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Summary
High-precision thermal management applied through thermoelectric coolers, or Peltier el-
ements, has become a field of growing interest in research and development, especially
in high-power lighting, semiconductor, and medical fields. Since the thermodynamics of
Peltiers are non-affine as function of state and input, identification of the modeling pa-
rameters of the Peltier elements is hard, which makes them, combined with the nonlinear
thermodynamics present, difficult to control. In thermal control, physics-based modeling
is preferred because of project risk reduction, explainability, and tunability of these mod-
els. Different methodology than physics-based modeling for estimating the input-output
behavior of the plant is data-driven identification. Data-driven models are in general more
accurate, but hard to interpret. It is therefore interesting to investigate what modeling per-
formance can be achieved with a data-driven identification of Peltiers, and to compare the
resulting models with a physics-based model approach in terms of practical applicability,
such as modeling effort or observer design. In this work, a data-driven identification is ap-
plied to a Peltier-based setup that consists of two Peltier elements that can be individually
actuated. The main objective of this thesis is to perform a data-driven identification on a
Peltier-based setup in a temperature range of 5 °C to 80 °C, and to compare the resulting
models with a physics-based modeling approach in terms of accuracy, robustness with re-
spect to the ambient temperature, and practical applicability.

To compare both modeling approaches fairly, the most accurate models for both methods,
while maintaining a minimal amount of parameters, are obtained. An in-depth analysis on
the contribution of the Thomson effect is done on an existing physics-based model of the
Peltier-based setup, as well as a sensitivity analysis on the found model parameters. By ap-
plying data-driven modeling techniques and using physical insight from the physics-based
model, a data-driven model is obtained. Furthermore, inclusion of the ambient temperature
in the model structure is considered for various scenarios. After carefully designing a set of
multisine experiments, the obtained input-output data is used to estimate a nonparametric
best linear approximation in least-squares sense. By using a frequency-domain subspace
identification algorithm, a parametric linear model is obtained, after which the quality of
the found model is improved by nonlinear optimization. Then, a full nonlinear model is
estimated, using a nonlinear search routine.

Concludingly, by performing an in-depth analysis on the contribution of the Thomson effect,
the most accurate physics-based model is obtained, while maintaining a minimal amount of
parameters. Then, the most accurate data-driven model is obtained, while maintaining a
minimal amount of parameters. The input-output behavior is described more accurately for
the final data-driven models, while the knowledge on the underlying behavior of the system
is lost. Both methods are robust with respect to the ambient temperature, although the in-
teraction between the ambient temperature and the setup cannot be calibrated. If the goal
is purely to describe the IO-thermodynamics as accurately as possible, while maintaining a
minimal amount of modeling parameters, the data-driven modeling approach can be ben-
eficial for the identification of a thermal system, since these outperform the physics-based
model in terms of error margins. The applicability for controller or observer design for these
models still needs to be investigated more thoroughly.
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1 Introduction

1.1 Background & motivation

High-precision thermal management has become a field of growing interest in research and
development, especially in high-power lighting, semiconductor, and medical fields. From
societal demands, extensive research on obtaining the best performance possible continues,
therewith complicating mechatronic devices every year. In the medical field, the challenges
can range from developing new diagnostics platforms for common diseases throughout the
world [44] to designing handheld devices for diagnosing extremely small fluid volumes (for
example saliva, blood), where thermal devices are used to perform a genetic amplification
technique [18]. Furthermore, thermal control is a critical aspect in the mechatronic design
for semiconductor mass production, to achieve a positioning accuracy of nanometres [4].
Also, light-emitting diodes (LEDs) have been gaining increasing interest as light sources.
LED performance in light output, light quality, and lifetime all suffer from an increase in
temperature. Therefore, there has been a growing need to actively control high-power LED
lighting, to maintain correct light quality and expected lifetime [19].

Thermoelectric coolers (TECs) have become increasingly popular in thermal control, be-
cause of their compact dimensions, capability to both heat and cool, and lack of moving
parts. Still, TECs are sensitive to mechanical stresses and power inefficient. However, by
mechanical design principles, the mechanical stresses can be reduced, and the power inef-
ficiency is of less essence, as the maximum cooling capacity is below 100 Watt. A synonym
for TECs is Peltier elements, or in short ‘Peltiers’, because of the Peltier effect causing the
heat transfer within these elements. By electrically connecting N- and P-type semiconduc-
tors in series, and applying a direct current (DC) through the element, heat is pumped from
one side to the other. The direction of the DC determines the cooling direction. Since the
thermodynamics of Peltiers are non-affine as function of state and input, identification of
the modeling parameters of the Peltier elements is hard, which makes them, combined with
the nonlinear thermodynamics present, difficult to control.

A wide variety of studies has investigated identification and thermal control of Peltier ele-
ments [7][10][11][18][21][39][47][48]. Most thermal control focuses on the cold side of the
Peltier elements. Furthermore, the usage of (switching) PID controllers is common, because
of its simplicity in design and implementation [21], but is not robust [18]. In [11], a static
identification method for the Peltier parameters is applied and a generic input-output (IO)
linearizing feedback law is used, taking the practical limitations of the used setup into ac-
count. The work in [11] is extended in [39] by including the temperature-dependency of
the model parameters. Temperature-dependency of Peltiers is not necessarily taken into ac-
count for thermal modeling. In [45][46], it is stated that it is important and necessary to take
the temperature-dependency of thermoelectric (TE) materials into account when designing
high-performance TE modules for -13 °C ≤ T ≤ 67 °C. In thermal control, physics-based
modeling is preferred because of project risk reduction, the explainability, and tunability of
these models.

Different methodology than physics-based modeling for estimating the input-output behav-
ior of the plant is data-driven identification, or black-box modeling. Black-box modeling
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implies the application of a model structure that is as flexible as possible, since no informa-
tion about the internal structure of the device is utilized [31]. However, physical structures
of physics-based models (also referred to as white-box modeling approach) provide some
guidance in choosing structures and designs of experiments [43]. In [29], a grey-box iden-
tification method is used, where the amount of nonlinear basis functions used is limited,
based on physical insights. The compromise between capturing complex nonlinearities of
the fitted model and the ability to possess a low number of parameters is one of the chal-
lenges in data-driven identification techniques [29].

Modeling systems with physical laws is often too time consuming, because of so many small
parts and their interactions, while in practice, for many purposes, such as control, a math-
ematical model properly describing the input-output dynamics suffices [43]. It is therefore
interesting to investigate what modeling performance can be achieved with a data-driven
identification of Peltiers, and to compare it with the physics-based modeling approach in
terms of complexity and accuracy. This thesis aims to do so with a Peltier-based setup, built
to investigate the thermodynamics of Peltier elements.

1.2 Objectives & approach

As systems and their interactions are often too time consuming to model with physical laws
and properly describing the IO-dynamics suffices [43], it is worthwhile to investigate a data-
driven approach for the Peltier-based setup researched in [11][39] as well. In order to obtain
the IO-thermodynamics, a nonlinear data-driven modeling approach will be utilized. There-
fore, the only information of the internal structure of the setup that will be used, is the fact
that the nonlinearities are, according to the physics-based model, of a certain order. This
is done to apply a model structure that is as flexible as possible [31], while utilizing the
available knowledge.

The question then arises whether a data-driven modeling approach will be able to capture
the setup thermodynamics better or worse than a physics-based model. It is also interesting
to investigate whether the data-driven approach can be of use in practice, to aid in product
analysis for example. Furthermore, the data-driven modeling approach might result in a
model with states that are non-interpretable, but describe the IO-thermodynamics very well.
The possibilities for observer design, feedback linearization or controlling the setup, like
done for the physics-based model in [11][39] are alluring to research as well. These questions
are all incorporated into the research question.

Research question: To what extent can nonlinear data-driven identification aid with
or be used solely for the identification of a Peltier-based setup?

This research question has been divided into separate research objectives.
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Research objectives

1. Obtain the most accurate physics-based model & data-driven model, while maintaining a
minimal amount of modeling parameters
To eventually make a fair comparison between the two methods, the most accurate
models for both methods, while maintaining a minimal amount of modeling parame-
ters, are needed.

Perform an in-depth analysis on the contribution of the Thomson effect
The physics-based model obtained in [39] excluded the Thomson effect, based on [14].
One of the recommendations of [39] was to investigate the Thomson effect in more
detail in future research on Peltiers, since its effect is probably larger than claimed in
[14]. Therefore, an in-depth analysis on the contribution of the Thomson effect is done.

Obtain the data-driven model
In order to obtain a nonlinear data-driven model, the approach from [29] is used, uti-
lizing the work from [31],[25], and [35]. Following [29], a proper model structure is
chosen. Then, using the methodology from [31], a nonparametric best linear approx-
imation in a mean square sense is determined from the experimental data. Utilizing
this approximation, a parametric linear model is estimated, using the frequency do-
main subspace identification algorithm from [25], while employing the sample covari-
ance matrix instead of the true covariance, as presented in [35]. The quality of the
found parametric linear models is improved by nonlinear optimization, after which a
full nonlinear model is estimated.

2. Develop a fair comparison of the data-driven identification vs. the physics-based model for
the Peltier-based setup
In thermal control, physics-based modeling is preferred because of project risk re-
duction, the explainability, and tunability of these models. Black-box models are in
general more accurate, but hard or impossible to interpret [33]. In order to get a fair
comparison between both models, several aspects need to be compared.

Comparison physics-based & data-driven: accuracy & robustness
For both models, the accuracy will be compared in terms of the modeling error. To
do so, the modeled output is compared with the experimental output for a validation
trajectory that resembles a typical temperature profile for the Peltier to follow when
used in handheld devices like in [18], and covers most of the operating temperature
range. In order for a model of the Peltier-based setup to be of use in practice, it needs
to be robust with respect to the ambient temperature. The robustness is checked by
analyzing the knowledge of the found models on the ambient temperature.

Comparison physics-based & data-driven: model complexity & method practicability
If a modeling procedure is really complex, it will not be used in practice, unless the
obtained accuracy improves drastically. Both methods are compared in terms of easy
adaptation to identify different types of TECs by analyzing the amount of work needed
to identify a different (type of) Peltier.

1.3 Outline thesis

This thesis consists of 7 chapters. The Peltier-based setup is introduced in Chapter 2. The
research objectives described in Section 1.2 and the methods to achieve these will be treated
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in Chapters 3 to 6. Conclusions and recommendations for future research will be given in
Chapter 7.

In Chapter 2 the Peltier-based setup is introduced. The hardware and the specifications that
need to be considered for identification of the setup are discussed. Then, Chapter 3 intro-
duces the physics-based model found in [39] and gives an in-depth analysis on the contribu-
tion of the Thomson effect as well as a sensitivity analysis of the Peltier device parameters.
The final physics-based model is used for the comparison with the data-driven model. Next,
in Chapter 4, the methodology on how to obtain a nonlinear data-driven model for a ther-
mal system is discussed. The methodology is used to construct the data-driven model of
the Peltier-based setup in Chapter 5. Subsequently, Chapter 6 compares the resulting data-
driven models obtained for the Peltier-based setup with the physics-based model from [39].
Finally, Chapter 7 gives an overview of conclusions of this work, and lists the recommenda-
tions for future research.
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2 Peltier-based setup
In this chapter the Peltier-based setup is introduced. The hardware and the specifications
that need to be considered for identification of the setup are discussed. In Section 2.1 the
components of the experimental setup are given. In Section 2.2 the architecture of the setup
is described in terms of data acquisition platform, sensors, amplifiers, and current control.

2.1 Experimental setup

Previous research within Philips Innovation Services (PInS) [11] focused on building a Peltier-
based experimental setup to investigate the thermodynamics of Peltier elements. The setup
represents a simplified diagnostic platform used to investigate different control strategies
[11][39]. A schematic overview of this setup is given in Figure 1.

Peltier elements are used in a variety of temperature ranges, differing per application. The
focus of this research lies in controlling both Peltiers individually, since in diagnostic plat-
forms where fluid samples are processed by sequential heating and cooling, multiple Peltiers,
although thermally coupled, still require individual temperature control. For this setup, a
temperature range from 5 °C to 90 °C is relevant, therefore including the majority of appli-
cations.

Two individually actuated Peltier elements are thermally coupled by a stainless steel bottom
plate. To reduce complexity of the setup, this plate is used for temperature control instead
of using real fluid volumes. The hot sides of the Peltiers are connected by an aluminum top
plate, which are thermally conditioned with an actively fanned heat sink (note that when
the bottom temperature rises quickly, the top temperature drops, resulting in the heat sink
briefly heating the Peltier instead of cooling). The objective is to thermally control both
points of interest (POI) on the bottom plate. The setup has previously been modelled using
a physics-based modelling approach.

Figure 1: A schematic of the Peltier-based setup [39].
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Two Peltier elements are at the core of this setup. When applying a current to them, heat is
transferred from one side to the other. The amount of heat transferred depends on the type
of Peltier element. A Peltier element of type L100 is provided in Figure 2a, and Figure 2b
shows the side view of two Peltier elements on top of each other. The width and length of
this L100 Peltier element are both equal to 40 mm and it is 5 mm in height. The side view
shows the difference in pellets and solder due to the production process.

(a) Picture of a L100 Peltier element.

(b) Side view of two L100 Peltier elements on top of each
other.

Figure 2: Picture of a L100 Peltier element (left), and a side view of two Peltier elements on
top of each other.

Other specifications of a Peltier element are the maximum temperature Tmax, the maximum
heat difference ∆Tmax, occurring at the maximum current Imax, and the maximum amount
of heat that can be transported from the cold side to the hot side Qmax, when ∆T = 0 and
I = Imax.

Throughout this research, two different types of Peltiers have been used. The first type is the
same as used in [39] for the physics-based model. This was assumed to be the L100 type, but
throughout this research it was found that this is not the case. The true type of these Peltier
elements is unknown. For the remainder of this thesis, it will be referred to as TEC-[39].
The latter type of Peltier element is of the type L100. The L100 Peltiers are used for the
data-driven identification in Chapter 5. The limit values for both types of Peltier elements
are given in Table 1.

L100 [9] TEC-[39]
Tmax [°C] 95 90
∆Tmax [°C] 75 70
Imax [A] 4.1 3.3
Qmax [W] 39 29.3

Table 1: Limit values of the experimental setup Peltiers.
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2.2 Architecture

The architecture of the Peltier-based setup is depicted in Figure 3. It consists of a Windows-
based PC running Matlab Simulink, a data acquisition platform, two electrical amplifiers,
two Peltier elements, two passive resistors, thermocouples, NTCs and Wheatstone bridges.

Figure 3: Schematic overview of the architecture of the Peltier-based setup.

Data acquisition platform

The sensor measurements and controlling the amplifiers is done by using a CompactDAQ
(cDAQ) platform from National Instruments with 8 modules for either input or output.
The different modules used can be found in Figure 3. The cDAQ is read by a Windows-
based PC running Matlab Simulink. The cDAQ and Simulink communicate via PInS in-
house developed software. Since the internal clock of the cDAQ is used for equidistant time
sampling, Simulink can be simply run by a single simulation Simulink license (no real-time
license required).

Temperature sensors

Temperatures are measured with 8 thermocouples (TC) sensors and 4 thermistors with a
negative temperature coefficient (NTC) sensors. The relative accuracy of the TC and NTC
sensors has been estimated in [39], resulting in a relative error with respect to a zero point
of ±0.1 °C for the TC sensors, and ±0.05 °C for the NTC sensors. Both the TCs and NTCs are
sampled at 10 Hz.

Wheatstone bridge

In order to determine the resistance of the NTC sensors a Wheatstone bridge is used, related
to the measured temperature by the Steinhart-Hart relation [40]. Figure 4 shows the electri-
cal circuit of a Wheatstone bridge, consisting of a constant input voltage Vin of 5 V, which
is measured in the setup as well, output voltage Vout [V], measured by the cDAQ, constant
resistors R1, R2, and R3 of 10 kΩ, and the variable NTC resistance Rt [Ω].
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Figure 4: Schematic overview of a Wheatstone bridge circuit [39].

In this way the voltage difference over the Wheatstone bridge is equal to

Vout = (
R2

R1 +R2
− Rt

Rt +R3
)Vin. (1)

The resistances R1−3 are not exactly 10 kΩ, and therefore were calibrated, according to the
procedure described in Appendix A of [39].

Electrical current sensors

To measure the applied current to the Peltier elements, a passive resistor is used in series
with each Peltier element. By measuring the voltage drop over the resistor and applying
Ohms law, the current is determined. A passive resistor Rp of type WH50-2RJI with a re-
sistance of 2.2 Ω is used so the current can be directly measured without an operational
amplifier. The NI 9222 module of the cDAQ can measure a voltage from -10 V to 10 V,
which corresponds to a current ranging from -4.54 A to 4.54 A.

Electrical current amplifiers

Both Peltiers in the Peltier-based setup are actuated individually by sending a voltage signal
to a linear amplifier. These voltages Vin are converted into currents Iout, which are then sent
to the Peltiers. The type TA115 amplifier output ranges from -4A ≤ Iout ≤ 4A, where the
input ranges from -10 V ≤ Iin ≤ 10V. The amplifier gain KP therefore is expected to be 0.4 A
per V.

