on Software Architecture
(WICSA’01), 2001, pp. 45–54.

[9] K. Pohl and A. Metzger, “Variability management in software product line engineering,”
in Proceedings of the 28th International Conference on Software Engineering, ser. ICSE
’06. New York, NY, USA: Association for Computing Machinery, 2006, p. 1049–1050.
[Online]. Available: https://doi.org/10.1145/1134285.1134499

[10] A.-L. Lamprecht, S. Naujokat, and I. Schaefer, “Variability management beyond feature
models,” Computer, vol. 46, pp. 48–54, Nov. 2013.

112

https://en.wikipedia.org/w/index.php?title=Complex_system&oldid=935566621
https://en.wikipedia.org/w/index.php?title=Complex_system&oldid=935566621
https://doi.org/10.1145/3307630.3342398
https://doi.org/10.1145/1134285.1134499

REFERENCES 113

[11] K. Schmid, R. Rabiser, and P. Grünbacher, “A comparison of decision modeling
approaches in product lines,” in Proceedings of the 5th Workshop on Variability
Modeling of Software-Intensive Systems, ser. VaMoS ’11. New York, NY, USA:
Association for Computing Machinery, 2011, p. 119–126. [Online]. Available:
https://doi.org/10.1145/1944892.1944907

[12] K. Deelstra and M. Sinnema, “Managing the complexity of variability in software product
families,” 2008, date submitted:2008 Rights: University of Groningen (Publisher).

[13] K. Czarnecki, P. Grünbacher, R. Rabiser, K. Schmid, and A. Wasowski, “Cool features
and tough decisions: A comparison of variability modeling approaches,” in Proceedings
of the Sixth International Workshop on Variability Modeling of Software-Intensive
Systems, ser. VaMoS ’12. New York, NY, USA: Association for Computing Machinery,
2012, p. 173–182. [Online]. Available: https://doi.org/10.1145/2110147.2110167

[14] R. Bashroush, M. Garba, R. Rabiser, I. Groher, and G. Botterweck, “Case tool support
for variability management in software product lines,” ACM Computing Surveys,
vol. 50, no. 1, Mar. 2017. [Online]. Available: https://doi.org/10.1145/3034827

[15] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson, “Feature-oriented domain
analysis (FODA) feasibility study,” Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA, Tech. Rep. CMU/SEI-90-TR-021, 1990. [Online]. Available:
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=11231

[16] T. Berger, R. Rublack, D. Nair, J. M. Atlee, M. Becker, K. Czarnecki, and A. Wasowski,
“A survey of variability modeling in industrial practice,” in Proceedings of the Seventh
International Workshop on Variability Modelling of Software-Intensive Systems, VaMoS
’13. New York, NY, USA: Association for Computing Machinery, 2013. [Online].
Available: https://doi.org/10.1145/2430502.2430513

[17] D. Lettner, M. Petruzelka, R. Rabiser, F. Angerer, H. Prähofer, and P. Grünbacher,
“Custom-developed vs. model-based configuration tools: Experiences from an industrial
automation ecosystem,” in Proceedings of the 17th International Software Product
Line Conference Co-Located Workshops, SPLC ’13 Workshops. New York, NY,
USA: Association for Computing Machinery, 2013, p. 52–58. [Online]. Available:
https://doi.org/10.1145/2499777.2500713

[18] “Kconfig language specification,” https://www.kernel.org/doc/Documentation/kbuild/
kconfig-language.txt, accessed: 2020-02-11.

[19] R. Lotufo, S. She, T. Berger, K. Czarnecki, and A. Wasowski, “Evolution of the Linux
kernel variability model,” in Proceedings of the 14th International Conference on Soft-
ware Product Lines: Going Beyond, SPLC’10. Berlin, Heidelberg: Springer-Verlag,
2010, p. 136–150.

[20] M. Acher, H. Martin, J. Alves Pereira, A. Blouin, D. Eddine Khelladi, and
J.-M. Jézéquel, “Learning From Thousands of Build Failures of Linux Kernel
Configurations,” Inria ; IRISA, Technical Report, Jun. 2019. [Online]. Available:
https://hal.inria.fr/hal-02147012

https://doi.org/10.1145/1944892.1944907
https://doi.org/10.1145/2110147.2110167
https://doi.org/10.1145/3034827
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=11231
https://doi.org/10.1145/2430502.2430513
https://doi.org/10.1145/2499777.2500713
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
https://hal.inria.fr/hal-02147012

REFERENCES 114

[21] A. Jaksic, R. France, P. Collet, and S. Ghosh, “Evaluating the usability of a visual
feature modeling notation.” 7th International Conference, SLE 2014, Sept. 2014, pp.
122–140.

