
 Eindhoven University of Technology

MASTER

Definition and simulation of supervisory control models in Haskell

Bernts, I.T.D.

Award date:
2020

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/112553d0-3e1b-4932-81fc-44fea5667c86

Eindhoven University of Technology

Master Thesis

Definition and simulation of supervisory
control models in Haskell

Author:
Ivo Bernts Supervisors:

Dr. T. Verhoeff
Dr. J.M. van de Mortel-Fronczak

A thesis submitted in fulfillment of the requirements for
the degree of Master of Science

in

Computer Science and Engineering

August 17, 2020

Abstract

CIF3 is a domain specific language for specifying system controllers developed and maintained
by the Control System Technology group at the Department of Mechanical Engineering. Speci-
fications are defined as instances of discrete event systems. In the CIF3 language, discrete event
systems are described in the form of automata. The current implementation of the CIF3 toolchain,
which is written in Java within the Eclipse Modeling Framework, has some maintainability and
extendibility issues. The goal of this master project is to discover how a functional programming
language can be used to build an alternative for CIF3. We do this by implementing a proof of
concept of our own DSL, named X-Control, with an accompanying toolchain in Haskell.

Before we start on the design of X-Control, we discuss its theoretical background. We discuss
algebraic automata theory, which is an approach to automata theory proposed by Samuel Eilen-
berg. We also discuss an extension of algebraic automata theory called X-machines (which is also
introduced by Samuel Eilenberg). In X-machines, the labels on the transition edges of automata
correspond with binary relations on some arbitrary domain. This means behavior can be partly
modeled in how the relations ‘manipulate’ domain values.

We also discuss the existing theory on which CIF3 is based. We discuss the definition of discrete
event systems, and how they are used to model a plant (the total physical behavior of the system)
and the requirements (the required behavior). We also discuss the concept of supervisory control
synthesis, which is the process of generating a controller (supervisor) for the system that makes sure
that the to-be-controlled system (modeled by the plant) adheres to the requirements. We discuss
two existing formalisms which are used to model discrete event systems. The first of which is the
Finite State Automaton (FSA) formalism, which is an elementary automaton-based formalism.
The labels of the automata are interpreted as events (which correspond to possible interactions
of the system with its environment). The second discussed formalism, is the Extended Finite
Automaton (EFA) formalism. This is also the formalism on which the syntax of CIF3 is based.
In EFAs, the transition edges not only contain a label (event), but also a guard and an update
function on some arbitrary domain. In practice this domain consists of a number of variables
(which are comparable to variables in programming). For both FSAs and EFAs we discuss a
synchronous product operator, and a supervisory control synthesis algorithm. The synchronous
product operator can be used to compose multiple systems. This allows one to break up a complex
system into multiple subcomponents. For EFAs we also discuss some current limitations, which
also occur in the CIF3 language.

We then introduce our own formalism, based on X-machines, which we call D-systems. D-systems
will be the underlying formalism for our own DSL X-Control. In D-systems events are not modeled
as labels, but rather as binary relations on an arbitrary domain. A D-system then consists of sets
of controllable and uncontrollable events (both sets of binary relations on D), a set of initial
domain values and a D-EventMachine (which is a slight alteration of X-machine). As done with
FSAs and EFAs, we define a synchronous product operator for D-systems. We discuss how one
can use D-systems do model a plant and the requirements for some system, while addressing the
limitations of the EFA formalism. We also introduce an operator for restricting the behavior
for D-systems. This operator is useful since separate subcomponents of a plant can restrict each

1

other in physical situations. Lastly, we introduce a supervisory control synthesis algorithm for
D-systems.

After discussing our formalism, we discuss the design and implementation of our language. First
we discuss the CIF3 language and toolchain in more detail. We then discuss the approach for
designing and implementing a prototype for X-Control. We choose to follow a semantics-driven
approach, which means we first implement our semantic domain, after which we create syntax
for all elements of our semantic domain. The subdomains (types) and operations in our semantic
domain correspond with the definitions introduced in our D-system formalism. We create an
internal syntax for our language, which means that the language exists within the host language
(Haskell). We implement a small toolchain, containing a simulator and the implementation of the
supervisory control synthesis algorithm. Lastly, we propose a number of possible extensions for
X-Control, while giving suggestions how these extensions could be implemented.

2

Acknowledgments

I would like to thank my supervisors Tom Verhoeff, Asia van de Mortel-Fronczak and Koos Rooda
for all the guidance, feedback and support during this master project. I would also like to thank
Ferdie Reijnen and Martijn Goorden for the feedback and advice, and Albert Hofkamp for helping
me get started with CIF3.

In this project, the following tools where used.

• LATEX, for typesetting,

• The Glasgow Haskell Compiler, for debugging Haskell code,

• IHaskell1, which is a kernel for the Jupyter project, which allows one to use Haskell in a
Jupyter Notebook. IHaskell is used during the development of the semantic domain, and
the syntax of X-Control. From the resulting notebooks, Appendix C, and Appendix D are
generated,

• Ipe and Tikz for image creation.

1The project page of IHaskell can be found at https://github.com/gibiansky/IHaskell.

3

https://github.com/gibiansky/IHaskell

Contents

I Preamble 7

1 Introduction 8

1.1 Context . 8

1.2 Domain Specific Languages . 8

1.3 The CIF Project . 9

1.4 Functional Programming Languages . 9

2 Research Plan 11

2.1 Research Question . 11

2.2 Approach . 11

II Theory 12

3 Algebraic Automata Theory 13

3.1 Basic Definitions . 13

3.2 Behavior . 15

3.2.1 Operations . 16

3.3 Relation to Functional Programming . 18

4 X-Machines 20

4.1 Basic Definitions . 20

4.2 Interpretation . 25

5 Discrete Event Systems 26

5.1 General Concepts . 26

5.2 Discrete Event Systems as FSAs . 27

5.2.1 FSA formalism . 27

5.2.2 Supervisory Control and Synthesis Algorithm 29

5.3 Discrete Event Systems as EFAs . 32

4

5.3.1 EFA Formalism . 32

5.3.2 Plants and Requirements . 34

5.3.3 Supervisory Control and Synthesis Algorithm 35

5.3.4 Limitations . 38

6 Discrete Event Systems as D-Systems 43

6.1 Conceptual Background . 44

6.2 Definitions . 44

6.2.1 System Components . 44

6.2.2 Events . 45

6.2.3 EventMachines . 45

6.2.4 D-Systems . 46

6.2.5 Examples . 47

6.3 Synchronization . 49

6.4 D-System Equivalence . 52

6.5 D-System Based Requirements . 54

6.6 Restrictions . 59

6.7 Supervisory Control . 60

6.8 Supervisory Control Synthesis . 61

6.8.1 Intuition of the Reduction . 61

6.8.2 Reduction of the Problem Domain . 62

6.8.3 Algorithm for Simplified Problem . 63

6.8.4 Complete Algorithm . 64

III Language and Tooling 69

7 Current Language and Toolchain 70

7.1 Language Description . 70

7.2 Toolchain Description . 72

8 New Language and Tooling 73

8.1 Approach . 73

8.1.1 Background . 73

8.1.2 Syntax-driven design . 74

8.1.3 Semantics-driven design . 74

8.1.4 Our Approach . 75

8.2 Semantic Domain of X-Control . 75

8.2.1 Automaton . 75

5

8.2.2 Relations and Events . 77

8.2.3 EventMachines . 77

8.2.4 D-Systems and Restrictions . 77

8.3 Syntax of X-Control . 79

8.3.1 Automata . 80

8.3.2 Domains . 81

8.3.3 Binary Relations . 81

8.3.4 Systems . 83

8.3.5 Modules . 85

8.4 Tooling for X-Control . 86

8.4.1 Describing Systems . 87

8.4.2 Simulation . 87

8.4.3 Supervisory Control Synthesis . 87

8.5 Extendibility . 88

8.5.1 Parameterized Systems . 88

8.5.2 Lists of Systems . 88

8.5.3 Nested Modules . 89

8.5.4 Event Aliases . 90

8.5.5 Boolean Expression in EventMachine Labels 90

8.5.6 Requirements Based on Formulae . 90

IV Discussion 91

9 Conclusion 92

10 Further Work 93

Bibliography 95

Appendices 97

A Algebraic Properties of Synchronization 98

B Proof of Correctness Outline Supervisory Synthesis for D-Systems 100

C Semantic Domain Implementation 102

D Syntax Implementation 130

E Simulator 152

6

Part I

Preamble

7

Chapter 1

Introduction

1.1 Context

This Computer Science master project was carried out at the Department of Mechanical Engi-
neering, in the Control Systems Technology (CST) group. At the CST group, the topic of system
control is studied, which concerns the development of control software. Their project consists of,
among other things, the control software for waterway locks [20] [21].

For the development of control software (also called ‘controllers’), there are two options. One is
to build the controller by hand, and the other is to generate the controller from a specification
automatically. The latter is preferred since it is less error prone. This specification consists of a
plant, which specifies the possible physical behavior of the system, and the requirements, which
specify the required behavior of the system. Given the plant and the requirements, a controller
(also called a supervisor) which makes sure that the system adheres to the requirements can
then be generated. This process is called supervisory control synthesis. Both the plant and the
requirements are specified in the form of a discrete event system (DES).

A discrete event system is a discrete-state, event-driven system which is often modeled as an
instance of (an extension of) finite automata. The events are depicted as labels on the transition
edges of the automaton. Each event corresponds with some interaction of the system with its
environment. An event can then either be controllable or uncontrollable. Controllable events
are initiated by the system (e.g. switching a motor or light source on or off), implying that the
system has control over these events. Uncontrollable events are initiated by the environment (e.g.
some button is pressed or a sensor value reaches some threshold), implying that the system has
no control over these events.

The CIF3 language created by the CST group allows end users to specify the plant and the
requirements in the form of automata extended with variables, transition guards and transition
update functions. The CIF3 tooling can then be used to generate a supervisor using supervisory
control synthesis. Plants and generated supervisors can then be validated through simulation.
CIF3 and its underlying theory will be our main points of attention during this project. In
Section 1.3 we will further introduce the CIF3 language and tooling.

1.2 Domain Specific Languages

Programming languages can be domain specific instead of general purpose, as discussed in [15].
These domain specific languages (DSLs) (of which CIF3 is an example), are specialized in a
certain domain. This specialization is done by trading generality for expressiveness in this limited

8

domain. This expressiveness is achieved by introducing notations and syntax constructs specifically
tailored to the domain. This also greatly increases the ease of use compared to the general purpose
languages for the specific domain, which leads to increased productivity and reduced maintenance
costs. Well known examples of DSLs are

• HTML, which is a language for creating hypertext web pages,

• LATEX, which is a typesetting language,

• Make, which is language for specifying how some piece has to be built from its source code,

• SQL, which is a language for defining relational database queries.

For the sake of comparison, two well known examples of general purpose languages are C++ and
Java.

1.3 The CIF Project

The Compositional Interchange Format 3 (CIF3) is a domain specific language for defining (among
other things) Discrete Event Systems. Since these systems are modeled as automata, the CIF3
language is mostly automata-based. The events (the transition edge symbols of the automata)
represent the possible interactions the system can have with its environment. In CIF3, transition
edges have guards and update functions on user-defined variables.

CIF3 comes with a toolchain written in Java. This toolchain is built within the Eclipse Modeling
Framework (EMF), which is used for creating metamodels (in this case the metamodel would define
the CIF3 language) in a graphical manner. The toolchain comes with an editing environment for
creating and modifying models, a (graphical) simulator, validation tools, a supervisory control
synthesis algorithm, and a number of code generation tools.

At the moment of writing, there is a number of issues regarding the toolchain, mainly concerning
maintainability and extendiblity (which we will discuss in Chapter 7). To address these issues, we
will consider an alternative for Java and the EMF framework.

1.4 Functional Programming Languages

For our alternative approach for designing and implementing a language for modeling discrete
event systems, it is interesting to consider a functional programming language, since domain
specific languages can be modeled in a compact way using the typing systems offered by functional
languages. The monad design pattern can be used for keeping track of state information when
performing simulations. This can, for instance, be done with the State monad. Because of these
features, functional languages are particularly suitable to be used as host languages for DSLs, as
shown by the following examples.

• Lava, a DSL implemented in Haskell, which is discussed in [6]. Lava is a DSL for specifying
and designing circuits. The tool assists in verifying and implementing hardware.

• CλaSH, a DSL implemented in Haskell, which is discussed in [7]. CλaSH is also used for
defining circuits. The CλaSH tooling provides a tool for synthesizing VHDL (a hardware
descriptor language). For this tool, the API of the Glasgow Haskell Compiler is used to
simplify descriptions created in CλaSH, which in turn simplifies the synthesizing process.

• FSMLanguage, a DSL discussed in [4] which is implemented in Haskell. FSMLanguage is a
DSL used for hardware/software co-design for FPGAs.

9

• ExaSlang, a DSL implemented in Scala (a language with both object-oriented and func-
tional features), which is discussed in [23]. ExaSlang is a DSL for defining solvers for
High-Performance Computing systems (which are systems with multiple CPUs and com-
plex memory architectures and accelerators).

• Harpy, a DSL within Haskell for generating x86 machine code at run-time, discussed in [12].

• An implementation of the language Orc in Haskell is discussed in [8]. Orc is a DSL specialized
in the implementation of concurrent programs.

A disadvantage of functional programming languages is their steeper learning curve, which may
make it more difficult to train future maintainers.

10

Chapter 2

Research Plan

2.1 Research Question

For this research project we will determine how a functional programming language can be used
to implement a modeling language which will serve as an alternative for CIF. That is, how we can
use a functional programming language to implement a DSL for modeling discrete event systems,
which can then be simulated. Our research question for this project, which we will keep more
general, is defined as follows.

• How can a functional programming language be used when developing tools for defining and
simulating operational models, with maintainability and extendibility taken into considera-
tion?

2.2 Approach

Before we look at actually implementing a DSL, we must first discuss the underlying mathematical
formalism. This we will do in Part II of this report. Since discrete event systems are usually defined
using automaton-like formalisms, we will discuss Algebraic Automata Theory proposed by Samuel
Eilenberg in [10]. This approach to automata theory might be more suitable (than the traditional
approach) for implementation in a functional programming language, because its algebraic style
resembles a more functional approach. We will also discuss the X-machine formalism, which is
an extension of algebraic automata theory where automata can do some computations on some
arbitrary domain. X-machines are used for a number of different purposes. In [5] X-machines are
used to model agent-based systems. In [14] the use of a variant of X-machines where different
instances can communicate, for formal and modular specification of large systems is discussed.
In [13] a test generation technique for systems which are specified with X-machines is discussed.
An algorithm for simulating X-machines in a functional style is discussed in [19]. In Part II we
will also discuss the definition of Discrete Event Systems, and two existing formalism for defining
such systems (one of which forms the basis of the CIF3 language). Lastly, we will define our own
formalism for defining discrete event systems based on X-machines.

In Part III we discuss the language and tooling for our DSL for defining discrete event systems. We
will first briefly discuss the existing language and tooling of CIF3, particularly how the language
relates to its underlying formalism (as discussed in Part II), and the current issues of the language
and the toolchain. We will also discuss the design and implementation of our own language
X-Control, which has our formalism based on X-machines (as introduced in Part II), as its basis.

Finally, in Part IV we will give an answer to our research question based on the result obtained
in Part III. We will also discuss possible further work.

11

Part II

Theory

12

Chapter 3

Algebraic Automata Theory

In this chapter we will discuss algebraic automata theory, which is a different approach (than the
traditional one) to automata theory. This approach was first proposed by Samuel Eilenberg in
[10, pp. 12-24, 30-32].

3.1 Basic Definitions

We now discuss the definition of an automaton as introduced by Samuel Eilenberg.

Definition 3.1.1 Suppose we have set Σ. A Σ-automaton is defined as a quadruple (Q, I, T, δ),
where I, T ⊆ Q and δ is a relation with δ : Q× Σ→ Q.

The set Σ is called the alphabet of the automaton, and Q the set of states of the automaton where
its subsets I and T are called the set of initial and terminal states respectively. δ is called the
transition relation of the automaton. Suppose we have q′ ∈ δ(q, σ) where q, q′ ∈ Q and σ ∈ Σ,
then we say there is a transition from q to q′ with label σ. A transition is often denoted as q σ−→ q′.
We do not name δ, which means instead of writing q′ ∈ δ(q, σ) we write q′ ∈ qσ. If |qσ| = 1 then
we can also write qσ = q′.

End of Definition

Example 3.1.1 Suppose we have {a, b, c}-automaton A = ({q0, q1, q2}, {q0}, {q2}, δ), where
δ is defined as

q0a = q1

q1b = q2

q2c = q1

A visual representation of A can be found in Figure 3.1.1.

13

q0 q1 q2
a

b

c

Figure 3.1.1: Visual representation of Example 3.1.1.

Example 3.1.2 Suppose we have {a, b, c}-automaton

A = ({ q0, q1, q2, q3, q4 } , { q0, q1 } , { q0, q3, q4 } , δ)

δ is defined as

q0a = { q1, q2 }
q1b = q3

q2c = q4

q4b = q1

Again, a visual representation of A can be found in Figure 3.1.2.

q0

q1

q2

q3

q4

a

a

b

c

b

Figure 3.1.2: Visual representation of Example 3.1.2.

Example 3.1.3 Suppose we have { a, b }-automaton A = ({ q0, q1, q2 } , { q0 } , { q0, q1 } , δ).
δ is defined as

q0a = q1

q0b = q2

q1a = q2

q1b = q0

q2a = q2

q2b = q2

Again, a visual representation of A can be found in Figure 3.1.3.

14

q0 q1

q2

a

b

b a

a, b

Figure 3.1.3: Visual representation of Example 3.1.3.

3.2 Behavior

A path (or trace) in some Σ-automaton A, is a sequence of transitions denoted by p : q0
σ1−→ . . .

σn−−→
qn, where for each i with 1 ≤ i ≤ n we have qi−1σi = qi. Just like a transition has a label σ ∈ Σ,
a path also has a label. This label is the sequence of labels occurring in the path. A path label is
then represented by an element of the free monoid with base Σ, which is defined as follows.

Definition 3.2.1 A free monoid with base Σ is defined as the monoid (Σ∗, ·, ε), where · is not
named in expressions. Σ∗ is the set of n-tuples of elements of Σ (meaning that the value for n
may differ for each element) which we write as ω = σ1 . . . σn (with n ≥ 0). Suppose ω = σ1 . . . σn
and ω′ = σ′1 . . . σ

′
m then the product (·) ωω′ is defined as

ωω′ = σ1 . . . σnσ
′
1 . . . σ

′
m

The identity element ε is defined as the empty tuple.

End of Definition

The label |p| of the path p, which is an element of Σ∗, is then denoted as

|p| = σ1 . . . σn

p is successful if and only if q0 ∈ I and qn ∈ T . Based on the concept of successful paths, the
behavior of some automaton is defined as follows.

Definition 3.2.2 Suppose we have an Σ-automaton A = (Q, I, T, δ). The behavior of A, denoted
as L(A), is a subset of Σ∗. For each σ1 . . . σn ∈ L(A) there is a path (a sequence of transitions)

q0
σ1−→ . . .

σn−−→ qn

where, for i with 0 < i ≤ n, we have qi−1σi 3 qi (meaning the transition qi−1
σi−→ qi exists), q0 ∈ I,

and qn ∈ T .
End of Definition

Example 3.2.1 Suppose we have automaton A as given in Example 3.1.1. One can observe
that the elements of the behavior L(A) are ab, abcb, abcbcb, We can express this behavior
with a so called regular expressiona:

L(A) = ab(cb)∗

15

In this case the regular expression can be read as "each label must start with ab, after which
0 or more sequential repetitions of cb may occur".

aA quick introduction on regular expressions can be found on wikipedia: https://en.wikipedia.org/
wiki/Regular_expression

Example 3.2.2 Suppose we have automaton A as given in Example 3.1.2. One can observe
that we have the following for the behavior L(A).

L(A) = { ε, b, ab, ac, acbb }

Example 3.2.3 Suppose we have automaton A as given in Example 3.1.3. One can observe
that the elements of the behavior L(A) are ε, a, ab, aba, abab, Again, we can express this
behavior with a regular expression:

L(A) = (ab)∗(a+ ε)

In this case the regular expression can be read as "each label may start with 0 or more
sequential repetitions of ab, after which a may (or may not) occur.

3.2.1 Operations

In this section the extension of the transition function δ is discussed. The resulting operation takes
a state q and an element ω of Σ∗. The result of the operation is then a (set of) state(s) which
are reached from q via a path with label ω. First a variant of this extension only applicable for
deterministic automata (which is a more trivial case) is discussed. After which a variant applicable
for all automata is considered.

A Σ-automaton (Q, I, T, δ) is said to be fully deterministic when |I| = 1 and δ is a function (∀q ∈
Q, σ ∈ Σ : |qσ| = 1). An example of such a deterministic automaton is given in Example 3.1.3.

For deterministic automata, δ can be extended to obtain the following function θ.

Definition 3.2.3 Suppose we have a (deterministic) Σ-automaton A = (Q, { i } , T, δ), where δ
is a function. We can then extend δ to obtain the function θ : Q× Σ∗ → Q with

θ(q, ε) = q

θ(q, ωσ) = δ(θ(q, ω), σ)

End of Definition

Just as with the transition relation δ, we do not name θ, meaning that instead of writing θ(q, ω) =
q′ we write qω = q′. We can now express the behavior of some deterministic Σ-automaton
A = (Q, { i } , T, δ) as

L(A) = {ω | ω ∈ Σ∗, iω ∈ T }

16

https://en.wikipedia.org/wiki/Regular_expression
https://en.wikipedia.org/wiki/Regular_expression

Example 3.2.4 Suppose we have automaton A as given in Example 3.1.3. Observe that A
is a deterministic automaton. We can now algebraically derive that, for example, aba is in
L(A):

q0aba = (q0ab)a

= ((q0a)b)a

= (((q0ε)a)b)a

= ((q0a)b)a

= (q1b)a

= q0a

= q1

Since q0 is the initial state and q1 is a terminal state we now conclude that aba ∈ L(A).
Conversely, we can derive that abb is not in L(A):

q0abb = (q0ab)b

= ((q0a)b)b

= (((q0ε)a)b)b

= ((q0a)b)b

= (q1b)b

= q0b

= q2

Since q2 is not a terminal state, we can conclude that abb /∈ L(A).

For any (non-deterministic) automaton we can extend the transition relation to obtain γ, which
is defined as follows.

Definition 3.2.4 Suppose we have Σ-automaton A = (Q, I, T, δ). We can extend δ to obtain
partial function γ : P(Q)× Σ∗ → P(Q) with

γ(X, ε) = X

γ(∅, ω) = ∅
γ({ q } ∪X,σ) = δ(qσ) ∪ γ(X,σ)

γ(X,ωσ) = γ(γ(X,ω), σ)

End of Definition

Again, we will not name γ, meaning that instead of writing γ(X,ω) we write Xω. We can now
express the behavior of some (non-deterministic) Σ-automaton A = (Q, I, T, δ) as

L(A) = {ω | ω ∈ Σ∗, Iω ∩ T 6= ∅ }

17

Example 3.2.5 Suppose we have automaton A as given in Example 3.1.2. We can now
algebraically derive that, for example, ac is in L(A):

{ q0, q1 } ac = ({ q0, q1 } a)c

= ((q0a) ∪ ({ q1 } a))c

= ({ q1, q2 } ∪ ({ q1 } a))c

= ({ q1, q2 } ∪ ((q1a) ∪ (∅a)))c

= ({ q1, q2 } ∪ (∅ ∪ ∅))c
= { q1, q2 } c
= (q1c) ∪ ({ q2 } c)
= ∅ ∪ ({ q2 } c)
= { q2 } c
= (q2c) ∪ (∅c)
= { q4 } ∪ ∅
= { q4 }

Since { q0, q1 } are the initial states and { q4 }∩{ q0, q3, q4 } 6= ∅, we conclude that ac ∈ L(A).

3.3 Relation to Functional Programming

Those who are familiar with list catamorphisms, as explained in [25, pp. 32- 42], can observe
from the definition of θ that it can be defined as a snoc list catamorphism. We can interpret any
element of Σ∗ as a snoc list of elements of Σ (L.Σ), where ε corresponds with the empty list []
and ωσ corresponds with Lω a σ, where Lω is the snoc list interpretation of ω. Suppose we have
a deterministic Σ-automaton (Q, I, T, δ) and some starting state q0, then we have the following
catamorphism on L.Σ:

L.Σ 1+ L.Σ× Σ

Q 1+Q× Σ

[]
• O a

f = (| q0
• O δ |) id1 + f × idΣ

q0
• O δ

Observe that θ(q, ω) = (| q• O δ |). Lω.
If the transition relation δ is not a function, then we can interpret δ as a function with type
Q× Σ→ L.Q. Knowing that L is a monad with return function η : A→ L.A and bind function
C: (A→ L.A)→ (L.A→ L.A), we can define the following function g : L.Q→ Σ→ L.Q

g.l.σ =C .(λq.δ(q, σ)).l

Given a list of states l and a symbol σ, g will compute a list of all q′ for which q
σ−→ q′ where

q ∈ l. For any (non-deterministic) automaton and some starting state set Q0 : L.Q, we have the
following catamorphism:

18

L.Σ 1+ L.Σ× Σ

L.Q 1+ L.Q× Σ

[]
• O a

f = (|Q0
• O g |) id1 + f × idΣ

Q0
• O g

Observe that γ(X,ω) = (|X• O g |). Lω.
The fact that θ and γ can be defined as catamorphisms, gives an indication that algebraic automata
theory is suitable for functional programming languages.

19

Chapter 4

X-Machines

In this chapter we will discuss X-machines, which is a computational machine model proposed
by Samuel Eilenberg in [10, pp. 266-272]. The X-machine formalism is an extension of algebraic
automata theory as discussed in the previous section, where the edge labels correspond to relations
on some arbitrary domain. For this reason, the X-machine could be considered as a computational
model. We can use this computational model as a basis for our formalism for discrete event systems.

4.1 Basic Definitions

An X-machine consists of three components: the so called kernel, an input relation and an output
relation. We first discuss the definition of the X-machine’s kernel.

Definition 4.1.1 Suppose we have some arbitrary set X. An X-machine kernel is defined as a
5 tuple (Q, I, T,Φ, δ), where I, T ⊆ Q, Φ ⊆ P(X2) and δ is a relation of type Q× Φ→ Q.

End of Definition

Each φ ∈ Φ is a binary relation on X. Suppose we have x1, x2 ∈ X for which (x1, x2) ∈ φ. We
then say x1 is related to x2 in φ. Such a pair can also be denoted by xφy. The set Φ is called the
type of the X-machine.

An X-machine kernel M = (Q, I, T,Φ, δ) can be interpreted as Φ-automaton M ′ = (Q, I, T, δ).
This means that all definitions, interpretations and operations on automata are also applicable for
X-machines.

Example 4.1.1 Suppose we have free monoid ({ a, b, c }∗ , ·, ε) with base { a, b, c }. Suppose
we have { a, b, c }∗-machine kernel M = ({ q0, q1, q2 } , { q0 } , { q2 } ,Φ, δ). The type of M is
defined as Φ = {φa, φb, φc }, where φσ is defined as

φσ =
{

(σω, ω) | ω ∈ { a, b, c }∗
}

for each σ ∈ { a, b, c }. In essence φσ removes the first symbol from some label, in the case
this first symbol is a σ. δ is defined as

q0φa = q1

q1φb = q2

q2φc = q1

20

A visual representation of M can be found in Figure 4.1.1. The behavior of M is

L(M) = φaφb(φcφb)
∗

q0 q1 q2
φa

φb

φc

Figure 4.1.1: Visual representation of Example 4.1.1.

Example 4.1.2 Suppose we have (Z,Z)-machine kernelM = ({ q0, q1, q2 } , { q0 } , { q2 } ,Φ, δ).
The type of M is defined as

Φ = {φ∗, φ−, φ0 }
The definitions of the relations are as follows

φ∗ = { ((n,m), (n, n ∗m)) | n,m ∈ Z }
φ− = { ((n,m), (n− 1,m)) | n,m ∈ Z }
φ0 = { ((0,m), (0,m)) | m ∈ Z }

The relations can be interpreted as follows

• φ∗: Compute the product of the two integer values, and store the result in the second
‘register’.

• φ−: Decrement the first integer value.

• φ0: Check whether the first integer value is equal to 0.

δ is defined as follows:

q0φ∗ = q1

q0φ0 = q2

q1φ− = q0

A visual representation can be found in Figure 4.1.2. The behavior of M represented as
regular expression is

L(M) = (φ∗φ−)∗φ0

q0

q1

q2

φ∗φ−

φ0

Figure 4.1.2: Visual representation of Example 4.1.2.

21

Example 4.1.3 Suppose we have free monoid ({ a, b }∗ , ·, ε) with base { a, b }. Suppose we
have ({ a, b }∗ × Z)-machine kernel M = ({ q0, q>, q< } , { q0 } , { q0 } ,Φ, δ). The type of M is
defined as

Φ = {φ+, φ−, (φ+;φ0), (φ−;φ0), (φ+;φ>), (φ−;φ<) }
The definitions of the relations are as follows

φ0 =
{

((ω, 0), (ω, 0)) | ω ∈ { a, b }∗
}

φ> =
{

((ω, n), (ω, n)) | ω ∈ { a, b }∗ , n ∈ Z, n > 0
}

φ< =
{

((ω, n), (ω, n)) | ω ∈ { a, b }∗ , n ∈ Z, n < 0
}

φ+ =
{

((aω, n), (ω, n+ 1)) | ω ∈ { a, b }∗ , n ∈ Z
}

φ− =
{

((bω, n), (ω, n− 1)) | ω ∈ { a, b }∗ , n ∈ Z
}

The relations can be interpreted as follows

• φ0, φ>, and φ<: check whether the current integer is equal to zero, greater than zero
or less than zero respectively.

• φ+: if the first symbol is a, consume the first symbol and increment the current integer
value.

• φ−: if the first symbol is b, consume the first symbol and decrement the current integer
value.

δ is defined as follows

q0φ− = q<

q0φ+ = q>

q<φ− = q<

q<(φ+;φ<) = q<

q<(φ+;φ0) = q0

q>φ+ = q>

q>(φ−;φ>) = q>

q>(φ−;φ0) = q0

A visual representation of M can be found in Figure 4.1.3. The behavior of M can be
represented by a regular expression:

L(M) = ((φ−(φ− + (φ+;φ<))∗(φ+;φ0)) + (φ+(φ+ + (φ−;φ>))∗(φ−;φ0)))∗

22

q0

q< q>

φ− φ+

(φ+;φ0) (φ−;φ0)

φ−, (φ+;φ<) φ+, (φ−;φ>)

Figure 4.1.3: Visual representation of Example 4.1.3.

Consider the binary relations monoid (P(X2), ;, idX). Where P(X2) is the set of all binary
relations on X, ; is the relational composition operator (where xφ1y ∧ yφ2z =⇒ xφ1;φ2z), and
idX is the identity relation on X (defined as idX = { (x, x) | x ∈ X }), which is the identity element
of the monoid.

Suppose we have Φ ⊆ P(X2). One can observe that each element ω ∈ Φ∗, where Φ∗ is free monoid
with base Φ, can be mapped to a single binary relation by interpreting the free monoid as the
binary relations monoid. This mapping is defined as follows.

Definition 4.1.2 Suppose we have Φ ⊆ P(X2), and ω ∈ Φ∗. ρω ⊆ X2 is defined as

ρω =

{
φ;ρω′ if ω = φω′

idX if ω = ε

End of Definition

The relations corresponding to the labels in the behavior of some X-machine kernel can then be
defined in the following way, as discussed in [19].

Definition 4.1.3 The characteristic relation of a X-machine kernel M , which is binary relation
on X, is defined as

C(M) =
⋃

ω∈L(M)

ρω

End of Definition

With the full definition of the kernel, the complete X-machine is defined as follows.

Definition 4.1.4 An X-machine consists of

• the kernel M ,

• an input relation φin : Y → X, where Y is some input domain,

• and an output relation φout : X → Z, where Z is some output domain.

End of Definition

The input relation feeds the machine an initial value from X from a value from Y . The output
relation interprets the value from X ‘computed’ by the machine as a value from Z. This concept
leads to the following definition.

23

Definition 4.1.5 A X-machine M is said to compute the relation FM of type

Y
φin−−→ X

C(M)−−−→ X
φout−−−→ Z

which is defined as
FM = φin;C(M);φout

End of Definition

Example 4.1.4 Suppose we have machine M as given in Example 4.1.1. Observe that we
have

C(M) = φa;φb ∪ φa;φb;φc;φb ∪ φa;φb;φc;φb;φc;φb ∪ . . .
We take { a, b, c }∗ as the input domain and B as the output domain. As our input relation
we take φin = id{ a,b,c }∗ . As our output relation we take

φout(ω) =

{
true if ω = ε

false otherwise

We now have the relation FM : { a, b, c }∗ → B computed byM . Recall automaton A as given
in Example 3.1.1. Observe that we now have for each ω ∈ { a, b, c }∗

ω ∈ L(A)⇔ true ∈ FM (ω)

As an example we can take abcb ∈ L(A). Observe that φaφbφcφb ∈ L(M) and φa;φb;φc;φb(abcb)
= φb;φc;φb(bcb) = φc;φb(cb) = φb(b) = ε. This means that ε ∈ C(M)(abcb) which implies
true ∈ FM (abcb).

Example 4.1.5 Suppose we have machine M as given in Example 4.1.2. Observe that we
have

C(M) = φ0 ∪ φ∗;φ−;φ0 ∪ φ∗;φ−;φ∗;φ−;φ0 ∪ . . .
We take Z as both the input and output domain. As our input relation we take

φin = { (n, (n, 1)) | n ∈ Z }

and for our output relation
φout = { ((n,m),m) | n ∈ Z }

We now have the relation FM : Z → Z computed by M . Observe that for all n ≥ 0, we
have FM (n) = n! As an example we take n = 3. Observe that φ∗φ−φ∗φ−φ∗φ−φ0 ∈ L(M),
φin(3) = (3, 1) and

φ∗;φ−;φ∗;φ−;φ∗;φ−;φ0(3, 1) = φ−;φ∗;φ−;φ∗;φ−;φ0(3, 3)

= φ∗;φ−;φ∗;φ−;φ0(2, 3)

= φ−;φ∗;φ−;φ0(2, 6)

= φ∗;φ−;φ0(1, 6)

= φ−;φ0(1, 6)

= φ0(0, 6)

= (0, 6)

24

We then have φout((0, 6)) = 6, which implies FM (3) = 6.

