
 Eindhoven University of Technology

MASTER

MQTT based Communication Framework for AGVs in a Digital Twin

Thijssen, E.A.

Award date:
2021

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/1f0a9641-56fa-4d6b-badf-c0458a05cd39

MQTT based
Communication Framework
for AGVs in a Digital Twin

Master Thesis - Manufacturing Systems
Engineering

Student:
Ennio Anthonius Thijssen
TU/e student number:
0810786
Supervisors TU/e:
dr. ir. M.J.G. van de Molengraft
prof. dr. ir. I. Adan
dr. Q.V. Dang

ir. N. Singh

Version 1.0

Eindhoven, The Netherlands, December 2020

Abstract

The Brainport Industry Campus (BIC) in Eindhoven is an operation bringing together high-

tech manufacturers, knowledge institutes and the government to share knowledge in order to

compete in the manufacturing business. Its vision sets an innovative interpretation of common

goods. With the principles of the fourth industrial revolution (smart manufacturing 4.0) in

mind, data generation and resource sharing are the keypoints.

In this thesis a proposal is made for a communication framework (CF) capable of serving

multiple tenants sharing a fleet of heterogeneous automated guided vehicles (AGVs) in a

Digital Twin.

For further alignment with smart manufacturing the Digital Twin uses bi-directional com-

munication to enable real-time data generation used to feed the algorithm. The CF also

includes a user interface (UI) as order input system, an order database and a centralized

Scheduler Module that houses the algorithm. The Scheduler Module encompasses the main

intelligence by communicating with all aforementioned components.

This CF which serves multiple tenants sharing an AGV fleet is the first of its kind (to the

best of my knowledge). A digital test bed is delivered for cost-reduction in the development

of a CF in the real life manufacturing environment of the BIC. The CF serves as a template

for analyzing and optimizing scheduling algorithms developed for the BIC case.

Acknowledgements

Writing this master thesis has been a huge challenge as the start aligned with the first COVID-

19 lockdown. I would like to thank a few people who have helped and supported me throughout

this period. First, I would like to thank my day-to-day supervisors Vinh Dang and Nitish Singh

that trusted me with the opportunity to be a part of the innovative project together with the

BIC. They both supported and critcally reviewed my weekly updates but most of all motivated

me if it were face to face or in online meetings. I couldn’t have done it without them. I also

want to thank Prof. Dr. Ir. I.J.B.F. Adan who always wanted be kept in the loop to check

whether my thesis was moving in the right direction.

I would also like to thank Jack Put who guided me through the first couple of months by

introducing the BIC.

Next, a special thanks to Pieter Wetering and the rest of the team of Prespective. Although

the software is still under development, Pieter and his team always fit in a meeting in their

busy schedule to provide me with the highly needed information.

Last but not least, I would like to thank my friends and family who unconditionally

supported and motivated me. The weekly meals provided by my mother kept me focused on

this thesis.

Nomenclature

CF Communication Framework

FMS Fleet Management System

QoS Quality of Service level for MQTT

AGV Automated Guided Vehicle

CPPS Cyber Physical Production Systems

DES Discrete Event Simulator

UI User Interface

ii

Contents

Contents iii

1 Introduction . 2

2 Literature Review . 5

3 Problem Description . 7

3.1 Scope of Project . 7

3.2 Assumptions . 9

3.3 Research questions . 10

4 Functional Design . 11

4.1 Purpose and Scope . 11

4.2 Functional Requirements . 11

4.3 Non-Functional Requirements . 12

4.4 Performance Requirements . 14

4.5 System Requirements . 14

4.5.1 System Documentation . 14

4.5.2 System integration . 15

5 Software Architecture . 16

5.1 Structure of Communication Framework 16

5.1.1 Scheduler Module: Flask Application 17

5.1.2 User Interface: HTML Page Rendering 18

5.1.3 Request Database: PostgreSQL 18

5.1.4 Simulation: Prespective Digital Twin Software 19

5.1.5 MQTT Broker . 22

5.2 Behaviour of Communication Framework 23

iii

CONTENTS

5.2.1 UML Use Case Diagrams . 24

5.2.2 Use Case 1: Submit, Edit and Delete Request 24

5.2.3 Use Case 1 in Detail . 24

5.2.4 Use Case 2: Complete Request 30

5.2.5 Use Case 2 in Detail . 30

5.2.6 Use Case 3: Find a Request . 32

5.2.7 Use Case 3 in Detail . 32

6 Validation and Discussion . 35

6.1 MQTT Communication Validation . 35

6.1.1 Test set up . 35

6.1.2 Results . 38

6.2 Functional Design Validation including Software Assessment 40

6.3 Discussion . 43

7 Limitations and Conclusion . 45

7.1 Limitations . 45

7.2 Conclusion . 46

Appendices . 48

A Additional UML diagrams to Use Case 1 (Submit, edit and delete request) . . . 48

A.1 Use Case 1 in detail . 48

B ISO 25010 . 54

C Input/Output Data Model . 55

C.1 Scheduler Algorithm . 55

C.2 SQL Database . 58

C.3 User Interface: HTML Pages . 61

C.4 MQTT Broker . 62

C.5 Digital Twin (Prespective) . 62

C.6 Scheduler Module (Flask application) 64

D Prespective Scripts . 67

D.1 Standard Prespective Scripts . 67

D.1.1 DES Controller and Pre Logic Simulator 67

D.1.2 DESCue and DSpline . 69

iv

CONTENTS

D.2 Adapted Prespective Scripts . 69

D.2.1 AGVManagerInstructor.cs . 70

D.2.2 AGVActor.cs . 70

D.2.3 mqttStruct.cs . 71

D.2.4 getDistanceMatrix.cs . 72

E Scheduler Module’s Scripts . 73

E.1 SchedulerModule.py . 73

E.2 SQLEditor.py . 73

E.3 Algorithm.py . 73

E.4 Models.py . 74

E.5 Initialization Files . 74

F Installation Guide . 76

F.1 Introduction . 76

F.2 Purpose of Document . 76

F.3 Prespective Digital Twin Software . 76

F.4 Visual Studio Code . 77

F.5 PostgreSQL . 78

F.6 Mosquitto MQTT Broker . 79

G User Manual . 80

G.1 Monitoring Processes . 80

G.1.1 MQTT.fx . 80

G.1.2 Database insight . 80

G.2 Getting Started . 81

G.3 Initialize CF with own request dataset 85

G.4 Implement custom algorithm . 85

G.5 Generate custom factory Layout . 86

G.6 AGV Adjustments . 87

H Scientific Code of Conduct . 89

Bibliography 91

1

Introduction

1 Introduction

In late 2019, the Brainport Industries Campus (BIC) opened its doors to a variety of companies

and institutions. This new ’Factory of the Future’ connects High-Tech suppliers with know-

ledge institutions. Sharing and combining data produced by every individual company can

help them improve their performances, enhance innovation and compete with rival companies.

In the eyes of tenants in the BIC, the ‘Factory of the Future’ should share data and

its resources for further optimization of throughput and cost reduction. Automated Guided

Vehicles (AGV), storage locations and other shareable rooms/machines are representing these

shared resources. This vision could be the next step for manufacturing innovation. Besides

the clear efficiency and cost motives, reducing the ecological footprint of factory environments

is an attractive factor for governments to get engaged.

The vision of the ’Factory of the Future’ aligns with the fourth industrial revolution. Data

exchange in physical production systems for optimizing processes are the key points nowadays

in smart manufacturing. These systems are called Cyber Physical Production Systems (CPPS)

by equipping machines with data generating electronic parts and communication technologies

[1]. Besides machines, AGVs can also be equipped to share data.

The data exchange of shop floor machines and resources is the latest trend in cutting-edge

smart factories in the high-tech industry. Machinery and resources (AGVs for instance) are

linked and read out, producing data in order to better comprehend factory processes. Doing

so, decreases throughput times and reduces costs which are the main objectives for almost

every factory. The use of AGVs for transport purposes support these goals as they can be con-

trolled by scheduling algorithms. These algorithms become more accurate as they are feeded

with real-time data. Feeding more data can support in the better comprehension of factory

processes.

In this research the aim is to design a modular communication framework (CF) that can

process incoming order requests from multiple tenants. This CF will control the AGVs in real-

2

1. INTRODUCTION

time by assigning transport requests to AGVs. Through the concept of virtual commissioning

[2], a Digital Twin will serve as substitute for the real-time AGVs. Besides the Digital Twin

the CF includes a user interface as order input system, an order database and a centralized

Scheduler Module that houses the algorithm. The communication between the Digital Twin

and the rest of the CF is governed by a MQTT broker. A detailed look into these compon-

ents and the structure of the CF can be found in Chapter 5. For more information about its

behaviour see Chapter 5.2.

The biggest challenge in developing such a CF is to bring together several pieces of soft-

ware and establish an inter-modular communication. A scheduler algorithm, database, user-

interface and simulation software have to be combined where each entity could have a different

programming language and protocol for communication. Each module needs an interface for

communication towards other modules.

The main contribution of the proposed CF is its modularity. By keeping it modular, the

CF serves as a template for similar cases. Modules can be replaced or adapted to fit the user’s

needs. Every module is locally hosted, which means the complete virtual testing environment

can run on a single computer.

The scope of the project is defined by a test case at the BIC. Multiple decision support

tools and models are developed which are awaiting to be tested. The current developed tools

are:

• Single-load AGVs Scheduling

• Multi-load AGVs Scheduling

• AGV Dispatching Path Planning

With the help of these tools the aim is to investigate the maximum automation allowance in

the BIC. The development of decision support tools and models regarding the multi-tenant

AGV fleet management system (FMS) aims to maximize the usage of AGVs.

The logistics at the BIC can be split up into warehouse logistics and manufacturing logist-

ics. The current research however will concentrate on the warehouse logistics. This includes

all logistics before reaching the tenant’s warehouses: all transport coming from the central

3

1. INTRODUCTION

warehouse (BIC) to the tenant’s warehouses and transport from incoming external orders to

the central warehouse. The proposed CF in this thesis brings together all tools. It forms a

test environment for these tools before employment in the real world.

The CF will result into three deliverables:

1. A report defining the software’s structure and behaviour architecture

2. Software package for setting up the CF.

3. Software documentation including Input/Output(I/O) data model, installation guide

and user manual.

In this report, the current literature on this topic is set out in Chapter 2. Chapter 3 defines

the problem and scope in depth of this project. In Chapter 4 a document is set up that

houses all requirements (functional, non-functional, technical and performance) concerning

the software which is to be developed. It serves as a mutual understanding between the client

and developer. In Chapter 5 the architecture blueprints of the software are laid. The first

part describes the structure whereas the second part describes the behaviour of the system.

In Chapter 6 a validation is performed to assess the proposed CF’s accuracy. Chapter 7 states

the discussion and conclusion including limitations.

4

Literature Review

2 Literature Review

Searching for literature about communication frameworks for a heterogeneous AGV fleet

serving multiple tenants, is bounded by a precise definition of the system to be designed.

Erol et al. [3] propose a multi agent-based system (MAS) for AGVs and machines within a

manufacturing environment. The system is built for a single tenant’s AGV fleet but its struc-

ture is interesting. They define MAS as a decentralized control systems where each subsystem

is controlled by its own controller based on local information and actions. In their system every

agent contains some form of intelligence and acts autonomously [3], [4]. The term multi-agent

system occurs more often in the search for communication frameworks. This paper proposes

a modular structure for a CF. Mayer et al. [2] present a framework consisting of a simulation

model, an MAS including centralized or decentralized control logic and a data-exchange inter-

face. They define MAS to be a ’loosely coupled network of problem-solving entities that work

together to find answers to problems that are beyond the individual capabilities or knowledge

of each entity’ (Mayer et al., 2019, as cited in Stone et al., 2000). This definition sounds para-

doxal with the term centralized in front of it. One should be careful when using or reading the

term MAS. They excluded all forms of intelligence from the simulation model. All decision

making occurs in the MAS whereas the simulation is used for sending triggers when specific

events happen (trigger events).

Lohse et al. (2020) discuss the increase of data generation in production environments

nowadays [1]. They propose a Real Time Reaction (RTR) concept that is constructed for

a CPPS. In RTR, decision-making makes use of live production states. Additionaly they build

an RTR-relevant software that includes a plant visualization to visualize a manufacturing en-

vironment (e.g., machines and AGVs), a fleet management system (FMS) for controlling the

AGVs, an Internet of Thing platform used as middleware for data generated by IoT devices

and a manufacturing execution system (MES) to provide the production order, routing and

process parameters. This paper introduces components needed for a modular CF which can

be adapted to fit different production environments. This template like structure is interesting

for the BIC case as multiple algorithms need to be tested.

5

2. LITERATURE REVIEW

Like mentioned in the Introduction, a Digital Twin will be used as visual representation

for the real life AGVs. A Digital Twin is similar to a simulation model but has one signi-

ficant difference: a Digital Twin integrates real time data. The communication framework

should be able to handle this real time data from the Digital Twin. A suitable communication

protocol for IoT devices is to be chosen. The most important factors to be considered are

scalability, power consumption and reliability. Naik [5] provides an assessment on IoT mes-

saging protocols MQTT, CoAP, AMQP and HTTP. Among them MQTT and CoAP are most

suitable as both are designed to work on low bandwidth and resource requirement. CoAP is

slightly favoured when it comes to power consumption [5], [6]. Khaled et al. [7] mentioned

that MQTT is scalable with the help of a program called EMQTT, a fully open source and

massively scalable MQTT technology. In contrast Kovatsch et al. (2014) propose scalable IoT

cloud services based on CoAP. Both are able to scale up to big numbers. However, in terms of

reliability, MQTT is superior to CoAP. The reliability is expressed according to the Quality of

Service level (QoS) of MQTT. It has three stages 0, 1 and 2 that means a message delivered

at most once, at least once and exactly once, respectively. CoAP has no explicit QoS levels

but has protocols on reliability which are similar to QoS of 0 and 1. Only the QoS level of 2

is suitable for this thesis because each message sent should have a guaranteed delivery. This

means CoAP is not suitable and MQTT is suitable.

