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A comparative study of online State-of-Health
estimation algorithms for Lithium-ion batteries

Kshitij Dadhekar
MSc. Thesis

Technische Universiteit Eindhoven

Abstract—Estimation of the internal states of Lithium-ion
batteries (LiB) plays a crucial role in modern-day Battery
Management Systems (BMSs). For example, besides the State-
of-Charge estimation that reflects how much charge is currently
stored, the State-of-Health estimation is used to quantify the
extent of capacity fade and power fade of a LiB. In this
paper, a comparative study of several SoH algorithms that can
be used in a BMS is done. Kalman filter (KF) and Least-
squares (LS) variants are implemented and tested on simulated
data-sets. Validation of various algorithms on the same test-
data allows comparison on performance based on estimation
accuracy. Besides this, differences in computational complexity
and implementation details in an embedded system are addressed.

Index Terms—State-of-Health estimation, Battery Manage-
ment Systems, Algorithms, Embedded Systems.

I. INTRODUCTION

Lithium-ion Batteries (LiBs) are manufactured in various
form factors, and every use case needs a tailor-made solution.
LiB safety and management systems need to be designed
meticulously. A Lithium-ion (Li-ion) cell is the fundamental
unit of a LiB pack. These cells are connected in a particular
series and parallel combination to achieve the required voltage
and capacity. It is important to monitor every cell in the pack to
get an accurate estimate of the pack’s status. Therefore, much
research is carried out on the cell level and then generalized
to the pack level. As the relation between the capacity in
the cell and voltage is described by a non-linear curve, one
of the ways to model the cell is as a non-linear system.
Li-ion cell measurements are used to characterize the cell’s
behavior. Based on this, a non-linear model is constructed
to estimate the State-of-Charge (SoC), State-of-Health (SoH),
State-of-Function (SoF), etc. A combination of the cell’s non-
linear model with real-time measurements can be used in an
estimation algorithm to get an accurate estimate.

Degradation occurs when the cell is cycled and/or stored for
a certain period of time. As a result, the cell loses its maximum
capacity and its impedance rises due to several electrochemical
reactions. To estimate these, SoH estimation algorithms are
used. The SoF is generally defined as the ability of the battery
to deliver a certain amount of power given the battery’s current
SoC and SoH. Therefore, if the SoH estimation is not accurate
this can lead to a faulty SoF estimation. It is therefore crucial
to estimate SoH using a robust estimation algorithm.

There has been extensive research in the field of modeling
and state estimations of LiBs. A lot of this work is spread

across various specializations and applications of LiBs. As the
goal of this research is to focus on State-of-Health estimation
algorithms for use in vehicles that range from Light Electric
Vehicles (LEVs) to electric trucks and buses, it was necessary
to select algorithms and paradigms that are efficient enough
to be implemented on an embedded micro-controller with a
processing speed of a few hundred MHz. Krewer et al. [1]
presented an extensive overview of all the dynamic modeling
techniques used to model a Li-ion cell and the possible ways to
use these models with algorithms for SoC and SoH estimation.
Farmann et a parl. [2] presented a critical review of capacity
estimation techniques for SoH estimation. The Kalman Filter
(KF) and its extended variants are widely used for these state
estimations. Plett [3] presented the use of an Extended Kalman
Filter (EKF) for estimating the capacity and the impedance of
a Li-ion cell. Fang et al. [4] present a Dual EKF (DEKF)
for estimating SoH based on the cell impedance. Plett [5]
presented another methodology with a Least-Squares (LS)
algorithm to estimate the capacity. Liu et al. [6] presented the
use of an Unscented-Particle-Filter algorithm for estimating
capacity for SoH estimation. Harting et al. [7] presented a
novel way to estimate SoH with non-linear frequency response
analysis and a Support-Vector-Machine algorithm. Berecibar et
al. [8] showed the use of differential voltage curves of LiBs
for SoH estimation algorithms.

The primary focus of this study is to implement and
compare algorithms for SoH estimation. This is done in order
to gain insights about the algorithm’s behavior in various
(dis)charge and storage conditions. Secondly, these SoH es-
timation algorithms will be compared based on their com-
putational and implementation complexity on an embedded
micro-controller. The paper is structured as follows. Section II
talks about degradation in LiBs and problems with existing
solutions. Section III talks about all the parameters that affect
the State-of-Health of a LiB. Section IV talks about various
algorithms used in practice for SoH estimation along with
degradation models. Section V presents a comparison of a
selected few SoH algorithms. Section VI elaborates on how
these SoH estimation algorithms can be implemented on an
embedded system with limited processing power and memory.
Lastly, section VII presents the conclusions.

II. TRENDS IN LIB DEGRADATION AND SOH ESTIMATION

Analyzing Li-ion cell aging data and modeling its aging
behavior has picked up pace over the past decade. This has
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given impetus to gain insights about the factors affecting
the degradation in LiBs. It is rather important to factor all
the possible causes of degradation in order to have exact
knowledge about the battery pack’s health. The following
subsections elaborate on degradation in LiBs and the problems
with the present solutions.

A. Degradation in LiBs
Degradation in LiBs has been studied thoroughly and some

relevant literature can be found. Birkl et al. [9] presented
causes for degradation in LiBs along with diagnostic methods.
Fig. 1 presents an overview of the possible factors that
influence LiB degradation. There are four aspects affecting
the degradation, namely cycle aging, calendar aging, loss of
cell materials and environmental factors.

On a component level, the Li-ion cell experiences degra-
dation by the loss of active material at the anode and at the
cathode. This loss of active material is one of the reasons
resulting in the loss of Lithium inventory (number of Li-ions).
Based on the usage/storage conditions, these three entities are
affected and they ultimately result in either capacity fade or
power fade.

Cycling a Li-ion cell to a certain DoD around a particular
average SoC or voltage and at a certain C-rate accounts for
cycle aging. From [10], it was concluded that cycling at an
average SoC of 10% or 90% results in higher degradation
whereas cycling at an average SoC of 50% results in a
comparatively lower degradation in terms of both capacity fade
and power fade. Cycling to a higher DoD results in higher
degradation.

