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Abstract

Mobile devices are increasingly called upon to implement artificial intelligence (AI) applic-
ations; however, the limited computational power and battery life of these devices means
that deployment depends heavily on the ability to train small models of reasonable accuracy.
Small models of this type are typically created by simplifying larger models. Our objective
in the current study was to develop an algorithm to directly enable the efficient training of
small models. The sparse evolutionary training (SET) algorithm has proven highly effect-
ive in continuously probing the model parameter space based on previously-trained models.
This thesis proposed four novel redesigned evolutionary algorithms derived from SET and
performed benchmarking using very-small densely-connected multilayer perceptron (MLP)
models. Evaluation results from synthetic datasets provide a solid proof-of-concept that the
proposed algorithms are capable of probing model parameter space efficiently. However, when
applied to real-world datasets, data features were shown to interfere with the effectiveness of
the proposed algorithms.
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Chapter 1

Introduction

1.1 Research Goals

The development of efficient artificial intelligence (AI) models for small1 mobile devices is
crucial to their adoption in everyday life. However, the limited computational power and/or
battery life of these devices means that deployment depends heavily on the ability to train
small2 models of reasonable accuracy. Our primary objective in this thesis was to develop
algorithms capable of training small models3 with accuracy exceeding that of plain (conven-
tional) training methods. Such models should facilitate the deployment of AI systems on
mobile devices.

Our research goals are outlined in the following.

1. We sought to assess the effectiveness of using redesigned versions of the sparse evol-
utionary training (SET) algorithm proposed by Mocanu et al. [2018] to train densely
connected small MLP models. For the sake of readability, these redesigned algorithms
will be referred to as evolutionary algorithms hereafter whenever no ambiguity presents.4

Precise definitions of the proposed algorithms are presented in Section 3.1.

2. We compared the proposed training algorithms with plain training with the aim of
identifying the factors underlying model accuracy.

3. We investigated the model training history to find indicators of effective training.

4. We investigated the means by which training results are affected by the complexity of
data.

Note that due to a lack of studies in this area of research, this thesis serves as a proof-
of-concept rather than a precise solution to this difficult problem. Thus, this thesis takes a

1i.e. possessing limited computational capability.
2The ”size” of the model is typically measured by the total number of model parameters, which corresponds

to the memory space required for storage. In the case of densely connected multilayer perceptron (MLP)
models, the size can be roughly measured as the total number of edges (links).

3Methods have also been developed to obtain a small model by simplifying a large model (see Section 2.2).
4The general idea of evolutionary algorithm is introduced briefly in Section 2.1.3.

Novel Evolutionary Algorithms for Robust Training of Very Small MLP Models 1



CHAPTER 1. INTRODUCTION

qualitative perspective focusing on specific cases as a starting point for subsequent research
in this field. Quantitative and general claims are left for future studies.

1.2 Research Questions

The research goals presented in Section 1.1 were translated into the following questions.

1. Is it possible to construct a concrete example (including a small model and a reasonably-
sized dataset) to demonstrate the efficacy of the proposed algorithms in training models
that are more accurate than those obtained via plain training? To construct a clear
example, a synthetic dataset can be used such that the minimal model size required to
achieve 100% accuracy can be determined analytically. This provides precise control
over the degree of redundancy in the trained model, which is crucial to choosing a
compact model size.

2. When trained using an equal number of total epochs, do the proposed algorithms still
outperform plain training in terms of model accuracy? A meaningful comparison of
algorithms requires basing assessment on the same quantile of the same total number
of epochs.

3. Do any patterns appear in training history plots,5 which could be used to verify that an
algorithm (or set of hyperparameters) provides an accuracy gain over plain training?
This provides potentially useful diagnostic information for further improvements.

4. Do the conclusions of the above experiments still hold when using complex real-world
datasets? The MNIST dataset was used for real-world assessments in the current study.

1.3 Contributions

1.3.1 Domain Knowledge

This thesis sought to establish a new direction for research in the domain of small-model
training based on the use of evolutionary algorithms. To the best of the author’s knowledge
at the time of writing, researchers have yet to develop a systematic understanding of the
methods used for the direct training of small models. Furthermore, researchers have yet
to report on the application of evolutionary algorithms for the training of very small MLP
models. The contributions of this thesis are as follows:

1. This thesis provides a proof-of-concept that multi-stage training starting from the partial
perturbation (evolution) of previously-trained results can be more effective than simply
retraining re-initialized states multiple times.

2. This thesis initiates a novel research direction for adapting SET to training small models
where model sparseness is not really a requirement.

5plot of validation accuracy versus training epoch
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CHAPTER 1. INTRODUCTION

3. This thesis proposes a methodology to benchmark training algorithms by constructing
synthetic datasets of which their minimal optimal model size are known analytically.
Two datasets were constructed for this purpose.

4. This thesis demonstrates that evolution of important (large-magnitude) weights can
help improving model accuracy. In other words, evolving only coefficients with the
smallest magnitude is not necessarily superior to random evolution. This conclusion is
complementary to the suggestions made by Mocanu et al. [2018], despite the fact that
they initially appear contradictory, due to fundamental differences in the experiments
employed in the two studies.

As mentioned in Section 1.1, the results of this thesis should be interpreted qualitatively
and intuitively rather than quantitatively and strictly. Also note that the experiments were
conducted under highly-specific conditions.

1.3.2 Code Framework

An experimental multi-stage training framework was implemented as a customized add-on
for the Keras library6 to compensate for a lack of built-in multi-stage training functionality.
The framework mimics the callback logic as in Keras, which executes the evolution of weights
after a model is properly trained for a specified number of epochs (hereafter referred to as a
”stage”).7 This framework facilitates implementation of different evolutionary algorithms as
multi-stage callbacks, without interfering with other parts of the code. The framework can
also be extended to arbitrary multi-stage algorithms.8

The entire code module was implemented in Python 3.9 The code10 and the document-
ation11 are made public on GitLab12. A support infrastructure for the multi-stage training
scheme was also implemented in the working code, including a data pipeline and a statistical
analyzer. Note however that they are specific to the purposes of this thesis, which means that
they may not be immediately applicable to other types of model or dataset.

1.4 Outline

The remainder of this thesis is organized as follows.

Chapter 2 provides a brief introduction to essential domain knowledge as well as a brief
review of the existing literature. Key concepts and terminology are explained in Section 2.1.
A review of related works is given in Section 2.2.

Chapter 3 describes the methodology and pivotal techniques to facilitate benchmarking
in this thesis. The proposed evolutionary algorithms are defined in Section 3.1. The methods

6Chollet and others [2015]
7see Section 2.1 for detailed explanations of terminologies.
8The possibility of integration into Keras model is left for evaluation by the open-source community.
9Van Rossum and Drake [2009]

10https://gitlab.com/cbhuang/tue-evo-mlp
11https://cbhuang.gitlab.io/tue-evo-mlp
12https://gitlab.com

Novel Evolutionary Algorithms for Robust Training of Very Small MLP Models 3
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CHAPTER 1. INTRODUCTION

used to enable fair comparisons of model accuracy are described in Section 3.2.

Chapter 4 details the experiments and the analysis of outcomes. The main results from
each dataset are presented in detail and interpreted. Section 4.1 describes the processes of
synthesizing and preprocessing the datasets used in this thesis. Section 4.2 explains how
the hyperparameters were tuned, how the experiments were run, and how the results were
analyzed. Section 4.3 and 4.4 present the results obtained from synthetic and real-world
datasets respectively.

Chapter 5 further examines the results in Chapter 4 from a broader perspective. The
insights are then interpreted and summarized.

Chapter 6 presents the main conclusions and limitations of this thesis. Potential directions
for future research are also proposed.

To keep the main text concise and focused, supplementary contents are attached in the
appendix. Appendix A presents the definition of the synthetic functions used in this thesis.
Appendix B reports the hyperparameter tuning results of the main experiments performed
in Section 4.3 and 4.4. Supplementary experiments are presented in Appendix C.

4 Novel Evolutionary Algorithms for Robust Training of Very Small MLP Models



Chapter 2

Digest of Domain Background

2.1 Preliminaries

2.1.1 Supervised Learning

In computer science, the term learning refers to improving some performance measure P
with respect to some task T based on some set of past experience E [Mitchell, 1997]. If the
learning process is performed using an iterative algorithm instead of an analytical method,
then it is referred to as machine learning. Analytical methods such as linear regression are
generally not considered machine learning because they use explicit formulae rather than al-
gorithms. The advancement in machine learning technology has facilitated effective solutions
to numerous problems that are considered too difficult to be solved with non-learning type
programs [Goodfellow et al., 2016]: For instance, image classification [Krizhevsky et al., 2012],
speech recognition [Hinton et al., 2012], anomaly detection [Chandola et al., 2009] and task
scheduling [Whiteson and Stone, 2006], to name a few.

A device for performing a desired task is referred to as a model. The execution of an
learning algorithm is referred to as training. The goal of training is to find a model in
which general rules are embedded to enable the prediction of new data. In other words, the
information accessible via the model should exceed simple enumeration of past experience.
In practice, datasets are usually divided into two parts: training data and test data. If the
training data fits the model well but the test data does not, this represents the overfitting
phenomenon where noise is fit rather then material information [Dietterich, 1995]. Such rules
embedded in overfitted models are specific to the training data but not extensible to other
cases.

Supervised learning is a type of machine learning in which a label is associated with each
set of input variables [Russell and Norvig, 2010, Goodfellow et al., 2016]. In practice, this often
involve the process of finding a function or mapping rule that maps a set of input variable(s) to
a corresponding set of output variables. A succinct summary of classical supervised learning
methods can be found in Kotsiantis [2007]. In this thesis, input variables are referred to as
independent variables or samples or simply X. Output variables are referred to as dependent
variables or labels or simply Y . The value mapped by a model is called a predicted value or
prediction (Ŷ ). In other words, (X,Y ) in the training data always come in pairs for supervised

Novel Evolutionary Algorithms for Robust Training of Very Small MLP Models 5



CHAPTER 2. DIGEST OF DOMAIN BACKGROUND

learning.

There are two basic types of supervised learning problem based on labels. If the label is
numerical, then the problem is referred to as a function-fitting problem in this thesis1. The
accuracy of function-fitting problems is usually measured as the coefficient of determination,
namely R2, which is analogous to linear regression. If the label is categorical, then the
problem is a classification problem. A model used for a classification problem is also referred
to as a classifier. Accuracy in classification is measured by the overall percentage of correctly
predicted labels. Both types of problem are involved in this thesis.

