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Abstract

Safran developed a modeling and simulation platform around geometrical and
functional shared models. The various components of the models are designed by
different designers, integrators, and architects. The idea is to allow the various
models implemented in Python to be complemented by third party models like
Modelica (Modelica Association, nd). Different techniques and concepts are
explored to reach this goal.

The FMI standard is a tool independent standard that supports model
exchange and co-simulation of dynamic models (FMI, nd). Using this standard
we are able to extend the platform with third party models. Questions whether
there are operations we can reuse for the connections between the various models
is also looked at. These operations are located and used to generate the Python
file is. A JSON file is used as input when generating the Python file. To get this
JSON file, a simple Domain Specific Language is developed where models in the
platform can be declared. Future improvements are to add logic and semantics
into the JSON file, add a visual DSL instead of a written one, and experiment
more with the master algorithm. The master algorithm is the algorithm that
orchestrates the communication between the different models (Van Acker et al.,
2015).
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1 Introduction

Safran is an international high-technology group, operating in the aviation
(propulsion, equipment and interiors), defense and space markets (Safran, nd).
They are often modeling Cyber-Physical System. Cyber-Physical System is the
integration of computation and physical processes (Lee, 2008). For this purpose,
they have developed an inhouse modeling and simulation platform.

This is a platform around geometrical and functional shared models. It allows
simultaneous work on the same model. This implies that different components of
a model are developed by different designers, integrators, and/or architects. The
core is developed in Python and user interactions are done through a Jupyter
Notebook. The main objective of this project is to allow the platform users
to extend the various models implemented in Python with possibly third-party
models, for example Modelica (Modelica Association, nd), and to support the
co-simulation of various heterogeneous models. Co-simulation is the theory and
techniques to enable global simulation of coupled system via composition of
simulators (Gomes et al., 2017b). Heterogeneous models are models modeling
different subsystems using various languages and tools (Tripakis, 2015).

The remainder of this section will provide a background on the various tech-
niques and concepts used throughout this thesis. It also gives an overall view of
the objective of this thesis and the problems Safran is facing with the current
state of the platform.

1.1 Background

In this section we will provide the background of several techniques and concepts
used throughout this project.

1.1.1 Co-simulation and Hybrid Co-simulation

As mentioned before, co-simulation is the theory and techniques to enable global
simulation of a coupled system via composition of simulators. Each of these sim-
ulators is a black box mock-up of a subsystem within this system (Gomes et al.,
2017b). There are three types of approaches to co-simulation, namely discrete
event, continuous time, and hybrid co-simulation.

(Gomes et al., 2017b) describes the discrete event based co-simulation approach
describes a family of orchestrators and characteristics of simulation units that
are borrowed from the discrete event system simulation domain. The essential
characteristics of a discrete event system are reactivity and transiency. Reac-
tivity is the instant reaction to external stimuli by an external, and transiency
is the system can change its state multiple times in the same simulated time
point and receive simultaneous stimuli. A discrete event simulation unit is a
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black box. It is also typical to assume that discrete event simulation units com-
municate with the environment via time-stamped events, as opposed to signals.
Thus, the outputs of simulation units can be absent at times where no event is
produced.

(Gomes et al., 2017b) describes the continuous time based co-simulation ap-
proach, the orchestrators’ and simulation units’behavior and assumptions are
borrowed from the continuous time system simulation domain. A continuous
time simulation unit is assumed to have a state that evolves continuously over
time. Each simulation unit’s micro-step sizes are independent in continuous time
co-simulation. To overcome this, a communication step size H, also known as
macro-step size or communication grid size, has to be defined. H marks the
times at which the simulation units exchange values of inputs/outputs.

(Gomes et al., 2017b) describes the hybrid co-simulation approach as mixing
the characteristics and assumptions of discrete event and continuous time ap-
proaches. In order to understand this better, they give an example of a ther-
mostat. The temperature in the room is being monitored by the sensor which
is part of a continuous time system. The heater is either turned on or off and
thus is part of a discrete event system. Together they make the hybrid system
thermostat.

1.1.2 FMI and FMU

Another technique that is used is the Functional Mock-up Interface (FMI) stan-
dard (FMI, nd). The FMI standard is a tool independent standard to support
both model exchange and co-simulation of dynamic models (FMI, nd). Func-
tional Mock-up Unit (FMU) is a component which implements the FMI. It is
a zipped file containing XML description file and the implementation in source
or binary form (Blochwitz et al., 2011).

The FMI standard consists of two parts, namely FMI for model exchange and
FMI for co-simulation. The difference between the two is that FMI for co-
simulation implements a solver within the FMU, while FMI for model exchange
does not.

The intention behind FMI for model exchange is that a modeling envi-
ronment can generate C-code of a dynamic system model in the form of an
input/output block (Blochwitz et al., 2011). This block can be utilized by other
modeling and simulation environments.

The intention of FMI for co-simulation is to couple two or more simulation
tools in a co-simulation environment (Blochwitz et al., 2011). The subsystems
(slaves) are solved independently from each other by their individual solver,
while a master controls the data exchange and synchronization between them.
This master (master algorithm) is a solver algorithm. Section 1.1.3 will explain
this in more detail. Figure 2 shows the difference between FMI for model ex-
change and FMI for co-simulation.
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Figure 2: Difference between environment of FMI for model exchange and FMI
for co-simulation (FMI, nd)

A component which implements the FMI is the FMU. Since FMUs represent
dynamic models, they contain different variables. These variables in FMI for
model exchange corresponds to the inputs and outputs of the input/output
block. In FMI for co-simulation, they are used as input and output for the
solver of each individual subsystem. To simulate the system as a whole over
a period of time, time steps are used to exchange data of the variables of the
subsystems with each other.

FMU consists of one zip file containing an XML file, a description file, and the
implementation in source or binary form. The XML file contains the definition
of all variables of the FMU that are exposed to the environment in which it
will be used, as well as other model information (Blochwitz et al., 2011). For
co-simulation all the slave specific information are contained in a slave spe-
cific XML file (Blochwitz et al., 2011). A small set of easy to use C functions
are provided in source or binary form (Blochwitz et al., 2011). In the case of
co-simulation, these will initiate a communication with a simulation tool to com-
pute a communication time step, and to perform the data exchange (Blochwitz
et al., 2011).

1.1.3 Master Algorithm

The master algorithm provides the orchestration for the entire co-simulation
(Figure 3) (Van Acker et al., 2015). It orchestrates both data exchange and
execution of the different FMUs in one co-simulation model. However, this
master algorithm is not part of the standard (Van Acker et al., 2015) and thus
the user needs to develop it themselves.
The master algorithm is part of the master slave structure of the FMI for co-
simulation. The master algorithm controls the data exchange between the dif-
ferent FMUs, thus the FMUs are the slaves (solver) in this system.
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Figure 3: Co-simulation environment (Van Acker et al., 2015)

1.2 Objective

As mentioned before, Safran wants to allow third party models in their plat-
form. The FMI standard will provide a good standard to allow these third party
models into their platform. The platform will need to support importing FMUs
and connect the existing models to these FMUs.

Furthermore, the connection between the different heterogeneous models seem
quite straightforward. The inputs and outputs of the models need to be con-
nected to each other. They want to know if there are components that regulate
these connections (composition operators) that can be reused for different sys-
tems. Their specific question is in a context of grey box system. Grey box
system is a system containing both white box models (all variables are accessi-
ble by other models) and black box models (only select variables are accessible
by other models). Since the platform models are white box and the FMUs are
black box, the system will be a grey box system.

Lastly, the platform currently requires basic knowledge of Python from the de-
signers, integrators, and architects. Ideally they would want a platform that
does not require this from its users. A Domain Specific Language (DSL) can be
used to remove this knowledge barrier.