6

Problem Description

3 Problem Description

In the factory of the future, multiple tenants housed together share the same transport re-

sources. An AGV-fleet to serve multiple suppliers can increase productivity and decrease costs

heavily. Because the BIC in Eindhoven is not ready for a full-on working AGV system as the

AGVs are not present yet, a digital twin is created to experiment. This project focuses on the

implementation of the communication framework using a Digital Twin. In this chapter the

scope of the project is set out and its limitations are defined.

3.1 Scope of Project

In this research a field lab in the BIC is used which is depicted in Figure 1. In total 21 pick up

and delivery nodes (machines or warehouse), 2 charging stations and 5 AGVs are implemented

in the digital twin. The paths consists of a main path going round the whole production floor

and branches going to specific machinery or warehouse locations. The field lab is built based

on a single tenant. For the sake of this research each individual node can be seen as a single

tenant which defines the field lab as a multi-tenant environment.

The separate components of the CF consists of tenants (clients), a database, scheduler,

scheduling algorithm and a Digital Twin which represents the fleet management system (FMS)

and the AGVs. In order to establish a working system, a communication framework between

the different components should be established. In this framework the information flows and

possible events between or by modules have to be indicated. In Figure 2 the global communic-

ation lines between the different components of the system are shown. Note that the system

is centralized as the scheduler module obtains all necessary information to schedule a request.

The Digital Twin has to send information about resources (AGV availability, battery capacity

and location) to the scheduler when asked. In turn it receives a scheduled/processed request

from the scheduler. Communication is bi-directional. The database is another partial supplier

of data needed for the scheduling algorithm (housed in the scheduler module). It will send the

to be scheduled orders when asked by the scheduler. The scheduler will send the processed

7

3. PROBLEM DESCRIPTION

Figure 1: BIC’s warehouse layout

Figure 2: Global communication flows between components

request to the database for updating the request’s status and to the Digital Twin for execution

of the request. Users of the system can extract request information from the database if needed.

In order to ensure ease of further use, modularity is key. Meaning that if future users want

to use the framework but with a custom made module(s), this should be implementable. A

future user might want to implement the CF in a multi-tenant environment but with its own

scheduler algorithm. The same counts for the layout of the production environment. As

8

3. PROBLEM DESCRIPTION

Mayer et al. [2] mentioned, the simulation model (Digital Twin) has to be modular and scal-

able to support custom layouts or/and changes in resources (AGVs) and simulation nodes.

The challenge lays in the communication between the modules because each module could be

using different communication protocols and data languages. In order to make all modules

communicate with each other converters should be implemented. As more modules are imple-

mented, diverse syntax should be handled by these converters. Ensuring modularity can be

made possible by generating a detailed input-output model (I/O model) for interchangeable

modules that defines exactly how data is handled within a module.

In this research the aim is to design a modular communication framework to analyze and

optimize algorithms applicable to multi-tenant environments. Note that the focus is on the

communication between modules.

3.2 Assumptions

A few aspects will be left out of scope for now. These will generate assumptions stated in the

text below.

1. Human intervention

2. Optimization of Scheduling Algorithm

3. Multi unit load at a time

4. Security mechanism

The first point basically implies no workers are present in the AGV’s routes. The workers

will only be present at starting/ending points. The second aspect means that the Scheduling

Algorithm only has to be adapted to its dynamic environment and implemented. The optim-

ization of this algorithm is left out of scope. The third point is for later work. A student

at the Technical University of Eindhoven is currently doing research in optimal route finding

and task planning for multi unit load at a time. Combining these projects is left for further

research. The protection of data and authorization for the scheduler is not handled. The

General Data Protection Regulation (GDPR) is followed to only handle fictional data in this

project.

9

3. PROBLEM DESCRIPTION

3.3 Research questions

Concluding the whole problem description, a main research question is set up. It is formulated

as follow:

How to develop a communication framework to implement a scheduling algorithm for a het-

erogeneous AGV fleet in a multi-tenant environment?

To answer this main research question, sub questions are set up:

1. What is needed for designing software?

2. How can all components communicate on the edges using different syntax?

3. How to assess the quality of this software?

All of these sub questions are to be answered throughout this thesis.

10

Functional Design

4 Functional Design

The first step when developing software is setting up the functional design document. In this

document the functional, non-functional, technical and performance requirements combined

with its appearance are written down and agreed upon by both developers and clients. It serves

as a contract between developer and the client on demarcating the scope and functionalities

which should be implemented.

4.1 Purpose and Scope

This document serves as a mutual understanding between the client (BIC) and the developer

(myself) that defines on a high-level the software’s functional, technical and performance re-

quirements. In this project, the functional design document also serves as a development guide

(for the developer) to make sure all needed functionalities are incorporated.

The software which is to be developed will be delivered as a package consisting of multiple

pieces of software. Its goal is to help future users to analyze and optimize similar real life

cases. Its modularity should enable these future users to adapt and scale the CF to fit their

needs. The stakeholders and owners of this project are the 21 BIC tenants and the future

tenants that will house in the BIC.

4.2 Functional Requirements

In this subsection the functional requirements will define what the CF should be capable of

doing. These functional requirements are based on the certified ISO 25010 norm for software

quality assessment. This method will be explained in detail in Chapter 6.2. The important

thing to know for this chapter is that the ISO 25010 norm assesses software by means of

characteristics. In Figure 3 the traditional characteristics of this norm are depicted on the

left. In order to fit assessing the CF it is adapted (see Figure 3 at the right).

11

4. FUNCTIONAL DESIGN

Figure 3: ISO 25010 main characteristics adjusted to fit this research [8].

It should contain the following primary functionalities which are split up into concrete

functionalities:

• Ability to initiate Use Cases (Functional Suitability)

– Users should be able to submit, edit and delete requests. Users should also be able

to find a request in the database to check its status and other properties.

– Editing and deleting of requests should only be possible for unscheduled requests.

• Self-triggering

– All trigger events should force the algorithm to reschedule.

– Trigger events should be definable inside or outside of the production environment

(Digital Twin). Outside means not from the Digital Twin (for instance when a

request is submitted).

• User Error Protection (Usability)

– Only the input for the use cases is user dependent. Submitting data in the wrong

format should invoke an error.

– User input should be returned upon submitting data for one of the use cases

4.3 Non-Functional Requirements

In this section only requirements are mentioned that are non-functional. These are function-

alities that define how the system should be built up. These requirements are more focused

12

4. FUNCTIONAL DESIGN

on the software’s structure. As the name suggests, non-functional requirements are the coun-

terpart of functional requirements that define the software’s behaviour. All non-functional

requirements are set out beneath. All techniques to achieve these non-functional requirements

are stated.

• Interoperability (Compatibility): the system should be able to handle input from

other systems and produces output that can be used by other systems.

– A detailed specification document (I/O data model) should define how certain input

and output information should be formatted to be used by other systems/modules.

• Recoverability (part of Reliability): the system should be able to find already

processed orders.

– Setting up an external database which is independent of the rest of the system

acknowledges that requests will not be lost in the occurrence of an error.

• Maintainability: the system should be adaptable by administrators.

– Error debugging and traceability of failures should be possible. Providing the

necessary print and try and except statements in the code helps in tracing errors.

For errors regarding communication between the Digital Twin and the rest of the

system, some sort of message tracking has to be recommended.

– Design documentation should be available.

– Enough comments to explain the scripts/functions. This is intuitive as there is no

rule of thumb on the ratio lines of code/comment

• Adaptability (Portability): the measure of how much the software’s modules can be

adapted to other software/hardware and environments.

– The software’s documentation should be sufficient enough that new users can apply

the software to their own system. The input and output interfaces should be well

defined. The aforementioned I/O data model, a user manual and installation guide

satisfies this requirement.

13

4. FUNCTIONAL DESIGN

• Quality assessment

– One of the most used software quality assessment is the ISO 25010 norm. The

aspects assessed can be found in Table B1. This norm is a metric for quality

characteristics. In the table all green fields are applicable to this project. The

aspects considered can be found with its approach of how to achieve it. More

information can be found in Chapter 6.

4.4 Performance Requirements

In this section the required performance parameter will be stated. As the software is a CF

which focuses on modularity, its performance will not be assessed on basis of the scheduler

algorithm. A simple algorithm is implemented only to verify if the CF is working properly.

Instead the parameters used to assess its performance are:

• Message reliability (part of Reliability) - By using a Digital Twin data is constantly

exchanged with the CF. Loss of data could have a big impact on the performance of the

CF. A suitable communication protocol has to be selected.

• Scalability - For future purposes the CF should be able to massively scale up. Users

may want to extend data generation out of Digital Twin or use bigger layouts. In order

to enforce scalability a lot of parameters could be of influence. This thought has to be

kept in mind with all decisions that could affect scalability.

4.5 System Requirements

4.5.1 System Documentation

The software package which will be developed is in need of a strong system documentation.

The package has to form a template to use for analyzation and optimization of similar like

cases. As parts of the system may be replaced by custom made parts of the user, a detailed

system documentation is key for further use. The main parts of the documentation are: an

I/O data model, user manual and installation guide. Despite the CF’s modularity, scaling up

methods should be well defined. Scaling up could mean multiple modules need adjusting. Parts

considered for scaling up should be the Digital Twin’s layout and its data generation. Another

14

4. FUNCTIONAL DESIGN

argument to stress the importance of a strong documentation is that it may be implemented

on a real life production environment. The engineer in control of the implementation needs

to adjust the software to his/her liking. The same applies for maintenance engineers.

4.5.2 System integration

As mentioned before, the final CF should be usable by in combination with custom mod-

ules. The accessible data and the system’s functions should be clearly set out to facilitate

ease of use. This effectively means, a data input/output document which specifies how to get

information out of the every module and how the data input should be formatted. System

integration is the coupling of all physical and/or virtual parts.

Additional documents complementing the system integration are an installation guide and

a user manual. These documents are desirable for both administrators and future users of the

CF.

15

5. SOFTWARE ARCHITECTURE

5 Software Architecture

In the world of software development, UML has grown to be a de facto standard for design

and development of object-oriented systems [9]. This modelling tool is used to form a bridge

between IT and business departments. Both behaviour and the structure of systems can be

designed using UML. Simply starting with programming a script can cause problems later

on. If the UML diagrams are designed correctly, it could ease the development process. For

programmers it forms a blueprint for the software. Because of its highly visual notation it is

also understandable for non-software engineers (like business departments etc.).

In the design phase first the behavioural UML diagrams are designed, followed by the struc-

ture UML diagrams. If the behaviour is modelled accurately, it should encompass all the

system’s components. The other way around could deliver more problems. If the structure of

the system (all applications and physical entities) are modelled first and its behaviour after,

forgotten components could come to light that were not thought of before. This means the

structure should be adapted, which can lead to major programming issues.

In Subchapter 5.1 the structure will be handled first. The structure of the framework is

first set out using a structural diagram explaining all components. Additional diagrams are

set up to go more into detail. After the structure is clear the behaviour is set out in Subchapter

5.2 using UML diagrams. Starting UML Use Case diagrams which are behavioural diagrams

based on real life applications. These are worked out in detail using UML sequence, activity

and timing diagrams. The subchapters will elaborate on a specific functionality using these

diagrams.

5.1 Structure of Communication Framework

In Figure 4 the proposed communication framework can be seen with all modules defined.

The Scheduler module is represented by a Flask web application. The database used is Post-

greSQL. The client side (User Interface) is generated by a set of HTML pages. The Digital

Twin is designed in Prespective, a Digital Twin software for Unity. To enable bi-directional

communication between the Scheduler module and the Digital Twin, an MQTT broker is im-

16

5. SOFTWARE ARCHITECTURE

Figure 4: Global structure of communication framework

plemented as communication protocol. Each component is handled seperately and explained

how they are designed.

5.1.1 Scheduler Module: Flask Application

One of the most important components of the CF is the Scheduler Module. All communic-

ation towards the remaining modules is initiated or passed through this module. The whole

framework can be seen as a centralized communication framework. Almost all intelligence is

housed in this component in the form of an algorithm. In order to let all modules communicate

with this centralized component, it is set up as a web-based application called Flask running

on Python.

Flask is a microframework for web-based applications. It holds the term microframework

because of the absence of required tools and libraries in order to run. Although Flask is

a microframework, it is provided with a number of extensions in order to vastly extend its

functionalities. Flask sets up a server where you can define specific routes (URL scheme) to

which the user can navigate to using HTML pages. The HTML page rendering and data

abstraction is done via an HTTP connection between clients and the Flask server. For the

data abstraction of these HTML pages there exists an extension in Flask.

17

5. SOFTWARE ARCHITECTURE

The user input abstracted from the HTML pages is communicated to the PostgreSQL

database using a library called sqlalchemy. This library enables Object-Relational Mapping

(ORM). ORM is used for data conversion between two incompatible applications. This ef-

fectively means that operations done on the PostgreSQL-database can be initiated from Flask

using Python queries. This saves time converting SQL queries into Python. The same holds

for custom classes defined in Python. These custom classes can be mapped onto an SQL

table. If a query is made for an SQL object or a request is submitted/edited to PostgreSQL,

it doesn’t need converting between the two applications (Flask and PostgreSQL database).