Current control

Since the linear amplifiers are required to be used in closed loop, the amplifier gain slightly
differs over its power range. To correct for the error in amplifier gain, a proportional–integral
(PI) controller is used. In order to investigate the linear relation for the amplifiers, as well as
the differences in proportional gain KP over the power range, a stairs signal for Vin ranging
from -6 V to 6 V has been applied, while measuring the output Iout. A linear function is
fitted through the found data, and is given in Figure 5.
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(b) Linearity of amplifier 2.

Figure 5: Linearity of both amplifiers used with the Peltier-based setup.

Figure 5 shows that the proportional gain is linear and consistent for the range of interest.
In [39] it was already found that the power supply for the amplifiers has inadequate power
for -6 V > Vin > 6 V for the amplifiers. After analysis of the data from this experiment it can
be concluded that this is indeed the case.

To limit the integral action, a saturation function is used, only removing offset close to the
reference setpoint. The saturated integral gain KI was tuned using experimental data. The
PI-controller is implemented and validated in [39].

Another experiment is conducted to investigate the amplifiers more thoroughly. Figure 6
shows the expected current Iin versus the measured current Iout for both amplifiers, when
applying a stairstep profile in steps of 0.5A, in the range -2.5 A ≤ Iin ≤ 2.5 A. The current
error profile for both amplifiers, defined as Iout - Iin, is provided in Figure 7. It is clear to
see from Figure 6 that both amplifiers have a mismatch in behavior when Iin ≥ 2 A, where
Iin equals the input voltage Vin [V] multiplied with the amplifier gain KP . This is then
compared with the output Iout, which is the output voltage measured [V] divided by the
passive resistance value Rp [Ω]. It is therefore decided that the maximum allowed Iin for
both amplifiers is set to 2 A instead of 4 A, as described by the amplifier specifications.

Furthermore, the cause for the small spikes in the Iout profiles in Figures 6a and 6b is un-
known, and should be investigated in the future. The large peaks in the error profiles in
Figure 7a are caused by delay between reference current and measured current, and are part
of the plant thermodynamics. Figure 7b shows that during smooth trajectories, the current
error is below 0.015 A.
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(a) Amplifier 1. (b) Amplifier 2.

Figure 6: Expected current Iin versus the measured current Iout for both amplifiers of the
Peltier-based setup.
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(a) Current error Iin minus Iout for both amplifiers.
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(b) Zoomed-in part of the current error plot in Figure 7a for
both amplifiers.

Figure 7: Current error profile for both amplifiers. Original (a), and zoomed-in (b).

For the data-driven identification and validation, only amplifier 2 has been used. Multiple
Peltiers of type TEC-[39] broke during testing, and amplifier 1 is believed to be the cause.
In order to prevent more broken Peltiers, only amplifier 2 has been used in the remainder
of the research. The precise reason for this mismatch in amplifier behavior has not been
investigated in this research. In order to use the setup to its full extent, it is recommended
for PInS to investigate this issue in the future.
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3 Physics-based model
In this chapter the physics-based model is discussed. Firstly, the physics-based model con-
structed in [39] is introduced in 3.1. Then, an in-depth analysis on the contribution of the
Thomson effect is given in Section 3.2. Next, a sensitivity analysis on the found model pa-
rameters is provided in Section 3.3. Concluding, it is discussed whether the most optimal
physics-based model to compare with the data-driven model is obtained.

3.1 Physics-based model: overview

In order to do an in-depth analysis on the contribution of the Thomson effect on the physics-
based model from [39], the modeling procedure, and therefore the physics of the setup itself,
need to be understood. A Peltier element consists of electrically in series, thermally in paral-
lel connected semiconductors of type N and P. Its thermodynamics are described by thermal
and electrical effects. When an electrical power Pin [W] is applied to it, it transfers heat from
one side to another. A schematic overview of a Peltier element is depicted in Figure 8.

Figure 8: Schematic overview of a Peltier element [39].

Whether the Peltier element heats or cools, depends on the direction of the current. In
Figure 8, it absorbs heat Qc [J] at the cold side, and transfers heat Qh [J] to the hot side. This
configuration will be considered for the composition of the equations in this chapter.

The heat transfer dynamics depend on the amount of applied electrical power Pin. In steady-
state, the energy balance is

Pin =Qh −Qc, (2)

where Ṫ = 0. The energy balance is described by four thermal/electrical effects: the See-
beck/Peltier effect, the Joule effect, the Fourier effect, and the Thomson effect.

The Seebeck/Peltier effect can be described in two different ways, known as the Seebeck
and Peltier effect respectively. According to the first way, known as the Seebeck effect, the
Seebeck effect generates a electric power Pout [W] due to a difference in temperature between
the hot and cold side of the Peltier element. Connecting two dissimilar conductors in series
and maintaining them at different temperatures generates an electric power caused by an
electromotive force VSM [V]. This electric power is generated because of the Seebeck effect,
and equals

PSM = VSM I = SM(TAVG)(Th − Tc)I, (3)
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with PSM the power due to the Seebeck/Peltier effect [W], TAVG = 1
2 (Th+Tc) the average pellet

temperature [K], Th the hot side temperature [K], Tc the cold side temperature [K], SM(TAVG)
the Seebeck coefficient [V /K] depending on TAVG[K], and I the electrical current supplied
to the Peltier element [A]. The second way, known as the Peltier effect, is the Seebeck effect
reversed. Applying an electrical power Pin [W] to the Peltier element results in a generated
heat flow. This heat flow, generated by the Peltier effect, is equal to

QP (T ) = SM(TAVG)T I, (4)

with QP the rate of heat flow due to the Seebeck/Peltier effect [W], and T ∈ {Tc,Th} [°C]. The
Seebeck effect thus generates electrical power equal to the net heat flow generated by the
Peltier effect. The Seebeck/Peltier effect is therefore described by

PSM =QP (Th)−QP (Tc). (5)

The Joule effect generates heat when an electrical current runs through a conductor. The
applied electrical power is equal to the generated heat dissipation QJ [W] and is described
by

PRM =QJ = RM(TAVG)I2, (6)

with PRM the power due to the Joule effect [W],QJ the rate of heat flow due to the Joule effect
[W], and RM(TAVG) the electrical resistance [Ω], depending on TAVG.

The Fourier effect is the conductive heat transfer from hot to cold side of the Peltier element,
described by

QF = KM(TAVG)(Th − Tc), (7)

with QF the rate of heat flow due to the Fourier effect, and KM(TAVG) the thermal conduc-
tance of a Peltier element [W/K] depending on TAVG. The dimensions and thermal con-
ductivity of the pellets and ceramic plates determine the thermal conductance of a Peltier
element.

The Thomson effect generates additional heating or cooling when an electrical current flows
in the direction of the temperature gradient in a homogeneous conductor. The heat flow
caused by this effect is equal to

QT = τI(Th − Tc), (8)

where τ is the Thomson coefficient [V/K].

The Thomson effect was omitted in [39] based on [14], and it was recommended to investi-
gate the effect of its inclusion on the modeling results. This is done in Section 3.2.

Combining (3)-(7), the energy balance of (2) can be completed. The electrical power Pin
applied to a Peltier element is described by

Pin = PRM + PSM = RM(TAVG)I2 + SM(TAVG)(Th − Tc)I. (9)
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Applying this electrical power results in the rate of heat transfer absorbed at the cold side
Qc given by

Qc =QP −
1
2
QJ −QF = SM(TAVG)TcI −

1
2
RM(TAVG)I2 −KM(TAVG)(Th − Tc), (10)

and in a rate of heat transfer dumped at the hot side Qh, given by

Qh =QP +
1
2
QJ −QF = SM(TAVG)ThI +

1
2
RM(TAVG)I2 −KM(TAVG)(Th − Tc). (11)

It is assumed that the heat generated by the Joule effect is equally divided between the cold
and hot heat flow, commonly done in Peltier thermodynamical modelling [5] [13].

3.2 In-depth analysis on the contribution of the Thomson effect

It was recommended in [39] to investigate the effect of the incorporation of the Thomson
effect in the the physics-based model.

The Thomson coefficient is related to the Seebeck coefficient through the Kelvin relationship

τ =
dSm
dT

T . (12)

Using [5], where it is assumed that the Thomson effect is equally distributed over the cold
and the hot side, the differential equations (DEs) for a single Peltier are given as

mccp,cṪc = Sm(TAVG)TcI −
1
2
RM(TAVG)I2 +

1
2
τ(TAVG)I(Th − Tc)−KM(TAVG)(Th − Tc), (13)

with mc the mass on the cold side, cp,c the specific heat capacity on the cold side, and

mhcp,hṪh = Sm(TAVG)ThI +
1
2
RM(TAVG)I2 − 1

2
τ(TAVG)I(Th − Tc)−KM(TAVG)(Th − Tc), (14)

with mh the mass on the hot side, cp,h the specific heat capacity on the hot side.

In [39], temperature dependent parameters SM and RM are identified by applying a step
in current on a single Peltier, and taking advantage of the fast electrical and slow thermal
behavior. Using (2), the applied electrical power Pin is equal to

Pin =Qh −Qc =mhcp,hṪh −mccp,cṪc. (15)

Filling in (13) and (14) gives

Pin = (SM(TAVG)− τ(TAVG))I(Th − Tc) +RM(TAVG)I2. (16)

By rewriting (16) using Ohms law, the voltage over the Peltier element VP [V] is described
by

VP = VRM +VSM = (SM(TAVG)− τ(TAVG))(Th − Tc) +RM(TAVG)I, (17)

13



with VRM the voltage due to the Joule effect [V], and VSM the voltage due to the Seebeck-
/Peltier effect [V]. By utilizing the fast electrical and slow thermal behavior, the electrical
resistance, Seebeck coefficient and Thomson coefficient can be determined with

RM(TAVG) =
VRM
δI

, (18)

SM(TAVG)− τ(TAVG) =
VSM
T̄
, (19)

with δI a step in current, and T̄ the average temperature during the steady-state period.
Using

τ =
dSM
dT

T , (20)

this would result in SM(TAVG) obtained in [39] to be equal to SM(TAVG)− τ(TAVG).

In [46], it is claimed that if the Seebeck coefficient for a TEC can be expressed as a function
of TAVG and T 2

AVG, it can be transformed into a Seebeck coefficient evaluated at both the hot
and the cold side. Consider the Peltier element shown in Figure 9. The heat rate equations
for the hot and cold side respectively are given as

Qh = SM(Th)ThI −
1
2
τI∆T +

1
2
I2RM −KM∆T , (21)

Qc = SM(Tc)TcI +
1
2
τI∆T − 1

2
I2RM −KM∆T , (22)

with Qh the transferred heat to the hot junction of the Peltier [W], Qc the absorbed heat at
the cold junction of the Peltier [W], and ∆T = Th − Tc.

Figure 9: Single Peltier element through which a current flows [46].

Combining the first and second term of (21) and (22) gives

Qh = σhThI +
1
2
I2RM −KM∆T , (23)
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with

σh = SM(Th)− τ(Th)∆T
2Th

, (24)

and

Qc = σcTcI −
1
2
I2RM −KM∆T , (25)

with

σc = SM(Tc) +
τ(Tc)∆T

2Tc
. (26)

Assuming a linear temperature distribution in the pellet (which is accurate in steady-state),
the temperature along the length of the Peltier can be expressed as a function of z ∈ {0,L}

Tz = T +
(
z − L

2

)
∆T
L
, (27)

where Tz(z = L) corresponds to Th, Tz(z = 0) corresponds to Tc, and Tz(z = L/2) corresponds
to T . When SM is expressed as a quadratic function of temperature, SM(Tz) can be expanded
in a power series and therefore written as

SM(Tz) = SM(T )[1 +A1(Tz − T ) +A2(Tz − T )2], (28)

with A1 and A2 the expansion coefficients of SM(Tz). Now, SM(Th) can be determined as

SM(Tz)|Tz=Th = SM(T )[1 +A1(Th − T ) +A2(Th − T )2], (29)

SM(Th) = SM(T )
[
1 +A1

(
Th −

Th + Tc
2

)
+A2

(
Th −

Th + Tc
2

)2]
, (30)

SM(Th) = SM(T )
[
1 +A1

(Th − Tc
2

)
+A2

(Th − Tc
2

)2]
, (31)

SM(Th) = SM(T )
[
1 +

A1

2
∆T +

A2

4
(∆T )2

]
. (32)

In a similar way, SM(Tc) can be determined as

SM(Tz)|Tz=Tc = SM(T )
[
1 +A1 (Tc − T ) +A2 (Tc − T )2

]
, (33)

SM(Tc) = SM(T )
[
1− A1

2
∆T +

A2

4
(∆T )2

]
. (34)

Following up on this, the Thomson coefficients can be determined for the hot side as

τ(Th) = Th
dSM(Tz)
dTz

|Tz=Th = Th
d
dTz

(
SM(T )

[
1 + (Tz − T )A1 + (Tz − T )2A2

])
|Tz=Th , (35)

τ(Th) = Th (SM(T ) [A1 + (2Th − 2T )A2]) , (36)

τ(Th) = Th
(
SM(T )

[
A1 + (2Th − 2

Th + Tc
2

)A2

])
, (37)

τ(Th) = ThSM(T ) [A1 +∆TA2] , (38)
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and for the cold side as

τ(Tc) = Tc
dSM(Tz)
dTz

|Tz=Tc = Tc
d
dTz

(
SM(T )

[
1 + (Tz − T )A1 + (Tz − T )2A2

])
|Tz=Tc , (39)

τ(Tc) = Tc (SM(T ) [A1 + (2Tc − 2T )A2]) , (40)

τ(Tc) = Tc
(
SM(T )

[
A1 + (2Tc − 2

Th + Tc
2

)A2

])
, (41)

τ(Tc) = TcSM(T ) [A1 −∆TA2] . (42)

Then, σh can be determined as

σh = SM(Th)− τ(Th)∆T
2Th

, (43)

σh = SM(T )
[
1 +

A1

2
∆T +

A2

4
(∆T )2

]
− ThSM(T )∆T [A1 +∆TA2]

2Th
, (44)

σh = SM(T )
[
1 +

A1

2
∆T +

A2

4
(∆T )2 − A1

2
∆T − A2

2
(∆T )2

]
, (45)

σh = SM(T )
[
1− A2

4
(∆T )2

]
, (46)

and σc can be determined as

σc = SM(Tc) +
τ(Tc)∆T

2Tc
, (47)

σc = SM(T )
[
1− A1

2
∆T +

A2

4
(∆T )2

]
+
TcSM(T )∆T [A1 −∆TA2]

2Tc
, (48)

σc = SM(T )
[
1− A1

2
∆T +

A2

4
(∆T )2 +

A1

2
∆T − A2

2
(∆T )2

]
, (49)

σc = SM(T )
[
1− A2

4
(∆T )2

]
. (50)

Therefore,

σh = σc = SM(T )
[
1− A2

4
(∆T )2

]
. (51)

Using (51) in (23) and (25) gives the new heat rate equations as

Qh = SM(T )
[
1− A2

4
(∆T )2

]
ThI +

1
2
I2RM −KM∆T , (52)

Qc = SM(T )
[
1− A2

4
(∆T )2

]
TcI −

1
2
I2RM −KM∆T . (53)

The electrical power is then equal to

Pin =Qh −Qc = SM(T )
[
1− A2

4
(∆T )2

]
∆T I +RM(TAVG)I2. (54)
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Using (54), the procedure used in [39] for the identification of the temperature dependent
parameters of a single Peltier can be redone as

VP = VRM +VSM = RM(TAVG)IP + SM(T )
[
1− A2

4
(∆T )2

]
∆T , (55)

RM(TAVG) =
VRM
δIP

, (56)

SM(TAVG) = SM(T )
[
1− A2

4
(∆T )2

]
. (57)

This does not result in a change for the parameter SM , but does clarify that the Thomson
effect was already incorporated in the model of [39]. The data obtained for the parameter
SM is actually the ‘effective’ Seebeck coefficient, which has the Thomson effect embodied in
it, if SM is considered a function of temperature. If SM is considered to have no temperature-
dependency, (20) clearly shows that τ equals 0. Therefore, the model as created in [39]
for a single Peltier element is valid and the lumped-capacitance model created needs no
alteration.

Following [16], a lumped-capacitance model of the Peltier-based setup was created in [39],
depicted in Figure 10. The lumps x1−18 correspond to the elements as indicated in Figure 1.
The heat sink is divided into x1−4, the aluminum top plate into x5−8, the hot and cold side of
Peltier 1 into respectively x9 and x11, the hot and cold side of Peltier 2 into respectively x10
and x12, and the stainless steel bottom plate into x13−18.

Figure 10: Schematic overview of the Peltier-based setup, (by) courtesy of [39].

In this model, for the sake of modelling simplicity, the width of the lumps adjacent to the
Peltiers are assumed to be of the same width as the Peltiers themselves. Moreover, the spatial
discretization of the heat sink has not been subjected to a Biot number analysis.
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Now, rewriting the DEs into matrix formulation using the theory from [16] results in

E


ẋL1

ẋh
ẋc
ẋL2

 =


A1 Ø

Ø A2



xL1

xh
xc
xL2

+


B1w

fh(xh,xc,u1,u2)
fc(xh,xc,u1,u2)

B2w

 , (58)

where E is the thermal capacitance matrix, xh = [x9 x10]> and xc = [x11 x12]> are the lump
temperatures of the hot and cold sides of the Peltiers respectively, xL1

= x1−8, and xL2
= x13−18

are the remaining lump temperatures connected to Peltier 1 and 2, respectively. An overview
of the state-space lump division xL1

, xh, xc, and xL2
is given in Figure 11.