Example 4.1.6 Suppose we have machine M as given in Example 4.1.3. Observe that we
have

C(M) = id{ a,b }∗ ∪ φ−;(φ+;φ0)

∪ φ+;(φ−;φ0)

∪ φ−;φ−;(φ+;φ<);(φ+;φ0)

∪ φ+;φ+;(φ−;φ>);(φ−;φ0)

. . .

We take { a, b }∗ as the input domain and B as the output domain. As our input relation we
take

φin =
{

(ω, (ω, 0)) | ω ∈ { a, b }∗
}

and for our output relation

φout((ω, n)) =

{
true if ω = ε

false otherwise

We now have the relation FM : { a, b }∗ → B computed by M . Observe that for all ω ∈
{ a, b }∗, true ∈ FM (ω) if and only if the number a’s is equal to the number of b’s in ω. As
an example we take ω = baaabb. Observe that φ−(φ+;φ0)φ+φ+(φ−;φ>)(φ−;φ0) ∈ L(M) and
φin(baaabb) = (baaabb, 0).

φ−;(φ+;φ0);φ+;φ+;(φ−;φ>);(φ−;φ0)((baaabb), 0) = (φ+;φ0);φ+;φ+;(φ−;φ>);(φ−;φ0)((aaabb),−1)

= φ+;φ+;(φ−;φ>);(φ−;φ0)((aabb), 0)

= φ+;(φ−;φ>);(φ−;φ0)((abb), 1)

= (φ−;φ>);(φ−;φ0)((bb), 1)

= (φ−;φ0)((b), 1)

= (ε, 0)

This means that (ε, 0) ∈ C(M)((baaabb, 0)), which implies true ∈ FM (baaabb).

4.2 Interpretation

A path inM can be interpreted as a sequence of operations on some initial value x0 ∈ X. Suppose
we have the following path p in M = (Q, I, T, δ):

q0
φ1−→ q1

φ2−→ . . .
φn−−→ qn

where q0 ∈ I and qn ∈ T . Note that φ1φ2 . . . φn ∈ L(M). Suppose we have, for some x0 ∈ X,
x0φ1x1, x1φ2x2, . . . , xn−1φnxn, then we have for p

(q0, x0)
φ1−→ (q1, x1)

φ2−→ . . .
φn−−→ (qn, xn)

where for each (qi−1, xi−1)
φi−→ (qi, xi) we have qi−1

φi−→ qi and xi−1φixi. Since x0φ1x1, x1φ2x2,
. . . , xn−1φnxn, we know that x0φ1;φ2; . . . ;φnxn, and since φ1φ2 . . . φn ∈ L(M), we now know that
x0C(M)xn. For this reason we can say that p forms the sequence of operations on the initial value
x0 which has as result xn.

25

Chapter 5

Discrete Event Systems

In this chapter, the basic concepts of discrete event systems and supervisory control are discussed.
Two existing formalisms used for modeling discrete event systems are also be briefly discussed. For
these two formalisms, we also discuss supervisory control, and the algorithms regarding supervisory
control synthesis for the two formalisms.

5.1 General Concepts

A Discrete Event System (DES) as introduced in [9, p. 31] is a discrete-state, event-driven system.
This means that the state space of a DES is a discrete set. In this state set, there is a subset of
initial states (in one of which the system will start), and a subset of marked states. A marked
state is a state which is considered safe and stable in practical situations. The state transitions
(transitions from and to states in this discrete set) are driven by events. An event occurring in a
DES can correspond to an action taken by a user (e.g. a user presses a button), a condition that is
met, or the activation of some actuator (e.g. a motor or a light). The set of events is partitioned
into two disjoint subsets:

• Controllable events, which the system can prevent from happening (in practical situations
these would be events corresponding with turning actuators on or off), and

• Uncontrollable events, which the system cannot prevent from happening (which would be
events corresponding to a user interaction, a condition that is met, or a fault event).

supervisor S

plant P

controllable
events enabled by
the supervisor

uncontrollable
events generated
by the plant

Figure 5.1.1: Supervisory control loop of the system [22, p. 96]

26

As discussed in [18], a system’s model must consider all physical capabilities of a system, and
what behavior is of the system is allowed. The following two DES must be modeled for a system
to achieve this.

• A plant, which is a DES modeling the physically possible behavior and environment inter-
actions of the system to be controlled.

• The requirements in the form of a DES, which models all allowed behavior of the system.

In the formalism for DES discussed in [18], the plant can be refined with respect to the require-
ments, which means that undesired behavior is removed from the plant. However, the resulting
refined plant can have some undesirable properties, such as the occurrence of blocking. When a
system is blocking, it can enter a state from which all marked states are unreachable.

A supervisor can prevent the system from getting to these undesired states by disabling certain
controllable events (which prevents these events from happening). In this control loop, a supervisor
S enables or disables controllable events based on the uncontrollable events ‘generated’ by the plant
P (Figure 5.1.1). A proper supervisor assures that the following conditions are met:

• The system can always transition into a marked state, for which we say the system is non-
blocking.

• The system does not block uncontrollable events enabled by the plant, for which we say the
system is controllable.

A maximally permissive supervisor is a proper supervisor that restricts the behavior of the plant
as little as possible. Computing a maximally permissive supervisor is called supervisory control
synthesis.

In Sections 5.2 and 5.3 previously introduced formalisms for modeling discrete event systems are
discussed. In Chapter 6, a formalism for modeling discrete event systems based on X-machines is
introduced.

5.2 Discrete Event Systems as FSAs

The Finite State Automaton formalism is an elementary formalism (similar to the automaton
formalism discussed in Chapter 3) based on automata theory which can be used for modeling dis-
crete event systems. The simplicity of this formalism makes it a good starting point for discussing
DES models and supervisory control. First, the model and its features are briefly discussed.
Subsequently, a supervisory control synthesis algorithm for FSAs is discussed.

5.2.1 FSA formalism

Definition 5.2.1 A Finite State Automaton (FSA) as introduced in [9, pp. 100-120] is defined
as 5-tuple (L,Σ,→, Lm, L0) where

• L is the set of locations.

• Σ is the set of events.

• → ⊆ (L× Σ× L) is the transition relation.

• Lm ⊆ L is the set of marked locations.

27

• L0 ⊆ L is the set of initial locations.

End of Definition

The FSA model is similar to Σ-automaton discussed in Chapter 3, where states correspond to
locations and the alphabet corresponds to the event set. In the FSA model, we call the set of
event sequences belonging to successful paths (starting in an initial locations and ending in a
marked location) of some FSA A the language L(A), which is equivalent to the notion of behavior
discussed in Chapter 3.

An important concept for modeling discrete event systems is synchronization. Synchronization
allows one to break up a complex system into several simpler components, model each component
separately, and combine (synchronize) these simpler components using the synchronous product
operator. The synchronous product || on two FSAs is defined in [22, pp. 57-67] as follows.

Definition 5.2.2 Suppose we have two FSAA1 = (L1,Σ1,→1, L
1
m, L

1
0) andA2 = (L2,Σ2,→2, L

2
m, L

2
0).

We then have A1 ||A2 = (L1 × L2,Σ1 ∪ Σ2,→, L1
m × L2

m, L
1
0 × L2

0) where we have for →

• For σ ∈ Σ1 ∩ Σ2 we have (l1, σ, l
′
1) ∈ →1 ∧ (l2, σ, l

′
2) ∈ →2 ⇐⇒ ((l1, l2), σ, (l′1, l

′
2)) ∈ →.

• For σ ∈ Σ1 \ Σ2 we have (l1, σ, l
′
1) ∈ →1 ⇐⇒ ∀l2 ∈ L2 : ((l1, l2), σ, (l′1, l2)) ∈ →.

• For σ ∈ Σ2 \ Σ1 we have (l2, σ, l
′
2) ∈ →2 ⇐⇒ ∀l1 ∈ L1 : ((l1, l2), σ, (l1, l

′
2)) ∈ →.

End of Definition

Example 5.2.1 This example is taken from [22, p. 59]. Suppose we have

A1 = (
{
l11, l

1
2

}
, { a, b } ,

{
(l11, a, l

1
2), (l12, b, l

1
1)
}
,
{
l11
}
,
{
l11
}

)

(Figure 5.2.1) and A2 = (
{
l21, l

2
2

}
, { b, c } ,

{
(l21, b, l

2
2), (l22, c, l

2
1)
}
,
{
l21
}
,
{
l21
}

) (Figure 5.2.2).

l11 l12

a

b

Figure 5.2.1: Visual representation of A1

l21 l22

b

c

Figure 5.2.2: Visual representation of A2

28

We then have the synchronous product

A1 ||A2 = ({(l11, l21), (l12, l
2
1), (l11, l

2
2), (l22, l

2
2)},

{a, b, c},
{((l11, l21), a, (l12, l

2
1)),

((l12, l
2
1), b, (l11, l

2
2)),

((l11, l
2
2), c, (l11, l

2
1)),

((l11, l
2
2), a, (l12, l

2
2)),

((l12, l
2
2), c, (l12, l

2
1))}

{(l11, l21)},
{(l11, l21)},

)

(l11, l
2
1) (l12, l

2
1)

(l11, l
2
2) (l22, l

2
2)

a

b

a

c c

Figure 5.2.3: Visual representation of A1 ||A2

5.2.2 Supervisory Control and Synthesis Algorithm

As discussed in [22, pp. 96-118], the following properties are defined on some FSA P = (L,Σ,→, Lm, L0),
where Σ is partitioned into a set of controllable events Σc ⊆ Σ and uncontrollable events Σu ⊆=
Σ \ Σc.

• P is non-blocking when for every reachable l ∈ L (from an initial location), there exists a
transition path (which may an empty path) to some lm ∈ Lm.

• A language K is controllable with respect to P and uncontrollable events Σu if the following
holds: suppose we have ωω′ ∈ K, u ∈ Σu, and ω′′ ∈ Σ such that ωuω′′ ∈ L(P), then there
exists some ω′′′ ∈ Σ∗ such that ωuω′′′ ∈ K.

• An FSA S is a proper supervisor for P and Σu when P || S is non-blocking and L(S) is
controllable with respect to P and Σu.

• Proper supervisor S for P and Σu is maximally permissive when for each proper supervisor
S′ we have L(P || S′) ⊆ L(P || S).

The supervisory control problem is defined as follows: Given a plant automaton P = (L,Σ,→, Lm, L0)
with the sets of controllable and uncontrollable events Σc and Σu, compute a maximally permissive
proper supervisor S for P and Σu. Algorithm 1[22, p. 118] solves the supervisory control problem

29

for FSAs.
Algorithm 1: Supervisory Synthesis for FSA
Data: Plant (L,Σ,→, Lm, L0)
Result: Supervisor S

1 i← 0 ;
2 Li ← L ;
3 do
4 N0 ← Lm ∩ Li ;
5 N ← FixStateSet(Li, N0, Σ);
6 B0 ← Li \N ;
7 B ← FixStateSet(Li, B0, Σu) ;
8 Li+1 ← Li \B;
9 i← i+ 1

10 while Li−1 6= Li;
11 j ← 0 ;
12 L0

s ← L0 ∩ Li ;
13 do
14 j ← j + 1 ;

15 Ljs ← Lj−1
s ∪

{
l ∈ Li | ls σ−→ l, ls ∈ Lj−1

s

}
16 while Lj−1

s 6= Ljs;
17 return (Ljs,Σ,→∩ (Ljs × Σ× Ljs), Lm ∩ Ljs, L0 ∩ Ljs)

18 Function FixStateSet(L′, X, Γ)
19 i← 0 ;
20 X0 ← X ;
21 do
22 Xi+1 ← Xi ∪

{
l ∈ L′ | l σ−→ x, x ∈ Xi, σ ∈ Γ

}
;

23 i← i+ 1 ;
24 while Xi−1 6= Xi;
25 return Xi−1

Example 5.2.2 This example is taken from [22, pp. 114-117]. Suppose we have plant

P = ({ l1, l2, l3, l4, l5, l6, l7, l8, l9 } ,Σ,→, Lm, L0)

as shown Figure 5.2.4, with Σc = { c1, c2, c3 } and Σu = {u1, u2 }. It models a workcell
consisting of two machines and an automated guided vehicle. The vehicle can load and
unload a workpiece at machine 1 or 2, represented by u1, c1, u2, and c2 respectively, and
unload it to a buffer, represented by c3.

30

l0 l1 l2 l3

l4 l5 l6 l7

l8 l9

c1 u1 c1

c2 c2

c1 u1 c1

u2 u2

c1

c3 c3

Figure 5.2.4: Visual representation of P , edges with uncontrollable events are drawn with
dashed lines.

We will now compute the maximally permissive supervisor of P using Algorithm 1:
We start with L0 = { l0, l1, l2, l3, l4, l5, l6, l7, l8, l9 }. For the first (outer) do-while loop we have
the following iterations.

Iteration 1 N0 = { l0 }
N = { l0, l8, l4.l2, l1, l9, l5, l3 }
B0 = { l6, l7 }
B = { l6, l7, l5 }

L1 = { l0, l1, l2, l3, l4, l8, l9 }.

Iteration 2 N0 = { l0 }
N = { l0, l8, l4, l2, l1, l9 }
B0 = { l3 }
B = { l3 }

L2 = { l0, l1, l2, l4, l8, l9 }

Iteration 3 N0 = { l0 }
N = { l0, l8, l4, l2, l1, l9 }
B0 = ∅
B = ∅

L3 = L2 The first for-loop will terminate since L3 = L2.

For the second do-while loop we end up with Ljs = L2 (since every location in L2 is reachable).
We end up with supervisor (Ljs,Σ,→∩ (Ljs × Σ× Ljs), Lm ∩ Ljs, Lm ∩ Ljs) (Figure 5.2.5).

31

l0 l1 l2

l4

l8 l9

c1 u1

c2

u2

c1

c3 c3

Figure 5.2.5: Visual representation of P .

5.3 Discrete Event Systems as EFAs

The Extended Finite Automaton model is an extension of the FSA model. In EFAs part of the
system’s state space is modeled as some finite domain D. This means that, for example, some
system’s state space is not only described using a locations set L, but a location set along with
a set of integer values (for example D = { 0, . . . , n }). Guards and update functions are added to
the transitions edges, to allow transitions between instances of the domain. This extension allows
for a more efficient way of modeling discrete event systems, which is discussed in [18].

5.3.1 EFA Formalism

We discuss the EFA model as discussed in [18, p.2].

Definition 5.3.1 An Extended Finite Automaton (EFA) is defined as 7-tuple (L,D,Σ, E, L0, D0, Lm)
where the elements additional to FSAs are defined as follows

1. D = D1 × · · · ×Dp is a domain of data values consisting of p ‘variables’,

2. E is the set of edges,

3. D0 = D0
0 × · · · ×Dp

0 is the set of initial data values.

For every edge e ∈ E we have

• oe ∈ L and te ∈ L are the origin and target locations of the edge,

• σe ∈ Σ is the event of the edge,

• ge ⊆ D is the enabling guard of the edge,

• fe : D → D is the update function of the edge.

End of Definition

As discussed in [24], it must be noted that any EFA A can be reduced to an FSA A′ by eliminating
the domain D, where D is essentially reduced to extra state space. This means that A′ has location
set L′ = L × D (L is the location set of A). For each transition edge e in A, there is transition
(oe, d)

σe−→ (te, fe(d
′)) for each d ∈ ge in A′.

As for FSA, a synchronous product operator is defined for EFAs in [18, pp. 2-3]

32

Definition 5.3.2 Suppose we have EFA A1 = (L1, D1,Σ1, E1, L
1
0, D

1
0, L

1
m) and

A2 = (L2, D2,Σ2, E2, L
2
0, D

2
0, L

2
m) the synchronous product A1 ||A2 is defined as follows

A1||A2 = (L1 × L2, D1 ⊗D2,Σ1 ∪ Σ2, E, L
1
0 × L2

0, D
1
0 ⊗D2

0, L
1
m × L2

m)

Suppose there is a given domain composition D1⊗D2 = D′1×Ds ×D′2 where D1 = D′1×Ds and
D2 = D′2 × Ds (Ds is shared between the two domains in this given domain composition). The
set of edges E is defined as follows:

• ∀σ ∈ E1 ∩ E2,∀(l1, l2, σ, g1, f1) ∈ E1,∀(l2, l′2, σ, g2, f2) ∈ E2, we have ((l1, l2), (l′1, l
′
2), σ, g1 ∧

g2 ∧ [f1|Ds = f2|Ds], f1 ⊕ f2) ∈ E.

• ∀σ ∈ Σ1 \ Σ2,∀(l1, l′1, σ, g1, f1) ∈ E1 we have ∀l2 ∈ L2, ((l1, l2), (l′1, l2), σ, g1, f1) ∈ E.

• ∀σ ∈ Σ2 \ Σ1,∀(l2, l′2, σ, g2, f2) ∈ E2 we have ∀l1 ∈ L1, ((l1, l2), (l1, l
′
2), σ, g2, f2) ∈ E.

where ‘f1⊕f2 : D1⊗D2 → D1⊗D2 maps the shared data variables Ds identically as either of the
functions map, whereas it maps the nonshared data variables according to the functions whose
domain they belong’[18].
End of Definition

Example 5.3.1 Suppose we have EFA

A1 = (
{
l10, l

1
1

}
, {� } , { a, b } , { e0,1, e1,0 } ,

{
l10
}
, {� } ,

{
l10
}

)

shown in Figure 5.3.1 (since we do not have a domain for A1 we use placeholder �) and

A2 = (
{
l20, l

2
1

}
, { 0, . . . , 4 } , { a, b } ,

{
e1

0,0, e
2
0,0, e1,0, e

1
1,1, e

2
1,1

}
,
{
l21
}
, {� } ,

{
l21
}

)

shown in Figure 5.3.2. Suppose we have { 0 } ⊗ { 0, . . . , 4 } = { 0 } × { 0, . . . , 4 } (this means
that there is no shared domain). We then have A1||A2 as shown in Figure 5.3.3.

l10 l11

a

b

Figure 5.3.1: Visual representation of A1.

l20 l21

x ≥ 3
a

x < 3
a

x := x+ 1

b

a

b

Figure 5.3.2: Visual representation of A2, where x represents the domain value

33

(l10, l
2
0) (l11, l

2
0)

(l11, l
2
1) (l10, l

2
1)

x < 3
a

x := x+ 1

b

x ≥ 3
a

b

b

Figure 5.3.3: Visual representation of A1 ||A2

5.3.2 Plants and Requirements

A model for a discrete event system consists of

• The plant P = P1 ||P2 || . . . , which is an EFA modeling the physical behavior of the system.
Each Pi models a physical component of the system (e.g. an actuator or a sensor).

• The requirements R = R1 || R2 || . . . , which is an EFA modeling the allowed behavior of
the system (sequences of events). Each Ri models a single atomic requirement (e.g. some
actuator may only activate after some button is pressed).

Given the plant P and the requirements R we can compute the refined plant [18, p. 3]. By refining
P with respect to R we remove the unwanted behavior from the plant.

Definition 5.3.3 Suppose we have plant EFA P = (LP , D,Σ, EP , LP0 , D0, L
P
m) and requirements

EFA R = (LR, D,Σ, ER, LR0 , D0, L
R
m). The refined plant is defined as EFA G = (LP × (LR ∪

{φ}), D,Σ, E, LP0 × LR0 , D0, L
P
m × LRm) where E is constructed as follows:

• ∀e ∈ EP ,∀l ∈ LR ∪ {φ},∀e′ ∈ ER with (oe′ = l) ∧ (σe′ = σe) : ((oe, l), (te, te′), σe, ge ∧ ge′ ∧
[fe = fe′], fe) ∈ E, ((oe, l), (te, φ), σe, ge ∧ ¬

[
∃e′′∈ER:oe′′=oe′ ,σe′′=σe′

, ge′′ ∧ [fe′′ = fe′]
]
, fe) ∈

E,

• ∀e ∈ EP ,∀l ∈ LR∪{φ},¬∃e′ ∈ ER with (oe′ = l)∧(σe′ = σe) : ((oe, l), (te, φ), σe, ge, fe) ∈ E.

An extra location identifier φ is added to LR. This is a location outside of the ‘allowed’ state space
LR, which means φ can be interpreted as a ‘forbidden location’. The set of forbidden locations of
G is then defined as Lf =

{
(l, φ) | l ∈ LP

}
.

End of Definition

Example 5.3.2 This example is taken from [18, p. 4]. Suppose we have plant P as shown
in Figure 5.3.4 and requirement R as shown in Figure 5.3.5. P refined with respect to R (PR)
is shown in Figure 5.3.6. For the forbidden locations we have Lf = { (l0, φ), (l1, φ) }.

34

l0 l1

x < 8
a

x := x+ 2

x ≤ 9
b

x := x+ 1

Figure 5.3.4: Visual representation of P , where x represents the domain value

r0 r1

x < 8
a

x := x+ 2

x < 7
b

x := x+ 1

Figure 5.3.5: Visual representation of R, where x represents the domain value

(l0, r0) (l1, r1) (l0, φ) (l1, φ)

x < 8
a

x := x+ 2

x < 7
b

x := x+ 1

7 ≤ x ≤ 9
b

x := x+ 1

x < 8
a

x := x+ 2

x ≤ 9
b

x := x+ 1

Figure 5.3.6: Visual representation of PR, where x represents the domain value

5.3.3 Supervisory Control and Synthesis Algorithm

In this section we discuss supervisory control synthesis for a given refined plant

G = (L,D,Σ, E, L0, D0, Lm)

with a set of forbidden locations Lf ⊆ L. We again have the event set partitioned into the set of
controllable events Σc and uncontrollable events Σu. For supervisory control synthesis the guards
of G will be strengthened, for which the following definition is introduced in [18, p. 3].

Definition 5.3.4 Suppose we have refined plant G = (L,D,Σ, E, L0, D0, Lm) and function
S : E → D. We define GS = (L,D,Σ, E′, L0, D0, Lm) with

E′ = { e′ | e ∈ E, e′ is e with guard replaced with ge ∧ S(e) }

35

End of Definition

In order to better reason about how much a supervisor restricts G, the following ordering on EFAs
is introduced in [18, p. 3].

Definition 5.3.5 Suppose we have EFAs G and G′ the we define ordering (4) as

G′ 4 G

if and only if , G′ is obtained from G by strengthening (a) guard(s), removing (an) edge(s), and/or
removing (a) location(s).

End of Definition

The refined automaton G and the forbidden locations Lf are given as input for the Supervisory
Synthesis algorithm, which computes a function for strengthening guards of the edges of G (a
supervisor for G), such that the following conditions as introduced in [18, p. 3] hold:

1. GS is nonblocking : from every state in GS , there exists some path to a marked state.

2. GS is safe: no state in Lf is reachable from an initial state in GS .

3. S is controllable with respect to G if and only if there is some l and d for which there is
l
e−→ l′ with d ∈ ge (meaning that the guard ge ‘allows’ the value d) in G then there is e′ for

which l e′−→ l′ with d ∈ g′e in GS .

4. S is a proper supervisor for G if and only if GS is nonblocking and safe, and S is controllable
with respect to G.

5. Proper supervisor S for G is a maximally permissive supervisor if and only if for every proper
supervisor S ′ for G we have GS

′
4 GS .

The supervisory control on EFAs is defined as follows: Given refined plant EFA

G = (L,D,Σ, E, L0, D0, Lm)

with the event set Σ partitioned into the sets of controllable events Σc and uncontrollable events
Σu, and a set of forbidden locations Lf ⊆ L. Compute the maximally permissive supervisor S for
G.

Algorithm 2 from [18, p. 4] solves the supervisory control for EFA.

36

Algorithm 2: Supervisory Synthesis for EFAs
Data: EFA G = (L,D,Σ, E, L0, D0, Lm) with set of forbidden locations Lf ⊂ L and sets

Σc and Σd (with Σc ⊆ Σ and Σu = Σ \ Σc)
Result: Updated guard for every e ∈ E

1 ∀e ∈ E : g0
e(d)← ge(d) ;

2 j ← 0 ;
3 do

4 ∀l ∈ L, d ∈ D : Nj(l, d)←
{
T, if l ∈ Lm
F, if l /∈ Lm

;

5 Nj ← FixPredicate(Nj, Σ) ;

6 ∀l ∈ L, d ∈ D : Bj(l, d)←

T, if l ∈ Lf
¬Nj(l, d), if l /∈ Lf ∧ j = 0

¬Nj(l, d) ∨Bj−1(l, d), if l /∈ Lf ∧ j > 0

;

7 Bj ← FixPredicate(Bj, Σu) ;

8 ∀e ∈ E, d ∈ D : gj+1
e (d)←

{
gje(d) ∧ ¬Bjte(fe(d)), if σ ∈ Σc

gje(d), if σ ∈ Σu
;

9 j ← j + 1

10 while ¬∀e ∈ E, d ∈ D : gje(d) = gj−1
e (d);

11 return for all e ∈ E: gj−1
e

12 Function FixPredicate(P : L×D → B, Σs ⊆ Σ)
13 i← 0 ;
14 P0 ← P ;
15 do

/* Update the predicate. */
16 ∀l ∈ L, d ∈ D : Pi+1(l, d)← Pi(l, d) ∨∨e|oe=l,σe∈Σs

[
gje(d) ∧ Pi(te, fe(d))

]
;

17 i← i+ 1

18 while ¬∀l ∈ L, d ∈ D : Pi−1(l, d) = Pi(l, d);
19 return Pi−1

Example 5.3.3 This example is taken from [22, pp. 135-136]. Suppose we have EFA

P = ({ l0, l1, l2 } , { 0, . . . , 10 } , { c, u } , { e0,1, e1,2, e2,0 } , { l0 } , 0, { l0 })

shown in Figure 5.3.7, where Σc = { c } and Σu = {u }. In P we essentially have a counter
which is incremented by 1 during every transition, where event u may only occur when x < 7.
Observe that P can enter l2 with x ≥ 7 at which P will block.

l0 l1 l2

x < 8
c

x := x+ 1

x < 9
c

x := x+ 1

x < 7
u

x := x+ 1

Figure 5.3.7: Visual representation of P .

37

We will now perform Algorithm 2 on P :
We start with j = 0

Iteration 1 N0(l, x) = true for l = l0 ∧ x ∈ { 0, . . . , 10 }.
N(l, x) = true for l = l0∧x ∈ { 0, . . . , 10 }, l = l2∧x ∈ { 0, 6 }, l = l1∧x ∈ { 0, 5 }.
B0(l, x) = true for l = l2 ∧ x ∈ { 7, 10 }, l = l1 ∧ x ∈ { 6, 10 }.
B = B0.

g1
e0,1 : g0

e0,1(x) ∧ x < 5

g1
e1,2 : g0

e1,2(x) ∧ x < 6

Iteration 2 N(l, x) = true for l = l0∧x ∈ { 0, . . . , 10 }, l = l2∧x ∈ { 0, 6 }, l = l1∧x ∈ { 0, 5 }.
B0(l, x) = true for l = l2 ∧ x ∈ { 7, 10 }, l = l1 ∧ x ∈ { 6, 10 }.
B = B0.

The bad predicate is equivalent to the bad predicate found in the previous iter-
ation, which means the guards do not change. This implies that the algorithm
terminates

P with the obtained supervisor S applied is shown in Figure 5.3.8. Observe that PS cannot
reach l2 with the domain value of x ≥ 7, which means that PS will not block.

l0 l1 l2

x < 5
c

x := x+ 1

x < 6
c

x := x+ 1

x < 7
u

x := x+ 1

Figure 5.3.8: Visual representation of P with supervisor applied.

5.3.4 Limitations

In this section two limitations of the EFA formalism are discussed. These limitations will be our
points of attention when we will define our own formalism for modeling discrete event systems in
Chapter 6.

Scalability Issue

We first discuss a limitation regarding scalability. We run into this problem when we try to model
a more complex ‘input device’. Suppose we have a set of ‘user commands’ C = { c1, . . . , cn }.
When the system is idle, a user can give a command to the device. After a command is given, the
user waits for a response from the system. The system responds to the user after the command
has been handled by the system. Intuitively our device has two events: the uncontrollable event
‘inputCommand’ and the controllable event ‘respond’. For our domain, we take D = {� } ∪ C,
which is the set of commands together with a ‘no-command’ token (�). We have D0 = {� } since
no command is given in the starting state. We can model the input device Pi (as part of the plant
P) as follows.

Pi = ({ p0, p1 } , D, { inputCommand, respond } , Ep, { p0 } , D0, { p0 })

38

For every c ∈ C there exists edge e ∈ Ep with

• oe = p0,

• te = p1,

• σe = inputCommand,

• ge = D (no guard needed),

• fe(d) = c.

An there exists e′ ∈ Ep with

• oe′ = p1,

• te′ = p0,

• σe′ = respond,

• ge′ = D (no guard needed),

• fe′(c) = �.

A visual representation of Pi is shown in Figure 5.3.9.

p0 p1

inputCommand
d := c1

inputCommand
d := cn

respond
d := �

Figure 5.3.9: The input device Pi

We can now model a requirement Rj (as part of the complete requirement R) as follows.

Rj = ({ r0, r1, . . . , rm } , (D×D′), { inputCommand, respond, . . . } , Er, { r0 } , { (�, d′1), . . . } , { r0 })

This requirement has the domain D combined with other variables (if needed), and the event set
contains (at least) ‘inputCommand’ and ‘respond’. Suppose this requirement models the desired
behavior after the command ck is given, then we have for every c ∈ (C \ { ck }) an edge e ∈ Er
with

• oe = r0,

• te = r0,

• σe = inputCommand,

• ge = D ×D′ (no guard needed),

39

• fe((�, d′)) = (c, d′).

These edges are introduced to prevent the system from blocking all other user commands. We
also introduce the following self-loop edge e′ in r0 which prevents the system from blocking the
event ‘respond’. e′ has

• oe′ = r0,

• te′ = r0,

• σe′ = respond,

• ge′ = D ×D′ (no guard needed),

• fe′((c, d
′)) = (�, d′).

For the command ck there exists the edge e′′ ∈ Er with

• oe′′ = r0,

• te′′ = r1,

• σe′′ = inputCommand,

• ge′′ = D ×D′ (no guard needed),

• fe′′((�, d′)) = (ck, d
′).

Finally we say that Er also has edge e′′′ with

• oe′′′ = rm,

• te′′′ = r0,

• σe′′′ = respond,

• ge′′′ = D ×D′ (no guard needed),

• fe′′′((ck, d
′)) = (�, d′).

A visual representation of Rj is shown in Figure 5.3.10.

r0 r1

inputCommand
d := c1

inputCommand
d := cn

respond
d :=

rm

inputCommand
d := ck

respond
d :=

Figure 5.3.10: The requirement Rj

40

One can observe modeling the input devices using the method we just discussed is rather incon-
venient. We have to create a transition edge for each command both in Pi and all requirements
considering the input device. Also, for each edge a function has to be defined.

An alternative way to model this input is to break up the event ‘inputCommand’ in n events
c1, . . . , cn (meaning that we introduce a separate event for each command). This will result in the
following model.

P ′i = ({ p0, p1 } , {� } , { c1, . . . , cn, respond } , Ep, { p0 } , {� } , { p0 })

The domain {� } is just a place holder (we do not need a domain in this case). For every ck ∈ C
we have e ∈ Ep with

• oe = p0,

• te = p1,

• σe = ck,

• ge = {� },

• fe(�) = �.

And there exists edge e′ ∈ Ep with

• oe′ = p1,

• te′ = p0,

• σe′ = respond,

• ge′ = {� },

• fe′(�) = �.

We can then model a requirement R′j as follows. Again, R′j only considers the command ck.

R′j = ({ r0, r1, . . . , rm } , D′, { ck, respond, . . . } , Er, { r0 } , D′0, { r0 })

Where we again have a self loop transition edge e ∈ Er to prevent the blocking of ‘respond’.

• oe′ = r0,

• te′ = r0,

• σe′ = respond,

• ge′ = D′,

• fe′(d
′) = d′.

For the command ck there exists an edge e′′ ∈ Er with

• oe′′ = r0,

• te′′ = r1,

• σe′′ = ck,

• ge′′ = D′,

41

• fe′′(d
′) = d′.

And we say that Er also has edge e′′′ with

• oe′′′ = rm,

• te′′′ = r0,

• σe′′′ = respond,

• ge′′′ = D′,

• fe′′′(d
′) = d′.

A visual representation of R′j is shown in Figure 5.3.11.

r0 r1

respond rm

ck

respond

Figure 5.3.11: The requirement R′j

Essentially, we have modeled our input device as an ‘FSA’ (since P ′i does not have a domain).
One can observe that modeling requirements is more convenient using this method. However, we
now have to create an event for every command, and we still have to create a transition edge for
every command in Pi.

We can observe that, using the EFA formalism, we can run into these kinds of problems when
dealing with more complex input devices. In order to model the user giving some input as a single
event, we need a formalism in which the following is possible.

• The method of ‘the user giving input’ can be incorporated in the event itself.

• Transitions can be enabled/disabled (in requirement models) depending on the ‘result’ of
the event. In this case, that result would be the specific command given by the user.

Physical Restrictions

Another limitation of this formalism is that it is difficult to deal with restrictions with a plant
P caused by physical relations between separate subcomponents of P . For example, suppose P
has subcomponent Pi = (Li, Di,Σi, Ei, L

i
0, D

i
0, L

i
m) and Pj = (Lj , Dj ,Σj , Ej , L

j
0, D

j
0, L

j
m), where

there is a location l ∈ Li which restricts event σ ∈ Σj . This could be the case when some light
source is switched on in l, and σ is an event corresponding to a light sensor, located near the
aforementioned light source, giving a ‘low’ signal. Since this is not possible in a physical situation,
we do not want this behavior (the sensor given a ‘low’ signal when the light source is on) in our
plant P . However, since Pi and Pj are independent components outside the context of the system,
we cannot implement this restriction in Pi or Pj . This means we need an extra operation on P to
implement these kinds of restrictions in our plant.

42

Chapter 6

Discrete Event Systems as
D-Systems

In this chapter, a formalism is introduced for modeling discrete event system based on X-Machines.
The following items are discussed:

• a new concept of ‘events’ which will be used in our formalism,

• the introduction of the D-system formalism and its components, which can be used to model
discrete event systems,

• synchronization of D-systems by introduction of a synchronous product operator,

• the algebraic properties of the synchronous product operator,

• a method for modeling a plant and requirements using D-systems,

• a restriction operator for D-systems, which can be used to restrict the behavior of an existing
plant,

• the definitions regarding supervisory control for D-systems, and an algorithm to compute a
most permissive supervisor.

By introducing this formalism for modeling discrete event systems, we can address the limitations
of the EFA formalism discussed in Subsection 5.3.4. By tackling these issues when defining the
formalism, we evade them during the language design in part III.

43

6.1 Conceptual Background

supervisor S

plant P

controllable
events enabled by
the supervisor

uncontrollable
events generated
by the plant

changes values of
output variables

changes values of
input variables

Figure 6.1.1: Supervisory control loop with input/output.