[22] H. Eichelberger and K. Schmid, “A systematic analysis of textual variability modeling
languages,” in Proceedings of the 17th International Software Product Line Conference,
SPLC ’13. New York, NY, USA: Association for Computing Machinery, 2013, p.
12–21. [Online]. Available: https://doi.org/10.1145/2491627.2491652

[23] D. Benavides, S. Segura, and A. Ruiz-Cortés, “Automated analysis of feature models
20 years later: A literature review,” Information Systems, vol. 35, no. 6, pp. 615
– 636, 2010. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0306437910000025

[24] K. Schmid, R. Rabiser, and P. Grünbacher, “A comparison of decision modeling
approaches in product lines,” in Proceedings of the 5th Workshop on Variability
Modeling of Software-Intensive Systems, ser. VaMoS ’11. New York, NY, USA:
Association for Computing Machinery, 2011, p. 119–126. [Online]. Available:
https://doi.org/10.1145/1944892.1944907

[25] A. Deursen and P. Klint, “Domain-specific language design requires feature descrip-
tions,” Journal of Computing and Information Technology, vol. 10, Jan. 2002.

[26] T. Asikainen, T. Mannisto, and T. Soininen, “A unified conceptual foundation for feature
modelling,” in 10th International Software Product Line Conference (SPLC’06), Aug
2006, pp. 31–40.

[27] V. Myllärniemi, T. Asikainen, T. Männistö, and T. Soininen, “Kumbang configurator–a
configuration tool for software product families,” 01 2005.

[28] D. Batory, “Feature models, grammars, and propositional formulas,” in Software Product
Lines, H. Obbink and K. Pohl, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2005, pp. 7–20.

[29] A. Abele, Y. Papadopoulos, D. Servat, M. Törngren, and M. Weber, “The cvm frame-
work - a prototype tool for compositional variability management.” Jan. 2010, pp. 101–
105.

[30] M. Mendonça, M. Branco, and D. Cowan, “S.P.L.O.T. - Software product lines online
tools,” Oct. 2009, pp. 761–762.

[31] M. Acher, P. Collet, P. Lahire, and R. France, “A domain-specific language for managing
feature models,” Jan. 2011, pp. 1333–1340.

[32] A. Classen, Q. Boucher, and P. Heymans, “A text-based approach to feature
modelling: Syntax and semantics of TVL,” Science of Computer Programming, vol. 76,
no. 12, pp. 1130 – 1143, 2011, special Issue on Software Evolution, Adaptability
and Variability. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0167642310001899

https://doi.org/10.1145/2491627.2491652
http://www.sciencedirect.com/science/article/pii/S0306437910000025
http://www.sciencedirect.com/science/article/pii/S0306437910000025
https://doi.org/10.1145/1944892.1944907
http://www.sciencedirect.com/science/article/pii/S0167642310001899
http://www.sciencedirect.com/science/article/pii/S0167642310001899

REFERENCES 115

[33] D. Clarke, R. Muschevici, J. Proença, I. Schaefer, and R. Schlatte, “Variability modelling
in the abs language,” vol. 6957, Nov. 2010, pp. 204–224.

[34] M. Rosenmüller, N. Siegmund, T. Thüm, and G. Saake, “Multi-dimensional
variability modeling,” in Proceedings of the 5th Workshop on Variability Modeling of
Software-Intensive Systems, ser. VaMoS ’11. New York, NY, USA: Association for
Computing Machinery, 2011, p. 11–20. [Online]. Available: https://doi.org/10.1145/
1944892.1944894

[35] K. Schmid, C. Kröher, and S. El-Sharkawy, “Variability Modeling with the Integrated
Variability Modeling Language (IVML) and EASy-Producer,” in Proceedings of the
22nd International Systems and Software Product Line Conference - Volume 1, SPLC
’18. New York, NY, USA: Association for Computing Machinery, 2018, p. 306.
[Online]. Available: https://doi.org/10.1145/3233027.3233057

[36] Eichelberger and El-Sharkawy, Sascha and Holger and Kröher, Christian and Schmid,
Klaus, “Integrated Variability Modeling Language: Language specification – version
1.30,” 2015, [Online; accessed 12-May-2020]. [Online]. Available: https://github.com/
SSEHUB/EASyProducer/blob/master/doc/IVML%20Language%20Spec.docx

[37] P. Juodisius, A. Sarkar, R. R. Mukkamala, M. Antkiewicz, K. Czarnecki, and
A. Wasowski, “Clafer: Lightweight modeling of structure, behaviour, and variability,”
CoRR, vol. abs/1807.08576, 2018. [Online]. Available: http://arxiv.org/abs/1807.08576

[38] K. Bak, Z. Diskin, M. Antkiewicz, K. Czarnecki, and A. Wasowski, “Clafer: Unifying
class and feature modeling,” Software Systems Modeling, vol. 15, Dec. 2014.