Based on these problems that Safran is currently facing, the research questions
can be formulated as follows;

1. Can reusable composition operators in between heterogeneous models be
defined, in a context of grey box co-simulation?

2. Can we reify the Python based abstractions into Domain Specific Lan-
guages to define such operators?

In the remainder of this thesis we will look at the related work, including a
literature study on co-simulation and hybrid co-simulation (Section 2), followed
by a background on Safran’s modeling and simulation platform (Section 3). We
will also look at simulating FMUs in Python (Section 4). We will then proceed
with how we can adjust Safran’s modeling and simulation platform, including
integrating FMUs within the platform, generating the Python code using JSON,
and how we developed a DSL to generate this JSON file (Section 5). Lastly, we
will give a discussion, a conclusion and future work (Section 6 and Section 7).
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2 Related Work

Several papers have already addressed the challenges of hybrid co-simulation and
the master algorithm. To give an overview of these paper, we will conduct a
literature study surrounding co-simulation and hybrid co-simulation using FMI
(Section 2.1). Section 2.3 will expand on the literature study concerning the
master algorithm.

2.1 Literature Study

We conducted a literature study on co-simulation and hybrid co-simulation us-
ing FMI. This literature study will bring us closer to answering the research
questions in this thesis. Two strategies were used to find relevant papers for
our questions, namely database searches and backwards snowballing strategies.
Database searches involves starting with systematic searches in databases using
well-defined search strings to find relevant literature (Jalali and Wohlin, 2012).
Backwards snowballing means using the reference list to identify new papers to
include (Wohlin, 2014).

To carry out the research in this section, a combination of the two strategies
are used. A list of relevant papers were given initially, to which the backwards
snowballing is applied. Keywords are thought of with the help of these papers
and used in the database searches. Backwards snowballing is then applied on
the papers found in this search.

2.1.1 Application of the Strategies

A list of literature was given, from which new papers were found using backwards
snowballing. The most important paper from this list is the paper by (Gomes
et al., 2017b). This paper is a survey conducted on co-simulation. It references
different relevant papers. They are filtered by examining their title, followed by
reading their abstract and conclusions. Five papers remain from this procedure.

Next to this technique, the database search technique was also used. The key-
words ”co-simulation”, ”hybrid co-simulation”, and ”hybrid co-simulation fmi”
were used to find relevant literature on Google Scholar. The first 20 papers
from each keyword is collected which amounts to 60 papers. They are filtered
by reading the abstract and conclusions until 17 papers remained. These are
thoroughly read and the 5 most relevant papers are chosen to apply backwards
snowballing. This technique is applied in one degree due to the same set of
papers being referenced. The workflow of this process can be seen in Figure 4.
After removing duplicate papers, a total of 20 papers remained. These papers
can be seen in Table 1. The papers are divided into relevant, semi-relevant,
and irrelevant papers. A description explaining why they are relevant or not is
given.
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Figure 4: Workflow graph of the steps to get relevant papers.

Paper Description

Relevant
(Gomes et al., 2017b) A survey explaining co-simulation. It references several dif-

ferent papers that use FMI for hybrid co-simulation.
(Bastian et al., 2011) Addresses FMI for co-simulation.
(Broman et al., 2013) Proposes FMI extension for predictable step sizes.
(Cremona et al., 2019) Proposes FMI extension that includes integer time, auto-

matic choice of time resolution, and the use of absent sig-
nals.

(Camus et al., 2016) Uses a wrapper for hybrid co-simulations that relies on
DEV&DESS. This is a black box.

(Denil et al., 2015) Semantic adaptation using FMI. Four different ways,
namely adaptation in master, wrapping the embedded
model, adaptation in separate FMUs, adaptation on the
encapsulating model.

(Tavella et al., 2016) Proposes FMI extension to predict the time and step size.
(Cremona et al., 2016b) Introduces an IDE to generate a pure C co-simulation im-

plementation that is potentially very efficient and, like an
FMU, can run on a wide variety of platforms. Proposes
FMI extension to accept no signal (step size can be 0).

(Galtier et al., 2015) Decentralizes data exchange between FMUs. a local mas-
ter collects the proposed step size from each FMU on the
same node and sends the local minimum value to the global
master.

(Lee, 2008) Explains Cyber-Physical Systems.
(Tripakis, 2015) Proposes a timed wrapper for discrete, and proposes re-

strictions to handle non-deterministic state machines. This
is to model them as FMUs.

(Sun et al., 2011) Proposes FMI extension for step sizes.
Semi-relevant

(Wetter, 2011) Uses a middleware as opposed to linking clients directly.
FMI is not used.
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(Gomes et al., 2017a) Uses a step size to do a stability analysis to ensure the
stability properties of the original system.

(Cremona et al., 2016a) Uses step revision. It offers a better insight on obtaining a
step size with FMI.

(Bogomolov et al., 2015) Explains how co-simulation between two heterogeneous sys-
tems, Uppaal and SpaceEx, works using FMI components.

(Feldman et al., 2014) Proposes a FMI export fuctionality for Rhapsody.
Irrelevant

(Lajolo et al., 1999) Explains how to improve a compiled hardware/software co-
simulation. This is done in C and does not use FMI stan-
dard.

(Widl et al., 2015) Explains two approaches to closed-loop control system co-
simulation.

(Van Acker et al., 2015) Implements a master algorithm for the co-simulation.

Table 1: Papers divided by relevance and category.

2.1.2 Result

The total number of papers consulted per year and the total number of relevant
papers per year are given in Figure 5. Here it can be seen that this topic is
relatively new. Most papers are published in the last decade, with an increase
of publications after 2015. 2015 has the highest number of publications. The
topic of hybrid co-simulation, specifically with FMI and FMU, is still being
researched as the latest paper was published in 2019. When looking at the
relevant papers, the papers chosen are also from the period of 2015 to 2019.

Figure 5: Papers and relevant papers per year.
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The relevant papers can be divided into six categories as can be seen in Figure
6. The category with the most papers is the FMI extension with time step size.
The second category with the most papers is wrapper for FMU.

Figure 6: Relevant papers divided into categories.

From Table 2 it can be seen that the FMI extension for step size has been
researched several times. It is an ongoing topic to make the step size of the time
being modelled in the FMI extension more efficient. The papers start in 2011
and continue till 2019. It is expected that this topic will have more publications
in the future.

Category Paper

Co-simulation (Bastian et al., 2011)
(Gomes et al., 2017b)

FMI extension for time step size (Sun et al., 2011)
(Broman et al., 2013)
(Cremona et al., 2016b)
(Tavella et al., 2016)
(Cremona et al., 2019)

Wrapper for FMI (Tripakis, 2015)
(Camus et al., 2016)

Semantic adaptation (Denil et al., 2015)
Decentralization data exchange FMU (Galtier et al., 2015)
Cyber-Physical Systems (Lee, 2008)

Table 2: Relevant paper per category.
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2.2 Discussion Literature Study

(Gomes et al., 2017b) conducted a survey explaining co-simulation, including
hybrid co-simulation. It references several other papers that also investigated
the topic of hybrid co-simulation in the context of FMI. However, the main
project is a generalization from a software engineering point of view. Thus, we
have conducted a literature study of our own to investigates hybrid co-simulation
in the context of FMI with this point of view.

From the literature study results there are five papers suggesting extending the
FMI standard to handle discrete time co-simulation, two papers suggesting a
wrapper for FMI, one paper suggesting semantic adaptation, and one paper
suggesting decentralization data exchange.