Storing a Li-ion cell at a particular SoC/voltage and tem-
perature is identified as Calendar aging. From [10], it was
concluded that storing at higher SoC/voltage (80% - 100%) at
a higher temperature (45◦C - 50◦C) results in higher degrada-
tion. The dominant calendar aging mechanism is the formation
of Solid Electrolyte Interphase between the electrolyte and
the active (electrode) materials. This results in an irreversible

Li-ion	degradation

Calendar	AgingCycle	Aging

Environmental
factorsLoss	of	cell	materials

TemperatureAverage	SoC

Anode

Cathode

Mechanical	Stress

Cooling
Heating

VoltageDoD

Lithium	inventory

Fig. 1. Factors affecting Li-ion cell degradation (derived from [7] and [9]).

loss of available Li-ions that are used for cycling ultimately
resulting in capacity fade.

Lastly, the environmental factors and usage of the LiB
affects the degradation rate of the Li-ion cells based on factors
like mechanical stress. Often, battery packs are required to
be heated/cooled given the operating environmental conditions
and the required SoF. This is needed as the operational and/or
ambient temperature is one of the major factors affecting the
SoH of a LiB pack. It can be said that the degradation caused
by cycle and calendar aging is affected by these environmental
factors as well. It is therefore crucial to account for calendar
and cycle aging for a better SoH estimation.

B. Problems with present solutions

Typically, the capacity and/or impedance estimations of
a the Li-ion cell is used to estimate the SoH. If the SoH
estimation is not accurate or is erratic, the amount of power
and energy that can be drawn from the system can also become
erroneous. This is because several advanced BMSs limits the
amount of power and energy consumption based on this SoH
estimation. One such example of an erroneous SoH estimation
is presented in Fig. 2. Here, the SoH is estimated by Texas
Instrument’s [11] Impedance Track BQ series chip. These are
Integrated Circuits (ICs) that can be used on a pack-level.
These ICs provide a combined solution for estimating SoC
and SoH based on the voltage drop across a sense resistor.
The measurement data shown in Fig. 2 is obtained from a
48 V 1.5 kWh pack manufactured by Cleantron Cleantech
Batteries. The pack was cycled with 15 A discharge pulses
(60 seconds) and 10 A charge pulses (30 seconds) at room
temperature. It can be observed that for a test duration of
3000 seconds, the SoH fluctuates with a maximum difference
of 5%. In a lot of applications, SoH is an integral input for
the SoF estimation. This fluctuation of 5% will result in a
erroneous SoF estimation as well.
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Fig. 2. Fluctuating and erratic behavior of SoH estimation using Texas
Instrument’s impedance based fuel gauge solution.
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III. STATE-OF-HEALTH ESTIMATION METHODOLOGY OF
LITHIUM-ION BATTERIES

State estimations like SoH are required as the true states of a
Li-ion cell like number of Li-ions or the loss of active electrode
material cannot be measured. Therefore, when it comes to a
Li-ion cell and a BMS, there are real/true values, measured
values and estimated values. Based on these, several SoH
estimation methodologies can be achieved. The true values
are based on the chemical composition of the Li-ion cell.
For example, the number of Lithium ions in the cell which
build up the charge and the potential difference across the
cell’s terminals. As the internal true values are not accessible
across the cell terminals, measuring the number of Li-ions is
not possible. Therefore, Analog Front-End (AFE) devices are
used to measure the voltage, current and temperature from
the cell’s terminals/surface. The AFE functionality is a subset
of a BMS that gives us the measured values. The SoC, SoH
and SoF are derived and estimated values based on the AFE’s
measured values. Fig. 3 presents the order and layout of these
real, measured and estimated values.

The measured voltage and current values are firstly used
as input for SoC estimation. The SoC estimation (0%-100%)
gives an estimate of the charge left in the cell as a ratio to
the maximum available charge under defined conditions. This
SoC estimation can be used as input for estimating the SoH
and SoF. The SoF estimation is the readiness of the LiB to
deliver a certain amount of power given the present state (SoC
and SoH) and the ambient temperature. The SoH estimation
is also used an input for EoL prediction and EoL extension.
The SoH estimation tells us about the present age of the cell
while EoL prediction tells us about the Remaining Useful Life
in terms of charge throughput of the cell.

There are numerous ways to estimate the State of Health of
a Li-ion cell. Fig. 4 presents a paradigm for SoH estimation.
Firstly, the cell’s voltage, current and the temperature need

State	of	Charge

State	of	Health

End	of	Life	
prediction

Li-ion
cell

Voltage
Current

Temperature

AFE

Capacity/Impedance
update

End	of	Life	
prediction State	of	Function

State	of	Health

State	of	Charge

End	of	Life
extension

True	values
Measured	values
Estimated	values

BMS

Fig. 3. True, measured and estimated values of a Li-ion cell.

SoH	estimation

Definition Estimation
algorithm

Aging	model Measurement	data

Capacity	Fade Power	Fade EKF/UKF/
UPF/AWTLS SVM/RVM/NN

Electrochemical
model

(Semi)Empirical
model V,	I,	T

Fig. 4. An overview of the State-of-Health estimation paradigm with inter-
linked modules.

to be measured at a certain frequency for the SoH estimation.
This is obtained by the BMS from its AFE IC. Nowadays, [12]
AFEs provide functionality for measuring voltage, current and
temperature synchronously. This is useful for LiBs where there
are large number of cells in series. SLIDE [13] (Simulator for
Lithium-ion Degradation), is a Li-ion cell simulation software
that can be used to generate cycling and aging data of a Li-
ion cell. SLIDE uses electrochemical models of a Li-ion cell
to simulate aging behavior of a cell. For this study, simulated
cell aging data generated from SLIDE will be used as voltage,
current and temperature measurements.