Figure 11: State-space lump division of the Peltier-based setup [39].

Furthermore, the heat transfer matrices A1 and A2 and heat load matrices B1 and B2 con-
tain the appropriate thermal resistances to model the thermal coupling between the lumps,
w denotes the ambient temperature, and u1 and u2 represent the applied currents to the
Peltiers. The nonlinear thermodynamics of the Peltiers are captured in fh and fc and are
described by

fh =
[
Qh(x9,x11,u1)
Qh(x10,x12,u2)

]
=

[
SMx9u1 + 1

2RMu
2
1 −KM(x9 − x11)

SMx10u2 + 1
2RMu

2
2 −KM(x10 − x12)

]
, (59)

and

fc =
[
−Qc(x9,x11,u1)
−Qc(x10,x12,u2)

]
=

[
−SMx11u1 + 1

2RMu
2
1 +KM(x9 − x11)

−SMx12u2 + 1
2RMu

2
2 +KM(x10 − x12)

]
. (60)

The output matrix formulation is then

y =


C1

0
Ø

Ø
0

C2



xL1

xh
xc
xL2

 , (61)

where C1 and C2 are diagonal matrices filled with ones and zeros, according to the measured
states through sensors.
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3.3 Sensitivity analysis physics-based modeling parameters

The modeling parameters SM , KM and RM have been determined in [39] with a dedicated
experimental setup. The setup is provided in Figure 12, and consists of a Peltier element that
is sandwiched between two stainless steel blocks, a 3D-printed High Impact PolyStyrene
(HIPS) cover, a water cooler that extracts heat from the setup, and an aluminium clamping
mechanism. Two NTC sensors are placed in each stainless steel block, to measure the cold
and hot side of the Peltier element.

Figure 12: Dedicated experimental setup from [39] to determine temperature dependent
modeling parameters.

The calibration of SM and KM is done by utilizing the slow thermal dynamics and fast elec-
trical dynamics, and RM is calibrated by estimating the hot and cold heat flows through the
Peltier element, as explained in Sections 4.1.2 and 4.1.3 of [39]. In order to validate the
model parameter calibration of a single Peltier, a sensitivity analysis is performed, which
can be found in Appendix A.

The sensitivity analysis shows that calibration of the parameters SM , KM , and RM has been
done adequately. The output of the experiment is strongly dependent on SM and KM being
correct. Since SM is separately identified, for the identified SM , a fitting KM can be found by
the optimization algorithm.

3.4 Conclusion

In this chapter, the physics-based model from [39] has been discussed. Following recom-
mendation R.3 from [39], it has been observed that the Thomson effect was already incor-
porated in the model, and therefore no better results in terms of better correlation between
model and measurements are obtained. The effective Seebeck coefficients have been identi-
fied, by assuming that SM is temperature-dependent. If this dependency is not considered,
based on (12), the Thomson effect falls out of the equations, and is neglected in the model.

Also, sensitivity analyses have been done to validate the model parameter calibration. This
validation showed that the determining and optimization of the temperature dependent pa-
rameters SM , RM , and KM has been done adequately. Even though the output of the exper-
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iment is strongly dependent on SM and KM being correct, since SM is separately identified,
for the identified SM , a fitting KM can be found by the optimization algorithm.

The other recommendations from [39] concerning the setup or model design have also been
considered. The mechanical design of the Peltier-based setup has not been altered for the
Peltiers to be installed with constant clamping force. The Peltiers have been installed care-
fully, applying an as good as identical clamping force to both Peltiers. Also, since there is
no desire to track higher frequent reference signals, the lumped-capacitance model is not
improved by a finer discretization. Furthermore, the Fourier number has not been used to
discretize the setup.

The physics-based model complexity is considered rich enough to make a fair comparison
between the physics-based and data-driven model of the Peltier-based setup, which will be
constructed in Chapter 5 using the methodology described in Chapter 4.
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4 Data-driven modeling: methodology
In this chapter the methodology used to obtain a nonlinear data-driven model of the Peltier-
based is described. In Section 4.1 the excitation signal for the identification is discussed.
Section 4.2 then elaborates on the model structure, after which Section 4.3 continues on the
identification procedure to obtain the data-driven model. Concluding, Section 4.4 summa-
rizes the procedure briefly.

4.1 Excitation signal

For the identification of the Peltier-based setup, multisine excitations are considered. A
multisine is a periodic signal with a user-defined amplitude spectrum, and freely adjustable
phases. It is a pseudo-random signal, since it appearance features look random in the time
domain, and has deterministic amplitudes in the frequency domain. The usage of multi-
sines as excitation signals is inviting, because multisines are periodic, broadband, and by
choosing the phases properly, low-crest-factor signals are obtained [34]. The phases are cho-
sen randomly for the MS excitation signal used for the identification of the Peltier-based
setup in Chapter 5. The periodicity allows the elimination of leakage in frequency domain
identification, and the estimation of the covariance of the noise disturbances directly from
data [29]. Furthermore, using multisines allows to distinguish the amount and degree of
nonlinearities in a system by using multiple phase realizations.

It is defined as a sum of harmonically related sine waves

u(t) =
1
√
N

N
2 −1∑

k=−N2 +1

Uke
j(2πfs

k
N t+φk), (62)

where Uk = U−k , φk = −φ−k , N the number of time samples in one period, j the imaginary
unit, and fs the sampling frequency [Hz]. Amplitudes Uk are defined by the user to meet
a desired spectrum, and phases φk are drawn from a uniform distribution on [0,2π), such
that E (jφk) = 0, where E denotes the mathematical expectation. The factor 1√

N
serves as a

scaling factor such that, as N →∞, the power of the multisine remains finite, and its Root
Mean Square (RMS) value stays constant as N increases [34].

4.2 Nonlinear state-space model structure

In order to obtain a parametric model, a modeling structure needs to be defined. A nth
a order

discrete-time state space model is commonly expressed as{
x(t + 1) = f (x(t),u(t))

y(t) = g(x(t),u(t))
, (63)

with x ∈Rna the state vector, u ∈Rnu the input vector, and y ∈Rny the output vector.

Consider the general state space model in (63) and apply a functional expansion of the func-
tions f and g. Although various kinds of basis functions can be used for this purpose, here
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a set of polynomial basis functions is chosen. The main advantages of polynomials are their
easy application in a multi variable framework and their straightforwardness to compute.

Using the Polynomial NonLinear State Space (PNLSS) model as defined in [31], (63) becomes{
x(t + 1) = Ax(t) + Bu(t) + Eζ(t)

y(t) = Cx(t) + Du(t) + Fη(t)
. (64)

Here, the coefficients of the linear terms in u(t) and x(t) are given by A ∈ R
na×na and B ∈

R
na×nu in the state equation, and C ∈ Rny×na and D ∈ Rny×nu in the output equation. Vectors

ζ ∈ Rnζ and η ∈ Rnη contain nonlinear monomials in x(t) and u(t) of degree two up to user-
chosen degree d, and matrices E ∈ R

na×nζ and F ∈ R
ny×nη are filled with their associated

coefficients. The amount of nonlinear terms in (64) can grow quite rapidly if the order of the
model grows, and therefore a trade-off will be made between model accuracy and parameter
parsimony. This will be done during the approximation of the best linear model in Section
4.3.

Separating the model structure in a linear and a nonlinear part does not influence the be-
havior of the model. However, since the first step of the identification procedure consists of
estimating a linear model, this distinction will turn out to be very efficient.

4.3 Identification procedure

In order to identify the PNLSS model from (64), the methodology from [31] is followed.
Firstly, in Section 4.3.1 a nonparametric best linear approximation is determined in a least-
square sense from the experimental data. Secondly, in Section 4.3.2, using this best linear ap-
proximation, a parametric linear model is estimated, using the frequency domain subspace
identification algorithm from [25] while employing the sample covariance matrix instead of
the true covariance, as presented in [35]. Thirdly, the quality of the found parametric linear
models is improved by nonlinear optimization in Section 4.3.3. Lastly, in Section 4.3.4, the
full nonlinear model is estimated, using a nonlinear search routine.

4.3.1 Best Linear Approximation

Consider the Best Linear Approximation (BLA); the linear model that approximates the sys-
tem output best in least-squares sense [34], generally varying with input frequency content
and RMS value [28]. To obtain the BLA, a set of M experiments can be conducted, each con-
sisting of a different multisine excitation realization, accumulating P steady-state periods of
input-output (IO) data [36].

Using periodic excitations, the frequency response function (FRF) estimate Ĝ[m](jωk) ∈ C,
for the mth experiment is obtained as

Ĝ[m]
(jωk) = Ŷ[m]

(k)
(
Û[m]

(k)
)−1

, (65)
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where Ĝ denotes the estimated value of G, with

Ŷ[m]
(k) = 1

P

∑P
p=1 Y[m,p](k),

Û[m]
(k) = 1

P

∑P
p=1 U[m,p](k),

(66)

with Ŷ[m,p](k) and Û[m,p](k) the discrete Fourier transform (DFT) of the output y(t) and the
input u(t) for the pth period of experiment m in a periodic excitation setup.

Using the obtained M FRFs, the best linear approximation ĜBLA can be determined with

ĜBLA(jωk) =
1
M

M∑
m=1

Ĝ[m]
(jωk). (67)

Due to the periodic nature of the excitation signals, a distinction between the effect of the
nonlinear distortions and the measurement noise on the Best Linear Approximation can be
made [30]. While variations over P periods arise from the measurement noise, the variations
over M experiments are caused by the combination of measurement noise and stochastic
nonlinear behavior.

In order to clearly differentiate the two, firstly, the sample covariance of ĜBLA due to mea-
surement noise is determined. This is done by firstly calculating the sample covariance
matrices of the estimated DFT spectra Û(k)[m] and Ŷ(k)[m] with

ĈÛ [m] =
1

P − 1

P∑
p=1

vec
(
U[m,p] − Û[m]

)
vec

(
U[m,p] − Û[m]

)H
,

ĈŶ [m] =
1

P − 1

P∑
p=1

vec
(
Y[m,p] − Ŷ[m]

)
vec

(
Y[m,p] − Ŷ[m]

)H
,

ĈŶ Û [m] =
1

P − 1

P∑
p=1

vec
(
Y[m,p] − Ŷ[m]

)
vec

(
U[m,p] − Û[m]

)H
,

(68)

where vec(A) denotes the operation that stacks the columns of matrix A on top of each other,
and AH denotes the Hermitian transpose of matrix A. In (68), k is omitted for simplification.
From ĈÛ [m] ∈ Cnunu×nunu , ĈŶ [m] ∈ Cnynu×nynu , and ĈŶ Û [m] ∈ Cnynu×nunu , the sample covariance

Ĉ[m]
n of Ĝ[m]

is approximated with [34]

Ĉ[m]
n =

((
Û[m]

)−>
⊗ Iny

)
ĈŶ [m]

((
Û[m]

)−>
⊗ Iny

)H
+ . . .

+
((

Û[m]
)−>
⊗ Ĝ[m]

)
ĈÛ [m]

((
Û[m]

)−>
⊗ Ĝ[m]

)H
+ . . .

− 2herm
{((

Û[m]
)−>
⊗ Iny

)
ĈŶ Û [m]

((
Û[m]

)−>
⊗ Ĝ[m]

)H}
,

(69)
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with Ĉ[m]
n ∈ Cnynu×nynu , Iny the ny × ny identity matrix, and ⊗ the Kronecker matrix product.

In a noiseless input framework, the expression in (69) simplifies to

Ĉ[m]
n =

((
Û[m]

)−>
⊗ Iny

)
ĈŶ [m]

((
Û[m]

)−>
⊗ Iny

)H
. (70)

Averaging over M estimates Ĉ[m]
n , and applying the

√
N -law [30], results in the improved

estimate of the covariance matrix characterizing measurement noise

Ĉn =
1
M2

M∑
m=1

Ĉ[m]
n . (71)

The combination of measurement noise and stochastic nonlinear behaviour is characterized
by the total sample covariance ĈBLA. It is determined from the M estimates Ĝ[m]

(jωk) as

ĈBLA =
1

M(M − 1)

M∑
m=1

vec
(
Ĝ[m] − ĜBLA

)
vec

(
Ĝ[m] − ĜBLA

)H
. (72)

The total covariance of the BLA is equal to the sum of the covariance due to nonlinear con-
tributions CNL(k) and the measurement noise covariance Cn(k) through

CBLA(k) = CNL(k) + Cn(k). (73)

Therefore, ĈNL(k) is estimated with

ĈNL(k) = ĈBLA(k)− Ĉn(k). (74)

Concluding, using M experiments, the Best Linear Approximation ĜBLA(jωk) is estimated.
Also, the total sample covariance matrix ĈBLA(k) of the estimate ĜBLA(jωk), due to the com-
bination of measurement noise and stochastic nonlinear behaviour, is determined. Further-
more, the measurement noise sample covariance matrix Ĉn(k) of the estimate ĜBLA(jωk) and
the sample covariance of the stochastic nonlinear contributions ĈNL(k) are determined.

4.3.2 Frequency domain subspace identification

The next step is to transform the nonparametric estimate ĜBLA(jωk) into a parametric model.
The goal is to estimate the linear state space matrices A, B, C, and D of a discrete-time, linear
state-space model, while the sample covariance matrix ĈBLA is taken into account. This will
be done using the frequency domain subspace algorithm from [25]. The estimated subspace
models are optimized using the results from [30] and [35].

The transformation from the nonparametric BLA to a linear model can be done for different
model orders n and subspace parameter r, defined as the number of rows of the extended
observability matrix. The quality of the subspace model is evaluated through a weighted
least-squares cost function.

In order to arrive at this linear model from the frequency response data from ĜBLA(jωk),
several steps need to be taken. Firstly, the model structure and definitions needed are given
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in Section 4.3.2.1. Secondly, in Section 4.3.2.2 the extended observability matrix Or is es-
timated, given ĜBLA(jωk) and ĈBLA. Then, using Or , matrices A and C are estimated in
Section 4.3.2.3. Finally, given A, C, and ĜBLA(jωk), B and D are estimated in Section 4.3.2.4.

4.3.2.1 Model structure & definitions

In order to be able to estimate the extended observability matrix Or , the model structure
and several definitions are introduced firstly. Assume that the system G is a stable, linear
time-invariant (LTI) discrete-time system of finite order n with m inputs and p outputs, and
can be described by a state-space model

x(t + 1) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

, (75)

with y(t) ∈Rp, u(t) ∈Rm, and x(t) ∈Rn.

Consider the DFT of (75) in N samples as{
zkX(k) = AX(k) + BU(k) + zkxI

Y(k) = CX(k) + DU(k)
, (76)

for k = 1, . . . , F frequencies, and with zk = ej2π
k
N . In the transient term zkxI , xI is defined as

xI =
1
√
N

(x(0)− x(N )). (77)

As only steady-state periods are considered, the transient term will be neglected from here.

Since the BLA determination resulted in an estimate in FRF form, rewrite (76) into FRF form
by setting U(k) = Inu , with Inu the nu ×nu identity matrix. The plant model is then defined as{

zkX(k) = AX(k) + B
G(k) = CX(k) + D

, (78)

with X(k) ∈Cna×nu the state matrix, and G(k) ∈Cny×nu .

Now, multiply the latter equation from (78) with zpk , and develop it by substitution of zkX(k)
with the first equation of (78), and repeat for p − 1 substitutions, as

z
p
kG(k) = zpk (CX(k) + D)

= zp−1
k (CzkX(k) + zkD)

= zp−1
k (CAX(k) + CB + zkD)

= zp−2
k (CA2X(k) + CAB + zkCB + z2

kD)

. . .

z
p
kG(k) = CApX(k) + (CAp−1B + zkCAp−2B + . . . + zp−1

k CB + zpkD).

(79)
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Now, applying p = 0, . . . , r − 1 with r > na to (79) gives

G(k) = CX(k) + D

zkG(k) = CAX(k) + CB + zkD

. . .

zr−1
k G(k) = CAr−1X(k) + CAr−2B + . . . + zr−2

k CB + zr−1
k D).

(80)

In order to convert the model structure in (80), a few definitions are needed. The extended
observability matrix Or is defined as

Or =


C

CA
· · ·

CAr−1

 , (81)

and the matrix Sr containing the Markov parameters is defined as

Sr =


D 0 · · · 0 0

CB D · · · 0 0
· · · · · · · · · · · · · · ·

CAr−2B CAr−3B · · · CB D

 . (82)

Furthermore, also define

Wr(k) =
[
1 zk · · · zr−1

k

]>
. (83)

Applying (81), (82), and (83) to (80) results in the transformation into

G = OrX +SrI, (84)

with matrices G, X, and I defined as

G =
[
Wr(1)⊗G(1) · · · Wr(F)⊗G(F)

]
X =

[
X(1) · · · X(F)

]
I =

[
Wr(1)⊗ Inu · · · Wr(F)⊗ Inu

] . (85)

Since the goal is to estimate the real-valued observability matrix Or , convert the complex
data equation in (84) into a real equation. Consider Are =

[
Re(A) Im(A)

]
, and apply it to

(84), converting it into

Gre = OrX
re +SrI. (86)

An additive noise setting is considered, like

G = G0 + NG(k), (87)
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with G0 the noiseless plant. The noise matrix NG(k) is assumed to have independent (over
k) circular complex normally distributed elements, zero mean

E {NG(k)} = 0, (88)

and covariance CG(k)

CG(k) = E {vec(NG(k))vecH (NG(k))}. (89)

Applying the considered noise setting to the model structure from (86) converts it into

Gre = OrX
re +SrI + Nre

G , (90)

with

NG =
[
Wr(1)⊗NG(1) · · · Wr(F)⊗NG(F)

]
. (91)

A final assumption is that the true plant model can be written as (78), with (A,C) observable,
and (A,B) controllable [30]. Referring to the true linear model seems unfit when the algo-
rithm is used to identify a model for a nonlinear setup, since the actual setup will not follow
the structure in (78). However, the current goal is to retrieve a parametric model for the
Best Linear Approximation of the system. To the BLA, the nonlinear behavior of the setup
results in either bias contributions, changing the dynamic behavior of the BLA, or stochastic
contributions, acting like ordinary disturbing noise.