2.2.1 FMI extension for time step size

(Sun et al., 2011) uses an inhouse FMU simulator which performs time integra-
tion with required time span and time step size. These time steps are restricted
to an upper limit. (Broman et al., 2013) uses the master algorithm to determine
a time step h. This time step is either accepted or rejected if it is too large.
An FMU accepts time step h if the time passed until a state change is equal
to the time step (h′ = h). If it makes partial progress until (h′ < h), then it
must accept any time step h′′ smaller than or equal to h′, provided the FMU
is started from the same original state. (Cremona et al., 2016b) uses this same
method for the step size.

(Tavella et al., 2016) proposes to improve the time step size of the discrete event,
or state event, also known as an unpredictable event. It introduces a function
that allows the FMU solver to stop at the first unpredictable event with a new
return code fmi21Event and the time event is given by the returned value
nextEventT ime. If no event occurs, nextEventT ime is the computation step
end time. So, the master algorithm can go on computing state variables without
performing any rollback on this component.

(Cremona et al., 2019) extends the FMI by defining a semantic notion of time
that can be used to model both continuous physical dynamics and discrete
events. They use the same method as (Sun et al., 2011) and (Cremona et al.,
2016b), but they use integer instead of float to represent time step. By using
integer instead, the smallest representable time difference between two time
stamps is always the same as the greatest common divisor and is thus always
precise.

2.2.2 Wrapper for FMI

(Camus et al., 2016) suggest a wrapper for hybrid co-simulation of FMU compo-
nents. The wrapper implements the simulation protocol functions for controlling
the models evolution through the simulation software. Here the Discrete Event
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System specification (DEVS) simulation protocol is used (Zeigler et al., 2018).
The FMU uses the step size as described above to compute its next event in-
ternally. If the next internal event corresponds to a communication point of
the FMU, then the wrapper retrieves the continuous output ports values, and
produces the external output events accordingly. On the other hand, if the next
internal event corresponds to a state-event or the next internal event of the
discrete-event component, then the internal transition function of this latter is
called, which could produce external output events.

(Tripakis, 2015) on the other hand uses a periodic wrapper to make untimed
state machines timed. A periodic wrapper approach for encoding state machines
as FMU can be seen as wrapping the machine with a periodic sampler at the
inputs and a “hold” at the outputs. Inputs are sampled every T time units, while
outputs remain constant until the next sampling occurs. They also mention
encoding of discrete event, dataflow, and timed automata as FMU.

2.2.3 Semantic Adaptation

(Denil et al., 2015) suggest four different of semantic adaptation. The first one
suggests that the master algorithm implements the state event detection and
location algorithms as well as the data adaptations. The master algorithm is
not reusable and complicated.

The second method suggests that the embedded model is wrapped completely
by the semantic adaptation. The proposed approach results in a lot of commu-
nication overhead between the master and the different slaves. The wrapper of
the embedded model is not generic and needs to be regenerated. However, the
master algorithm is straightforward and reusable.

The third method suggest creating two additional FMUs, adhering to the FMI
standard. The first FMU, the State Event Locator (SEL), detects and locates
the events. The Transducer (TD) is responsible for translating events to signal
values. The wrappers for both are reusable in all situations. The master algo-
rithm is straightforward and reusable, and each FMU can be replaced with a
different FMU or a real-world component.

The fourth method suggest that the encapsulating model is adapted with the
State Event Location and Transducer. When an event is located without enough
precision, the step is rejected by the slave. However, the slave FMU can use
the location mechanism internally to compute the correct time step for the
master and provide it when queried for the last successful time. This results in
less communication on the bus, but is less straightforward to plug in different
FMUs or real-world components.

14



2.2.4 Decentralized data exchange FMU

(Galtier et al., 2015) proposes to decentralize the data exchange between FMUs.
The master functionality is carried out by a combination of three kinds of com-
ponents distributed across the various computation nodes. Figure 7 shows the
architecture. The FMU wrapper handles direct interactions with other FMUs
and data exchange with other FMU wrappers. All the FMUs perform a simula-
tion step, which is the same for all FMUs, with a simple co-simulation schema.
After the simulation of step i, each FMU examines its outputs and estimates
how far they are from the exact value.

Figure 7: Co-simulation components architecture (Galtier et al., 2015).

2.2.5 Conclusion

The literature study focused on co-simulation and hybrid co-simulation. From
the results we can see that there are several suggestions on how to tackle the
problem of co-simulation. However, from all these suggestions, it can be seen
that the communication and the communication step between the different mod-
els plays a big role in co-simulation and hybrid co-simulation.

2.3 Additional Related Work on Master Algorithm

The communication and the communication step between the different models
plays a big role in co-simulation and hybrid co-simulation. These are regulated
and maintained by the master algorithm. Thus, when talking about them, we
also have to talk about the master algorithm.

(Thule et al., 2018) mentions two main master algorithms, namely the Jacobi
algorithm and the Gauss-Seidel algorithm. The Jacobi algorithm computes all
the outputs from the subsystems first, then computes and sets the input. Then
it simulates it to the next time point (Figure 8a). The Gauss-Seidel algorithm
computes the input of the subsystems in the given order, then simulates the
same subsystem to the next time point. It then takes that output and uses it
to compute the input of the next subsystem in the order (Figure 8b).

15



(a) Jaccobi (b) Gauss-Seidel

Figure 8: Difference between Jaccobi and Gauss-Seidel algorithms (Thule et al.,
2018)

(Van Acker et al., 2015) mentions that depending on the different co-simulation
models, the master algorithm used is adapted. They identify five different sce-
narios, namely those containing direct feedthrough loops, those containing de-
layed feedthrough loops, single rate, same base step size, and different base step
size (Figure 9). Feedthrough loop means that the data exchange starts and ends
at the same FMU (Van Acker et al., 2015).

(a) Loop with direct feedthrough (b) Loop with delayed feedthrough

(c) No loop, same step

(d) No loop, same base step

(e) No loop, different base step

Figure 9: Five different scenario’s of co-simulation models (Van Acker et al.,
2015)
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In the paper they assume that all FMUs support rollback (procedure to copy
and later restore their complete state). This is used when there is a loop in the
model. In case of same step size, the Gauss-Seidel algorithm is used.

For the same base step size, it depends if FMUx step size is smaller or larger
than the FMUx+1 step size. In case they are smaller, the exact multiple k is
calculated. FMUx is run k times before the FMUx+1 is run. The other way
around, a linear interpolation is used to estimate the output of FMUx.

The case of different base step size is similar to the same base step size. If FMUx

step size is smaller than FMUx+1, then a step match, which is the execution of
k-times FMUx results in the correct output for FMUx+1 for a given simulation
step. This might result in using extrapolation to find the output of FMUx. The
other way around, a linear interpolation is used.

2.4 Literature Study Conclusion

The conducted study on hybrid co-simulation, specifically using FMI, resulted
in several papers using different approaches. Most of these approaches focuses
on the communication between the heterogeneous models at the master algo-
rithm level. The most popular approach for this seems to be FMI extension for
time step.

There are two papers that stand out for us, namely the papers of (Sun et al.,
2011) and (Camus et al., 2016). In both papers, there is an inhouse simulation
tool, which is being expanded with third party models.

(Sun et al., 2011) proposes combining a specialized simulation tool with Model-
ica for co-simulation. They use Dynaplant which is a tool highly specialized for
large fluid systems. The model library is quite restricted and the development
of new Dynaplant model is time consuming. Saadida is their inhouse FMU
simulation tool which contains solvers for integrating a given FMU. Dynaplant
calls methods from this FMU simulator in order to manage data exchange and
provide time step sizes for both simulation partners. This is an interesting ap-
proach, however, the simulation is done by a specialized simulation tool.