Secondly, the SoH needs to be defined precisely. On one
hand, SoH can be defined based on capacity fade as expressed
as:

SoH =
Qnow

QBoL
× 100% (1)

where, Qnow is the cell’s capacity at any given time instant
during the cell’s usage and QBoL is the cell’s capacity [Ah]
during the beginning of its life (BoL). There are several
checkup procedures of obtaining Qnow. These differ from
application to application. As the cell impedance also rises,
the capacity obtained from these check-ups also factors in
the power fade. If the capacity drops to 80% of its pristine
state and the SoH is defined as per (1) then a SoH of 80% is
considered as End-of-Life (EoL) Secondly, SoH can be defined
based on the cell’s impedance.

SoH =
REoL −Rnow

REoL −RBoL
× 100% (2)

Where, RBoL is the ohmic resistance at the BoL, REoL is the
ohmic resistance of the cell at the EoL and Rnow is the present
ohmic resistance of the cell. It needs to be noted that according
to (2), when Rnow = REoL the SoH = 0%. In this study,
SoH defined as per (1) will be used by the SoH estimation
algorithms.

Thirdly, an aging model that captures the cell’s aging behav-
ior at various cycling C rates, DoD, storage voltage, etc. can be
used to get a better idea of the degradation pattern. There are
various aging models presented in literature. Electrochemical
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models provide better insights about cell degradation and aging
but at the cost of computational complexity. On the other
hand (semi)empirical models [13] give reasonable accuracy
and are rather straight forward to characterize and implement
on a BMS. One such example of a (semi)empirical model is
presented by Schmalstieg et al. [10]. This model will be further
described in section IV. Lastly, an estimation algorithm which
takes into account all the three aforementioned modules needs
to be selected in order to get a SoH estimation.

IV. ALGORTIHMS FOR SOH ESTIMATION

As the cell’s voltage, current and temperature can be
sampled at a rather high frequency, various mapping fea-
tures/characteristics of the Li-ion cell can be constructed
based on this measurement data. These mapping features are
used as an input for the SoH estimation algorithm. Fig. 5
presents an inter-linked overview of these mapping features
with SoH algorithms. Here, degradation models are considered
as a part of the algorithms section. The gray links depict
all the combinations found in literature and the black links
depict the choices made for this study. There is no mapping
feature constructed with temperature, instead it is directly
used an input (red dot) for the KF variants algorithm. DV
[8] and IC curves [14] can be used for an application where
the cell is (dis)charged at a constant current. However, it is
rather important to choose a mapping feature that captures
the dynamic behavior of the cell based on varying current
values like a drive cycle profile. Therefore, for this study,
SoC and coulomb-counting will be used as a mapping features

and as an input to the SoH algorithm. The varying current
of a given drive cycle profile is already factored by both
the SoC and coulomb-counting. It is therefore important to
have an accurate and robust SoC estimation method. Beelen
[15] presented a Joint Extended Kalman Filter with a cross-
correlating forgetting factor (JEKFCF) that jointly estimates
the SoC with its model parameters (first-order ECM model).
The JEKFCF uses a cross-correlated noise and forgetting for
the process and measurement noise co-variances that provides
more robust estimation. The forgetting factor is the only tuning
parameter and it allows for easier tuning. For the algorithms
compared and tested in this study, coulomb-counting and SoC
(estimated with JEKFCF) will be used as an input.

For an online real-time SoH estimation, the algorithms
shown in Fig. 5 need to be implemented on an embedded
micro-controller. Therefore, the computational complexity and
memory footprint need to be taken into account before making
a choice. The Least-Squares (LS) algorithms [5] and its vari-
ants are used to fit measurement data to a (non)linear function.
Depending on the usage conditions, the cell’s capacity de-
grades in a non-linear manner. Therefore the LS optimization
needs to be performed iteratively. LS variants (with a recursive
approach) largely include simple arithmetic operations like
addition, multiplication, subtraction, and division. Therefore, a
recursive LS solution with a low memory footprint is preferred.
Secondly, the Kalman Filter (KF) and its non-linear extended
variants are widely used in the field of state estimations in
BMS. KFs provide a recursive Bayesian estimation approach
for predicting and estimating an unknown state based on a
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Fig. 5. Mapping features and algorithms for SoH estimation.
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model of the system and real-time measurements. An Extended
Kalman Filter (EKF) also has low computational complexity
and can be easily implemented with C code on an embedded
micro-controller [12]. Further, Sigma-Point KFs (SPKF) [16]
can be used to improve the accuracy of the KF estimate. The
SPKF variant provides more tuning parameters for Gaussian
and non-Gaussian probability distribution functions (PDFs).
An Unscented-Particle-Filter (UPF) [6] can also be used to
estimate the capacity as well. The UPF is a combination of an
SPKF and a bootstrapped Particle Filter [17]. This combination
can provide a better estimate of the capacity as compared
to the KF variants but the implementation is more complex.
Therefore, the implementation of UPF is not considered for
this study. Algorithms like the Support Vector Machine (SVM)
[7] and Relevance Vector Machine (RVM) [18] are Machine
Learning (ML) [19] variants used for supervised learning that
offer classification and regression solutions. These algorithms
need a large number of data sets for learning and training. The
complexity of the Neural Network (NN) algorithms depends
on a lot of factors such as the number of hidden layers.
The computational complexity and the memory footprint of
the inference part of these algorithms also need to be taken
into account given the limitations of an embedded micro-
controller. The NN can be pruned to reduce the computational
complexity of the inference. As the goal of this study is
to compare these algorithms based on their accuracy and
computational complexity and not to optimize the NN variants
for an embedded micro-controller, the ML and NN variants are
not considered for the remainder of this study. Therefore, in
the following subsections, an LS variant with three KF variants
will be presented and evaluated.