Note that if the labels are known for only for a subset of input data, then the problem
is referred to as semi-supervised learning. If none of the labels are known at all, then the
problem is referred to as unsupervised learning. Their goals of learning and methodologies
and differ considerably from supervised learning [Goodfellow et al., 2016]. Neither of these
problems are addressed in this thesis.

2.1.2 Multilayer Perceptron (MLP)

An MLP is a special form of artificial neural network (ANN), which is also referred to as
feedforward (neural) networks [Goodfellow et al., 2016, Chen and Burrell, 2002, Maier and
Dandy, 2000]. It is basically a directed acyclic graph comprised of multiple layers of intercon-
nected neurons with the paths of information flow within the network predefined [Goodfellow
et al., 2016]. In the field of machine learning, an MLP model often acts as not only a straight-
forward solution but also a stepping stone to more sophisticated ones. This section provides a
concise introduction to MLP, including its structure, training method and auxiliary elements.

Network Structure

The topology of MLPs consists of multiple layers of nodes as well as edges connecting nodes
in adjacent layers. Within the context of AI research, the nodes are called neurons. In this
thesis, the edges are also referred to as links. The layers contain an input layer, an output
layer, and one or more hidden layer(s) in between.2 The numbers of neurons in the input
and output layers should respectively match the number of input and output variables. The
number of neurons in a hidden layer can be set arbitrarily. As for edges, it is only allowed to
be located between a pair of neurons located in adjacent layers. In other words, neurons in
two adjacent layers and edges in between together form a bipartite graph3. If every possible
edge exists, then the network is said to be densely connected or simply dense. Otherwise the
MLP is sparse. Only dense networks are employed in this thesis.

Prediction

To compute predicted labels (also referred to as a feedforward step), the input variables
propagate through model coefficients and transformations in the MLP network, as illustrated

1The term regression problem [Goodfellow et al., 2016] is also frequently used despite its potential confusion
with linear regression.

2not to be confused with single layer perceptron (SLP) which has no hidden layer
3see https://en.wikipedia.org/wiki/Bipartite_graph for a quick illustration

6 Novel Evolutionary Algorithms for Robust Training of Very Small MLP Models
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CHAPTER 2. DIGEST OF DOMAIN BACKGROUND

in Figure 2.1. The weights are associated with links, whereas biases and activation functions
are associated with neurons. Propagation begins with the input layer according to Equation
2.1, and proceeds consecutively until the output layer is reached.

xoutj = F (
∑
i

(wijx
in
i + bj) (2.1)

where

wij = weight associated with the link pointing from neuron i to neuron j

xini = input value associated with neuron i

bj = bias associated with neuron j

F = activation function

xoutj = output of neuron j

Figure 2.1: Value propagation within MLP network (i.e., feedforward step). Edges not con-
nected to neuron j are omitted for clarity.

There are no strict rules for the selection of an activation function. A practical collection
and comparison can be found in Nwankpa et al. [2018], including the ones later discussed in
this section. In this thesis, the rectified linear unit (ReLU, Equation 2.2) is chosen because
its effectiveness has been empirically demonstrated and it is computationally light.

ReLU(x) =

{
0, x ≤ 0
x, x > 0

(2.2)

The interpretation of output values varies according to the problem type. For function-
fitting problems, the output layer comprises a number of neurons corresponding to the di-
mension of output variable4 and the output value is taken as the predicted value directly.5

4For scalar-valued functions, the output layer consists of a single neuron.
5which may be a standardized or normalized value with respect to data preprocessing

Novel Evolutionary Algorithms for Robust Training of Very Small MLP Models 7
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For classification problems, the output layer comprises a number of neurons corresponding
to the number of classes, such that each neuron represents a predicted class. The value of
an output neuron is interpreted as a measure of the probability that a predicted class is the
class represented by the neuron. A typical practice is to transform the output values using
the softmax function (Equation 2.3) to ensure that the derived probabilities sum to unity.
This transformation is not necessarily well-calibrated in a strict sense [Guo et al., 2017]; how-
ever, empirically it works well for many cases. In this thesis, a softmax activation is always
appended at the output layer for classification problems.

softmax(xi) =
exp (xi)∑
i exp (xi)

, where xi = output value of the ith neuron (2.3)

Evaluation

Evaluation follows the feedforward step. The goodness-of-fit of the model is evaluated using
a loss function, wherein a smaller loss value indicates better model fit. Typically, the mean
square error (MSE) function is used for function-fitting problems, and the sparse categorical
cross-entropy6 function is used for classification problems. These were also chosen in this
thesis.

As a common practice, data not previously used in the feedforward step were often used in
model evaluation to prevent overfitting. The data used in this step is referred to as validation
data. It represents a subset of the training dataset.7 Validation data is not to be confused
with the test data, which remains untouched throughout the entire training process.

Optimization

Obviously, the initialization of random model coefficients is unlikely to produce a good fit.
Improving the fit requires an optimization algorithm to adjust the coefficients in an appropri-
ate manner. This coefficient adjustment is referred to as the optimization step. The process
of implementing changes to model coefficients based on the results of a loss function is referred
to as backpropagation [Rumelhart et al., 1986, Cun, 1988], which can be seen as a form of
gradient descent optimization (illustrated in LeCun et al. [2015]). During backpropagation,
the magnitude of corrections for coefficients in the previous layer is determined by the gradi-
ent of the error function as well as the error value in the current layer. The correction process
begins with the output layer and proceeds backward until the input layer is reached, thus
completing a full cycle of input data training. The next round of data can then be loaded
into the model, which ideally continues the process of improving itself until a local minimum
is reached.

The model also includes non-trainable parameters, such as the number of neurons in
each hidden layer, the activation function(s) and the loss function. These non-trainable
parameters (referred to as hyperparameters) are either set before training begins or computed
automatically without interruption during training. The trainable coefficients are referred
to as model parameters in the narrowest sense. Nonetheless, depending on the context,

6refer to https://en.wikipedia.org/wiki/Cross_entropy for detailed formulation
7A typical choice is to take out 10% to 20% of the training dataset for validation use only.
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hyperparameters are occasionally referred to as model parameters. The hyperparameters are
optimized via a process referred to as hyperparameter tuning, which is detailed in Section
4.2.1.

Further Details

In the following, a selection of other elements crucial to the training process are described:

The term epoch refers to a complete pass of a dataset during training. Due to memory
limitations and/or concerns pertaining to computational efficiency, data is often input into
a model in small batches.8 Each batch proceeds independently through the functional steps
(feedforward, evaluation, and optimization). This approach makes it possible to complete
multiple backpropagation procedures without increasing the I/O cost and potentially gener-
ating an optimal solution more quickly. Unfortunately, smaller batches often deviate from the
sample distribution of the overall dataset, which can lead to unstable results. In practice, it
is generally necessary to find a balance between speed and stability based on empirical ana-
lysis.9. In this thesis (focusing on devices with limited computational resources), we opted
for a smaller batch size except in situations where instability becomes a problem.

The batch normalization (BN) method proposed by Ioffe and Szegedy [2015] is one ap-
proach to overcoming the problem of instability when using small-sized batches. This method
basically centers and scales the data based on analysis performed during training. BN has
proven effective when dealing with image data. In the current study, the decision of whether
to use BN was determined empirically.

The dropout method proposed by Srinivas and Babu [2015] is commonly used to detect
early convergence, i.e., converging too quickly to a less-than-ideal local optimum from which
there is no escape. A dropout layer keeps a portion of the model coefficients away from
changes due to backpropagation. Thus, the effect can be viewed as the addition of random
noise to the gradient descent path in the parameter space. In the current study, whether to
use this method is contingent on empirical results.

Callback function (i.e., callback) is a widely-adapted technique for implementing algorithmic
operations before or after a complete training cycle. The Keras library offers a fully custom-
izable framework as well as helpful built-in callbacks. In the current study, we considered the
following two callbacks to enhance computational efficiency:

• ReduceLRonPlateau reduces the learning rate (LR) after the loss function ceases to
facilitate improvements for a certain number of rounds (=”patience”). When used
properly, this callback can help to improve optimization and prevent crude results caused
by an initial learning rate that is too high.

• EarlyStopping stops training immediately after the loss function ceases to facilitate
improvements for a certain number of rounds. This can save computational resources
and prevent overfitting as long as a reasonable patience threshold is selected. In the

8It is also known empirically that stochasticity added to data distribution due to batch selection can help
optimization, compared to the scenario where all data is trained at once.

9The value of the loss function for an epoch shown by Keras is the averaged value of all batches.
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current study, we opted not to use this function because using a fixed number of epochs
makes it easier to objectively compare training algorithms.

2.1.3 Evolutionary Algorithms

The history of evolutionary algorithms can be traced back to the genetic algorithm (GA)
developed since the 1950s10 and was made popular by Holland [1992] (first published in 1975).
The original idea of GA is mimicking the process of genetic mutation by evolving (otherwise
referred to as perturbing) a portion of data into another value. In the simplest version, the
data is selected at random for mutation; however, rule-based selection is also possible. This
approach has been used with success in problems related to natural evolution and immunology
[McCall, 2005], as well as climate simulation [Stanislawska et al., 2012], financial portfolio
optimization [Sefiane and Benbouziane, 2012], and task scheduling [Guillaume et al., 2007],
to name a few.

Evolutionary algorithm can be viewed as a superset of GA that develops the mutation
methodology in numerous fashions, where units involved in mutation can interact with each
other to improve the model. A comprehensive review on classical evolutionary algorithms can
be found in Xin Yao [1999]. In this thesis, we focus exclusively on its application to the training
procedure of ANNs. A key progress in this domain was made by [Stanley and Miikkulainen,
2002] where the topology (i.e., connectivity) of a network model was evolved.11 The idea of
topological evolution was later incorporated into reinforcement learning [Whiteson and Stone,
2006] as well as backpropagation training on ANNs [Miconi, 2016]. These progress inspired
the proposal of SET [Mocanu et al., 2018], in which topological evolution was performed in a
rule-based manner during the training procedure of ANNs which are large in size and sparse
in connectivity. The characteristics of SET and the aforementioned evolutionary algorithms
will be discussed in more detail in Section 2.2.

In the current study, the evolutionary algorithms are implemented in the form of call-
backs. Note however that a self-coded multi-stage training framework was adopted instead
of the standard Keras callback, as this allows evolution to proceed through multiple epochs.
Timing of evolution can be tracked more easily by implementing evolution callbacks as stage-
level callbacks rather than mixing them up with the built-in epoch-level or batch-level Keras
callbacks.