From Figure 4 it becomes clear that all communication towards and from the Digital

Twin is channeled through the MQTT broker. More information about the MQTT broker is

provided at 5.1.5.

5.1.2 User Interface: HTML Page Rendering

The clients are the end users of the system. HTML pages are rendered to keep it user friendly

and easy to use the framework. Forms are implemented for the user to submit their request

details. Using HTTP methods POST and GET, data can be shared between the client and

Flask. For the graphic design the library bootstrap is used. This library is also available as

an extension in Flask: flask_bootstrap.

All use cases are initiated from the User Interface (UI): submitting, editing, deleting and

finding a request. These use cases can all be performed during runtime. This module is the

only part of the system where user input is required. A screenshot of the home page of the

User Interface can be seen in Figure 5.

5.1.3 Request Database: PostgreSQL

For the storage of requests and their current status, a PostgreSQL database (server) is set up

which runs on the language SQL. PostgreSQL is used to manage the locally hosted database.

By using ORM, SQL queries and object modification/abstraction can be initialized from Flask.

18

5. SOFTWARE ARCHITECTURE

Figure 5: Visual representation of User Interface using rendered HTML-pages

In the PostgreSQL database it is possible to set an attribute of a row as primary key. This

primary key is a unique identifier for each database entry (a request). The primary key is set

to the request ID. Only requests are communicated between the PostgreSQL database and

Flask. Each request consists of the following attributes: request ID, ordertype, pick up date,

pick up time, end delivery date, end delivery time, source, destination, request cost, capacity,

status, AGV assigned and end timestamp. For an explanation of each attribute see Appendix

C.1.

5.1.4 Simulation: Prespective Digital Twin Software

Smart manufacturing is seen as the cornerstone of the fourth industrial revolution [10]. It

defines the current trend in intelligent manufacturing by connecting machines and resources

to the internet. By this connection, generated data from these machines and resources is used

for optimization purposes. The AGV’s status with respect to the battery charge and location

are of importance to the scheduler algorithm. Therefore, bi-directional communication in the

Digital Twin is essential. The main reason for the choice to use Prespective is its ability for

bi-directional communication. Already mentioned in Chapter 1, smart factories generate a lot

of data which are used for optimization techniques. Prespective can communicate with ex-

ternal modules during run-time by using Messaging Queueing Telemetry Transport (MQTT).

In Figure 6 the main structure of Prespective is visualized. All participants are mentioned:

Actors, Instructor and Cues. All participants fall under a Discrete Event Simulator (DES)

which contains the actual script for the behaviour of the simulation itself. The DES is also

armed with a so-called Pre Logic Simulator. This simulator forms the bridge between Pre-

19

5. SOFTWARE ARCHITECTURE

Figure 6: Prespective Digital Twin’s structure

spective and the rest of the CF. The MQTT adapter is defined in this component.

This software is the replacement of a real AGV fleet which is controlled by a Fleet Manage-

ment System (FMS). In Prespective a similar approach is implemented. They use Actors and

an Instructor. Actors are the resources used, in this case AGVs. They must be provided with

a script in which certain attributes can be defined which are updated with each simulation’s

frameupdate. Current updated attributes are Charge and AGVPosition. The Instructor is

the control unit for Actors which means it controls the behaviour of each AGV on the system-

level. The Instructor is similar to an FMS. In the Instructor script incoming requests are

dissected and assigned to the concerning AGV. It sends the AGV on its transport route giving

a sequence of steps to take in order to complete the request. The script is able to connect user

input source and destination nodes to machine stations in the Digital Twin. The stations are

declared in Prespective with the help of Cues. Cues are defined as junctions of paths which

are decision points on a specific path. The remaining parts are the Splines. These are the user

defined paths that describe the dynamics of Actors inside of the simulation. Cues are defined

on this Splines. In order to reach a certain Cue the Actor knows how to reach its destination

20

5. SOFTWARE ARCHITECTURE

Figure 7: Prespective Component Tree with applied scripts

using these Splines.

A lot of new terms came to light in this chapter. It is clear that Prespective is mainly built

on components and scripts. In Figure 7 the concerning scripts are coupled to the components.

There are 2 types of lines depicted. The dashed line which shows which script is connected

to which component. The lines with an empty diamond attached are defined as an aggreg-

ation relationship. It can be read as a ’part-of’ relationship. For instance the component

AGV_Manager is part of the component DESController. For more information about the

used scripts in the Digital Twin software Prespective, see Appendix D.

21

5. SOFTWARE ARCHITECTURE

5.1.5 MQTT Broker

An assessment was done on several IoT messaging protocols. MQTT is chosen for its reliab-

ility. It has the ability to choose a Quality of Service level (QoS) of two which guarantees a

message is delivered exactly once which complies with the performance requirements. MQTT

even has a function called "last will and testament" to ensure message delivery after discon-

nect. Naik (2017) did a comparison on CoAP, MQTT, AMQP and HTTP. MQTT wins the

race on reliability. Together with its scaling abilities, it made the choice decisive to choose

MQTT.

In this framework a locally hosted and open source broker called Mosquitto is used. A

broker is a message mediator to which all participating modules (MQTT clients) can connect

by using the broker URL (127.0.0.1 for locally hosted brokers) and a specific port. MQTT

is a publish and subscribe messaging mechanism which utilizes a message mediator (broker).

Upon connecting to the broker the client can subscribe to certain topics. If another client

would publish (sending a message) on this topic through the broker, all subscribed clients will

receive this message. Figure 8 gives more insight. E.g. the Digital Twin is subscribed to the

topic "/requests". If the Flask server publishes a message to this topic, the Digital Twin will

receive the message as it is subscribed to that topic. Additionally, it is a lightweight commu-

nication protocol meaning its power consumption is low. Clients only make a connection to

the broker once. If connected, a keep-alive signal is sent to check whether the client is still

connected. If not, it is automatically reconnected. This feature supports the sustainability

aspect of smart manufacturing [5].

Figure 8: MQTT: a publish/subscribe messaging protocol

22

5. SOFTWARE ARCHITECTURE

Figure 9: Four part handshake corresponding to QoS of 2

In order to better understand the behaviour of the CF, first the behaviour of an MQTT

publish message is explained (see Figure 9). By selecting a QoS of 2 (every message is de-

livered exactly once) every publish message consist of a ’four part handshake’. This sequence

occurs every time a message is published to the MQTT broker.

When the receiver obtains the initial PUBLISH message from the sender it acknowledges

it with a PUBREC message. The original PUBLISH message is deleted by the sender and

PUBREC is stored. The sender responds with a PUBREL message. If the receiver gets

the PUBREL message, all stored messages are deleted and a PUBCOMP message is sent to

acknowledge receiving PUBREL.

5.2 Behaviour of Communication Framework

In order to fully explain the CF’s behaviour a distinction is made. Behaviour can be extern-

ally or internally triggered. With user initiated behaviour (externally triggered) an action is

performed by a user which triggers specified behaviour. Internal triggers are trigger event that

occur in the Digital Twin. In Chapters 5.2.1 until 5.2.5 both behaviour is depicted as UML

Sequence diagrams. All behaviour is set out with the help of use cases.

23

5. SOFTWARE ARCHITECTURE

5.2.1 UML Use Case Diagrams

Use case diagrams are used to define the system’s functionality with respect to end users.

These diagrams depict the overall functionalities. Alhumaidan (2012) stated that "The use

case diagrams provide interactions between roles known as actors and system to achieve a

certain goal" [9]. Per functionality a system boundary is denoted to define in which part of

the system it takes place. Two types of relationships are used: the include and extend rela-

tion. Include implies a function that always follow after its origin function. Extend suggests

a function which could be called but not necessarily.

From these use case diagrams test cases can be derived as they are based on the needs of

the end user. Three use cases are depicted in diagrams to encompass its main functionalities:

submitting, editing, deleting, completing and finding a request.

5.2.2 Use Case 1: Submit, Edit and Delete Request

The first three are combined into one use case diagram (Figure 10) since they use the same

actors. These cases are straightforward. Submitting a request can result in an acceptance or

a rejection which is dependent on the correctness of the user input. The user input undergoes

several format checks before acceptance. E.g. a new request can’t contain a end delivery date

in the past. For Edit Request and Delete Request a Verify Request ID function is implemented.

After this verification there are three subsequent function that could be executed: Verification

error, Accept Edit or Accept Deletion.

5.2.3 Use Case 1 in Detail

The superficiality in the first use case (Figure 10) is obvious as more behaviour is hidden be-

hind the functions mentioned. There exists a sequence of events for each of the three functions

(Submit Request, Edit Request and Delete Request) which is hidden in the use case.

Submit Request

The first case which will be elaborated is Submit Request. A UML sequence diagram of

24

5. SOFTWARE ARCHITECTURE

Figure 10: Submitting, editing and deletion of a request in a use case diagram.

its behaviour is depicted in Figure 11. After the initial function requestSubmitted(), which is

triggered by the user via the UI, the Scheduler Module sends the new request to the Post-

greSQL database with db.session.add() and subsequently db.session.commit(). At the same

time the user is informed of the acceptance of his request using render_template() which

contains the submitted request’s details. The scheduler sends a message to MQTT-topic

"communicationframework/externalTrigger" letting the Digital Twin know that an external

trigger event occured. This topic is solely used when a request is submitted, nonetheless it can

be used for any external trigger event. The remainder of the sequence that follows is almost

the same for every internal/external trigger event. From hereon the sequence can result in

four ways. Note that only the first UML sequence diagram is located in this chapter because

the main sequence of events of each result is comparable with minor changes.

Upon noticing that a trigger event occurred, the Digital Twin will send the AGV’s statuses,

which is always followed by a trigger message which triggers the Scheduler Algorithm. This

use case can result in four ways:

25

5. SOFTWARE ARCHITECTURE

1. Receiving this trigger message makes the Scheduler obtain the request with earliest

End delivery date (SQLEditor.database_sort()) and send it to the Scheduler Algorithm

(Algorithm.main()). The Algorithm assigns an AGV to the request and returns it to

the Scheduler Module. The Scheduler Module publishes the scheduled request to the

MQTT-broker which sends it to the Digital Twin. Do note that the scheduled request

is also updated in the database using SQLEditor.request_status_update() (See Figure

11 for the concerning UML sequence diagram.)

2. For the second possible result the sequence stays the same as in 1 until Algorithm.main()

is called. Now there is no idle AGV with sufficient charge to transport the selected re-

quest. The Algorithm asks for all unscheduled request with SQLEditor.database_sort_all().

It loops over all selected requests to check if one does not exceed the AGV’s charge. If

so, Algorithm.main() is triggered again with the selected request. After it assigned an

AGV it gets published to the MQTT-broker which sends it to the Digital Twin. See

Figure A2.

3. If there was no request (in the loop mentioned at point 2) to match the AGV’s charge,

the scheduler module will generate a charging request with Algorithm.chargingRequest().

This chargingrequest will be published to the MQTT-broker which will send it to the

Digital Twin. See Figure A3.

4. The last case is a variation of point 3. When the Algorithm.chargingRequest() is initiated

but the AGV’s charge already has reached the upper threshold, this function will return

None which ends the sequence. The sequence of this case can be found in Figure A4.

For better understanding the dynamics on submitting a request before the external trigger

is sent over MQTT-topic "communicationframework/externalTrigger", an activity diagram

is generated in Figure 12. In the lane User Interface all the possible routes regarding the

concerning use case are shown. Beginning at the index page where all use cases are present.

Its sequence can be explained as follow:

• At the submitform() route, the details of the request to be submitted can be entered.

From this route it will go to requestsubmitted().

26

5. SOFTWARE ARCHITECTURE

Figure 11: UML Sequence diagram in case of submitting a new request

• Before entering this route, input validations are executed. It is checked if all required

fields are filled in and if all dates are eligable.

• If all input information is validated, an object of the RequestSQL class (see Table C2) is

instantiated in order to submit the request to the PostgreSQL database using SQLEd-

itor.sql_submitRequest().

• This will be followed with render_template(’submitcompleted.html’,newRequest which

returns the success HTML-page with the newly added request’s details newRequest.

Note that the route requestsubmitted() is in a dashed rectangle together with all possible

render_template() instances. In order reach the requestsubmited() route, a render_template()

must always be exposed. This notation will return in the coming UML Activity diagrams.

27

5. SOFTWARE ARCHITECTURE

Figure 12: UML activity diagram for submitting a request

Edit Request

In the Edit Request function there exist a sequence of events as well. When a tenant wants to

execute an edit, a request ID has to be submitted so the system knows which request needs

to be edited. In Figure 13 a verification of the request ID is performed. It can either match a

request or the ID is invalid which invokes resubmitting the correct request ID.

Before a template is rendered back to the user, it will perform the aforementioned valida-

tions. Validations are done on the request ID and if its status is still unscheduled. Dependent

on this validations it renders the matching template. If all is correct the function SQLEd-

itor.sql_submitEdit() is performed.

28

5. SOFTWARE ARCHITECTURE

Figure 13: UML activity diagram for editing a request

Delete Request

The first part of the behaviour of a request deletion is practically the same as for the re-

quest edit. A request ID verification is needed for the system to know which request needs to

be deleted. After the verification, the system tracks down if the request is still unscheduled.