Therefore, with the model structure and the needed definitions introduced, the state-space
matrices from (90) can be estimated to proceed with the estimation of the linear model
matrices.

4.3.2.2 Estimate Or

In order to estimate Or , given ĜBLA and ĈBLA, choose parameter r > na and construct

Z =
[

Ire

Ĝre
BLA

]
, (92)

and

CN = Re

 F∑
k=1

Wr(k)WH
r (k)⊗

nu∑
i=1

Ĉi
BLA(k)

 , (93)

where Ĉi
BLA(k) denotes the ith diagonal partition of ĈBLA(k) [30].

Eliminate Ire from Z, by using a QR-decomposition of Z>

Z = R>Q>, (94)

resulting in

Z =
[

Ire

Ĝre
BLA

]
=

[
R>11 0
R>12 R>22

][
Q>1
Q>2

]
. (95)
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When R>11 is defined as the upper left block with dimension rnu × rnu , R>12 has dimension
rny × rnu , and R>22 with dimension rny × rny remains after the elimination of Ire from Z.

Now, remove the noise influence from (90) by calculating the singular value decomposition

(SVD) of C
− 1

2
N R>22 as

C
− 1

2
N R>22 = UΣV>, (96)

so Or can be estimated as

Ôr = C
1
2
NU[:,1:na], (97)

where U[:,i] denotes the ith column of U.

Using the estimation of Or , A and C can be estimated.

4.3.2.3 Estimate A and C

In order to estimate A and C from Ôr , utilize the shift property of Or [30] as

Â = Ô
†
r[1:(r−1)ny ,:]

Ôr[ny+1:rny ,:]

Ĉ = Ôr[1:ny ,:]

, (98)

where Ôr[j,:] denotes the jth row of Ôr , and Ô
†
r is the Moore-Penrose pseudoinverse of the full

column rank matrix Ôr .

Using Â and Ĉ, B and D can be estimated.

4.3.2.4 Estimate B and D

The final step towards a parametric linear model is the estimation of B and D. In order to
estimate B and D using the found Â and Ĉ, minimize the weighted least-squares (WLS) cost
function VL with respect to B and D. VL is given as

VL =
F∑
k=1

εHL (k)WLεL(k), (99)

with WL a weighting function, typically chosen as Ĉ−1
BLA(k), and the model fitting error εL is

defined as

εL(k) = GL(jωk)− ĜBLA(jωk). (100)

This results in the transfer function of the linear subspace model, constructed as

GL(jωk) = Ĉ(zkIna − Â)−1B̂ + D̂. (101)
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4.3.3 Nonlinear optimization of the linear model

Generally, the subspace method of [25] combined with the results from [35] applied in Sec-
tion 4.3.2 yields a reasonably low value of the cost function VL in (99). However, in practice,
VL depends strongly on the initially user-chosen subspace parameter r [30].

A logical next step to improve the linear model found in (101) is applying the subspace
algorithm for different values of r, and selecting the model corresponding to the lowest VL.
In order to improve the quality of the obtained linear model even further, minimize the cost
function in (99) with respect to all parameters (A,B,C,D) instead of only B and D.

Minimizing (99) with respect to all parameters (A,B,C,D) results in a nonlinear optimization
problem. Using the Levenberg-Marquardt algorithm [22][24], this problem can be solved.
This can be done using perturbations, but in order to accelerate the optimization, the Jaco-
bian of the model error εL(k) with respect to the model parameters is computed with

∂εL(k)
∂Aij

= vec
(
C(zkIna −A)−1Ina×naij (zkIna −A)−1B

)
∂εL(k)
∂Bij

= vec
(
C(zkIna −A)−1Ina×nuij

)
∂εL(k)
∂Cij

= vec
(
I
ny×na
ij (zkIna −A)−1B

)
∂εL(k)
∂Dij

= vec
(
I
ny×nu
ij

)
.

, (102)

where Aij denotes the ijth element of A. Furthermore, while carrying out the nonlinear
optimization, the unstable models estimated in Section 4.3.2 can be stabilized, for example
by using the methods described in [8].

In order to estimate the final model order n, the procedure of minimizing the cost function
in (99) is repeated for different model orders na. Subsequently, preferably the linear model
with the lowest validation fitting error is selected, while striving to maintain a minimal
amount of modeling parameters.

4.3.4 Estimation full nonlinear model

The final step in the identification procedure is to estimate the full nonlinear model{
x(t + 1) = Ax(t) + Bu(t) + Eζ(t)

y(t) = Cx(t) + Du(t) + Fη(t) + e(t)
, (103)

with e(t) the output noise. Input u(t) is assumed to be noiseless, meaning it is independent
of the output noise, and it is observed without errors.

All parameters of the full nonlinear model (A,B,C,D,E,F) are estimated by minimizing a
second weighted least-squares cost function VNL with respect to

θ =
[
vec(A) vec(B) vec(C) vec(D) vec(E) vec(F)

]>
, (104)

starting from the linear matrices acquired in 4.3.3. Zero initial values are considered for
nonlinear coefficients in (E,F). It is possible to minimize VNL only with respect to (E,F), and
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preserve the found linear model matrices. This, however, would limit the solution space
of the optimization problem, and therefore will most likely lead to worse results than for
minimizing with respect to all model parameters in (A,B,C,D,E,F).

Consider the WLS cost function

VNL(θ) =
F∑
k=1

εHNL(k,θ)WNL(k)εNL(k,θ), (105)

with WNL(k) ∈ Cny×ny a user-chosen frequency domain weighting function, typically chosen
equal to the inverse of the covariance matrix of the output Ĉ−1

y (k). If no covariance infor-
mation is available, a constant weighting can be employed. It is also possible to put more
emphasis on a certain frequency band of interest, by choosing WNL(k) properly [30].

In (105) the model error measure is equal to

εNL(k,θ) = YNL(k,θ)−Y(k), (106)

with YNL(k,θ) and Y(k) the DFT of the modeled output and the measured output respec-
tively.

Minimizing VNL is done through the Levenberg-Marquardt algorithm [22][24]. Therefore,
the Jacobian of the output with respect to the model parameters needs to be computed as

J(k,θ) =
∂ε(k,θ)
∂θ

=
∂YNL(k,θ)

∂θ
. (107)

Since the calculation of YNL(k,θ), and therefore J(k,θ) is impractical directly in the fre-
quency domain, this will be done in the time-domain, followed by a DFT. Expressions for
the Jacobian of the model equations from (103) can be found in Appendix B of [31].

Utilizing these expressions, all parameters of the full nonlinear model (A,B,C,D,E,F) are
estimated.

4.4 Conclusion

In order to identify the Peltier-based setup, a set of M experiments needs to be conducted,
accumulating P steady-state periods of input-output data. Using this data, a nonparametric
Best Linear Approximation ĜBLA and its sample covariance ĈBLA can be determined. Using
the BLA and its sample covariance, a linear model can be estimated using the frequency do-
main subspace algorithm from [25] while employing the sample covariance matrix instead
of the true covariance [35], by minimizing a weighted least-squares cost function with re-
spect to all model parameters. Afterwards, a nonlinear model can be estimated by again
minimizing a weighted least-squares cost function with respect to all model parameters,
starting from the linear matrices acquired in Section 4.3.3. Zero initial values are consid-
ered for nonlinear coefficients. This results in a model with the structure as defined in (103).
The methodology described in this chapter is used to construct a data-driven model of the
Peltier-based setup in Chapter 5.

30



5 Data-driven model: results
In this chapter, the Peltier-based setup, introduced in Chapter 3, is identified using the
methodology described in Chapter 4. Firstly, in Section 5.1 the designed excitation signal
for the identification is discussed. Secondly, in Section 5.2 the chosen model structure for
the Peltier-based setup is described. Section 5.3 then elaborates on the found nonparametric
BLA and the resulting estimated parametric linear models. Subsequently, Section 5.4 elabo-
rates on the found single-input-single-output (SISO) models for the Peltier-based setup with
only input nonlinearities. Section 5.5 continues with the found SISO models for the Peltier-
based setup when including state-dependency. Next, Section 5.6 and Section 5.7 elaborate
on the possibilities to include the ambient temperature (Tamb) in the modeling procedure
and show the resulting models that include Tamb. Concluding, in Section 5.8, it is discussed
whether the most optimal data-driven model is obtained to compare with the physics-based
model.

5.1 Excitation signal design

To be able to accurately capture the thermodynamics of the Peltier-based setup, the excita-
tion signal has to be designed properly. Following (62), the sampling frequency fs, number
of samples per period N , and amplitudes Uk of the multisine (MS) are chosen. Also, min-
imum frequency fmin and maximum frequency fmax are chosen to establish the frequency
range of interest for the identification.

The desired sampling frequency fsd for thermal systems is typically equal to 20 times the
bandwidth, and is determined by means of fsd = 20

τD ·2π = 2.27 Hz, with τD [s] the dominant
time-constant in the output of the Peltier-based setup, determined in Appendix B.1. In order
to capture non-linear harmonics for the data-driven modeling, the sampling frequency is
increased by a factor of approximately 4. It is possible to increase it even more, but for
now, this has no added value. The sampling frequency fs for the data-driven modeling
experiments therefore is chosen equal to 10 Hz.

To catch all thermodynamics of the setup appropriately, a desired minimum frequency equal
to fmind = 1

τS ·2π = 4.52 ·10−4 Hz is needed. Here, τS = 3.52 ·102 s is the slowest time-constant,
which is determined in Appendix B.2. The lower-frequent regions of thermal systems con-
tain the most rich thermodynamics. To also catch thermodynamics in the frequency range
between DC and the first pole, reduce fmind by a factor of approximately 3, resulting in a
fmin of 1.48 · 10−4 Hz. Since fmin influences the length of the experiment through

fmin =
fs
N
, (108)

this automatically comes down to a total number of samples per period N of 6.75 · 104.

The Peltier element has actuation rate limitations because high-frequent (≥1 Hz) switching
between cooling and heating could damage the Peltier element due to thermal expansion. To
determine fmax, firstly the cut-off frequency fc of the Peltier-based setup is determined. This
is the frequency at which energy flowing through the system starts to be attenuated rather
than to be passed through, and it is determined as fc = 1

τD ·2π = 1.14 · 10−1 Hz. However,
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during exploratory MS experiments with the setup for fmax equal to fc, it is observed that
the actuation rate limitations are violated, resulting in a broken Peltier. Therefore, taking a
safety factor of ±10 into account, the maximum frequency fmax is reduced to 1.02 · 10−2 Hz.
Since this is the first time the data-driven identification is used on the Peltier-based setup, it
is accepted that the frequency range from 1.02 · 10−2 Hz to 1.14 · 10−1 Hz is not measured.

To obtain a model that represents reality most adequately, it is desired to obtain a model
with a temperature range that covers most of its operating temperature region. As stated in
Section 2.1, a temperature range from 5 °C to 90 °C is relevant for this setup. To obtain a
desired amplitude spectrum, the amplitudes Uk are manually tuned.

In order to achieve the desired ∆T with the multisine excitation, several tuning steps are
taken. Note, there is no ideal amplitude spectrum to be designed.

1. Multiply the amplitudes of the lowest five frequencies with a factor five to obtain a
larger ∆T.

2. Multiply all amplitudes with a gain of 1.4 to obtain the needed ∆T, and a better signal-
to-noise ratio.

3. Create an offset in the MS by setting the DC gain to -0.25, since the temperature range
is not symmetrical around the ambient temperature.

As explained in Section 4.3.1, the periodic nature of the excitation signals enables to make
a distinction between the effect of the nonlinear distortions and the measurement noise on
the Best Linear Approximation [30]. Variations over P periods arise from the measurement
noise, and the variations overM realizations are caused by the combination of measurement
noise and stochastic nonlinear behavior.

To determine the amount of periods, and the amount of realizations to be measured, firstly,
the amount of periods necessary to reject transients is determined as one. Then, to average
out noise, at least two steady-state periods are needed. Since noise will also be averaged out
over different realizations, three steady-state periods are measured, resulting in a total of
four periods to measure per realization. This choice will be reviewed in Chapter 6.

Subsequently, to determine the effect of the nonlinear distortions, several realizations are
needed. With more realizations measured, the effect of the nonlinear distortions on the BLA
can be determined more accurately. However, measuring more realizations implies more
time spent on experiments. Making a reasonable trade-off between the overall length of the
experiments and the amount of realization measured, a total of 4 realizations is chosen. This
results, combined with four periods per realization, in a total length of 30 hours per Peltier
of data acquisition. This is quite lengthy to be applied in practice. This choice will also be
reviewed in Chapter 6.

Concluding, for both Peltier 1 (P1) and Peltier 2 (P2), independent experiment sets of four
MS realizations are conducted, each realization consisting of four periods of input-output
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data. Three out of four periods are steady-state, used to estimate the nonparametric BLA in
Section 5.3.

In Figure 13, the realizations of the experiment set used for the identification of Peltier
1 are given, both in the time domain and in the frequency domain. The realizations of
the experiment set for Peltier 2 are different, but have equivalent properties. The resulting
output of the four realizations in the time-domain for both Peltiers are provided in Figure
14.
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Figure 13: Four realizations of the input multisine current profile for Peltier 1 in both time
and frequency domain.
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Figure 14: Output for both Peltiers after exciting it with the designed multisine realizations.

5.2 Model structure settings and validation profiles

In Section 5.2.1, the choices made regarding the data-driven modeling structure as described
in (103) are discussed. Then, in Section 5.2.2 the validation profiles used to check the quality
of the linear and nonlinear models are introduced.
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5.2.1 Model structure settings for identification of the Peltier-based setup

As described in Section 2.1, the objective is to thermally control both points of interest on
the bottom plate of the setup provided in Figure 1. Identification of the Peltier-based setup
is done from Peltier input current Iin to output temperature at the point of interest TPOI, for
both Peltier 1 and 2.

In [39] it is assumed that little coupling is present in the Peltier-based setup. To prove the
minimal amount of coupling, the Relative Gain Array (RGA) is computed for the Peltier-
based setup. The RGA provides a measure of interactions [2], and is computed as

Λ(G) = G ◦
(
G−1,

)>
(109)

where ◦ is the elementwise Hadamard product of two matrices. Each element Λij provides a
scale invariant measure of the dependence of output j on input i. The elements of Λ are cal-
culated for every frequency in the frequency range of interest, fmin to fmax. The magnitudes
of the diagonal elements per frequency λii are depicted in Figure 15. With the maximum
magnitude of λii equal to 1.025, the coupling is proven to be very little.
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Figure 15: Magnitude of the diagonal elements of the RGA for the Peltier-based setup.

Since the amount of coupling in the system is very little, for simplicity reasons, both sides
of the Peltier-based setup are identified in a SISO way.

After inspecting the thermodynamics of the Peltiers in the physics-based model in (60), it is
observed that

1. The order of the nonlinearities in the state equations does not exceed two.

2. The Peltier-based setup contains no output nonlinearities.

Therefore, the maximum order of nonlinearities in the state equation for the data-driven
identification is set equal to two, and no output nonlinearities in the output equation are
considered.
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Furthermore, for the data-driven model, firstly, two different settings will be considered
regarding the amount of nonlinearities in the state equation. The first setting considers only
input nonlinearities up until the power two, meaning that the model structure from (103) is
reduced to {

x(t + 1) = Ax(t) + Bu(t) + Eu2(t)
y(t) = Cx(t) + Du(t) + e(t)

. (110)

The resulting models will be referred to as ‘U2-SISO’ models.

The second setting considers nonlinearities in both state and input up until the power two.
This means that the model structure from (103) is reduced to{

x(t + 1) = Ax(t) + Bu(t) + Eζ(t)
y = Cx(t) + Du(t) + e(t)

, (111)

with ζ(t) equal to all monomials in x(t) and u(t) of degree two, i.e. ζ(t) for a SISO-model of
model order two equals

ζ(t) =
[
x2

1 x1x2 x1u x2
2 x2u u2

]
. (112)

The resulting models will be referred to as ‘SD-SISO’ models.

5.2.2 Validation and test profiles

To check the quality of both the linear and the nonlinear model, both a validation and a test
profile are used. In order to maintain coherence between excitation and validation signals,
validation is done with a multisine. Then, in order to test if the model is fit for use in
handheld devices, like in [18], it is tested with a test profile, where the test profile exhibits a
realistic temperature reference for the POIs.