A. Approximate Weighted Total Least Squares (AWTLS)

The LS regression approach can be used to fit and get an
estimated capacity for a given set of SoC estimations and
coulomb-counting measurements. The relation between SoC
and coulomb-counting is given by:

z (t2) = z (t1) +
1

Q

∫ t2

t1

ηi(τ)

3600
dτ, (3)

where z(t1) is the estimated SoC at time t1, z(t2) is the
estimated SoC at time t2, Q is capacity of the cell in Ampère-
hours (Ah), η is the unitless coulombic efficiency of the cell
(which changes w.r.t the sign of the current and age of the
cell), i(τ) is the cell current (positive for charging) at time τ
and t is time in seconds. The factor of 3600 is used to convert
the Ampère-seconds to Ampère-hours. (3) can be re-arranged
as: ∫ t2

t1

ηi(τ)

3600︸ ︷︷ ︸
y

dτ = Q(z (t2)− z (t1))︸ ︷︷ ︸
x

(4)

which is of the form y = Qx. Therefore, the coulomb-
counting measurements (y) and difference between two SoC
estimations (x) are of the form {xi, yi} | i ∈ {1, . . . , N}
where N is the total number of input measurement/estimation

pairs. The Ordinary Least-Squares (OLS) [5] methodology
can be used to fit the coulomb-counting measurements (y-
direction) against the SoC estimations (x-direction). It assumes
that there is no SoC estimation error (x-direction) and uses
only the uncertainty in the coulomb-counting measurements
(y-direction). The Total Least-Squares (TLS) [5] approach on
the other hand factors in both the errors in x and y direction. As
the OLS approach does not take into account the uncertainties
in the x-direction (caused by SoC estimations), it is not
considered for the implementation. The TLS approaches can
be generalized in such a way that the least-square minimization
takes into account the sum of weighted squared errors. Here,
the weight takes into account the uncertainty of coulomb-
counting measurements as well as that of the SoC estimations.
A merit function is constructed to measure the extent of
agreement between the measurement/estimation data and the
fitted model and it is given by

χ2
WTLS =

N∑
i=1

(xi −Xi)
2

σ2
xi

+
(yi − Yi)2

σ2
yi

(5)

where σx is the variance of the SoC estimates and σy is the
variance of coulomb-counting measurements. In (5), (Xi, Yi)
are points on the line Y = Q̂X corresponding to the measure-
ment pair (xi, yi) as shown in Fig. 6 and Q̂ is the estimated
capacity. The WTLS approach assumes that the variances σx
and σy are proportional to each other. In a practical EV sce-
nario, the σ2

x and σ2
y are arbitrary and the WTLS approach does

not allow to factor this arbitrary behavior. As an improvement
in terms of factoring the arbitrary variances and accuracy,
Plett [5] presented the Approximate Weighted Total Least
Squares (AWTLS) algorithm for Li-ion capacity estimation.
The AWTLS provides an approximated solution where the σ2

x

and σ2
y can be non-proportional or unrelated to each other.

However, it needs to be noted that as SoC estimators use

Fig. 6. A geometrical overview of the relationship between coulomb-counting
measurements (yi) and SoC estimations (xi). Points (a) and (b) denote the
mapping made by the WTLS with unequal and equal confidence on (xi, yi)
respectively. Point (c) denotes definitions for derivation of AWTLS algorithm.
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both coulomb-counting and the electromotive force (EMF),
σ2
x and σ2

y may not be always unrelated to each other. Fig. 6
presents the geometry of the WTLS approach with the AWTLS
derivation. Point (a) shows the WTLS relationship between
the measurement/estimation pair (xi, yi) and its optimized map
as per Y = Q̂X where Q̂ is the estimated capacity. Here,
the error bars on the data points show the uncertainty of
SoC estimates in the x-direction and that of coulomb-counting
measurement in the y-direction. For point (a), the distance
of both these uncertainties is not necessarily equal. For a
scenario where JEKFCF is used for SoC estimation, the vari-
ance/uncertainty of the xi is exactly known, this can be used
to calculate the near-exact difference between the measured
value (xi, yi) and the fitted value (Xi, Yi). For point (b), the
two uncertainties are equal. The distance between xi to Xi and
yi to Yi is equal. The line joining these points is perpendicular.
Therefore, if σ2

x and σ2
y are not equal then either the x-axis or

y-axis can be scaled to get the new transformed points with
equal variances for a better estimate. Furthermore, point (c)
is used to enforce the fact that the line joining (xi, yi) and
(Xi, Yi) is perpendicular. This enables us to solve every new
measurement point recursively to obtain Q̂. The AWTLS cost
function is illustrated as

χ2
AWTLS =

N∑
i=1

γ

(
yi − Q̂xi

)2
(

1 + Q̂2
)2

(
Q̂2

σ2
xi

+
1

σ2
yi

)
(6)

Here, the distances between (xi, Xi) and (yi, Yi) are weighted
differently. The fading memory factor (γ) allows the algorithm
to emphasize on more recent measurements. This will help the
algorithm adapt to the true changes in capacity as it degrades
over time. The Jacobian of (6) is used to find the roots with
the lowest value for Q̂ and get the capacity estimate. The
Hessian of (6) gives the error bounds of the capacity estimate
obtained by the Jacobian. As the AWTLS is an approximation
of the WTLS solution based on the weighting of σ2

x and σ2
y ,

it is crucial to feed the correct variances for both the JEKFCF
SoC estimates and the coulomb-counting measurements.