The paper of (Camus et al., 2016) also has an inhouse simulation platform,
where they integrate FMU simulations in it. In the paper they use a wrapper
for the FMU components within their system. This wrapper allows FMUs to
easily interact with the other components within their system. This paper is
related to the objective of this thesis. Namely, Safran wants to integrate differ-
ent third party models within their platform and co-simulate them.

Thus, we have used the results of our literature study to select two papers that
are most relevant to us. These papers are used as a reference for us when we
are working on integrating third party models in Safran’s platform.
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3 Background Modeling and Simulation Plat-
form

Before we can start to integrate third party models into Safran’s simulation
platform, we first need to understand how the simulation platform works. This
section will explain how models are defined within the platform (Section 3.1),
followed by how these models are currently simulated within the platform (Sec-
tion 3.2). Lastly, we will explain the platform’s shortcomings and how it can
be improved (Section 3.3).

3.1 Models within the Modeling and Simulation Platform

The modeling and Simulation Platform is developed by Safran for the modeling
of geometrical and functional shared models. Models that are developed within
this platform are called systems. There are two types of systems, namely a
simple system (Figure 10a), and complex systems (Figure 10b). Simple systems
do not contain subsystems, while complex systems do.

(a) Simple System (b) Complex System

Figure 10: System in the Modeling and Simulation Platform

Systems have four types of variables, namely input, output, inwards, and out-
wards. The input is the input variables from external sources, and output is
the output computed by the system. The inward is an input variable needed
by the system to compute its output. The system in Figure 10a has an inward
variable data{K1}, which is the number that the input of the system would be
multiplied with. The outward is an intermediate output variable computed by
the system that is used to compute the output. An example is as follows. Take
the simple system of Figure 10a and imagine it would represent a multiplication
in the form of p in{x} ∗ data{K1} = z and z ∗ data{K1} = p out{x}. Then z
would be an intermediate output. Thus z is the outward variable of this system.

Figure 11a shows an example of how a system class is declared in the platform.
The inputs, outputs, inwards, and outwards of the system are defined in the
setup. In the compute, the computation of the system is declared. Figure 11b
gives an example of a system with subsystems. In this case, the subsystem and
connections are declared in the setup. It also has no compute defined.
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(a) Code snippet of a system Pipe
(b) Code snippet of a system with subsys-
tems

Figure 11: Code snippets of system class

3.2 Simulation within Modeling and Simulation Platform

Within the platform there are systems with time dependent variables. These
systems can be simulated using time drivers. Time drivers are timed simula-
tions within the platform. These time drivers are used to perform simulations
and co-simulations of the various systems defined in the platform. They are
essentially the master algorithms of the simulation platform.

A simple system is simulated by returning the output of the system at each time
step. This time step is defined by the user who created the system. A complex
system requires the inputs and outputs of each subsystem within the system to
be connected to each other first. Afterwards a co-simulation can be performed
using the time drivers.

An example of such a simulation would be a system containing two tanks and a
pipe. The two tanks contain a fluid and are connected together by a pipe. The
idea is to simulate the equilibrium between the two tanks. Figure 12 gives an
overview of this system.

Figure 12: A system with the subsystems tank2, pipe and tank1

In this system, the outputs of pipe are connected to the inputs of tank1 and
tank2, and the outputs of tank1 and tank2 are connected to the inputs of pipe.
Using the time driver, a co-simulation can be performed on this system. The
resulting graph can be seen in Figure 13. Each time step it can be seen that
the height of the fluid in one tank is decreasing, while the height of the fluid in
the other tank is increasing.
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Figure 13: Result of the system with the subsystems tank2, pipe and tank1

3.3 Discussion of Modeling and Simulation Platform

In the previous sections we have given an overview of the Modeling and Simula-
tion Platform developed by Safran. Users of this platform can develop models as
systems within the platform. These systems can be simple or they can contain
subsystems. They can also simulate the different systems they have developed
within the platform.

The problem that Safran has is that the users of this platform can have a sub-
system of the system developed in a third party platform. However, Safran’s
platform does not offer them a way to integrate this subsystem into their plat-
form. Thus, they would want to allow the system to accept third party models.
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4 FMU simulation in Python

In the previous section we have seen how the simulation platform developed by
Safran works. Now we want to integrate third party models into this system.
From the literature study we found that (Camus et al., 2016) had a similar
problem as Safran. They integrate third party models into their system using
the FMI standard. Safran’s modeling and simulation platform’s core is devel-
oped in Python. Thus, simulating FMUs in Python is essential.

There are several libraries in Python that allows the simulation of FMUs, includ-
ing PyFMI (Modelon AB, 2018) and FMPy (Torsten Sommer, 2020). PyFMI
uses a wrapper to access the functions of the FMUs. Safran’s simulation plat-
form will also require a wrapper to integrate FMUs within its platform. Thus
having direct access to the FMU functions will ensure that the functions will not
need to be encapsulated twice before being used in the platform. In the case of
PyFMI, the new wrapper for Safran’s platform would be dependent on changes
made in the FMI standard and PyFMI wrapper. FMPy on the other hand lets
you access the FMU functions directly. This means that the new wrapper for
Safran’s platform will only be dependent on changes made in the FMI standard.
Thus, it was decided to use FMPy for this project.

In the remainder of this chapter we will explain how we can simulate an FMU
with FMPy and how we can extract information from an FMU using FMPy.
We will run a co-simulation using FMPy and compare its performance using an
existing co-simulation tool. Lastly, we will examine using different step sizes
during a co-simulation of the same FMU.

4.1 Simulation with FMPy

To simulate FMUs in Python, FMPy was chosen. This is because FMPy lets you
directly access the FMU code without going trough a wrapper. The simplest
code to simulate an FMU is given in Figure 14a. From this code you get a
simulation from the desired FMU. It can also give the model description which
consists of the model type, stepsize, and inputs and outputs among other things
(See Figure 14b).
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(a) Code Snippet (b) Resulting simulation of an FMU

Figure 14: An example of a simple simulation of FMU with FMPy.

However, the main idea is to connect multiple FMUs together and do a co-
simulation (Figure 15). The code mentioned before will not be sufficient, and
the examples given by FMPy are all simulations of one FMU.

Figure 15: Example of a system with two FMUs to be Co-simulated

To simulate multiple FMUs, the input and output of the FMUs need to be
extracted from the model description, as well as the step size of the FMUs.
The code snippets in Figure 16 shows the code we have developed to extract
the aforementioned information from the model description using FMPy. The
input and output are extracted directly from the model description while the
step size is extracted from the default experiment in the model description.
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(a) Get inputs and outputs from the model
description of FMUs

(b) Get the step size of an
FMU

Figure 16: Code Snippets with FMPy.

For the co-simulation of these FMUs, we had to use a while loop. While the
stop time is not reached, the inputs and outputs are connected, both FMUs do
a doStep, then the inputs and outputs value are extracted with the get function,
and the time is advanced with the step size. A snippet of this code can be seen
in Figure 17.

Figure 17: Code snippet of simple co-simulation with fixed step size

23



Figure 15 shows an example of a system containing two FMUs. The first FMU,
InputX, is a simple FMU we have created using OpenModelica (OpenModel-
ica, nd). Its output is a sinusoid. The second FMU, CoupledClutches, is an
example FMU that is available from FMPy.

The idea is to compare the result of a co-simulation we generated using FMPy
with the result of the same co-simulation using an existing co-simulation tool.
For this reason we have opted to simulate the system described above using
FMPy and OpenModelica. OpenModelica is an open-source Modelica-based
modeling and simulation platform (OpenModelica, nd). One of the third par-
ties’ models that Safran wants to integrate within its platform is from Modelica.
Since OpenModelica is a Modelica-based simulation platform, it is an appropri-
ate tool to use.