2.2 Literature Review

AI research is proceeding in two different directions. One approach focuses on sophisticated
algorithms and/or complex model structures to improve the state-of-the-art models, which
require considerable computational resources. The other approach (model compression) fo-
cuses on reducing the number of model parameters to accommodate devices with limited
computational power or battery life.

Model compression can be traced back to Buciluǎ et al. [2006], who trained a compressed
model using the output of a more complex but relatively shallow model. The process of trans-

10Refer to https://en.wikipedia.org/wiki/Genetic_algorithm for detailed historical survey.
11i.e., deleting and reinserting links in a network, thereby altering the model state
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ferring information from a large model to a smaller one is referred to as ”knowledge transfer”
or ”knowledge distillation (KD)”. Subsequently, Ba and Caruana [2014] demonstrated the
compression of deep wide networks into shallow ones. Hinton et al. [2015] managed to com-
press an ensemble of teacher networks into a student network of similar depth. Romero et al.
[2015] proposed the FitNet scheme, in which a shallow wide network is compressed into a deep
narrow one. In FitNet, the student mimics the full feature map of the teacher. That scheme
proved highly effective in maintaining a good compression ratio without sacrificing the accur-
acy of the original model, as verified using a number of benchmark datasets. In the same time,
approaches other than FitNet have also developed rapidly. For instance, Chen et al. [2016]
proposed using ”function-preserving transformations” to accelerate the process of knowledge
transfer. Korattikara et al. [2015] enables knowledge transfer between a Monte-Carlo type
source and a deep neural network (DNN) student via online training. Luo et al. [2016] wisely
used neurons from higher hidden layers for the representation of knowledge. Among the
methodologies being developed, the attention-based learning methodology proposed by Hin-
ton et al. [2015] has attracted the most attention, due to its intuitive premise that useful
knowledge mostly likely resides in ”active” regions of the model. Naturally, researchers have
sought to incorporate the fitness of regions between the teacher and student models into the
loss function to ensure that the student model can learn from the most informative regions
of the teacher model. Cheng et al. [2018] posited that the attention-based approach could be
used to improve the efficiency of KD methods. This assertion was soon verified in numerous
subsequent works based on image classification. Zagoruyko and Komodakis [2017] incorpor-
ated both activation-based as well as gradient-based attention definitions to transfer the result
of activation from a teacher model to a student model. That approach permits relaxation of
the assumptions on which FitNet depended and eliminates the need to increase the depth of
the student network. Wu et al. [2019] incorporated a multi-teacher single-student learning
scheme to enhance model accuracy. Ruiz et al. [2020] built a comprehensive framework to
facilitate application of the KD method to a multiple-angle visual identification scheme using
attention patterns from intermediate layers.

Reflection upon the existing literature prompts for the following question: Why not train
a small model from the beginning? In practice, however, small models are exceptionally hard
to train. The resulting models often converge too early. They are easily trapped in local
optima, even with a good setting of hyperparameters.12 Methodological studies addressing
this problem are surprisingly scarce.

The sparse evolutionary training (SET) algorithm proposed by Mocanu et al. [2018] stands
out as for its ability to continuously probe for better spots in the model parameter space.
SET is a multi-stage training algorithm executed at the beginning of a round of plain training.
It basically zeros out a fraction of connection weights bearing the smallest absolute values
and then adds back the same number of properly-initialized connections. It has been claimed
that SET outperforms plain training in multilayer perceptron (MLP) networks and is roughly
on par with convolutional neural networks (CNNs) while using only a small fraction of the
model parameters. The building blocks of SET can be traced back to the NeuroEvolution
of Augmenting Topologies (NEAT) algorithm proposed by Stanley and Miikkulainen [2002],
which extends the GA family by evolving model topology to achieve optimization. Later
in Whiteson and Stone [2006], NEAT worked in conjunction with a reinforcement learning

12demonstrated in Section 4.3.1
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scheme to enable evolutionary function approximation13 for learning time-series functions.
Miconi [2016] further made it possible for NEAT to perform gradient descent optimization
on recurrent neural networks (RNNs). SET is appreciably motivated by these studies.

SET provides an alternative approach to algorithm design. First, the changes that SET
makes to model parameters are generally not transient.14 Second, SET perturbs a locally-
optimized set of model parameters obtained in the previous stage of training, which is syn-
onymous to ”combatting early convergence” or ”breaking out of a local optimum”. Introducing
a training algorithm with these characteristics greatly increases the likelihood of reaching the
global optimum (or at least an improved local optimum).

The objective of this thesis was to develop multi-stage algorithms capable of perturbing
model parameters of a previously-trained model that usually reside on a local optimum instead
of a global optimum. We hoped that these algorithms could help to overcome the problem
of early convergence in the training of small models. Note that our approach to improving
computational efficiency differs from the mainstream approach based on model compression.
Model compression algorithms strive to enhance model accuracy starting from a complex and
accurate model, whereas our approach to model accuracy focuses solely on efficient probing
in the model parameter space.

It is worth mentioning that the idea of weight manipulation has existed for years. A
representative example is the DropConnect method proposed by Wan et al. [2013], which
temporarily ”masks out” a subset of weights chosen randomly during an epoch.15 This is
equivalent to introducing a noise source into the training process. It is a generalization of the
well-known Dropout method [Hinton et al., 2012], which temporarily masks out the activation
functions of a subset of neurons. Based on the success of its application to the MNIST
dataset, Mobiny et al. [2019] subsequently used it to improve the performance of Baynesian
deep networks. However, close inspection revealed that the DropConnect approach to weight
manipulation would not be suitable for this thesis. First, DropConnect is not used to find a
local optimum. Second, it does not reinitialize a new model parameter state when starting
a new round of training, which means that it is unable to break out of a local optimum by
itself. Third, the size of perturbation or evolution16 is not easily tuned (and maybe not even
possible), thereby making it impossible to observe progressive changes in its effectiveness.

The direction of this thesis was guided by existing literature. First, there is a clear need
for fundamental research in this area. This prompted us to begin with models which are
simple and commonly employed. This also prompted us to use simple synthetic datasets for
which the minimal optimal networks can be derived analytically. Finally, we constructed and
tested a number of redesigned algorithms derived from SET. This approach made it possible
to formulate algorithms capable of probing the model parameter space efficiently. The insights
attained serve as the basis for the development of models with more complex structures and
data with more abundant features.

13representations of function approximators are selected automatically [Whiteson and Stone, 2006]
14affecting multiple epochs or even the entire training
15A mask is generated to pick out a subset of weights, where the masked weights are set to 0. The values of

weights are restored to their original values when the mask is removed.
16the magnitude of change in the value of weights drawn to be evolved in this thesis
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Chapter 3

Proposed Methods

3.1 Algorithms

Five algorithms are proposed in this thesis: Four of them are novel redesigned versions of
SET, each of which retains the major characteristics of evolutionary algorithms as described
in Section 2.1.3. The number of four comes from two options of the unit of evolution (link
or neuron) multiplied by 2 options of unit selectivity (least-important or random). The other
one left is a straightforward incremental training strategy. In the following, the premises
underlying the design of the proposed algorithms are outlined:

1. This thesis focused exclusively on dense networks.

2. Only weights undergo evolution. None of the proposed algorithms evolves bias values.

3. Timing of evolution was changed. In all of the algorithms, evolution is executed after
the model is fully trained, instead of after every epoch as for Mocanu et al. [2018].
This is meant to ensure that the next training stage starts from a reasonably-optimized
location in the model parameter space, rather than from an under-optimized location.
Note that the term training stage (or simply a stage hereafter) refers to the collection of
epochs between two evolutionary actions. We adopted this approach to directly combat
the situation of being stuck in local optima, as often occurs in plain training.

3.1.1 Link Evolution (LE)

The LE algorithm (Algorithm 1) resembles the SET algorithm proposed by Mocanu et al.
[2018]. In addition to the changes described above, a number of adjustments were made to
the original algorithm aimed at preventing unnecessary training of a model that is ill-evolved
or not evolved at all. The adjustments and underlying intuitions are outlined in the following:

1. Reasonable scaling of evolution. When applied to the dense networks in this thesis, the
remove-and-reconnect evolution method of SET would act on the same set of links,1

1In SET, the number of links removed always equals to that of reconnected in an evolution step. Since the
network is dense, the links involved in an evolution step will not vary.
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Algorithm 1: Link Evolution

Input: ζ: evolution probability, δ: evolution scale
1 initialize model
2 initialize multi-stage history storage
3 for each stage do
4 for each epoch do
5 perform regular training
6 end

/* discard worse outcomes */

7 if the loss is greater than the previous best result then
8 restore the best model
9 end

/* evolution */

10 if not the last stage then
11 for each layer in the model do
12 pick a smallest ζ fraction (rounded up) from the smallest positive weights
13 pick a largest ζ fraction (rounded up) from the largest negative weights
14 add ±(δ + |N(0, δ)|) to the picked weights (random sign)

15 end

16 end
17 update multi-stage history storage

18 end

which is not the situation originally being targeted by SET. This is equivalent to simply
re-initializing those selected links. However, this would have opened up the possibility
of the reinitialized coefficient deviating too little from the original value (ineffective evol-
ution) or deviating too much (instability). Therefore, an improved strategy is proposed
to gain better control over the scale of evolution (Equation 3.1).

2. Minimal number of evolved links. The original SET algorithm does not address the
special case in which no links are drawn for evolution. Note that this situation occurs
frequently when dealing with networks containing few neurons and a low probability of
evolution (ζ), such as 8 neurons in a single hidden layer with ζ = .1. Thus, the following
rule is enforced: in the event that no neurons or links are drawn for evolution, then one
of them should be drawn at random.

The design of Equation 3.1 is explained as follows: The magnitude of change on a weight
undergoing evolution is defined as the minimum scale of evolution (δ > 0) plus a random
number drawn from |N(0, δ)|. This ensures that a weight does not stall in the vicinity of its
original value as long as the value of δ is sufficiently large. In the same time, the magnitude of
change is proportional to δ so it would not go unreasonably large2, thereby achieving improved
control over the scale of evolution. The scaling hyperparameter δ is optimized empirically in
the hyperparameter tuning procedure.