B. Extended Kalman Filter

The degrading capacity of a Li-ion cell shows a non-
linear behavior as the charge throughput increases. This is
because the cell is cycled and stored under various conditions.
This behavior of the degrading capacity as function of Full
Equivalent Cycles (FECs) or storage time can be used with an
Extended Kalman Filter (EKF) for estimating the degrading
capacity. An EKF with the state vector as the degrading
capacity (Q) in Ah is formulated as follows:

Q̂−
k = Q̂+

k−1 −4Q+Wk, (7)

yk = Q̂−
k + Vk (8)

where, (7) and (8) are the state and output equations respec-
tively. Here, yk is the direct feed-through of the a priori
capacity estimation, Wk is fictitious process noise and Vk
is measurement noise. 4Q is the difference between the

EKF

(3)

(5)

Prediction

Aging	model
prediction				

Correction

Measurement	
update	estimate

(1) (2) (4)

Fig. 7. Extended Kalman Filter formulation for Li-ion capacity estimation
with an aging model that uses the Degrading Factors (DFs) as an input.

posteriori estimate of the EKF at time step k − 1 and the
capacity predicted by an aging model (Q̃k) at time step k
expressed as:

4Q =
Q̂+
k−1 − Q̃k
Q̂+
k−1

(9)

This will be elaborated later in this section. Fig. 7 presents
the formulation of this EKF for capacity estimation. Here, a
dynamic aging model is used that takes into account calendar
and cycle aging Degradation Factors (DFs) presented in Fig. 1.
The aging model uses these factors over a time step to assess
and predict the cell’s health.

The measured capacity Q(k−1),(k) between time steps k−1
and k is given by:

Q(k−1),(k) =

∫ k
k−1

ηi(τ)
3600 dτ

z (k)− z( k − 1)
(10)

Where, z(k−1) and z(k) are the SoC estimates obtained from
JEKFCF. The prediction and correction step equations are
further derived in a similar way as illustrated in [3]. Therefore,
it can be observed that the EKF compares the measured
capacity (10) with the capacity predicted by a dynamic aging
model (7).

The measurements from the BMS can be used to construct
mapping features that can differentiate between calendar and
cycle aging. Therefore, it would be appropriate to use a
(semi)empirical model to factor the degradation based on
calendar and cycle aging. Schmalstieg et al. [10] presented
the Holistic aging model that characterizes calendar aging
and cycle aging separately. From Fig. 8, it can be seen that
calendar aging is defined as a function of storage voltage and
temperature and cycle aging is defined as a function of Depth-
of-Discharge (DoD), average voltage (φV ) and the charge
throughput of the cell in Ah. The Holistic model presents
fitting equations for both capacity degradation and rise in cell
impedance. As SoH is defined as per (1), the impedance fitting
part of Holistic model is not used.

The Holistic model presents calendar aging (11) and cycle
aging (12) fitting equations to characterize the degradation.

Ccal = 1− αcap(T, V ) · tµ (11)
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Fig. 8. Measurements and mapping features used by the Holistic aging model.

Ccyc = 1− βcap(δD, φV ) · CT ν (12)

Here αcap is a fitting parameter obtained by fitting storage
voltage and temperature. Time t (days) with an exponent value
of µ is used to fit the degraded capacity. βcap is a fitting
parameter obtained as a function of δD (DoD) and φV where
φV is the average voltage around which the cell is cycled
at a particular DoD. The charge throughput of the cell is
represented by CT raised to the exponential value of ν is used
to fit the equation. As the cell is being cycled at any given DoD
and/or φV and a particular temperature, time is always passing
by. Therefore, during cycling, calendar aging also occurs. Due
to this, (11) and (12) need to be superimposed. That gives us
the total aging fit function as shown in (13). The parameters
and constants of (13) are the DFs used by the Holistic aging
model.

Ctotal = 1− αcap(T, V ) · tµ︸ ︷︷ ︸
Calendar aging

− βcap(δD, φV ) · CT ν︸ ︷︷ ︸
Cycle aging

(13)

The SLIDE program was used to simulate calendar aging
and cycle aging under various conditions. A high-energy Li-
ion NMC 18650 cell manufactured by Kokam with a nominal
capacity of 2.7 Ah was used to simulate the aging behavior.
For calendar aging it can be seen from Fig. 9 that the rate of
degradation depends on factors like the storage SoC/voltage
and the temperature. For cycle aging, from Fig. 10 it can be
seen that the rate of capacity degradation depends on factors
like DoD, average voltage (φV ) around which the cell is
cycled. For calendar aging, αcap(T, V ) was characterized as
a function of T and V. The MATLAB curve fitting tool was
used to obtain to fit (11) with µ = 0.58. For cycle aging, it was
observed that DoD did not show a linear behavior against βcap
as presented in [10]. One of the possible reasons for this can be
that the electrochemical models used by SLIDE were not able
to capture the true behavior of the cell while generating the
data. Therefore, a constant value of βcap(δD, φV ) was used
instead of a dynamic function. Similarly, (12) was fitted with
ν = 0.85. Therefore, the predicted capacity by the dynamic
aging model expressed in (9) can now be obtained as:

Q̃k = Qnom × Ctotal,k (14)

Fig. 9. Calendar aging capacity degradation at various storage T and SoC
simulated using SLIDE.

Fig. 10. Cycle aging capacity degradation (at 1C charge and discharge) at
various T and DoDs simulated using SLIDE.

Here, Qnom is the nominal capacity of the cell in Ah and
Ctotal,k is the remaining capacity fraction predicted by the
holistic aging model (13) at time step k. As the capacity of
the Li-ion cell degrades rather slowly over time, this EKF is
intended to be triggered based on an event. For example, as
the BMS keeps track of the charge throughput via coulomb-
counting, the EKF can be triggered after a certain amount of
charge throughput has been reached.

C. Sigma-Point Kalman Filters

The EKF performs local analytic linearization at each point
in time. While evaluating the estimates of the output of a
non-linear function, the EKF assumes that the expected value
(mean) of the non-linear function is equal to the value of
function at the mean, i.e. E[f(x)] ≈ f(E[x]). This assumption
does not hold for all functions and only holds when the
function is linear. The accuracy of EKF decreases as the non-
linearity of the function increases. This might very well the
case when it comes to capacity degradation during most of
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Fig. 11. A comparison of EKF linearization and SPKF propagation for a
non-linear function

the lifetime of a li-ion cell. The factors of (13) affect the non-
linearity as they are updated dynamically. However, if more
constants and fitting parameters are added to (13) in order to
obtain a better fit then the non-linearity of characterization
rises. The extent of non-linearity of capacity degradation can
be therefore quantified with (13). The EKF uses Taylor-series
expansion for local linearization as shown in Fig. 11. The
higher-order terms of this expansion are not considered. This
affects the accuracy of the covariance estimate if the function
is highly non-linear. Due to this, once again, the EKF works
better when the function is mildly non-linear.