In order to model discrete event systems in some formalism, we need to define a concrete concept
of an ‘event’. In the EFA model, events are modeled by the elements of the alphabet Σ. From
supervisory control theory, we have that events are either controllable (an event which is ‘initiated’
by the system) or uncontrollable (event which is received by the system). For EFAs, the Σ is
partitioned between uncontrollable event set Σu and Σc.

In practice, an event (in some system) corresponds to an input/output change within the system.
A controllable event corresponds to a change of ‘output values’ (actuators) of the system, and an
uncontrollable event corresponds to a change of ‘input values’ (sensors) of the system (as shown
in Figure 6.1.1). We base our definition of event for X-machines on this concept.

6.2 Definitions

In this section we give a definition for D-systems, which is our new formalism for defining discrete
event system based on X-machines. We first discuss the different components which our formalism
should have. Then, we define and discuss these different components. Lastly, we give our formal
definition of D-system.

6.2.1 System Components

Our formalism for discrete event systems should have the following components.

• An underlying domain D.

• Two disjoint sets of controllable and uncontrollable events which are sets of relations on
domain D. We discuss the concrete concept of an event in Section 6.2.2.

• The underlying D-machine, which transitions should contain the aforementioned events. We
discuss our implementation of D-machines within D-systems in Section 6.2.3.

• The set of possible initial values of the system, which is a subset of D. This we also discuss
in Section 6.2.3.

44

6.2.2 Events

We now introduce a definition based on the concept of events discussed in Section 6.1.

Definition 6.2.1 We define an event in some system with domain D as a binary relation on D.
The set of events is partitioned into the two disjoint sets of controllable events Ec and uncontrol-
lable events Eu.

End of Definition

A relation corresponding to a controllable event models (a) value change(s) of some output vari-
able(s) of the system, and a relation corresponding to an uncontrollable event models (a) change(s)
of some input variable(s) of the system.

Example 6.2.1 Suppose we have some system with a domain D = Ba×Bs where the first
Boolean value models the on/off status of an actuator and the second Boolean value models the
on/off status of a sensor. Suppose the system has controllable events Ec = { actuator_switch }
and uncontrollable events Eu = { sensor_switch }. The definition of the events are as follows:

actuator_switch = { ((b, b), (¬b, b)) | (b, b) ∈ D }
sensor_switch = { ((b, b), (b,¬b)) | (b, b) ∈ D }

The event actuator_switch models switching the actuator on/off, and the event sensor_switch
models the change of detection of the sensor.

6.2.3 EventMachines

In this subsection, we will incorporate X-machines (as discussed in Chapter 4) in our D-system
formalism. In our formalism we should be able to do the following.

• Guard transitions: This means that one can specify for which domain values a transition is
enabled. Being able to guard transitions is needed to disable controllable events, which is
important for supervisory control synthesis.

• Interpret events: Since the events are modeled as binary relations, there could be multiple
possible outcomes for an event (for one instance of the domain value). One should be able
to enable or disable a transition based on the possible outcomes of its event.

To achieve this, we introduce D-EventMachines, which is a slight modification to the vanilla
X-machine discussed in Chapter 4.

Definition 6.2.2 Suppose we have some system with domain D with controllable events Ec and
uncontrollable events Eu. Then the behavior of this system is modeled by a D-EventMachine
which is defined as a 5-tuple (Q, I, T,Φ, δ). This definition is equivalent to the definition of the
X-machine kernel from Definition 4.1.1, with the exception that instead of Φ ⊆ P(D2) we now
have

Φ ⊆ P(D2)× (Ec ∪ Eu)× P(D2)

This means that every element of Φ is a 3-tuple (φ, e, φ′), where φ and φ′ can be any arbitrary
binary relations on D (meaning φ, φ′ ∈ P(D)) and e is an event (meaning e ∈ Ec ∪ Eu).
Suppose we have some event e ∈ (Ec ∪ Eu). We then say event e occurs if and only if some

transition q
(φ,e,φ′)−−−−−→ q′ occurs for some q, q′ ∈ Q and (φ, e, φ′) ∈ Φ.

45

Suppose we have the following path p

(q0, d0)
(φ1,e1,φ

′
1)−−−−−−→ (q1, d1)

(φ2,e2,φ
′
2)−−−−−−→ · · · (φn,en,φ

′
n)−−−−−−−→ (qn, dn)

We then say that p can occur in the EventMachine if and only if q0 ∈ I, qn ∈ T ,
∀0<i≤nqi−1(φi, ei, φ

′
i) 3 qi (as in the transition qi−1

(φi,ei,φ
′
i)−−−−−−→ qi can occur), and di−1(φ;e;φ′)di.

End of Definition

We introduce a definition which helps us reason about the trace sets produced byD-EventMachines.

Definition 6.2.3 For each t ∈ Φ with t = (φ, e, φ′) we define the label relation ρt ⊆ D2 as

ρt = φ;e;φ′

By extension, for each ω ∈ Φ∗ with ω = t1 . . . tn we define ρω ⊆ D2 as

ρω = ρt1 ; . . . ;ρtn

End of Definition

The following definition helps us reason about events in a trace.

Definition 6.2.4 For each t ∈ Φ with t = (φ, e, φ′) we define the event label et ∈ P(D2) as

et = e

By extension, for each, for each ω ∈ Φ∗ with ω = t1 . . . tn we define eω ∈ (P(D2))∗ as

eω = et1 . . . etn

End of Definition

We introduce some short-hand notations for elements in Φ:

• (idD, e, φ
′) can be written as (e, φ′),

• (φ, e, idD) can be written as (φ, e),

• (idD, e, idD) can be written as e.

6.2.4 D-Systems

Now we have defined all the necessary components for our formalism, we now give a formal
definition for D-systems.

Definition 6.2.5 Suppose we have domain D = D1 × · · · × Dn consisting of n variables. We
define a D-system as a four tuple (M,Ec, Eu, d0), where

• M is a D-EventMachine.

• Ec, Eu ⊆ P(D2) are the controllable and uncontrollable events, respectively.

• D0 ⊆ D is the set of possible initial values.

Suppose we have the following path p in M (according to Definition 6.2.2)

(q0, d0)
(φ1,e1,φ

′
1)−−−−−−→ (q1, d1)

(φ2,e2,φ
′
2)−−−−−−→ · · · (φn,en,φ

′
n)−−−−−−−→ (qn, dn)

we then say p is a valid path for the D-system when d0 ∈ D0.

End of Definition

46

6.2.5 Examples

Example 6.2.2 In this example we model a simple sensor. We take B-system

S = ((
{
qoff, qon

}
,
{
qoff

}
,
{
qoff

}
,Φ, δ), ∅, Eu, { false })

. We then have Eu = { u_on,u_off } and Φ = { (idB, u_on, idB), (idB, u_off, idB) }, where

u_on = { (false, true) }
u_off = { (true, false) }

We then define δ as

qoffu_on = qon
qonu_off = qoff

qoff qon

u_on

u_off

Figure 6.2.1: Visual representation of Example 6.2.2.

Example 6.2.3 In this example we model a ‘boom barrier light. We take (B×B×B)-system
S = ((

{
qr, qrr, qrg, qg

}
, { qr } , { qr } ,Φ, δ), Ec, ∅, { (false, false, false) }). We then have

Ec = { c_r, c_rr, c_rg, c_g }

and
Φ =

{
(id(B×B×B), e, id(B×B×B)) | e ∈ Ec

}
where

c_r = { ((b1, b2, b3), (true, false, false)) | b1, b2, b3 ∈ B }
c_rr = { ((b1, b2, b3), (true, false, true)) | b1, b2, b3 ∈ B }
c_g = { ((b1, b2, b3), (false, true, false)) | b1, b2, b3 ∈ B }
c_rg = { ((b1, b2, b3), (true, true, false)) | b1, b2, b3 ∈ B }

We then define δ as

qrc_rr = qrr
qrc_rg = qrg
qrrc_r = qr
qrgc_g = qg
qrgc_r = qr
qgc_r = qr

47

qrqrr qrg qg

c_rr

c_r c_rg

c_r c_g

c_r

Figure 6.2.2: Visual representation of Example 6.2.3.

Example 6.2.4 In this example we model two mutual exclusive sensors. We take (B×B)-
system S = ((

{
qoff, qon

}
,
{
qoff

}
,
{
qoff

}
,Φ, δ), ∅, Eu, { (false, false) }). We then have Eu =

{u_on, u_off } and Φ =
{

(id(B×B), u_on, id(B×B)), (id(B×B),u_off, id(B×B))
}
, where

u_on = { ((false, false), (true, false)), ((false, false), (false, true)) }
u_off = { ((false, true), (false, false)), ((true, false), (false, false)) }

We then define δ as

qoffu_on = qon
qonu_off = qoff

A visual representation of S is given in Figure 6.2.3. A logical view of the behavior is shown
in Figure 6.2.4.

qoff qon

u_on

u_off

Figure 6.2.3: Visual representation of Example 6.2.4.

(False, False) (True, False)

(False, True)(True, True)

qoff

qon

u on

u on

u off

Figure 6.2.4: Representation of the behavior.

The advantages of this definition of events, opposed to the definition for EFAs, are

• Since the events are now defined as relations instead of just a label, it is easier to derive the
meaning of an event from its definition. In Example 6.2.3, one can derive from definitions
of the events, which lights are set on or off.

• This way of modeling events is more flexible. As we have seen in Example 6.2.4, we can
model events that can have multiple possible outcomes. From an operational viewpoint, one
of the outcomes is chosen non-deterministically.

48

To further substantiate the last point, we are going to model the input device discussed in Sub-
section 5.3.4. Recall that we have a set of user input commands C = { c1, . . . , cn }. We again
take the domain D = C ∪ {� }, where � is our ‘no command’ token. We now model the events
‘inputCommand’ and ‘respond’ as binary relations on D.

inputCommand = { (�, c) | c ∈ C }
respond = { (c,�) | c ∈ C }

We then construct our D-system

Pi = (({ p0, p1 } , { p0 } , { p0 } ,Φ, δ), { respond } , { inputCommand } , {� })

where we have Φ = { (idD, inputCommand, idD), (idD, respnd, idD) }, and for δ we have

p0inputCommand = p1

p1respond = p0

A visual representation of Pi is shown in Figure 6.2.5. Observe that we use the similar method
when modeling the mutual exclusive sensor in Example 6.2.4.

p0 p1

inputCommand

respond

Figure 6.2.5: Visual representation of Pi

One can observe that modeling the input device as a D-system is more convenient as it was with
EFA. We now only have one transition edge for the event ‘inputCommand’. In Section 6.5 we
discuss how we can model a requirement in this specific case.

A disadvantage of this definition is that the total state space of our model can increase. For
instance, in Example 6.2.2, there is an extra Boolean value introduced which essentially coincides
with the current state.

6.3 Synchronization

As with FSAs and EFAs, we define synchronous product operator for D-systems, which allows for
modeling complex discrete event systems by modeling their (relatively) simple subcompontents
as D-systems. These subcompontents can then be composed via synchronization (synchronous
product).

Since two discrete event systems can have different domains, we need a method to compose two
domains. This ‘composed domain’ will then be the domain of the synchronous product of the
systems. Suppose we have domains D1 and D2. In order to compose the two domains, their
shared domain Ds must also be given. A domain composition can then be defined as follows.

Definition 6.3.1 Given domains D1 and D2. Suppose there is some shared domain Ds such
that D1 = D′1 ×Ds and D2 = Ds ×D′2, the domain composition (⊗) is then defined as

D1 ⊗D2 = D′1 ×Ds ×D′2

49

In the case that D1 and D2 are completely disjoint then the (⊗) is simply defined as

D1 ⊗D2 = D1 ×D2

End of Definition

We then define an operator on binary relations on D1 or D2, which projects these relations on
domain D1 ⊗D2.

Definition 6.3.2 Suppose we have domains D1 and D2 with shared domain D2. For φ ∈ D2
1 we

then have

φ|D1⊗D2
= { ((d1, ds, d2), (d′1, d

′
s, d2)) | (d1, ds, d2) ∈ D1 ⊗D2, (d

′
1, d
′
s) ∈ φ((d1, ds)) }

And for φ ∈ D2
2 we have

φ|D1⊗D2
= { ((d1, ds, d2), (d1, d

′
s, d
′
2)) | (d1, ds, d2) ∈ D1 ⊗D2, (d

′
s, d
′
2) ∈ φ((ds, d2)) }

End of Definition

We also define an operator for synchronizing a binary relation on D1 and a binary relation on D2.

Definition 6.3.3 Suppose we have domains D1 and D2 with shared domain Ds, given φ1 ∈ D2
1

and φ2 ∈ D2
2 we define φ1 || φ2 as

φ1 || φ2 = {((d1, ds, d2), (d′1, d
′
s, d
′
2)) |(d1, ds, d2) ∈ D1 ⊗D2,

(d′1, d
′
s) ∈ φ1((d1, ds)),

(d′s, d
′
2) ∈ φ2((ds, d2))}

End of Definition

We now define the synchronous product on two D-systems (||).

Definition 6.3.4 Suppose we have D1-system S1 = ((Q1, I1, T1,Φ1, δ1), E1
c , E

1
u, D

1
0) and D2-

system S2 = ((Q2, I2, T2,Φ2, δ2), E2
c , E

2
u, D

2
0). We then have (D1 ⊗D2)-system S1 || S2 = ((Q1 ×

Q2, I1 × I1, T1 × T1,Φ, δ), E
1
c
′ ∪ E2

c
′
, E1

u
′ ∪ E2

u
′
, D1

0 ⊗D2
0) where

• We first define the relevant event sets

E1
c
′

=
{
e|D1⊗D2

| e ∈ E1
c

}
E1
u
′

=
{
e|D1⊗D2

| e ∈ E1
u

}
E2
c
′

=
{
e|D1⊗D2

| e ∈ E2
c

}
E2
u
′

=
{
e|D1⊗D2

| e ∈ E2
u

}
For brevity we also say

E′1 = E1
c
′ ∪ E1

u
′

E′2 = E2
c
′ ∪ E2

u
′

50

• The initial domain of the product is as follows

D1
0 ⊗D2

0 =
{

(d1, ds, d2) | (d1, ds) ∈ D1
0, (ds, d2) ∈ D2

0

}
• For Φ and δ we have the following.

– For all e ∈ E′1 ∩ E′2: for each q1 ∈ Q1, q2 ∈ Q2, (φ1, e, φ1
′) ∈ Φ1 and (φ2, e, φ2

′) ∈ Φ2,
q1(φ1, e, φ1

′) 3 q′1, and q2(φ2, e, φ2
′) 3 q′2, then we have (φ1 || φ2, e, φ1

′ || φ2
′) ∈ Φ and

(q1, q2)(φ1 || φ2, e, φ1
′ || φ2

′) 3 (q′1, q
′
2).

– For all e ∈ E′1 \E′2: for each q1 ∈ Q1, and (φ1, e, φ1
′) ∈ Φ1 with q1(φ1, e, φ1

′) 3 q′1, then
(φ1|D1⊗D2

, e, φ1
′
|D1⊗D2

) ∈ Φ and for all q2 ∈ Q2 we have (q1, q2)(φ1|D1⊗D2
, e, φ1

′
|D1⊗D2

) 3
(q′1, q2) in δ.

– For all e ∈ E′2 \E′1: for each q2 ∈ Q2, and (φ2, e, φ2
′) ∈ Φ2 with q2(φ2, e, φ2

′) 3 q′2, then
(φ2|D1⊗D2

, e, φ2
′
|D1⊗D2

) ∈ Φ and for all q1 ∈ Q1 we have (q1, q2)(φ2|D1⊗D2
, e, φ2

′
|D1⊗D2

) 3
(q1, q

′
2) in δ.

End of Definition

Example 6.3.1 Suppose we have B-machine

S1 = ((
{
qoff, qon

}
,
{
qoff

}
,
{
qoff

}
,Φ1, δ1), ∅, E1

u, { false })

with E1
u = { u_on,u_off } and Φ = { (idB, u_on, idB), (idB, u_on, idB) }.

We have also (B×N)-machine

S2 = (({ q0, q1 } , { q0 } , { q1 } ,Φ2, δ2), ∅, E2
u, { (false, 0) })

with E2
u =

{
u_on|(B×N), u_off|(B×N)

}
and

Φ2 =
{

(id(B×N), u_on, id(B×N)), (id(B×N), u_off, id(B×N)), (g1,u_on, u1), (g2, u_on, id(B×N))
}

u_on,u_off are defined as in Example 6.2.1. Furthermore we have

g1 = { ((b, n), (b, n)) | b ∈ B, n ∈ N,n < 3 }
g2 = { ((b, n), (b, n)) | b ∈ B, n ∈ N,n ≥ 3 }
u1 = { ((b, n), (b, n+ 1)) | b ∈ B, n ∈ N }

For δ1 we have

qoffu_on = qon
qonu_off = qoff

For δ2 we have

q0(g1, u_on, u1) = q0

q0u_off = q0

q0(g2,u_on) = q1

q1u_on = q1

q1u_off = q1

51

We then have (B,N)-system

S1 || S2 = (M, ∅, E2
u, { (false, 0) })

with (B,N)-EventMachine

M = (
{

(qon, q0), (qoff, q0), (qon, q1), (qoff, q1)
}
,
{

(qoff, q0)
}
,
{

(qoff, q1)
}
, δ)

where

(qoff, q0)(g1, u_on, u1) = (qon, q0)

(qoff, q0)(g2, u_on) = (qon, q1)

(qon, q0)u_off = (qoff, q0)

(qoff, q1)u_on = (qon, q1)

(qon, q1)u_off = (qoff, q1)

q0 q1
(g2, u_on)

(g1, u_on, u1),u_off u_on, u_off

Figure 6.3.1: Visual representation of M2

(qoff, q0) (qon, q0)

(qon, q1) (qoff, q1)

(g1, u_on, u1)

u_off

(g2, u_on)

u_off

u_on

Figure 6.3.2: Visual representation of M1 ||M2

6.4 D-System Equivalence

In this section, we introduce an equivalence relation for D-systems. Such an equivalence relation
can aid us in determining algebraic properties of operators and functions on D-systems (such as
synchronization). To define an equivalence relation, we must determine what makes a D1-system
equivalent to some other D2-system, even when the domains D1 and D2 are not strictly equal to
each other. Since the events of D-systems are modeled after changes input/output variable values,
they are the ‘observable’ parts of our system. For this reason, equivalent D-systems should have
equivalent event traces.

In order to reason about the domain values and relations, we will first define an equivalence relation

52

on said domain values and relations.

Definition 6.4.1 Suppose we have domains D1 and D2. Suppose we have d ∈ (D1 ⊗D2) with
d = (d1, ds, d2) and d′ ∈ (D2 ⊗D1) with d′ = (d′2, d

′
s, d
′
1). We define ≡ as

d ≡ d′ ⇐⇒ (d1 = d′1) ∧ (ds = d′s) ∧ (d2 = d′2)

Suppose we have d1 ∈ D1 with d1 = (d′1, d
1
s), d2 ∈ D2 with d2 = (d′2, d

2
s), and d ∈ D1 ⊗D2 with

d = (d′′1 , ds, d
′′
2). We then say

d1 ≡ d ⇐⇒ d′1 = d′′1 ∧ d1
s = ds

d2 ≡ d ⇐⇒ d′2 = d′′2 ∧ d2
s = ds

End of Definition

According to the equivalence relations defined in Definition 6.4.1, it does not matter in which order
the domains are composed. Based on this equivalence relation we define the following ordering on
relations on composed domains.

Definition 6.4.2 Suppose we have φ ⊆ (D1 ⊗D2)2 and φ′ ⊆ (D2 ⊗D1)2, then we have

φ v φ′ ⇐⇒ (∀(d1, d2) ∈ φ : ∃(d′1, d′2) ∈ φ′ : d1 ≡ d′1 ∧ d2 ≡ d′2)

φ′ v φ ⇐⇒ (∀(d′1, d′2) ∈ φ′ : ∃(d1, d2) ∈ φ : d′1 ≡ d1 ∧ d′2 ≡ d2)

End of Definition

From which the following definition follows:

Definition 6.4.3 Suppose we have φ ∈ (D1 ⊗D2) and φ′ ∈ (D2 ⊗D1), then we have

φ ≡ φ′ ⇐⇒ φ v φ′ ∧ φ′ v φ

End of Definition

Now we can define an ordering (v) on the traces of tuples (φ, e, φ′) used in EventMachines. This
ordering can both be used on two labels (traces) on the same domain D and on a label on D1⊗D2

and a label of D2⊗D1 (where we need to use the ordering defined in Definition 6.4.2). We use the
ρt from Definition 6.2.3 to compare the relations of the label. Since we want equivalent event labels
in equivalent systems, we only compare traces when their respective event labels are equivalent
(for which we use et from Definition 6.2.4).

Definition 6.4.4 Suppose we have event set E on domain D and Φ ⊆ (P(D2) × E × P(D2)).
Then we define (v) on ω, ω′ ∈ Φ∗ as

ω v ω′ ⇐⇒ ρω ⊆ ρ′ω ∧ eω = eω′

Suppose we have event set E on domain D1⊗D2, event set E′ on domain D2⊗D1, Φ ⊆ P((D1⊗
D2)2) × E × P((D1 ⊗ D1)2) and Φ′ ⊆ P((D2 ⊗ D1)2) × E′ × P((D2 ⊗ D1)2). In this case the
definition of (v) on ω ∈ Φ∗ and ω′ ∈ Φ′

∗ is as follows.

ω v ω′ ⇐⇒ ρω v ρω′ ∧ eω ≡ eω′
ω′ v ω ⇐⇒ ρω′ v ρω ∧ eω′ ≡ eω

53

For both cases, we define (≡) on ω and ω′ as

ω ≡ ω′ ⇐⇒ ω v ω′ ∧ ω′ v ω

End of Definition

For D-systems with equivalent event traces, we can now define an ordering (4). The intuition of
S1 4 S2 is that S2 has ‘at least’ the behavior of S1. This means that for every path with label ω
in S1, there is a path in S2 with label ω′ where ω v ω′ (meaning that the paths have equivalent
event labels, but the trace from S2 may have a ‘bigger’ label relation).

Definition 6.4.5 Suppose we have D1-system S1 = ((Q1, I1, T1,Φ1, δ1), E1
c , E

1
u, D

1
0) and D2-

system S2 = ((Q2, I2, T2), E2
c , E

2
u, D

2
0). We define ordering (4) on systems as:

S1 4 S2 if and only if

• Suppose there is the path

q1
0

t11−→ q1
1

t12−→ q1
2

t13−→ . . .
t1n−→ q1

n

in S1 with label ω1 = t11 . . . t
1
n, then there exists path

q2
0

t21−→ q2
1

t22−→ q2
2

t23−→ . . .
t2m−−→ q2

m

in S2 with label ω2 = t21 . . . t
2
m, such that ω1 v ω2.

End of Definition

From the ordering (4) we define our equivalence relation (≡) on D-systems.

Definition 6.4.6 Suppose we have D1-system S1 = ((Q1, I1, T1,Φ1, δ1), E1
c , E

1
u, D

1
0) and D2-

system S2 = ((Q2, I2, T2), E2
c , E

2
u, D

2
0). We define the equivalence (w) on systems as follows

S1 w S2 ⇐⇒ S1 4 S2 ∧ S2 4 S1

End of Definition

In Appendix A proof outlines are given for associativity and commutativity properties of the
parallel composition operator || under the equivalence relation ≡. If an operator has these two
properties, then the order in which operands are applied to the operator does not matter.

6.5 D-System Based Requirements

We now discuss how we can use requirements modeled by a D-System R to refine a plant modeled
by a D-system P , as previously discussed with EFAs.

Definition 6.5.1 Suppose our plant is modeled by DP -system P , and our requirements are
modeled by DR-system R. Using synchronization, the refined plant is defined as

PR = P ||R

End of Definition

54

Example 6.5.1 Suppose we model a simple sensor B-system

S = ((
{
qoff, qon

}
,
{
qoff

}
,
{
qoff

}
,Φ, δ), ∅, Eu, { false })

as shown in Figure 6.5.1. We then have Eu = { s_switch } and Φ = { (idB, s_switch, idB) },
where

s_switch = { (false, true), (true, false) }

We then define δ as

qoffs_switch = qon
qons_switch = qoff

qoff qon

s_switch

s_switch

Figure 6.5.1: A simple sensor

We also model a simple actuator B-system

A = ((
{
qoff, qon

}
,
{
qoff

}
,
{
qoff

}
,Φ, δ), Ec, ∅, { false })

as shown in Figure 6.5.2. We then have Ec = { a_switch } and Φ = { (idB, a_switch, idB) },
where

a_switch = { (false, true), (true, false) }

We then define δ as

qoffa_switch = qon
qona_switch = qoff

qoff qon

a_switch

a_switch

Figure 6.5.2: A simple actuator.

We then have our plant (B×B)-system P = S ||A (Figure 6.5.3).

55

(qoff, qoff) (qon, qoff)

(qoff, qon) (qon, qon)

s_switch

s_switch

s_switch

s_switch

a_switch a_switch a_switch a_switch

Figure 6.5.3: Visual representation of P = S ||A

We now model the follow requirement:
‘The actuator may only switch on/off, after the sensor has switched on/off.’
Essentially, we say that the event a_switch may only occur after an occurrence of event
s_switch. The requirement is modeled by (Bs ×Ba)-system

R = (({ r0, r1 } , { r0 } , { r0 } ,Φ, δ), Ec, Eu, { (false, false) })

as shown in Figure 6.5.4 with

Φ =
{

(id(Bs×Ba), s_switch, id(Bs×Ba)), (id(Bs×Ba), a_switch, id(Bs×Ba))
}

r0 r1

s_switch
s_switch

a_switch

Figure 6.5.4: Visual representation of R.

Example 6.5.2 Given the sensor and actuator as given in Example 6.5.1, we model the
following requirement:
‘The actuator may only switch on/off, after the sensor has been activated.’
The requirement is modeled by (Bs,Ba)-system R (Figure 6.5.5), with type
Φ = { (s_switch, ioff), (s_switch, ion), s_switch, a_switch } where

ioff = { ((false, ba), (false, ba)) | ba ∈ B }
ion = { ((true, ba), (true, ba)) | ba ∈ B }

56

r0 r1

(s_switch, ioff)
(s_switch, ion)

s_switch

a_switch

Figure 6.5.5: Visual representation of R

Example 6.5.3 Given the sensor and actuator as given in Example 6.5.1, we model the
following requirement:
‘The actuator may only switch on/off, after sensor has been activated 3 times.’
The requirement is modeled by (Bs,Ba,N)-system R (Figure 6.5.6) where

g1 = { ((b, b, n), (b, b, n)) | b, b ∈ B, n < 3 }
g2 = { ((b, b, n), (b, b, n)) | b, b ∈ B, n ≥ 3 }
u1 = { ((b, b, n), (b, b, n+ 1)) | b, b ∈ B, n ∈ N }
u2 = { ((b, b, n), (b, b, 0)) | b, b ∈ B, n ∈ N }

ioff = { ((false, ba), (false, ba)) | ba ∈ B }
ion = { ((true, ba), (true, ba)) | ba ∈ B }

r0 r1

(g1, s_switch, ion;u1),
(s_switch, ioff) (g2, s_switch, ion;u2) s_switch

a_switch

Figure 6.5.6: Visual representation of R

Example 6.5.4 Suppose we have a mutex sensor modeled by (B×B)-system

S = ((
{
qoff, qon

}
,
{
qoff

}
,
{
qoff

}
,Φ, δ), ∅, Ec, { (false, false) })

as shown in Figure 6.5.7, where Eu = { s_switch } and Φ =
{

(id(B×B), s_switch, id(B×B))
}
,

where

s_switch = {((false, false), (true, false)), ((false, false), (false, true))
((false, true), (false, false)), ((true, false), (false, false))}

where δ is defined as

qoffs_switch = qon
qons_switch = qoff

57

qoff qon

s_switch

s_switch

Figure 6.5.7: Visual representation of S.

Given the mutex sensor and the actuator as given in Example 6.5.1, we model the following
requirement:
‘The actuator may only switch after alternating sensor activation.’
The requirement is modeled by (Bs1 ,Bs2Ba,B)-system R (Figure 6.5.8), where

i1 = { ((false, bs2 , ba, false), (false, bs2 , ba, false)) | bs2 ∈ Bs2 , ba ∈ Ba }
∪ { ((bs1 , false, ba, true), (bs1 , false, ba, true)) | bs1 ∈ Bs1 , ba ∈ Ba }

i2 = { ((true, bs2 , ba, false), (true, bs2 , ba, true)) | bs2 ∈ Bs2 , ba ∈ Ba }
∪ { ((bs1 , true, ba, true), (bs1 , true, ba, false)) | bs1 ∈ Bs1 , ba ∈ Ba }

q0 q1

(s_switch, i2)

a_switch

(s_switch, i1) s_switch

Figure 6.5.8: Visual representation of R.

Recall the D-system model of the input device from Subsection 5.3.4, introduced in Subsec-
tion 6.2.5. We now discuss how a requirement concerning the input device can be modeled as
a D-system. Again we want to model the desired behavior after the system receives some com-
mand ck from the user. Rj is then modeled by the (D ×D′)-system

Rj = (({ r0, r1, . . . , rm } , { r0 } , { r0 } ,Φ, δ),
{
respond′, . . .

}
,
{
inputCommand′, . . .

}
, {� })

Again, we haveD = C∪{� } andD′ are other variables (if needed). inputCommand′ and respond′

are the respective events inputCommand and respond projected on the domain D×D′. We then
have

Φ = {(id(D×D′), respond’, id(D×D′)),

(id(D×D′), inputCommand′, otherCommand),

(id(D×D′), inputCommand′, checkCommand),

. . .

}

Where we have the relations ‘checkCommand’, which checks if the given command is ck, and
‘otherEvent’, which checks if the given command is not ck. These relations are defined as follows.

checkCommand = { ((ck, d
′), (ck, d

′)) | d′ ∈ D′ }
otherCommand = { ((c, d′), (c, d′)) | d′ ∈ D′, c ∈ C \ { ck } }

58

For δ we have

r0(inputCommand′, otherCommand) = r0

r0respond′ = r0

r0(inputCommand′, checkCommand) = r1

. . .

rmrespond′ = r0

A visual representation of Rj is shown in Figure 6.5.9.

r0 r1

(inputCommand′, otherCommand)

respond′ rm

respond′

(inputCommand′, checkCommand)

Figure 6.5.9: The requirement Rj

We can observe that modeling requirements with this approach is more convenient than the first
proposed approach using EFAs in Subsection 5.3.4.

6.6 Restrictions

As explained in the second discussed issue of Subsection 5.3.4, separate subcomponents of a plant
can have inter-dependencies. An example of this would be a sensor which can only activate when
some actuator is activated in practical situations. In order to address this we introduce restrictions,
which can be used to prevent certain events from happening in certain states of a plant.

Definition 6.6.1 Suppose we have D-system S = ((Q, I, T,Φ, δ), Ec, Eu, D0). We define a
restriction as a tuple of type (Ec ∪ Eu) × Q. For a restriction (e, q) we then say that q restricts
event e.

End of Definition

We then define the operation (↓) which ‘applies’ a set of these restrictions to some plant D-
system. The operation (↓) can then be used to deal with the physical restrictions as discussed in
Subsection 5.3.4.

Definition 6.6.2 Suppose we have D-system S = ((Q, I, T,Φ, δ), Ec, Eu, D0). We define the
restrict operator (↓). Given S and a set of restrictions R ⊆ P((Ec ∪ Eu) × Q), (↓) will return a
D-system S′ which is S with the restrictions from R applied:

S ↓ R = ((Q, I, T,Φ, δ′), Ec, Eu, D0)

59

with
q(φ, e, φ′) 3 q′ in δ′ ⇐⇒ q(φ, e, φ′) 3 q′ in δ ∧ (e, q) /∈ R

End of Definition

Example 6.6.1 Suppose we have P = S || A as given in Example 6.5.1, and that we have
the following set of restrictions.

R =
{

(s_switch, (qoff, qoff)), (s_switch, (qon, qon))
}

P ↓ R is shown in Figure 6.6.1, where transitions which are in P , but are not in P ↓ R are
drawn in red.

(qoff, qoff) (qon, qoff)

(qoff, qon) (qon, qon)

s_switch

s_switch

s_switch

s_switch

a_switch a_switch a_switch a_switch

Figure 6.6.1: Visual representation of P ↓ R.

6.7 Supervisory Control

Suppose we have our plant D-system P = ((Q, I, T,Φ, δ), Ec, Eu, D0). Let PR be our refined plant
with respect to some requirementsD-system R. We now introduce the notions of non-blockingness,
controllability and (proper) supervisor for D-systems.

• q ∈ Q is non-blocking if for each d ∈ D there exists t ∈ Φ∗ such that qt ∩ T 6= ∅ and for the
label relation we have ρt(d) 6= ∅.

• P is non-blocking if each reachable state in P is non-blocking.

• Suppose we have D′-system S. S is controllable with respect to P when: if there is some
q ∈ Q, d ∈ D and e ∈ Eu with some transition qφ 6= ∅ and (φ;e;φ′)(d) 6= ∅, then for every
(q, q′) in P || S and (d, d′) ∈ D ⊗D′ there exists some transition (q, q′)(φ′′, e|D⊗D′ , φ

′′′) 6= ∅
in P || S for which (φ′′;e|D⊗D′ ;φ

′′′)((d, d′)) 6= ∅.

• D ×D-machine S is a proper supervisor for P if S 4 PR, S is controllable with respect to
P and P || S is non-blocking.

• Suppose we have proper supervisor S. S is a maximally permissive supervisor if for any
proper supervisor S′ we have S′ 4 S.

60

6.8 Supervisory Control Synthesis

In this section, we discuss a solution for the supervisory control problem, meaning that we define
an algorithm for computing a maximally permissive supervisor for (refined) plant P . In order to
make the problem easier to solve, we first present a reduction of the problem domain to a more
concise domain. We then present an algorithm for this reduced version of the problem. Lastly, we
present the complete algorithm, which combines the reduction procedure with the aforementioned
algorithm.

6.8.1 Intuition of the Reduction

As discussed in Subsection 5.3.1, an EFA can be reduced to an FSA, which essentially comes down
to eliminating the domain D by reducing it to extra state space. We can also eliminate the state
space L by reducing it to an extra domain variable, meaning that we end up with a new domain
D′ = D × L.
Suppose we have EFA G = (L,D,Σ, E, L0, D0, Lm). Our simplified EFA is defined as

G′ = ({ l0, l1 } , D × L,Σ ∪ {σf } , E′, { l0 } , D0 × L0, { l1 })

with

• For each e ∈ E, we have e′ ∈ E′ such that

– o′e = l0,

– t′e = l0,

– σ′e = σe,

– g′e((d, l)) = ge(d) ∧ l = oe,

– f ′e((d, l)) = (fe(d), te).