The results of these two co-simulations were put next to each other and com-
pared as can be seen in Figure 18. Figure 18a shows the output value of FMU
InputX as y, and the input and one of the output values of FMU CoupledClutches
as inputs and outputs[4] respectively. Figure 18b shows the output value of FMU
InputX as a green/blue line, and the input and one of the output value of FMU
CoupledClutches as a green/blue line and red line respectively. Here it can be
seen that the output of InputX is the same as the input of CoupledClutches
and is a sinusoide. In both co-simulations the output of CoupledClutches is the
same. In this way we validated that the generated co-simulation with FMPy
gives the same result as when it would be generated with an existing tool.

(a) Plot Co-simulation in FMPy (b) Plot co-simulation in OpenModelica

Figure 18: Plot of the co-simulation of FMUs InputX and CoupledClutches

In conclusion, we were able to simulate an FMU in Python using FMPy. We
were also able to co-simulate a system containing different FMUs within Python
using FMPy. With this, we are one step closer to being able to co-simulate a
system containing FMUs within Safran’s platform.
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4.2 Different step sizes

In the previous section, the simulation was done with a fixed step size. The
question now arises what happens if two FMUs have different step sizes. Figure
19 shows a system containing two FMUs. The first FMU, Rectifier, is an
example FMU that is available from FMPy. Figure 14b shows the output of
Rectifier. The second FMU, CoupledClutches is the same FMU used in the
system of Figure 15. Rectifier has a step size of 1e−7, while CoupledClutches
has a step size of 0.01.

Figure 19: A System with two FMUs Rectifier and CoupledClutches

We have co-simulated the system using FMPy twice. In the first co-simulation,
we used the step size from Rectifier, namely step size 1e−7. In the second co-
simulation, the step size from CoupledClutches was chosen, namely 0.01. The
results from these co-simulations can be seen in Figure 20.

(a) Plot co-simulation with step
size 1e−7

(b) Plot co-simulation with step
size 0.01

Figure 20: Difference between co-simulating FMUs with the smallest and largest
step size

We know what the output from Rectifier is supposed to be from Figure 14b.
If we compare this with the output of Rectifier in Figure 20a, it shows that
the graph follows a similar damping sinusoide shape. However, if we compare it
to the output of Rectifier in Figure 20b, it becomes a constant instead of the
damping sinusoid shape it originally had. Thus, from the results it can be seen
that choosing the smallest step size between the two will give a more precise
co-simulation.
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However, choosing the smallest step size over the largest comes with its disad-
vantages. The algorithm has O(n) complexity. Thus it takes much longer to
compute the co-simulation using time step 1e−7 than it does using time step
0.01.

Another issue with using one over the other is the output of the second FMU
CoupledClutches. The plots are giving different results (Figure 20). From our
observations, we know that the output from Rectifier in Figure 20a is more
precise. Thus we can conclude that choosing the smallest step size between
two FMUs is likely to be a better option with better results than choosing the
larger step size. However, this does come with the price that it takes longer
to compute. This becomes important later when we are looking at the Master
Algorithm within Safran’s platform.
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5 Adjusting Modeling and Simulation Platform

So far, we have seen that with the help of the FMI standard, we are able
to co-simulate different models as FMUs in Python using FMPy (Section 4).
The objective of this project is to allow users of the modeling and simulation
platform to complement their models (systems) with third party models, and
support the co-simulation of various heterogeneous models. Thus, the next step
is to integrate FMUs within the platform and to allow co-simulation with these
FMUs. Section 5.1 will explain how this can be done. Once this is possible,
we can focus on the main question of this project; Can reusable composition
operators between heterogeneous models be defined? And can we reify the
Python based abstractions into Domain Specific Languages? These questions
will be explored in Sections 5.2 and 5.3.

5.1 Integration FMU within Modeling Platform

The modeling and simulation platform has the same principle as FMUs, with
the exception that FMUs are black boxes, while the systems in the platform
are white boxes. As mentioned before, these models consists of four types of
connections, namely input, output, inwards, and outwards (Figure 10a). The
input and output corresponds to the inputs and outputs of FMUs.

The idea is to connect these systems together with external models, FMUs, and
co-simulate them within the platform. Figure 21 gives an example of a system
consisting of three subsystems to be simulated. In this system, fmu1 is an FMU
while pipe and tank1 are systems made within the platform.

Figure 21: A system with the FMU fmu1, and systems pipe and tank1

To connect an FMU within the system, a wrapper for the FMU is needed.
This will convert the inputs and outputs of the FMU into readable inputs and
outputs of the platforms. The platform will consider each FMU as a system.
Thus the purpose of this wrapper is to allow the FMU to conform to the format
of a system in the platform. It will determine the input, output, inwards and
outwards of the FMU. Figure 22 gives a code snippet of the FMU wrapper we
have developed.
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(a) Code snippet FMU wrapper (b) Code snippet FMU wrapper

(c) Code snippet FMU wrapper

Figure 22: Code snippets of FMU wrapper

As mentioned before, the FMU wrapper determines the inputs, outputs, in-
wards, and outwards of the FMU. In the code snippet it can be seen that this
is done at the setup (Figure 22a and 22b). The input and output of the FMU
wrapper are quite explicit. The input and output of the FMU are the input
and output of the FMU wrapper. The inwards and outwards are less explicit.
To determine the inwards, we look at the code for co-simulating FMUs from
Section 4.1. The only input variable for this code is the FMU name. Thus this
will be our inward variable.

As for the outward variables, we will look at all the helper variables we
used in the code from Section 4.1. These consists of the variables for the model
description, the inputs and outputs you retrieve at each step, and the step size
among others. All of these will become the outward variables.

The FMU also needs to be initialized just like in the code from Section 4.1.
Various variables also needs to be retrieved from the model description of the
FMU. These are done during the setup run.

During the compute, the wrapper connects the FMU input with the defined
input of the wrapper (Figure 22c). This is done with the following code:

s e l f . fmu . se tRea l ( [ s e l f . v r i n ] , [ s e l f . inputs fmu . va lue ] )
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The variable self.vr in is the input from the FMU, and the variable self.inputs fmu
is the input from the FMU wrapper. It advances the time within the FMU for
the given time step, using the DoStep function. This is the same code used for
the simulation of FMU within Python using FMPy. It then sets the output of
the FMU wrapper to the retrieved output of the FMU with the following code:

s e l f . x = s e l f . fmu . getReal ( [ s e l f . v r out ] )
s e l f . outputs fmu . va lue = s e l f . x

The variable self.x is a transient, which allows the recording of a variable that
is dependent on time. The variable self.vr out is the output of the FMU, and
the variable self.outputs fmu is the output of the FMU wrapper.

Afterwards the FMU needs to be terminated (Figure 22c), just like in
the code from Section 4.1. The wrapper does this in the clean run with the
terminate() function.

Now that we can use an FMU can be used within the platform with the help
of the FMU wrapper, our next step is to connect it to the other systems within
the platform. The code snippet in Figure 23 shows that this can be done by
adding an FMU wrapper as a subsystem to a system, and connect its input and
output to the inputs and outputs of the other subsystems within this system.
Then we can use the build in Master Algorithm, driver, to simulate the system.
Figure 24 shows the plot of the system after co-simulation.

Figure 23: Code snippet of connecting FMU to other subsystems in a system

Figure 24: Plot of the system with the FMU fmu1, and models pipe and tank1
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In conclusion, we were able to integrate an FMU within Safran’s simulation
platform. We achieved this by developing an FMU wrapper, which allows the
FMU to conform to the format of the platform. With the help of this wrapper,
we are also able to co-simulate a system within the platform containing FMUs.
Thus we achieved the objective of allowing the modeling and simulation platform
users to extend their various models (systems) with third-party models, and to
support the co-simulation of the various heterogeneous models.