[39] A. A.F, “PYFML - A Textual Language for Feature Modeling,” International Journal
of Software Engineering Applications, vol. 9, pp. 41–53, Jan. 2018.

[40] E. Alférez Salinas, M. Acher, J. Galindo, B. Baudry, and D. Benavides, “Modeling
variability in the video domain: Language and experience report,” Software Quality
Journal, vol. 27, p. 307–347, March, 2019.

[41] A. Villota, R. Mazo, and C. Salinesi, “The high-level variability language: An
ontological approach,” in Proceedings of the 23rd International Systems and Software
Product Line Conference - Volume B, ser. SPLC ’19. New York, NY, USA: ACM,
2019, pp. 162–169. [Online]. Available: http://doi.acm.org/10.1145/3307630.3342401

[42] K. Schmid, “Variability support for variability-rich software ecosystems,” in 2013 4th In-
ternational Workshop on Product LinE Approaches in Software Engineering (PLEASE),
2013.

[43] K. Czarnecki, S. Helsen, and U. Eisenecker, “Formalizing cardinality-based feature mod-
els and their specialization,” Software Process: Improvement and Practice, vol. 10, pp.
7–29, Jan. 2005.

[44] ——, “Staged configuration using feature models,” in Software Product Lines, R. L.
Nord, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 266–283.

https://doi.org/10.1145/1944892.1944894
https://doi.org/10.1145/1944892.1944894
https://doi.org/10.1145/3233027.3233057
https://github.com/SSEHUB/EASyProducer/blob/master/doc/IVML%20Language%20Spec.docx
https://github.com/SSEHUB/EASyProducer/blob/master/doc/IVML%20Language%20Spec.docx
http://arxiv.org/abs/1807.08576
http://doi.acm.org/10.1145/3307630.3342401

REFERENCES 116

[45] T. Berger, R. Rublack, D. Nair, J. M. Atlee, M. Becker, K. Czarnecki, and A. Wasowski,
“A survey of variability modeling in industrial practice,” in Proceedings of the Seventh
International Workshop on Variability Modelling of Software-Intensive Systems, VaMoS
’13. New York, NY, USA: Association for Computing Machinery, 2013. [Online].
Available: https://doi.org/10.1145/2430502.2430513

[46] M. Jaring and J. Bosch, “Representing variability in software product lines: A case
study,” in Software Product Lines, G. J. Chastek, Ed. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2002, pp. 15–36.

[47] O. Djebbi and C. Salinesi, “Criteria for comparing requirements variability modeling no-
tations for product lines,” in Fourth International Workshop on Comparative Evaluation
in Requirements Engineering (CERE’06 - RE’06 Workshop), 2006, pp. 20–35.

[48] M.-O. Reiser, Core Concepts of the Compositional Variability Management Framework
(CVM): A Practitioner’s Guide. Technische Universität Berlin, 2009.

[49] J. Liang, “Solving clafer models with choco,” no. GSDLab-TR 2012-12-30, 12/2012 2012.

[50] T. Asikainen, T. Männistö, and T. Soininen, “Kumbang: A domain ontology
for modelling variability in software product families,” Advanced Engineering
Informatics, vol. 21, no. 1, pp. 23 – 40, 2007. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S147403460600067X

[51] OMG, Object Constraint Language Specification, version 2.0, Object Modeling Group,
June 2005. [Online]. Available: http://fparreiras/papers/OCLSpec.pdf

[52] J. Meinicke, T. Thüm, R. Schrter, F. Benduhn, T. Leich, and G. Saake, Mastering
Software Variability with FeatureIDE, pp. 58, 1st ed. Springer Publishing Company,
Incorporated, 2017.

[53] S. Hallsteinsen, M. Hinchey, S. Park, and K. Schmid, “Dynamic software product lines,”
Computer, vol. 41, no. 4, pp. 93–95, April 2008.

[54] J. Bosch and R. Capilla, “Dynamic variability in software-intensive embedded system
families,” Computer, vol. 45, no. 10, pp. 28–35, Oct 2012.