2The expected value of the magnitude of change is
(

1 +
√

2
π

)
δ, which can be easily derived from a standard

normal distribution.
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∆ ∼ ±(δ + |N(0, δ)|) (3.1)

where

∆ = quantity adding to the evolving weight; the sign is chosen

at random

δ = std evo scale (hyperparameter name) ∈ R+

N(0, δ) = normal distribution with zero mean and standard deviation δ

3.1.2 Random Link Evolution (RLE)

Algorithm 2: Random Link Evolution

Input: ζ: evolution probability, δ: evolution scale
1 initialize model
2 initialize multi-stage history storage
3 for each stage do
4 for each epoch do
5 perform regular training
6 end

/* discard worse outcomes */

7 if the loss is greater than the previous best result then
8 restore the best model
9 end

/* evolution */

10 if not the last stage then
11 for each layer in the model do
12 for each link in the layer do
13 pick with probability ζ
14 end
15 if no link was picked then
16 pick a link randomly
17 end
18 add ±(δ + |N(0, δ)|) to the picked weights (random sign)

19 end

20 end
21 update multi-stage history storage

22 end

The RLE algorithm (Algorithm 2) is a redesigned version LE in which the links to be
evolved are randomly selected. Note that in addition to the changes described at the beginning
of this chapter, this algorithm includes a number of specific features.

1. Implementation of link selection with fraction ζ. In the original scheme, each neuron
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has probability ζ of evolving, which can lead to a rounding problem when dealing with a
small network. Furthermore, the original scheme draws a fixed fraction of ζ of the links
to be evolved; however, this does not necessarily work as expected for small networks.
For instance, ζ = .2 and ζ = .3 would be indistinguishable in a layer of 8 links, due to
the fact that 2 links would be selected in both cases under the assumption of regular
rounding rules. Neurons must be evolved individually with probability ζ in order to
overcome the rounding problem. Overall, the expected total number of evolved links
should be consistent with the original definition.

2. At least one link evolves. The use of ζ introduces the possibility that no link is selected
for evolution. In that event, one link must be selected at random to avoid wasting an
evolution stage.

3. Negative and positive numbers are not differentiated. Negative and positive integers are
treated equally, due to the fact that evolution probability ζ is the same for all of the
weights.

3.1.3 Neuron Evolution (NE)

The NE algorithm (Algorithm 3) is a redesigned version of LE in which so-called ”unimport-
ant” links also undergo evolution and the selection criterion is neuron-based. In brief, NE
differs from LE in the following ways:

1. Selection of links for evolution. All weights on links connected to a neuron3 with its
p-sum in the smallest ζ fraction of its layer are evolved.

2. At least one neuron in every hidden layer is evolved. The number of evolved neurons is
rounded up.

3. The selection process does not differentiate between the smallest positive and largest
negative values, because there is no negative p-sum.

Specifically, all of the incoming and outgoing links attached to the selected neurons un-
dergo evolution. This approach was inspired by work in attention-based learning, in which
the importance of a neuron is proxied either by the maximum absolute value of all the in-
coming coefficients or the p-sum formula in Equation 3.2 [Zagoruyko and Komodakis, 2017,
Simonyan et al., 2014]. In other words, every incoming weight would contribute to determin-
ing the importance of a neuron. Note that p > 1 emphasizes links with the greatest |weight|
of a neuron, while p→∞ produces a result identical to rankings based only on the link with
the maximum |weight|.

p-sumoriginal(i) =
∑
j

|wp
ji| (3.2)

where

3Both incoming and outgoing links are included.
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j = neuron in the previous layer

i = neuron in the current layer

wji = weight on the link from j to i

p = positive exponent (free parameter)

Algorithm 3: Neuron Evolution

Input: ζ: evolution probability, δ: evolution scale, p: exponent of p-sum
1 initialize model
2 initialize multi-stage history storage
3 for each stage do
4 for each epoch do
5 perform regular training
6 end

/* discard worse outcomes */

7 if the loss is greater than the previous best result then
8 restore the best model
9 end

/* evolution */

10 if not the last stage then
11 for each layer in the model do
12 compute p-sum for each neuron
13 pick a smallest ζ fraction of neurons (rounded up) based on p-sum
14 add ±(δ + |N(0, δ)|) to the weights connected to the picked neurons

(random sign)

15 end

16 end
17 update multi-stage history storage

18 end

For the sake of simplicity, only p-sum with p = 2 was selected as a representative case in
this thesis. Equation 3.2 was also modified for the MLP network, as the original equation
was designed for CNNs. The modified p-sum for hidden layers in MLPs is computed using
Equation 3.3. In brief, the incoming and outgoing weights both contribute to the importance
of a neuron, and taking the square of both sums guards against arbitrary scaling. The reason
why the geometric mean of both sides was taken is as follows: If we assume that all of the
incoming weights are divided by 2, and all of the outgoing weights are multiplied by 2, then
no change will be observed in the output from the outgoing layer.4 In other words, there
is freedom to scale the weights arbitrarily between the incoming and outgoing layers. This
means that the importance of a neuron is not necessarily represented accurately by weights
from a single side. This problem is accounted for by taking the geometric mean of the p-sum
on both sides. An comprehensive illustration is given in Figure 3.1.

4assuming zero bias
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p-sum(i) =

√∑
j

|wp
ji|
∑
k

|wp
ik| (3.3)

where

j = neuron in the previous layer

i = neuron in the current hidden layer

k = neuron in the next layer

wji = incoming weight from neuron j to i

p = positive exponent (free parameter)

(a) Original Weights (b) Rescaled Weights

Figure 3.1: Illustraion of adjusted p-sum: (a) A selected neuron and the links attached to
it are shown. The original weights, output values from the incoming layer are given. The
input values received by the neuron, the output values from the neuron, and the input values
received by the outgoing layer are subsequently derived. The unadjusted p-sum (p = 2) over
all incoming and outgoing weights is 112. (b) The incoming weights are divided by 2 while
the outgoing weights are multiplied by the same number. The derived figures show that the
values received by the outgoing layer is completely unaffected, implying identical importance
of the selected neuron after rescaling; however, the unadjusted p-sum skyrockets to 238. This
dilemma is resolved by the geometric mean adjustment introduced in Equation 3.3.
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3.1.4 Random Neuron Evolution (RNE)

Algorithm 4: Random Neuron Evolution

Input: ζ: evolution probability, δ: evolution scale, p: exponent of p-sum
1 initialize model
2 initialize multi-stage history storage
3 for each stage do
4 for each epoch do
5 perform regular training
6 end

/* discard worse outcomes */

7 if the loss is greater than the previous best result then
8 restore the best model
9 end

/* evolution */

10 if not the last stage then
11 for each layer in the model do
12 for each neuron in the layer do
13 pick with probability ζ
14 end
15 if no link was picked then
16 pick a neuron randomly
17 end
18 add ±(δ + |N(0, δ)|) to the weights connected to the picked neurons

(random sign)

19 end

20 end
21 update multi-stage history storage

22 end

The RNE algorithm (Algorithm 3) is the NE algorithm with random selection of the
neurons to be evolved. The RNE algorithm deviates from NE as follows:

1. P-sum is not required because the neurons are selected at random.

2. Each neuron has evolution probability ζ. As with RLE, neurons instead of links are
randomly selected for evolution.

3. When the drawing prodecure with ζ fails to select a neuron to be evolved in a layer, a
random neuron in that layer will be drawn at random.
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3.1.5 Neuron Increment (NI)

Algorithm 5: Neuron Increment

1 initialize model1 (half-sized)
2 initialize multi-stage history storage
/* Stage 1 */

3 for each epoch do
4 perform regular training on model1
5 end
6 update multi-stage history storage
/* Stage 2 */

7 initialize model2 (full-sized)
8 copy the coefficients of model1 to the first half of neurons and associated links of

model2
9 for each epoch do

10 perform regular training on model2
11 end
12 update multi-stage history storage

A key aspect of evolutionary algorithms is perturbing the model parameter space which
was previously trained. However, the author noticed that this does not necessarily have
to be done via evolution. A simpler approach would be training a fraction of the neurons
at first and subsequently adding back the untrained neurons until the full model size is
reached. The partial model obtained in the first stage could be regarded as a full model
(with the untrained coefficients being zero), which is perturbed by randomly initializing the
untrained links. The NI algorithm (Algorithm 5) is based on precisely this strategy. A
two-stage NI algorithm is constructed to enhance representativeness and simplicity.If a multi-
stage NI can actually work, then it is possible that a two-stage NI can already demonstrate
signs of effectiveness. Half of the neurons in each hidden layer are trained in the first stage.
The coefficients are subsequently transferred to a properly-initialized full-sized model for
the last stage of training. The algorithm is designed to function as a window by which to
assess the effectiveness of the proposed evolution strategies. Unlike the proposed evolutionary
algorithms, the incremental training procedure is neither random- or importance-based. Thus,
in the event that NI performs equally effective with an evolutionary algorithm, then the
effectiveness of that evolution scheme should be questioned.

Note that NI is not considered an redesigned version of SET in this thesis because NI
does not involve either importance- or random-based scheme of evolution as employed in LE,
RLE, NE or RNE. NI does partially resemble the topological increment strategy of the NEAT
algorithm [Stanley and Miikkulainen, 2002]. Topological evolution, however, is not the main
focus of this thesis.
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3.2 Comparison of Results

3.2.1 Accuracy

Benchmarking in this thesis centers around whether a proposed algorithm outperforms plain
training. If we take LE vs Plain as an example, then the null hypothesis roughly states that
”LE does not enhance accuracy compared to plain training”.

The rule of thumb used to compare the efficiency of the proposed algorithms can be defined
as follows: comparing the same quantile for the total epochs spent. This idea is illustrated
in the following example. Assume that each run of the LE algorithm involves 20 stages of
100 epochs per stage and each run of plain training involves a single stage of 100 epochs.
Training is performed as follows: LE (100 runs) and plain training (2,000 runs). Thus, the
two algorithms run an equal number of stages and epochs. Based on a simple comparison of
the median (or average) accuracy of the two algorithms, one would not be able to claim that
one is better than the other, due to the fact that a single LE run imposes the computational
load of 20 runs of plain training. The LE algorithm always retains the best stage during
training; therefore, the LE results represent the top 1

20 or the top 5th percentile of all stages
run. Thus, the median of the LE experiments should be ”the median of the top 5 percent of
all results”, i.e., the 97.5th percentile of all stages run.

Overall, the median accuracy of LE, RLE, NE, and RNE (20 stages each) should be
compared to the 97.5th percentile of plain training, provided the total number of stages and
epochs per stage are equal.5 The null and alternative hypotheses are formalized in Equation
3.4 and 3.5.