5.2 Generation of Python code using JSON

In the previous section we were able to allow the simulation of third-party
models and the co-simulation of the various heterogeneous models. Now that
we are able to do this, we can focus on the first research question;

1. Can reusable composition operators in between heterogeneous models be
defined in a context of grey box co-simulation?

Each time a system is created, it consists of some basic operations. These opera-
tions include adding the subsystems to the system, add the connections between
the subsystems, possibly define the execution order of the subsystems, and pos-
sibly define the initial values and constant values. Figure 23 gives a snippet of
this Python code. If we have the user defined information from the system as
an input, it is possible to generate this piece of code. This input would contain
the data structure of the system defined by the user. It does not contain the
actual implementation of the system.

For the required input, we decided to use JSON. JSON is a text format that
is completely language independent, easy for humans to read and write, and
easy for machines to parse and generate (json.org, nd). The idea is that given
a JSON schema, python code will be generated conforming to the systems in
the modeling and simulation platform. The JSON schema is conforming to the
schema standard of the platform, and is already specified. To get the Python
code, a template for the system is used (Figure 25). This template will be used
when generating the Python code.

Figure 25: Code Snippet of template for the system

A function generatePythonFile is declared that generates the Python file. It
takes the information from the JSON file, and save it in a list of parameters
called param. With this list we are able to make a distinction between subsys-
tems, connections, inputs, and execution order. This list is then used to insert
the correct information in the template for the system (Figure 26).
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Figure 26: Define generatePythonFile

Lastly, the template is written to a file (Figure 27). The file is saved at the
given location and has the given name.

Figure 27: Write template to file

In the modeling and simulation platform it is possible that a system has a
subsystem with its own subsystems (Figure 28). An example would be that if
in the system in Figure 21 with fmu1, pipe, and tank1, we replace fmu1 with
the system sys1. This system would also consist of its own models that are
connected to each other.

Figure 28: Recursively generate new template and file for each subsystem

For readability and practical reasons it is better to have all of these subsystems
containing multiple subsystems of their own to be saved in separate files. This
will also avoid one large file being updated when one of the subsystems evolve.
The code will generated a new file for each subsystem containing multiple sub-
systems (Figure 29). When a system contains multiple subsystems, they are
connected to each other. This connection is indicated through a connection in
the JSON file. The function will recursively search for subsystems containing
connections, and generate a new file for these subsystems.
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Figure 29: Recursively generate new template and file for each subsystem

The systems in the platform can also have an execution order. This order can
be retrieved from the JSON file. However, it is not mandatory to specify an
execution order, which means that it is not always present in the JSON file. In
this case, the platform assumes the order the models are added into the system
to be the execution order.

This way of computing the execution order can result in errors during co-
simulation. An example would be a system like the one in Figure 19, where
the execution order is given as CoupledClutches, Rectifier. CoupledClutches
needs the output of Rectifier in order to compute its output, but it is being
computed before Rectifier. Thus the system will not return the correct result.
To avoid such situations, we have developed a code that computes the execution
order using the topological order, specifically using Kahn’s Algorithm (Kahn,
1962). If the system contains at least one cycle, then no topological order can
be found. The cycles will be returned to the user. They can then decide to
either remove the cycles from the system, or define an execution order them-
selves. Figure 30 gives a snippet of the code we have developed for computing
the execution order.
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Figure 30: Execution order using topological order

Figure 31 Shows an example of a JSON file with its corresponding generated
Python files. In the JSON file it can be seen that there is a system p that
contains six subsystems, namely p1, n1, p2, s1, p3, and p4. Furthermore, it can
be seen that subsystem p2 has a subsystems of its own, namely p21, p22, s21,
p23, and p24. Subsystem p22 also has its own subsystems, namely p221 and
p222. According to the described algorithm above, the file generation would
produce three Python files, one for the system and one for each subsystem con-
taining subsystems (p, p2, p22). Figures 31c, 31d, and 31e shows exactly this
behaviour. Since the execution order is already present in the JSON file, it will
not be computed during the file generation.

Thus, we were able to identify the reusable composition operators between the
heterogeneous models. These include adding the subsystems, adding the con-
nections between the subsystems, and the execution order of the subsystems.
We were then able to use the data structure of systems defined by users as an
input to generate the Python code containing these composition operators. We
used JSON to represent the data structure of the systems.
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(a) Code snippet of JSON file
(b) Code snippet of JSON file
cont.

(c) Code snippet of generated Python file (d) Code snippet of generated Python file

(e) Code snippet of generated Python file

Figure 31: Code snippet of JSON file and its generated Python files
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5.3 DSL to generate JSON

In the previous section, we were able to answer our first research question;

1. Can reusable composition operators in between heterogeneous models be
defined, in a contect of grey box co-simulations?

We are able to identify reusable composition operators between heterogeneous
models. We use JSON to represent the data structure of the system to generate
the Python code containing these composition operators. In this section we will
focus on the second research question;

2. Can we reify the Python based abstractions into Domain Specific Lan-
guages to define such operations?

A JSON file was used to generate the desired Python code. However, as a user,
it is not practical to write a JSON file each time you make a new system. Thus
having a DSL to generate this JSON file is a better alternative. It is also pos-
sible to design a DSL which generates the Python code immediately. However,
this intermediate step of generating a JSON file instead of the Python code
immediately using the DSL ensures agility.

To define our DSL we will be using Xtext. Xtext is a framework for development
of programming languages and Domain Specific Language (eclipse.org, ndb). It
provides an infrastructure for you where you can write the syntax and semantics
of your own language. It also has editing support for Eclipse and relies heavily
on the Eclipe Modeling Framefork (EMF). This is a modeling framework and
code generation facility for building tools and other applications based on a
structured data model (eclipse.org, nda).

In this section we will first look at the syntax of our DSL (Section 5.3.1),
followed the static semantics of our DSL (Section 5.3.2). Then we will give
the implementation of our DSL (Section 5.3.3). Lastly, we will briefly give a
discussion (Section 5.3.4).

5.3.1 Syntax

First we will look at what a system is, and which components it has. As was
discussed before, we have two types of systems, namely a simple system and a
complex system. Both systems have a name and a class. They can both have
input ports and output ports. From the JSON file examples like the one in Fig-
ure 31 , we can see that they can both have initial input values. Additionally,
the complex systems can have subsystems, connections and an execution order.

Although there is a distinction between a simple system and a complex system,
ultimately they are both systems. Furthermore, subsystems are also systems.
Thus, we can say that a system has to have a name and a class, and can contain
input and output ports, initial input values, systems, connections, and execution
order. Thus, our language knows the following main concepts:

35



System The system which consists of a name, class, inputs, inports, outports,
subsystems, connections, and execution order.

Input The input is either an initial input or a fixed input. This fixed input is
used for the inwards of the system.

InitialInput These are the initial inputs of a system that are used for co-
simulation.

FixedInput These are the inputs that correspond to the inwards of the system.

inPort These are the input ports of the system.

outPort These are the output ports of the system.

Subsystem A subsystem is a system.

Connection A connection is the connection between the subsystems of the
system.

ExecOrder This is the execution order of the subsystems of a system.

Next to the main concepts of our language, we also have a few types that need
to be addressed. These types are important for identifying the main concepts.
What we mean is for example since a system has a name, we expect this to be
of some type string. Our language knows the following types:

EString This type consists of all string variants. This means it is either a
string or ID value.

ENumber This type consists of both integers and doubles.

EInt This type consists of all integers.

EDouble This type consists of all doubles.