The UI routes are different as are the templates rendered.

29

5. SOFTWARE ARCHITECTURE

Figure 14: UML activity diagram for deleting a request

5.2.4 Use Case 2: Complete Request

In Figure 15 the use case of a completed request, is depicted. If this event occurs, instantly

a timestamp is added to this particular request. Now the request can be verified if it is

delivered in time. For now, if Complete Request occurs it will instantly trigger scheduling

the next request followed up by assigning the next request in line or a charging request to

the concerning AGV. The latter will happen if the AGV is unable to transport any of the

unscheduled request from SQL database. This could occur in case of a battery charge shortage

or an empty database.

5.2.5 Use Case 2 in Detail

The completion of a request is a trigger event. Meaning that it will trigger a sequence of events

which is partly covered in Chapter 5.2.3 at the Submit Request use case. All four mentioned

30

5. SOFTWARE ARCHITECTURE

Figure 15: Request completion as a use case diagram

possible results can occur again. The only difference is that the completion of a request is an

internal trigger as it occurs in the Digital Twin.

For the UML Sequence diagram when a request is completed, see Figure 16. The remaining

possible results, after completion of a request (with function name: OnAGVDoneWithThisAs-

signment), are the same as in Figures A2, A3 and A4 with the internal trigger replacing (On-

AGVDoneWithThisAssignment) the external trigger (submitting a request). As can be seen,

the part of processing the submitted request is left out. Note that after a completed request,

the Digital Twin sends a request update over MQTT topic ”communicationframework/requestStatus”

which updates the status of the concerning request to processed.

Currently, the completion of a request is the only internal trigger defined. Future users

might want to implement additional internal triggers. A global UML Sequence diagram for

internal triggers is generated in Figure A5. This sequence is initiated with a global internal

trigger event (an arrow pointing at itself is added in Figure A5: internal trigger). This is

actually the global case of when an internal trigger occurs in Prespective.

31

5. SOFTWARE ARCHITECTURE

Figure 16: UML Sequence diagram in case of a completed request

5.2.6 Use Case 3: Find a Request

The last use case is when a user wants to obtain a request’s status. The user only has to enter

a request ID to show its details. The details that will be displayed are defined in Table C2.

The use case is depicted in Figure 17. After the initiation of this use case (Finding Request in

Figure 17) the request ID is verified. If correct, the Scheduler Module will obtain the request’s

attributes for the concerning request which will be followed by displaying them via the UI.

5.2.7 Use Case 3 in Detail

To clear up its exact behaviour, a UML Activity diagram suits best. It is quite similar

to the previous activity diagrams defined in this chapter. In the diagram for use case 3

(see Figure 18) only one check has to be performed. The user entered request ID is valid-

32

5. SOFTWARE ARCHITECTURE

Figure 17: UML Use Case diagram for finding a request.

ated. If incorrect it shows the "invalidid.html" page. If validated, the Scheduler Module

requests for the details using SQLEditor.sql_find_request(). The details will be displayed

using render_template(’editcompleted.html’, findRequest). In this function findRequest is the

object of the request which was inquired. More information regarding this function can be

found in Chapter C.2.

33

5. SOFTWARE ARCHITECTURE

Figure 18: UML activity diagram for deleting a request

34

6. VALIDATION AND DISCUSSION

6 Validation and Discussion

In order to validate the CF on system level, the communication sequences are the main focus.

The most important part for the communication validation is between the Digital Twin and

the Scheduler Module. This communication makes use of the MQTT protocol. As can be

seen in the UML Sequence diagrams in Appendix A, the MQTT messages play a big part

in the inter-modular communication. In the first part of the validation, a few test runs are

done to obtain the sequences in which MQTT communication is performed. For each run, all

sequences are checked and validated using a stripped version of the UML Sequence diagrams

depicted in Appendix A.

In the second part of the validation, the main functionalities of the CF are assessed and

validated using the Functional Design document stated in Chapter 4. This chapter is set up

to clearly state the functionalities the software should encompass. Most functionalities defined

in this document are inherited from the ISO 25010 [11] standard for assessing software quality.

This standard is set up to support developers specifying and evaluating quality requirements

[11]. A short introduction to the ISO 25010 will be introduced in Chapter 6.2.

6.1 MQTT Communication Validation

In order to validate all sequences regarding MQTT messages, all possible sequences have to be

stated. With the help of the aforementioned UML Sequence diagrams (see Appendix A) and

the explanation about the behaviour of the CF (see Chapter 5.2) four MQTT flow diagrams

are set up (see Figures 19 and 20).

6.1.1 Test set up

With the possible sequences set out, the system can be executed to see if it displays this

behaviour. Analyzing MQTT behaviour can be performed using a MQTT client software. In

this validation MQTT.fx is used (see Appendix G.1.1). With the help of this software an

MQTT client can be initialized by connecting to the MQTT broker. Just like with any other

client, topic subscribe and publish functionalities are included.

35

6. VALIDATION AND DISCUSSION

Figure 19: MQTT flow chart when triggered externally. a) A suitable request is found. b) No

suitable request is found

Figure 20: MQTT flow chart when triggered internally. a) A suitable request is found. b) No

suitable request is found

36

6. VALIDATION AND DISCUSSION

For analyzing the MQTT flow, this client is subscribed to all possible MQTT topics over

which data is being sent which are:

• Topic "communicationframework/requests": All scheduled requests from Scheduler Mod-

ule to Prespective.

• Topic "communicationframework/statusAgv": AGV’s status from Prespective to Sched-

uler Module.

• Topic "communicationframework/requestStatus": Used for updating a request’s status.

• Topic "communicationframework/externalTrigger": Used when an external trigger oc-

curs.

• Topic "communicationframework/triggerEvent": Used to trigger the Scheduler Module’s

algorithm to schedule a request.

More information regarding the specific usage of these channels can be found in Appendix C.5.

Three cases will be tested on their specific MQTT message sequences. Each case is executed

ten times. Using Figure 1 as layout with 5 AGVs performing the transport of orders, an

analysis is made. The following cases are generated:

• Case 1: The database is initialized with 10 requests. The AGVs are set to have a high

charge. This situation is based on use case 2: completion of a request (see Chapter

5.2.4). It simulates the occurrence of an internal trigger (completion of request). This

case is set up to validate the accuracy of scheduling requests as a result of internal

triggers without interference of charging requests.

• Case 2: The database is initialized with 10 requests. The charge of all AGVs is set

extremely low meaning not all requests can be transported as the maximum charge of

an AGV is lower then some requests. This case is set up to force the Scheduler Module

to generate charging requests. The ability to schedule charging requests is therefore

validated.

• Case 3: Start with an empty database. 5 request are submitted using the UI. This

case is likely to generate more messages as it can’t be self-triggering although it tries to

37

6. VALIDATION AND DISCUSSION

after completing a request (can’t be triggered due to empty database). The AGVs are

set to have a high charge. This situation is set up to generate use case 1: submitting a

request (see Chapter 5.2.2). This case validates the scheduling sequence in occurence of

an external trigger.

All three cases are executed and the sequence occurence is validated. All sequences should be

explainable by using the specified behaviour of the CF.

6.1.2 Results

For each case, the sequences are captured using MQTT.fx. In Table 1 the number of a spe-

cific sequence occurring is set out. The columns represent a specific sequence matching the

sequences depicted in Figures 19 and 20. For each case there exists an initial sequence that

differs a bit from the sequences stated in Figures 19 and 20. These initial sequences will be

explained per case. There were no deviations in sequence occurrences meaning each execution

resulted in the same sequences occurring for each separate case.

Case 18a) 18b) 19a) 19b) Initial Other

1 0 0 5 5 1 0

2 0 0 8 5 1 0

3 4 0 0 5 1 1

Table 1: number of sequence occurrences per case. Each column represents a specific sequence.

Firstly, case 1 is analyzed. As can be seen in Table 1 there are no occurrences that start

with an external trigger. This is logical, because no requests are submitted through the UI.

The initial sequence is depicted in Figure 21. The CF always starts with sending out all

AGV’s statuses over topic "communicationframework/statusAgv" followed by a trigger over

topic "communicationframework/triggerEvent". With the database filled and all 5 AGVs idle,

this first sequence results in 5 scheduled requests being sent over topic "communicationframe-

work/requests".

38

6. VALIDATION AND DISCUSSION

The remaining sequences are 5 times the sequence in Figure 20a) and 5 times the sequence

in Figure 20b). This can be explained, because the AGVs have enough charge (as stated in the

case description) and 5 requests left to schedule, the sequence in 20a) occurs 5 times. After

each of these requests is completed (which is a internal trigger), the Digital Twin goes on to

sending out the updated AGV’s status followed by a trigger. The Scheduler Module is unable

to schedule requests as it now lacks them in the database.

Figure 21: Initial MQTT sequence for Case 1.

In the second case again only internal triggers occur as no requests are submitted via the

UI. The initial sequence of this case is exactly the same as in Figure 21. This means already

5 out of 10 requests in the database are scheduled after starting the CF. Because of the low

charge of each AGV, all AGVs are forced to charge after their first processed request; a charge

request is initialized and sent to the Digital Twin over topic "communicationframework/re-

quests". This sequence is exactly the same as in Figure 20a). This accounts for 5 out of 8

occurrences of this sequence. The remaining ones are of processed requests after charging.

This leaves us with 2 unscheduled requests. The system is unable to transport them as the

charge after charging is still to low for its transport.

39

6. VALIDATION AND DISCUSSION

Case 3 starts with an empty database. The initial sequence starts off with sending the status of

all AGVs (topic: "communicationframework/statusAgv") followed by a trigger (topic: "com-

municationframework/triggerEvent). Because of the empty database, this is the end of the

initial sequence. During runtime, five requests are entered via the UI. Each entered request

follows the sequence of Figure 19a) except for one. This is an exceptional case. It follows

the same sequence as in Figure 19a) but it skips the step of sending the AGV’s status (topic:

"communicationframework/statusAgv"). This exceptional case occurred right after the first

request is submitted. The CF noticed that the status of all AGVs didn’t change from the

start of the simulation until submitting the first request. Although it is an effective feature

because it saves sending abundant messages, this behaviour was unaccounted for. More tests

were performed with an initial empty database. Upon submitting a request the CF displayed

the same behaviour in all test instances. The sequence in Figure 20b) was followed 5 times.

This sequence is started after completing a request and once again the database was empty

therefore the Scheduler Module couldn’t provide the Digital Twin with a new request as ex-

pected.

The MQTT communication validation shows that the CF’s behaviour is as expected. It

did show one abnormality, which doesn’t have an impact on the CF. In fact, it would be a

welcome extra feature. The Digital Twin and the rest of the CF are cooperating as wanted.

Robustness is proved as each execution per case resulted in the same sequence occurrences.

6.2 Functional Design Validation including Software Assessment

In this section an evaluation is done regarding the functional design document which complies

with ISO 25010 characteristics. ISO 25010 is used for software to design for its quality. It is

known as a widely accepted norm. It has its own certification. This norm can also be used

as a guideline when facing decision making. It contains two quality models with each its own

characteristics. The first is Quality in Use: how well can the product be used by specific

users to reach their goals? The second model is Product Quality. Together, they consist of 13

characteristics and 40 subcharacteristics.

The metrics of every characteristic always has been a complicated part. ISO/IEC 25010 prop-

40

6. VALIDATION AND DISCUSSION

Table 2: ISO/IEC 25010 model characteristics and subcharacteristics [12]

erties can not be determined using well-defined units like length, mass, time etc [11]. The

attribute metrics can be application specific. Usually, it is unnecessary to plan for all char-

acteristics. It should determined compliant to the end product’s requirements. For instance,

why would security be assessed for a new digital calculator?

For each characteristic separately it is decided whether it is assessed in Table B1, which

can be found in Appendix B. Green fields are used if a characteristic needs assessment and

orange if not. How it is achieved for every characteristic is mentioned in the last column. Note

that in this validation, the part Quality in use is skipped. This part is focused on the overall

usability of users which currently can not be assessed.

A validation was done for each of the ISO 25010 characteristics mentioned in Table B1 by

using validation and verification methods for adressing ISO 25010 characteristics [8]. Most

characteristics are validated using text in this report. The complete validation of this part

can be seen in Table 3. Each requirement mentioned in the functional design chapter is stated

in this table and how it is achieved. The requirements set before designing the CF are all

accounted for meaning the set of requirements is validated.

41

6. VALIDATION AND DISCUSSION
R
eq
u
ir
em

en
t

H
ow

is
it

ac
h
ie
ve
d
?

A
bi
lit
y
to

in
it
ia
te

U
se

C
as
es

(F
un

ct
io
na

ls
ui
ta
bi
lit
y)

In
C
ha

pt
er

5.
2
th
e
be

ha
vi
ou

r
of

th
e
pr
op

os
ed

C
F
is

se
t
ou

t.
E
ac
h
U
se

C
as
e
de

sc
ri
be

d
ca
n
be

in
it
ia
te
d
fr
om

th
e
U
I.