H0 (null hypothesis): med(alg) = Q97.5(plain) (3.4)

H1 (alternative hypothesis): med(alg) > Q97.5(plain) (3.5)

where

med = median

Qx = the xth percentile

alg ∈ {LE, RLE, NE, RNE}

Note however that 2-stage NI should be compared to the same quantile of plain training
results. The underlying intuition is that one run of NI yields only one set of fully-trained
model coefficients (i.e., the last round), despite completing two stages. In other words, the
first stage of NI is only a partially-trained state, which could not be expected to compete with
the accuracy of a fully-trained full-sized network. Therefore, a run of NI should be interpreted
as a slightly modified run of plain training. The objective of this thesis was to attain the
most accurate models; therefore, the 95th percentile instead of the median is selected for
comparison.6 Equation 3.6 and 3.7 present formal statements of the null and alternative
hypotheses.

5The stage count listed is exactly the default number of stages used in this thesis. Hypotheses suitable for
arbitrary number of stages can be easily derived with the same reasoning.

6The 97.5th percentile can also be used without altering the conclusion.
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H0 (null hypothesis): Q95(NI) = Q95(plain) (3.6)

H1 (alternative hypothesis): Q95(NI) > Q95(plain) (3.7)

where the symbols are the same as the previous hypotheses.

The model accuracy of all proposed algorithms was evaluated using previously-untouched
test data, in accordance with conventional practices. Note that training results are often
unacceptably poor when dealing with small networks; therefore, the median is used rather
than the mean (or truncated mean) for comparison to avoid this type of noise. Note also that
the standard deviation of accuracy is considered a measure of algorithm stability. Minimum
values and low quantiles of accuracy were also used to assess stability.

3.2.2 Model Training History

Training histories were recorded in the hope of gaining insight into the process of evolution.
We plotted and analyzed the degree of accuracy based on validation data (i.e., validation
accuracy). The resulting plots can be compared qualitatively via overlapping because all of
the training algorithms used the same number of epochs per stage.
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Results

Detailed experiment steps along with the main results were presented in this chapter. As for
the data utilized, two synthetic datasets (ZigZag and NatSign) and one real-world dataset
(downsampled MNIST) were constructed, preprocessed and visualized. Experiment protocols
were elaborated including hyperparameter tuning and interpretation of results. Three types
of result were reported selectively: (1) benchmark of the five proposed algorithms versus plain
training (2) visualization of training history and (3) visualization of goodness-of-fit (only for
ZigZag). Pivotal findings and implications of the results were also discussed. Results of
hyperparameter tuning for the experiments in this chapter can be found in Appendix B.

4.1 Data

4.1.1 Synthetic Data

(a) ZigZag Dataset (b) NatSign Dataset

Figure 4.1: Synthetic datasets where n = 2, 000 samples were randomly selected from a
uniform distribution for each dataset: (a) ZigZag dataset sampled along X domain. (b)
NatSign dataset is sampled along directions of its constituent lines (blue and green respectively
represent y = 0 and y = 1). Detailed definitions of the datasets are given in Appendix A.
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When we consider which data are suitable for assessing the effectiveness of algorithms
on small networks, we must consider the following question: What defines a network as
small? The answer depends entirely on the nature of the data.1 For example, a dataset
bearing a perfect linear relationship between the input variables and sole output variable
would render any non-empty hidden layer redundant. To construct a perfectly accurate
model for this dataset, it would be enough to connect the input layer directly to the output
layer (consisting of one neuron).2 This example provides the following crucial insight: If
the minimal network required to reach the maximum possible accuracy is known a priori,
then the degree of structural redundancy or deficiency in the network can be determined by
comparison, giving the researcher all of the information required to make an informed decision
of model size. Thus, the experiments in this study began with synthetic datasets, from which
the minimal optimal models can be derived analytically. This experiment design prevents
running experiments on highly-redundant models unwittingly.

The synthetic datasets used in the current study are presented in Figure 4.1. The ZigZag
dataset poses a univariate function-fitting problem. The NatSign dataset3 poses a classific-
ation problem with two classes (blue and green) and two input variables. 2,000 samples are
drawn for training, with an 80-20 train-test split, and 20% of the training data was reserved
for validation during training. The formulae and the minimal model sizes are detailed in
Appendix A.

During preliminary studies, a spike-shaped synthetic dataset called Peak-1D was also
employed (Appendix A.3). It consisted of only 3 segments, which stemmed from the intention
to construct an dataset as simple as possible. Unfortunately, it was too easy to achieve
R2 ≈ 1.0 even using plain training, thereby being unsuitable for benchmarking. The results
inspired the design of ZigZag that was similar to Peak-1D while being more complex and
much more difficult to fit perfectly for plain training.

4.1.2 Real-world Data (MNIST)

This thesis used a downsampled subset of the MNIST dataset [LeCun and Cortes, 2010].
MNIST is a collection of 28 × 28 greyscale images of human-written digits and their correct
labels (0, 1, ..., 9). It includes 60k train images and 10k test images. A random sample from
each label is presented in Figure 4.2. Note that in the current study, the original dataset is
downsampled to 7× 7 based on the average value of each 2× 2 block. Furthermore, only 10%
of the original dataset was selected at random. This resulted in 6k records of downsampled
training data and 1k records of downsampled test samples. 20% of the training data was used
for validation during training.

The motivation in devising this setup was to reduce the abundance of information and
thereby make it more difficult to escape from local minima of the loss function. The reason
for downgrading the data is based on the fact that training based on too few data generally
reduces the quality of the resulting model. In other words, training with less information
can lead to situations in which the model is susceptible to becoming trapped in local optima,
which is usually worse than what would have been achieved if a more comprehensive dataset

1Assume that the activation function is fixed.
2The regression coefficients are the weights of links, and the intercept is the bias of the output neuron.
3The shape resembles the natural sign in musical scores.
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Figure 4.2: A random sample of each digit from the MNIST dataset.

were used. Note that during preliminary runs (unreported), experiments run using the full
MNIST dataset achieved roughly the same accuracy for all proposed algorithms. By contrast,
the formal runs utilized only 2.5% of the degree of freedom4 from the original MNIST, and
greater differences in the resulting accuracy among algorithms were indeed obtained.

4.2 Experiment Setup

4.2.1 Hyperparameter Tuning

Hyperparameter tuning is performed prior to each formal run to ensure that formal results
are obtained under a reasonably optimized setup. Simple grid search strategy was adopted to
facilitate programming and the sharing of common settings among the compared algorithms.
The tuning process is separated into two rounds in order to manage the large number of
combinations in the hyperparameter space. The plain (non-evolutionary) hyperparameters
are first tuned using a reasonable set of candidate values. The second round involves tuning
evolutionary parameters only. Table 4.1 lists the hyperparameters being tuned in each round.
Such logical division of hyperparameters makes it possible to complete the task of tuning all
of the proposed algorithms within a couple of days using an ordinary laptop.5

There are also fixed hyperparemters that do not participate in hyperparameter tuning.
These are listed as follows.

• Connectivity. All the layers are fully connected.

• Activation function. ReLU (Equation 2.2) is embedded in the hidden layer(s). For the
output layer, softmax (Equation 2.3) is embedded in the hidden layer for the classi-
fication problems, whereas no activation function is embedded in the function-fitting
problems.

410% of data multiplied by 25% of image size
5for a specific network size
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Round Category Hyperparameter Definition

1 plain

batch size batch size of input data
batch normalization perform batch normalization or not
dropout rate portion of neuron to perform dropout
init lr initial learning rate

epochs
number of epochs; 0=variable epochs by
EarlyStopping (Section 2.1.2)

optimizer Adam, SGD or RMSProp
reduce lr factor init lr can be reduced at most by this factor
patience patience for the ReduceLRonPlateau callback

2 evolutionary
zeta

portion of links or neurons to be evolved (ana-
logous to ζ in the original SET algorithm)

std evo scale (δ) evolution scale (Equation 3.1)

Table 4.1: Procedure of hyperparameter tuning. Two rounds of hyperparameter tuning per-
formed prior to each formal run: Round 1 involves tuning hyperparameters in plain (con-
ventional) training. Round 2 involves tuning evolutionary hyperparameters of the proposed
evolutionary algorithms. Simple grid search is performed on a collection of candidate values
selected from each hyperparameter. Refer to Section 2.1.2 and 3.1.1 respectively for detailed
descriptions of the plain and evolutionary hyperparameters.

• Weight initializer. The GlorotUniform initializer6 (Equation B.1) is applied to all model
weights. Other options for the initializer were included in hyperparameter tuning ini-
tially. However, the choice is made fixed after a hyperparameter tuning task of the
ZigZag model7. A superior option has not been found.

• Bias initializer. Biases are initialized to zero. The decision was made along with the
weight initializer.

4.2.2 Formal Runs

Formal experiments are performed using the optimal set of hyperparameters found in Section
4.2.1. Each set of formal experiments was based on the following setup unless otherwise
indicated.

• Plain: 2,000 runs with 100 epochs per run. Note again that this is the baseline which
we would like to outperform (Section 3.2.1).

• LE, RLE, NE and RNE: 100 runs with 20 evolutionary stages per run, and 100 epochs
per stage.

• NI: 1,000 runs with 2 neuron increment stages per run, and 100 epochs per stage.

All settings not mentioned here followed the descriptions presented in Section 3.1 unless
otherwise indicated. Accuracy values were derived using the methods described in Section
3.2.

6Keras default
7Reported in Appendix B.2
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4.3 Results from Synthetic Data

4.3.1 ZigZag

algo n min q05 median q95 q975 max avg std n best best rate

Plain 2,000 -.0186 -.0109 .7932 .8073 .8075 .9090 .5765 .2624 0 0%
NI 1,000 .0523 .0560 .4431 .7955 .7964 .8093 .5531 .2456 0 0%
LE 100 .7754 .8746 .9991 1.0000 1.0000 1.0000 .9741 .0504 68 68%

RLE 100 .8536 .8858 .9998 1.0000 1.0000 1.0000 .9866 .0323 78 78%
NE 100 .3187 .7584 .9967 1.0000 1.0000 1.0000 .9272 .1249 54 54%

RNE 100 .7929 .8879 .9998 1.0000 1.0000 1.0000 .9821 .0405 72 72%

Table 4.2: Summary of R2 values obtained from models trained using proposed algorithms
on ZigZag dataset. All models bore a single hidden layer of 16 neurons. For the reported
columns: n refers to number of runs; q05, q95 and q975 indicate 5%, 95% and 97.5% quantiles;
n best indicates number of models achieving R2 > .99 and best rate = n best/n. All models
were trained with batch size = 32, init lr = .01 and other optimal settings derived via hyper-
parameter tuning. LE, RLE and RNE were trained using ζ = .75 and std evo scale = 1. NE
was trained using ζ = .5 and std evo scale = .25. Refer to Section 3.1 for definitions of the
algorithms and Section 4.2 for the experiment setup.