[55] M. Hinchey, S. Park, and K. Schmid, “Building dynamic software product lines,” Com-
puter, vol. 45, no. 10, pp. 22–26, Oct 2012.

[56] R. Olaechea, S. Stewart, K. Czarnecki, and D. Rayside, “Modelling and
multi-objective optimization of quality attributes in variability-rich software,”
in Proceedings of the Fourth International Workshop on Nonfunctional System
Properties in Domain Specific Modeling Languages, ser. NFPinDSML ’12. New
York, NY, USA: Association for Computing Machinery, 2012. [Online]. Available:
https://doi.org/10.1145/2420942.2420944

[57] S. Nadi and S. Krüger, “Variability modeling of cryptographic components: Clafer ex-
perience report,” Jan. 2016, pp. 105–112.

https://doi.org/10.1145/2430502.2430513
http://www.sciencedirect.com/science/article/pii/S147403460600067X
http://www.sciencedirect.com/science/article/pii/S147403460600067X
http://fparreiras/papers/OCLSpec.pdf
https://doi.org/10.1145/2420942.2420944

REFERENCES 117

[58] J. A. Ross, A. Murashkin, J. H. Liang, M. Antkiewicz, and K. Czarnecki, “Synthesis
and exploration of multi-level, multi-perspective architectures of automotive embedded
systems (sosym abstract),” in 2017 ACM/IEEE 20th International Conference on Model
Driven Engineering Languages and Systems (MODELS), 2017.

[59] Wikipedia contributors, “Expressive power (computer science) — Wikipedia, the free en-
cyclopedia,” https://en.wikipedia.org/w/index.php?title=Expressive power (computer
science)&oldid=929184095, 2019, [Online; accessed 16-March-2020].

[60] A. Villota, R. Mazo, and C. Salinesi, “On the ontological expressiveness of the high-level
constraint language for product line specification,” in System Analysis and Modeling.
Languages, Methods, and Tools for Systems Engineering, F. Khendek and R. Gotzhein,
Eds. Cham: Springer International Publishing, 2018, pp. 46–66.

[61] Y. Wand and R. Weber, “On the deep structure of information systems,” Information
Systems Jorunal, vol. 5, pp. 203–223, 1995.

[62] ——, “On the ontological expressiveness of information systems analysis and design
grammars,” Information Systems Journal, vol. 3, no. 4, pp. 217–237, 1993. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2575.1993.tb00127.x

[63] J. Evermann and Y. Wand, “Ontology based object-oriented domain modelling: Funda-
mental concepts,” Requirements Engineering, vol. 10, pp. 146–160, May 2005.

[64] M. Asadi, D. Gasevic, Y. Wand, and M. Hatala, “Deriving variability patterns in soft-
ware product lines by ontological considerations,” in Conceptual Modeling, P. Atzeni,
D. Cheung, and S. Ram, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012,
pp. 397–408.

[65] M. Bunge, Treatise on Basic Philosophy (Vol. 3): Ontology I: The Furniture of the
World. Boston, MA: D. Reidel Publishing Company, 1977.

[66] G. Guizzardi, “Ontological foundations for structural conceptual models,” Ph.D. disser-
tation, University of Twente, Nov. 2005.

[67] R. Guizzardi, X. Franch, and G. Guizzardi, “Applying a foundational ontology to analyze
means-end links in the i framework,” 05 2012, pp. 1–11.

[68] G. Guizzardi, Ontology-Based Evaluation and Design of Visual Conceptual Modeling
Languages. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 317–347.
[Online]. Available: https://doi.org/10.1007/978-3-642-36654-3 13

[69] I. Reinhartz-Berger, A. Sturm, and Y. Wand, “External variability of software: Classi-
fication and ontological foundations,” in Conceptual Modeling – ER 2011, M. Jeusfeld,
L. Delcambre, and T.-W. Ling, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2011, pp. 275–289.

[70] P. Green and M. Rosemann, “An ontological analysis of integrated process modelling,”
in Advanced Information Systems Engineering, M. Jarke and A. Oberweis, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1999, pp. 225–240.

https://en.wikipedia.org/w/index.php?title=Expressive_power_(computer_science)&oldid=929184095
https://en.wikipedia.org/w/index.php?title=Expressive_power_(computer_science)&oldid=929184095
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2575.1993.tb00127.x
https://doi.org/10.1007/978-3-642-36654-3_13

REFERENCES 118

[71] H. Gregersen and C. S. Jensen, “On the ontological expressiveness of temporal extensions
to the entity-relationship model,” in Advances in Conceptual Modeling, P. P. Chen, D. W.
Embley, J. Kouloumdjian, S. W. Liddle, and J. F. Roddick, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1999, pp. 110–121.