In order to validate the model properly, an independent data set is to be used. Therefore,
the estimation of the nonparametric BLA in Section 5.3.1 is done with the three out of four
realizations, denoted as Rtrain, resulting in the model having no knowledge of the data in
the realization used for validation, denoted as Rval. The final steady-state period of Rval is
chosen as the MS validation profile. The input and output of this MS validation profile are
denoted as ‘uval’ and ‘yval’ respectively.

In practice, the procedure to determine Rtrain is done parallel to that of determining the
model order n. To exemplify, this is clarified in the following steps.

1. Choose Rtrain as the first, second, and third MS realization out of four.

2. Estimate a nonparametric BLA following Section 4.3.1 with Rtrain.

3. Estimate and optimize a linear parametric model following Sections 4.3.2 and 4.3.3,
for different model orders na and subspace parameter r.

4. Save the settings of the models with the lowest validation fitting error for all model
orders na.
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5. Repeat steps 1-4 for Rtrain chosen as every other combination of three MS realizations.

6. Pick the model with the lowest validation fitting error, while striving to maintain a
minimal amount of modeling parameters.

In this way, Rtrain, and therewith Rval, uval, and yval are determined, as well as model order
n.

The test profile, denoted as ‘T-profile’, is designed to resemble a typical temperature profile
for the Peltier to follow when used in handheld devices like in [18], and covers most of the
operating temperature range. For this test profile, the input and output are denoted as ‘utest’
& ‘ytest’ respectively. In Figure 16, utest is given, and ytest for both P1 and P2 are provided in
Figure 17.
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Figure 16: utest for both Peltiers.
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Figure 17: ytest for both Peltiers.

Both the validation and the test profile will be used to qualify both the linear and the non-
linear model in terms of percentual error and maximum error. The percentual error for both
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profiles is defined as

e% =
std(e)
std(r)

· 100%, (113)

with e = r− y, where r is the measured output yval or ytest, and y is the modeled output for
either the MS validation profile or the T-profile. The maximum error is defined as

emax = max(|e|) . (114)

With the model structure settings chosen, the validation profile and test profile introduced,
and the excitation signal for the identification designed in Section 5.1, the data-driven iden-
tification procedure can continue by estimating the nonparametric BLA and linear model
matrices.

5.3 Best linear approximation & linear model estimation

In this section, the experimental data, obtained by exciting the system with the designed
multisines in Section 5.1, is used to estimate a nonparametric BLA in Section 5.3.1 following
the methods described in Section 4.3.1. Then, applying the methods from Sections 4.3.2 and
4.3.3, a parametric linear model is estimated in Section 5.3.2.

5.3.1 Best linear approximation: SISO

To eventually obtain the linear parametric model, firstly the nonparametric BLA is estimated
following Section 4.3.1. As described in Section 5.2.2, the estimation of the nonparametric
BLA is done with three out of four realizations, to ensure that the estimated model has
no knowledge of the data in the validation realization Rval. Using the methods described
in Section 4.3.1, the nonparametric best linear approximation ĜBLA, total sample variance
σ̂2
BLA due to stochastic nonlinear contributions and noise, sample variance due to stochastic

nonlinear contributions σ̂2
NL, and measurement noise sample variance σ̂2

n are estimated.
Figure 18 shows the estimated nonparametric BLA ĜBLA, its total sample variance σ̂2

BLA and
noise sample variance σ̂2

n for both Peltier 1 and 2.

For both P1 and P2, the found nonparametric BLA and its total sample variance will be used
to estimate a linear parametric model in Section 5.3.2.
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Figure 18: Nonparametric BLA, the total sample covariance due to stochastic nonlinear con-
tributions and noise, and noise sample covariance for both Peltiers.

5.3.2 Estimation and optimization of a parametric linear model

Using the nonparametric BLA and its sample variance, a parametric linear model is esti-
mated by minimizing the cost function VL in (99) with respect to all model parameters,
following Sections 4.3.2 and 4.3.3. To determine the final model order n, the procedure of
minimizing the cost function VL in (99) is repeated for different model orders na = [1,2,3,4].
Figures 19 and 20 show the cost function VL plotted against the subspace parameter r for
both subspace models and optimized models, for model order 1 (blue), 2 (orange), 3 (yellow),
and 4 (purple). Subspace models are plotted as dots, and optimized models as stars. Stabi-
lized subspace models are encircled in gray, while unstable optimized models are encircled
in color.
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Figure 19: Cost function for (optimized) subspace models for different n and r for Peltier
1. Model order 1 in blue, 2 in orange, 3 in yellow, and 4 in purple. Subspace models are
plotted as dots, and optimized models as stars. Stabilized subspace models are encircled in
gray, while unstable optimized models are encircled in color.
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Figure 20: Cost function for (optimized) subspace models for different n and r for Peltier
2. Model order 1 in blue, 2 in orange, 3 in yellow, and 4 in purple. Subspace models are
plotted as dots, and optimized models as stars. Stabilized subspace models are encircled in
gray, while unstable optimized models are encircled in color.

For the identification of the Peltier-based setup, only stable models are considered. By zoom-
ing in on the optimized models in the bottom of Figures 19 and 20, the final model orders
can be determined. These zoomed-in parts of Figures 19 and 20 are depicted in Figures 21
and 22.
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Figure 21: Zoomed in bottom part of Figure 19, to visualize the optimized models for Peltier
1 more optimal.
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Figure 22: Zoomed in bottom part of Figure 20, to visualize the optimized models for Peltier
2 more optimal.

Preferably, the model with the lowest VL is selected, while striving to maintain a minimal
amount of modeling parameters. Also, because of the symmetry in the setup, it is desired to
maintain the same model order for both Peltier 1 and 2. Figure 21 shows that the lowest cost
function for Peltier 1 is achieved for n = 4, and r = 13. However, this model is unstable, and
therefore not desired to use for further model identification. The decrease in VL for the best
stable model of order n = 4 with respect to the best stable model of order n = 3 is minimal.
Therefore, the final model order for Peltier 1 is determined as n =3. From Figure 22, the
lowest cost function VL for Peltier 2 is determined, while maintaining the same model order
as for Peltier 1. The lowest cost function VL is then achieved for n = 3, and r = 8. The
final model order for Peltier 2 is therefore also determined as n = 3. In hindsight, if the
identification for Peltier 2 had been done prior to that of Peltier 1, a model order of 4 could
also have been considered. For now, this has not been done.

The resulting estimated parametric linear models for both Peltier 1 and 2 are given in Figure
23, where GP 1 denotes the linear model for Peltier 1 and GP 2 denotes the linear model for
Peltier 2.
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Figure 23: Resulting parametric BLA for both Peltiers: SISO.

The difference between the estimated parametric linear models for both Peltiers is probably
due to the production process of the Peltier elements. The difference in the amount of solder
used, and the difference in the size of pellets is considerable, as explained in Section 2.1.
Table 2 gives an overview of the poles of the estimated linear models for both P1 and P2,
with the corresponding natural frequencies ωn and damping ξ.

Pole # 1 2 3
ωn [Hz] 8.8·10−3 4.07·10−2 8.84·10−2

ξ [-] 1 1 1

(a) Peltier 1.

Pole # 1 2 3
ωn [Hz] 1.58·10−2 4.6·10−2 4.6·10−2

ξ [-] 1 0.1241 0.1241

(b) Peltier 2.

Table 2: Natural frequencies and damping of the poles of the resulting parametric models
of both Peltier 1 and Peltier 2.

For Peltier 1, a linear model is estimated with three real poles, while for Peltier 2, a linear
model with one real pole and a complex pole pair is estimated. For a linear open-loop
thermal system, only stable real poles are expected. Since the setup is nonlinear, as well as
an amplifier and current control are applied, this expectation is not necessarily true for the
Peltier-based setup. What it does demonstrate is that the data-driven identification method
does not care about the symmetry in the setup, or consider the underlying physics, but solely
wants to catch the IO-thermodynamics as precisely as possible. Also, it might show that the
assumed symmetry of the setup is not necessarily true. This could mean that the data-driven
approach of identifying two separate SISO models leads to more accurate results than the
method employed for the physics-based model, where the thermal resistances of one side
of the setup are estimated, and the thermal resistances of the other side are assumed to be
equal, according to the symmetry.

Using the found linear model matrices as starting point, the full nonlinear model will be
estimated in Section 5.4.
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5.4 Resulting U2-SISO nonlinear models

To estimate a full nonlinear model, the cost function VNL from (105) will be minimized with
respect to all model parameters, following Section 4.3.4 and considering the model structure
defined in (110) as

{
x(t + 1) = Ax(t) + Bu(t) + Eu2(t)

y(t) = Cx(t) + Du(t) + e(t)
.

The linear model matrices obtained in Section 5.3 are used as a starting point for (A,B,C,D),
and zero initial values are considered for nonlinear coefficients in E.

The resulting U2-SISO models for both Peltiers are validated on the MS validation profile
as defined in Section 5.2.2. In Figure 24, Yval, the DFT of the measured output for the
validation profile, is given in grey. Furthermore, Yvallin

, the DFT of the linear model output
for the validation profile, is given in blue, and YvalNL

, the DFT of the nonlinear U2-SISO
model output for the validation profile, is provided in green. The DFT of the linear error,
εL, is equal to

εL = Yval −YL, (115)

and depicted in red, while the DFT of the nonlinear error, εNL, is equal to

εNL = Yval −YNL, (116)

and given in purple. Finally, the sample noise variance σ̂2
n is provided in black.
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Figure 24: Frequency validation for both Peltiers: U2-SISO.

From Figure 24, it is observed that, for almost all frequencies excited, the nonlinear fit for
the MS validation profile YvalNL

outperforms the linear fit Yvallin
. To analyze the output of

both the linear and the nonlinear model, as well as analyze the modeling error for both
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models in more detail, the measured output and modeled output are compared in the time
domain. Figure 25 shows yval, the measured output for the validation profile, in grey, yvallin

,
the linear model output for the validation profile, in blue, and yvalNL

, the nonlinear U2-SISO
model output for the validation profile, in green. In Figure 26, the measured output for the
validation profile, yval, is provided in grey, the linear error, evallin

, equal to

evallin
= yval − yvallin

, (117)

is depicted in red, and the nonlinear error, evalNL
, equal to

evalNL
= yval − yvalNL

, (118)

is depicted in purple.
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Figure 25: Time validation MS for both Peltiers: U2-SISO
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Figure 26: Output and errors for MS validation for both Peltiers: U2-SISO.

From Figures 25 and 26, it is clearly visible that the nonlinear error has become smaller than
the linear error while having a smaller mean. However, a DC-like term remains, resulting in
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the nonlinear fit yvalNL
in Figure 25 to only converge slightly towards the validation profile

yval.

The DC-like term is explained by revisiting the thermodynamics of the physics-based model.
For the physics-based model, both the Peltier input current and the ambient temperature
Tamb are inputs to the system, with Tamb a non-controllable input. The data-driven model
has no knowledge of Tamb, but it still affects the output data on which its identification is
done, which results in the DC-like term for both validation and test profile.

Since the ambient temperature is measured during all experiments using a thermocouple, it
is possible to incorporate it in the model. Simply adding Tamb in the output equation of (110)
does not work, since a fluctuation in ambient temperature during experiments would be
directly visible in the output, which is not desired nor realistic. Also, that way, the ambient
temperature is incorporated twice, since although no knowledge of Tamb is present in the
model structure, it still influenced the output of the experiments.

To incorporate the ambient temperature properly in the model, three different solutions are
investigated, and the results are presented in the following sections. Firstly, in Section 5.5
the resulting SD-SISO models are presented, for which compensation for Tamb is done by
including state-dependency, therefore following the model structure in (111). Secondly, in
Section 5.6, the ambient temperature is included by identifying a nonlinear model around
the mean of Tamb, after which the mean of Tamb is added in the output equation. This is
done following the model structure from (110). The found models are referred to as ‘SD-
DC-SISO’ models. Finally, in Section 5.7.1, the ambient temperature is incorporated by ex-
ecuting a multiple-input-single-output (MISO) identification, where Tamb is considered as
input u2. Firstly, a nonparametric linear model from Tamb to TPOI is estimated, using a sepa-
rate experiment on the Peltier-based setup without current input. The found nonparametric
BLA then is used to filter the measured ambient temperature during the MS experiments.
Then, the filtered Tamb is deducted from the original output TPOI, after which a MISO para-
metric linear model is estimated. Finally, a full nonlinear model is estimated, extending the
model structure in (111) to the MISO case, but only implementing all monomials in x(t) and
u1(t) of degree two, based on the physics-based model. Apart from evaluating the models in
terms of percentual and maximum error, the practicability of the models will be assessed in
terms of the robustness with respect to Tamb.

5.5 Resulting SD-SISO models

The full nonlinear model estimation procedure for the SD-SISO models for both Peltiers is
done by minimizing cost function VNL from (105) with respect to all model parameters,
following Section 4.3.4, and considering the model structure defined in (111) as{

x(t + 1) = Ax(t) + Bu(t) + Eζ(t)
y = Cx(t) + Du(t) + e(t)

.

The BLA and estimated parametric linear model matrices are identical to the ones deter-
mined in Section 5.3 for the U2-SISO models. Therefore, these linear model matrices are
used as a starting point for (A,B,C,D). Zero initial values are considered for nonlinear coef-
ficients in E.
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The resulting SD-SISO models for both Peltiers are validated on the MS validation profile
as defined in Section 5.2.2. In Figure 27, Yval, the DFT of the measured output for the
validation profile, is given in grey. Furthermore, Yvallin

, the DFT of the linear model output
for the validation profile, is given in blue, and YvalNL

, the DFT of the nonlinear SD-SISO
model output for the validation profile, is provided in green. The DFT of the linear error,
εL, is equal to

εL = Yval −YL, (119)

and depicted in red, while the DFT of the nonlinear error, εNL, is equal to

εNL = Yval −YNL, (120)

and given in purple. Finally, the sample noise variance σ̂2
n is provided in black.
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Figure 27: Frequency validation for both Peltiers: SD-SISO.

By considering the model structure defined in (111), more nonlinear terms are considered in
the state equation with respect to the U2-SISO models. Figure 27 shows that the nonlinear fit
for the MS validation profile YvalNL

outperforms the linear fit Yvallin
over the whole frequency

range. For the lowest frequencies, εNL even approaches the magnitude of the noise sample
variance, implying that the remaining error is purely due to measurement noise.

Again, to analyze the output of both the linear and the nonlinear model, as well as ana-
lyze the modeling error for both models in more detail, the measured output and modeled
output are compared in the time domain. Figure 28 shows yval, the measured output for
the validation profile, in grey, yvallin

, the linear model output for the validation profile, in
blue, and yvalNL

, the nonlinear SD-SISO model output for the validation profile, in green. In
Figure 29, the nonlinear error, evalNL

, equal to

evalNL
= yval − yvalNL

, (121)
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is depicted in purple.
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Figure 28: Time validation MS for both Peltiers: SD-SISO.
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Figure 29: NL error MS validation profile for both Peltiers: SD-SISO.

From Figure 29, it is clearly visible that the DC-like residue has shrunk, therefore decreasing
the modeling error. This is also visible when the model is subjected to the test profile. Figure
30 shows ytest, the measured output for the test profile, in grey, ytestlin

, the linear model
output for the test profile, in blue, and ytestNL

, the nonlinear SD-SISO model output for the
test profile, in green. In Figure 31, the nonlinear error, etestNL

, equal to

etestNL
= ytest − ytestNL

, (122)

is provided in purple.
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Figure 30: Output for test profile for both Peltiers: SD-SISO.
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Figure 31: NL error test profile for both Peltiers: SD-SISO.

The spikes in the error profile are caused by the feedthrough term in (111). A feedthrough
term in the model structure of the Peltier-based setup is odd, but it is considered in the
model structure for this research because of modeling freedom. The feedthrough term for
the data-driven model denotes that when a current is put into the system, it is directly visible
in the output. A current input for the Peltier-based setup causes a heatload, which is never
directly visible in the output, since that would mean that it is heating a state without any
thermal mass. Therefore, for future research it is recommended to adapt the model structure
for the identification of a thermal system to one without a feedthrough term. Furthermore,
the spikes can be prevented by lowpass-filtering the input trajectories, since the model is
not trained on any step-like profiles.

The quality of the final SD-SISO models in terms of percentual error and maximum error
for P1 and P2 is given in Table 3 and 4. The maximum error for Peltier 1 has decreased to
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0.86 °C for the validation MS profile, and the maximum error for Peltier 2 has decreased to
1.02 °C for the validation MS profile. For the test profile, the maximum error for Peltier 1
has decreased to 1.77 °C and for Peltier 2 to 2.69 °C. During transient, the errors for the test
profile shows peaks up to 1.72 °C for Peltier 1 and 2.53 °C for Peltier 2.

P1 MS validation profile Test profile
% Max [°C] % Max [°C]

Linear model 15.77 36.76 24.52 37.06
SD-SISO 1.26 0.86 3.06 1.77

Table 3: Error margins for SD-SISO model for P1.

P2 MS validation profile Test profile
% Max [°C] % Max [°C]

Linear model 18.00 18.10 25.46 15.71
SD-SISO 1.35 1.02 3.75 2.69

Table 4: Error margins for SD-SISO model for P2.

In the SD-SISO models, compensation for Tamb is successfully done by including state-
dependency. Because of the modeling freedom, the model is able to overcome the DC-like
residue found for the U2-SISO models. However, since the model has no knowledge on
Tamb, it is only valid for a certain ambient temperature, and therefore not robust to changes
in Tamb. A rise or drop in ambient temperature during validation experiments with respect
to the MS experiments results in a higher modeling error, since the model compensates for
the effect of the ambient temperature it was trained on. It is therefore only a suited modeling
approach for applications with little to no fluctuations in ambient temperature.