Now that we have all the concepts and types defined, we will look at the syn-
tax. Figure 32 gives an overview of the syntax of our DSL. For readability we
have opted to add keywords in front of a system name (block), and in front of
a system class (:). Within the keywords { and } we can define the input and
output ports, the initial input values, the subsystems, the connections, and the
execution order. We have also opted to put keywords in front of input ports
(in), output ports (out), and connections (connection). Initial input values are
between brackets. All of these components are optional except for the name and
the class. Furthermore, systems can contain zero or more inputs, subsystems,
and connections.
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We have defined input as either an initial input, or a fixed input. An initial
input has the keyword ’initial’, followed by a name, a keyword ’=’ and an
EString. Fixed input is the same as an initial input, however, it does not have
the initial keyword. We define subsystems as a system. we define connection
as two EString with a keyword ’->’ in between them. Lastly, we define an
execution order as a keyword ’execution order’ followed by a list of Estring.

Figure 32: The syntax of our DSL in Xtext

Lastly, our language is not dependent on white spaces, line breaks, etc. Xtext
has a default rule that allows white spaces, line breaks, etc. within the language.
This rule is as follows:

t e rmina l WS:
( ’ ’ | ’\ t ’ | ’\ r ’ | ’\n ’ )+ ;

You can disable this rule by parsing an empty set of terminals using hidden():

grammar org . e c l i p s e . xtext . common . Terminals hidden ( )

You can alternatively pass an empty set of terminals using hidden() at the
desired rules, for example:

ExecOrder hidden ( ) :
{Execorder }
’ execut i on orde r ’
( ( order+=Estr ing ) ( ’ , ’ o rder+=Estr ing ) ∗ ) ;

However, we do not disable this rule in our language.
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5.3.2 Static Semantic

In this section we will be looking at the static semantics of our language. We
will first define the semantic rules of our language. Afterwards we will show
how these can be implemented using Xtext.

The following rules can be defined for our language:

• The systems and subsystems should all have a unique name.

• The connection must be between subsystems.

• The execution order must contain only subsystems.

We will go through each of these rules and explain whether it is implemented
in our language or not. In case we have not implemented a rule, we will explain
how we can implement it.

The systems and subsystems should all have a unique name.
This rule has not been implemented in our language. In Xtext it is possible
to have a unique name for all objects of a defined type. The defined type has
to have a name variable that acts as the identifier of the object. Then we can
uncomment the following line in the .MWE2 file:

composedCheck = ” org . e c l i p s e . xtext . v a l i d a t i o n .
NamesAreUniqueValidator”

In our language, the subsystem has the type System. Thus by uncommenting
this line, the names of the system and subsystems will be unique from each other.

The connection must be between subsystems.
We have not implemented this rule in our language. This can be done us-
ing cross-reference. Xtext allows you to specify the cross-references within the
grammar. This can be done using the square brackets ([]), with the type or rule
between the brackets. It is important to note that a terminal must be included
if the rule is missing name ID. Otherwise it can be omitted. The following
expression shows an example:

Connection :
oSys=[Subsystem ] ’ . ’ output=EString ’−>’
i Sys =[Subsystem ] ’ . ’ input=EString ;

Here both oSys and iSys are using the cross-reference to a Subsystem. Since
Subsystem is of type System and has a name, it does not have to include a
terminal.
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The execution order must also contain the subsystems.
This rule has not been implemented in our language. It can also be implemented
using the cross-reference. The following expression shows an example:

ExecOrder hidden ( ) :
{Execorder }
’ execut i on orde r ’
( ( order+=[Subsystem ] ) ( ’ , ’ o rder+=[Subsystem ] ) ∗ ) ;

In this case, an object of Subsystem is added each time to the order.

In Xtext it is also possible to assign cardinality to expressions. There are four
types of cardinalities, namely:

No operator means exactly one.

? This means zero or one.

* This means zero or more.

+ This means one or more.

Furthermore, Xtext knows three different kinds of assignment operators, each
with different semantics. These operators are as follows:

= This is used for features who only take one assignment.

+= This adds the value on the right hand side to the feature.

?= This expects a feature of type EBoolean and sets it to true if the right
hand side was consumed.

We have implemented the cardinality and assignment operators within our lan-
guage. In Figure 32 we can see how we define System. The name is assigned
an ID using the assignment operator =. This ensures that the name of the
system has type ID. className is assigned with the operator = to EString.
This ensures that the className has the type EString. We can also see the
expression:

( inputs+=Input ∗)

This expression means that every time a value of type Input is added to inputs,
and inputs consists of zero or more values.
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On the next line of the syntax we see the expression:

( ’ In ’ ( inPort s+=Estr ing ) ( ’ , ’ i nPort s+=Estr ing )∗ ) ?

In this expression expresses that a value of type EString is added every time
to inports, with a keyword of the character comma (,) between each value.
Furthermore, the whole expression is either present or not, since it has a cardi-
nality of zero or one (?). The remainder of the lines in the syntax for defining
a System follow the same pattern. There is a list of values of some type that is
continuously being added to the list, where the values may be separated by a
keyword, and there is either zero or exactly one of this list.

We can also see in Figure 32 how Input is defined. In this case we see the
expression:

I n i t i a l I n p u t | FixedInput ;

This expression is telling us that an Input is either an InitialInput or (|) a
FixedInput. The InitialInput is defined with the expression:

’ i n i t i a l ’ name=ID ’= ’ ( ( i n t v a l u e=ENumber) |
( va lue=EString ) ) ’ , ’ ?

This expression starts with a keyword initial, followed by an assignment of
name to a value of type ID. This ensures that name is of type ID. Then there
is a choice between a intvalue being assigned a value of type ENumber or a
value being assinged a value of EString. This ensures that an initial value is
either of type ENumber or of type EString. It is then followed by an optional
keyword of the comma character (,). The FixedInput is defined in a similar
pattern as the InitialInput.

The subsystems is defined with the following expression:

system=System ;

This expression is indicating that a value of type System is assigned to system.
This essentially means that a subsystem is a system.

The execution order is defined with the following expression:

{ExecOrder}
’ execut i on orde r ’ ( ( order+=EString )
( ’ , ’ o rder+=EString )∗ )

The {ExecOrder} in this expression ensures that an instance of ExecOrder
is instantiated. Without this, the parser will be searching for an instance of
ExecOrder, while instances of ExecOrder does not exist, and return an error.
The second line of the expression is similar to other patterns we have covered
before.

40



The Connection, ENumber, EString, EInt, and EDouble are also defined with
their corresponding expressions. These expressions all follow similar patterns
we have already covered before. Furthermore, Xtext automatically ensures that
the language is not dependent on white spaces and new line break. This means
that you can write the whole system on one line and it will see this as a valid
system.

5.3.3 DSL

In the previous sections we have given the syntax and static semantics of our
DSL. With this we can now declare a system within our DSL. Figure 32 shows
the syntax of our DSL written in Xtext. Figure 33 shows an example of a system
written in our DSL.

Figure 33: Example of a system written in the DSL

Now that we can define a system in our DSL, we can look at how we can gener-
ate the JSON file from this system. A feature in Xtext is the generator function.
With this function, we can generate a file from our DSL. We use this to generate
the desired JSON file. This file will have the same structure as the JSON files
we have used before, for example in Figure 31. To do this, a template is defined
where we will add the content of the JSON file. Figure 34 shows the JSON file
generated from the system written in Figure 33.

This generated JSON file can be used in the previously defined function
generatePythonFile from Section 5.2. It is passed as our input to generate
the desired Python files (Figure 35).
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Figure 34: Code snippet of generated JSON file from a system written in DSL

Figure 35: Code snippet of generated Python file from a system written in DSL
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5.3.4 Discussion

We have identified the main concepts of our language with the help of what we
consider a system. With the help of these concepts, we were able to develop the
syntax for our language.