The primary benchmarking was performed on an MLP model bearing a single hidden layer
of 16 neurons. Table 4.2 lists the accuracy and descriptive statistics indicating the overall
performance and stability of the proposed algorithms. The results of hyperparameter tuning
for this experiment can be found in Appendix B.2.

This experiment was meant to establish the ability of the evolutionary algorithms to
escape from detrimental local optima. The 97.5th percentile of plain training R2 (.8075) was
significantly outperformed by the median of LE (.9991), RLE (.9998), NE (.9967) and RNE
(.9998). In other words, the proposed evolutionary algorithms boosted up R2 by at least .1892
when evaluated by the comparison protocol defined in Section 3.2.1. More remarkably, over
half of the models achieved R2 > .99 (hereafter referred to as ”best fit”) for all evolutionary
algorithms8. Overall, RLE was the strongest (78%) and NE was the weakest (54%). These
results cannot be achieved with the same computational resources in plain training. The NI
algorithm provided no benefits in terms of efficiency and actually led to a decrease overall.
This is a clear indication that ”partial training followed by parameter space expansion” is
unable to compete with the other evolutionary algorithms examined in this experiment.

The strategies used in the selection of evolved neurons (i.e., random vs. least importance)
were also compared. Surprisingly, both of the random evolution strategies (RLE and RNE)
outperformed their least-importance counterparts (LE and NE). This has an significant im-
plication: Evolving important links can help improving model accuracy. Due to differences in
model structure and data, this was not discovered in the work of Mocanu et al. [2018].

An overall increase in the stability of the evolutionary algorithms was also observed. From
a qualitative perspective, the worst results were eliminated, as indicated by the minimum and
lower 5th percentile of accuracy. The lower 5th percentile accuracy values exceeded that of
the 97.5th percentile in plain training (except for NE), which means that the threshold of the

8refers to the four redesigned versions of SET, not including NI
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(a) Plain (b) NI

(c) LE (d) RLE

(e) NE (f) RNE

Figure 4.3: Empirically-derived 90% C.I. of values predicted by the proposed algorithms
trained using ZigZag dataset. Grey lines are ground truth values, blue bold dashed line is
median predicted value, grey shaded area is empirical symmetrical 90% C.I., and blue thin
dotted lines (overlapping with blue bold dashed line frequently) are confidence limits. All
models bore a single hidden layer of 16 neurons. All models were trained with batch size =
32, init lr = .01 and the other optimal settings derived via hyperparameter tuning. Model
(c)(d)(f) were trained using ζ = .75 and std evo scale = 1. Model (e) was trained using ζ = .5
and std evo scale = .25. Refer to Section 3.1 for definitions of the algorithms and Section 4.2
for the experiment setup.
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worst 5% of the evolutionary algorithms was better than the median of the best 5% of plain
training. The likelihood that the evolutionary algorithms would produce accuracy results as
low as those obtained using plain training is low.

To directly visualize the goodness-of-fit of the trained models, the 90% confidence intervals
(C.I.) of predicted values was plotted in Figure 4.3. The figure clearly shows poor goodness-
of-fit between plain training and NI and better fit for the four evolutionary algorithms. The
median result from the evolutionary algorithms was close to perfection with occasional in-
stances of instability along the edges of the X domain. The evolutionary algorithms almost
eliminated the horizontal fit lines that appeared frequently in the results from plain training
and NI. The superior stability of the evolutionary algorithms is clearly indicated by the smal-
ler shaded C.I. areas of the random evolutionary algorithms (Figure 4.3(d), 4.3(f)) compared
to their non-random counterparts (Figure 4.3(c), 4.3(e)).

Training history provided valuable insights into the effectiveness of the evolutionary al-
gorithms. Figure 4.4 shows the median multi-stage training history of the evolutionary al-
gorithms.9 RLE proved the most effective training strategy in terms of accuracy in the early
epochs of the 5th and later training stages (Figure 4.4(b)); however, it converged far more
slowly than did the other three. We posit that for an evolution step to be effective, there must
be a shift from the current local optimum in the model parameter space to a new location that
could be optimized to a better optimum. This can be thought of as jumping from the bottom
of a shallow valley onto the hillside of another valley which is not easily reachable.10 It is
likely that the path, rate, and endpoint of convergence in the new valley are far different from
those in the previous location; therefore, it is expected that the convergence of an effective
step would be slower than that of an ineffective step in the original valley.

This observation can be generalized as follows: Instances of rapid convergence may be an
indication of insufficient probing of the model parameter space. For example, the NE algorithm
in Figure 4.4(c) appears to have converged more quickly in the 2nd and later stages. However,
the resulting stability and the odds of reaching the best fit were far lower than with the
other evolutionary algorithms. This is a clear indication of ineffective probing of the model
parameter space. Nevertheless, this is only a preliminary observation offering some insight
into the distribution of model accuracy.

9The 95th percentile of training history could also be presented, due to the fact that our focus was on the
best outcomes rather than average performance. However, this would result in the plots clumping up, making
them difficult to interpret while adding little in terms of new insights.

10A smaller loss function leads to better fit. Hence the optimization procedure is like stepping down into a
valley. Evolutionary algorithms attempt to find deeper valleys over time.
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(a) LE (b) RLE

(c) NE (d) RNE

Figure 4.4: Multi-stage training history showing progress of median validation accuracy scores
obtained from evolutionary algorithms trained using ZigZag dataset. For the sake of clarity,
only the histories of stage 1, 2, 5, 10, 15 and 20 are shown. All models bore a single hidden
layer of 16 neurons. All models were trained with batch size = 32, init lr = .01 and other
optimal settings derived via hyperparameter tuning. LE, RLE and RNE were trained using
ζ = .75 and std evo scale = 1. NE was trained with ζ = .5 and std evo scale = .25. Refer to
Section 3.1 for definitions of the algorithms and Section 4.2 for the experiment setup.
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4.3.2 NatSign

algo n min q05 median q95 q975 max avg std n best best rate

Plain 2,000 .8225 .8700 .9925 .9975 .9975 1.0000 .9625 .0524 1,409 70.5%
NI 1,000 .8025 .8675 1.0000 1.0000 1.0000 1.0000 .9617 .0589 700 70.0%
LE 75 .8800 .9950 1.0000 1.0000 1.0000 1.0000 .9977 .0138 74 98.7%

RLE 75 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .0000 75 100.0%
NE 75 .9925 .9950 1.0000 1.0000 1.0000 1.0000 .9994 .0017 75 100.0%

RNE 75 .8425 .9950 1.0000 1.0000 1.0000 1.0000 .9958 .0230 73 97.3%

Table 4.3: Summary showing accuracy of model trained using proposed algorithms when
applied to NatSign dataset. All models bore a single hidden layer of 4 neurons. For the
reported columns: n indicates number of runs; q05, q95 and q975 refer to 5%, 95% and 97.5%
quantiles; n best indicates number of models that achieved 100% accuracy and best rate =
n best/n. All models were trained with batch size = 64 and init lr = .03. LE, RLE, NE
and RNE were run in a grid search of hyperparameters: ζ ∈ {.25, .5, .75} and std evo scale ∈
{.25, .5, 1, 2, 3}. Refer to Section 3.1 for definitions of algorithms and Section 4.2 for the
experiment setup.

The experiment in Section 4.3.1 was repeated on the NatSign dataset in order to extend
the proposed algorithms to classification problems. The algorithms were implemented on an
MLP model with a single hidden layer of 4 neurons.11 One critical deviation from the ZigZag
experiment was that NatSign appeared too ”easy” in the hyperparameter tuning phase (i.e.,
the results were too good), which made it difficult to distinguish the efficiency of the proposed
algorithms. As a result, the formal run using a fixed set of hyperparameters was skipped.
Model accuracy from the final round of hyperparameter tuning was retrieved for analysis. The
summary statistics of benchmarking are listed in Table 4.3. The results of hyperparameter
tuning for this experiment can be found in Appendix .

Although the median of the evolutionary algorithms reaches unity, the 97.5% quantile
of plain training accuracy (.9975) also reached what was defined as the best fit (R2 > .99).
Hence all the proposed algorithms including plain training are working solutions to the Nat-
Sign problem. However, the nearly 30% difference in best rate between the evolutionary and
non-evolutionary algorithms clearly indicates the effectiveness of the evolutionary strategy.
The outstanding stability of the evolutionary algorithms can be seen in their lower quantiles
(q05 ≥ .9950). Note that the results were obtained using a variety of evolutionary parameter
combinations. This means that the conclusions should be robust to the selection of evolution-
ary parameters. Our findings also indicate that classification problems of greater complexity
should be performed to obtain more effective benchmarks.

11The minimal size of the optimal MLP model is at most 4 as shown in Appendix A.2. Thus, the network
used in this experiment has none or low redundancy.
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4.4 Results from Real-world Dataset (MNIST)

algo n min q05 median q95 q975 max avg std

Plain 2,000 .8940 .9060 .9150 .9250 .9270 .9320 .9153 .0056
NI 1,000 .9120 .9200 .9300 .9380 .9400 .9470 .9292 .0054
LE 100 .9070 .9160 .9230 .9300 .9320 .9330 .9232 .0049

RLE 100 .9030 .9060 .9170 .9240 .9250 .9270 .9161 .0053
NE 100 .9200 .9220 .9310 .9390 .9400 .9420 .9313 .0049

RNE 100 .9130 .9190 .9270 .9350 .9350 .9360 .9271 .0049

Table 4.4: Summary statistics of accuracy of models trained using proposed algorithms on a
downsampled subset of MNIST. All models bore a single hidden layer of 16 neurons. For the
reported columns: n indicates the number of runs and q05, q95 and q975 refer to 5%, 95%
and 97.5% quantiles. All models were trained with batch size = 32, init lr = .01 and other
optimal settings derived via hyperparameter tuning. LE, RLE, NE and RNE were trained
with ζ = .25 and std evo scale = .25. Refer to Section 3.1 for definitions of algorithms and
Section 4.2 for the experiment setup.

After demonstrating the effectiveness of the proposed evolutionary algorithms, we used a
downsampled subset of the MNIST dataset (see Section 4.1.2) to test the performance on a
real-world dataset. The MLP model used in this experiment included a single hidden layer
of 16 neurons, as this was deemed ideal to demonstrate the differences among the algorithms
in terms of accuracy.12 The summary statistics of benchmarking are listed in Table 4.4. The
results of hyperparameter tuning for this experiment can be found in Appendix .