• And we have e′ ∈ E such that

– o′e = l0,

– t′e = l1,

– σ′e = σf ,

– g′e((d, l)) = l ∈ Lm,

– f ′e((d, l)) = idD×L.

q0 q1

l ∈ Lf
f

idD×L

Figure 6.8.1: The simplified plant

61

Based on this concept we can reduce the EFA G to two sets of ‘updates’ on a domain D′ = D×L
of the form (g, u, σ), where g is the guard predicate, u is the update function of type D′ → D′

and σ is the event. The updates with σ ∈ Σc are in the set of controllable updates C, and the
updates with σ ∈ Σu are in the set of uncontrollable updates U . We also introduce a finalization
predicate F : D′ → B, with F ((d, l)) = l ∈ Lm.

We can now apply the same concept to D-systems.

Suppose we have plant D-system P = ((Q, I, T,Φ, δ), Ec, Eu, D0). We can construct (D × Q)-
system S′ = (({ qi, qf } , { qi } , { qf } ,Φ′, δ′), Ec, Eu, D0). For every (φ, e, φ′) ∈ Φ then for all
q ∈ Q with q(φ, e, φ′) = Q′ 6= ∅ we have

t = (φ|D×Q, e|D×Q, φ
′
|D×Q; { ((d, q), (d, q′)) | d ∈ D, q′ ∈ Q′ })

with t ∈ Φ′ and qit = qi in δ′. Furthermore, we have f = ({ ((d, q), (d, q)) | d ∈ D, q ∈ T } , τ, idD×Q) ∈
Φ′ and qif = qf . A visual representation of P ′ is shown in Figure 6.8.2.

qi qf
f

Figure 6.8.2: The reduced plant

Observe that we now essentially have a set of controllable and uncontrollable updates C,U ⊆ Φ′,
and a finalization predicate F ((d, q)) = q ∈ T .

Note In order to reason that the reduced plant is equivalent to the original plant, we have to
change the definition of (w), since the current definition does not allow that the two D-systems
have different domains.

6.8.2 Reduction of the Problem Domain

Based on the intuition discussed in the previous section, we now define our reduction procedure
on the supervisory control problem.

Suppose we we have plant refined plant D-system

P = ((Q, I, T,Φ, δ), Ec, Eu, D0)

, we compute the update sets C and U , and the finalization predicate F as follows:

1. Let D′ = D ×Q

2. Let C and U be two empty sets.

3. For each q(φ, e, φ′) = Q′ in δ:

• Let t = (φ|D×Q, e|D×Q, φ
′
|D×Q; { ((d, q), (d, q′)) | d ∈ D, q′ ∈ Q′ }).

62

• Add t to C if e is controllable, otherwise add t to U .

4. Let F : D′ → B such that N0(d, q) = q ∈ T .

We will now define the relevant definitions for supervisory control synthesis on domain D, sets
C,U ⊆ P(D2)3 and finalization predicate F : D → B.

• We define the ordering � as (C ′, U ′) � (C,U) if for each t′ ∈ (C ′ ∪ U ′) with t′ = (φ′, e, φ′′)
there is t ∈ (C ∪ U) with t = (φ, e, φ′) for which each (d, d′) ∈ ρt′ we have (d, d′) ∈ ρt.

• d ∈ D is non-blocking with respect to C and U if there exists ω ∈ (C ∪ U)∗ such that
d′ ∈ ρω(d) and F (d′) = true.

• d ∈ D is completely non-blocking with respect to C and U if there exists ω ∈ (C ∪ U)∗ such
that d′ ∈ ρω(d) is blocking.

• C and U are non-blocking if for each non-blocking d ∈ D, d is either completely non-blocking
or if there exists ω ∈ (C ∪ U)∗ for which there is d′ ∈ ρω(d) which is blocking, then ω ∈ U∗.

• Suppose we have C ′, U ′ ⊆ P(D2)3. C ′ and U ′ are controllable with respect to C and U
if for each t ∈ U with t = (φ, e, φ′) for which d ∈ D has ρt(d) 6= ∅, there is t′ ∈ U ′ with
t′ = (φ′′, e, φ′′′) for which ρt′(d) 6= ∅.

• C ′ and U ′ form a proper supervisor for C and U if (C ′, U ′) � (C,U), C ′ and U ′ are control-
lable with respect to C and U , and C ′ and U ′ are non-blocking.

• C ′ and U ′ form a maximally permissive proper supervisor for C and U when, for any other
proper supervisor C ′′ and U ′′, we have the following. Suppose we have d ∈ D which is
completely non-blocking with respect to C ′′ and U ′′. Let ω′ ∈ (C ′′ ∪ U ′′) with d′ ∈ ρω′(d),
then there exists ω ∈ (C ′ ∪ U ′)∗ such that d′ ∈ ρω(d).

The supervisory control problem is now defined as follows: Given domain D, controllable and
uncontrollable updates C and U , and finalization predicate F : D → B, compute a maximally
permissive supervisor for C and U .

Suppose we have a maximally permissive supervisor for C and U , formed by C ′ and U ′, then
we can create a maximally permissive supervisor S for our refined plant P as follows: construct
supervisor D′-system S = (({ q } , { q } , { q } , C ′ ∪ U ′, δ′), Ec, Eu, D0 × I) with for all t ∈ C ′ ∪ U ′
we have qt = q.

6.8.3 Algorithm for Simplified Problem

Given domain D, controllable and uncontrollable updates C and U and finalization predicate
F : D → B, Algorithm 3 computes controllable updates set C ′ such that C ′ and U are the most

63

permissive supervisor for C and U .

Algorithm 3: Supervisory Synthesis for D-systems
Data: Domain D, Set of controllable and uncontrollable updates C and U , finalization

predicate B : D → B

Result: Update relations C
1 i← 0 ;
2 C0 ← C ;
3 ∀d ∈ D : B(d)← false ;
4 do
5 N ← FixPredicate(B, Ci ∪ U) ;
6 ∀d ∈ D : B(d)← ¬N(d) ∨B(d) ;
7 B ← FixPredicate(B,U) ;
8 ∀(φ, e, φ′) ∈ Ci : (φ, e, φ′; { (d, d) | d ∈ D,¬B(d) }) ∈ Ci+1 ;
9 i← i+ 1 ;

10 while Ci−1 6= Ci;
11 return Ci−1

12 Function FixPredicate(P : D → B, R ⊆ P(D2))
13 i← 0 ;
14 P0 ← P ;
15 do
16 Pi+1(d)← Pi(d) ∨∨φ∈R∨d′∈ρφ(d) Pi(d

′);
17 i← i+ 1 ;
18 while ¬∀d ∈ D : Pi−1(d) = Pi(d);
19 return Pi−1

Observe that this algorithm is mostly based on supervisory control synthesis algorithm for EFAs
(Algorithm 2). In Appendix B, an outline of the proof of correctness for Algorithm 3. The main
purpose of creating this outline, is to give clarity in what properties the algorithm adheres to, and
where the definitions of Subsection 6.8.2 should be adjusted.

6.8.4 Complete Algorithm

We compute a proper supervisor for some refined plant D-system P = ((Q, I, T,Φ, δ), Ec, Eu, D0)
as follows

1. Let D′ = D ×Q

2. Let C and U be two empty sets.

3. For each q(φ, e, φ′) = Q′ in δ:

• Let t = (φ|D×Q, e|D×Q, φ
′
|D×Q; { ((d, q), (d, q′)) | d ∈ D, q′ ∈ Q′ }).

• Add t to C if e is controllable, otherwise add t to U .

4. Let F : D′ → B such that N0(d, q) = q ∈ T .

5. Use Algorithm 3 with input (D′, C, U,N0) to compute C ′.

6. Construct supervisor D′-system S = (({ q } , { q } , { q } , C ′ ∪ U, δ′), Ec, Eu, D0 × I) with for
all t ∈ C ′ ∪ U we have qt = q.

Observe that the result D′-machine S is a maximally permissive supervisor for P .

64

Example 6.8.1 We base this example on Example 5.3.3. Suppose we have our (refined)
plant (B × B × { 0, . . . , 10 })-system P = (({ q0, q1, q2 } , { q0 } , { q0 } ,Φ, δ), Ec, Eu, D0) (Fig-
ure 6.8.3). Ec = { s_switch }, Eu = { a_switch } and

Φ = { (g1, a_switch, u), (g2, a_switch, u), (g3, s_switch, u) }

with

s_switch = { ((bs, ba, n), (¬bs, ba, n)) }
a_switch = { ((bs, ba, n), (bs,¬ba, n)) }

g1 = { ((bs, ba, n), (bs, ba, n)) | n < 8 }
g2 = { ((bs, ba, n), (bs, ba, n)) | n < 9 }
g3 = { ((bs, ba, n), (bs, ba, n)) | bs, ba ∈ B, n ∈ N, n < 7 }
u = { ((bs, ba, n), (bs, ba, n+ 1)) | bs, ba ∈ B, n ∈ N }

δ is defined as

q0(g1, a_switch, u) = q1

q1(g2, a_switch, u) = q2

q2(g3, s_switch, u) = q0

q0 q1 q2
(g1, a_switch, u) (g2, a_switch, u)

(g3, s_switch, u)

Figure 6.8.3: Visual representation of S.

We now compute the most-permissive supervisor for S.

• We first construct the sets C and U of binary relations on (B × B × { 0, . . . 10 } ×
{ q0, q1, q2 }).

U = {(g3, s_switch, u; { ((bs, ba, n, q2), (bs, ba, n, q0)) })}
C = {(g1, a_switch, u; { ((bs, ba, n, q0), (bs, ba, n, q1)) })

(g2, a_switch, u; { ((bs, ba, n, q1), (bs, ba, n, q2)) })

We also construct the finalization predicate F (((bs, ba, n, q)) = q ∈ { q0 }.

• We perform the first iteration of the algorithm. First the non-blocking predicate N is

65

computed:

N((bs, ba, n, q0)) = true

N((bs, ba, n, q2)) = true ⇐⇒ n < 7

N((bs, ba, n, q1)) = true ⇐⇒ n < 6

Then the bad predicate B is computed

B((bs, ba, n, q0)) = false

B((bs, ba, n, q1)) = true ⇐⇒ n ≥ 6

B((bs, ba, n, q2)) = true ⇐⇒ n = 7

We then update the controllable update relations:

C1 = {(g1, a_switch, u; { ((bs, ba, n, q0), (bs, ba, n, q1)) } ; { ((bs, ba, n, q), (bs, ba, n, q)) | n < 6 })
(g2, a_switch, u; { ((bs, ba, n, q1), (bs, ba, n, q2)) } ; { ((bs, ba, n, q), (bs, ba, n, q)) | n < 7 })}

• We now perform the second iteration of the algorithm. First the non-blocking predicate
N is computed:

N((bs, ba, n, q0)) = true

N((bs, ba, n, q2)) = true ⇐⇒ n < 7

N((bs, ba, n, q1)) = true ⇐⇒ n < 6

Then the bad predicate B is computed

B((bs, ba, n, q0)) = false

B((bs, ba, n, q1)) = true ⇐⇒ n ≥ 6

B((bs, ba, n, q2)) = true ⇐⇒ n = 7

Since the predicate B does is equivalent to the bad predicate computed in the previous
iteration, C2 will be equivalent to C1, which implies that the algorithm terminates.

• Using the updated relation set C1 and U we will construct the supervisor as seen in
Figure 6.8.4.

q

(g1, a_switch, u; { ((bs, ba, n, q0), (bs, ba, n, q1)) } ; { ((bs, ba, n, q), (bs, ba, n, q)) | n < 6 }),
(g2, a_switch, u; { ((bs, ba, n, q1), (bs, ba, n, q2)) } ; { ((bs, ba, n, q), (bs, ba, n, q)) | n < 7 })

(g2, a_switch, u; { ((bs, ba, n, q1), (bs, ba, n, q2)) })

Figure 6.8.4: Most permissive supervisor for S.

66

Example 6.8.2 Suppose we have (refined) plant { 0, 1, 2, 3 }-system P as shown in Fig-
ure 6.8.5 where

player1Take = { (c, c− 1) | c ∈ { 0, . . . , 5 } }
∪ { (c, c− 2) | c ∈ { 0, . . . , 5 } }

player2Take = { (c, c− 1) | c ∈ { 0, . . . , 5 } }
∪ { (c, c− 2) | c ∈ { 0, . . . , 5 } }

g1 = { (c, c) | c ∈ { 0, . . . , 5 } , c > 0 }
g2 = { (c, c) | c ∈ { 0, . . . , 5 } , c = 0 }
N0 = { 3 }

P essentially models a game where two players take turns in either taking one or two objects,
where the player taking the last object loses the game. Player 1, controlled by the system,
takes the first turn. Player 2 is controlled by the environment. The system enters its terminal
state when player 1 wins the game. The game starts with 3 objects.

q0 q1

q2 q3

(player1Take, g1)

(player2Take, g1)

(player1Take, g2) (player2Take, g2)

Figure 6.8.5: Visual representation of P .

We now compute the most-permissive supervisor for P using the complete algorithm.

• We first construct the sets C and U of binary relations onD = ({ 0, 1, 2, 3 }×{ q0, q1, q2, q3 }).

U = {(idD, player2Take, g1; { ((n, q1), (n, q0)) }),
(idD, player2Take, g2; { ((n, q1), (n, q3)) })}

C = {(idD, player1Take, g1; { ((n, q0), (n, q1)) }),
(idD, player1Take, g2; { ((n, q0), (n, q2)) })}

We also construct the finalization predicate F ((n, q)) = q ∈ { q3 }.

• We perform the first iteration of the algorithm. First the non-blocking predicate N is
computed:

N((n, q3)) = true

N((n, q1)) = true ⇐⇒ n < 3

N((n, q0)) = true ⇐⇒ n = 3

67

Then the bad predicate B is computed

B(n, q2) = true

B(1, q0) = true

B(3, q1) = true

B(2, q1) = true

We then update the controllable update relations:

C1 = {(idD, player1Take, g1; { ((n, q0), (n, q1)) } ; { ((n, q), (n, q)) | n 6= 2 }),
(idD, player1Take, g2; { ((n, q0), (n, q2)) } ;∅)}

• We now perform the second iteration of the algorithm. First the non-blocking predicate
N is computed:

N((n, q3)) = true

N((n, q1)) = true ⇐⇒ n < 3

N((n, q0)) = true ⇐⇒ n = 3

Then the bad predicate B is computed

B(n, q2) = true

B(1, q0) = true

B(3, q1) = true

B(2, q1) = true

Since the predicate B does is equivalent to the bad predicate computed in the previous
iteration, C2 will be equivalent to C1, which implies that the algorithm terminates.

• Using the updated relation set C1 and U we will construct the supervisor as seen in
Figure 6.8.6.

q

(idD, player1Take, g1; { ((n, q0), (n, q1)) } ; { ((n, q), (n, q)) | n 6= 2 }),
(idD, player1Take, g2; { ((n, q0), (n, q2)) } ;∅)

(idD,player2Take, g1; { ((n, q1), (n, q0)) }),
(idD, player2Take, g2; { ((n, q1), (n, q3)) })

Figure 6.8.6: Most permissive supervisor for P

68

Part III

Language and Tooling

69

Chapter 7

Current Language and Toolchain

In this chapter we discuss the Compositional Interchange Format version 3 (CIF3), which consists
of a language and a toolchain. The CIF3 language is a modeling language based on the EFA
formalism as discussed in Section 5.3. In the CIF3 language, one can model a discrete event
system (consisting of the plant and the requirements) in the form of multiple EFAs. Syntax is
provided for defining the domain (using variables), states, events, guards, functions and transitions
of an EFA. In a specification, multiple EFAs can be defined. In the toolchain, these EFAs are
composed using the synchronous product operator. We discuss the language more in depth in
Section 7.1. The toolchain contains tools for the simulation of the defined system using a given
graphical representation of the modeled system, supervisory control synthesis and some code
generation tools. We discuss the tools more in depth in Section 7.2. A more in depth description
of the CIF3 language and toolchain can be found in [1].

7.1 Language Description

As previously discussed, the CIF3 language is based on the EFA formalism. Suppose we have EFA

A = (L,D,Σ, E, L0, D0, Lm)

where D = D1×· · ·×Dk. Each Di is some type (e.g. integer, Boolean). We give the variable name
di to the i’th tuple element of each element fromD. For the setD0 we haveD0 = { (d1,0, . . . , dk,0) }.
The event set Σ is partitioned into the set of controllable events Σc =

{
σ1
c , . . . , σ

n
c

}
and the set

of uncontrollable events Σu =
{
σ1
u, . . . , σ

m
u

}
. This EFA can then be modeled in CIF3 in the

following way.

1 automaton automatonName:
2 controllable event σ1

c

3 ...
4 controllable event σn

c

5

6 uncontrollable event σ1
u

7 ...
8 uncontrollable event σm

u

9

10 disc D1 d1 = d1,0
11 . . .
12 disc Dk dk = dk,0
13

14 // for each l ∈ L

70

15 location l:
16 initial; // when l ∈ L0

17 marked; // when l ∈ Lm

18

19 // for each e ∈ E with oe = l
20 edge σe when ge do fe goto te;
21

22 end

We can model EFA A2 as given in Example 5.3.1 as follows.

1 automaton A2:
2 controllable event a
3 controllable event b
4

5 disc int x = 0
6

7 location loc0:
8 initial;
9

10 edge a when x < 3 do x := x + 1 goto loc0;
11 edge a when x >= 3 goto loc1;
12 edge b goto loc0;
13

14 location loc1:
15 marked;
16

17 edge a goto loc1;
18 edge b goto loc1;
19 end

The plant P = P1, . . . , Pn and requirement R1, . . . , Rm can be defined as follows.

1 plant P1:
2 // automaton definition
3 . . .
4 end
5 . . .
6 plant Pn:
7 . . .
8 end
9

10 requirement R1:
11 // automaton definition
12 . . .
13 end
14 . . .
15 requirement Rm:
16 . . .
17 end

Events and variables of the plant automata can be referred to in the requirement automata using
the point notation. P and R are constructed using the synchronous product operator as discussed
in Definition 5.3.2 (meaning P = P1 || · · · ||Pn and R = R1 || · · · ||Rm). From P and R the refined
plant with forbidden locations Lm can then be constructed according to Definition 5.3.3, which
will be the input for Algorithm 2.

The CIF3 language is used in a number of projects. Two of which are the modeling of Lock III
(a waterway lock consisting of a single chamber) [20], and the modeling of the Princess Marijke

71

complex (which is a complex consisting of two waterway locks and a storm surge barrier) [21]. In
these CIF3 models, the following issues regarding the CIF3 language can be observed.

• Defining a number of simple actuators (like buttons) is cumbersome, it would be more
convenient if a list (or dictionary) of (indexed) buttons could be defined.

• A method to encapsulate subsystems might be useful. In the current situation, when access-
ing the state/event of some subsystem (for example a gate), then the user must check the
states of the elementary actuators and sensors of the subsystem.

• The first issue described in Subsection 5.3.4 surfaces in the definition of user command
automata. In the model an event is created for each user command.

• Single-state automata have to be created to model physical relations between separate plant
components. This is also discussed in Subsection 5.3.4.

7.2 Toolchain Description

The CIF3 toolchain is developed in Java within the Eclipse Modeling Framework (EMF). The
tools from EMF are used to model the abstract syntax of the CIF3 language. Based on this
abstract syntax model, Java classes are generated which are used in the entire toolchain. This
toolset consists of the following.

• A parser for the language described in Section 7.1.

• A type checker for functions and guards in CIF3 models.

• A simulator for CIF3 models. The user can provide a visual representation of the system
in the form of an SVG file. The simulator can then animate this SVG file according to the
variable values of the system.

• Implementation of the supervisory control algorithms for FSA (Algorithm 1), and EFA
(Algorithm 2).

• Validation tools which test for the blocking, non-determinism, and controllability conditions.

• Tools for generating code from CIF3 Models. The following target languages are supported.

– yED, which is a tool for graph drawing.

– The verification languages mCRL2 and UPPAAL.

– The general purpose languages Java and C.

– Simulink, which is a MATLAB-based graphical modeling environment.

– Programmable Logic Controller (PLC) code.

A potential problem of the current CIF3 toolchain, could be that the semantics of the CIF3 lan-
guage is not made clear. An ‘interpretation’ of the language is implemented for each component.
This lack of a central definition of the semantics, could lead to consistency, maintainability and ex-
tendibility problems. For example, suppose that some language extension must be implemented.
After extending the metamodel, all interpretations of the metamodel (syntax) in the different
components (for example, in the simulator and the supervisory control synthesis algorithm imple-
mentation) need to be adapted accordingly, which can lead to inconsistency.

72

Chapter 8

New Language and Tooling

In this chapter we will discuss the implementation of a proof of concept for the language and
toolchain for X-Control. X-Control will be our DSL for modeling discrete event systems based on
D-systems. We first discuss the approach we are going to apply when designing our language. We
also discuss the toolchain, which consists of a simulator X-Control models, and an implementation
of the supervisory control synthesis algorithm. Lastly, we will judge how extendible our language
is by proposing a number of extensions.

8.1 Approach

In this section we discuss the approach which we are going to apply for designing X-Control. We
will first discuss some background theory and possible approaches as discussed in [11].

8.1.1 Background

The two major aspects of designing formal languages, are syntax and semantics. The syntax of
a DSL is usually defined in the form of a context-free grammar. There are multiple methods for
defining semantics of DSLs. The method that we are going to discuss, is the denotational method.
Denotational semantics consists of the following.

• The semantic domain, which is a collection of semantic values and operations. In CIF, the
definition of the simulator could be seen as the description of the semantic domain.

• the valuation function, which is a mapping from the syntax to the semantics. This function
essentially gives meaning to the syntax. In CIF, the interpretation of the metamodel for the
simulator could be seen as a valuation function.

In order to put a DSL into practice, the syntax and semantics are expressed using a programming
language. We then say this programming language is used as a metalanguage. The values of the
semantic domain can be defined as value of types defined in the metalanguage. The operations of
the semantic domain can be implemented as functions on these types. There are two implemen-
tation styles for DSLs. One being the external DSL style: a standalone language which is parsed
and interpreted by the metalanguage. The other being the internal DSL style (also called the
embedded style), which exists in the metalanguage itself. For describing syntax using the internal
DSL style in the metalanguage, there are two options:

73

• Deep embedding, where the syntax is explicitly represented by a data type. The constructors
represent the grammar productions of the language.

• Shallow embedding, where the constructors of the semantic domain are used for operations of
the DSL. Function definitions are introduced for operations that are not directly represented
by the constructors of the semantic domain. Syntax described in this style is relatively easy
to modify, which makes it especially useful when the language is still frequently changing.

For designing languages the authors of [11] discuss the following two approaches.

• The syntax-driven approach: first the syntax of the languages is designed, then the semantic
domain is constructed. This is the more traditional approach.

• The semantics-driven approach: first the semantic domain of the languages is constructed,
then syntax is designed for this semantic domain.

In the following sections we discuss both approaches more in depth.

8.1.2 Syntax-driven design

When applying the syntax-driven design approach, one starts with enumerating the features the
language should have. For example, in the case of a calendar DSL, features as adding, moving
and deleting appointments are denoted. Syntax is then designed for these features. After the
syntax is designed, its semantic domain is defined. This means the types of the domain values and
the operations on said values are defined. Lastly, a valuation function is constructed for mapping
abstract syntax values to semantic domain values.

This approach is clearly a more feature-driven approach. An advantage of this approach is that
we end up with a semantic domain that works very well for the syntax. This implies that it also
implements the features enumerated in the beginning of the process. According to the authors
of [11], a major disadvantage of this approach is that the resulting language design will be rigid,
meaning that future extensions will be difficult to implement.

8.1.3 Semantics-driven design

When applying the semantics-driven design approach, one starts with identifying and implement-
ing a small and compositional semantics core. This approach forces language designers to carefully
consider the essence of what their language represents at the start of designing process.

The semantic driven design process for some domain D consists of the following steps.

1. Decompose the domain D into subdomains D1, D2, . . . , and establishing the relationships
between these domains.

2. Model the decomposed semantic domain in the metalanguage. Each subdomain forms the
basis for a micro DSL. The identified relationships between subdomains are modeled as lan-
guage schemas. An example of such a language schema would be a mapping for establishing
a relationship between instances of types from two different micro DSLs.

3. Design the syntax. This step can also be broken down into two steps:

(a) Construct the syntax for the micro DSLs.
(b) Construct the domain integration syntax. Domain integration syntax represents higher-

level operations of our DSL. Such operations cover multiple micro DSLs.

The authors of [11] advocate for this approach, since it leads to a more compositional language
design (if applied correctly), which are more general and reusable, and less ad hoc.

74

8.1.4 Our Approach

Based on the findings in [11], we will follow the following approach for designing X-Control.

• We apply the syntax driven approach, since according to the authors it leads to a more
compositional design.

• We will implement our language using the internal DSL style, since implementing and mod-
ifying internal DSLs is relatively easy.

• For our metalanguage we will use Haskell, since it well established and often used as a
metalanguage.

8.2 Semantic Domain of X-Control

In this section we discuss the semantic domain of X-Control. We discuss all subdomains of our
DSL, which we implement as types in our metalanguage. These subdomains correspond to the
mathematical constructs discussed in Chapter 6. The implementations of these constructs should
correspond with their mathematical notations. We establish relations between the subdomains
using type variables in Haskell.

BinaryRel Machine Automatonhas type is instance of

Event

is instance of

EventUpdate

has

has EventMachine

is instance of

has type

System
has controllable
and uncontrollable

has machine

Restriction

has event

has state of

Figure 8.2.1: Diagram showing relations between the subdomains

An overview of the relations between our subdomains is shown in Figure 8.2.1. In the follow
subsections we discuss the separate subdomains, in order of occurrence in Chapter 6. A more
detailed description of the implementation of the semantic domain can be found in Appendix C.

8.2.1 Automaton

The subdomain Automaton considers the definitions discussed in Chapter 3. The Σ-automaton
(Q, I, T, δ) as introduced in Definition 3.1.1 is modeled as

75

1 data Automaton a b
2 where
3 Automaton
4 :: (AutomatonType a
5 , Eq b
6)
7 => [b] -- states
8 -> [b] -- initial states
9 -> [b] -- terminal states

10 -> [a] -- alphabet
11 -> (b -> a -> [b]) -- transition relation
12 -> Automaton a b

Instead of a tuple, we implement the automaton construct as a data type. The type variable a
represents the type of the elements of the alphabet Σ. The first three parameters represent the
sets Q, I, and T . The fourth parameter represents the alphabet Σ, which is added since we cannot
easily define a Haskell class that enforces a finite type domain. We use list constructs for these
sets, since it is easier to work with lists than to work with sets in Haskell. A transition relation
is then modeled as a function of type b -> a -> [b]. This allows for defining the transition
relation in a similar style as shown in part II. The automaton from Example 3.1.3 can then be
defined as follows.

1 automatonEx3 :: Automaton Char Int
2 automatonEx3 = Automaton qs is ts alph (==>)
3 where
4 qs = [0, 1, 2]
5 is = [0]
6 ts = [0, 1]
7 alph = [’a’, ’b’]
8 0 ==> ’a’ = [1]
9 0 ==> ’b’ = [2]

10 1 ==> ’a’ = [2]
11 1 ==> ’b’ = [0]
12 2 ==> ’a’ = [2]
13 2 ==> ’b’ = [2]

We also implement free monoids from Definition 3.2.1, using a simple snoc-list structure (where
the last element of the list is accessible, instead of the first as in the cons-list structure).

1 data FreeMonoid a = Empty | FreeMonoid a :> a
2

3 instance Semigroup (FreeMonoid a) where
4 fm <> Empty = fm
5 fm1 <> (fm2 :> x) = (fm1 <> fm2) :> x
6

7 instance Monoid (FreeMonoid a) where
8 mempty = Empty

We then define the following operations on automaton.

• gamma :: AutomatonType a => automaton a b -> [b] -> FreeMonoid a ->
[b], which is an implementation of the operation γ from Definition 3.2.4.

• checkAccept :: (AutomatonType a, Eq b) => Automaton a b -> FreeMonoid
a -> Bool, which checks if some ω ∈ Σ is in L(A) using the equation
L(A) = {ω | ω ∈ Σ∗, Iω ∩ T 6= ∅ }.

• getBehavior :: Automaton a b -> [(b, FreeMonoid a)], which returns all ω ∈
L(A). Each ω is combined with the corresponding terminal state identifier.

76

8.2.2 Relations and Events

Binary relations are used in EventMachines, and they are used to model the events for a D-System.
These binary relations are represented by the subdomain BinaryRel, which is implemented as
follows.

1 data BinaryRel a = BinaryRel String (a -> [a])
2

3 identityRel :: BinaryRel a
4 identityRel = BinaryRel "id" (:[])
5

6 instance AutomatonType (BinaryRel a)
7

8 instance Eq (BinaryRel a)
9 where

10 (BinaryRel label1 rel1) == (BinaryRel label2 rel2) = label1 == label2
11

12 instance Semigroup (BinaryRel a)
13 where
14 (BinaryRel label1 rel1) <> (BinaryRel label2 rel2)
15 =
16 BinaryRel (label1 ++ ";" ++ label2) (rel1 >=> rel2)
17

18 instance Monoid (BinaryRel a)
19 where
20 mempty = identityRel

Binary relations are given a label for identification. Just as with the transition relation, the actual
relation is defined as a function a -> [a]. We then make BinaryRel an instance of Monoid,
which can be easily done using the operator >=> from the list monad instance.

The subdomain Event, corresponding with Definition 6.2.2 is simply an instance of BinaryRel.

1 type Event a = BinaryRel a

8.2.3 EventMachines

We first define a separate domain for the labels (φ, e, φ′) on the transitions of an EventMachine.

1 type = EventUpdate a = (BinaryRel a, Event a, BinaryRel a)

Wherafter we define the subdomain EventMachine corresponding with Definition 6.2.2.

1 type EventMachine a = Automaton (EventUpdate a) StateLabel

The type of the elements of the alphabet is in this case EventUpdate a. The type of the
state identifier is StateLabel. This datatype is introduced to ease the implementation of the
synchronous product operator later on.

8.2.4 D-Systems and Restrictions

We now have all our ingredients to define the subdomain System with corresponds with the
definition of D-systems as given in Definition 6.2.5.

1 data System a = System
2 { machine :: EventMachine a
3 , controllableEvents :: [BinaryRel a]

77

4 , uncontrollableEvents :: [BinaryRel a]
5 , domain :: [a]
6 , initialValues :: [a]
7 }

We use field labels for easier access to the parameters’ values. We once again use lists instead of
sets for the same reason as for the Automaton subdomain. We also add a list of domain elements as
a parameter, since we cannot easily enforce a finite type domain (as with the automaton alphabet).

The sensor from Example 6.5.1 can then be modeled as follows.

1 sensorSwitchEvent = BinaryRel "sensorSwitch" rel
2 where
3 rel b = [not b]
4

5 sensorSystem :: System Bool
6 sensorSystem = System sensorMachine [] [sensorSwitchEvent] [False, True] [False]
7 where
8 sensorMachine = Automaton qs is ts phis delta
9 where

10 offState = SingleLabel "sensorOff"
11 onState = SingleLabel "sensorOn"
12

13 qs = [offState, onState]
14 is = [offState]
15 ts = [offState]
16 phis = [(identityRel, sensorSwitchEvent, identityRel)]
17 delta q t = getStateLabel q ==> show t
18

19 "sensorOff" ==> "(id,sensorSwitch,id)" = [onState]
20 "sensorOn" ==> "(id,sensorSwitch,id)" = [offState]

We then define the following operations on the subdomain System.

• getTraces :: System a -> [(FreeMonoid (BinaryRel a), a)], which returns
a list of possible event traces in our system, together with the corresponding domain values.

• syncEventSystems :: DomainComposition d1 d2 dc -> System d1 ->
System d2 -> System dc , which implements the synchronous product operator as in-
troduced in Definition 6.3.4. For this operation a DomainComposition d1 d2 dc must
be given. An instance of this type implements a domain composition (⊗), where d1 cor-
responds with domain D1, d2 with D2, and dc with the composed domain D1 ⊗ D2.
DomainComposition is defined as follows.

1 data DomainComposition d1 d2 dc = DomainComposition
2 { combine :: d1 -> d2 -> dc
3 , decompose :: dc -> (d1, d2)
4 , checkComp :: d1 -> d2 -> Bool
5 , extract1 :: dc -> d1
6 , extract2 :: dc -> d2
7 , augment1 :: dc -> d1 -> dc
8 , augment2 :: dc -> d2 -> dc
9 }

– combine: A mapping from instances of the two original domains to an instance of the
composed domain (according to the composition).

– decompose: A mapping from an instance of the composed domain to the instances of
the original domains.

78

– checkComp: Check if the instances of the two original domains can be mapped to the
composed domain (in most cases, this would be checking of the shared domain values
are equal).

– extract1: A mapping from an instance of the composed domain to the instance of
the first original domain.

– extract2: A mapping from an instance of the composed domain to the instance of
the second original domain.

– augment1: Suppose we have a value vc of the composed domain corresponding to the
values v1 of the first domain and v2 of the second domain, and a value v1’ of the
first domain. augment1 maps vc and v1’ to the instance of the composed domain
corresponding with v1’ and v2.

– augment2: Suppose we have a value vc of the composed domain corresponding to the
values v1 of the first domain and v2 of the second domain, and a value v2’ of the
second domain. augment2 maps vc and v2’ to the instance of the composed domain
corresponding with v1 and v2’.

• (\/) :: System d -> [Restriction d] -> System d, which implements the re-
strict operator (↓) as introduced in Definition 6.6.2. The second argument of this operator is
a list of element of the subdomain restriction, which corresponds with Definition 6.6.1 and
is defined as follows.

1 type Restriction a = (Event a, StateLabel)

• synthesizeSupervisor :: (Eq d, Show d) => System d ->
System (d, StateLabel), which implements the supervisory control synthesis algo-
rithm as defined in Section 6.8. Given a refined plant P , the function will return a maximally
permissive supervisor S.

• supervise :: (Eq d, Show d) => System d -> System (d, StateLabel),
which, given a refined plant P , computes the supervisor S using synthesizeSupervisor,
and returns the plant synchronized with the supervisor P || S.

Values of the the subdomain System are the most important expressible values. Models for a
discrete event system consists of multiple System values which will be composed into one single
System value using synchronization (as discussed in Section 6.5). This value can then be applied
to the supervisory control synthesis algorithm, or simulated using the simulator (which we will
discuss in Section 8.4).