5.6 Resulting SD-DC-SISO models

To overcome the DC-like residue for the found U2-SISO models, the ambient temperature is
included for the SD-DC-SISO models by identifying a nonlinear model around the mean of
Tamb, after which the mean of Tamb is added in the output equation. Also, whereas until now
the DC gain was omitted from the identification process, it will be included for this method,
as most influence from Tamb is focussed around DC. This results in the model structure from
(111) to adapt to {

x(t + 1) = Ax(t) + Bu(t) + Eζ(t)
y(t) = T amb + Cx(t) + Du(t) + e(t)

, (123)

with Tamb the mean of Tamb. Since the ambient temperature differs per experiment, it is
applied as follows.

1. Determine the mean of the ambient temperature separately for all MS realizations
TambMS

and deduct it from the corresponding output yPOI.
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2. Ascertain Rval, following Section 5.2.2, therewith determining the mean of the ambient
temperature for the MS validation profile Tambval

.

3. Determine the mean of the ambient temperature for the test profile Tambtest
.

4. Follow the procedure described in Section 4.3 to identify the nonlinear model consid-
ering the model structure defined in (123).

5. Validate the identified PNLSS model on uval, and add Tambval
in the output equation.

6. Subject the identified PNLSS model to utest, and add Tambtest
in the output equation.

Again, the resulting SD-DC-SISO models for both Peltiers are validated on the MS validation
profile as defined in Section 5.2.2. In Figure 32, Yval, the DFT of the measured output for the
validation profile, is given in grey. Furthermore, Yvallin

, the DFT of the linear model output
for the validation profile, is given in blue, and YvalNL

, the DFT of the nonlinear SD-SISO
model output for the validation profile, is provided in green. The DFT of the linear error,
εL, is equal to

εL = Yval −YL, (124)

and depicted in red, while the DFT of the nonlinear error, εNL, is equal to

εNL = Yval −YNL, (125)

and given in purple. Finally, the sample noise variance σ̂2
n is provided in black.
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Figure 32: Frequency validation for both Peltiers: SD-DC-SISO.

By considering the model structure defined in (123), more nonlinear terms are considered
in the state equation with respect to the U2-SISO models. Also, by modeling it around the
mean of the ambient temperature measured during experiments, the model does not have to
compensate for it in the output. From Figure 32, it can be observed that the nonlinear fit for
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the MS validation profile YvalNL
outperforms the linear fit Yvallin

over the whole frequency
range.

Again, to analyze the output of both the linear and the nonlinear model, as well as analyze
the modeling error for both models in more detail, the measured output and modeled out-
put are compared in the time domain. Figure 33 shows yval, the measured output for the
validation profile, in grey, yvallin

, the linear model output for the validation profile, in blue,
and yvalNL

, the nonlinear SD-DC-SISO model output for the validation profile, in green. In
Figure 34, the nonlinear error, evalNL

, equal to

evalNL
= yval − yvalNL

, (126)

is depicted in purple.
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Figure 33: Time validation MS for both Peltiers: SD-DC-SISO.
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Figure 34: NL error MS validation profile for both Peltiers: SD-DC-SISO.

From Figure 34, it is clearly visible that the DC-like residue has shrunk when compared
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to the U2-SISO models, therefore decreasing the modeling error. However, the maximum
error has increased with respect to the SD-SISO case. This is also visible when the model is
subjected to the test profile. Figure 35 shows ytest, the measured output for the test profile,
in grey, ytestlin

, the linear model output for the test profile, in blue, and ytestNL
, the nonlinear

SD-DC-SISO model output for the test profile, in green. In Figure 36, the nonlinear error,
etestNL

, equal to

etestNL
= ytest − ytestNL

, (127)

is provided in purple.
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Figure 35: Output for test profile for both Peltiers: SD-DC-SISO.
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Figure 36: NL error test profile for both Peltiers: SD-DC-SISO.

As before, the spikes in the error profile are caused by the feedthrough term in (123). See
the previous section for more details. The quality of the final SD-DC-SISO models in terms
of percentual error and maximum error for P1 and P2 is given in Tables 5 and 6.
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P1 MS validation profile Test profile
% Max [°C] % Max [°C]

Linear model 21.23 17.90 27.59 15.41
SD-DC-SISO 2.12 2.44 3.71 3.04

Table 5: Error margins for SD-DC-SISO model for P1.

P2 MS validation profile Test profile
% Max [°C] % Max [°C]

Linear model 17.86 17.52 25.46 14.71
SD-DC-SISO 1.45 1.53 3.51 2.39

Table 6: Error margins for SD-DC-SISO model for P2.

The maximum error for Peltier 1 has decreased to 2.44 °C for the validation MS profile, and
the maximum error for Peltier 2 has decreased to 1.53 °C for the validation MS profile. For
the test profile, the maximum error for Peltier 1 has decreased to 3.04 °C and for Peltier 2 to
2.39 °C. During transient, the errors for the test profile shows peaks up to 1.43 °C for Peltier
1 and 2.19 °C for Peltier 2.

Compensation for Tamb is successfully done by identifying models around the mean of the
ambient temperature. In this way, the models are able to compensate for the DC-like residue
found for the U2-SISO models. When compared to the SD-SISO models, this results for P1
in an increase in maximum error for the MS validation profile by factor 2.86, and an increase
in maximum error for the T-profile validation by factor 1.72. For P2 this results in an in-
crease in maximum error for the MS validation profile by factor 1.49, while the maximum
error for the T-profile validation decreases by factor 0.89. In comparison to the SD-SISO
models, SD-DC-SISO models have more but limited knowledge on Tamb, since these only
incorporate its mean. The SD-DC-SISO models are therefore only valid for a certain range
of ambient temperatures, and therefore little robust to changes in Tamb. A rise or drop in
ambient temperature during experiments is averaged out, so there is no direct influence on
the output. However, if these models are used for an experimental setup in a totally different
environment, with an ambient temperature that is 5 °C higher compared to Tamb the model
is validated on, it would not work properly. It is therefore a suited modeling approach for
applications with little fluctuation in ambient temperature. The accepted fluctuation for the
modeling method to be proper is determined by the magnitude of error that the user allows
the model to obtain.

5.7 Increasing robustness with respect to the ambient temperature

For the methods used so far to be useful for applications with more fluctuation in ambi-
ent temperature, more robustness with respect to the ambient temperature is needed. To
achieve this, a MISO identification is executed, where Tamb is considered as input u2. The
procedure and the resulting SD-MISO models are explained in Section 5.7.1. Since the am-
bient temperature is non-controllable, the validation profile and test profile are measured
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at a certain ambient temperature, and are not easily adapted. In order to check the robust-
ness of the SD-MISO modeling procedure with respect to different ambient temperature,
offline experiments are done. These offline experiments are simulations, performed with the
physics-based model of [39], and the procedure will be elaborated on in Section 5.7.2.

5.7.1 Resulting SD-MISO models

To arrive at the final SD-MISO models, firstly, a nonparametric linear model from Tamb
to TPOI is estimated, using a separate set of experiments. In these experiments the ambi-
ent temperature and the temperature at the POI are measured, without exciting the Peltier
element. The nonparametric BLA from Tamb to TPOI is estimated following the methods
described in 4.3.1 for both Peltier 1 and 2, and given in Figure 37. To check whether the
estimated nonparametric BLA is properly conducted, it should look like a first order system
and have a gain of 1 (= 0 dB) around DC, since when no current is applied, the setup will
eventually obtain the same temperature as Tamb. Note that the DC term is not visible in
Figure 37, since it is plotted on a logarithmic scale. The DC gain for the estimated nonpara-
metric BLAs for the ambient temperature to the output for Peltier 1 and Peltier 2 are off by
1.82·10−2 % and 2.76·10−2 % respectively, which is an accepted error margin.
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Figure 37: Nonparametric BLA and its sample covariance for Tamb to TPOI for both Peltiers:
SD-MISO.

The found nonparametric BLA from Tamb to TPOI now is used to filter the measured ambi-
ent temperature during the MS experiments. Then, the filtered Tamb is deducted from the
original output TPOI.

To determine the model order n, the procedure of minimizing the cost function VL in (99)
is repeated for different model orders na = [1,2,3,4]. Since the experiments are done sepa-
rately, the sample variance σ̂2

BLA is not used as a weighting in (99) for the estimation of the
linear models.

Figures 38 and 39 show the cost function VL plotted against the subspace parameter r for
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both subspace models and optimized models, for model order 1 (blue), 2 (orange), 3 (yellow),
and 4 (purple). Subspace models are plotted as dots, and optimized models as stars. Stabi-
lized subspace models are encircled in gray, while unstable optimized models are encircled
in color.
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Figure 38: Cost function for (optimized) MISO subspace models for different n and r for
Peltier 1. Model order 1 in blue, 2 in orange, 3 in yellow, and 4 in purple. Subspace models
are plotted as dots, and optimized models as stars. Stabilized subspace models are encircled
in gray, while unstable optimized models are encircled in color.
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Figure 39: Cost function for (optimized) MISO subspace models for different n and r for
Peltier 2. Model order 1 in blue, 2 in orange, 3 in yellow, and 4 in purple. Subspace models
are plotted as dots, and optimized models as stars. Stabilized subspace models are encircled
in gray, while unstable optimized models are encircled in color.
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By zooming in on the optimized models in the bottom of Figures 38 and 39, the final model
orders can be determined. These zoomed-in parts of Figures 38 and 39 are depicted in
Figures 40 and 41.
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Figure 40: Zoomed in bottom part of Figure 38, to visualize the optimized models for Peltier
1 more optimal.
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Figure 41: Zoomed in bottom part of Figure 39, to visualize the optimized models for Peltier
2 more optimal.

Again, preferably, the model with the lowest VL is selected, while striving to maintain a
minimal amount of modeling parameters. Also, because of the symmetry of the setup, it is
desired to maintain the same model order for both Peltier 1 and 2. The decrease in VL for
the best stable model of order n = 4 with respect to the best stable model of order n = 3 is
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minimal for both Peltiers. Taking this into account, from Figure 40 and 41, the final model
order for the SD-MISO model for both Peltier 1 and 2 is determined as n =3.

Next, a MISO parametric linear model is estimated by minimizing the cost function VL in
(99) with respect to all model parameters, following Sections 4.3.2 and 4.3.3.

The resulting estimated linear parametric models for both Peltiers can be found in Figure
42. G11 denotes the estimated parametric linear model from Iin to TPOI and G21 denotes
the estimated parametric linear model from Tamb to TPOI. Note that the estimated DC term
is not visible in this plot, since it plotted on a logarithmic scale. The found linear model
matrices are used as starting point for the nonlinear model estimation. Again, the difference
between the estimated parametric linear MISO models for both Peltiers is probably due to
the production process of the Peltier elements as explained in Section 2.1.
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Figure 42: Resulting parametric linear BLA for both Peltiers: SD-MISO.

Finally, a full nonlinear model is estimated, extending the model structure in (111) to the
MISO case. Analyzing the physics-based model from [39] clarifies that no nonlinear terms
including the ambient temperature are present. Therefore, for the SD-MISO models, only
the monomials in x(t) and u1(t) of degree two are included in ζ(t). This results in the model
structure from (111) to adapt to{

x(t + 1) = Ax(t) + Bu(t) + Eζ(t)
y(t) = Cx(t) + Du(t) + e(t)

, (128)

with ζ(t) equal to the monomials in x(t) and u1(t) of degree two, as

ζ(t) =
[
x2

1 x1x2 x1x3 x1u1 x2
2 x2x3 x2u1 x2

3 x3u1 u2
1

]
. (129)

The resulting SD-MISO models for both Peltiers are validated on the MS validation profile
as defined in Section 5.2.2. Since the model now has two inputs, the validation profile is
extended with u2val

, being the ambient temperature during the MS validation profile. In
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Figure 43, Yval, the DFT of the measured output for the validation profile, is given in grey.
Furthermore, Yvallin

, the DFT of the linear model output for the validation profile, is given in
blue, and YvalNL

, the DFT of the nonlinear SD-SISO model output for the validation profile,
is provided in green. The DFT of the linear error, εL, is equal to

εL = Yval −YL, (130)

and depicted in red, while the DFT of the nonlinear error, εNL, is equal to

εNL = Yval −YNL, (131)

and given in purple. Finally, the sample noise variance σ̂2
n is provided in black.
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Figure 43: Frequency validation for both Peltiers: SD-MISO.

By considering the model structure defined in (128), a SD-MISO model is estimated, where
Tamb is an input. In this way, the influence of the ambient temperature is included over the
whole frequency range, instead of purely by a DC term. In Figure 43, it can be observed that
the nonlinear fit for the MS validation profile YvalNL

outperforms the linear fit Yvallin
over the

whole frequency range.

Again, to analyze the output of both the linear and the nonlinear model, as well as ana-
lyze the modeling error for both models in more detail, the measured output and modeled
output are compared in the time domain. Figure 44 shows yval, the measured output for
the validation profile, in grey, yvallin

, the linear model output for the validation profile, in
blue, and yvalNL

, the nonlinear SD-MISO model output for the validation profile, in green.
In Figure 45, the nonlinear error, evalNL

, equal to

evalNL
= yval − yvalNL

, (132)

is provided in purple.
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Figure 44: Time validation MS for both Peltiers: SD-MISO.
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Figure 45: NL error MS validation profile for both Peltiers: SD-MISO.

From Figure 45, it is clearly visible that the DC-like residue has shrunk, therefore decreasing
the modeling error. This is also visible when the model is subjected to the test profile. Figure
46 shows ytest, the measured output for the test profile, in grey, ytestlin

, the linear model
output for the test profile, in blue, and ytestNL

, the nonlinear SD-MISO model output for the
test profile, in green. In Figure 47, the nonlinear error, etestNL

, equal to

etestNL
= ytest − ytestNL

, (133)

is depicted in purple.
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Figure 46: Output for test profile for both Peltiers: SD-MISO.
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Figure 47: NL error test profile for both Peltiers: SD-MISO.

As before, the spikes in the error profile are caused by the feedthrough term in (128). See
Section 5.5 for more details. The quality of the final SD-MISO models for P1 and P2 are
given in Table 7 and 8 in terms of percentual error and maximum error. The maximum
error for Peltier 1 has decreased to 0.63 °C for the validation MS profile, and the maximum
error for Peltier 2 has decreased to 1.60 °C for the validation MS profile. For the test pro-
file, the maximum error for Peltier 1 has decreased to 1.69 °C and for Peltier 2 to 1.20 °C.
During transient, the errors for the test profile shows a peaks up to 0.93 °C for Peltier 2.
The maximum error for Peltier 1 is not because of these peaks during steep current changes.
The differences between the estimated data-driven models for both Peltiers, and the error
margins obtained, are probably caused by the production process of the Peltier elements.
The difference in the amount of solder used, and the difference in the size of pellets is con-
siderable, as explained in Section 2.1.
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P1 MS validation profile Test profile
% Max [°C] % Max [°C]

Linear model 15.90 24.03 25.57 23.34
SD-MISO 0.78 0.63 2.80 1.69

Table 7: Error margins for SD-MISO model for P1.

P2 MS validation profile Test profile
% Max [°C] % Max [°C]

Linear model 21.71 18.62 23.64 11.38
SD-MISO 2.09 1.60 2.76 1.20

Table 8: Error margins for SD-MISO model for P2.

Compensation for Tamb is successfully done by identifying a separate nonparametric model
from Tamb to TPOI. Then, the found nonparametric BLA from Tamb to TPOI is used to filter
the measured ambient temperature during the MS experiments. Next, the filtered Tamb is de-
ducted from the original output TPOI, after which a MISO parametric identification is done.
The model has proper knowledge of Tamb, and is therefore considered robust and a suited
modeling approach for applications encountering fluctuation in ambient temperature.

Since the ambient temperature is non-controllable, the validation profile and test profile are
measured at certain ambient temperatures. Using the current setup, Tamb cannot easily be
adapted during experiments, although this would be useful to check the validity of the final
SD-MISO models for different ambient temperatures. This will therefore be done by per-
forming offline experiments with the physics-based model of [39]. The results are discussed
in Section 5.7.2.

5.7.2 Validation method through offline experiments

To check the validity of the methods used to obtain the final SD-MISO models in terms of
its robustness with respect to different ambient temperatures, a set of offline experiments
is performed. These offline experiments are simulations, performed with the physics-based
model of [39]. The methods used are identical to those described in Section 5.7.1. How-
ever, because the physics-based model was designed with a Peltier of type TEC-[39], and
therefore has different properties, a different set of multisines is designed and used for the
identification.

Using these offline experiments, a MISO Polynomial NonLinear State Space (PNLSS) model
is identified, denoted as the SD-MISO-OFFLINE model. After identification, the SD-MISO-
OFFLINE model firstly is validated on a MS validation profile. Then, it is subjected to four
different test trajectories, to check its robustness with respect to the ambient temperature.
These test trajectories all have identical current input profiles, equal to that of the test pro-
file as used before, while performed at different ambient temperature. The first test profile
is an offline experiment conducted at a Tamb profile similar to the one measured during the
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validation experiment in Section 5.7.1. The second, third, and fourth test are done with the
same ambient temperature profile but now increased by +5 °C, -5 °C, and +10 °C respec-
tively.