The performance of the proposed evolutionary algorithms on the real-world datasets did
not match the performance on the synthetic dataset, with the result that the efficiency ranking
was reversed. The 97.5% quantile of plain training accuracy (.9270) was not surpassed by
the median accuracy of LE, RLE or RNE, and the NI strategy proves surprisingly efficient
(q975 = .9400). Under these conditions, the most efficient13 evolutionary algorithm was NE
(.9310), whereas RLE (previously the strongest) became the weakest (.9170). Furthermore,
the non-random evolutionary algorithms (LE and NE) were more efficient than their random
counterparts. These results clearly demonstrate the critical role of data characteristics14 on
the effectiveness of the evolution process. Two strategies proved particularly suitable for this
real-world problem: incremental training and evolve-the-least-important.

Figure 4.5 illustrates the training history of the algorithms. RLE and NE are compared for
representativeness. It is clear that RLE produced more pronounced fluctuations in accuracy
immediately after the evolutions in the early epochs of each training stage. This is consistent
with the results obtained using the ZigZag dataset (Figure 4.4). Note however that this
time, the pronounced fluctuations and slower convergence in accuracy did not have a positive
effect on efficiency. Combined with the fact that NI is effective and non-random evolution is

12Several other sizes (e.g., 8 and 32 neurons) were tested. With a large number of neurons, the results of the
different algorithms were similarly good, while with only a few neurons, the results were similarly bad. The
reasons for this need to be clarified through further research.

13in the sense defined in Section 3.2.1.
14The problem type (e.g. regression versus classification) may also be a vital factor; however, designing an

experiment for exploring this topic is beyond the scope of this thesis.
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(a) LE

(b) RLE

(c) NE

(d) RNE

Figure 4.5: Multi-stage training history showing progress of median validation accuracy scores
obtained from evolutionary algorithms trained on the downsampled MNIST dataset. All
models included a single hidden layer of 16 neurons. Note that each algorithm performed
100 runs consisting of 20 stages. Each stage represented one round of plain training (100
epochs) following initialization (the 1st stage) or evolution (2nd stage and after). For the sake
of clarity, only stages 1, 2, 5, 10, 15 and 20 (the last stage) are shown. All models were trained
with batch size = 32, init lr = .01, std evo scale = .25, ζ = .25 and other optimal settings
derived via hyperparameter tuning. Refer to Chapter 3.1 for definitions of the algorithms.
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preferred, it appears that this dataset are better-suited to incremental training rather than
perturbing previously-trained coefficients. However, new insight or methodology must be
introduced in order to systematically understand the interaction between training history
and preference of training algorithm for a real-world dataset.
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Discussion

Overall, the capability of the proposed algorithms to escape local optima was strongly de-
pendent on the characteristics of the data. From a qualitative perspective, if an algorithm
proves effective even only in a special case, it is reasonable to claim that the training al-
gorithm has potential, since a poorly-tuned algorithm would have a slim chance of success
under any circumstances. Therefore, all the proposed algorithms (i.e., LE, RLE, NE, RNE
and NI) reached this minimal threshold of success.

However, the difference of the effectiveness of random evolution between synthetic data
and real-world data was immense (Section 4.4). Random evolution was more efficient than
their non-random counterparts when trained on synthetic datasets; however, this finding
was the opposite for real-world data. The gain of accuracy by introducing the evolutionary
strategy also diminished greatly for real-world data. Interpretation of the convergence pattern
in multi-stage training history plots looked solid for synthetic data at first, but was later
challenged upon employing real-world data.

It is possible that the enormous discrepancy between the conclusions obtained from the
synthetic and real-world datasets could be attributed to differences in the volume of informa-
tion embedded in the data sample spaces. The synthetic datasets mainly comprised straight
lines with few degrees of freedom in the sample space, which could possibly make it difficult
to search for these exact degrees of freedom for the training algorithm. Note that once these
degrees of freedom were found (i.e., evolution shifted into the valley containing the global
optimum), subsequent optimization would not be a problem anymore. By contrast, most
real-world datasets (e.g., MNIST) are too rich in terms of information content, even when
downsampled and divided into subsets. Describing rich information requires numerous de-
grees of freedom. It is also important to consider that much of the information is not discrete,
but rather follows a smooth distribution. Thus, it should be easy for a training algorithm to
find a suitable number of degrees of freedom for a rich real-world dataset and produce fair
results. Under these conditions, evolving the model parameter space via ”valley-jumping”
can often be ineffective or even harmful.

Also note that despite multiple combinations of data and problem types were studied in
this thesis,1 the impact of problem type (as well as the joint effect of data type and problem

1i.e., synthetic data + function-fitting problem (ZigZag), synthetic data + classification problem (NatSign)
and real-world data + classification problem (downsampled MNIST).
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type) on the effectiveness of evolutionary strategy remains unresolved. The difficulty for
designing an algorithm suitable for attacking this problem comes partly from the lack of
systematic understanding regarding how data features progress within a neural network when
a training algorithm is applied. To continue with this line of research, more sophisticated
experiments must be designed to clarify the interaction between data features and training
algorithms. Much remains to be determined within this topic. Other than direct forms
of attack, promising directions may come from principles of model compression and model
simplification. These topics are beyond the scope of this thesis.

The key findings of this thesis are summarized in the following:

• The NI, random evolution, and non-random evolution strategies proposed in this thesis
are all potentially useful; however, their applicability depends largely on the character-
istics of the dataset being trained. At this point, the potential benefits of the proposed
algorithms in terms of efficiency can only be determined empirically.

• Datasets that resemble the simple synthetic datasets in this thesis would benefit from
a strategy involving the evolution of important links. Furthermore, the NI approach
may likely be ineffective in these situations. This does not necessarily conflict with the
findings of Mocanu et al. [2018], as the models tested in that study differ from those in
this thesis.

• Datasets that resemble the downsampled MNIST in this thesis would benefit from a
strategy involving the evolution of unimportant links, as described by Mocanu et al.
[2018]. Note that NI could be a viable option in these cases.

• Pattern of convergence in the multi-stage training history may carry information per-
taining to the performance of the training model; however, the precise relationship
depends on the characteristics of the data and remains to be clarified.
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Conclusions

6.1 Main Conclusions

Five novel algorithms for the training of small MLP networks were proposed in this thesis.
Four of them (i.e., the proposed evolutionary algorithms: LE, RLE, NE and RNE) are re-
designed versions of the sparse evolutionary training (SET) algorithm proposed by Mocanu
et al. [2018]. The other one left (NI) is a simple incremental training scheme. These algorithms
were benchmarked against plain (conventional) training with a comparable computational
cost comprised of 2,000 traing stages with 100 epochs per stage. Two synthetic datasets for
benchmarking were also constructed to adapt to the very small sizes of the networks employed
(no more than 16 hidden neurons for the main experiments).

The proposed evolutionary algorithms proved highly effective when applied to synthetic
data. As for the ZigZag dataset, all the proposed evolutionary algorithms not only boosted
up the resulting model R2 by at least .1892 but also enabled achieving the best fit scenario
(R2 > .99) with probability ≥ 54%, which was totally unattainable via plain training. In ad-
dition, the random evolution strategy was more effective than the ”evolve the least-important
weights” strategy employed by SET, suggesting that important weights can also be worth
evolving. Experiments on the NatSign dataset yielded a less differentiating outcome with
compatible implications. These findings were not known to Mocanu et al. [2018]. On the
other hand, the accuracy gains of proposed evolutionary algorithms were far less prominent
when benchmarked using real-world data (a downsampled subset of MNIST). The relative
effectiveness between random and ”least-important” evolution strategies were also reversed
when compared to the trend of synthetic data. Neuron-based evolution and incremental train-
ing became potentially effective in this scenario. The results from real data indicated that the
efficiency of the proposed algorithms may depend appreciably on the characteristics of data
or problem type (classification or function-fitting). Similar phenomenon was also present in
the interpretation of multi-stage training history, where slower convergence came along with
better accuracy for synthesized data while the same was not observed for real-world data.

Overall, this proof-of-concept study demonstrated that evolutionary algorithms combined
with gradient descent optimization could be used to overcome detrimental local optima when
training small-sized networks. The findings also provided novel insights pertaining to efforts
to improve the SET algorithm. That said, considerable testing on various forms of data and
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CHAPTER 6. CONCLUSIONS

model structures must still be conducted to establish a more solid and systematic understand-
ing. It is expected that these improved algorithms could eventually facilitate the deployment
of more efficient and compact models on devices with limited computational capacity.

6.2 Limitations and Future Directions

This thesis was limited in a number of important areas:

1. This thesis focused exclusively on MLP networks, and all of the models employed in
contained only one hidden layer. The effectiveness of the proposed algorithms on models
with multiple hidden layers has yet to be elucidated.

2. This thesis used only densely-connected layers. The effectiveness of evolution in network
topology (connectivity) was not explored systematically.

3. The datasets used in this thesis resided on the simplest side of the available options. For
instance, functions with vector outputs or multi-color images were entirely disregarded.

4. Self-trained models were used rather than existing state-of-the-art models.

5. Sophisticated data preprocessing techniques such as data augmentation were not used.

6. The metric used for neuron evolution (p-sum with p = 2) was not widely explored;
however, the effectiveness of random evolution reduces the significance of this limitation.

The author suggests the following directions for future studies:

1. Identifying the data features that are well-suited to evolutionary algorithms (which will
no doubt require careful inspection of numerous datasets).

2. Extending the algorithm to other model types, such as CNN and recurrent neural net-
works (RNN).

3. Experimenting on sparse networks and with a focus on sparseness.

4. Evolving state-of-art models to see whether they can be improved.

5. Investigating the distribution and progression of model coefficients during training to
elucidate how and why evolution works.
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Appendix A

Functions for Synthetic Datasets

A.1 ZigZag

The ZigZag function consists of three consecutive periods of a linearized sinusoidal wave (or
triangle wave) centered on the origin. The wave has a period of 2 and an amplitude of 1. The
function is expressed by Equation A.1.

y = 1− 2|((x+ .5) mod 2)− 1|;x ∈ [−3, 3] (A.1)

The minimal optimal MLP model using ReLU activation bears a single hidden layer of 7
neurons, which is simply equal to the number of segments in the graph.

A.2 NatSign

The dataset consists of two distinct labels and four lines in the input domain (i.e., the X-Y
plane). The green ”left elbow” in Figure A.1(a) is labeled 1 and the blue ”right elbow” is
labeled 0. For the left elbow, the horizontal line and slash line are derived using Equation
A.2. The equation of the right elbow is derived by mirror symmetry.