We have also given the static semantics of our language. Although the
semantics are defined, not all of it is implemented in our DSL. We can still
implement the unique names for the system and its subsystems. We can
also implement that connections allow connections between subsystems, and
execution order is only between the subsystems. Implementing these in the
future will improve how our DSL works.

Our DSL lets us define a system. We can then generate the JSON file from it
when saving a file containing a system. This JSON file is then used to generate
the Python code containing the composition operators we have defines in Section
5.2. With this DSL we have answered our second research question.

43



5.4 Master Algorithm

So far we have only looked at integrating FMUs within the platform, and gener-
ating the Python code for a system using a DSL. As the literature study showed,
the main focus of the papers is on the master algorithm that coordinates the
co-simulation of the system itself. In the platform we call this master algorithm
the drivers. From the literature study we can conclude that the most popular
way to improve the master algorithm is by improving the step size of the system.

In this chapter we will discuss how the platform master algorithm works (Section
5.4.1), followed by how we can improve it (Section 5.4.2). Lastly, we will give
a conclusion to our findings (Section 5.4.3).

5.4.1 Master Algorithm within Modeling and Simulation Platform

The platform initially used a very simple master algorithm. It was a simple
while loop similar as the simple master algorithm in Figure 17. This means
that it also used a fixed step size. However, in a later version of the platform,
this code was updated by Safran.

The master algorithm still uses a while loop. However, it chooses the smallest
step size between the different subsystems as the default step size. As we men-
tioned before in Section 4.2, using the smallest step size will give a more precise
than using the larger step size. However, this does mean that the computation
time is slower.

5.4.2 Future improvements Master Algorithm

The improvements done to the master algorithm by Safran already results
in a better master algorithm. This is because it uses the smallest step size
instead of a fixed step size. However, it can still be improved. As mentioned in
Section 1.1.3, there are five different scenarios of a system, each with a different
approach to solve them. Section 1.1.3 also mentions the two main master
algorithms, namely Jaccobi and Gauss-Seidel. Each of the different scenarios
can use one of these master algorithms for improvements.

An example is implementing the Gauss-Seidel for systems with the same step
size with no loops to use instead of the current while loop. Another example is
implementing the Jaccobi algorithm for the scenarios that require rollback for
interpolation or extrapolation.

Another point of improvement is to find a smarter way to calculate the step size
instead of always using the smallest step size. One way is to use interpolation
and extrapolation as described in Section 1.1.3.
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5.4.3 Conclusion

The master algorithm of Safran’s platform uses a simple while loop and the
smallest step size to compute the co-simulation. With the help of existing
papers and the literature study, we can safely say that Safran will be able to
improve their co-simulation by improving their master algorithm with the two
main master algorithms, namely the Gauss-Seidel and Jaccobi algorithms.

We have also seen that improving the step size of the master algorithm is also
an important task for Safran. There are several papers that addresses this
issue. They can use the five different scenario’s as a baseline. Depending on
which scenario the system is in, a different approach is carried out to calculate
the step size.
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6 Discussion

In this thesis we had the objective to allow third party models in the modeling
and simulation Platform developed by Safran, and to co-simulate them. We
have also asked two research questions, namely:

1. Can reusable composition operators in between heterogeneous models be
defined, in a context of grey box co-simulation?

2. Can we reify the Python based abstractions into Domain Specific Lan-
guages to define such operators?

In this chapter we will discuss if we were able to achieve the objective (Section
6.1), and if we were able to answer research questions proposed (Section 6.2).

6.1 Objective

To allow third party models in the platform, we used the FMI standard. With
the help of FMPy, we are able to access the different functions of the FMUs. A
wrapper is then used to convert these functions into the format of the platform.

In this thesis we have taken a concrete example of an FMU and added a
wrapper to it. When a different example is taken, most of the code would stay
the same. The difference lies in the input and output of the FMUs. Setting up
the correct inputs and outputs in the wrapper needs to be generated through
reading the inputs and outputs from the FMU.

With the wrapper, we can now have various heterogeneous models in the plat-
form. These can also be co-simulated using the time drivers. These time drivers
are considered the master algorithms of the platform. As mentioned before, the
master algorithm used in the platform uses a while loop for the co-simulation.
A better alternative for this would be the Jaccobi or the Gauss-Seidel algorithm.

The master algorithm chooses the smallest step size, and uses it as the default
step size. This might not always be desirable. A better way to do this is how
(Bastian et al., 2011) approaches it. They simulate the FMU with a smaller step
size the exact multiple times the larger step size, before simulating the FMU
with the larger step size. Furthermore, we have conducted a literature study
highlighting the increasing desire to improve the step size within co-simulations.

Our main objective was to allow third party models in the modeling and sim-
ulation platform developed by Safran, and to co-simulate them. As explained
above, we were able to achieve this by using the FMU wrapper we have devel-
oped.
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6.2 Research Questions

As mentioned before, we achieved the objective of allowing third party models
in Safran’s platform, and can co-simulate the various heterogeneous models.
The connections between these heterogeneous models always consists of a
setup. In this setup there is always a self.add child, a self.connect, and
sometimes a self.exec order. These are the operators that we can reuse for
the different systems. With the help of a JSON file as input, we are able to
generate a Python file containing this code.

Thus, we were able to answer the first research question. As mentioned above,
we were able to identify the different composition operators between the
heterogeneous models. These composition operators are reused for different
systems.

To get the JSON file needed for the input, we developed a simple DSL. Our
DSL consists of block representing a system. Systems declared in this DSL will
generate a JSON file, that is then used to generate the Python file.

We have opted to use the JSON file as an intermediate step due to the
opportunity it presents when it comes to reusability and agility. Safran is
looking into using a more graphic based approach to define systems. By having
this intermediate step, it will be easier for them to integrate this visual DSL in
the future with our existing code generator.

With this we have answered the second research question. We are able to reify
the Python based abstractions into DSL to define the reusable composition
operators. Our DSL takes the user input and is able to generate the Python file
containing the code with the composition operators.
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7 Conclusion and Future Work

In this thesis we looked at the modeling and and simulation platform developed
by Safran. They wanted it to be able to allow third party models and simu-
late the various heterogeneous models within it. This was made possible using
FMUs. A wrapper for the FMUs allowed them to correspond to the syntax
of the platform. They can then be co-simuated using the time drivers (master
algorithm) of the platform.

We have also looked at whether we can define reusable composition opera-
tors in between heterogeneous models, in the context of grey box co-simulation.
It has been shown that the connection operators between the subsystems in a
system in the platform can indeed be reused. With the help of a JSON file as
input, we can generate the Python file containing these operators.

Lastly we have looked at whether we can reify the Python based abstrac-
tions into DSL to define these reusable composition operators. We defined a
simple DSL to represent systems in the platform. The DSL then generate the
JSON file. This file can then be used to generate the Python file.

In the future it is expected that Safran will want a visual way to declare sys-
tems. In this regard, the next step would be to design a DSL with these visual
features. Another point is to add the logic and semantics into the json file. We
would need to look more into the model to model transformations and model
to text transformations, namely the logic of DSL to JSON transformation, and
JSON to Python transformation. Safran also showed interest into adding time
drivers into the JSON files. This is definitely a point of interest for the future.

The master algorithm (time drivers) currently being used by the platform can
also be improved. The Gauss-Seidel and Jacobi algorithms can be implemented
and compared to each other. An experiment with the different algorithms can
be done to determine when it is better to use one or the other. Experimentation
with getting better step sizes can also be a point of interest for the future.
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