8.3 Syntax of X-Control

In semantics-driven design, we systematically construct syntax for the subdomains in the semantic
domain. In our case we define syntax for the types defined in Section 8.2. As discussed in
Section 8.1, we will implement the syntax as a mostly shallow embedded internal DSL in Haskell.
In a pure shallow embedding, only the data types and their constructors defined in the semantic
domain are used in the syntax. This implies that, should we implement a pure shallow embedding,
then we may not introduce new datatypes for our syntax. Because this method of defining syntax
is rather restrictive we will slightly deviate from the shallow embedding method, as we introduce
some auxiliary data types to construct our internal syntax. The constructors of these data types
act as keywords of our syntax, along with a set of (string) constants. We describe syntax for the
following elements of our semantic domain.

79

• Automata, where the syntax can be used to define automaton with arbitrary label type a.
Since EventMachines are automata with label type P(D2)× (Ec ∪Eu)×P(D2) (according
to Definition 6.2.2), we can also use this syntax to define EventMachines.

• Domains (as in the domain D of some D-systems).

• Binary relations. This syntax will then be used to describe the events in a system, since
events are modeled as binary relations in our semantic domain.

• D-systems. This syntax allows the end user to specify the components of a D-system (the
domain, the events, the machine, etc.).

• Synchronization and restrictions, of which the syntax is given in the form of Modules. Mod-
ules can be interpreted as a synchronous product of a set of systems, followed by a restriction.

In the following subsections we will discuss the syntax for these elements in more detail. A more
detailed description of the implementation of the syntax can be found in Appendix D.

8.3.1 Automata

Syntax for defining automaton, of which the alphabet is of a given type a, consists of a (Haskell)
list of the following possible statements.

• State "stateName", which declares a regular non-initial and non-terminal state.

• InitialState "stateName", which declares an initial state (which is not terminal).

• TerminalState "stateName", which declares a terminal state (which is not initial).

• InitialTerminalState "stateName", which declares a state which is both initial and
terminal.

• Edge from "orginStateName" to "targetStateName" with symbol, which de-
clares a transition edge from the state named "originStateName" to the state named
"targetStateName" with a symbol. symbol is an instance of type a and is part of the
alphabet of the automaton.

Note that, semantically, the order in which the declarations occur in the list does not matter. The
keywords starting with a capital letter (State, InitialState, etc.) are all constructors of the
datatype AutomatonDeclaration. The other keywords (from, to, with) are string constants
which are given as (dummy) parameter values to the constructor.

The valuation function for automaton automaton :: [AutomatonDeclaration a] ->
Automaton a StateLabel, transforms the list of statements to an automaton instance of our
semantic domain. The automaton from Example 3.1.3 can then be defined as follows,

1 exampleAutomaton = automaton [
2 InitialState "q0",
3 State "q1",
4 TerminalState "q2",
5

6 Edge from "q0" to "q1" with ’a’,
7 Edge from "q0" to "q2" with ’b’,
8 Edge from "q1" to "q0" with ’b’,
9 Edge from "q1" to "q2" with ’a’,

10 Edge from "q2" to "q2" with ’a’,
11 Edge from "q2" to "q2" with ’b’
12]

80

8.3.2 Domains

In most cases, a system’s domain D consists of a number of subdomains D1, . . . , Dn where D =
D1 × · · · ×Dn. Each subdomain can be considered as a domain element or domain variable. In
practice it is useful to give a name to each domain element. We call such a name an element
identifier. For now we will introduce syntax for declaring Boolean and integer domain elements
with an element identifier. This syntax is defined as follows.

• BoolElement "elementId" intialValue, which is a declaration of a Boolean element
with the given element identifier and an initial (Boolean) value.

• IntElement "elementId" range initialValue, which is a declaration of an integer
element with the given element identifier, a range of possible (integer) values which this
element can have, and a initial (integer) value. We define a range of possible values for each
integer element, since for the supervisory control synthesis algorithm, the given D-system
must have a finite domain.

The valuation function declareDomain transforms a list of element declarations to a mapping
from the element identifiers to the (initial) values. The function getPossibleDomainValues
transforms a list of element declarations to a list of possible mappings from the element identifiers
to the element values (based on the given ranges). In the context of D-systems, this list forms the
domain D of the system. An example domain could be defined as follows:

1 exampleDomain = [BoolElement "exampleBool" False,
2 IntElement "exampleInt" [0..5] 5
3]

8.3.3 Binary Relations

Binary relations are used to model the events and other operations of a D-system. In a binary
relation on D, an instance of D may be related to zero or more other instances of D. We will
provide syntax in X-Control to define relations in a ‘procedural way’, which is more convenient for
end users which are not familiar with functional languages. This can be achieved when using the
‘State a’ monad. The state monad allows us to describe a sequence of manipulations on some
instance of the type a using so called do-notation in Haskell. In our case the type ‘a’ would be
the mapping from element identifiers to values. By wrapping the state monad in a newly defined
type (which we call the DomainState monad), we can hide this (relatively) complicated type
from the end user. The following functions can be used in this do-notation, and will be part of
our syntax.

• getBoolValue "elementId", which returns the current (Boolean) value of the Boolean
element with the given element identifier.

• getIntValue "elementId", which returns the current (integer) value of the integer
element with the given element identifier.

• setBoolValue "elementId" boolValue, which sets the Boolean element with the
given element identifier with the given (Boolean) value.

• setIntValue "elementId" intValue, which sets the integer element with the given
element identifier with the given (integer) value.

Do-notation can then be used in our syntax in the follow way.

81

1 do { ...
2 b <- getBoolValue "exampleBool";
3 x <- getIntValue "exampleInt";
4 ...
5 setBoolValue "exampleBool" (not b);
6 setIntValue "exampleInt" (x + 5);
7 ...
8 }

We have the following syntax for different types of relation declarations.

• Function "functionName" $ do {...}, which is a relation where each instance of
the domain is related to exactly one instance (which may be the same instance). An example
could be defined as follows.

1 Function "exampleFunction" $ do {
2 b <- getBoolValue "exampleBool";
3 x <- getIntValue "exampleInt";
4

5 if b then
6 setIntValue "exampleInt" (x - 1);
7 else
8 setIntValue "exampleInt" (x + 1);
9 }

• Guard "exampleGuard" $ do {...; return boolExpression;}, which is a re-
lation where each instance of the domain is either related to the same instance or to no
instance at all. The instance relates to itself in the guard if and only if boolExpression
evaluates to True for this instance. An example could be defined as follows.

1 Guard "exampleGuard" $ do {
2 b <- getBoolValue "exampleBool";
3 x <- getIntValue "exampleInt";
4

5 return (b || (x > 2));
6 }

• Relation "relationName" $ do {...; return [do {...}, do {...}, ...];},
which is a relation where each instance of the domain can be related to 0 or more instances.
Each do-block in the returned list describes how these instances are established. An example
could be defined as follows.

1 Relation "exampleRelation" $ do {
2 x <- getIntValue "exampleInt";
3

4 return [
5 do { setBoolValue "exampleBool" False; setIntValue "exampleInt" (x + 1); },
6 do { setBoolValue "exampleBool" True; setIntValue "exampleInt" (x - 1); }
7];
8 }

Note that the syntax for relations can also be used to define functions and guards.

The valuation function declareRel transforms an instance of one of the aforementioned relation
declarations to an instance of the binary relation type as defined in the semantic domain.

82

8.3.4 Systems

We now introduce syntax for D-systems. In order to define a D-system S = (M,Ec, Eu, D0), one
has to define the domain D, the D-EventMachine M , the controllable and uncontrollable events
Ec and Eu, and the initial values D0. To enable users to provide these components, we make use
of the field-labels notation from Haskell in our syntax. A D-system can be defined as follows.

1 SystemSpecification
2 { domainElements = [...],
3 controllableEvents = [...],
4 uncontrollableEvents = [...],
5 otherOperations = [...],
6 machine = [...]
7 }

The fields of this SystemSpecification can be defined as follows.

• domainElements: The list of domain elements as described in Subsection 8.3.2. This field
describes both the domain and the initial values of the system.

• controllableEvents: The list of controllable events of the system. Each event is defined
as a binary relation using the syntax described in Subsection 8.3.3.

• uncontrollableEvents: The list of uncontrollable events of the system. Just as with
controllable events, each event is defined as a binary relation.

• otherOperations: A list of relations not modeling events, which can be used in the
D-EventMachine of the system (e.g. guards and update functions).

• machine: The definition of the D-EventMachine of the system, which is described using the
automaton declaration syntax described in Subsection 8.3.1. The symbols of the automaton’s
alphabet are of the form ("otherOperationName1", "eventName",
"otherOperationName2"), where otherOperationName1 and
otherOperationName2 are names of relations defined in the otherOperations list,
and eventName is the name of a relation defined in either the controllableEvents
list or the uncontrollableEvents list. The identity relation (relation in which every
instance of the domain relates to itself) is always accessible via the relation name "id".

The valuation function declareSystem transforms a given SystemSpecification to a D-
system. An example modeling a simple actuator could be defined as follows.

1 actuator = declareSystem SystemSpecification
2 { domainElements = [
3 BoolElement "actuatorStatus" False
4],
5 controllableEvents = [
6 Function "switchActuator" $ do {
7 actuatorStatus <- getBoolValue "actuatorStatus"
8 setBoolValue "actuatorStatus" (not actuatorStatus);
9 }

10],
11 uncontrollableEvents = [],
12 otherOperations = [],
13 machine = [
14 InitialTerminalState "actuatorOff",
15 State "actuatorOn",
16

17 Edge from "actuatorOff" to "actuatorOn" with

83

18 ("id", "switchActuator", "id"),
19 Edge from "actuatorOn" to "actuatorOff" with
20 ("id", "switchActuator", "id")
21]
22 }

The plant P in Example 6.8.2 can be defined as follows.

1 systemExample = declareSystem SystemSpecification
2 { domainElements = [
3 IntElement "coins" [0..5] 5
4],
5

6 controllableEvents = [
7 Relation "player1Take" $ do {
8 coins <- getIntValue "coins";
9

10 return [
11 setIntValue "coins" (coins - 1),
12 setIntValue "coins" (coins - 2)
13];
14 }
15],
16

17 uncontrollableEvents = [
18 Relation "player2Take" $ do {
19 coins <- getIntValue "coins";
20

21 return [
22 setIntValue "coins" (coins - 1),
23 setIntValue "coins" (coins - 2)
24];
25 }
26],
27

28 otherOperations = [
29 Guard "notGameOver" $ do {
30 coins <- getIntValue "coins";
31 return $ coins > 0;
32 },
33 Guard "gameOver" $ do {
34 coins <- getIntValue "coins";
35 return $ coins == 0;
36 }
37],
38

39 machine = [
40 InitialState "player1Turn",
41 State "player2Turn",
42 State "player1Lost",
43 TerminalState "player2Lost",
44

45 Edge from "player1Turn" to "player2Turn" with
46 ("id", "player1Take", "notGameOver"),
47 Edge from "player1Turn" to "player1Lost" with
48 ("id", "player1Take", "gameOver"),
49 Edge from "player2Turn" to "player1Turn" with
50 ("id", "player2Take", "notGameOver"),
51 Edge from "player2Turn" to "player2Lost" with

84

52 ("id", "player2Take", "gameOver")
53]
54 }

8.3.5 Modules

The synchronous product operator which is discussed in Section 6.3 and implemented in the
semantic domain allows us to break up a discrete event system into multiple components, and
create a separate D-system for each component. Moreover, the restriction operator as introduced
in Section 6.6 (and which is also implemented in the semantic domain) allows one to remove
behavior from a D-system which is not expected to happen in physical instances of the system,
due to physical relations between subcomponents.

The concepts of synchronization and restrictions are both comprised by the module syntax. A
module is a list of the following possible declarations.

• DeclareSystem "systemName" systemSpecification, which declares a system with
a name to identify the system. systemSpecification is a system specification using
the syntax described in Subsection 8.3.4. Domain elements and events from other sys-
tems can be accessed via point notation ("sysName.elementName" for elements and
"sysName.eventName" for events).

• DeclareRestriction "sysName1.stateName" restricts
"sysName2.eventName", which declares a restriction. This means that, in this instance,
if the system with name "sysName1" is in state with name "stateName", then the event
with name "eventName" belonging to system with name "sysName2" cannot occur.

The valuation function declareModule transforms a given module, and transforms it to a sin-
gle D-system. This function makes use of the valuation function for system specifications, the
synchronous product operator, and the restrict operator.

The start of an incomplete example module containing a sensor and an actuator, which we will
complete in two different ways, can be defined as follows.

1 exampleModule = declareModule [
2 DeclareSystem "actuator" SystemSpecification
3 { domainElements = [
4 BoolElement "actuatorStatus" False
5],
6 controllableEvents = [
7 Function "switchActuator" $ do {
8 actuatorStatus <- getBoolValue "actuatorStatus";
9 setBoolValue "actuatorStatus" (not actuatorStatus);

10 }
11],
12 uncontrollableEvents = [],
13 otherOperations = [],
14 machine = [
15 InitialTerminalState "actuatorOff",
16 State "actuatorOn",
17

18 Edge from "actuatorOff" to "actuatorOn" with
19 ("id", "switchActuator", "id"),
20 Edge from "actuatorOn" to "actuatorOff" with
21 ("id", "switchActuator", "id"),
22]

85

23 },
24

25 DeclareSystem "sensor" SystemSpecification
26 { domainElements = [
27 BoolElement "sensorStatus" False
28],
29 controllableEvents = [
30 Function "switchSensor" $ do {
31 sensorStatus <- getBoolValue "sensorStatus";
32 setBoolValue "actuatorStatus" (not sensorStatus);
33 }
34],
35 uncontrollableEvents = [],
36 otherOperations = [],
37 machine = [
38 InitialTerminalState "sensorOff",
39 State "sensorOn",
40

41 Edge from "sensorOff" to "sensorOn" with
42 ("id", "switchSensor", "id"),
43 Edge from "sensorOn" to "sensorOff" with
44 ("id", "switchSensor", "id"),
45]
46 },
47 ...

We can model the requirement as discussed in Example 6.5.1 by completing the model in the
following way.

1 ...
2 DeclareSystem "requirement" SystemSpecification
3 { domainElements = [],
4 controllableEvents = [],
5 uncontrollableEvents = [],
6 otherOperations = [],
7 machine = [
8 InitialTerminalState "r0",
9 State "r1",

10

11 Edge from "r0" to "r1" with ("id", "sensor.switchSensor", "id"),
12 Edge from "r1" to "r1" with ("id", "sensor.switchSensor", "id"),
13 Edge from "r1" to "r0" with ("id", "actuator.switchActuator", "id")
14]
15 }
16]

Alternatively, we can add a restriction which prevents the "switchSensor" event when the
actuator is "actuatorOff".

1 ...
2 DeclareRequirement "actuator.actuatorOff" restricts "sensor.switchSensor"
3]

8.4 Tooling for X-Control

In this section we describe the tooling for X-Control, which consists of the following.

86

• A method to describe discrete event system with the syntax of X-Control.

• The simulation of systems defined in X-Control.

• Applying supervisory control synthesis for systems defined in X-Control.

8.4.1 Describing Systems

The tooling for X-Control requires the Glasgow Haskell Compiler [3] (GHC). The description of
a discrete event system using X-Control is to be done in a Haskell file (.hs). In this Haskell file, a
number of modules have to be imported. This is to be done as follows.

1 import SemanticDomain
2 import Syntax
3 import Simulator
4

5 system = declareModule [...]

The description of the system using the syntax of X-Control starts at line 5. The module is then
to be loaded in ghci (the interactive environment of GHC) using ghci filename.hs.

8.4.2 Simulation

The simulator can be used to demonstrate a system modeled in X-Control. The controllable events
of the system are randomly chosen by the simulator (if enabled) at timer intervals of 1 second.
The uncontrollable events are initiated by the user.

When the module is loaded into ghci, a D-system can be simulated with the command
simulateSystem systemName. The following will be shown in the command prompt.

1 State: currentStateName
2 Current value: currentDomainValue

Where currentStateName is the name of the current state, and currentDomainValue is the
textual representation of the current domain value. This value changes every transition according
to the relations and event on the transition’s edge.

The user can initiate an uncontrollable event by pressing ‘e’ on the keyboard during the simulation.
If there are currently no enabled uncontrollable event, then "No enabled uncontrollable
events" is shown in the command prompt. Otherwise, the list of enabled uncontrollable events
will be enumerated in the prompt. The user can then choose a uncontrollable event by entering
its respective number. After this, a list of possible target states and domain value combinations
is enumerated in the prompt. These combinations are reached via transition with the chosen
event. Again, the user chooses a combination and the simulation proceeds. The user can stop the
simulation by pressing ‘q’.

Further documentation of the simulator can be found in Appendix E.

8.4.3 Supervisory Control Synthesis

In the semantic domain, a function is defined which performs supervisory control synthesis for
a given D-system. The resulting supervisor can then be synchronized with the original system
to obtain the supervised system. The function supervise will execute both steps (supervisory
control synthesis and synchronization) for a given D-system, and returns the result. This function
is to be used as follows in ghci.

1 supervisedSystem = supervise system

87

8.5 Extendibility

In this section we propose a set of possible extensions for X-Control. For each proposal, we also
briefly discuss a possible implementation. This should give us an idea on the extendibility of
X-Control.

8.5.1 Parameterized Systems

From a reusability perspective, it would be useful to give a parameterized definition of a system.
This definition can then be used in some module, given appropriate values for the parameters.

For this functionality we do not have to change the syntax, nor the semantics. One can define a
parameterized system as a Haskell function in the following way.

1 exampleParameterizedSystem param1 ... paramN = SystemSpecification ...

These parameterized definitions can then be used in models as follows.

1 exampleModule = [
2 ...
3 DeclareSystem "systemName" (exampleParameterizedSystem value1 ... valueN),
4 ...
5]

8.5.2 Lists of Systems

Suppose we have some parameterized system. In some cases a large number of instances of this
system are needed. For this reason, it would be useful to be able to define a list of instances of the
parameterized system. Events and domain elements of these instances can be referred to by using
the name of the list together with the index of the relevant instance. An example of a situation
where lists of systems would be useful, is an array of n identical light sources (like LEDs).

To implement this extension, we could add the following declaration statement for modules.

1 DecelareSystemList "listName" systemSpecification n

From this declaration, n copies of systemSpecification should be created.

In the valuation function declareModule, each system specification in the list can then be given
the name listname[i], where i is the index the respective system. These system specifications
can then be added to the list of other system specifications.

We can use the example parameterized system from the second subsection as an example.

1 DeclareSystemList "systems" (exampleParameterizedSystem value1 ... valueN) n

From this declaration, a copy of systemSpecification, where the specification has a param-
eter p, should be created for every value for the parameter in the given list.

1 DecelareParameterizedSystemList "listName" (\p -> systemSpecification) [p1, ..., pn]

For example, suppose we have the following parameterized system, where the event countEvent
occurs n times.

88

1 counterSystems n = System Specification
2 { domainElements = [
3 IntElement "counter" [0..n] 0
4],
5 controllableEvents = [],
6 uncontrollableEvents = [
7 Function "countEvent" $ do {
8 i <- getIntValue "counter";
9 setIntValue "counter" (i + 1);

10 }
11],
12 otherOperations = [
13 Guard "lessThanTarget" $ do {
14 i <- getIntValue "counter";
15 return (i < n);
16 }
17 Guard "reachedTarget" $ do {
18 i <- getIntValue "counter";
19 return (i == n);
20 }
21],
22 machine = [
23 InitialState "q0",
24 TerminalState "q1",
25

26 Edge from "q0" to "q0" with ("id", "countEvent", "lessThanTarget"),
27 Edge from "q0" to "q1" with ("id", "countEvent", "reachedTarget")
28]
29 }

A list of 10 systems, where the system with index i has the event occurring i times, can then be
declared as follows within a module.

1 DeclareParameterizedSystemList "counters" counterSystems [0..9]

In the valuation function declareModule, we can use map to compute the list of system specifi-
cations, where the specification with index i is the parameterized specification with the ith value
of the given list applied. We can then use the aforementioned method of naming the system
specifications in the list.

8.5.3 Nested Modules

For complex systems it may be useful to define the sub components in a hierarchical manner. This
means that each subcomponent Pi can have its own sub-subcomponents Pi,1, . . . , Pi,m. For our
language this would translate to nested modules, which means that modules do not contain only
system and restriction declaration, but (sub-)module definitions as well.

To implement this we need to introduce a new declaration statement for modules.

1 DeclareModule "moduleName" [declarationSystems]

In the valuation function declareModule, the names of the systems have to be renamed using
the point notation (by adding the prefix moduleName. to the system names). One can then use
the point notation to refer to events and variables from systems in the submodules using this point
notation. By doing this renaming process in a recursive way, the modules hierarchy can then be
flattened into a single list of systems and restrictions.

89

8.5.4 Event Aliases

Suppose we have the nested modules as described in Subsection 8.5.3. Suppose we have a module
module1, which contains a submodule module1A. module1A contains a system systemA1
with event event. If we want to refer to event in another system in module1 using the
point notation, then we have the reference module1A.systemA1.event. Since the notation of
this reference is quite long it would be useful to define an alias for event systemA1.event in
module1A. Suppose we define this alias as eventX, then this event can be referred to in module1
as module1A.eventX.

For this extension, we add the following module declaration statement.
1 DeclareAlias "eventName" "eventAlias"

For the valuation function declareModule, we can then create a recursive function to create a
mapping from alias to event name. This function can then be used to replace the aliases used in
event references with the full event names.

8.5.5 Boolean Expression in EventMachine Labels

As discussed in Subsection 8.3.3, we can define binary relations function as transition guards using
the Guard keyword. These guards could be reused if Boolean expressions with the guard names
as identifiers can be used in the transition edges of EventMachines. It would also be useful if these
identifiers could also point to Boolean domain elements.

To implement this one could simply write a simple parser for Boolean expressions. In [2] it is shown
how this can easily be done with the Parsec package. Using the State a monad as described in
Subsection 8.3.3, we transform these Boolean expressions to binary relations. These relations will
then essentially evaluate these expressions.

Suppose we have the guards guard1 and guard2 in our system, we could then do the following
in our machine.

1 Edge from "state1" to "state2" with ("!(guard1 || guard2)", "eventName", "id")

8.5.6 Requirements Based on Formulae

In many cases requirements can be formulated in a more compact way (as in more compact than
a separate system) by using a formula. In these cases we say that a event may only occur if some
Boolean expression (on the domain elements of the system(s)) is satisfied.

For this extension, we add the following module declaration statement.
1 DeclareRequirementFormula "eventName" requires $ do {
2 ...;
3 return booleanExpression;
4 }

Such a requirement declaration could then be transformed to a system referring to the given event
in the valuation function declareModule. This system’s machine then has only one state, with
a single self loop transition. This transition then has the given event and given Boolean evaluation
as guard.

Another method would be adding a requirement formula subdomain in the semantic domain. The
type corresponding to this domain would then consist of an event and a function of type d ->
Bool (where d is the domain). An operator could then be introduced for ‘applying’ requirements
to plants (as similarly done with restrictions). Applying a requirement to a plant would then come
down to strengthening guards with the given function (using relational composition) of transitions
with the given event.

90

Part IV

Discussion

91

Chapter 9

Conclusion

In this chapter we answer the research question introduced in the introduction. Recall that we
defined the research question as follows.

• How can a functional programming language be used when developing tools for defining and
simulating operational models with maintainability and extendibility taken into considera-
tion?

In Chapter 6, we have introduced D-systems, which is our own formalism for defining discrete
event systems based on the X-machine formalism by Samuel Eilenberg. This formalism overcomes
some shortcomings of the EFA formalism (on which the CIF3 language is based on). We suc-
cessfully implemented X-Control, which is our DSL for specifying discrete event systems, in a
functional programming language (Haskell). The implementation of the semantic domain, which
is directly based on our D-systems formalism, provides a minimalistic core for our toolchain. The
type system and the declarative style of functional programming, allows for a semantic domain
implementation that corresponds with the mathematical concepts and notations from Chapter 6.
The implementation of our simulator for this core is then relatively straightforward. We have im-
plemented X-Control as an internal DSL. The declarative style of Haskell and the State monad
allowed us to quickly create an internal syntax, without too many restrictions (by the host lan-
guage). The created valuation functions ‘interpret’ our syntax as elements of our semantic domain.
As we have seen in Section 8.5, most of our proposed extensions can be realized by introducing new
syntax elements, and modifying the valuation functions. This also shows the advantage of having
a minimalistic implementation of the semantics, which captures the essence of our language.

92

Chapter 10

Further Work

On the toolchain side, we could implement the extensions discussed in Section 8.5. This means
we could implement parameterization of systems, lists of systems, nested modules, event aliases,
boolean expressions, and/or being able to define requirements based on formulae. We could also
implement X-Control as an external DSL. Since an external DSL does not exist within the host
language, we have more freedom in designing syntax constructs. This means we can create a more
compact syntax, which could also be easier to use.

Suppose we have implemented this external syntax, we can then try to model the projects discussed
in [20] and [21]. This would give us a way to compare the CIF3 language with the X-Control
language.

Since our implementation of Algorithm 3 is basically a backtracking procedure, one might consider
a more efficient implementation. In [18] an implementation based on the Binary Decision Diagram
(BDD) data structure is suggested. BDDs allow for efficient evaluation and manipulation of
Boolean expressions, which can aid in efficiently computing the predicates in the algorithm.

We could also do some further work on the theory discussed in Part II. We may be able to base our
formalism on the XDI model described in [26]. An XDI specification (also called a process) is a
triple (I,O, f), where I is the set of input symbols (comparable with the uncontrollable events from
Section 5), O is the set of output symbols (comparable with the controllable events from Section 5),
and f is the trace function which is of type (I∪O)∗ → {>,∇,�,∆,⊥}. Essentially f maps traces
to one of the five results. > (top) means that the process has the obligation not to produce output
symbols leading to this trace, ∇ (transient) means that the process is obligated to send an output,
� (quiescent) means that the process has no obligations, ∆ (demanding) means that the process
has the obligation to send some input symbol, and ⊥ (bottom) means that the process fails due
to an unexpected input symbol. Suppose we have some process P . The reflection of P , denoted
as vP , mirrors the results of the function f . This means that fP (t) = > ⇐⇒ fvP (t) = ⊥,
fP (t) = ∇ ⇐⇒ fvP (t) = ∆, and vice versa. We also have the ordering v on processes. Suppose
P v P ′ (also denoted as P ′ refines P), then we say if fP (t) = > for some t ∈ (I ∪ O∗) then
fP ′(t) = >. In [17] a composition operator || is introduced for processes. This can be used to
define the so called design equation which is defined as follows. Suppose we have some specification
R (comparable with the requirements described in Chapter 6) and some given process P (which
could be considered the plant), what are the processes C such that the following inequality is
satisfied.

P || C w R
In order words, which processes C can be composed with P such that the result refines R. Such
a process C could be considered a ‘supervisor’ for P . The v-least solution (the solution ‘smallest’
according to the ordering v) is the so-called Galois connection, which is defined as follows.

v(P ||vR)

93

This process could then considered the ‘maximally permissive supervisor’. In [16], tools are dis-
cussed for finding this smallest solution. If we could define these concepts and notations (v, v,
and the design equation) for our formalism in Chapter 6, then we may obtain less convoluted
definitions regarding supervisory control synthesis (in Section 6.7).

94

Bibliography

[1] Cif 3. http://cif.se.wtb.tue.nl, 2016 (accessed July 27, 2020).

[2] Parsing expressions and statements. https://wiki.haskell.org/Parsing_
expressions_and_statements, 2018 (accessed July 23, 2020).

[3] Glasgow haskell compiler. https://www.haskell.org/ghc/, 2020 (accessed August 1,
2020).

[4] J. Agron. Domain-specific language for hw/sw co-design for fpgas. In Walid Mohamed Taha,
editor, Domain-Specific Languages, pages 262–284, Berlin, Heidelberg, 2009. Springer Berlin
Heidelberg.

[5] G. Ali and N. A. Zafar. Modeling agent-based systems using x-machine and z notation.
In 2010 Second International Conference on Communication Software and Networks, pages
249–253, 2010.

[6] P. Bjesse, K. Claessen, M. Sheeran, and S. Singh. Lava: Hardware design in haskell. In Pro-
ceedings of the Third ACM SIGPLAN International Conference on Functional Programming,
ICFP ’98, page 174–184, New York, NY, USA, 1998. Association for Computing Machinery.

[7] P. Bjesse, K. Claessen, M. Sheeran, and S. Singh. Lava: Hardware design in haskell. SIGPLAN
Not., 34(1):174–184, September 1998.

[8] M. D. Campos and L. S. Barbosa. Implementation of an orchestration language as a haskell
domain specific language. Electronic Notes in Theoretical Computer Science, 255:45 – 64,
2009. Proceedings of the 8th International Workshop on the Foundations of Coordination
Languages and Software Architectures (FOCLASA 2009).

[9] C. Cassandras and S. Lafortune. Introduction to Discrete Event Systems. Springer Sci-
ence+Business Media New York, New York, 1999.

[10] S. Eilenberg. Automata, Languages, and Machines, volume 59A. Academic press, Cambridge,
Massachusetts, 1974.

[11] M. Erwig and E. Walkingshaw. Semantics-driven DSL design. Formal and Practical Aspects
of Domain-Specific Languages: Recent Developments, (2011):56–80, 2012.

[12] M. Grabmüeller and D. Kleeblatt. Harpy: Run-time code generation in haskell. In Proceedings
of the ACM SIGPLAN Workshop on Haskell Workshop, Haskell ’07, page 94, New York, NY,
USA, 2007. Association for Computing Machinery.

[13] R. M. Hierons and M. Harman. Testing conformance of a deterministic implementation
against a non-deterministic stream x-machine. Theoretical Computer Science, 323(1):191 –
233, 2004.

95

http://cif.se.wtb.tue.nl
https://wiki.haskell.org/Parsing_expressions_and_statements
https://wiki.haskell.org/Parsing_expressions_and_statements
https://www.haskell.org/ghc/

[14] P. Kefalas, G. Eleftherakis, and E. Kehris. Communicating x-machines: a practical approach
for formal and modular specification of large systems. Information and Software Technology,
45(5):269 – 280, 2003.

[15] A. M. Sloane M. Mernik, J. Heering. When and how to develop domain-specific languages.
ACM Comput. Surv., 37(4):316–344, December 2005.

[16] W. C. Mallon. Theories and Tools for the Design of Delay-Insensitive Communicating Pro-
cesses. PhD thesis, Department of Computer Science, University of Groningen, The Nether-
lands, 2000.

[17] W. C. Mallon, J. T. Udding, and T. Verhoeff. Analysis and applications of the xdi model. In
Proceedings. Fifth International Symposium on Advanced Research in Asynchronous Circuits
and Systems, pages 231–242, 1999.

[18] L. Ouedraogo, R. Kumar, R. Malik, and K. Åkesson. Nonblocking and safe control of discrete-
event systems modeled as extended finite automata. IEEE Transactions on Automation
Science and Engineering, 8(3):560–569, 2011.

[19] B. Razet. Finite eilenberg machines. In Oscar H. Ibarra and Bala Ravikumar, editors, Imple-
mentation and Applications of Automata, pages 242–251, Berlin, Heidelberg, 2008. Springer
Berlin Heidelberg.

[20] F. F. H. Reijnen, M. A. Goorden, J. M. van de Mortel-Fronczak, and J. E. Rooda. Supervisory
control synthesis for a waterway lock. In 2017 IEEE Conference on Control Technology and
Applications (CCTA), pages 1562–1563, 2017.

[21] F. F. H. Reijnen, J. J. Verbakel, J. M. van de Mortel-Fronczak, and J. E. Rooda. Hardware-in-
the-loop set-up for supervisory controllers with an application: the prinses marijke complex.
In 2019 IEEE Conference on Control Technology and Applications (CCTA), pages 843–850,
2019.

[22] M. A. Reniers and J. M. van de Mortel-Fronczak. Supervisory Control, pages 57–125,135.
2019.

[23] C. Schmitt, S. Kuckuk, F. Hannig, H. Köstler, and J. Teich. Exaslang: A domain-specific
language for highly scalable multigrid solvers. In 2014 Fourth International Workshop on
Domain-Specific Languages and High-Level Frameworks for High Performance Computing,
pages 42–51, 2014.

[24] M. Sköldstam, K. Åkesson, and M. Fabian. Supervisory control applied to automata extended
with variables -revised supervisory control applied to automata extended with variables -
revised. 01 2008.

[25] H. P. J. van Geldrop, J. C. S. P. van der Woude, and T. Verhoeff. Declarative Programming
(2IPH0) - Lecture Notes Part 2. 2019.

[26] T. Verhoeff. Analyzing specifications for delay-insensitive circuits. In Proceedings Fourth
International Symposium on Advanced Research in Asynchronous Circuits and Systems, pages
172–183, 1998.

96

Appendices

97

Appendix A

Algebraic Properties of
Synchronization

In this chapter, we discuss the properties commutativity and associativity of the synchronous
product (||) operator on D-systems based on the equivalence relation discussed in Section 6.4.
These properties are useful to have since they guarantee that the order in which the operator is
applied on a set of D-systems does not matter. It should be noted that we have not been able to
locate proofs for these properties for the synchronous product operator for EFA.

Conjecture (||) is commutative.

Proof sketch: Suppose we have D1-system ((Q1, I1, T1,Φ1, δ1), E1
c , E

1
u, D

1
0) and D2-system

((Q2, I2, T2,Φ2, δ2), E2
c , E

2
u, D

2
0). For brevity we say Ei = Eic∪Eiu. We have to prove that S1 ||S2 w

S2 || S1. Suppose we have the path p

(q1
0 , q

2
0)

t1−→ . . .
tn−→ (q1

n, q
2
n)

with label ω in S1 ||S2. We split p in sub paths: p1 . . . pm with labels ω1, . . . , ωm. Paths p1, p3 . . .
with labels are paths with events in E2. Paths p2, p4 . . . have only events in E1. In S2 we have

q2
0

ω′1−→
∗
q2
i

ω′3−→
∗
q2
j

ω′5−→
∗
. . .

where ω′k ≡ ωk. We can then observe that we have in S2 || S1

(q2
0 , q

1
0)

ω′′1−−→ ∗(q2
i , q

1
i)

ω′′2−−→
∗

(q2
i , q

1
i
′
)
ω′′3−−→
∗

(q2
j , q

1
j)

ω′′4−−→
∗

(q2
j , q

1
j
′
)
ω′′5−−→
∗
. . .

where ω′′k ≡ ωk. We can conclude that there is a path with label ω′ = ω′′1 . . . ω
′′
m in S2 || S1 with

ω′ ≡ ω.
The same reasoning can be implied for proving that if there is some path p in S2 || S1 with label
ω, then there is some path p′ in S1 || S2 with label ω′ such that ω ≡ ω′. We can conclude that
S1 || S2 w S2 || S1.

Conjecture (||) is associative.