The resulting SD-MISO-OFFLINE model is validated on the MS validation profile as defined
in Section 5.2.2. The validation profile is extended with u2val

, being the ambient temperature
during the validation profile. In Figure 48a, Yval, the DFT of the measured output for the
validation profile, is given in grey. Furthermore, Yvallin

, the DFT of the linear model output
for the validation profile, is given in blue, and YvalNL

, the DFT of the nonlinear SD-MISO-
OFFLINE model output for the validation profile, is provided in green. The DFT of the
linear error, εL, is equal to

εL = Yval −YL, (134)

and depicted in red, while the DFT of the nonlinear error, εNL, is equal to

εNL = Yval −YNL, (135)

and given in purple. Figure 48b shows yval,MS, the measured output for the validation pro-
file, in grey, yvalMSlin

, the linear model output for the validation profile, in blue, and yvalMSNL
,

the nonlinear SD-MISO-OFFLINE model output for the validation profile, in green. In Fig-
ure 49, the nonlinear error, evalNL

, equal to

evalNL
= yval − yvalNL

, (136)

is provided in purple.
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Figure 48: Frequency validation and time validation on MS validation profile for Peltier 1:
SD-MISO-OFFLINE.
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Figure 49: NL error for MS validation profile for Peltier 1: SD-MISO-OFFLINE.

It is clear from Figure 49 that the resulting error for the MS validation profile is very small.
To prove the robustness with respect to the ambient temperature, and therewith the correct-
ness of the method used for implementing the ambient temperature in the SD-MISO models,
the found nonlinear model is subjected to the four test profiles.

Figure 50a shows ytest1, the measured output for the first test profile, in grey, ytest1lin
, the

linear model output for the first test profile, in blue, and ytest1NL
, the nonlinear SD-MISO-

OFFLINE model output for the first test profile, in green. Figures 50b, 51a, and 51b show
the measured output, linear model output and SD-MISO-OFFLINE model output for re-
spectively the second, third and fourth test profile. The nonlinear error for the first test
profile, etest1, equal to

etest1 = ytest1 − ytest1NL
, (137)

is depicted in Figure 52a. Figures 52b, 53a, and 53b depict the nonlinear error for respec-
tively the second, third and fourth test profile.
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Figure 50: Measured output (grey), linear model output (blue), and nonlinear SD-MISO-
OFFLINE model output (green) for test profiles #1 and #2.
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Figure 51: Measured output (grey), linear model output (blue), and nonlinear SD-MISO-
OFFLINE model output (green) for test profiles #3 and #4.
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Figure 52: Nonlinear error for the SD-MISO-OFFLINE model for test profiles #1 and #2.
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Figure 53: Nonlinear error for the SD-MISO-OFFLINE model for test profiles #3 and #4.
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The quality of the final offline SD-MISO-OFFLINE models in terms of percentual error and
maximum error is given in Tables 9 and 10. As can be seen, for all validation profiles, the
highest maximum error for all validation profiles is 0.73 °C. This is for validation profile #4,
of which the ambient temperature is 10 °C off compared to the initial MS offline experiments.
Therefore, it can be concluded that the method used to obtain the SD-MISO model in Section
5.7.1 results in a model that is robust with respect to changes in ambient temperature. What
strikes from Tables 9 and 10 is that the SD-MISO-OFFLINE model manages an increase in
ambient temperature of 10 °C for the validation profile more optimal than a decrease of 5
°C in ambient temperature. This might be the result of the focus on higher temperatures
in the data acquired for identification, or due to the fact that Peltier elements become more
efficient for higher temperatures.

P1 MS Test #1 Test #2
% Max [°C] % Max [°C] % Max [°C]

Linear model 13.26 13.99 16.51 12.86 17.51 15.45
SD-MISO-OFFLINE 0.22 0.20 0.24 0.24 0.29 0.30

Table 9: Error margins for SD-MISO offline model: MS, validation profile #1 and #2.

P1 Test #3 Test #4
% Max [°C] % Max [°C]

Linear model 15.81 10.31 18.74 18.06
SD-MISO-OFFLINE 0.62 0.52 0.63 0.73

Table 10: Error margins for SD-MISO offline model: validation profile #3 and #4.

If it is desired to research the effect of Tamb more thoroughly, the setup could be adapted to
obtain control over the ambient temperature, and multisine excitations could be designed
for the ambient temperature as well. That way, a true MISO identification could be done.
This, however, is out of scope for the current research and is left as a recommendation for
future research.

5.8 Conclusion

In this chapter, several data-driven models of the Peltier-based setup, as introduced in Sec-
tion 2.1, have been presented. After carefully designing the multisine excitation signal, and
performing the experiments, the model structure settings are explained. Following the ini-
tial modeling structure, it is learned that the influence of the ambient temperature had not
yet been incorporated correctly into the model. To either overcome the effect of it, or in-
clude it into the model structure, three different solutions have been presented. The errors
for both the validation profile and the test profile are given in Tables 11 and 12.
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P1 Validation MS Validation T-profile
% Max [°C] % Max [°C]

SD-SISO 1.3 0.86 3.06 1.77
SD-DC-SISO 2.12 2.44 3.71 3.04

SD-MISO 0.78 0.63 2.80 1.69

Table 11: Error margins for all data-driven models for both the validation profile and the
test profile for Peltier 1.

P2 Validation MS Validation T-profile
% Max [°C] % Max [°C]

SD-SISO 1.35 1.02 3.75 2.69
SD-DC-SISO 1.45 1.53 3.51 2.39

SD-MISO 2.09 1.60 2.76 1.20

Table 12: Error margins for all data-driven models for both the validation profile and the
test profile for Peltier 2.

The SD-SISO models overcome the effect of Tamb by including state-dependency in the
model structure. This results for P1 in a maximum error for the MS validation profile of
0.86 °C, and a maximum error for the T-profile validation of 1.77 °C. For P2 this results in
a maximum error for the MS validation profile of 1.02 °C, and a maximum error for the T-
profile of 2.69 °C. However, since the models for both Peltiers have no knowledge on Tamb,
these are only valid for a certain ambient temperature, and therefore not robust to fluctua-
tions in Tamb. The modeling approach used for the SD-SISO models is therefore only suited
for applications with little to no fluctuations in ambient temperature.

The found SD-DC-SISO models incorporate Tamb by identifying a model around the mean
of the ambient temperature. When compared to the SD-SISO models, this results for P1 in
an increase in maximum error for the MS validation profile by factor 2.86, and an increase in
maximum error for the T-profile validation by factor 1.72. For P2 this results in an increase
in maximum error for the MS validation profile by factor 1.49, while the maximum error for
the T-profile validation decreases by factor 0.89. In comparison to the SD-SISO models, SD-
DC models have more but limited knowledge on Tamb, since these only incorporate its mean.
The SD-SISO models are therefore only valid for a certain range of ambient temperatures,
and therefore little robust to changes in Tamb. If the Peltier-based setup were to be used in
a totally different environment, with an ambient temperature that is 5 °C higher, it would
not work properly. The modeling approach used for the SD-DC-SISO models is therefore
also only a suited modeling approach for applications with little fluctuation in ambient
temperature. The accepted fluctuation in Tamb for the modeling method to be suited is
determined by the magnitude of error that the user allows the model to have.

For the final SD-MISO models, compensation for Tamb is successfully done by identifying a
separate nonparametric model from Tamb to TPOI. The found nonparametric BLA from Tamb
to TPOI then is used to filter the measured ambient temperature during the MS experiments.
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Following, the filtered Tamb is deducted from the original output TPOI, and a MISO identifi-
cation is done. When compared to the SD-DC-SISO models, this results for P1 in a decrease
in error for the MS validation profile by factor 3.86, and a decrease in error for the T-profile
validation by factor 1.8. For P2 this results in an increase in error for the MS validation pro-
file by a factor 1.04, while the error for the T-profile validation decreases by factor 1.99. In
comparison to the SD-DC-SISO models, SD-MISO models have proper knowledge of Tamb
and are therefore considered robust to changes in Tamb. The modeling approach used for
the SD-MISO models is therefore suited for applications encountering fluctuation in am-
bient temperature. Furthermore, compared to the other modeling methods, the resulting
SD-MISO models obtain the smallest error for the T-profile, designed to resemble a typical
temperature profile for the Peltier to follow when used in handheld devices like in [18]. The
robustness with respect to changes in Tamb of this approach has been investigated on a set
of offline experiments, which establishes the correct estimation of the effect of the ambient
temperature on the model output. Improvements could be done by investigating the effect
of Tamb more thoroughly. By adapting the setup to obtain control over the ambient tempera-
ture, and designing MS excitations for Tamb, a true MISO identification could be done. This,
however, is out of scope for the current research and is left as a recommendation for future
research.

The data-driven models obtained in this chapter are considered rich enough to make a
fair comparison in Chapter 6 with the physics-based model of the Peltier-based setup from
Chapter 3.

66



6 Comparison physics-based and data-driven model
This chapter compares the resulting SD-MISO models, i.e. the data-driven models with
Peltier current and ambient temperature as input, obtained in Chapter 5 with the physics-
based model from Chapter 3 on several aspects. Firstly, in Section 6.1 the performance in
terms of modeling error of both models is discussed. Section 6.2 then elaborates on the
model complexity and interpretability of the models. Subsequently, Section 6.3 continues
on the practical applicability of both methods. Finally, conclusions are given in Section 6.4.

6.1 Modeling accuracy

Although the methods and training data sets used for the identification of the physics-based
model of the Peltier-based setup from Chapter 3, and the SD-MISO models of the Peltier-
based setup from Chapter 5.7.1 are dissimilar, both models are designed to describe the
Peltier thermodynamics as accurately as possible for a temperature profile, that exhibits a
realistic temperature reference for the POIs. Both methods and the training data sets needed
for identification are described below.

The physics-based model is a lumped-capacitance model, of which the lump division is de-
picted in Figure 11, containing linear heat transfer dynamics and the nonlinear Peltier ele-
ment thermodynamics. The parameters of the physics-based model are estimated in a couple
of steps. Firstly, as explained in Sections 4.1.2 and 4.1.3 of [39], the temperature-dependent
model parameters SM , KM , and RM , describing the Peltier element thermodynamics, are de-
termined with the dedicated setup provided in Figure 12. This is done by either using a
stairs signal, exciting transient thermodynamics and by allowing the output to settle, visu-
alizing steady-state thermodynamics, or a pseudo random binary sequence (PRBS) signal,
exciting transient thermodynamics [39]. The choice for either of the two is done based on
whether validation needed to be done on high or low frequent signals. After identifying
SM , KM , and RM for three different Peltiers, these parameters are averaged for the usage
in the physics-based model. Then, following Section 4.2.1 of [39], the linear heat transfer
dynamics, described by the thermal capacitances of the lumps, and the thermal resistances
between the lumps, are calculated.

The SD-MISO model is a data-driven model, and is constructed according to the methods
described in Section 5.7.1. A set of 4 experiments, accumulating 3 steady-state periods
of input-output data is done. Using a separate set of experiments, a nonparametric linear
model from Tamb to TPOI is estimated. In these experiments the ambient temperature and
the temperature at the POI are measured, without exciting the Peltier element. The non-
parametric BLA from Tamb to TPOI is estimated following the methods described in Section
4.3.1 for both Peltier 1 and 2. The found nonparametric BLA from Tamb to TPOI now is used
to filter the measured ambient temperature during the MS experiments. Then, the filtered
Tamb is deducted from the original output TPOI. Next, a nonparametric Best Linear Approx-
imation ĜBLA and its sample variance σ̂2

BLA are determined. Using the BLA and its sample
variance, a linear model is estimated using the frequency domain subspace algorithm from
[25] while employing the sample covariance matrix instead of the true covariance [35], by
minimizing a weighted least-squares cost function with respect to all model parameters. Af-
terwards, a nonlinear model is estimated by again minimizing a weighted least-squares cost
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function with respect to all model parameters, starting from the linear matrices acquired in
4.3.3. Zero initial values are considered for nonlinear coefficients. This results in a model
with the structure as defined in (128).

Despite the difference in methods and training data, the common purpose for both models is
the goal to describe the Peltier thermodynamics as accurately as possible for a temperature
profile, that exhibits a realistic temperature reference for the POIs. This will therefore be
used as main point of comparison for the two identification methods.

As described in Section 2.1, the data-driven models are obtained for L100 Peltiers, while for
the identification of the physics-based model TEC-[39] Peltiers are used. The specifications
of both Peltiers are different, meaning that employing a certain current profile to both leads
to nonidentical temperature outputs. This means it is not possible to fairly compare the two
models directly. Therefore, a non-identical but equivalent current profile has been used for
both models, where both profiles result in a typical temperature profile for the Peltier to fol-
low when used in handheld devices like in [18], and cover most of the operating temperature
range.

To compare the performance of both the physics-based and the SD-MISO models, the errors
for these validation temperature profiles are compared. Figure 54 depicts the experimental
output ytest,PB, and modeled output ytest,PBNL

for the temperature profile and correspond-
ing error etest,PB for the physics-based model. Figure 55 provides the experimental output
ytest,DD, and modeled output ytest,DDNL

for the temperature profile and corresponding er-
ror etest,DD for the SD-MISO models for the temperature profiles for Peltier 1 and Peltier 2
respectively.
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Figure 54: Validation on temperature profile for the physics-based model for both Peltiers.
The top part shows the experimental output (solid), model output (dashed), and the bottom
part shows the corresponding error.
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Figure 55: Validation on temperature profile for the SD-MISO model for both Peltiers. The
top part shows the experimental output (solid), model output (dashed), and the bottom part
shows the corresponding error.

It is clearly visible from in Figures 55a and 55b that for the physics-based model, a zero-
mean error profile is produced, while for the data-driven model an offset is present. This
might have to do with the fact that the data-driven model does not care about the under-
lying physics, and solely aims to fit the IO-data as precisely as possible. Table 13 gives the
resulting percentual and maximum error for the temperature profiles for the physics-based
model and the SD-MISO data-driven models. Observing the resulting errors for the tem-
perature profile, the maximum error for the SD-MISO model for P1 is 1.07 °C lower, and
the maximum error for the SD-MISO model for P2 is 0.37 °C lower when compared to the
physics-based model. Also, the percentual errors for the SD-MISO models for both Peltiers
are lower, indicating that the overall error margins over the validation profile are lower as
well. It can therefore be concluded that the SD-MISO models outperform the physics-based
model in terms of accuracy. The decrease in modeling error might be due to the fact that the
only goal of the SD-MISO model is to capture the IO-thermodynamics as accurately as pos-
sible, while maintaining a minimal number of parameters. It does not care about describing
the underlying physics correctly. Furthermore, since the discretization of the physics-based
model is suboptimal to describe the thermodynamics that create temperature gradients over
the stainless steel bottom plates [39], the underlying physics cannot be described more ac-
curately by the physics-based model, without extending its dimensions.

P1 Validation data
% Max [°C]

PB 4.03 2.76
SD-MISO 2.80 1.69

(a) Peltier 1.

P2 Validation data
% Max [°C]

PB 4.63 1.57
SD-MISO 2.76 1.20

(b) Peltier 2.

Table 13: Error margins for both the physics-based and the SD-MISO data-driven models
for the temperature profile for both Peltiers.
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6.2 Model robustness & interpretability models

For the model of the Peltier-based setup to be of use in practice, it needs to be robust with
respect to the ambient temperature. This way, TECs can be used in any type of environment,
within the Peltier boundaries. Also, it is convenient if the modeling approach allows easy
adaptation between different types of Peltier elements. This way, the identification of the
Peltier-based setup is valuable in the sense that it can be applied for a broader range of ap-
plications. Furthermore, it is dependent on the goal of the model, whether it may be needed
to be interpretable in terms of states. For example, when the underlying nonlinear thermo-
dynamics of any TEC are to be analyzed, to obtain more insight in the underlying physical
phenomena. Therefore, the robustness of both physics-based and SD-MISO data-driven
models with respect to Tamb and changes in Peltier parameters are investigated. Finally, the
interpretability of the models is discussed.

The physics-based model is constructed by describing the thermodynamics in the experi-
mental setup. Every state in the model represents a temperature of a position on the actual
setup, meaning that the model is fully interpretable in terms of states. The ambient tem-
perature is considered a non-controllable input in the physics-based model. This way, the
robustness with respect to Tamb is guaranteed, although the interaction between Tamb and
the setup cannot be calibrated. Furthermore, when a physics-based modeling approach is to
be used for a different TEC, the temperature-dependent model parameters SM , KM , and RM ,
describing the Peltier element thermodynamics, need to be determined with the dedicated
setup provided in Figure 12. Most of the thermal resistances of the setup do not change,
and can therefore be utilized in the identification of the setup with a different TEC. The
contact resistance for a different Peltier can differ, and should therefore be recalibrated. The
physics-based modeling approach therefore is easily adaptable to different types of Peltiers.
Also an avarage for the parameters can be used to make it more robust for product to prod-
uct variations.