Se
lf-
T
ri
gg

er
in
g

T
he

C
F
is

bu
ild

to
ha

nd
le

in
te
rn
al

an
d
ex
te
rn
al

tr
ig
ge
rs
.
E
ac
h
of

th
em

ha
ve

th
ei
r

ow
n
M
Q
T
T

to
pi
c
("
co
m
m
un

ic
at
io
nf
ra
m
ew

or
k/

tr
ig
ge
rE

ve
nt
"
an

d
re
sp
ec
ti
ve
ly

"c
om

m
un

ic
at
io
nf
ra
m
ew

or
k/

ex
te
rn
al
T
ri
gg

er
")
.
O
nc

e
th
e
C
F
is

st
ar
te
d
th
e

in
te
rn
al

tr
ig
ge
rs

ar
e
pr
od

uc
ed

by
th
e
C
F
it
se
lf
an

d
ex
te
rn
al

tr
ig
ge
r
in
it
ia
te
d

fr
om

su
bm

it
ti
ng

a
re
qu

es
t
(a
dd

it
io
na

li
nt
er
na

l/
ex
te
rn
al

tr
ig
ge
rs

ca
n
be

de
fin

ed
.

U
se
r
E
rr
or

P
ro
te
ct
io
n
(p
ar
t
of

U
sa
bi
lit
y)

T
he

C
F
sh
ou

ld
pr
ev
en
t
w
ro
ng

da
ta

us
er

in
pu

t.
T
hi
s
is

ac
hi
ev
ed

by
de

fin
in
g

ce
rt
ai
n
ru
le
s
in

th
e
U
R
L
ro
ut
es

in
si
de

th
e
F
la
sk

ap
pl
ic
at
io
n.

Se
e
A
pp

en
di
x

C
.3

fo
r
th
es
e
ru
le
s.

In
te
ro
pe

ra
bi
lit
y
(p
ar
t
of

C
om

pa
ti
bi
lit
y)

A
n
ex
te
ns
iv
e
I/
O

m
od

el
is

se
t
up

w
hi
ch

is
pr
ov
e
th
at

al
lM

od
ul
es

ar
e
ab

le
to

ha
nd

le
in
pu

t
fr
om

ex
te
rn
al

M
od

ul
es

w
he

re
ne

ed
ed

.
Se

e
A
pp

en
di
x

C
fo
r
th
is

I/
O

m
od

el
.

R
ec
ov
er
ab

ili
ty

(p
ar
t
of

R
el
ia
bi
lit
y)

T
he

ex
te
rn
al

SQ
L
da

ta
ba

se
se
t
up

fu
lly

co
ve
rs

th
is

re
qu

ir
em

en
t.

In
ca
se

of

an
er
ro
r,

th
e
SQ

L
st
ay
s
un

to
uc
he

d.
A
ll
re
qu

es
t’
s
st
at
us
es

ar
e
st
or
ed

.

M
ai
nt
ai
na

bi
lit
y

T
he

pr
ov

id
ed

sc
ri
pt
s
ar
e
fu
ll
of

pr
in
t
st
at
em

en
ts

in
or
de
r
to

tr
ac
k
th
e
C
F
’s

pr
oc
es
s
flo

w
.
T
he

M
Q
T
T

m
es
sa
ge
s
ca
n
be

tr
ac
ed

us
in
g
ad

di
ti
on

al
so
ft
w
ar
e

(s
ee

A
pp

en
di
x
G
.1
.2

fo
r
re
co
m
m
en

de
d
so
ft
w
ar
e)
.

A
da

pt
ab

ili
ty

(p
ar
t
of

P
or
ta
bi
lit
y)

T
he

so
ft
w
ar
e
do

cu
m
en
ta
ti
on

co
ns
is
ti
ng

of
a
I/
O

da
ta

m
od

el
,I
ns
ta
lla

ti
on

G
ui
de

an
d
a
U
se
r
M
an

ua
la

ss
ur
es
:
C
F
in
st
al
la
bi
lit
y
on

ot
he

r
co
m
pu

te
rs

an
d

ad
ap

ta
bi
lit
y
of

ea
ch

se
pa

ra
te

m
od

ul
e.

Table 3: Combining the functional requirements and ISO characteristics for the sake of validation.

42

6. VALIDATION AND DISCUSSION

6.3 Discussion

In Chapter 1 the aim of this research was stated: design a modular CF that can process

incoming requests from multiple tenants using a Digital Twin. The designed CF should be

the missing piece of the puzzle that is called the Brainport Industry Campus. Several decision

support tools (among which single-load and multi-load scheduling algorithms) can be tested.

First research has been done on what is needed for creating such a framework. The differ-

ent components that should communicate were first set up as a template (see Figure 2). This

template is filled in with technical components and describes how their behaviour is structured.

The proposed CF delivers an environment where algorithms for similar situations can

be tested in a dynamic environment that produces data which can be used to feed these

algorithms. It has been setup in modular fashion which opens up the possibility of imple-

mentation in a real production environment. With the Digital Twin included, testing before

implementation is made viable. Before implementation in a real life manufacturing environ-

ment a deployment plan has to be developed. How this exactly works is reserved for further

research.

Its relevance came to light while progressing in this project. Numerous enquiries about

the CF were made as word came out about the proposed CF. It is clear that the BIC benefits

from this project. The OPAC group (Operations, Planning, Accounting and Control) of the

Technical University of Eindhoven is preparing to go more in depth by setting up a taskforce

that combines the BIC case with robotics research. This would enhance the Digital Twin

approach of the real world.

More enthusiasm came from the academic world. Another former Master Student is in-

terested in using the framework for his ongoing research. This research is focused on using

Semantic Web for data integration with the focus on data obtained from sensors on machines

and resources in a production environment. Using the Semantic Web could also merge the use

of multiple FMS’s into one common FMS. The CF is designed such that heterogeneous AGVs

can be tested in a manufacturing environment.

43

6. VALIDATION AND DISCUSSION

Usage of the CF in a multi-tenant environment has been made clear throughout this pro-

ject. Although the CF is designed for a multi-tenant environment, it could be used by singular

companies where multiple employees could use the CF. E.g. an enquiry was done for using

the CF in the logistics of hospital beds transported by AGVs.

The CF has also made name outside of the University. It is presented at the EAISI summit

(Eindhoven AI Systems Institute) which was digitally attended by over 80 people.

44

7. LIMITATIONS AND CONCLUSION

7 Limitations and Conclusion

7.1 Limitations

Although the interest from the business and academic world is clear, the proposed CF still

has its limitations. The setup has been made but more research awaits before implementing

the CF. The topics for further research are listed below.

• Modularity Validation: the process of designing the CF was based on the concept of

modularity. The extensive system documentation is proof of that. It still remains to be

seen if it was enough. Further research should try and replace modules in order to fully

validate its modularity.

• Collision avoidance: the Digital Twin software Prespective has a lot of potential in the

manufacturing world. Although it is one of few that provides a dynamic environment

that generates real-time data, its functionalities and UI are still under development.

Collision avoidance is one of these functionalities that is currently being developed.

• User verification: currently every tenant that would initiate a use case is able to do so

for each submitted request. Before implementing the CF in a production environment

some sort of user verification needs to be established. Users should only be able to

perform operations on their own orders.

• A thorough validation of the process flow inside of the Scheduler Module still needs to

be executed. Although the process flow itself is mapped extensively in Chapter 5.2, in

the validation chapter its behaviour is seen as a black box. This distributed software

package makes it hard to validate the pieces of software separately. A full validation of

specific communication within a module combined with the communication on system

level is therefore left out of the picture. In the world of software development this would

be a job done by a team of test engineers.

45

7. LIMITATIONS AND CONCLUSION

7.2 Conclusion

In this research an extensive CF is proposed in which algorithms can be tested in a Digital

Twin capable of bi-directional communication. First the problem and scope of the project

are defined followed by performing research into communication frameworks. The gained

knowledge was applied and converted to fit the multi-tenant aspect of this project. The

resulting CF is designed by bringing together multiple modules (User Interface, Database,

Scheduler Module, Digital Twin and the MQTT communication protocol) and making them

communicate with each other by generating communication interfaces between the modules.

By implementing a highly customized Digital Twin capable of bi-directional communication

through a scalable MQTT-broker, a strong foundation is built for increasing data generation

from the shop floor. The modularity approach makes it possible to implement custom made

factory layouts and custom algorithms enabling usage for multi-tenant (not only in the BIC)

and single-tenant environments. These abilities make the CF align with the vision of smart

manufacturing 4.0. Real time data exchange in order to optimize manufacturing processes is

the biggest trend in the manufacturing business. The validation proves that the inter-modular

communication is behaving as expected. The overall functionalities of the CF are validated

which proves all required functionalities are implemented.

The research stands out because it is focused on a multi-tenant environment which cur-

rently is uncommon in the manufacturing business. The BIC is a unique factory whose vision

is ahead of its time. If this vision proves to be successful the proposed CF could be highly

desired by followers of the BIC’s vision.

Another big advantage is the possibility of using heterogeneous AGVs. Currently each

brand of AGV operates with their own FMS. The need for a common FMS despite its brand

is a well known problem which receives much attention by researchers around the world.

Because of the AGV heterogeneity, the CF diminishes this problem enabling the testing of

AGVs with diverse capabilities.

46

7. LIMITATIONS AND CONCLUSION

The main research question proposed is stated in Chapter 3:

How to develop a communication framework to implement a scheduling algorithm for a het-

erogeneous AGV fleet in a multi-tenant environment?

This question is answered by setting up a framework with accessory modules. These

modules are designed to communicate with each other passing data. By its modularity and

complementary documentation the CF is set up to house custom made scheduling algorithms.

The UI makes the CF usable by multiple tenants.

The answer to the main research question is answered with the help of the sub questions

set up:

1. What is needed for designing software?

2. How can all components communicate on the edges using different syntax?

3. How to assess the quality of this software?

The first sub question is extensively answered by researching the components needed for

the CF which later were filled in by describing the structure of the proposed CF. The second

question is accounted for by stating how each module communicates with its environment by

stating each module’s communication protocol. The third question is handled in the validation

by using the certified ISO 25010 norm for software assessment.

Future research is still awaiting. It is possible to deploy the framework in a real manufac-

turing environment, which replaces the Digital Twin. How this exactly works remains to be

investigated. This research should specify what hardware capabilities are needed. The pro-

posed CF is developed to run on a single computer. For large factories a technical deployment

plan is needed.

47

Appendices

A Additional UML diagrams to Use Case 1 (Submit, edit and

delete request)

A.1 Use Case 1 in detail

48

A. ADDITIONAL UML DIAGRAMS TO USE CASE 1 (SUBMIT, EDIT AND DELETE
REQUEST)

Figure A1: UML Sequence diagram in case of submitting a new request

49

A. ADDITIONAL UML DIAGRAMS TO USE CASE 1 (SUBMIT, EDIT AND DELETE
REQUEST)

Figure A2: UML Sequence diagram in case of submitting a new request and first selected request

exceed AGV’s charge. It queries for all unscheduled requests in database and finds a suitable request.

50

A. ADDITIONAL UML DIAGRAMS TO USE CASE 1 (SUBMIT, EDIT AND DELETE
REQUEST)

Figure A3: UML Sequence diagram in case of submitting a new request and no suitable requests are

found that match the AGV’s charge

51

A. ADDITIONAL UML DIAGRAMS TO USE CASE 1 (SUBMIT, EDIT AND DELETE
REQUEST)

Figure A4: UML Sequence diagram in case of submitting a new request and no suitable requests are

found that match the AGV’s charge. The CF tries to generate a charging request but the concerning

AGV already has reached the charge’s upper threshold.

52

A. ADDITIONAL UML DIAGRAMS TO USE CASE 1 (SUBMIT, EDIT AND DELETE
REQUEST)

Figure A5: UML Sequence diagram in case of an internal trigger event occurs

53

B. ISO 25010

B ISO 25010

Table B1: ISO/IEC 25010 model characteristics verified if test is needed

54

C. INPUT/OUTPUT DATA MODEL

C Input/Output Data Model

In order to give more insight in how data is formatted and converted in and between modules a

I/O data model is set up. For each seperate module all needed information regarding the usage

of data and internal functions. This document is intended for users that want to implement

custom modules. It will become clear what data (including its format) is fed to each module

(input) and what output is required for the CF to run smoothly.

C.1 Scheduler Algorithm

The algorithm implemented needs a few input parameters to run. In the algorithm there are

3 types of functions.

RequestToAGVNew , r e t r i g g e r , agv = Algorithm . main (tempstatus , r eque s tSo r t) (1)

chargingRequest = Algorithm . chargingRequest (tempstatus , Request) : (2)

All functions take tempstatus as input. This parameter constitutes the status of all AGVs.

This variable is gained from the Digital Twin and stored as a dictionary. It is built up as

follow:

Table C1: Data format built up for tempstatus

55

C. INPUT/OUTPUT DATA MODEL

Function (1) is the main part of the algorithm. It takes an additional parameter as input:

requestSort. This second input is defined by the request which has to be scheduled. This

request is gained from sorting the SQL-database on the request with the delivery date first to

come. This request can be called upon by:

r eque s tSo r t = SQLEditor . database_sort () (4)

The requestSort parameter is an object of the class RequestSQL which is defined in the script

models.py. It contains all necessary attributes. Table C2 shows what attributes can be found

when a query (like (4)) is executed. More information about SQL operations can be found

in chapter C.2.

Table C2: Custom class RequestSQL to use requests for storage and operations

The output of (1) is RequestToAGVNew which is the processed version of requestSort. The

56

C. INPUT/OUTPUT DATA MODEL

Algorithm should fill requestSort.assignAGV and requestSort.status. If succeeded to do so,

the Scheduler Module formats it before publishing it to the MQTT-broker.

The second output parameter of (1) is retrigger. This parameter is currently used in case

requestSort can’t be executed because no AGV has sufficient charge. In case retrigger is

equal to 1, the algorithm has found another request which can be processed by an AGV with

sufficient charge. It does mean (1) should be invoked again.