Proof sketch:

Suppose we have D1-system ((Q1, I1, T1,Φ1, δ1), E1
c , E

1
u, D

1
0), D2-system

((Q2, I2, T2,Φ2, δ2), E2
c , E

2
u, D

2
0) and D3-system ((Q3, I3, T3,Φ3, δ3), E3

c , E
3
u, D

3
0). For brevity we

98

say Ei = Eic ∪ Eiu. We have to prove that S1 || (S2 || S3) w (S1 || S2) || S3. Suppose we have the
path p

(q1
0 , (q

2
0 , q

3
0))

t1−→ . . .
tn−→ (q1

n, (q
2
n, q

3
n))

with label ω in S1 || (S2 ||S3). We then split the path in sub paths p1 . . . pm with labels ω1, . . . , ωm.
Paths p1, p3 . . . have events in E2 ∪ E3. p2, p4, . . . have events only in E1. In S2 || S3 we have

(q2
0 , q

3
0)

ω
D2⊗D3
1−−−−−→

∗

(q2
1 , q

3
1)

ω
D2⊗D3
3−−−−−→

∗

(q2
3 , q

3
3) . . .

Where ωD2⊗D3

k ≡ ωk. We split the sub paths into paths such that p1, p5, . . . have events in E2

and p3, p7, . . . have events only in E3. In S2 we have

q2
0

ω
D2
1−−−→
∗

q2
i

ω
D2
5−−−→
∗

q2
j . . .

where ωD2

k ≡ ωk. In S1 || S2 we have

(q1
0 , q

2
0)

ω
D1⊗D2
1−−−−−→

∗

(q1
i , q

2
i)

ω
D1⊗D2
2−−−−−→

∗

(q1
i
′
, q2
i)

ω
D1⊗D2
4−−−−−→

∗

(q1
i
′′
, q2
i) . . .

where ωD1⊗D2

k ≡ ωk. In (S1 || S2) || S3 we have

((q1
0 , q

2
0), q3

0)
(D1⊗D2)⊗D3−−−−−−−−−→

∗
((q1

i , q
2
i), q3

i)
(D1⊗D2)⊗D3−−−−−−−−−→

∗
((q1

i
′
, q2
i), q3

i)
(D1⊗D2)⊗D3−−−−−−−−−→

∗
((q1

i
′
, q2
i), q3

i
′
) . . .

where ω(D1⊗D2)⊗D3

k ≡ ωk. We can conclude that ω′ = ω
(D1⊗D2)⊗D3

1 . . . ω
(D1⊗D2)⊗D3
m in (D1 ⊗

D2)⊗D3 has ω′ ≡ ω.
The same reasoning can be implied for proving that if there is some path p in (S1 || S2) || S3 with
label ω, then there is some path p′ in S1 || (S2 || S3) with label ω′ such that ω ≡ ω′. We can
conclude that S1 || (S2 || S3) w (S1 || S2) || S3.

99

Appendix B

Proof of Correctness Outline
Supervisory Synthesis for D-Systems

In this chapter we present an outline of the proof of correctness for Algorithm 3. This proof outline
is mostly based on the proof of correctness of the supervisory control syntheses algorithm for EFA
(Algorithm 2) presented in [18].

Conjecture The algorithm terminates.

Proof sketch: Suppose we have some predicate P : D → B. There are only |D| distinct predicates
of type P : D → B. Since FixPredicate only expands the subdomain of D for which Pi is true,
and the function terminates when Pi did not change after the last iteration, we can conclude that
FixPredicate runs in O(|D|) time. One iteration of the do-while loop takes O(|D||C|) time.
Line 8 will essentially ‘block’ certain d ∈ D for each update in C. This can only be done |D| times
for each update. So the algorithms runs in O(|D|2|C|2)

Lemma Suppose the algorithm runs N iterations and for some d ∈ D we have B(d) = false,
then there exist no ω ∈ (CN−1 ∪ U)∗ for which there exists d′ ∈ ρω(d0) for which B(d′) = true.

Proof sketch: We prove the claim by induction on the length of the sequence of ω (denoted by
|ω|).
Base case: |ω| = 0: If |ω| = 0 then ρω = idD, which implies ρω(d).

Step case: |ω| > 0: We assume that ω = ω′φ and that no d′ ∈ ω′(d) has B(d′) = true (IH).
Suppose that d′′ ∈ ρω(d) has B(d′′) = true. Then there exists d′ ∈ ρω′(d) for which d′′ ∈ ρφ(d′). If
φ ∈ CN−1 then CN−1 6= CN because of line 8, which leads to a contraction. If φ ∈ U then B(d′)
set to true in line 16, which contradicts with the induction hypothesis. So we can conclude that
all d′′ ∈ ρω(d) have B(d′′) = false, which proves our claim.

Conjecture CN−1 and U are controllable with respect to C and U .

Proof sketch: Since we use the same set of uncontrollable updates, it is trivial to observe that
CN−1 and U are controllable with respect to C and U .

Conjecture (CN−1, U) � (C,U).

From line 8 it is trivial to observe that (CN−1, U) � (C,U).

100

Conjecture CN−1 and U are non-blocking.

Proof sketch: Suppose d ∈ D is non-blocking with respect to CN−1 and U . Then from lines 5
and 6 we can infer that N(d) = true. Suppose B(d) = false, then, according to our lemma, there
exist no ω ∈ (CN−1 ∪ U)∗ such that there is d′ ∈ ρω with B(d′) = true, which implies for all
ω ∈ (CN−1 ∪U)∗ for all d′ ∈ ρω we have N(d′) = true. Suppose B(d) = true. Assume there exists
ω ∈ (CN−1 ∪ U)∗ with ω /∈ U∗, such that there exists blocking d′ ∈ ρω(d). Suppose ω = ω′φω′′

where φ ∈ CN−1, ω′′ ∈ U∗, d1 ∈ ρω′(d), d2 ∈ ρφ(d1) and d′ ∈ ρω′′(d2). Since ω′′ ∈ U∗ and d′ is
blocking, then, inferring from line 7, we know that B(d3) = true, this contradicts with line 8 since
b3 ∈ ρφ(d2) and φ ∈ CN−1. We can conclude that ω ∈ U∗, which proves our claim.

Conjecture CN−1 and U are a maximally permissive.

Proof sketch: Suppose we have C ′ and U ′ which are a proper supervisor for C and U . Suppose
we have completely non-blocking d, d′ ∈ D for which there exists ω′ ∈ (C ′ ∪ U ′)∗ with d′ ∈ ρω′(d)
and B(d) = false. Suppose there is no ω ∈ (CN−1 ∪ U)∗ for which d′ ∈ ρω(d). There must exist
ω′ = ω′1φ

′ω′2. Where d1 ∈ ρω′1(d), d2 ∈ ρφ′(d1), d′ ∈ ρω′2(d2), and there exist ω1 ∈ (CN−1 ∪ U)∗

with d1 ∈ ρω′1(d) with no φ ∈ (CN−1 ∪ U) with d2 ∈ ρφ(d1). Then we know φ′ /∈ U . Because of
line 8 we also know that B(d2) = true. Since d′ ∈ ρω′2(d2) we know that N(d2) = true at one point
which implies that B(d2) = false at one point. This means that at some point B(d2) is set to true.
This is done in line 7 when there is some sequence ω′′ ∈ U∗ for which there exists d′′ ∈ ρω′′(d2)
where at no point N(d′′) is set to true. Since ω′′ ∈ U∗ we know that ω′1φ′ω′′ ∈ (C ′′ ∪ U)∗ with
d′′ ∈ ρ(ω′1φ

′ω′′)(d), which contradicts with the fact that C ′′ is non-blocking.

101

automaton_machines_sync

August 16, 2020

[3]: {-# LANGUAGE GADTs #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE TupleSections #-}
import Data.Monoid
import Data.List
import Data.Maybe
import Data.Foldable
import Data.Semigroup
import Control.Monad

Line 5: Unused LANGUAGE pragma
Found:
{-# LANGUAGE TupleSections #-}
Why not:

1 Automata
We first model a free monoid with a arbitrary base as snoc list structure. We use a snoc list
structure instead of the regular cons list, since appending symbols at the end of a snoc list is more
convenient. This is useful for generating traces.

[4]: data FreeMonoid a = Empty | FreeMonoid a :> a

single :: a -> FreeMonoid a
single x = Empty :> x

fromList :: [a] -> FreeMonoid a
fromList = foldr (flip (:>)) Empty

instance Semigroup (FreeMonoid a) where
fm <> Empty = fm
fm1 <> (fm2 :> x) = (fm1 <> fm2) :> x

instance Monoid (FreeMonoid a) where

1

Appendix C

Semantic Domain Implementation

In this appendix, the implementation of the semantic domain of X-Control is discussed in more
detail.

102

mempty = Empty

instance Foldable FreeMonoid where
foldMap f Empty = mempty
foldMap f (fm :> x) = foldMap f fm <> f x

instance (Show a) => Show (FreeMonoid a) where
show = show . toList

We define a class for a type for an automaton. Defining such a class allows us to add constraints
later when needed.

[5]: class AutomatonType a

An example of an automaton type is Char.

[6]: instance AutomatonType Char

We define a Σ-automaton (Q, I, T, δ) as follows.

[7]: data Automaton a b
where

Automaton
:: (AutomatonType a

, Eq b
)

=> [b] -- states
-> [b] -- initial states
-> [b] -- terminal states
-> [a] -- alphabet
-> (b -> a -> [b]) -- transition relation
-> Automaton a b

states :: Automaton a b -> [b]
states (Automaton qs is ts ss (==>)) = qs

initialStates :: Automaton a b -> [b]
initialStates (Automaton qs is ts ss (==>)) = is

terminalStates :: Automaton a b -> [b]
terminalStates (Automaton qs is ts ss (==>)) = ts

alphabet :: Automaton a b -> [a]
alphabet (Automaton qs is ts ss (==>)) = ss

delta :: Automaton a b -> (b -> a -> [b])
delta (Automaton qs is ts ss (==>)) = (==>)

2

103

instance (Show a, Show b) => Show (Automaton a b)
where
show (Automaton qs is ts alph (==>))

=
"States: " ++ show qs ++ "\n" ++
"Initial States: " ++ show is ++ "\n" ++
"Terminal States: " ++ show ts ++ "\n" ++
"Alphabet: [\n" ++ prettyAlphabet ++ "]\n\n" ++
"Transitions:\n" ++
transitions

where
transitions = do q <- qs

label <- alph
let qs' = q ==> label
guard $ not (null qs')
let shortLabel | length (show label) > 40 = take 40␣

↪→(show label) ++ "..."
| otherwise = show label

"" ++ show q ++ " ==> " ++ shortLabel ++ " = " ++ show␣
↪→qs' ++ "\n\n"

prettyAlphabet = do a <- alph
let label | length (show a) > 40 = take 40 (show a)␣

↪→++ "..."
| otherwise = show a

" " ++ label ++ ",\n"

We use GDT to enforce the type classes. a is the type of the symbols on the transitions, which
should be of the type automataType. b is the type of the state values, which should be an instance
of Eq, since we need to compare two states for equality. Since we want to be as faithfull as possible
to the algebraic automata theory discussed in chapter 3, we model the transitions relation δ as a
function from an instance of the state type to a list of instances of the state type.

The type of Σ (and Σ∗) is a which should be an instance of AutomatonType and the type of Q, I
and T is b which should be an instance of Eq (since one must be able to check if a state is in I or
T).

An example automaton is constructed as follows.

[8]: automaton1 :: Automaton Char Int
automaton1 = Automaton qs is ts ss (==>)

where
qs = [0, 1, 2]
is = [0]
ts = [0, 1]
ss = ['a', 'b']
0 ==> 'a' = [1]
0 ==> 'b' = [2]
1 ==> 'a' = [2]

3

104

1 ==> 'b' = [0]
2 ==> 'a' = [2]
2 ==> 'b' = [2]

We can define the function γ as follows.

[9]: gamma :: AutomatonType a => Automaton a b -> [b] -> FreeMonoid a -> [b]
gamma automaton states word = do state <- states

foldlM (delta automaton) state word

We can use γ to determine whether ω ∈ L(A) (recall that L(A) = {ω ∈ Σ∗|Iω ∩ T ̸= ∅}).

[10]: checkAccept :: (AutomatonType a, Eq b) => Automaton a b -> FreeMonoid a -> Bool
checkAccept automaton word = intersect (is ==>* word) ts /= [] where

(==>*) = gamma automaton
is = initialStates automaton
ts = terminalStates automaton

A couple of example strings:

[11]: "empty in L(A)?"
checkAccept automaton1 Empty
"a in L(A)?"
checkAccept automaton1 $ single 'a'
"ababa in L(A)?"
checkAccept automaton1 $ single 'a' <> single 'b' <> single 'a' <> single 'b'␣
↪→<> single 'a' --single"ababa"

"ababb in L(A)?"
checkAccept automaton1 $ single 'a' <> single 'b' <> single 'a' <> single 'b'␣
↪→<> single 'b' --"ababb"

"abaaba in L(A)?"
checkAccept automaton1 $ single 'a' <> single 'b' <> single 'a' <> single 'a'␣
↪→<> single 'b' <> single 'a' --"abaababab"

"empty in L(A)?"

True

"a in L(A)?"

True

"ababa in L(A)?"

True

4

105

"ababb in L(A)?"

False

"abaaba in L(A)?"

False

We can define a function for obtaining the language of some automaton. We first define a function
which, given a state trace tuple, computes a list of possible successor state trace tuple according
to the transitions relation.

[12]: getNextStates :: AutomatonType a => Automaton a b -> [a] -> (b, FreeMonoid a)␣
↪→-> [(b, FreeMonoid a)]

getNextStates automaton symbols (state, trace) = [(nextState, trace :> sigma)
| sigma <- symbols
, nextState <- state ==> sigma
]

where
(==>) = delta automaton

getAllNextStates :: AutomatonType a => Automaton a b -> (b, FreeMonoid a) ->␣
↪→[(b, FreeMonoid a)]

getAllNextStates automaton = getNextStates automaton (alphabet automaton)

With getLanguage we can then obtain a list of successful traces of some automaton. Note that this
list can be infinite. In that case a subset of the language can be retrieved due to lazy evaluation.

[13]: getLanguage :: Automaton a b -> [(b, FreeMonoid a)]
getLanguage automaton@(Automaton qs is ts alph (==>)) = step [(state, Empty) |␣
↪→state <- is]
where
step [] = []
step options = solutions ++ step rest

where
solutions = filter ((`elem` ts) . fst) options
rest = concatMap (getAllNextStates automaton) options

As an example we take elements from the language of our example automaton:

[14]: print $ take 5 $ getLanguage automaton1

[(0,""),(1,"a"),(0,"ab"),(1,"aba"),(0,"abab")]

5

106

2 X-Machines
In X-machines, the labels on the transitions (the labels of the alphabet), are binary relations on
some domain X. We will now model this concept of binary relations. Our model for binary relations
on domain a has a label, which will be used to test relations on equivalence, and a function with
type a -> [a]. Given some instance x of a, the function returns all instances y of a to which x
relates.

[15]: data BinaryRel a = BinaryRel String (a -> [a])

identityRel :: BinaryRel a
identityRel = BinaryRel "id" (:[])

instance AutomatonType (BinaryRel a)

instance Show (BinaryRel a)
where
show (BinaryRel label rel) = label

instance Eq (BinaryRel a)
where
(BinaryRel label1 rel1) == (BinaryRel label2 rel2) = label1 == label2

instance Semigroup (BinaryRel a)
where
(BinaryRel label1 rel1) <> (BinaryRel label2 rel2) = BinaryRel (label1 ++ ";

↪→" ++ label2) (rel1 >=> rel2)

instance Monoid (BinaryRel a) where
mempty = identityRel

getRelation :: BinaryRel a -> (a -> [a])
getRelation (BinaryRel label rel) = rel

getLabel :: BinaryRel a -> String
getLabel (BinaryRel label rel) = label

Making BinaryRel an instance of Monoid allows for composition of relations.

Recall that an X-machine is just an automaton where the alphabet was a set of binary relations on
some domain X. Based on this concept, we have the following definition of X-machine.

[16]: type Machine a b = Automaton (BinaryRel a) b

As an example we define a machine which computes the factorial of some arbitrary number n.

[17]: machine1 :: Machine (Int, Int) Int
machine1 = Automaton qs is ts tp delta where

mul = BinaryRel "mul" (\(n, m) -> [(n, n * m)])

6

107

minus = BinaryRel "minus" (\(n, m) -> [(n - 1, m)])
checkZero = BinaryRel "checkZero" r

where
r (0, m) = [(0,m)]
r _ = []

qs = [0, 1, 2]
is = [0]
ts = [2]
tp = [mul, minus, checkZero]
delta q (BinaryRel label rel) = q ==> label

0 ==> "mul" = [1]
0 ==> "checkZero" = [2]
1 ==> "minus" = [0]
_ ==> _ = []

[18]: print $ take 10 $ getLanguage machine1

[(2,[checkZero]),(2,[mul,minus,checkZero]),(2,[mul,minus,mul,minus,checkZero]),(2,[mul,minus,mul,minus,mul,minus,checkZero]),(2,[mul,minus,mul,minus,mul,minus,mul,minus,checkZero]),(2,[mul,minus,mul,minus,mul,minus,mul,minus,mul,minus,checkZero]),(2,[mul,minus,mul,minus,mul,minus,mul,minus,mul,minus,mul,minus,checkZero]),(2,[mul,minus,mul,minus,mul,minus,mul,minus,mul,minus,mul,minus,mul,minus,checkZero]),(2,[mul,minus,mul,minus,mul,minus,mul,minus,mul,minus,mul,minus,mul,minus,mul,minus,checkZero]),(2,[mul,minus,mul,minus,mul,minus,mul,minus,mul,minus,mul,minus,mul,minus,mul,minus,mul,minus,checkZero])]

Using the language of the machine we can (inefficiently) compute the characteristic relation of a
machine.

[19]: charRelNaive :: Automaton (BinaryRel a) b -> String -> BinaryRel a
charRelNaive aut l = BinaryRel l (\x -> concatMap (\(st, label) -> getRelation␣
↪→(fold label) x) (getLanguage aut))

[20]: head (getRelation (charRelNaive machine1 "m1") (25,1))

(0,7034535277573963776)

In the next example we create a machine which checks, given a string of a’s and b’s, if the number
of a’s is equal to the number of b’s in the string.

[21]: machine2 :: Automaton (BinaryRel (String, Int)) String
machine2 = Automaton qs is ts ss delta where

zero = BinaryRel "zero" (\(str, n) -> [(str, n) | n == 0])
greater = BinaryRel "greater" (\(str, n) -> [(str, n) | n > 0])
lesser = BinaryRel "lesser" (\(str, n) -> [(str, n) | n < 0])
plus = BinaryRel "plus" r

where
r ('a':str,n) = [(str, n + 1)]
r _ = []

minus = BinaryRel "min" r
where

r ('b':str, n) = [(str, n - 1)]

7

108

r _ = []

qs = ["0", "<", ">"]
is = ["0"]
ts = ["0"]
ss = [plus, minus, plus <> zero, minus <> zero, plus <> lesser, minus <>␣

↪→greater]
delta q (BinaryRel label rel) = q ==> label

"0" ==> "min" = ["<"]
"0" ==> "plus" = [">"]
"<" ==> "min" = ["<"]
"<" ==> "plus;lesser" = ["<"]
"<" ==> "plus;zero" = ["0"]
">" ==> "plus" = [">"]
">" ==> "min;greater" = [">"]
">" ==> "min;zero" = ["0"]
_ ==> _ = []

We now define a more efficient way to compute the characteristic relation.

[22]: getNextSteps :: AutomatonType a => Automaton a b -> [a] -> b -> [(b, a)]
getNextSteps automaton symbols state = do sigma <- symbols

endState <- state ==> sigma
return (endState, sigma)

where
(==>) = delta automaton

getAllNextSteps :: AutomatonType a => Automaton a b -> b -> [(b, a)]
getAllNextSteps automaton = getNextSteps automaton (alphabet automaton)

charRel :: Automaton (BinaryRel a) b -> String -> BinaryRel a
charRel automaton@(Automaton qs is ts alph (==>)) l = BinaryRel l rel

where
rel x = do (st', x', tr) <- step [(state, x, Empty) | state <- is]

return x'

step [] = []
step options = solutions ++ step rest

where
solutions = filter (\(st, val, tr) -> st `elem` ts) options
rest = do (st, x, tr) <- options

(st', rel) <- getAllNextSteps automaton st
x' <- getRelation rel x
return (st', x', tr :> rel)

[23]: print $ take 10 (getRelation (charRel machine2 "m2") ("bbbaabaaba",0))

8

109

[("bbbaabaaba",0),("ba",0),("",0)]

3 Systems
We now implement the D-system formalism discussed in chapter 6. We first define a type for events
and the tuples (ϕ1, e, ϕ2).

[24]: type Event a = BinaryRel a

type EventUpdate a = (BinaryRel a, Event a, BinaryRel a)
getEventUpdateRel :: EventUpdate a -> (a -> [a])
getEventUpdateRel (rel1, e, rel2) = getRelation (rel1 <> e <> rel2)

instance AutomatonType (EventUpdate a)

We then define our EventMachine type, which is a automaton with alphabet of type EventUpdate.
We also define a StateLabel datatype, of which instances can be composed in a tree like structure.
This helps us in defining the synchronous product operatior which we discuss later.

[25]: data StateLabel = SingleLabel String | JointLabel StateLabel StateLabel
getStateLabel :: StateLabel -> String
getStateLabel (SingleLabel str) = str
getStateLabel l = "(" ++ rec l ++ ")"

where
rec (SingleLabel str) = str
rec (JointLabel l1 l2) = rec l1 ++ "," ++ rec l2

instance Show StateLabel
where

show = getStateLabel

instance Eq StateLabel
where

sl1 == sl2 = getStateLabel sl1 == getStateLabel sl2

type EventMachine a = Automaton (EventUpdate a) StateLabel

The controllable and uncontrollable events, the initial values and the EventMachine will be the
components of the System datatype. System will be used to model discrete event systems.

[26]: data System a = System
{ machine :: EventMachine a
, controllableEvents :: [BinaryRel a]
, uncontrollableEvents :: [BinaryRel a]
, domain :: [a]
, initialValues :: [a]
}

9

110

instance (Show a) => Show (System a)
where

show (System machine contr uncontr dom initval) =
"Controllable Events: " ++ show contr ++
"\nUncontrollable Events: " ++ show uncontr ++
"\nDomain: " ++ prettyDomain ++
"\nInitial values: " ++ show initval ++
"\n\nMachine:\n" ++
show machine

where
prettyDomain | length (show dom) > 100 = take 100 (show dom) ++ "..."

| otherwise = show dom

We now discuss some examples. In the first example we model a simple sensor.

[27]: sensorSwitchEvent = BinaryRel "sensorSwitch" rel
where

rel b = [not b]

sensorSystem :: System Bool
sensorSystem = System sensorMachine [] [sensorSwitchEvent] [False, True] [False]

where
sensorMachine = Automaton qs is ts phis delta

where
offState = SingleLabel "sensorOff"
onState = SingleLabel "sensorOn"

qs = [offState, onState]
is = [offState]
ts = [offState]
phis = [(identityRel, sensorSwitchEvent, identityRel)]
delta q (phi, ev, phi') = getStateLabel q ==> getLabel ev

"sensorOff" ==> "sensorSwitch" = [onState]
"sensorOn" ==> "sensorSwitch" = [offState]

In this example we model a simple actuator.

[28]: actuatorSwitchEvent = BinaryRel "actuatorSwitch" rel
where

rel b = [not b]

actuatorSystem :: System Bool
actuatorSystem = System actuatorMachine [actuatorSwitchEvent] [] [False, True]␣
↪→[False]

where

10

111

actuatorMachine = Automaton qs is ts phis delta
where

offState = SingleLabel "actuatorOff"
onState = SingleLabel "actuatorOn"

qs = [offState, onState]
is = [offState]
ts = [offState]
phis = [(identityRel, actuatorSwitchEvent, identityRel)]
delta q (phi, ev, phi') = getStateLabel q ==> getLabel ev

"actuatorOff" ==> "actuatorSwitch" = [onState]
"actuatorOn" ==> "actuatorSwitch" = [offState]

Requirements can be modeled by machines. In this example we model the requirement ‘the actuator
may only switch on/off after the sensor has been switched on/off’.

[29]: simpleRequirement1 :: System (Bool, Bool)
simpleRequirement1 = System requirementMachine [actuatorSwitchEvent]␣
↪→[sensorSwitchEvent] dom [(False, False)]

where
dom = [(b1, b2) | b1 <- [False, True], b2 <- [False, True]]

sensorSwitchEvent = BinaryRel "sensorSwitch" rel
where

rel (bs, ba) = [(not bs, ba)]

actuatorSwitchEvent = BinaryRel "actuatorSwitch" rel
where

rel (bs, ba) = [(bs, not ba)]

requirementMachine = Automaton qs is ts phis delta
where

r0 = SingleLabel "r0"
r1 = SingleLabel "r1"

qs = [r0, r1]
is = [r0]
ts = [r0]
phis = [(identityRel, sensorSwitchEvent, identityRel),

(identityRel, actuatorSwitchEvent, identityRel)]
delta q (phi, ev, phi') = getStateLabel q ==> getLabel ev

"r0" ==> "sensorSwitch" = [r1]
"r1" ==> "sensorSwitch" = [r1]
"r1" ==> "actuatorSwitch" = [r0]

In the next example we model the requirement ’the actuator may only switch on/off after the sensor

11

112

has been switched on.

[30]: simpleRequirement2 :: System (Bool, Bool)
simpleRequirement2 = System requirementMachine [actuatorSwitchEvent]␣
↪→[sensorSwitchEvent] dom [(False, False)]

where
dom = [(b1, b2) | b1 <- [False, True], b2 <- [False, True]]

sensorSwitchEvent = BinaryRel "sensorSwitch" rel
where

rel (bs, ba) = [(not bs, ba)]

actuatorSwitchEvent = BinaryRel "actuatorSwitch" rel
where

rel (bs, ba) = [(bs, not ba)]

requirementMachine = Automaton qs is ts phis delta
where

i1 = BinaryRel "i1" rel
where

rel (False, ba) = [(False, ba)]
rel _ = []

i2 = BinaryRel "i2" rel
where

rel (True, ba) = [(True, ba)]
rel _ = []

r0 = SingleLabel "r0"
r1 = SingleLabel "r1"

qs = [r0, r1]
is = [r0]
ts = [r0]
phis = [(identityRel, sensorSwitchEvent, identityRel),

(identityRel, actuatorSwitchEvent, identityRel),
(identityRel, sensorSwitchEvent, i1),
(identityRel, sensorSwitchEvent, i2)]

delta q t = getStateLabel q ==> show t

"r0" ==> "(id,sensorSwitch,i1)" = [r0]
"r0" ==> "(id,sensorSwitch,i2)" = [r1]
"r1" ==> "(id,sensorSwitch,id)" = [r1]
"r1" ==> "(id,actuatorSwitch,id)" = [r0]
_ ==> _ = []

12

113

For event systems we define a function for computing the possible traces of events which can occur
in the system, together with the corresponding final domain values.

[31]: getTraces :: System a -> [(FreeMonoid (BinaryRel a), a)]
getTraces eventSys = map (\(state', x', tr) -> (tr, x')) $ step [(state,␣
↪→initVal, Empty)

| state <- is
, initVal <-␣

↪→initVals
]

where
mach@(Automaton qs is ts alph (==>)) = machine eventSys
initVals = initialValues eventSys

step [] = []
step options = solutions ++ step rest

where
solutions = filter (\(st, val, tr) -> st `elem` ts) options
rest = do (st, x, tr) <- options

(st', (phi, e, phi')) <- getAllNextSteps mach st
x' <- getRelation (phi <> e <> phi') x
return (st', x', tr :> e)

We take 3 traces of the sensor system for illustration.

[32]: print $ take 3 $ getTraces sensorSystem

[([],False),([sensorSwitch,sensorSwitch],False),([sensorSwitch,sensorSwitch,sensorSwitch,sensorSwitch],False)]

3.1 Synchronization
We now introduce the synchronous product operator for EventSystems. To do this we will do the
following:

• Implement a data type to describe the composition of two domains.
• Implement projection and synchronization for EventUpdates.
• Implement synchronization for EventSystems.

When synchronizing two EventSystems, the domains of the two systems are composed in a certain
way. This mostly comes down to having shared and non-shared parts of the domain, where the
shared parts must be synchronized. To describe such a domain composition we define the data
type DomainComposition.

[33]: data DomainComposition d1 d2 dc = DomainComposition
{ combine :: d1 -> d2 -> dc
, decompose :: dc -> (d1, d2)
, checkComp :: d1 -> d2 -> Bool
, extract1 :: dc -> d1

13

114

, extract2 :: dc -> d2
, augment1 :: dc -> d1 -> dc
, augment2 :: dc -> d2 -> dc
}

The fields of a domainComposition can be described as follows.

• combine: A mapping from instances of the two original domains to an instance of the com-
posed domain (according to the composition)

• decompose: A mapping from an instance of the composed domain to the instances of the
original domains.

• checkComb: Check if the instances of the two original domains can be mapped to the composed
domain (in most cases, this would be checking of the shared domain values are equal).

• extract1: A mapping from an instance of the composed domain to the instance of the first
original domain.

• extract2: A mapping from an instance of the composed domain to the instance of the second
original domain.

• augment1: Suppose we have a value vc of the composed domain corresponding to the values
v1 of the first domain and v2 of the second domain, and a value v1' of the first domain.
augment1 maps vc and v1' to the instance of the composed domain corresponding with v1'
and v2.

• augment2: Suppose we have a value vc of the composed domain corresponding to the values
v1 of the first domain and v2 of the second domain, and a value v2' of the second domain.
augment2 maps vc and v2' to the instance of the composed domain corresponding with v1
and v2'.

We now define some example DomainCompositions. We first define a disjoint domain composition,
where the two given domains are independent.

[34]: disjointComposition :: DomainComposition d1 d2 (d1, d2)
disjointComposition = DomainComposition

{ combine = \v1 v2 -> (v1,v2)
, decompose = id
, checkComp = _ _ -> True
, extract1 = fst
, extract2 = snd
, augment1 = \(v1, v2) v1' -> (v1', v2)
, augment2 = \(v1, v2) v2' -> (v1, v2')
}

Next we define a joint domain composition. In this composition the two given domains are the
same, and there values should be equal.

[35]: jointComposition :: Eq d => DomainComposition d d d
jointComposition = DomainComposition

{ combine = const
, decompose = \v -> (v, v)
, checkComp = (==)
, extract1 = id

14

115

, extract2 = id
, augment1 = \v v' -> v'
, augment2 = \v v' -> v'
}

Using a domain composition we can take binary relations on either d1 or d2, and change their
respective domains to dc.

[36]: transformDomain :: (dc -> d) -> (dc -> d -> dc) -> BinaryRel d -> BinaryRel dc
transformDomain extract augment (BinaryRel l r) = BinaryRel l (\vc -> map␣
↪→(augment vc) $ (r . extract) vc)

projectLeft :: DomainComposition d1 d2 dc -> BinaryRel d1 -> BinaryRel dc
projectLeft domComp = transformDomain (extract1 domComp) (augment1 domComp)

projectRight :: DomainComposition d1 d2 dc -> BinaryRel d2 -> BinaryRel dc
projectRight domComp = transformDomain (extract2 domComp) (augment2 domComp)

We also define a function parallelize a relation on d1 and d2 which results to a relation on dc.

[37]: syncRel :: DomainComposition d1 d2 dc -> BinaryRel d1 -> BinaryRel d2 ->␣
↪→BinaryRel dc

syncRel domComp (BinaryRel l1 r1) (BinaryRel l2 r2) = BinaryRel syncLabel␣
↪→syncRel

where
syncLabel | l1 == l2 = l1

| otherwise = l1 ++ "||" ++ l2
syncRel vc = do let (v1, v2) = decompose domComp vc

v1' <- r1 v1
v2' <- r2 v2
guard $ checkComp domComp v1' v2'
return (combine domComp v1' v2')

Using the aforementioned operations on binary relations, we define operation for synchronizing two
event systems based on their events given a domain composition.

[38]: getEventIntersection :: [BinaryRel a] -> [BinaryRel b] -> [(BinaryRel a,␣
↪→BinaryRel b)]

getEventIntersection events1 events2 = [(ev1, ev2)
| ev1 <- events1, ev2 <- events2
, getLabel ev1 == getLabel ev2
]

getEventDifference :: [BinaryRel a] -> [BinaryRel b] -> [BinaryRel a]
getEventDifference events1 events2 = [ev

| ev <- events1,
not $ any (\ev2 -> getLabel ev2 ==␣

↪→getLabel ev) events2]

15

116

syncEventSystems :: DomainComposition d1 d2 dc -> System d1 -> System d2 ->␣
↪→System dc

syncEventSystems
domainComp
(System (Automaton qs1 is1 ts1 phis1 delta1) contr1 uncontr1 dom1 initVals1)
(System (Automaton qs2 is2 ts2 phis2 delta2) contr2 uncontr2 dom2 initVals2)

=
System machine contr uncontr dom initVals

where
(<||>) = syncRel domainComp
projectLeft' = projectLeft domainComp
projectRight' = projectRight domainComp

-- events from both systems
eventsInterContr = getEventIntersection contr1 contr2
eventsInterUncontr = getEventIntersection uncontr1 uncontr2
-- events only in the first system
eventsDiffContr1 = getEventDifference contr1 contr2
eventsDiffUncontr1 = getEventDifference uncontr1 uncontr2
-- events only in the second system
eventsDiffContr2 = getEventDifference contr2 contr1
eventsDiffUncontr2 = getEventDifference uncontr2 uncontr1

dom = [combine domainComp d1 d2 | d1 <- dom1, d2 <- dom2, checkComp␣
↪→domainComp d1 d2]

initVals = zipWith (combine domainComp) initVals1 initVals2

contr = map (uncurry (<||>)) eventsInterContr
++
map projectLeft' eventsDiffContr1
++
map projectRight' eventsDiffContr2

uncontr = map (uncurry (<||>)) eventsInterUncontr
++
map projectLeft' eventsDiffUncontr1
++
map projectRight' eventsDiffUncontr2

machine = Automaton qs is ts phis delta

phisInter = [((phi1 <||> phi2, ev1 <||> ev2, phi1' <||> phi2'), t1, t2)
| (ev1, ev2) <- eventsInterContr ++ eventsInterUncontr
, t1@(phi1, ev1', phi1') <- phis1
, ev1 == ev1'
, t2@(phi2, ev2', phi2') <- phis2

16

117

, ev2' == ev2
]

phisDif1 = [((projectLeft' phi1, projectLeft' ev, projectLeft' phi1'), t)
| ev <- eventsDiffContr1 ++ eventsDiffUncontr1
, t@(phi1, ev', phi1') <- phis1
, ev == ev'
]

phisDif2 = [((projectRight' phi2, projectRight' ev, projectRight' phi2'),␣
↪→t)

| ev <- eventsDiffContr2 ++ eventsDiffUncontr2
, t@(phi2, ev', phi2') <- phis2
, ev == ev'
]

qs = [JointLabel q1 q2 | q1 <- qs1, q2 <- qs2]
is = [JointLabel i1 i2 | i1 <- is1, i2 <- is2]
ts = [JointLabel t1 t2 | t1 <- ts1, t2 <- ts2]
phis = [evComb | (evComb, ev1, ev2) <- phisInter]

++
[evComb | (evComb, ev) <- phisDif1]
++
[evComb | (evComb, ev) <- phisDif2]

delta (JointLabel q1 q2) phi = [JointLabel q1' q2'
| (phi', phi1, phi2) <- phisInter
, phi' == phi
, q1' <- delta1 q1 phi1
, q2' <- delta2 q2 phi2
]
++
[JointLabel q1' q2
| (phi', phi_1) <- phisDif1
, phi' == phi
, q1' <- delta1 q1 phi_1
]
++
[JointLabel q1 q2'
| (phi', phi_2) <- phisDif2
, phi' == phi
, q2' <- delta2 q2 phi_2
]

We construct our plant by synchronizing the sensor and the actuator.