[72] J. Mylopoulos, “Conceptual modeling and telos,” in Conceptual Modeling, Databases,
and Cases. New York, NY, USA: Wiley, 1992.

[73] Y. Wand, V. C. Storey, and R. Weber, “An ontological analysis of the relationship
construct in conceptual modeling,” ACM Trans. Database Syst., vol. 24, no. 4, p.
494–528, Dec. 1999. [Online]. Available: https://doi.org/10.1145/331983.331989

[74] Y. Wand and R. Weber, “An ontological evaluation of systems analysis and design meth-
ods,” in Information system concepts: an in-depth analysis. Elsevier science publishers,
BV, 1989.

[75] P. Soffer, B. Golany, D. Dori, and Y. Wand, “Modelling off-the-shelf information systems
requirements: An ontological approach,” Requirements Engineering, vol. 6, pp. 183–199,
Oct. 2001.

[76] M. Bashari, E. Bagheri, and W. Du, “Dynamic software product line engineering: A
reference framework,” International Journal of Software Engineering and Knowledge
Engineering, vol. 27, pp. 191–234, Mar. 2017.

[77] M. A. Khalidi, Kinds (Natural Kinds vs. Human Kinds), in B. Kaldis (ed.)Encyclopedia
of Philosophy and the Social Sciences. Thousand Oaks,CA.: Sage, 2013.

[78] M. Becker, “Xml-enhanced product family engineering,” 2002.

[79] P. Heymans, P. Y. Schobbens, J.-C. Trigaux, R. Matulevičius, A. Classen, and Y. Bon-
temps, “Towards the comparative evaluation of feature diagram languages,” Jan. 2007.

[80] “MS Windows NT kernel description,” https://www.eclipse.org/xtend/index.html, on-
line. Accessed: 2020-05-28.

[81] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, Chapter 6, 3rd ed.
Prentice Hall, 2010.

[82] G. Grozdev, EPS System Manager Driver Control (D000559086/02), ASML.

[83] J. Petke, Bridging Constraint Satisfaction and Boolean Satisfiability. Springer, 2015.

https://doi.org/10.1145/331983.331989
https://www.eclipse.org/xtend/index.html

	Introduction
	Variability management in SPLE
	An overview of the variability management process
	Variability management tools and industry adoption
	Conclusions

	Variability modelling language capabilities
	Contribution
	Chapter organization
	VMLs considered
	VML capabilities considered in this evaluation
	Configurable elements
	Data types
	Constraint support
	Configuration support
	Composition support
	Language specification
	Tool support

	Comparison between variability modelling languages
	Forms of variation, extensibility and references
	Type system support
	Constraint support
	Configuration support
	Composition mechanisms
	Formal semantics
	Tool support

	Variability management aspects relevant for CPSs
	Binding time
	Dynamic Software Product Lines
	Configuration optimization goals

	Conclusions

	Variability language expressiveness evaluation
	Ontological considerations in variability modelling
	Ontological expressiveness evaluation framework
	Asadi's et al. theoretical framework for variability
	Variability patterns in ATVF
	Bunge-Wand-Weber ontological concepts
	Structure and process of a domain in ATFV

	Representation mapping of feature modelling using ATFV
	Mapping ontological constructs representing structural variability sources
	Mapping ontological constructs representing process variability sources
	Variability sources representation mapping in Asadi's et al. work
	Variability patterns in feature modelling
	Feature modelling evaluation using ATFV

	VMLs expressiveness evaluation using ATFV
	Conclusions

	Clafer evaluation using ASML's variability model
	ASML's Software Product Line
	Overview of the VPO to Clafer transformation
	Variability Parameters in Clafer
	Modelling VPs in Clafer
	Decoding VP definitions from a VP overviews file

	VPO constraints in Clafer
	Boolean Expressions in Clafer
	Clafer constraints and variability model resolution
	VPO constraints as propositional formulae in Clafer
	VP Interface Constraints
	VPO hierarchical mappings
	Assignment expressions
	IF expressions
	Default values as guarded constraints in Clafer

	Model transformation results
	Modelling SMDC specification using Clafer
	SMDC configuration file
	Modelling the SMDC specification in Clafer
	Analysis of SMDC specifications in Clafer

	Clafer missing constructs
	Clafer's toolset evaluation
	Conclusions

	Conclusions