To solve this, Plett [16] presented the Sigma-Point approach
to Kalman Filtering (SPKF) for state estimation of a Li-ion
cell. This is adopted as an improvement for a better accuracy
of the estimates with comparable computational complexity.
The Sigma-Point approach does not take into account the
assumptions made by the EKF. The SPKF approach does not
require to compute the derivatives of the non-linear function.
Also, the non-linear function need not be differentiable. A
set of input Sigma-Points are carefully chosen from the input
Probability Distribution Function (PDF) of the non-linear
function for a given time instant. These Sigma-Points are
the weighted mean and the covariance for that time instant
derived from the PDF of the function. These points should
be chosen in a particular way that they match the true mean
and covariance of the function. These selected points are
propagated through the non-linear function. The input Sigma-
Points are represented by:

Sinput = {x̄, x̄+ γ
√

Σx̃, x̄− γ
√

Σx̃} (15)

Here, x̄ is the mean (vector) of the input PDF.
√

Σx̃ is the
covariance matrix weighted by the factor γ. Here, γ can be
one or more parameters depending on the type of SPKF.
Practically, Sinput is a set of vectors. The notation x̄+ γ

√
Σx̃

means that the vector x̄ is added to every column of γ
√

Σx̃.
For a system with one state (L), the set Sinput has the mean as

the first element. The next L elements are x̄+γ
√

Σx̃ followed
by another L elements as x̄−γ

√
Σx̃ resulting in a total of 2L

+ 1 elements. The set of Sinput is presented by black squares
on the x-axis in Fig. 11. Where the middle square is the mean
and the two squares around the mean represent the covariance.
To ensure the weighted mean and covariance is equal to the
true mean and covariance we use,

x̄ =

2L∑
i=0

α
(m)
i Si,input (16)

Σx̃ =

2L∑
i=0

α
(c)
i (Si,input − x̄) (Si,input − x̄)

T (17)

where the factors α(m)
i and α

(c)
i are weighting constants

used when computing the mean and the covariance respec-
tively. Therefore, γ, α(m)

i and α(c)
i are the tuning parameters

for the SPKF. The output Sigma-Points can be calculated by
evaluating the function at every input Sigma-Point i.e.

Si,output = f(Si,input) (18)

This process is called as Unscented Transformation (UT)
where the set of Sinput is propagated through a non-linear
function. The UT is illustrated in Fig. 11 by the dotted
lines that propagate the Sinput points through the non-linear
function to obtain the Soutput points that form the output PDF.
Similarly, the output mean and the covariance can be computed
by using

ȳ =

2L∑
i=0

α
(m)
i Si,output (19)

Σỹ =

2L∑
i=0

α
(c)
i (Si,output − ȳ) (Si,output − ȳ)

T (20)

where ȳ is the mean and Σỹ is the covariance of the out-
put PDF respectively. The Central-Difference Kalman Filter
(CDKF) and the Unscented Kalman Filter (UKF) are two
such variants of the Sigma-Point Kalman Filter approach. The
CDKF and UKF differ in the way these Sigma-Points are
selected with the weighting factor γ.

1) CDKF: Table I illustrates the SPKF tuning parmeters.
The CDKF has only one tuning parameter h. In practice,
the value of h can take any positive value but it is set
to
√

3 for a Gaussian distribution. Here, the covariance is
weighted by a factor of h. This weighting illustrates the spread
of covariance around the mean as the centre, therefore the
name Central-Difference Kalman Filter. This is the reason,

TABLE I
SPKF TUNING PARAMETERS.

γ α
(m)
0 α

(m)
k α

(c)
0 α

(c)
k

CDKF h h2−L
h2

1
2h2

h2−L
h2

1
2h2

UKF
√
L+ λ λ

γ2
1

2γ2
λ
γ2

+
(
1− α2 + β

)
1

2γ2
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TABLE II
DESCRIPTION OF UKF TUNING PARAMETERS.

Parameter Role Range/Value
α Primary scaling parameter 10−2 ≤ α ≤ 1

κ Secondary tuning parameter 1

β Prior information of the PDF 2 (for Gaussian PDF)

the CDKF performs well for Gaussian distributions. A CDKF
is constructed in the same way as expressed in (7) and (8) and
used in an event-based manner with the holistic aging model.

2) UKF: The UKF provides a higher number of tuning
parameters to choose these Sigma-Points as opposed to CDKF.
The parameters λ, α and κ influence the spread of Sigma-
Points around the mean. The parameter λ is expressed in terms
of α, κ and the number of states L as

λ = α2(L+ κ)− L (21)

For Gaussian distributions, β is set to 2. Table II describes the
range/values of the these parameters.

It needs to be noted that the tuning parameter α is different
from α

(m)
0 , α(m)

k , α(c)
0 and α

(c)
k . An UKF is constructed in

the same way as the CDKF with state and output equations
illustrated in (7) and (8) respectively. It can be observed that
the UKF has more parameters to express the distribution with
the near same computational complexity as that of CDKF.

V. COMPARISON OF SOH ALGORITHMS

Acquiring Li-ion cell aging measurement data is a time
intensive and error prone process. Programmable cell testers
and climate (temperature) chambers are required to test Li-
ion cells under certain (dis)charge and temperature conditions
respectively. Therefore, using a computer simulation program
like SLIDE not only saves time but also allows to generate
aging data in a precisely controlled way. The SLIDE simulator
was used to cycle the cell till the capacity is lost to 80% of
its nominal capacity. Measurements are recorded at 1 Hz. The
Urban Dynamometer Driving Schedule (UDDS) drive cycle
was chosen as it comprises of a few 2-3C discharge pulses and
regenerative charge pulses that are greater than 1C. However,
it needs to be noted that a (dis)charge current of greater than
3C is not supported well by SLIDE and may possibly result
in erroneous data generation.