In case the Idle AGV(’s) has insufficient charge for any of the unscheduled requests, the

algorithm returns RequestToAGVNew = None and retrigger = 0.

The remaining output parameter is agv which represents which AGV is assigned to the

scheduled RequestToAGVNew. If RequestToAGVNew = None and retrigger = 0, the para-

meter agv ’s value is arbitrary.

Function (2) is called when the last mentioned case occurs. In this case a charging request

should be initiated. The input parameter Request is the charging request that has to be cre-

ated. In order to align it for submitting to the Database as well, it should be stored as an

object of class RequestSQL.

Request = RequestSQL (requestID=reques t id ,

orderType=’ charg ing ’ ,

source =0,

d e s t i n a t i on =0,

s t a tu s=’ unscheduled ’ ,

assignAGV=agv)

Function (2) should assign the attributes source, destination and the status. Last mentioned

has to be set to ’scheduled’. The other parameters should be provided. The parameter re-

questID, and agv are provided by the Scheduler Module. The request is also being submitted

to the SQL database by the Scheduler Module.

This function can also be triggered when a trigger event occurs from within the Digital Twin.

More about this in Chapter 5.2. Note: make sure to update the database if a custom made

algorithm is used.

57

C. INPUT/OUTPUT DATA MODEL

C.2 SQL Database

System incompatibility between the SQL database and the Scheduler Module can cause a

lot of additional data converting. With the help of Object Relational Mapping (ORM) this

problem is prevented. ORM helps in performing operations or queries in SQL initiated from the

Scheduler module. This counts for custom made classes as well. A custom class made (called

RequestSQL) in the Scheduler module (using Python) is mapped with an object instance of

an SQL table.

When a query is done initiated from the Scheduler module to the SQL database, it will

return an SQL table object. This object is recognized by the Scheduler module and stored as

an object of the custom made class: RequestSQL. In script models.py the custom made class

is defined:

c l a s s RequestSQL (db . Model) :

__tablename__ = " reque s t s "

requestID = db . Column(db . Integer , primary_key=True)

orderType = db . Column(db . Str ing , nu l l a b l e=False)

pickUpDate = db . Column(db . S t r ing)

pickUpTime = db . Column(db . S t r ing)

endDel iveryDate = db . Column(db . S t r ing)

endDeliveryTime = db . Column(db . S t r ing)

source = db . Column(db . Integer , nu l l a b l e=False)

d e s t i n a t i on = db . Column(db . Integer , nu l l a b l e=False)

requestCost = db . Column(db . In t eg e r)

capac i ty = db . Column(db . S t r ing)

s t a tu s = db . Column(db . S t r ing)

assignAGV = db . Column(db . Integer , nu l l a b l e=True)

EndTimestamp = db . Column(db .TIMESTAMP, nu l l a b l e=True)

All attributes listed are mapped to a column of the database db. By defining __table-

name__ this class is mapped to the database called requests. The nullable parameter defines

if a particular attribute can be empty. The primary_key parameter is a unique identifier which

helps quering for a specific database entry. For every attribute the data format is defined as

well.

For operations on the SQL database, an SQL editor python script is generated. All func-

58

C. INPUT/OUTPUT DATA MODEL

tions that can be called upon will be explained. Direct SQL queries can be quite extensive

and have their own format. The python package sqlalchemy contain these SQL queries in

the python language. This can be seen as a data converter. In the framework no direct SQL

queries are done. All queries are executed using sqlalchemy. For all use cases (submitting,

editing and deleting requests) functions have been set up.

Before defining the SQL operations, all input parameters are declared:

Input Definition Data format

rID Request ID Integer

pud Pick up date String formatted as: ’YYYY-MM-DD’

put Pick up time String formatted as: ’HH:MM’

ed End delivery date String formatted as: ’YYYY-MM-DD’

et End delivery time String formatted as: ’HH:MM’

sou Source Integer

des Destination Integer

rc Request cost Integer

cap Capacity Integer

sta Status String. Base value when submitting a request: ’unscheduled’

aAGV assignAGV Integer. Base value when submitting a request: None

Table C3: All input parameters needed to invoke SQL operations

Submit request to SQL database

SQLEditor . sql_submitRequest (rID , pud , put , ed , et , sou , des , rc , cap , sta ,aAGV) (5)

This function is currently called when a user enters a request via the UI (more about UI, see

Chapter C.3).

Edit Request in SQL database

59

C. INPUT/OUTPUT DATA MODEL

SQLEditor . sql_submitEdit (rID , pud , put , ed , et , sou , des , rc , cap) (6)

In this function only the rID can’t be empty. If any of the other input parameters are non-

empty, they will be changed in the SQL database where the request ID is rID. Empty input

parameters will be left untouched.

Selecting next request for scheduling

SQLEditor . database_sort () (7)

This function sorts the database by first its status. It should select a request which is not

scheduled yet by the algorithm. Secondly it will sort the database on ascending end delivery

date and time. Calling function (7) gives a request which has the earliest End delivery date

and status ’unscheduled’.

Update request status

SQLEditor . request_status_update (rID , s ta) (8)

Currently 3 states for requests are defined. The status is ‘unscheduled’ if the request is not

yet run through the algorithm. If the request is already fed through the algorithm, its status

is ‘scheduled’. When the request is carried out, its status is ‘processed’.

Note: If an own algorithm is used in the CF, function (8) should be used to update the

status of the request from ’unscheduled’ to ’scheduled’.

This function is also invoked by the current simulation model. If a request is completed,

the simulation sends a MQTT message over the channel “communicationframework/request-

Status” containing the input parameters rID and rStatus.

Deleting a request

60

C. INPUT/OUTPUT DATA MODEL

SQLEditor . sql_submitDelete (rID) (9)

If a request is to be deleted from the SQL database function (9) can be called. The deletion of

a request only needs a request ID rID as input. The deleted request is returned as an object

of the RequestSQL class.

Finding a request

SQLEditor . sq l_f ind_request (rID) : (10)

If a particular request has to be obtained from the SQL database, function (10) can be called.

This function is used for use case 3 (see Chapter 5.2.6). It returns the queried request is

returned as an object of the RequestSQL class.

Add timestamp

SQLEditor . add_endTimestamp(rID) (11)

If a request is finished a timestamp should be added to check whether the request is completed

in time. The following function takes care of that. Just like with update request status,

this function is called upon when the MQTT topic “communicationframework/requestStatus”

receives a message where request with rID and sta is ‘processed’. This message is initiated

from the simulation model whenever a request is completed. The same rID is used to add a

timestamp to.

C.3 User Interface: HTML Pages

All communication between the User Interface (UI) and the scheduler module is established

by HTTPS connection. This requires defining methods for every possible Flask route (all

possible URL’s the user could end up in). Method possibilities are GET and POST.

Input

Every page is rendered from the Flask application using the function render_template(). This

function requires 1 input which is the template you want to render. This template should

61

C. INPUT/OUTPUT DATA MODEL

be an HTML-page. As additional info, variables can be passed on from Flask concluding the

function:

render_template (’ page . html ’ , var iablename=variablename) (12)

Output

The only output is regarding all user input over the forms. Every variable input by the user

can be obtained in Flask using the function (13)

r eque s t . form . get (" f i e ldname ") (13)

where "fieldname" is the name of the input variable defined in the HTML page. All user

input is verified for correctness. This is done in the Flask application in the concerning URL

route. It checks whether all necessary information is submitted. The dates and times input

are checked if the specific values aren’t already passed. If installed correctly the CF limits the

source and destination fields to the machine locations defined in prespective.

C.4 MQTT Broker

The remaining modules are the scheduler module and the digital twin. The MQTT broker

doesn’t need explanation as this module only serves as communication mediator between the

two aforementioned remaining modules. In this subchapter the subscribed MQTT topics and

the data passed on via the topics will be set out for both modules.

C.5 Digital Twin (Prespective)

The only possible communication with Prespective is over MQTT. The inputs and outputs

will be defined with the help of the used MQTT-topics.

Input

The digital twin is subscribed to two topics on which it receives data.

1. Subscribed topic: “communicationframework/requests” Over this channel all requests

that are processed by the algorithm will be published. The outputted request Re-

questToAGVNew of the algorithm is an object of RequestSQL. Before sending it over

MQTT the object is reduced to RequestToAGV only containing the information that

the Digital Twin needs.

62

C. INPUT/OUTPUT DATA MODEL

RequestToAGV = {

"RequestID" : RequestToAGVNew . requestID ,

"OrderType" : RequestToAGVNew . orderType ,

"AssignAGV" : RequestToAGVNew . assignAGV ,

"Source " : RequestToAGVNew . source ,

" Des t inat i on " : RequestToAGVNew . d e s t i n a t i on

}

This variable is converted to JSON format and received in this format by Prespective.

The Digital Twin is able to read the JSON objects and store it as an object of a custom

made struct RequestStruct.

2. Subscribed topic: “communicationframework/externalTrigger” This channel is used if a

trigger event occurs from outside the Digital Twin. For instance when the SQL database

doesn’t hold unscheduled requests, an AGV is available and a new request is submitted.

A trigger should be send to initiate the sequence of events needed to schedule this

incoming request. The MQTT message over this channel should be a simple “1” in the

form of a string to trigger this sequence of events.

Output

The digital twin has 4 MQTT output topics to which it publishes messages.

1. Topic: “communicationframework/statusAgv” All AGV’s statuses will be send over this

topic. They are sent in the same format as tempstatus as defined at the input for the

scheduler algorithm. Prespective doesn’t support to send the dictionary format over

MQTT. Instead it is built up the same but converted into a string. The scheduler

module is able to breakdown this string to its wanted format (dictionary).

2. Topic: “communicationframework/splineDistances” This topic is only used on initiation

of the framework. All distances between machines/charging stations are stored as a

dictionary in the Digital Twin. There also is a key:value pair included for the amount

of machines (‘machineAmount’: int mAmount). Before sending it to this topic, the

complete dictionary is converted to a string. All key values for the distance between

machine i and machine j are named: ‘i_j’ (i underscore j).

63

C. INPUT/OUTPUT DATA MODEL

3. Topic: “communicationframework/triggerEvent” Whenever a trigger event occurs in the

Digital Twin, a trigger message is sent over this topic. This trigger message contains an

integer. If a trigger event occurs the integer is 1. Receiving the message 1 over this topic

triggers the algorithm to schedule the next request. The Digital Twin can also send

a 2 over this channel. If so, this means an AGV’s charge is below its threshold. Pre-

spective only sends a message over this topic when an AGV is done with an assignment.

Immediately after sending 1 or 2 over this topic, a 0 is sent for resetting the variable.

4. Topic: ”communicationframework/requestStatus” If an event occurs which alters the

status of a particular request, this channel is used. A custom class requestStatus in the

digital twin is sent consisting of:

pub l i c c l a s s r eque s tS ta tu s

{

pub l i c i n t rID ;

pub l i c s t r i n g RequestStatus ;

}

The message is read by the scheduler module as a dictionary with keys ‘rID’ and ‘Re-

questStatus’ with values respectively an integer and a string. This topic is used when an

AGV is done with an assignment to edit the status of request rID in the SQL database

to ’processed’.

C.6 Scheduler Module (Flask application)

The flask application is the center piece of the framework. Almost all communication is

passing through or is initiated by the flask application. First the MQTT communication is set

out. All subscribed topics and topics to which flask publishes to will be explained containing

the right data formats. Later in this subchapter the remaining communication is documented.

Input (over MQTT)

All output MQTT topics of the Digital Twin are the topics to which the flask application is

subscribed to. This also means that the data formats sent over these topics is already handled.

A short description per topic is given.

64

C. INPUT/OUTPUT DATA MODEL

1. Subscribed topic: “communicationframework/statusAgv” All needed real time informa-

tion regarding the AGV’s statuses is received over this topic. This data is stored in the

variable tempstatus. It is obtained by the Scheduler Module and used for the algorithm.

See data format at C.1.

2. Subscribed topic: “communicationframework/splineDistances” As said before, this topic

is only used once on initiation of the framework. The distance between all machines are

received as a string and immediately stored as a dictionary (see Chapter C.5). This dic-

tionary is currently used in the provided algorithm. Upon receiving this dictionary, it is

stored into a fileMachineDistances.pkl using the function pickle.dump(dictname,filename).

For using this dictionary, pickle.load(dictname,filename) is called and stored in a vari-

able.

3. Subscribed topic: “communicationframework/triggerEvent” If the trigger message over

this topic contains the integer 1, the algorithm is triggered to schedule a request. If the

trigger message contains a 2, the algorithm is triggered to create a charging request. For

both cases multiple requests could be scheduled depending on the availability/needs of

the AGV’s.

4. Subscribed topic:”communicationframework/requestStatus” See C.5 for more informa-

tion.

Output (over MQTT)

All input MQTT topics of the Digital Twin are the topics to which Flask publishes messages

to.

1. Topic: “communicationframework/requests” All scheduled request are published by the

Scheduler Module over this topic. Data format is RequestToAGV converted into a JSON

object before publishing. See Chapter C.5 for the particulars of the data format.

2. Topic: “communicationframework/externalTrigger” In case of a trigger event happening

outside of the digital twin, a string containing “1” is published on this topic. This triggers

the sequence of events for scheduling a request. Now only used when a new request is

submitted by a user.

65

C. INPUT/OUTPUT DATA MODEL

For every subscribed channel in the Scheduler Module, a callback function is defined. This

means when a message is received over a subscribed channel, this function is instantly called.