[39]: plant :: System (Bool, Bool)
plant = syncEventSystems disjointComposition sensorSystem actuatorSystem

putStr $ show plant

17

118

Controllable Events: [actuatorSwitch]
Uncontrollable Events: [sensorSwitch]
Domain: [(False,False),(False,True),(True,False),(True,True)]
Initial values: [(False,False)]

Machine:
States: [(sensorOff,actuatorOff),(sensorOff,actuatorOn),(sensorOn,actuatorOff),(sensorOn,actuatorOn)]
Initial States: [(sensorOff,actuatorOff)]
Terminal States: [(sensorOff,actuatorOff)]
Alphabet: [

(id,sensorSwitch,id),
(id,actuatorSwitch,id),

]

Transitions:
(sensorOff,actuatorOff) ==> (id,sensorSwitch,id) = [(sensorOn,actuatorOff)]

(sensorOff,actuatorOff) ==> (id,actuatorSwitch,id) = [(sensorOff,actuatorOn)]

(sensorOff,actuatorOn) ==> (id,sensorSwitch,id) = [(sensorOn,actuatorOn)]

(sensorOff,actuatorOn) ==> (id,actuatorSwitch,id) = [(sensorOff,actuatorOff)]

(sensorOn,actuatorOff) ==> (id,sensorSwitch,id) = [(sensorOff,actuatorOff)]

(sensorOn,actuatorOff) ==> (id,actuatorSwitch,id) = [(sensorOn,actuatorOn)]

(sensorOn,actuatorOn) ==> (id,sensorSwitch,id) = [(sensorOff,actuatorOn)]

(sensorOn,actuatorOn) ==> (id,actuatorSwitch,id) = [(sensorOn,actuatorOff)]

[40]: print $ take 10 $ getTraces plant

[([],(False,False)),([sensorSwitch,sensorSwitch],(False,False)),([actuatorSwitch,actuatorSwitch],(False,False)),([sensorSwitch,sensorSwitch,sensorSwitch,sensorSwitch],(False,False)),([sensorSwitch,sensorSwitch,actuatorSwitch,actuatorSwitch],(False,False)),([sensorSwitch,actuatorSwitch,sensorSwitch,actuatorSwitch],(False,False)),([sensorSwitch,actuatorSwitch,actuatorSwitch,sensorSwitch],(False,False)),([actuatorSwitch,sensorSwitch,sensorSwitch,actuatorSwitch],(False,False)),([actuatorSwitch,sensorSwitch,actuatorSwitch,sensorSwitch],(False,False)),([actuatorSwitch,actuatorSwitch,sensorSwitch,sensorSwitch],(False,False))]

We then apply simpleRequirement2 by synchronizing the plant with the requirement.

[41]: supervisor = syncEventSystems jointComposition plant simpleRequirement2

putStr $ show supervisor

Controllable Events: [actuatorSwitch]
Uncontrollable Events: [sensorSwitch]
Domain: [(False,False),(False,True),(True,False),(True,True)]
Initial values: [(False,False)]

Machine:

18

119

States: [(sensorOff,actuatorOff,r0),(sensorOff,actuatorOff,r1),(sensorOff,actuatorOn,r0),(sensorOff,actuatorOn,r1),(sensorOn,actuatorOff,r0),(sensorOn,actuatorOff,r1),(sensorOn,actuatorOn,r0),(sensorOn,actuatorOn,r1)]
Initial States: [(sensorOff,actuatorOff,r0)]
Terminal States: [(sensorOff,actuatorOff,r0)]
Alphabet: [

(id,actuatorSwitch,id),
(id,sensorSwitch,id),
(id,sensorSwitch,id||i1),
(id,sensorSwitch,id||i2),

]

Transitions:
(sensorOff,actuatorOff,r0) ==> (id,sensorSwitch,id||i1) = [(sensorOn,actuatorOff,r0)]

(sensorOff,actuatorOff,r0) ==> (id,sensorSwitch,id||i2) = [(sensorOn,actuatorOff,r1)]

(sensorOff,actuatorOff,r1) ==> (id,actuatorSwitch,id) = [(sensorOff,actuatorOn,r0)]

(sensorOff,actuatorOff,r1) ==> (id,sensorSwitch,id) = [(sensorOn,actuatorOff,r1)]

(sensorOff,actuatorOn,r0) ==> (id,sensorSwitch,id||i1) = [(sensorOn,actuatorOn,r0)]

(sensorOff,actuatorOn,r0) ==> (id,sensorSwitch,id||i2) = [(sensorOn,actuatorOn,r1)]

(sensorOff,actuatorOn,r1) ==> (id,actuatorSwitch,id) = [(sensorOff,actuatorOff,r0)]

(sensorOff,actuatorOn,r1) ==> (id,sensorSwitch,id) = [(sensorOn,actuatorOn,r1)]

(sensorOn,actuatorOff,r0) ==> (id,sensorSwitch,id||i1) = [(sensorOff,actuatorOff,r0)]

(sensorOn,actuatorOff,r0) ==> (id,sensorSwitch,id||i2) = [(sensorOff,actuatorOff,r1)]

(sensorOn,actuatorOff,r1) ==> (id,actuatorSwitch,id) = [(sensorOn,actuatorOn,r0)]

(sensorOn,actuatorOff,r1) ==> (id,sensorSwitch,id) = [(sensorOff,actuatorOff,r1)]

(sensorOn,actuatorOn,r0) ==> (id,sensorSwitch,id||i1) = [(sensorOff,actuatorOn,r0)]

(sensorOn,actuatorOn,r0) ==> (id,sensorSwitch,id||i2) = [(sensorOff,actuatorOn,r1)]

(sensorOn,actuatorOn,r1) ==> (id,actuatorSwitch,id) = [(sensorOn,actuatorOff,r0)]

(sensorOn,actuatorOn,r1) ==> (id,sensorSwitch,id) = [(sensorOff,actuatorOn,r1)]

[42]: print $ take 10 $ getTraces supervisor

[([],(False,False)),([sensorSwitch,actuatorSwitch,sensorSwitch,sensorSwitch,actuatorSwitch,sensorSwitch],(False,False)),([sensorSwitch,actuatorSwitch,sensorSwitch,sensorSwitch,sensorSwitch,actuatorSwitch],(False,False)),([sensorSwitch,sensorSwitch,actuatorSwitch,sensorSwitch,actuatorSwitch,sensorSwitch],(False,False)),([sensorSwitch,sensorSwitch,actuatorSwitch,sensorSwitch,sensorSwitch,actuatorSwitch],(False,False)),([sensorSwitch,actuatorSwitch,sensorSwitch,sensorSwitch,sensorSwitch,sensorSwitch,actuatorSwitch,sensorSwitch],(False,False)),([sensorSwitch,actuatorSwitch,sensorSwitch,sensorSwitch,sensorSwitch,sensorSwitch,sensorSwitch,actuatorSwitch],(False,False)),([sensorSwitch,sensorSwitch,actuatorSwitch,sensorSwitch,sensorSwitch,sensorSwitch,actuatorSwitch,sensorSwitch],(False,False)),([sensorSwitch,sensorSwitch,actuatorSwitch,sensorSwitch,sensorSwitch,sensorSwitch,sensorSwitch,actuatorSwitch],(False,False)),([sensorSwitch,sensorSwitch,sensorSwitch,actuatorSwitch,sensorSwitch,sensorSwitch,actuatorSwitch,sensorSwitch],(False,False))]

19

120

3.2 Restrictions
We now define a type for Restriction as discussed in Chapter 6, which are tuples with an event as
the first element and a state as the second element.

[43]: type Restriction a = (BinaryRel a, StateLabel)

The restriction operator (↓) can then be defined as follows.

[44]: (\/) :: System d -> [Restriction d] -> System d
(\/)

(System (Automaton qs is ts tp delta) contrEvents uncontrEvents dom␣
↪→initData)

restrictions
=

System (Automaton qs is ts tp delta') contrEvents uncontrEvents dom initData
where
delta' q t@(r1, e, r2)

| (e, q) `elem` restrictions = []
| otherwise = delta q t

As an example, we will apply a restriction to the earlier defined plant.

[45]: restrictedPlant = plant \/ [(sensorSwitchEvent', JointLabel (SingleLabel␣
↪→"sensorOff") (SingleLabel "actuatorOff")), (sensorSwitchEvent', JointLabel␣
↪→(SingleLabel "sensorOn") (SingleLabel "actuatorOn"))]

where
sensorSwitchEvent' = projectLeft disjointComposition sensorSwitchEvent

print restrictedPlant

Controllable Events: [actuatorSwitch]
Uncontrollable Events: [sensorSwitch]
Domain: [(False,False),(False,True),(True,False),(True,True)]
Initial values: [(False,False)]

Machine:
States: [(sensorOff,actuatorOff),(sensorOff,actuatorOn),(sensorOn,actuatorOff),(sensorOn,actuatorOn)]
Initial States: [(sensorOff,actuatorOff)]
Terminal States: [(sensorOff,actuatorOff)]
Alphabet: [

(id,sensorSwitch,id),
(id,actuatorSwitch,id),

]

Transitions:
(sensorOff,actuatorOff) ==> (id,actuatorSwitch,id) = [(sensorOff,actuatorOn)]

(sensorOff,actuatorOn) ==> (id,sensorSwitch,id) = [(sensorOn,actuatorOn)]

20

121

(sensorOff,actuatorOn) ==> (id,actuatorSwitch,id) = [(sensorOff,actuatorOff)]

(sensorOn,actuatorOff) ==> (id,sensorSwitch,id) = [(sensorOff,actuatorOff)]

(sensorOn,actuatorOff) ==> (id,actuatorSwitch,id) = [(sensorOn,actuatorOn)]

(sensorOn,actuatorOn) ==> (id,actuatorSwitch,id) = [(sensorOn,actuatorOff)]

3.3 Supervisory Control
In this section we will discuss the supervisory synthesis algorithm for Systems as defined in chapter
8. We implement the following.

• The reduction procedure, which reduces an System to the update sets C and U and the
finalization predicate F .

• The supervisory control algorithm in a functional style, which synthesizes the update set C ′

given C and U and F .
• Construction of the supervisor given C ′, U and F .

We first implement the reduction procedure reduceSystem, which reduces an System to the update
sets C and U , and the finalization predicate F .

[46]: reduceSystem
:: Eq d
=> System d
-> ([EventUpdate (d, StateLabel)]

, [EventUpdate (d, StateLabel)]
, (d, StateLabel) -> Bool
)

reduceSystem
(System (Automaton qs is ts tp (==>)) controllables uncontrollables dom␣

↪→initialValues)
=
(c, u, finalization)

where
pl' = projectLeft disjointComposition
c = do t@(r1, e, r2) <- tp

guard (e `elem` controllables)
let stateRel = BinaryRel "stateRel" (\(v,q) -> map (v,) (q ==> t))
return (pl' r1, pl' e, pl' r2 <> stateRel)

u = do t@(r1, e, r2) <- tp
guard (e `elem` uncontrollables)
let stateRel = BinaryRel "stateRel" (\(v,q) -> map (v,) (q ==> t))
return (pl' r1, pl' e, pl' r2 <> stateRel)

finalization (v, q) = q `elem` ts

For the supervisory synthesis algorithm, we first define the function leastFixpoint, which will

21

122

be used to iterate an endofunction until the result does not change anymore (according to a given
function for testing on equivalence).

[47]: leastFixpoint :: (a -> a -> Bool) -> (a -> a) -> a -> a
leastFixpoint eq f = rec

where
rec x | eq x (f x) = x

| otherwise = rec (f x)

Using leastFixpoint we can implement the function fixPredicate as shown in the algorithm.

[48]: fixPredicate :: [d] -> [EventUpdate d] -> (d -> Bool) -> (d -> Bool)
fixPredicate vals binaryRels = leastFixpoint eq updatePredicate

where
eq p1 p2 = all (\v -> p1 v == p2 v) vals
updatePredicate predicate' = \v -> predicate' v ||

any (\r -> any predicate'␣
↪→(getEventUpdateRel r v)) binaryRels

Line 5: Redundant lambda
Found:
updatePredicate predicate'

= \ v ->
predicate' v ||
any (\ r -> any predicate' (getEventUpdateRel r v)) binaryRels

Why not:
updatePredicate predicate' v

= predicate' v ||
any (\ r -> any predicate' (getEventUpdateRel r v)) binaryRels

updateGuards implements the contents of the while-loop of the algorithm, which updates the guard
predicates for each iteration. Note that the blocking predicates for the iteration are also returned,
since we need Bj−1 in the inner while loop of the algorithm.

[49]: updateGuards
:: Show d
=> [d]
-> [EventUpdate d]
-> (d -> Bool)
-> ([EventUpdate d]

, d -> Bool
)

-> ([EventUpdate d]
, d -> Bool
)

updateGuards
vals

22

123

uncontrollables
finalization
(controllables, badPredicate)

=
(controllables', badPredicate')

where
nonBlocking = fixPredicate vals (uncontrollables ++ controllables)␣

↪→finalization
initialBad v = badPredicate v || not (nonBlocking v)
badPredicate' = fixPredicate vals uncontrollables initialBad
guardLabel = intercalate " && " $ map (("not "++).show) $ filter␣

↪→badPredicate' vals
updateGuard (rel1, e, rel2) = (rel1, e, rel2 <> BinaryRel guardLabel (\v ->␣

↪→[v | not (badPredicate' v)]))
controllables' = map updateGuard controllables

Lastly, synthesizeSupervisorUpdates will compute the update set C ′ given C, U and F .

[50]: synthesizeSupervisorUpdates
:: (Eq d

, Show d
)

=> [d]
-> [EventUpdate d]
-> [EventUpdate d]
-> (d -> Bool)
-> [EventUpdate d]

synthesizeSupervisorUpdates
domain
controllables
uncontrollables
finalization

=
controllables'

where
initialBad d = False
eq (contr1, bad1) (contr2, bad2)

=
all (\(u1, u2) -> all (\v -> getEventUpdateRel u1 v ==␣

↪→getEventUpdateRel u2 v) domain) (zip contr1 contr2)
(controllables', bad)

=
leastFixpoint eq (updateGuards domain uncontrollables finalization)␣

↪→(controllables, initialBad)

constructSupervisor constructs the supervisor from, among other things, the synthesized update
set C ′.

23

124

[51]: constructSupervisor
:: Eq d
=> [EventUpdate (d, StateLabel)]
-> [EventUpdate (d, StateLabel)]
-> [BinaryRel d]
-> [BinaryRel d]
-> [(d, StateLabel)]
-> [d]
-> [StateLabel]
-> System (d, StateLabel)

constructSupervisor
c
u
contrEvents
uncontrEvents
dom
initVals
initStates

=
System machine

contrEvents'
uncontrEvents'
dom
initials'

where
q = SingleLabel "q"
pl' = projectLeft disjointComposition
contrEvents' = [pl' e | e <- contrEvents]
uncontrEvents' = [pl' e | e <- uncontrEvents]
machine = Automaton [q] [q] [q] tp delta
tp = c ++ u
delta q t = [q]
initials' = [(v, q') | v <- initVals, q' <- initStates]

Lastly, we will combine all discussed elements into the function synthesizeSupervisor, which
implements the complete supervisory synthesis algorithm for EventSystems.

[52]: synthesizeSupervisor :: (Eq d, Show d) => System d -> System (d, StateLabel)
synthesizeSupervisor

es@(System machine controllables uncontrollables dom initialValues)
=
supervisor

where
(Automaton qs is ts tp (==>)) = machine
domain' = [(v, q) | v <- dom, q <- qs]
(c, u, finalization) = reduceSystem es
c' = synthesizeSupervisorUpdates domain' c u finalization

24

125

supervisor = constructSupervisor c' u controllables uncontrollables domain'␣
↪→initialValues is

supervise computes the supervisor for a given system, and synchronizes the resulting supervisor
with said system.

[53]: supervise :: (Eq d, Show d) => System d -> System (d, StateLabel)
supervise system = syncEventSystems domComp system supervisor

where
supervisor = synthesizeSupervisor system
domComp = DomainComposition

{ combine = \v1 v2 -> v2
, decompose = \(d, q) -> (d, (d, q))
, checkComp = \d (d', q) -> d == d'
, extract1 = fst
, extract2 = id
, augment1 = \(d, q) d' -> (d', q)
, augment2 = \t t' -> t'
}

3.3.1 Examples

This example is based on Example 6.9.1.

[54]: supervisorExample1 :: System (Bool, Bool, Int)
supervisorExample1 = System m contr uncontr dom initialData

where
dom = [(bs,ba,n) | bs <- [True, False], ba <- [True, False], n <- [0..

↪→10]]

s_switch = BinaryRel "s_switch" (\(bs,ba,n) -> [(not bs, ba ,n)])
a_switch = BinaryRel "a_switch" (\(bs,ba,n) -> [(bs, not ba ,n)])
contr = [a_switch]
uncontr = [s_switch]
initialData = [(False,False,0)]

g1 = BinaryRel "g1" (\(bs,ba,n) -> [(bs,ba,n) | n < 8])
g2 = BinaryRel "g2" (\(bs,ba,n) -> [(bs,ba,n) | n < 9])
g3 = BinaryRel "g3" (\(bs,ba,n) -> [(bs,ba,n) | n < 7])
u = BinaryRel "u" (\(bs, ba,n) -> [(bs, ba, n + 1)])

m = Automaton [q0, q1, q2] [q0] [q0] tp delta
[q0, q1, q2] = map SingleLabel ["q0", "q1", "q2"]
tp = [(g1, a_switch, u), (g2, a_switch, u), (g3, s_switch, u)]
delta q t = show q ==> show t

"q0" ==> "(g1,a_switch,u)" = [q1]

25

126

"q1" ==> "(g2,a_switch,u)" = [q2]
"q2" ==> "(g3,s_switch,u)" = [q0]
_ ==> _ = []

[55]: supervisedSystem = supervise supervisorExample1
print supervisedSystem

Controllable Events: [a_switch]
Uncontrollable Events: [s_switch]
Domain: [((True,True,0),q0),((True,True,0),q1),((True,True,0),q2),((True,True,1),q0),((True,True,1),q1),((Tr...
Initial values: [((False,False,0),q0)]

Machine:
States: [(q0,q),(q1,q),(q2,q)]
Initial States: [(q0,q)]
Terminal States: [(q0,q)]
Alphabet: [

(g1,a_switch,u||u;stateRel;not ((True,Tr...,
(g1||g2,a_switch,u||u;stateRel;not ((Tru...,
(g2||g1,a_switch,u||u;stateRel;not ((Tru...,
(g2,a_switch,u||u;stateRel;not ((True,Tr...,
(g3,s_switch,u||u;stateRel),

]

Transitions:
(q0,q) ==> (g1,a_switch,u||u;stateRel;not ((True,Tr... = [(q1,q)]

(q0,q) ==> (g1||g2,a_switch,u||u;stateRel;not ((Tru... = [(q1,q)]

(q1,q) ==> (g2||g1,a_switch,u||u;stateRel;not ((Tru... = [(q2,q)]

(q1,q) ==> (g2,a_switch,u||u;stateRel;not ((True,Tr... = [(q2,q)]

(q2,q) ==> (g3,s_switch,u||u;stateRel) = [(q0,q)]

This example is based on Example 6.9.2.

[56]: supervisorExample2 :: System Int
supervisorExample2 = System m contr uncontr dom initialData

where
dom = [0..5]

cTakeOne = BinaryRel "cTakeOne" (\n -> [n - 1])
cTakeTwo = BinaryRel "cTakeTwo" (\n -> [n - 2])
uTakeOne = BinaryRel "uTakeOne" (\n -> [n - 1])
uTakeTwo = BinaryRel "uTakeTwo" (\n -> [n - 2])

26

127

contr = [cTakeOne, cTakeTwo]
uncontr = [uTakeOne, uTakeTwo]
initialData = [3]

g1 = BinaryRel "g1" (\n -> [n | n > 1])
g2 = BinaryRel "g2" (\n -> [n | n > 2])
g3 = BinaryRel "g3" (\n -> [n | n == 1])
g4 = BinaryRel "g4" (\n -> [n | n == 2])

m = Automaton [q0, q1, q2, q3] [q0] [q3] tp delta
[q0, q1, q2, q3] = map SingleLabel ["q0", "q1", "q2", "q3"]
tp = [(g1, cTakeOne,identityRel), (g2, cTakeTwo, identityRel),

(g1, uTakeOne, identityRel), (g2, uTakeTwo, identityRel),
(g4, cTakeTwo, identityRel), (g3, cTakeOne, identityRel),
(g4, uTakeTwo, identityRel), (g3, uTakeOne, identityRel)]

delta q t = show q ==> show t

"q0" ==> "(g1,cTakeOne,id)" = [q1]
"q0" ==> "(g2,cTakeTwo,id)" = [q1]
"q1" ==> "(g1,uTakeOne,id)" = [q0]
"q1" ==> "(g2,uTakeTwo,id)" = [q0]
"q0" ==> "(g3,cTakeOne,id)" = [q2]
"q0" ==> "(g4,cTakeTwo,id)" = [q2]
"q1" ==> "(g3,uTakeOne,id)" = [q3]
"q1" ==> "(g4,uTakeTwo,id)" = [q3]
_ ==> _ = []

[57]: supervisedSystem2 = supervise supervisorExample2
print supervisedSystem2

Controllable Events: [cTakeOne,cTakeTwo]
Uncontrollable Events: [uTakeOne,uTakeTwo]
Domain: [(0,q0),(0,q1),(0,q2),(0,q3),(1,q0),(1,q1),(1,q2),(1,q3),(2,q0),(2,q1),(2,q2),(2,q3),(3,q0),(3,q1),(...
Initial values: [(3,q0)]

Machine:
States: [(q0,q),(q1,q),(q2,q),(q3,q)]
Initial States: [(q0,q)]
Terminal States: [(q3,q)]
Alphabet: [

(g1,cTakeOne,id||id;stateRel;not (0,q0) ...,
(g1||g3,cTakeOne,id||id;stateRel;not (0,...,
(g3||g1,cTakeOne,id||id;stateRel;not (0,...,
(g3,cTakeOne,id||id;stateRel;not (0,q0) ...,
(g2,cTakeTwo,id||id;stateRel;not (0,q0) ...,
(g2||g4,cTakeTwo,id||id;stateRel;not (0,...,
(g4||g2,cTakeTwo,id||id;stateRel;not (0,...,

27

128

(g4,cTakeTwo,id||id;stateRel;not (0,q0) ...,
(g1,uTakeOne,id||id;stateRel),
(g1||g3,uTakeOne,id||id;stateRel),
(g3||g1,uTakeOne,id||id;stateRel),
(g3,uTakeOne,id||id;stateRel),
(g2,uTakeTwo,id||id;stateRel),
(g2||g4,uTakeTwo,id||id;stateRel),
(g4||g2,uTakeTwo,id||id;stateRel),
(g4,uTakeTwo,id||id;stateRel),

]

Transitions:
(q0,q) ==> (g1,cTakeOne,id||id;stateRel;not (0,q0) ... = [(q1,q)]

(q0,q) ==> (g1||g3,cTakeOne,id||id;stateRel;not (0,... = [(q1,q)]

(q0,q) ==> (g3||g1,cTakeOne,id||id;stateRel;not (0,... = [(q2,q)]

(q0,q) ==> (g3,cTakeOne,id||id;stateRel;not (0,q0) ... = [(q2,q)]

(q0,q) ==> (g2,cTakeTwo,id||id;stateRel;not (0,q0) ... = [(q1,q)]

(q0,q) ==> (g2||g4,cTakeTwo,id||id;stateRel;not (0,... = [(q1,q)]

(q0,q) ==> (g4||g2,cTakeTwo,id||id;stateRel;not (0,... = [(q2,q)]

(q0,q) ==> (g4,cTakeTwo,id||id;stateRel;not (0,q0) ... = [(q2,q)]

(q1,q) ==> (g1,uTakeOne,id||id;stateRel) = [(q0,q)]

(q1,q) ==> (g1||g3,uTakeOne,id||id;stateRel) = [(q0,q)]

(q1,q) ==> (g3||g1,uTakeOne,id||id;stateRel) = [(q3,q)]

(q1,q) ==> (g3,uTakeOne,id||id;stateRel) = [(q3,q)]

(q1,q) ==> (g2,uTakeTwo,id||id;stateRel) = [(q0,q)]

(q1,q) ==> (g2||g4,uTakeTwo,id||id;stateRel) = [(q0,q)]

(q1,q) ==> (g4||g2,uTakeTwo,id||id;stateRel) = [(q3,q)]

(q1,q) ==> (g4,uTakeTwo,id||id;stateRel) = [(q3,q)]

28

129

Syntax

August 16, 2020

[1]: :load SemanticDomain.hs

[2]: import qualified Data.Map.Strict as Map hiding (foldl, filter, take)
import Control.Monad.State
import Data.List hiding (insert, union)
import Data.Maybe
import qualified Data.Set

import SemanticDomain

1 Automata
We start with the introduction of syntax used to define an automaton.

We first define the declarations that can be made for an automaton. For this we define the datatype
AutomatonDeclarationStatement a, which will be used to define an automaton with type a. We
define the following declaration statements:

• A statement for declaring state which is not initial nor terminal: State "stateName",
• a statement for declaring an initial state which is not terminal: InitialState "stateName",
• a statement for declaring a terminal state which is not initial state: TerminalState

"stateName",
• a statement for declaring a state which is both initial and terminal: InitialTerminalState

"stateName",
• and a statement for declaring a edge from one state to another, with symbol x of type a:

Edge from "originState" to "targetState" with x.

We also define some keywords which will be given as arguments to the Edge constructor.

[3]: data AutomatonDeclarationStatement a = State String | InitialState String |␣
↪→TerminalState String

| InitialTerminalState String | Edge␣
↪→KeyWord String KeyWord String KeyWord a

type KeyWord = String

from :: KeyWord
from = "from"

1

Appendix D

Syntax Implementation

In this appendix the implementation of the syntax of X-Control is discussed in more detail.

130

to :: KeyWord
to = "to"

with :: KeyWord
with = "with"

A definition for an automaton is then a list of automaton declarations.

[4]: type AutomatonDeclaration a = [AutomatonDeclarationStatement a]

The function automaton is then a valuation function for automata, which constructs an automaton
(as defined in the semantic domain), from an automaton declaration.

[5]: automaton :: (AutomatonType a, Eq a) => AutomatonDeclaration a -> Automaton a␣
↪→StateLabel

automaton automatonDeclarations = Automaton qs is ts alph delta
where
qs = map f $ filter g automatonDeclarations

where
g (State name) = True
g (InitialState name) = True
g (TerminalState name) = True
g (InitialTerminalState name) = True
g _ = False

f (State name) = SingleLabel name
f (InitialState name) = SingleLabel name
f (TerminalState name) = SingleLabel name
f (InitialTerminalState name) = SingleLabel name

is = map f $ filter g automatonDeclarations
where
g (InitialState name) = True
g (InitialTerminalState name) = True
g _ = False

f (InitialState name) = SingleLabel name
f (InitialTerminalState name) = SingleLabel name

ts = map f $ filter g automatonDeclarations
where
g (TerminalState name) = True
g (InitialTerminalState name) = True
g _ = False

f (TerminalState name) = SingleLabel name

2

131

f (InitialTerminalState name) = SingleLabel name

alph = Data.Set.toList . Data.Set.fromAscList $ map f $ filter g␣
↪→automatonDeclarations

where
g (Edge "from" origin "to" target "with" label) = True
g _ = False

f (Edge "from" origin "to" target "with" label) = label

delta state symbol = map f $ filter g automatonDeclarations
where
g (Edge "from" origin "to" target "with" label) = state == SingleLabel␣

↪→origin && label == symbol
g _ = False

f (Edge "from" origin "to" target "with" label) = SingleLabel target

As an example we define an automaton which behavior contains all sequences belonging to the
regular expression (ab)∗c.

[6]: exampleAutomaton :: Automaton Char StateLabel
exampleAutomaton = automaton [

InitialState "q0",
State "q1",
TerminalState "q2",

Edge from "q0" to "q1" with 'a',
Edge from "q1" to "q0" with 'b',
Edge from "q0" to "q2" with 'c'
]

[7]: take 10 $ getLanguage exampleAutomaton

[(q2,"c"),(q2,"abc"),(q2,"ababc"),(q2,"abababc"),(q2,"ababababc"),(q2,"abababababc"),(q2,"ababababababc"),(q2,"abababababababc"),(q2,"ababababababababc"),(q2,"abababababababababc")]

2 Relations
Next we will define syntax to define the binary relations as used in X-machines and D-systems.

We first define syntax for defining an element of our domain. For now, we will only support Boolean
and integer elements. A Boolean element is defined as BoolElement "elementId" initialValue,
and a integer element is defined as IntElement "elementId" intRange initialValue. An
ElementId is the identifier for the domain element.

3

132

[8]: type ElementId = String

data DomainElement = BoolElement ElementId Bool | IntElement ElementId [Int] Int

getElementId :: DomainElement -> ElementId
getElementId (BoolElement elementId value) = elementId
getElementId (IntElement elementId domain value) = elementId

The datatype DomainElementValue represents a current value in the domain.

[9]: data DomainElementValue = BoolValue Bool | IntValue Int deriving Eq

instance Show DomainElementValue
where
show (BoolValue b) = show b
show (IntValue x) = show x

declareElement is a valuation function for domain elements.

[10]: declareElement :: DomainElement -> DomainElementValue
declareElement (BoolElement elementId initialValue) = BoolValue initialValue
declareElement (IntElement elementId domain initialValue) = IntValue␣
↪→initialValue

getDomainElementDomain computes the domain for a given DomainElement, which is the list of
possible values which the element can have.

[11]: getDomainElementDomain :: DomainElement -> [DomainElementValue]
getDomainElementDomain (BoolElement elementId initialValue) = [BoolValue True,␣
↪→BoolValue False]

getDomainElementDomain (IntElement elementId domain initialValue) = map␣
↪→IntValue domain

We define functions to obtain the Int and Bool values from DomainElementValue.

[12]: getIntFromElementValue :: DomainElementValue -> Int
getIntFromElementValue (IntValue x) = x
getIntFromElementValue (BoolValue b) = error "not an int value"

getBoolFromElementValue :: DomainElementValue -> Bool
getBoolFromElementValue (BoolValue b) = b
getBoolFromElementValue (IntValue x) = error "not a bool value"

We also define functions to change the values of DomainElementValue instances.

[13]: setIntToElementValue :: DomainElementValue -> Int -> DomainElementValue
setIntToElementValue (IntValue x) = IntValue
setIntToElementValue (BoolValue b) = error "not an int value"

4

133

setBoolToElementValue :: DomainElementValue -> Bool -> DomainElementValue
setBoolToElementValue (BoolValue b) = BoolValue
setBoolToElementValue (IntValue x) = error "not a bool value"

The type of our domain, modeled by DomainValue, is a mapping from elementIds to the corre-
sponding DomainElementValue.

[14]: type DomainValue = Map.Map ElementId DomainElementValue

With declareDomain we can instantiate a domain given a DomainElement list.

[15]: declareDomain :: [DomainElement] -> DomainValue
declareDomain domainElements = Map.fromList $ map (\de -> (getElementId de,␣
↪→declareElement de)) domainElements

getPossibleDomainValues computes all possible instances of a domain given as a DomainElement
list.

[16]: fullCartesianProduct :: [[a]] -> [[a]]
fullCartesianProduct [] = []
fullCartesianProduct [xs] = map (:[]) xs
fullCartesianProduct (xs:xss) = [x:xs' | x <- xs, xs' <- fullCartesianProduct␣
↪→xss]

getPossibleDomainValues :: [DomainElement] -> [DomainValue]
getPossibleDomainValues [] = [Map.fromList []]
getPossibleDomainValues domainElements = map Map.fromList $␣
↪→fullCartesianProduct elementDomains
where
elementDomains = [map (getElementId de,) $ getDomainElementDomain de

| de <- domainElements
]

We define a functions for obtaining values from a DomainValue, given an ElementId.

[17]: getIntFromDomainValue :: DomainValue -> ElementId -> Int
getIntFromDomainValue domValue elementId = getIntFromElementValue $ domValue␣
↪→Map.! elementId

getBoolFromDomainValue :: DomainValue -> ElementId -> Bool
getBoolFromDomainValue domValue elementId = getBoolFromElementValue $ domValue␣
↪→Map.! elementId

And we define functions for changing a value in a DomainValue belonging to some ElementId.

[18]: setIntInDomainValue :: DomainValue -> ElementId -> Int -> DomainValue
setIntInDomainValue domValue elementId x = Map.adjust (`setIntToElementValue`␣
↪→x) elementId domValue

5

134

setBoolInDomainValue :: DomainValue -> ElementId -> Bool -> DomainValue
setBoolInDomainValue domValue elementId b = Map.adjust (`setBoolToElementValue`␣
↪→b) elementId domValue

For D-Systems we need syntax for defining relations which updates the domain value. For this we
define the type DomainState which is based on the type State DomainValue. We use the State
a monad since it facilitates a method to manipulate the state domain in a procedural way. The
do-notation in Haskell essentially provides us most of the syntax for defining relations.

[19]: newtype DomainState a = DomainState { getState :: State DomainValue a }

instance Functor DomainState
where
fmap f (DomainState s) = DomainState $ fmap f s

instance Applicative DomainState
where
pure x = DomainState (pure x)
(DomainState fSt) <*> (DomainState xSt) = DomainState $ fSt <*> xSt

instance Monad DomainState
where
return x = DomainState (return x)
(DomainState s1) >>= f = DomainState $ s1 >>= (getState . f)

We define functions for retrieving values from domain elements within the DomainState environ-
ment. These functions are part of our syntax.