Table III presents the test configuration. The SLIDE sim-
ulator was programmed to repeatedly cycle the cell with the
UDDS profile till 2.75 V. Capacity checks were programmed
to be conducted every 5 FECs to create a finer reference for

TABLE III
TESTING REGIME.

Profile Start End
Discharge UDDS 4.25 V 2.75 V

Charge 1C CCCV 2.75 V 0.05C cut-off

Check-up 0.04C CCCV 4.25 V 0.005C cut-off

Fig. 12. Voltage and current data generated from SLIDE with JEKFCF SoC
estimation

comparing the capacity estimation. All the tests described in
table III were performed at 25◦C.

Fig. 12 presents the voltage and current data generated
from SLIDE at 1 Hz. The voltage and current data is used
as an input for the JEKFCF SoC estimation. Fig. 13 presents
the estimation and feedback flow of the JEKFCF SoC esti-
mation and capacity estimation with all the aforementioned
algorithms. Note that the AWTLS algorithm does not use the
Holistic aging model. However, all the three KF variants use
the Holistic aging model given their formulation. Therefore,
in order to implement any of the three KF variants, the user
has to first characterize the cell for the aging model to obtain
the fitting parameters for (13).

For AWTLS, a SoC estimation window of 80% to 20%
is selected during every discharge cycle. For a fixed value
of (dis)charged coulombs (yi), its equivalent 4SoC (xi) was
fed as an input to the AWTLS algorithm repeatedly starting
from SoC 80% till SoC 20%. The AWTLS was only able to
capture the degrading trend in capacity when data from only
the discharge cycle was used as an input. Therefore, N values
of (xi, yi) pairs were obtained between the previous time step
k− 1 (SoC = 80%) and the current time step k (SoC = 20%)

Initial

AWTLS EKF UKFCDKF

Fig. 13. Capacity estimation and feedback flowchart
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for every discharge cycle. The AWTLS also requires the
variance of both SoC estimates and that of coulomb counting
measurements. A SoC variance of σx = 0.03 (3%) is selected
as several experiments with SLIDE data and the JEKFCF
revealed a maximum SoC estimation error of ± 3%. For
a coulomb counting, a variance of σx = 0.001 was used as
the data was generated from a simulation and there was no
current sensor bias to be corrected. The capacity estimate
obtained from these algorithms is used as an input for the
SoC estimation in the next time step. Therefore, the JEFKCF
SoC estimation was fed with an updated capacity estimate
every cycle. This is rather important and accurate as the SoC
needs to be estimated for the degraded capacity and not the
nominal capacity. Fig. 14 presents the AWTLS estimation with
the goodness of fit evaluation for 200 FECs. Transient peaks
can be observed for the capacity estimation from the AWTLS
algorithm. The goodness of fit is calculated by evaluating the
incomplete gamma function in order to check how good the
hypothesized model fits the measured data with the variances.
The goodness of model fit can be dynamically evaluated to get
an approximate feedback of the quality of capacity estimations.
If the goodness of fit is < 0.95, there is a high probability that
the capacity estimations will not be accurate due to a rather
high error in either the coulomb counting measurements or the
SoC estimations.

From Fig. 15, it is observed that the reason for the peaks
was a comparatively higher SoC estimation error. This can be
a result of bad model fit of the JEKFCF for the measured
voltage and current. The SoC estimation error can be reduced
by tuning the JEKFCF forgetting factor, however this cannot
be done dynamically during run-time. Moreover, the SoC
estimation error was greater than the SoC variance that was
used as an input to the AWTLS algorithm. Due to this, the
AWTLS algorithm is not able to fit the input data accurately.
As the peaks are not mitigated by feeding a higher SoC
variance, it can be concluded that a rather accurate SoC
estimation is required as an input for the AWTLS algorithm.

Fig. 14. AWTLS estimation for 200 FECs with Goodness of Fit

Fig. 15. Transient peaks in AWTLS capacity fitting with SoC estimation error

This can then be remedied by skipping the capacity estimation
update for the time step when the goodness of model fit is
< 0.95.

The AWTLS algorithm is equipped with a forgetting factor
(0<γ≤1). This can be used to tune the algorithm to emphasize
on more recent measurements. Secondly, the (dis)charged
coulombs (yi) can be varied to observe its effect on estimation
accuracy. Fig. 16 presents the AWTLS capacity estimation
root-mean-square error for 200 FECs with various forgetting
factors and various fixed (dis)charged coulombs. It can be
observed that a forgetting factor of γ = 0.975 with yi = 250
A.s is the most accurate for this experiment. For cell with 2.7
Ah nominal capacity, it can be safely noted that a coulomb-
counting measurement of 250 A.s is large enough to get
an equivalent 4SoC for capturing a degrading trend in the
measurements and the SoC estimations respectively. Increasing
the couloumb-counting range further results in a higher RMSE.
No concrete conclusion can be drawn for this behavior given

Fig. 16. A comparison of the AWTLS algorithm using various forgetting
factors and coulomb-counting measurements as input for 200 FECs

10



the data presented in Fig. 16
For the KF variants, capacity estimation was conducted

during every discharge cycle with a window of 80% (k−1) to
20% (k) and also during every charge cycle with a window of
20% (k−1) to 80% (k). The three KF variants were initialized
with a wrong capacity. Fig. 17 presents KF variants’ capacity
estimation for 200 FECs. It can be observed that all the three
variants show a rather similar behavior. They quickly converge
to the near-correct capacity estimate within 10 iterations. The
3
√∑

Q bounds provide a 99.7% confidence interval for the
capacity estimation. It can be observed that the KF variants
can avoid a large sudden spike (at cycle 113) in the capacity
estimation as compared to the AWTLS algorithm. The UKF is
the least susceptible to an erroneous SoC estimation. Morever,
UKF estimates more tighter 3

√∑
Q bounds as compared

to EKF and CDKF. Therefore, only the 3
√∑

Q bounds of
UKF are show in Fig. 17. This is because these erroneous
SoC estimations result in either a transient non-Gaussian
distribution or a combination of two Gaussian distributions.
The UKF having a higher number of tuning parameters can
propagate the mean and the covariance with the Sigma-Points
to the output PDF rather accurately as compared to the EKF
and the CDKF.