They are defined in the main script SchedulerModule.py. Beneath the form is defined with the

example of the ’communicationframework/statusAgv’ topic. The attributes client, userdata

and message are sent with the MQTT message.

@mqtt . on_topic (’ communicationframework/ statusAgv ’)

de f handle_mytopicAGV(c l i e n t , userdata , message) :

All communication over MQTT is covered. The remaining communication is set out be-

low. It is already covered before but from the external modules’ viewpoint. The remaining

communication is defined by referring to these external viewpoints as it coincides with the

communication as seen from the Flask module.

All communication with the SQL database is done with the functions covered at C.2.

All communication with rendered HTML pages is covered at C.3.

66

D. PRESPECTIVE SCRIPTS

D Prespective Scripts

In Chapter 5.1.4 the overall structure of the Prespective software was set out. It consists

mainly of components and scripts. Some scripts were standard from the software but others

had to be reformed drastically. In this chapter an elaboration is done on these scripts. The

software is built on reading script in C. All script will have the .cs extension, standard for C.

First the standardized script provided by Prespective will be explained. These scripts only

needed some parameter adjustments. In Prespective these scripts are loaded as components.

In Figure 7 the structure tree of the components can be seen.

D.1 Standard Prespective Scripts

For each script a short description is given. Additionally, the adapted parameters are stated.

The concerning standardized scripts are:

• DES Controller

• Pre Logic Simulator

• DSpline

• DESCue

D.1.1 DES Controller and Pre Logic Simulator

As seen in Figure 7 the component DESController is the parent component that is armed

with the scripts DES Controller and Pre Logic Controller. These scripts are focused on the

simulation attributes of the Digital Twin.

The overall simulation attributes changable are depicted in Figure D1. This window is called

the inspector view in Prespective. It is a UI window for scripts. The parameters visible are

already declared in the script and adjustable from this window. The only parameter touched

is the Time Multiplier which speeds up the simulation speed.

67

D. PRESPECTIVE SCRIPTS

Figure D1: Component parameter window for DES Controller.

The Pre Logic Simulator is used for initialization of the MQTT adapter in Prespective. The

parameter window is shown in Figure D2. In the subwindow Adapter Settings the main

features of the adapter are declared. They encompass the communication protocol (set to

MQTT), the IP address and port where the MQTT broker is located (locally hosted) and the

QoS level set to Exactly Once (equal to Qos = 2, see Chapter 2).

Important for this script is to set the component containing the script mqttScript.cs. It

is now attached to an object called communicationframework. This object doesn’t have a

visual representation in the Digital Twin but is of great value for the MQTT communication.

The object communicationframework should always be assigned as Logic Component. More

information about mqttScript.cs can be found in Chapter D.2.

Note: at the bottom of the Pre Logic Simulator ’s parameter window a button called Ex-

port Policy is displayed. Whenever a change is made to Pre Logic Simulator or mqttScript.cs,

this button has to be pressed. It compiles a policy regarding the MQTT communication

protocol.

68

D. PRESPECTIVE SCRIPTS

D.1.2 DESCue and DSpline

These scripts are imported with the component when inserted. These components are inserted

when designing a layout. Designing a selfmade layout is explained in Chapter G.

Figure D2: Component parameter window for Pre Logic Simulator.

D.2 Adapted Prespective Scripts

Like mentioned before, in Prespective scripts are adapted to fit the requirements. The following

scripts were adapted:

69

D. PRESPECTIVE SCRIPTS

• AGVManagerInstructor.cs

• AGVActor.cs

• mqttStruct.cs

• getDistanceMatrix.cs

D.2.1 AGVManagerInstructor.cs

As mentioned in Chapter 5.1.4 the Instructor is the replacement of the real life Fleet Man-

agement System (FMS). It controls all Actors (AGVs). The Instructor script has 5 main

functionalities:

1. Resolve AGV Assignment: this function is converting the request’s details. It for in-

stance checks which machine location matches the source and destination and which

AGV is to be used for a specific request.

2. Assign AGV to Machine: the converted information of the first functionality is given to

the concerning AGV.

3. Create request sequence: the data is broken down into understandable steps. For a

transport request it says: first go to the source machine, wait for 3 seconds and then go

the destination machine. For a charging request it states: go to the destination machine

and then wait until the charge reached the upper threshold.

4. On AGV done with assignment: this function specifies exactly what should be done

after an AGV is done with its assigned request.

5. Distance matrix struct: only used on initiation of the CF. This struct is to be filled in

by the function defined at Chapter D.2.4.

For more in-depth information please go through the scripts. They are provided with com-

ments.

D.2.2 AGVActor.cs

The script for the AGVActor component is where all AGV’s attributes are initiated and

updated like velocity, charge and AGV position. It’s script is built up in three parts. The first

70

D. PRESPECTIVE SCRIPTS

part is the definition of all used variables. The initial values are declared in this part as well.

The second part is a function called OnSimulationStart. As the name suggests, some

calculations are done at the start of the simulation.

The last part is for updating variables using function OnSimulationFrameUpdate. The

parameter currently updated per frame are AGV’s charge, position, status and location. Don’t

mistake location for position. The position is the real position in cartesian coordinates. The

location denotes at which machine location the AGV currently is at. If transporting this

attribute is −1.

For every AGV this script is currently the same. For differences in AGV attributes, this

script can easily be adapted.

D.2.3 mqttStruct.cs

All information for the communication over MQTT is defined. This script is inseparable

connected to the component communcationframework as depicted in Figure 7. The naming of

this component is of great importance. The name is the first part of all MQTT topic names.

Its structure looks like: communicationframework/..... The part after slash is defined in the

script mqttStruct.cs. The main functionalities are set out below.

• Signal definition: For each in- or output regarding to MQTT is defined. Its name,

direction (in- or output) and supported data format are defined. For instance one channel

is named "requests" which brings the eventual topic name to:

”communicationframework/requests”.

• For every MQTT-channel that is coming into Prespective (note: defined as OUTPUT

in mqttStruct.cs) a callback function is defined. In this way the Digital Twin knows

what to do upon receiving a message on the specified topic. Do note that defining the

callback is the equivalence of subscribing to a specific topic.

• All functions regarding to publishing information to a specific topic are specified in mqtt-

Struct.cs. Currently the AGV’s status, triggers, request updates and sending machine

distances are defined as functions.

• MQTT data structs: for each in- or outgoing topic a struct is set up to store the

information. With this technique Prespective can assign ingoing data to an object of

71

D. PRESPECTIVE SCRIPTS

one of these structs. It also formats outgoing structs which can be converted by the

Scheduler Module.

D.2.4 getDistanceMatrix.cs

The function for calculating the distances between all machines stations including charging

stations is defined in this script. This script is called upon in the OnSimulationFrameUpdate

function in script AGVManagerInstructor.cs when the simulation is in its first frame. The

structure of the distance matrix is defined in this script is as well (see Chapter D.2.1).

72

E. SCHEDULER MODULE’S SCRIPTS

E Scheduler Module’s Scripts

In this chapter all used scripts in the Scheduler Module will be described on their behaviour

and usage. A visual notation can be seen in Figure E1. Each script is provided with comments

explaining certain features.

E.1 SchedulerModule.py

In order to fire up the CF, this script is to be executed. It serves as the central script of the

Scheduler Module component. The main functionalities of this script are:

• From this central script the Flask application and the MQTT client are initiated. All

configuration regarding to these features are done in the first lines of the script.

• With initializing Flask, it also means the URL scheme (Flask routes) for the UI is defined

in this script (see Chapter 5.1.1). For each route the possible returned HTML pages are

defined and its behaviour upon reaching a specific route.

• Presence of functions regarding to MQTT. There are specfic function on what to do

when the Flask MQTT Client is connected and when a message is received on a specific

topic. In these functions specific behaviour is defined when one of these events occur.

For more information see Chapter C.6.

E.2 SQLEditor.py

This script is used to perform operations on the SQL database. For all functions with explan-

ation see Chapter C.2.

E.3 Algorithm.py

In order to fully test the CF a simple algorithm is implemented. The algorithm checks for

a specific request which AGV with sufficient charge is nearest by. For specifics on how this

is executed, check the comments in the script. The required usage of this algorithm can be

found in Chapter C.1.

73

E. SCHEDULER MODULE’S SCRIPTS

E.4 Models.py

In this script the custom made class RequestSQL is defined. With the help of ORM this

custom made class is compatible for usage in Python and in the SQL database. For more

information of how this works see Chapter C.2. .

E.5 Initialization Files

The concerning files that need to be run on initialization:

• Scheduler_initialization.py : used for initializing all charging stations. They need to be

seperated from machine stations.

• updateMachineDistances.py : when the Digital Twin is started up for the first time, it

will send the distances between the machines and charging stations. After the first

start, this script has to be executed. It will store the distances between all machines in

a dictionary which is now used by Algorithm.py. For more information about the data

format see Chapter C.5.

• csvToSql.py : This particular script can be used when the user wants to use a pre-filled

database. These can be delivered from a CSV-file (Comma Seperated Values). This an

excel extension. A test file is provided called requests.csv. The name of the CSV-file to

be inserted needs to be specified in this script. Running it will insert all requests in the

CSV-file to the SQL database.

74

E. SCHEDULER MODULE’S SCRIPTS

Figure E1: Script structure of the Scheduler Module

75

F. INSTALLATION GUIDE

F Installation Guide

F.1 Introduction

In order to fully use the CF a step wise explanation on how to install each piece is set out in

this chapter. Each component of the CF is handled separately. This guide is focused on using

the default configurations applied to the BIC case explained in Chapter 1. For adaptations

like using another algorithm or Digital Twin layout, the User Manual is recommended (see

Chapter G).

The components covered in this guide are:

• Prespective Digital Twin software for Unity

• Visual Studio Code

• PostgreSQL

• Mosquitto MQTT Broker

F.2 Purpose of Document

This guide serves the installation proces of the MQTT-based communication framework in-

cluding a Digital Twin. It brings together all applicable components and how to install them.

F.3 Prespective Digital Twin Software

The software of Prespective is still being developed further every day. Do note that later

versions of Prespective can interfere with functionalities set in earlier versions. This means

there is no guarantee if a later version of Prespective is installed. The version used in this CF

is 2020.1.58.3.2.

This software is built upon a real time development platform called Unity. For the full in-

stallation follow this link: Prespective Getting Started - Installing Unity Prespective. It is a

clear step-by-step video for installing both Unity and Prespective.

76

https://www.youtube.com/watch?v=2BeZQpCSW7s

F. INSTALLATION GUIDE

F.4 Visual Studio Code

The setup of the Scheduler Module including Flask is done on the platform Visual Studio

Code. The current version used is 1.51.1. Make sure you also have the Python extension.

This is available in the marketplace in VS Code (see Figure F1).

Figure F1: VS Code Marketplace in red rectangle

77

F. INSTALLATION GUIDE

The next step is to check whether you have installed the pip installer. It should already be

installed when installing VS Code. If not, download it from the market place.

In order to install all required packages, a virtual environment has to be created and activated.

VS Code documentation on Python explains how to do this: VS Code virtual environments.

VS Code is almost ready to install the required packages for the CF. First use the command:

pip i n s t a l l v i r tua lenvwrapper−win

In order to install all required packages use the command:

pip i n s t a l l −r requi rements . txt

This text file is provided in the CF’s software package. Check if all packages are installed

correctly using piplist.

F.5 PostgreSQL

Downloading the PostgreSQL database can be done via their website:

https : //www.postgresql.org/download/. The current version used is 13.0. Do make sure

when installed that the windows path for Postgres tools is set correctly. Specifically this means

adding the bin directory to the path system variable.

The next step is to connect the Scheduler Module with the SQL database. In the script

SchedulerModule.py the right URL has to be provided. After the importing of packages the

Flask app configurations are defined. For the connection, the following variable in Scheduler-

Module.py has to be adapted accordingly:

app . c on f i g ["SQLALCHEMY_DATABASE_URI"] = " po s t g r e s q l+psycopg2: //{username} : {

password} @loca lhos t /{dbname}"

In the curly brackets the PosgreSQL username and password need to be entered. This also

has to be done in the script SQL_Initialization.py.

Note: the variable dbname is the overall database name which consists of tables. The table

is where the actual requests are stored.

78

https://code.visualstudio.com/docs/python/environments
https://sqlbackupandftp.com/blog/setting-windows-path-for-postgres-tools#:~:text=If%2C%20after%20installing%20PostgreSQL%2C%20you,is%20a%20system%20variable%20which

F. INSTALLATION GUIDE

Now everything is set regarding to the SQL Database. When the overall CF is executed

for the first time, the database table requests is initialized. This database will be used for

storing every request. For pre-filling the database see Chapter G.

F.6 Mosquitto MQTT Broker

As already mentioned in Chapter 5.1.5, a locally hosted MQTT broker is used. The open

source broker called Mosquitto is used for this purpose. This application is installed as a

Windows Service. It is running on the background without a UI.

It can be downloaded via their website. The broker is connected to using a MQTT broker

URL (127.0.0.1 for locally hosted) and a port (1883 set as default port). The two clients

connecting to it are the Scheduler Module and Prespective. They are both already set to the

right broker URL and port (127.0.0.1 and respectively 1883).

79

https://mosquitto.org/download/

G. USER MANUAL

G User Manual

This manual is for users who want to use the CF for analysis and/or optimization of similar

like cases. First use the Installation Guide in Chapter F to prepare the CF for its first use.

The default case (BIC case) is set out on how to use it. Later on in this chapter, a description

is given on initializing your own requests dataset, how to implement a custom made algorithm

and how to generate your own factory layout.