The SD-MISO data-driven models are identified using IO-data, combined with some phys-
ical insights from the physics-based model regarding model structure. No output nonlin-
earities are considered, and the maximum order of nonlinearities is chosen equal to that of
the physics-based model. No further physical insight of the system is used. Although the
insight from the physics-based model was available, this is not always the case. A testing
procedure [28] can be employed to differentiate between odd and even nonlinearities, which
are nonlinear functions of the state and input, acting in odd and even frequencies respec-
tively. This way, up to which order of nonlinearities needs to be considered in the model
structure can be determined, without the insight of the physics-based model. As discussed
in Section 5.3.2, the initially determined linear model for P2 has 3 poles, of which two are a
complex pole pair. This indicates that the method does indeed neither care about symmetry
in the setup, nor about the underlying physics, since for an open-loop thermal system, only
real poles are expected. Furthermore, as explained in Section 5.5, a feedthrough term in
the model structure of the Peltier-based setup is considered because of modeling freedom,
while this is physically impossible. Since the only goal for the SD-MISO models is to obtain
an optimal fit for the IO-data, the knowledge on the behavior of the actual Peltier-based
setup is not obtained. Therefore, the states of the SD-MISO models are noninterpretable.
Using a separately identified model for the ambient temperature to the output temperature,
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the robustness with respect to Tamb is guaranteed, as proven in the offline experiments in
Section 5.7.2. However, this is only possible if the frequency content of the separate experi-
ments for the ambient temperature to the output is rich enough to catch the thermodynamics
properly, which is difficult to influence. In terms of applicability to identify different TECs,
the data-driven approach cannot reuse any of the found model parameters, since its only
goal is to catch the IO-data in an optimal fashion. Applying the methods for a different
Peltier means that the identification procedure has to be redone completely. Assuming that
the type of Peltier does not result in a major change of underlying thermodynamics means
that the model structure can be maintained identical. From the results for the SD-MISO
models, it can be observed that the identification of two Peltiers of the same type does not
result in resembling models. However, as indicated in Section 5.3.2, the assumed symme-
try of the setup might not necessarily be true. It is therefore unclear whether data-driven
identification techniques are robust with respect to product to product variations, and it is
recommended for future research in order to draw any final conclusions on it.

Altogether, for the SD-MISO data-driven models the IO-behavior is described more accu-
rately, while the knowledge on the underlying behavior of the system is lost. Both methods
are robust with respect to the ambient temperature, although the interaction between Tamb
and the setup cannot be calibrated. It is dependent on the goal of the model, whether it may
be needed to be interpretable in terms of states. For example, when the underlying nonlin-
ear thermodynamics of any TEC are to be analyzed, to obtain more insight in the underlying
physical phenomena, a physics-based modeling approach is needed. If the goal is purely
to describe the IO-thermodynamics as accurately as possible, while maintaining a minimal
amount of modeling parameters, the SD-MISO data-driven models should be considered,
since these outperform the physics-based model in terms of error margins.

6.3 Practicability methods

One of the requirements for a modeling approach to be of use in practice, is that it should be
feasible to identify a model in a limited time, while capturing the thermodynamics properly.
Therefore, now the practical applicability of both methods is compared. This is done in
terms of possibility for controller / observer design in Section 6.3.1, and modeling effort in
Section 6.3.2.

6.3.1 Possibility for controller / observer design

It is very common for a sensor location to not coincide precisely with the actual point of
interest, as is the case for the Peltier-based setup. Therefore, observer design is very useful.
A nonlinear observer has been designed for the physics-based model, and since the states
are actual temperatures of parts of the setup, the knowledge of the states can be used for
the observer. Furthermore, for the physics-based model, feedback linearization is applied,
transforming the nonlinear thermodynamics into linear input-output thermodynamics [20].

Since the data-driven model has noninterpretable states, state information cannot be used
to describe the output at the POI in any logical way. In order to be able to design a nonlinear
observer for the data-driven model properly, more research needs to be conducted in this
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direction. The same holds for possible feedback linearization controller design.

6.3.2 Modeling effort

The temperature-dependent Peltier parameters of the physics-based model, SM , RM , and
KM , are identified by either using a stairs signal, exciting transient thermodynamics and
by allowing the output to settle, visualizing steady-state thermodynamics, or a pseudo ran-
dom binary sequence (PRBS) signal, exciting transient thermodynamics [39]. The choice for
either of the two is done based on whether validation needed to be done on high or low
frequent signals. Using the dedicated experimental setup from Figure 12, the temperature-
dependent parameters for a single Peltier are determined. Using either the stairs exper-
iment or the PRBS experiment, both taking 10 hours to complete, results in a total time
needed for identification of the temperature dependent parameters of a Peltier of 10 hours.
Afterwards, either the stairs or the PRBS experiment are done for the Peltier-based setup,
therewith determining the thermal resistances of the physics-based model, again taking 10
hours. Finally, validation is done with a 5 hour experiment, resulting in a total experimental
time of 25 hours per Peltier. However, if a new (type of) TEC would need to be modeled
using the physics-based model, the two experiments with the dedicated test setup of Figure
12 plus validation would suffice, therefore reducing the total needed experimental time to
15 hours per Peltier. The experiments used for identification of the temperature-dependent
parameters for the physics-based model could be tuned, and time needed could be reduced,
to accelerate the identification process.

For the SD-MISO data-driven models, an experiment set consisting of 4 realizations is done,
each consisting of 4 periods, of which 3 periods are steady-state. Each period takes 6750
seconds. To get a proper validation done for the carefully designed excitation signals, one
of the realizations is chosen as validation realization. The final steady-state period of this
realization is used to validate the model. Furthermore, validation is done with a 5 hour
experiment, resulting in a total experimental time of 35 hours per Peltier. To identify a new
(type of) TEC with a data-driven model, less experimental time would be needed, since the
extra realization to validate is not necessary. This results in a total needed experimental time
of 27.5 hours. Again, the experiments used for data-driven identification could be tuned,
and time needed could be reduced, to accelerate the identification process. For example, it
would be interesting to investigate if two periods in steady-state also suffice to describe the
Peltier-based setup properly, therewith reducing the experimental time needed.

In terms of constructing a model, for the physics-based modeling approach, a lumped-mass
model has to be constructed. For the data-driven modeling approach, the time spent on
constructing the model is very little, due to the modeling freedom and no desire to describe
the underlying physics properly. The experimental time of the data-driven approach might
be higher, but the time spent on constructing the model is higher for the physics-based
modeling approach. On the other hand, in most cases a model has been created during
the design process of the system considered, which would greatly reduce the time spent on
modeling again.

In thermal control, physics-based modeling is preferred because of project risk reduction,
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the explainability, and tunability of these models. The found SD-MISO models for the
Peltier-based setup are more accurate than the physics-based model, and are easily adaptable
to different TECs to be identified. Furthermore, the influence of the ambient temperature is
incorporated appropriately. Although the SD-MISO approach would benefit from a shorter
experimental time needed, the time spent on modeling is significantly lower than for the
physics-based modeling approach, whereas for the physics-based approach in most cases a
model is already available through the design process of the considered system. The ap-
plicability for controller or observer design for these models still is to be investigated more
thoroughly. Therefore, a data-driven modeling approach definitely can be beneficial for the
identification of a thermal system, if the goal is to obtain its IO-thermodynamics as accu-
rately as possible, while maintaining a minimal amount of parameters. More research is
needed to draw any conclusions in terms of applicability for controller or observer design.

6.4 Conclusion

Concluding, the data-driven models for both Peltiers outperform the physics-based model
in terms of accuracy. The maximum error for P1 is 1.07 °C lower, and the maximum error
for P2 is 0.37 °C lower when compared to the physics-based model. Also, both models are
robust to changes in ambient temperature.

If the goal of a model is to describe the IO-thermodynamics as accurately as possible, while
maintaining a minimal amount of modeling parameters, the SD-MISO data-driven models
outperform the physics-based model in terms of error margins. To describe the underlying
behavior of any type of TEC or thermal system, a physics-based modeling approach should
be considered.

Observer and controller design for the physics-based model have successfully been done in
the past. Since the data-driven model has noninterpretable states, state information cannot
be utilized. In order to design a nonlinear observer for the data-driven model properly,
more research needs to be conducted in this direction. The same holds for possible feedback
linearization controller design.

The total time needed to obtain experimental data to identify a new TEC is higher for
the data-driven model, but the time spent on modeling is significantly lower than for the
physics-based modeling approach. It would be interesting to research the modeling accu-
racy that can be obtained when the data-driven model only uses two realizations, since this
would again greatly reduce the time needed for experiments.

A data-driven modeling approach definitely can be beneficial for the identification of a ther-
mal system, if the goal is to obtain its IO-thermodynamics as accurately as possible, while
maintaining a minimal amount of parameters. More research is needed to draw any conclu-
sions in terms of applicability for controller or observer design.
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7 Conclusion & recommendations for future research

7.1 Conclusions

The objective of this research is to investigate to what extent nonlinear data-driven identi-
fication can aid with the identification and control of a Peltier-based setup. The objective is
fulfilled in a couple of steps.

7.1.1 Obtain the most accurate physics-based & data-driven model, while maintaining
a minimal amount of modeling parameters

Firstly, by performing an in-depth analysis on the contribution of the Thomson effect, the
most accurate physics-based model is obtained, while maintaining a minimal amount of pa-
rameters. It is observed that the Thomson effect was already incorporated in the model, and
therefore no better results in terms of better correlation between model and measurements
are obtained. Also, sensitivity analyses have been done to validate the model parameter cali-
bration. This validation showed that the determination and optimization of the temperature
dependent parameters SM , RM , and KM has been done adequately.

Then, the most accurate data-driven model is obtained, while maintaining a minimal amount
of parameters. A set of four random-phase multisine experiments is conducted, accumulat-
ing three steady-state periods of input-output data. By identifying a separate nonparametric
model from the ambient temperature Tamb to the temperature at the point of interest TPOI,
and using the found nonparametric best linear approximation from Tamb to TPOI to filter the
measured ambient temperature during the MS experiments, the effect of the ambient tem-
perature is incorporated. Next, the filtered Tamb is deducted from the original output TPOI,
and a MISO identification is done, in the sense that the ambient temperature is considered
an input as well. The resulting models have proper knowledge of Tamb and are therefore
considered robust to changes in Tamb. The robustness with respect to changes in Tamb of this
approach has been investigated on a set of offline experiments, which establishes the correct
estimation of the effect of the ambient temperature on the model output.

7.1.2 Comparison physics-based & data-driven models

Accuracy & robustness

Despite the difference in methods and training data, the common purpose for both models is
the goal to describe the Peltier thermodynamics as accurately as possible for a temperature
profile, that exhibits a realistic temperature reference for the POIs and is therefore used as
main point of comparison for the two identification methods. To compare the performance
of both the physics-based and the final data-driven models, SD-MISO models, the errors for
these validation temperature profiles are compared. Observing the resulting errors for the
temperature profile, the maximum error for the SD-MISO model for P1 is 1.07 °C lower, and
the maximum error for the SD-MISO model for P2 is 0.37 °C lower when compared to the
physics-based model. Also, the percentual errors for the SD-MISO models for both Peltiers
are lower, indicating that the overall error margins over the validation profile are lower as
well.
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The input-output behavior is described more accurately for the final SD-MISO models, while
the knowledge on the underlying behavior of the system is lost. Both methods are robust
with respect to the ambient temperature, although the interaction between Tamb and the
setup cannot be calibrated. If the goal is purely to describe the IO-thermodynamics as ac-
curately as possible, while maintaining a minimal amount of modeling parameters, the SD-
MISO data-driven models should be considered, since these outperform the physics-based
model in terms of error margins.

Model complexity & method practicability

In thermal control, physics-based modeling is preferred because of project risk reduction,
the explainability, and tunability of these models. The found SD-MISO models for the
Peltier-based setup are more accurate than the physics-based model, and is easily adaptable
to different thermoelectric coolers to be identified. Furthermore, the influence of the am-
bient temperature is incorporated appropriately. Although the SD-MISO approach would
benefit from a shorter experimental time needed, the time spent on modeling is significantly
lower than for the physics-based modeling approach. The applicability for controller or ob-
server design for these models still needs to be investigated more thoroughly. Therefore, a
data-driven modeling approach definitely can be beneficial for the identification of a ther-
mal system, if the goal is to obtain its IO-thermodynamics as accurately as possible, while
maintaining a minimal amount of parameters.

7.2 Recommendations

For future research on Peltier-based systems it is recommended to include the following
recommendations.

R1 Investigate the mismatch in amplifier behavior in order to use the setup to its full
extent. That way, also a data-driven MIMO model of the whole setup can be obtained,
instead of two separate SISO or MISO models.

R2 Adapt the model structure for the data-driven identification to one without a feedthrough
term. This way, the model describes the underlying physics of the setup more accu-
rately.

R3 If it is desired to research the effect of Tamb more thoroughly, adapt the Peltier-based
setup to obtain control over the ambient temperature. That way, a true MISO identifi-
cation could be done by designing multisines for the ambient temperature as well.

R4 Investigate whether data-driven models are applicable for observer and/or controller
design.
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[28] Noël, J.P., Esfahani, A.F., Kerschen, G., and Schoukens, J. (2017). A nonlinear state-
space approach to hysteresis identification. Mechanical Systems and Signal Processing,
Vol. 84, p. 171-184.
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Appendices

A Sensitivity analysis physics-based modeling parameters
The sensitivity of the temperature dependent parameters is obtained by calculating the Ja-
cobian from the output temperatures w.r.t. SM , KM , and RM . The Jacobian is a matrix with
the derivative of the temperature T1 to T4 with respect to the parameters SM , KM , and RM .
As such the matrix has 4 rows and three columns. The elements of the matrix are given
by Jij = dTi

dxj
, with i ∈ {1,2,3,4}, x = [Sm Rm Km], and j ∈ {1,2,3}. The output temperatures

correspond to the indicated positions in Figure 12.

The Jacobian is obtained in two steps. Firstly, a simulation with the originally obtained
parameters Sm, Rm, and Km is done to obtain T1−4, which can be seen in Figure 56.
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Figure 56: Simulated output with original parameters.

Then, the parameters Sm, Rm, and Km are deviated by 10%, after which the same experiment
is simulated again to obtain the new values for T1−4. Then, the Jacobian is computed. This
has been for done deviating all parameters in x separately, as well as for deviating the com-
binations of the parameters. The resulting figures for the sensitivity of T1−4 w.r.t. Sm, Rm,
and Km of Peltier 1 can be found in Figures 57-59.
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Figure 57: Sensitivity analysis w.r.t. KM for Peltier 1.
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(a) Sensitivity analysis w.r.t. RM for Tc .
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Figure 58: Sensitivity analysis w.r.t. RM for Peltier 1.
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Figure 59: Sensitivity analysis w.r.t. SM for Peltier 1.
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As can be seen, the Jacobian for both SM and KM strongly correlate. This might denote mul-
ticollinearity. The combination SM & KM both being off by 10% might lead to compensation
in the output. If both SM and KM are deviated by 10%, the error with respect to the experi-
mental data is larger than the error for the original settings with respect to the experimental
data, as can be seen in Figure 60.
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(a) Error of simulated model with original parameters
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Figure 60: Error of simulated model for both original and deviated parameters for sensitivity
analysis.

The sensitivity analysis shows that calibration of the parameters SM , KM , and RM has been
done adequately. The output of the experiment is strongly dependent on SM and KM be-
ing correct, but since SM is separately identified, for the identified SM , a fitting KM can be
found by the optimization algorithm. Note, there might be another set of SM and KM that is
physically incorrect, but fits the IO-data.
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B Determination time constant Peltiers
To determine the time-constants of the Peltiers in the Peltier-based setup, a set of simple
experiments is done.

B.1 Dominant time constant

The first step to determine the time-constants, is to apply a step is to both Peltiers, after
which a measurement of 50 minutes is done. The results can be found in Figure 61.
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Figure 61: Step response of both Peltiers in the Peltier-based setup.

To determine the desired sampling frequency fsd , determine the dominant time constant τD
of the Peltiers in the system. This is done by fitting a first order exponential decay function
y = y0 + dy · e−x/τD to the region of interest, that can be found in Figure 62.
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Figure 62: Step response of both Peltiers in the Peltier-based setup, zoomed.

By fitting the first order exponential decay function between t=1.1 and t=3.7 seconds for
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both Peltiers, the resulting values for Peltier 1 and 2 are then given by τD1
=1.4004 seconds

for Peltier 1, and τD2
=1.4305 seconds for Peltier 2.

The desired sampling frequency fsd then is determined by:

fsd = max
i
fsd ,i = max

i

20
τFi · 2π

, (138)

with i ∈ {1,2}, resulting in fsd=2.273 Hz.

B.2 Slowest time constant

The slowest time constant τS indicates the time required for a thermal system to respond
to a change in its ambient temperature. When the ambient temperature is changed from T1
to T2, the relationship between the time elapsed during the temperature change t and the
temperature T can be expressed by

T = (T2 − T1)(1− e
−t
τS ) + T1. (139)

Then, assuming t and τS are equal, the equation can be expressed as

T = (T2 − T1)(1− e−1) + T1,

T − T1

T2 − T1
= 1− e−1 = 0.632,

(140)

showing that the constant τS is defined as the time for the system to reach 63.2% of the
total difference between its initial and final temperature. The slowest time constant τS is
determined for both Peltiers from Figure 63. This results in τS1

=352 seconds, and τS2
=350.7

seconds. Accordingly, τS is determined by

τS = max
i
τsi , (141)

with i ∈ {1,2} resulting in τs of 352 seconds.
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Figure 63: Step responses used to determine slowest time-constants of Peltier 1 and 2.
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