Fig. 18 presents the comparison of the capacity estimation
of the four algorithms for 1000 FECs. For a fair comparison,
all the four algorithms were tested on the same data-set
generated by SLIDE for 1000 FECs with the testing regime
shown in table III at 25◦C. For AWTLS, as before, it can be
observed that the capacity estimation is highly susceptible to
SoC estimation errors (between cycles 800 to 1000). A SoC
estimation error of > 3% results in an significantly wrong
capacity estimation. The three KF variants are more robust
as compared to the AWTLS as the aging model factors in
the degradation based on the characterization. The peaks in
AWTLS capacity estimation result in an error of > 1%. There-
fore, this erroneous capacity estimation is not recommended to
be used as an input for SoF estimation. The peaks also result in

Fig. 17. Capacity estimation with EKF, CDKF and UKF with 3
√∑

Q
bounds for 200 FECs

Fig. 18. Capacity estimation comparison of the implemented algorithms for
1000 FECs.

TABLE IV
ROOT-MEAN-SQUARE ERROR COMPARISON FOR 1000 CYCLES

AWTLS EKF CDKF UKF
0.0110 0.0139 0.0139 0.0139

a bad model fit of < 0.95 as shown in Fig. 15. For the three
KF variants, the transient error caused due to an erroneous
SoC estimation is < 0.5%. It can be also observed that the
KF variants recover from this error and converge to the near-
accurate capacity estimate. Therefore, they are more robust
to an erroneous SoC estimate as compared to the AWTLS
capacity estimation.

Table IV presents the root-mean-square error (RMSE) com-
parison of AWTLS and the three KF variants. The AWTLS
performs the best in terms of RMSE. Although, some transient
peaks can give a higher RMSE than the three KF variants.
The EKF, CDKF and UKF perform nearly the same as the
distribution caused by the cell behaviour of the capacity
is highly Gaussian except for a few times when the SoC
estimation error is large.

VI. IMPLEMENTATION COMPLEXITY

Besides comparing the accuracy of the selected SoH esti-
mation algorithms, an observation can also be made regarding
the implementation complexity of these algorithms. This is
important as these algorithms are conceived as software tasks
that are intended to be implemented on a resource-constrained
embedded micro-controller that is a part of the BMS. Such
tasks are typically realised using a round-robin scheduler
or a (non)preemptive scheduler to satisfy real-time firmware
requirements. For such an embedded implementation, re-
sources like processor attention and memory are at a premium.
Therefore, it is important to compare these algorithms based
on their embedded implementation. Table V presents the
quantitative implementation complexity of the SoH algorithms.
As mentioned earlier, the AWTLS algorithm does not require
any prior characterization of Li-ion cell aging data. The three
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TABLE V
IMPLEMENTATION COMPLEXITY OF SOH ALGORITHMS.

AWTLS EKF CDKF UKF
Characterization (offline) Low High High High

Implementation (online) Medium Low Medium Medium

KF variants on the other hand require the characterization of
the holistic aging model. Therefore, the offline characterization
complexity is high.

The majority of these micro-controllers run on C code
whereas the algorithms are primarily tested with MATLAB.
The MATLAB code needs to be translated to C code. More-
over, this C code needs to be optimized for a target micro-
controller. An example of such an optimization is the Fixed-
point analysis of all the variables used by the code and
using the correct compiler settings. The AWTLS requires to
solve a quartic equation along with evaluating an incomplete
gamma function. These are processor-intensive tasks for some
low-power micro-controller variants. The EKF on the other
hand largely uses matrix arithmetic operations. The SPKF
variants require to compute a Cholesky decomposition of the
covariance matrix. Because of this, the C code complexity
is medium for AWTLS, CDKF and UKF. The EKF has the
lowest C code complexity of all.

VII. CONCLUSIONS AND FUTURE WORK

In this study, several algorithms for the capacity estima-
tion were implemented, tested and compared. The AWTLS
provides a recursive approach that factors the uncertainties in
both coulomb counting measurement and SoC estimations. It
does not require any prior characterization of the cell. A robust
SoC estimation algorithm needs to be used when using SoC
estimations as an input for the AWTLS algorithm. However,
the AWTLS capacity estimation is not stable if the SoC
estimation inputs are not accurate. The three KF variants make
use of the Holistic aging model. This provides a more robust
capacity estimation. It needs to be noted that characterizing
the holistic aging model needs the cell’s lifetime data. This is
a rather time-intensive process. Therefore, accelerated aging
tests need to be conducted to obtain such data. This was
remedied in this study by using the SLIDE simulator program.
To conclude, the AWTLS algorithm can be used as a quick
solution for capacity estimations if the SoC estimations are
accurate. On the other hand, if the SoC estimations are not
accurate or if they cannot be trusted, the UKF will result in
a lower RMSE as compared to the AWTLS algorithm. This
comes at the cost of characterizing aging data of the Li-ion
cell.

The SoH was based wholly and solely on the cell capacity
estimations. In the future, the SoH can be defined based
on both capacity and impedance estimations. For impedance,
the JEKFCF SoC estimation can be used to estimate the
cell impedance as it is one of the jointly estimated model
parameters with the SoC. The Holistic aging model also pro-
vides similar fitting equations for cell impedance. Therefore,

a combination of cell capacity and impedance estimates can
provide an even better and robust estimation of the SoH. The
tests conducted in this study were at 25◦C. As temperature
affects the rate of degradation, more tests need to be conducted
at various temperatures. Finally, validation of these algorithms
on real cell measurement data would be required to further
solidify the conclusions.
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