G.1 Monitoring Processes

G.1.1 MQTT.fx

For getting to know the MQTT message sequencing an additional software could be helpful.

The MQTT.fx application can be used to check all MQTT traffic. This software is designed

to initialize an extra client to the set up MQTT Mosquitto broker. Just as with the Scheduler

Module, a connection can be made to the broker using a MQTT broker URL (locally hosted:

127.0.0.1 and default port 1883).

MQTT.fx lets the user subscribe/subscribe directly to any channel. All messages over sub-

scribed topics will be shown as can be seen in Figure G1.

G.1.2 Database insight

In order to get more insight in the process it is highly recommended to keep track of the

database while running the CF. In order to do so open a command prompt. Use the following

command to open up the SQL shell:

psq l −U {username}

After this first command, the command prompt asks for your password for the locally hosted

SQL database. If everything is set up according to the Installation Guide you are ready to

start up the CF for the first time. If accepted, it suppose to show the the window depicted in

G2.

To see the content of the request table, use the following commmand:

80

G. USER MANUAL

Figure G1: Screenshot of MQTT.fx’s User Interface

SELECT ∗ FROM reque s t s ;

Do note that this table is doesn’t exist before the first run. After the first run, the requests

table is initialized. This command can be used during runtime or after running the CF.

G.2 Getting Started

When starting up the CF there always exist a sequence in which module to start first. Always

first start the Scheduler Module by running the script SchedulerModule.py. On a successful

start up, VS Code should give the window depicted in G3.

Note: If it is the first time this module is executed, stop the module after a successful first

run. The SQL database should now be initialized and ready for use. Now try the commands

81

G. USER MANUAL

Figure G2: Screenshot of successful SQL verification

Figure G3: Screenshot of a successful start of script SchedulerModule.py.

explained in Chapter G.1.2. This should give you the window as seen in Figure G4.

In the second run, again the Scheduler Module should be enabled first followed up by starting

the Prespective Simulation using the start button at the top of the screen. It could take a

82

G. USER MANUAL

Figure G4: Screenshot of successful SQL initialization.

few seconds for the simulation to start as it has to initialize the MQTT protocol on every run.

After a successful run without any errors in the Console of Prespective (see Figure G5) stop

both Prespective and the Scheduler Module. The Scheduler Module should have received the

distances between all machine stations.

Note: The Scheduler Module probably gives an error (on the second run) as it wants to

start scheduling requests without knowing all distances between the machines. When both

Prespective and the Scheduler Module are stopped after the second run, open and start the

script UpdateMachineDistances.py. Now all distances between machines are known and stored

to use in the CF.

There is one action left. In the script SchedulerModule.py a few code adjustments have to be

made:

• Line 34-36 are stating the importing of packages. Uncomment these lines (see Figure

G6.)

• Line 69 has to be uncommented (see Figure G7).

• In lines 318-319 the subscription for the topic "communicationframework/splineDis-

tances" is stated. Comment these lines (see Figure G8)

Everything is set for running the default BIC case.

83

G. USER MANUAL

Figure G5: Prespective UI with in the top red square: play button. Lower red square: console.

Figure G6: Lines 34-36 have to be uncommented.

Figure G7: Line 69 have to be uncommented.

Figure G8: Lines 318-319 have to be commented.

84

G. USER MANUAL

G.3 Initialize CF with own request dataset

The CF can be used with an empty dataset and generating own requests using the HTML

page UI. It is also possible to fill the dataset beforehand. The data can be provided in a

CSV-file (excel extension). An example dataset is in the CF’s software package as well called

requests.csv.

Opening up the example dataset shows how the dataset should be delivered. On the top

row all request attributes are visible (for explanation on these attributes see Chapter C.2).

Each parameter is inserted in the same order as these header row is sorted. The parameters

assignAGV and EndTimestamp should be empty in the SQL database. In the file requests.csv

they should contain a value. Its values are arbitrary.

When the database with the request table is set up correctly, a CSV-file can be entered

using the script csvToSql.py. Two parameters have to be adapted in this script.

The variable csvFilename should be edited to the filename you want to convert into the

SQL table. Check if your CSV-file is in the right directory (same directory as SchedulerMod-

ule.py). The second parameter is the variable conn which is an object of the connection this

script tries to make with your SQL database (see below).

conn = psycopg2 . connect (" host=l o c a l h o s t dbname={dbname} user={username}

password={password}")

Note that the variables in between curly brackets have to be edited. They speak for themselves.

Once the parameter editing is done, run the script and your custom dataset is inserted to

the requests table. The arbitrary values of assignAGV and EndTimestamp are converted to

empty fields.

G.4 Implement custom algorithm

The current algorithm holds two main functions: assigning an AGV to an inserted request and

creating a charging request. The system is now build upon the names of these functions called

Algorithm.main() and Algorithm.chargingRequest(). Use the same names when implementing

85

G. USER MANUAL

a custom made algorithm to prevent adapting other scripts.

Note that this software package doesn’t include decision making about request and char-

ging assignment. This is to be defined by the custom algorithm. For embedding the custom

algorithm into the CF the I/O data model stated in Chapter C.1 has to be read carefully.

G.5 Generate custom factory Layout

Like mentioned before, the CF can serve as a template for similar like cases. It is possible to

use the CF with another factory layout. In Prespective the objects Plane andMotion Manager

need to be emptied (see Figure G5). Now the Prespective model lacks Splines (routes) and

Cues (decision points). Designing your own layout can begin.

In order to design your own layout the official Prespective documentation is recommended:

Custom Factory Layout Generation.

This manual explains how to design your own layout with Splines and Cues. Note that

all machine stations (including charging stations) should be provided with a Des Cue script

and the junctions of Splines with a Junction Cue script. For each Cue a cue instructor has

to be set. This can be done in the inspector window of that particular Cue (see Figure G9).

Click and drag the AGV_Manager object on the left (in the Hierarchy window) to the cue

instructor field in the inspector window. This has to be done for each Cue.

The charging stations also have to be provided with the script ChargingStation.cs which

can be found in the Scripts directory in the project window (left from the console window, see

Figure G5.

In theAGV_Manager object all machine locations have to be defined. Click on theAGV_manager

object and go to the inspector window. Go to the Machine Locations field and drag all ma-

chine objects in.

Note: the charging locations should be dragged in at the end of the list. The CF is built in

such a way that it can identify the charging locations when located at the end of this field. In

the Scheduler Module the script Scheduler_initialiation.py has to be adapted. The variable

86

https://unit040.atlassian.net/wiki/spaces/PAD/pages/567476404/Introduction

G. USER MANUAL

amountChargingStations has to be set accordingly.

The layout is ready. Now the AGVs can be put in place. Drag the AGV objects on a

spline. Upon starting the simulation the AGV will look for the closest machine location and

will start from there.

The last step is to click on the AGV_Manager object and look in the Inspector window

for the button: Re-index Motion Web From Selection.

More information and an in-depth explanation for generating custom factory layouts can

be found in the work of Albers, M (2020, chapter 4) [13].

G.6 AGV Adjustments

The number of AGVs can be edited easily. Delete the AGV object if there are too many. For

more AGV’s just copy and paste the AGV object. Don’t forget to rename it accordingly.

In order to edit AGV parameters, click on the AGV object in the Hierarchy window. In

the Inspector window the adjustable parameters show up. Adjust them to your likings and

save the project. This can also be done in the AGVActor.cs script itself.

87

G. USER MANUAL

Figure G9: Inspector Window Prespective

88

H. SCIENTIFIC CODE OF CONDUCT

H Scientific Code of Conduct

89

January 15 2016

Declaration concerning the TU/e Code of Scientific Conduct
for the Master’s thesis

I have read the TU/e Code of Scientific Conducti.

I hereby declare that my Master’s thesis has been carried out in accordance with the rules of the TU/e Code of Scientific
Conduct

Date

…………………………………………………..…………..

Name

…………………………………………………..…………..

ID-number

…………………………………………………..…………..

Signature

…………………………………………………..…………..

Submit the signed declaration to the student administration of your department.

i See: http://www.tue.nl/en/university/about-the-university/integrity/scientific-integrity/
The Netherlands Code of Conduct for Academic Practice of the VSNU can be found here also.
More information about scientific integrity is published on the websites of TU/e and VSNU

28-01-2021

Ennio Thijssen

0810786

Bibliography

[1] O. Lohse, S. Krause, C. Saal, and C. Lipp, “Real Time Reaction Concept for Cyber Phys-

ical Production Systems,” 2020 3rd International Symposium on Small-Scale Intelligent

Manufacturing Systems, SIMS 2020, pp. 8–12, 2020. 2, 5

[2] S. Mayer, C. Arnet, D. Gankin, and C. Endisch, “Standardized framework for evaluating

centralized and decentralized control systems in modular assembly systems,” Confer-

ence Proceedings - IEEE International Conference on Systems, Man and Cybernetics,

vol. 2019-Octob, pp. 113–119, 2019. 3, 5, 9

[3] R. Erol, C. Sahin, A. Baykasoglu, and V. Kaplanoglu, “A multi-agent based approach

to dynamic scheduling of machines and automated guided vehicles in manufacturing sys-

tems,” Applied Soft Computing Journal, vol. 12, no. 6, pp. 1720–1732, 2012. 5

[4] M. Hoffmann, Smart agents for the industry 4.0: Enabling machine learning in industrial

production. 2019. 5

[5] N. Naik, “Choice of effective messaging protocols for IoT systems: MQTT, CoAP, AMQP

and HTTP,” 2017 IEEE International Symposium on Systems Engineering, ISSE 2017 -

Proceedings, 2017. 6, 22

[6] D. Yi, F. Binwen, K. Xiaoming, and M. Qianqian, “Design and implementation of mo-

bile health monitoring system based on MQTT protocol,” Proceedings of 2016 IEEE

Advanced Information Management, Communicates, Electronic and Automation Control

Conference, IMCEC 2016, pp. 1679–1682, 2017. 6

91

BIBLIOGRAPHY

[7] A. E. Khaled and S. Helal, “Interoperable communication framework for bridging REST-

ful and topic-based communication in IoT,” Future Generation Computer Systems, vol. 92,

pp. 628–643, 2019. 6

[8] I. Mendoza, M. Kalinowski, U. Souza, and M. Felderer, “Relating Verification and Valida-

tion Methods to Software Product Quality Characteristics: Results of an Expert Survey,”

in Lecture Notes in Business Information Processing, vol. 338, pp. 33–44, 2019. 12, 41

[9] F. Alhumaidan, “A Critical Analysis and Treatment of Important UML Diagrams Enhan-

cing Modeling Power,” Intelligent Information Management, vol. 04, no. 05, pp. 231–237,

2012. 16, 24

[10] J. Erasmus, The Application of Business Process Management in Smart Manufacturing.

1st ed., 2019. 19

[11] J. Estdale and E. Georgiadou, “Applying the ISO/IEC 25010 Quality Models to Software

Product,” Communications in Computer and Information Science, vol. 896, no. January,

pp. 492–503, 2018. 35, 41

[12] J. Visser and S. I. Group, “Beoordeling van productkwaliteit met ISO 25010,” 2013. 41

[13] M. Albers, “Automated Milling Line Throughput Simulation,” tech. rep., Technical Uni-

versity Eindhoven, 2020. 87

92

	Contents
	Introduction
	Literature Review
	Problem Description
	Scope of Project
	Assumptions
	Research questions

	Functional Design
	Purpose and Scope
	Functional Requirements
	Non-Functional Requirements
	Performance Requirements
	System Requirements
	System Documentation
	System integration

	Software Architecture
	Structure of Communication Framework
	Scheduler Module: Flask Application
	User Interface: HTML Page Rendering
	Request Database: PostgreSQL
	Simulation: Prespective Digital Twin Software
	MQTT Broker

	Behaviour of Communication Framework
	UML Use Case Diagrams
	Use Case 1: Submit, Edit and Delete Request
	Use Case 1 in Detail
	Use Case 2: Complete Request
	Use Case 2 in Detail
	Use Case 3: Find a Request
	Use Case 3 in Detail

	Validation and Discussion
	MQTT Communication Validation
	Test set up
	Results

	Functional Design Validation including Software Assessment
	Discussion

	Limitations and Conclusion
	Limitations
	Conclusion

	Appendices
	Additional UML diagrams to Use Case 1 (Submit, edit and delete request)
	Use Case 1 in detail

	ISO 25010
	Input/Output Data Model
	Scheduler Algorithm
	SQL Database
	User Interface: HTML Pages
	MQTT Broker
	Digital Twin (Prespective)
	Scheduler Module (Flask application)

	Prespective Scripts
	Standard Prespective Scripts
	DES Controller and Pre Logic Simulator
	DESCue and DSpline

	Adapted Prespective Scripts
	AGVManagerInstructor.cs
	AGVActor.cs
	mqttStruct.cs
	getDistanceMatrix.cs

	Scheduler Module's Scripts
	SchedulerModule.py
	SQLEditor.py
	Algorithm.py
	Models.py
	Initialization Files

	Installation Guide
	Introduction
	Purpose of Document
	Prespective Digital Twin Software
	Visual Studio Code
	PostgreSQL
	Mosquitto MQTT Broker

	User Manual
	Monitoring Processes
	MQTT.fx
	Database insight

	Getting Started
	Initialize CF with own request dataset
	Implement custom algorithm
	Generate custom factory Layout
	AGV Adjustments

	Scientific Code of Conduct

	Bibliography