[20]: getIntValue :: ElementId -> DomainState Int
getIntValue elementId = DomainState $ get >>= (\domainValue ->

return $ getIntFromDomainValue domainValue elementId)

getBoolValue :: ElementId -> DomainState Bool
getBoolValue elementId = DomainState $ get >>= (\domainValue ->

return $ getBoolFromDomainValue domainValue elementId)

We also define functions for setting values to domain elements withing the DomainState environ-
ment. These functions are also part of our syntax.

[21]: setIntValue :: ElementId -> Int -> DomainState ()
setIntValue elementId value = DomainState $ get >>= (\domainValue ->

let newDomainValue = setIntInDomainValue domainValue elementId value
in put newDomainValue)

setBoolValue :: ElementId -> Bool -> DomainState ()
setBoolValue elementId value = DomainState $ get >>= (\domainValue ->

let newDomainValue = setBoolInDomainValue domainValue elementId value

6

135

in put newDomainValue)

function is a valuation function for DomainState without a result. We now have syntax for
creating relations with exactly 1 result for some domain value.

[22]: function :: String -> DomainState () -> BinaryRel DomainValue
function name domainState = BinaryRel name (\d -> [(execState . getState)␣
↪→domainState d])

What follows is an example function.

[23]: exampleFunction = function "exampleFunction" $ do {
testInt <- getIntValue "testInt";
testBool <- getBoolValue "testBool";

if testBool then
setIntValue "testInt" (testInt + 2);

else
setIntValue "testInt" (testInt + 3);

}

guard is a valuation function for DomainState with a Boolean result. This gives us syntax for
creating relations with, for some domain value, the same domain value as result, or no result.
These relations essentially act as (transition) guards.

[24]: guard :: String -> DomainState Bool -> BinaryRel DomainValue
guard name domainState = BinaryRel name (\d -> [d | (evalState . getState)␣
↪→domainState d])

What follows is an example guard.

[25]: exampleGuard = guard "exampleGuard" $ do {
testInt <- getIntValue "testInt";

return $ testInt < 5;
}

relation is a valuation function for DomainState [DomainState ()]. The function gives us
syntax for defining relations which can have multiple results for some domain values. Note that
functions and guards can also be implemented using relation.

[26]: relation :: String -> DomainState [DomainState ()] -> BinaryRel DomainValue
relation name domainState = BinaryRel name r

where
r domainValue = map (\ds -> (execState . getState) (domainState >> ds)␣

↪→domainValue) domainStateOptions
where
domainStateOptions = (evalState . getState) domainState domainValue

7

136

What follows is an example relation.

[27]: exampleRelation = relation "exampleRelation" $ do {
testBool <- getBoolValue "testBool";

if testBool then
return $ map (setIntValue "testInt") [1..3];

else
return $ map (setIntValue "testInt") [3..5];

}

3 Systems
We will now create syntax for D-Systems, in which we use the previously discussed syntax for
automata and relations.

The datatype RelationDeclaration will be used as syntax to define relations belonging to some
D-System.

[28]: data RelationDeclaration = Function String (DomainState ())
| Guard String (DomainState Bool)
| Relation String (DomainState [DomainState ()])

declareRel constructs a binary relation from a RelationDeclaration, using the appropriate
valuation function.

[29]: declareRel :: RelationDeclaration -> BinaryRel DomainValue
declareRel (Function name domainState) = function name domainState
declareRel (Guard name domainState) = guard name domainState
declareRel (Relation name domainState) = relation name domainState

The datatype SystemSpecification will be used as syntax for specifying D-Systems. The field-
labels notation from Haskell provides us with syntax to specify the different elements of a D-System.
To define the machine of the system, we use the syntax for automaton with type (String, String,
String).

[30]: data SystemSpecification = SystemSpecification
{ domainElements :: [DomainElement]
, controllableEvents :: [RelationDeclaration]
, uncontrollableEvents :: [RelationDeclaration]
, otherOperations :: [RelationDeclaration]
, machine :: AutomatonDeclaration (String, String, String)
}

declareSystem is the valuation function for SystemSpecification.

[31]: declareSystem :: SystemSpecification -> System DomainValue
declareSystem systemSpecification = System mach contrs uncontrs dom initialVals

where

8

137

dom = getPossibleDomainValues $ domainElements systemSpecification
initialVals = [declareDomain $ domainElements systemSpecification]
contrs = map declareRel $ controllableEvents systemSpecification
uncontrs = map declareRel $ uncontrollableEvents systemSpecification
otherOps = map declareRel $ otherOperations systemSpecification

relationMap = Map.insert "id" mempty . Map.fromList $ map (\br@(BinaryRel␣
↪→name rel) -> (name, br)) $ contrs ++ uncontrs ++ otherOps

getRel name | name `Map.member` relationMap = relationMap Map.! name
| otherwise = error $ "relation " ++ name␣

↪→++ " unknown" ++ (show contrs) ++ (show uncontrs)
machineDecl = map f $ machine systemSpecification

where
f (Edge "from" origin "to" target "with" (r1name, ename, r2name))

=
Edge from origin to target with (getRel r1name, getRel ename,␣

↪→getRel r2name)
f (State name) = State name
f (InitialState name) = InitialState name
f (TerminalState name) = TerminalState name
f (InitialTerminalState name) = InitialTerminalState name

mach = automaton machineDecl

Line 12: Redundant bracket
Found:
(show contrs) ++ (show uncontrs)
Why not:
show contrs ++ (show uncontrs)Line 12: Redundant bracket
Found:
(show contrs) ++ (show uncontrs)
Why not:
(show contrs) ++ show uncontrs

We now define an example system.

[32]: systemExample :: System DomainValue
systemExample = declareSystem SystemSpecification

{ domainElements = [
IntElement "coins" [0..5] 5

],

controllableEvents = [
Relation "player1Take" $ do {

coins <- getIntValue "coins";

return [
setIntValue "coins" (coins - 1),

9

138

setIntValue "coins" (coins - 2)
];
}

],

uncontrollableEvents = [
Relation "player2Take" $ do {

coins <- getIntValue "coins";

return [
setIntValue "coins" (coins - 1),
setIntValue "coins" (coins - 2)

];
}

],

otherOperations = [
Guard "notLost" $ do {coins <- getIntValue "coins"; return $ coins >␣

↪→0},
Guard "lost" $ do {coins <- getIntValue "coins"; return $ coins == 0}

],

machine = [
InitialState "player1Turn",
State "player2Turn",
State "player1Lost",
TerminalState "player2Lost",

Edge from "player1Turn" to "player2Turn" with ("id", "player1Take",␣
↪→"notLost"),

Edge from "player1Turn" to "player1Lost" with ("id", "player1Take",␣
↪→"lost"),

Edge from "player2Turn" to "player1Turn" with ("id", "player2Take",␣
↪→"notLost"),

Edge from "player2Turn" to "player2Lost" with ("id", "player2Take",␣
↪→"lost")

]
}

[33]: print systemExample

Controllable Events: [player1Take]
Uncontrollable Events: [player2Take]
Domain: [fromList [("coins",0)],fromList [("coins",1)],fromList [("coins",2)],fromList [("coins",3)],fromLis...
Initial values: [fromList [("coins",5)]]

Machine:

10

139

States: [player1Turn,player2Turn,player1Lost,player2Lost]
Initial States: [player1Turn]
Terminal States: [player2Lost]
Alphabet: [

(id,player1Take,notLost),
(id,player1Take,lost),
(id,player2Take,notLost),
(id,player2Take,lost),

]

Transitions:
player1Turn ==> (id,player1Take,notLost) = [player2Turn]

player1Turn ==> (id,player1Take,lost) = [player1Lost]

player2Turn ==> (id,player2Take,notLost) = [player1Turn]

player2Turn ==> (id,player2Take,lost) = [player2Lost]

[34]: take 10 $ getTraces systemExample

[([player1Take,player2Take,player1Take,player2Take],fromList [("coins",0)]),([player1Take,player2Take,player1Take,player2Take],fromList [("coins",0)]),([player1Take,player2Take,player1Take,player2Take],fromList [("coins",0)]),([player1Take,player2Take,player1Take,player2Take],fromList [("coins",0)])]

4 Modules
We will introduce syntax for the concept of Modules. A module consists of a set of system specifi-
cations and restrictions. A module can then be reduced to a single system using the synchronous
product operator as implemented in the semantic domain.

We first define syntax for declarations which can be made within in a module. As of writing, we
will only support declaring systems and restrictions within a module.

[35]: data ModuleDeclarationStatement = DeclareSystem String SystemSpecification
| DeclareRestriction String KeyWord String

restricts :: KeyWord
restricts = "restricts"

A module specification is then a list of ModuleDeclarationStatement, which forms the syntax for
defining modules.

[36]: type ModuleSpecification = [ModuleDeclarationStatement]

In order to synchronize multiple systems, some bookkeeping has to be done to refer to variables of
other systems. We will introduce functions for adding and removing prefixes to and from elementIds
in a DomainValue.

11

140

[37]: addPrefixToValues :: String -> [String] -> DomainValue -> DomainValue
addPrefixToValues prefix elementNames = Map.mapKeys f

where
f key | key `elem` elementNames = prefix ++ "." ++ key

| otherwise = key

removePrefixFromValues :: String -> DomainValue -> DomainValue
removePrefixFromValues prefix = Map.mapKeys (\key -> fromMaybe key (stripPrefix␣
↪→(prefix ++ ".") key))

transformRelationDeclaration transforms a RelationDeclaration, such that it can be used in
the context of another system.

[38]: transformRelationDeclaration :: String -> [String] -> RelationDeclaration ->␣
↪→RelationDeclaration

transformRelationDeclaration prefix elementNames (Function name domainState) =␣
↪→Function (prefix ++ "." ++ name) domainState'
where
domainState' = DomainState $ do domainValue <- get

put (removePrefixFromValues prefix␣
↪→domainValue)

getState domainState
domainValue' <- get
put (addPrefixToValues prefix elementNames␣

↪→domainValue')

transformRelationDeclaration prefix elementNames (Guard name domainState) =␣
↪→Guard (prefix ++ "." ++ name) domainState'
where
domainState' = DomainState $ do domainValue <- get

put (removePrefixFromValues prefix␣
↪→domainValue)

getState domainState

transformRelationDeclaration prefix elementNames (Relation name domainState) =␣
↪→Relation (prefix ++ "." ++ name) domainState'
where
domainState' = DomainState $ do domainValue <- get

put (removePrefixFromValues prefix␣
↪→domainValue)

result <- getState domainState
return $ map f result

where
f (DomainState state) = DomainState $ do state

domainValue <- get
put (addPrefixToValues prefix␣

↪→elementNames domainValue)

12

141

Line 4: Reduce duplication
Found:
domainValue <- get
put (removePrefixFromValues prefix domainValue)
getState domainState

Why not:
Combine with -:12:37

getTransformedEvent takes a named specification and returns a map with keys of the form
("systemName", "eventName") and the corresponding transformed events as values.

[39]: getTransformedEvents :: (String, SystemSpecification) -> (Map.Map String␣
↪→RelationDeclaration, Map.Map String RelationDeclaration)

getTransformedEvents (sName, systemSpec) = (transformEvents $␣
↪→controllableEvents systemSpec

, transformEvents $␣
↪→uncontrollableEvents systemSpec

)
where
events = controllableEvents systemSpec ++ uncontrollableEvents systemSpec
elementNames = map getElementId $ domainElements systemSpec

transformEvents evs = Map.fromList $ map f evs

f r@(Function rName fn) = (sName ++ "." ++ rName,␣
↪→transformRelationDeclaration sName elementNames r)

f r@(Guard rName fn) = (sName ++ "." ++ rName, transformRelationDeclaration␣
↪→sName elementNames r)

f r@(Relation rName fn) = (sName ++ "." ++ rName,␣
↪→transformRelationDeclaration sName elementNames r)

applyEventRefs takes a SystemSpecification and a mapping as retrieved with
getTransformedEvent and adds the referenced events to the given system.

[40]: applyEventRefs :: SystemSpecification -> (Map.Map String RelationDeclaration,␣
↪→Map.Map String RelationDeclaration) -> SystemSpecification

applyEventRefs systemSpec (externalControllableEvents,␣
↪→externalUncontrollableEvents)
= systemSpec { controllableEvents = controllableEvents'

, uncontrollableEvents = uncontrollableEvents'
}

where
(controllableEventNames, uncontrollableEventNames) = (map f␣

↪→(controllableEvents systemSpec), map f (uncontrollableEvents systemSpec))
where
f r@(Function rName fn) = rName

13

142

f r@(Guard rName fn) = rName
f r@(Relation rName fn) = rName

eventRefs = nub $ map f $ filter g $ machine systemSpec
where
g (Edge "from" origin "to" target "with" (r1name, ename, r2name))

= ename /= "id" &&
ename `notElem` (controllableEventNames ++ uncontrollableEventNames)

g _ = False
f (Edge "from" origin "to" target "with" (r1name, ename, r2name)) =␣

↪→ename

controllableEvents' = controllableEvents systemSpec ++ map f (filter g␣
↪→eventRefs)

where
g = (`Map.member` externalControllableEvents)
f = (externalControllableEvents Map.!)

uncontrollableEvents' = uncontrollableEvents systemSpec ++ map f (filter g␣
↪→eventRefs)

where
g = (`Map.member` externalUncontrollableEvents)
f = (externalUncontrollableEvents Map.!)

syncTwoSystemSpecs takes two system specifications and returns the synchronized result of the
two systems.

[41]: syncTwoSystemSpecs :: (String, SystemSpecification) -> (String,␣
↪→SystemSpecification) -> System DomainValue

syncTwoSystemSpecs (name1, systemSpec1) (name2, systemSpec2) = syncEventSystems␣
↪→domainComposition system1 system2
where
elementNames1 = map getElementId $ domainElements systemSpec1
elementNames2 = map getElementId $ domainElements systemSpec2

system1 = declareSystem systemSpec1
system2 = declareSystem systemSpec2

domainComposition = DomainComposition combine decompose checkComp extract1␣
↪→extract2 augment1 augment2

combine d1 d2 = let prefixedD1 = addPrefixToValues name1 elementNames1 d1
prefixedD2 = addPrefixToValues name2 elementNames2 d2

in Map.union prefixedD1 prefixedD2
decompose dc = let unPrefixedD1 = removePrefixFromValues name1 dc

unPrefixedD2 = removePrefixFromValues name2 dc
in (unPrefixedD1, unPrefixedD2)

checkComp d1 d2 = let prefixedD1 = addPrefixToValues name1 elementNames1 d1

14

143

prefixedD2 = addPrefixToValues name2 elementNames2 d2
in prefixedD1 == prefixedD2 || (Map.size (Map.

↪→intersection prefixedD1 prefixedD2) == 0)
extract1 dc = removePrefixFromValues name1 dc
extract2 dc = removePrefixFromValues name2 dc
augment1 dc d1 = addPrefixToValues name1 elementNames1 d1
augment2 dc d2 = addPrefixToValues name2 elementNames2 d2

Line 20: Eta reduce
Found:
extract1 dc = removePrefixFromValues name1 dc
Why not:
extract1 = removePrefixFromValues name1Line 21: Eta reduce
Found:
extract2 dc = removePrefixFromValues name2 dc
Why not:
extract2 = removePrefixFromValues name2Line 22: Eta reduce
Found:
augment1 dc d1 = addPrefixToValues name1 elementNames1 d1
Why not:
augment1 dc = addPrefixToValues name1 elementNames1Line 23: Eta reduce
Found:
augment2 dc d2 = addPrefixToValues name2 elementNames2 d2
Why not:
augment2 dc = addPrefixToValues name2 elementNames2

syncToExistingSystem takes a named system specification and a existing system, and synchronizes
the system resulting from the specification with the given system.

[42]: syncToExistingSystem :: (String, SystemSpecification) -> System DomainValue ->␣
↪→System DomainValue

syncToExistingSystem (sysName, systemSpec) system = syncEventSystems␣
↪→domainComposition system1 system
where
elementNames = map getElementId $ domainElements systemSpec

system1 = declareSystem systemSpec

domainComposition = DomainComposition combine decompose checkComp extract1␣
↪→extract2 augment1 augment2

combine d1 d2 = let prefixedD1 = addPrefixToValues sysName elementNames d1
in Map.union prefixedD1 d2

decompose dc = let unPrefixedD1 = removePrefixFromValues sysName dc
in (unPrefixedD1, dc)

checkComp d1 d2 = let prefixedD1 = addPrefixToValues sysName elementNames d1

15

144

in prefixedD1 == d2 || (Map.size (Map.intersection␣
↪→prefixedD1 d2) == 0)

extract1 dc = removePrefixFromValues sysName dc
extract2 dc = dc
augment1 dc d1 = addPrefixToValues sysName elementNames d1
augment2 dc d2 = d2

Line 2: Eta reduce
Found:
syncToExistingSystem (sysName, systemSpec) system

= syncEventSystems domainComposition system1 system
Why not:
syncToExistingSystem (sysName, systemSpec)

= syncEventSystems domainComposition system1Line 15: Eta reduce
Found:
extract1 dc = removePrefixFromValues sysName dc
Why not:
extract1 = removePrefixFromValues sysNameLine 17: Eta reduce
Found:
augment1 dc d1 = addPrefixToValues sysName elementNames d1
Why not:
augment1 dc = addPrefixToValues sysName elementNames

syncSpecList takes a list of named system specifications and returns the resulting synchronized
system.

[43]: syncSpecList :: [(String, SystemSpecification)] -> System DomainValue
syncSpecList [] = error "module should at least have 1 system specification"
syncSpecList [(name, systemSpec)] = declareSystem systemSpec
syncSpecList [namedSystemSpec1, namedSystemSpec2] = syncTwoSystemSpecs␣
↪→namedSystemSpec1 namedSystemSpec2

syncSpecList (namedSystemSpec:rest) = syncToExistingSystem namedSystemSpec␣
↪→(syncSpecList rest)

For defining restrictions, it is useful to refer to states and events of the system by the name of the
subsystem they belong to. The function renameStatesAndEvents adds a prefix to all states and
events labels.

[44]: addPrefixToRelation :: String -> RelationDeclaration -> RelationDeclaration
addPrefixToRelation prefix (Relation n r) = Relation (prefix ++ n) r
addPrefixToRelation prefix (Guard n r) = Guard (prefix ++ n) r
addPrefixToRelation prefix (Function n r) = Function (prefix ++ n) r

renameStatesAndEvents :: String -> SystemSpecification -> SystemSpecification
renameStatesAndEvents

prefix

16

145

(SystemSpecification domainElements controllableEvents uncontrollableEvents␣
↪→otherOps machine)
= SystemSpecification domainElements controllableEvents'␣

↪→uncontrollableEvents' otherOps machine'
where
addPrefix = ((prefix ++ ".")++)
addPrefixes = map (addPrefixToRelation (prefix ++ "."))
controllableEvents' = addPrefixes controllableEvents
uncontrollableEvents' = addPrefixes uncontrollableEvents
eventNames = map f $ controllableEvents ++ uncontrollableEvents

where
f (Relation n r) = n
f (Guard n r) = n
f (Function n r) = n

machine' = map f machine
where
f (Edge "from" origin "to" target "with" (r1name, "id", r2name))

=
Edge "from" (addPrefix origin) "to" (addPrefix target) "with"␣

↪→(r1name, "id", r2name)
f (Edge "from" origin "to" target "with" (r1name, ename, r2name))

| ename `elem` eventNames =
Edge "from" (addPrefix origin) "to" (addPrefix target) "with"␣

↪→(r1name, addPrefix ename, r2name)
| otherwise =

Edge "from" (addPrefix origin) "to" (addPrefix target) "with"␣
↪→(r1name, ename, r2name)

f (State l) = State $ addPrefix l
f (InitialState l) = InitialState $ addPrefix l
f (TerminalState l) = TerminalState $ addPrefix l
f (InitialTerminalState l) = InitialTerminalState $ addPrefix l

getRestrictions takes a system, an event label, and a state label, and returns the corresponding
restriction list.

[45]: checkStateLabel :: String -> StateLabel -> Bool
checkStateLabel label (SingleLabel stateLabel) = label == stateLabel
checkStateLabel label (JointLabel sl1 sl2) = checkStateLabel label sl1 ||␣
↪→checkStateLabel label sl2

getRestrictions :: System d -> String -> String -> [Restriction d]
getRestrictions (System machine contrs uncontrs dom initD) eventLabel stateLabel

= case event of
Just ev -> [(ev, st) | st <- states]
Nothing -> error $ "event " ++ eventLabel ++ "not found"

where

17

146

(Automaton qs is ts tp delta) = machine
states = filter (checkStateLabel stateLabel) qs
event = find (\e -> getLabel e == eventLabel) (contrs ++ uncontrs)

declareModule is then the valuation function for the ModuleSpecificication syntax.

[46]: declareModule :: ModuleSpecification -> System DomainValue
declareModule moduleDeclarations = system \/ restrictions

where
transformedEvents = (\(c,u) -> (Map.unions c, Map.unions u)) $ unzip $␣

↪→map f moduleDeclarations
where
f (DeclareSystem sysName systemSpecification) =␣

↪→getTransformedEvents (sysName, systemSpecification)
g (sysName, eventName) = addPrefixToRelation (sysName ++ ".")

systemSpecs = map f $ filter g moduleDeclarations
where
f (DeclareSystem sysName systemSpecification) = (sysName,␣

↪→applyEventRefs (renameStatesAndEvents sysName systemSpecification)␣
↪→transformedEvents)

g DeclareSystem {} = True
g _ = False

system = syncSpecList systemSpecs

restrictions = concatMap f $ filter g moduleDeclarations
g DeclareRestriction {} = True
g _ = False
f (DeclareRestriction state "restricts" event) = getRestrictions system␣

↪→event state

What follows is a example module, containing an actuator, a sensor, and a requirement for the
behavior of the resulting system.

[47]: exampleModule = [
DeclareSystem "actuator" SystemSpecification

{ domainElements = [
BoolElement "actuatorStatus" False

],
controllableEvents = [

Function "switchActuator" $ do {
actuatorStatus <- getBoolValue "actuatorStatus";
setBoolValue "actuatorStatus" (not actuatorStatus);
}

],
uncontrollableEvents = [],

18

147

otherOperations = [],
machine = [

InitialTerminalState "actuatorOff",
State "actuatorOn",

Edge from "actuatorOff" to "actuatorOn" with ("id",␣
↪→"switchActuator", "id"),

Edge from "actuatorOn" to "actuatorOff" with ("id",␣
↪→"switchActuator", "id")

]
},

DeclareSystem "sensor" SystemSpecification
{ domainElements = [

BoolElement "sensorStatus" False
],
controllableEvents = [],
uncontrollableEvents = [

Function "switchSensor" $ do {
sensorStatus <- getBoolValue "sensorStatus";
setBoolValue "sensorStatus" (not sensorStatus);
}

],
otherOperations = [],
machine = [

InitialTerminalState "sensorOff",
State "sensorOn",

Edge from "sensorOff" to "sensorOn" with ("id", "switchSensor",␣
↪→"id"),

Edge from "sensorOn" to "sensorOff" with ("id", "switchSensor",␣
↪→"id")

]
},

DeclareSystem "requirement" SystemSpecification
{ domainElements = [],

controllableEvents = [],
uncontrollableEvents = [],
otherOperations = [],
machine = [

InitialTerminalState "r0",
State "r1",

Edge from "r0" to "r1" with ("id", "actuator.switchActuator",␣
↪→"id"),

Edge from "r1" to "r0" with ("id", "sensor.switchSensor", "id")

19

148

]
}

]

[48]: exampleModuleSystem = declareModule exampleModule

print exampleModuleSystem

Controllable Events: [actuator.switchActuator]
Uncontrollable Events: [sensor.switchSensor]
Domain: [fromList [("actuator.actuatorStatus",True),("sensor.sensorStatus",True)],fromList [("actuator.actua...
Initial values: [fromList [("actuator.actuatorStatus",False),("sensor.sensorStatus",False)]]

Machine:
States: [(actuator.actuatorOff,sensor.sensorOff,requirement.r0),(actuator.actuatorOff,sensor.sensorOff,requirement.r1),(actuator.actuatorOff,sensor.sensorOn,requirement.r0),(actuator.actuatorOff,sensor.sensorOn,requirement.r1),(actuator.actuatorOn,sensor.sensorOff,requirement.r0),(actuator.actuatorOn,sensor.sensorOff,requirement.r1),(actuator.actuatorOn,sensor.sensorOn,requirement.r0),(actuator.actuatorOn,sensor.sensorOn,requirement.r1)]
Initial States: [(actuator.actuatorOff,sensor.sensorOff,requirement.r0)]
Terminal States: [(actuator.actuatorOff,sensor.sensorOff,requirement.r0)]
Alphabet: [

(id,actuator.switchActuator,id),
(id,sensor.switchSensor,id),

]

Transitions:
(actuator.actuatorOff,sensor.sensorOff,requirement.r0) ==> (id,actuator.switchActuator,id) = [(actuator.actuatorOn,sensor.sensorOff,requirement.r1)]

(actuator.actuatorOff,sensor.sensorOff,requirement.r1) ==> (id,sensor.switchSensor,id) = [(actuator.actuatorOff,sensor.sensorOn,requirement.r0)]

(actuator.actuatorOff,sensor.sensorOn,requirement.r0) ==> (id,actuator.switchActuator,id) = [(actuator.actuatorOn,sensor.sensorOn,requirement.r1)]

(actuator.actuatorOff,sensor.sensorOn,requirement.r1) ==> (id,sensor.switchSensor,id) = [(actuator.actuatorOff,sensor.sensorOff,requirement.r0)]

(actuator.actuatorOn,sensor.sensorOff,requirement.r0) ==> (id,actuator.switchActuator,id) = [(actuator.actuatorOff,sensor.sensorOff,requirement.r1)]

(actuator.actuatorOn,sensor.sensorOff,requirement.r1) ==> (id,sensor.switchSensor,id) = [(actuator.actuatorOn,sensor.sensorOn,requirement.r0)]

(actuator.actuatorOn,sensor.sensorOn,requirement.r0) ==> (id,actuator.switchActuator,id) = [(actuator.actuatorOff,sensor.sensorOn,requirement.r1)]

(actuator.actuatorOn,sensor.sensorOn,requirement.r1) ==> (id,sensor.switchSensor,id) = [(actuator.actuatorOn,sensor.sensorOff,requirement.r0)]

[49]: take 2 $ getTraces exampleModuleSystem

[([],fromList [("actuator.actuatorStatus",False),("sensor.sensorStatus",False)]),([actuator.switchActuator,sensor.switchSensor,actuator.switchActuator,sensor.switchSensor],fromList [("actuator.actuatorStatus",False),("sensor.sensorStatus",False)])]

We define another module with an actuator and a sensor where the sensorSwitch event is restricted
by the state actuatorOff of the actuator.

20

149

[50]: exampleModule2 = [
DeclareSystem "actuator" SystemSpecification

{ domainElements = [
BoolElement "actuatorStatus" False

],
controllableEvents = [

Function "switchActuator" $ do {
actuatorStatus <- getBoolValue "actuatorStatus";
setBoolValue "actuatorStatus" (not actuatorStatus);
}

],
uncontrollableEvents = [],
otherOperations = [],
machine = [

InitialTerminalState "actuatorOff",
State "actuatorOn",

Edge from "actuatorOff" to "actuatorOn" with ("id",␣
↪→"switchActuator", "id"),

Edge from "actuatorOn" to "actuatorOff" with ("id",␣
↪→"switchActuator", "id")

]
},

DeclareSystem "sensor" SystemSpecification
{ domainElements = [

BoolElement "sensorStatus" False
],
controllableEvents = [],
uncontrollableEvents = [

Function "switchSensor" $ do {
sensorStatus <- getBoolValue "sensorStatus";
setBoolValue "sensorStatus" (not sensorStatus);
}

],
otherOperations = [],
machine = [

InitialTerminalState "sensorOff",
State "sensorOn",

Edge from "sensorOff" to "sensorOn" with ("id", "switchSensor",␣
↪→"id"),

Edge from "sensorOn" to "sensorOff" with ("id", "switchSensor",␣
↪→"id")

]
},

21

150

DeclareRestriction "actuator.actuatorOff" restricts "sensor.switchSensor"
]

[51]: exampleModuleSystem2 = declareModule exampleModule2

print exampleModuleSystem2

Controllable Events: [actuator.switchActuator]
Uncontrollable Events: [sensor.switchSensor]
Domain: [fromList [("actuator.actuatorStatus",True),("sensor.sensorStatus",True)],fromList [("actuator.actua...
Initial values: [fromList [("actuator.actuatorStatus",False),("sensor.sensorStatus",False)]]

Machine:
States: [(actuator.actuatorOff,sensor.sensorOff),(actuator.actuatorOff,sensor.sensorOn),(actuator.actuatorOn,sensor.sensorOff),(actuator.actuatorOn,sensor.sensorOn)]
Initial States: [(actuator.actuatorOff,sensor.sensorOff)]
Terminal States: [(actuator.actuatorOff,sensor.sensorOff)]
Alphabet: [

(id,actuator.switchActuator,id),
(id,sensor.switchSensor,id),

]

Transitions:
(actuator.actuatorOff,sensor.sensorOff) ==> (id,actuator.switchActuator,id) = [(actuator.actuatorOn,sensor.sensorOff)]

(actuator.actuatorOff,sensor.sensorOn) ==> (id,actuator.switchActuator,id) = [(actuator.actuatorOn,sensor.sensorOn)]

(actuator.actuatorOn,sensor.sensorOff) ==> (id,actuator.switchActuator,id) = [(actuator.actuatorOff,sensor.sensorOff)]

(actuator.actuatorOn,sensor.sensorOff) ==> (id,sensor.switchSensor,id) = [(actuator.actuatorOn,sensor.sensorOn)]

(actuator.actuatorOn,sensor.sensorOn) ==> (id,actuator.switchActuator,id) = [(actuator.actuatorOff,sensor.sensorOn)]

(actuator.actuatorOn,sensor.sensorOn) ==> (id,sensor.switchSensor,id) = [(actuator.actuatorOn,sensor.sensorOff)]

22

151

Chapter 1

Simulator

module Simulator (

SimulatorCommand(UncontrollableEvent, ClockTick, Quit), simulateSystem,

commandListener, getCommand, clock, executeSimulation,

selectControllableEvent, selectUncontrollableEvent, getRandomListElement,

getEnabledEvents, getEnabledTransitions

) where

data SimulatorCommand

The commands that can be given to the simulator.

Constructors

= Quit This command stops the simulator.
| ClockTick This is a clock tick command, which initiates

a controllable event.
| UncontrollableEvent This command initiates a user selected uncon-

trollable event.

simulateSystem :: (Show d, Eq d) => System d -> IO ()

Simulates a given System. Initiates commandListener and clock on two
seperate threads.

commandListener :: Lock -> MVar SimulatorCommand -> IO ()

1

Appendix E

Simulator

This appendix contains some documentation regarding the simulator for X-Control.

152

2 CHAPTER 1. SIMULATOR

Retrieves commands from user, and puts them in commandVar. Must ac-
quire lock before listening to input stream, only releases lock when a non-
valid command code is retrieved from the input stream.

getCommand :: Char -> Maybe SimulatorCommand

Obtain command from character code.

clock :: MVar SimulatorCommand -> IO ()

Generated ClockTick commands every second. If the commandVar is not
empty, then the tick is skipped.

executeSimulation :: (Show d, Eq d) =>

System d

-> MVar SimulatorCommand -> Lock -> StateLabel -> d -> IO ()

Executes the simulation step given the system, the command variable,
the commandlock, the current state, and the current data variable. Re-
trieves command from either the commandListener or the clock. Re-runs
the simulator after a command is recieved and handled, unless the Quit
command is given.

selectControllableEvent :: Eq d =>

System d -> StateLabel -> d -> IO (StateLabel, d)

Given a system, a current state, and a current value, randomly select a
next state and value retrieved by taking a transistion with a controllable
event from the current state and value.

selectUncontrollableEvent :: (Eq d, Show d) =>

System d -> StateLabel -> d -> IO (StateLabel, d)

Given a system, a current state, and a current value, let the user select a
next state and value retrieved by taking a transition with a uncontrollable
event from the current state and value.

getRandomListElement :: [a] -> IO a

Given a list of items, return a randomly selected item.

getEnabledEvents :: Eq d =>

EventMachine d -> [Event d] -> StateLabel -> d -> [Event d]

Given an EventMachine, a list of events, a current state, and a current
value, returns all events from the list which are enabled in the current
state with the current value.

153

3

getEnabledTransitions :: Eq d =>

EventMachine d -> [Event d] -> StateLabel -> d -> [(StateLabel, d)]

Given an EventMachine, a list of events, a current state, and a current
value, returns all new state and value pairs obtained from transitions wich
have events from the list, and are enabled in the current state with the
current value.

154

	I Preamble
	Introduction
	Context
	Domain Specific Languages
	The CIF Project
	Functional Programming Languages

	Research Plan
	Research Question
	Approach

	II Theory
	Algebraic Automata Theory
	Basic Definitions
	Behavior
	Operations

	Relation to Functional Programming

	X-Machines
	Basic Definitions
	Interpretation

	Discrete Event Systems
	General Concepts
	Discrete Event Systems as FSAs
	FSA formalism
	Supervisory Control and Synthesis Algorithm

	Discrete Event Systems as EFAs
	EFA Formalism
	Plants and Requirements
	Supervisory Control and Synthesis Algorithm
	Limitations

	Discrete Event Systems as D-Systems
	Conceptual Background
	Definitions
	System Components
	Events
	EventMachines
	D-Systems
	Examples

	Synchronization
	D-System Equivalence
	D-System Based Requirements
	Restrictions
	Supervisory Control
	Supervisory Control Synthesis
	Intuition of the Reduction
	Reduction of the Problem Domain
	Algorithm for Simplified Problem
	Complete Algorithm

	III Language and Tooling
	Current Language and Toolchain
	Language Description
	Toolchain Description

	New Language and Tooling
	Approach
	Background
	Syntax-driven design
	Semantics-driven design
	Our Approach

	Semantic Domain of X-Control
	Automaton
	Relations and Events
	EventMachines
	D-Systems and Restrictions

	Syntax of X-Control
	Automata
	Domains
	Binary Relations
	Systems
	Modules

	Tooling for X-Control
	Describing Systems
	Simulation
	Supervisory Control Synthesis

	Extendibility
	Parameterized Systems
	Lists of Systems
	Nested Modules
	Event Aliases
	Boolean Expression in EventMachine Labels
	Requirements Based on Formulae

	IV Discussion
	Conclusion
	Further Work
	Bibliography
	Appendices
	Algebraic Properties of Synchronization
	Proof of Correctness Outline Supervisory Synthesis for D-Systems
	Semantic Domain Implementation
	Syntax Implementation
	Simulator