{
y = − .3 (x ∈ [−1, .35]) ......horizontal
y = x− .7 (x ∈ [−1, 1.3]) ......slash

(A.2)

The sampling density in the x-domain of the slash lines is reduced by a factor of 1/
√

2
compared to the horizontal lines to maintain a constant sampling density along the lines.
Furthermore, the length of the slash lines ensured that for an arbitrary cut line across the
origin, the number of green and blue points on one side remains approximately equal (< 10%
of difference). In such a balanced sample, it would not be possible to obtain an ”easy score”
for a blind arbitrary cut. The arm length was set in this manner to make the effectiveness of
the training procedure more evident.1.

1instead of always producing seemingly good results overall
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The minimal optimal network consists of no more than 4 hidden neurons, as shown in
Figure A.1. A different set of function parameters was used to facilitate computation and
verification. This was achieved by dividing the input domain, such that positive and negative
output values belong to green and blue labels, respectively. The first and second neurons left
in the hidden layer give the region above y − x = 1 a positive value and the region below
x − y = 1 a negative value (.05 and −.05 for the green and blue slope lines, respectively).
The region in between yields zero after the first two neurons; however, the yielded value is
expanded slightly by the third and fourth neurons. The contribution of the third and fourth
neurons (on the order of 10−5) was added to the value contributed by the first two neurons;
however, it was insufficient to affect the sign of the value within the domain of the dataset. As
a result, the green samples obtain positive outputs, whereas the blue samples obtain negative
outputs. Thus, the classification problem can be solved using a hidden layer of 4 neurons.

(a) NatSign Dataset (Transformed) (b) Optimal MLP Model

Figure A.1: A small optimal MLP for NatSign classification problem: (a) labels of output
data shown in green and blue; (b) numbers associated with links and neurons are weights and
biases, respectively. Links with zero associated weight are not shown for clarity.

A.3 Peak-1D

Preliminary studies of this thesis was performed using the Peak-1D dataset, a simple pyramid-
shaped function given by Equation A.3. The function is visualized in Figure A.2(a). The
minimal optimal model bears a hidden layer with 3 neurons, as shown in A.2(b).

{
y = 0 (1 ≤ |x| ≤ 2)
y = 1− |x| (|x| < 1)

(A.3)

The results from Peak-1D were eventually discarded as the dataset was proved too easy
to train (i.e., too easy to reach the best fit even for plain training), provided that the hy-
perparameter tuning procedure was executed correctly. Such a dataset would be unable to
distinguish between the effectiveness of the proposed algorithms.
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(a) Peak-1D Dataset (b) Minimal Optimal Model

Figure A.2: (a) Peak-1D dataset. (b) Minimal optimal MLP model for Peak-1D.

One potential advantage for this dataset is that its definition could be easily extended
to arbitrary input dimensions. This could be done by taking the minimum value of 1− |xi|,
subject to a lower bound of 0, where i is one of the input dimensions. For example, Peak-
2D dataset would look like a real pyramid. This opens up an easily-implemented way for
constructing simple multi-dimensional function-fitting problems.
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Appendix B

Hyperparameter Tuning of Main
Experiments

The results of hyperparameter tuning for the main experiments (Section 4.3 and Section
4.4) are presented in this section, except that the results from NatSign in Section 4.3.2 were
too trivial and therefore skipped. Summary statistics of individual runs are presented in
tables, while individual runs are visualized using parallel coordinates plot using Plotly library
[18]1. The actual choice of hyperparameters can be found as the bold-texted values in the
tables. Adaptive adjustments that deviated from the default protocol in Section 4.2 are also
explained.

B.1 Model Initializers

In the hyperparameter tuning procedure, options of initializers of model coefficients were
tested.

B.1.1 Weight Initializer

The default initializer of model weights is the GlorotUniform formula given by Equation B.1
as proposed by Glorot and Bengio [10]. The intention is to keep the statistically expected
value of the model output close to unity [10]. The initializer class was implemented in Keras.2


x ∼ U(-limit, limit)

limit =

√
6

ni + no

(B.1)

where

1https://plotly.com/python
2see https://keras.io/api/layers/initializers for the online documentation
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x = the initialized value

U = uniform distribution from an interval

ni = number of input neurons connected to the layer containing

the neuron being initialized

no = number of output neurons connected to the layer containing

the neuron being initialized

The alternative to GlorotUniform was selected to be U(−.05, .05) (denoted random uniform
hereafter). It is not adaptive to network size, and the limit .05 can be seen as relatively small
when compared to the GlorotUniform limit for ni = 1 and no = 16 (.594). This option
is tested in some cases of hyperparameter tuning. It is to see whether different degree of
concentration of initial weight will affect the accuracy of the trained model.

A closely related formula named GlorotNormal could also be used.3 However, virtually
no difference from GlorotUniform was found by some preliminary studies. Hence this option
is not being tested during hyperparameter tuning.

Consequently, only two options, namely glorot uniform and random uniform, was tuned in
all hyperparameter tuning results reported. Furthermore, since GlorotNormal was winning in
almost every single run, the initializer became a fixed value for most hyperparameter tuning
tasks performed.

B.1.2 Bias Initializer

The default initializer of neuron bias is simple zeros as it is empirically known to be more
efficient. An alternative to the default was the standard normal distribution N(0, 1). The
intuition stemmed from the fact that data are usually transformed into unity scale before
training. As the bias of ReLU function defines the location of ”function behavior change”,
the bias may also be distributed over the same range to capture different local features.

In brief, only zeros and random normal were tested during hyperparameter tuning for some
cases. However, the zeros initializer is all superior for the cases in this thesis. Therefore, the
bias initializer is in fact fixed to zeros for most hyperparameter tuning tasks in this thesis.

3Documented in the same online manual of GlorotUniform.
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B.2 ZigZag (16 Hidden Neurons)

hyperparameter value n min q05 median q95 q975 max avg std

16 240 -.0166 .0232 .1189 .3753 .4287 .8827 .1476 .1380
32 240 .0076 .0286 .1409 .5248 .5973 .7896 .1720 .1519
64 240 .0023 .0260 .1445 .6571 .7705 .8237 .1884 .1793
128 240 .0041 .0265 .1173 .6714 .7626 .7877 .1677 .1742

batch size

256 240 -.0523 -.0102 .0583 .4163 .6915 .9009 .1242 .1615

True 600 -.0523 .0015 .1098 .4702 .6078 .7588 .1422 .1413
batch normalization

False 600 -.0088 .0238 .1338 .6577 .7852 .9009 .1778 .1808

0 400 -.0102 .0310 .1873 .7808 .7875 .9009 .2546 .2339
.2 400 -.0523 .0184 .1189 .2669 .2749 .2945 .1274 .0861dropout rate
.5 400 -.0365 .0023 .1051 .1898 .1989 .2100 .0980 .0624

.1 240 -.0166 .0297 .1735 .6915 .7808 .9009 .2145 .1790
.03 240 -.0017 .0310 .1968 .6929 .7849 .8237 .2452 .1863
.01 240 -.0390 .0095 .1594 .5477 .7626 .8827 .1861 .1707
.003 240 -.0523 .0055 .0610 .2745 .3488 .6437 .0966 .0990

init lr

.001 240 -.0164 .0052 .0466 .1418 .1859 .2922 .0574 .0449

glorot uniform 600 -.0166 .0248 .1298 .6567 .7808 .8827 .1792 .1809
weight initializer

random uniform 600 -.0523 .0057 .1040 .3747 .5211 .9009 .1408 .1408

zeros 600 -.0335 .0217 .1419 .6385 .7836 .9009 .1763 .1759
bias initializer

random normal 600 -.0523 .0149 .1039 .4163 .6078 .8827 .1437 .1476

5 600 -.0523 .0161 .1086 .4899 .6882 .8827 .1519 .1594
patience

10 600 -.0390 .0202 .1261 .5585 .7233 .9009 .1681 .1665

Table B.1: Tuning non-evolutionary hyperparameters on the ZigZag dataset with an MLP
model bearing a single hidden layer of 16 neurons. A simple grid search was performed on
1,200 combinations out of 7 parameters. One trial per combination was run. The main figures
reported stand for the accuracy metric, R2. For the reported columns, n is the number of
runs. q05, q95 and q975 are the 5%, 95% and 97.5% quantiles. Refer to Table 4.1 for the
definition of the hyperparemeters.

Two rounds of hyperparameter tuning were performed for the ZigZag dataset with a MLP
model containing a single hidden layer of 16 neurons. The results are reported in Table B.1
and B.2 for tuning the non-evolutionary and evolutionary hyperparameters respectively. The
hyperparameter values in bold were chosen for subsequent runs for the same model. Values
with the maximum median R2 are chosen unless otherwise explained. The above results are
also visualized in parallel coordinate axis in Figure B.1.

For the result of non-evolutionary parameters, an exception of the max-median rule was
that batch size = 32 were chosen over 64 for consistency with other results and prior ex-
perience. The median accuracy of batch size = 32 (.1409) was not very far from that of
batch size = 64 (.1445). Also note that the low median accuracy of plain training on small
networks is expected.

For the result of evolutionary parameters, one can readily observe that the median accur-
acy improved dramatically compared to the outcome of plain training with the evolutionary
training algorithms introduced. (ζ) = .5 and std evo scale = 1 were chosen for all algorithms
except for NE taking std evo scale = .5. The difference of NE is understandable as NE
contains an extra hyperparameter (p = 2 of the p-sum metric of neuron importance), so its
behavior is more likely to deviate more from others.
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algo hyperparameter value n min q05 median q95 q975 max avg std n best best rate

LE

zeta
.25 120 .7969 .8100 .9092 1.0000 1.0000 1.0000 .9247 .0680 44 36.7%
.5 120 .8049 .8465 .9997 1.0000 1.0000 1.0000 .9656 .0534 72 60.0%
.75 120 .0248 .8042 .9984 1.0000 1.0000 1.0000 .9487 .1053 69 57.5%

std evo scale

.1 60 .7864 .7969 .8973 1.0000 1.0000 1.0000 .8951 .0648 10 16.7%
.25 60 .7657 .8270 .9484 1.0000 1.0000 1.0000 .9393 .0579 19 31.7%
.5 60 .8100 .8112 .9905 1.0000 1.0000 1.0000 .9553 .0586 31 51.7%
.75 60 .8100 .8110 .9997 1.0000 1.0000 1.0000 .9699 .0578 45 75.0%
1 60 .8088 .8113 .9999 1.0000 1.0000 1.0000 .9654 .0562 40 66.7%

1.5 60 .0248 .8099 .9996 1.0000 1.0000 1.0000 .9528 .1327 40 66.7%

RLE

zeta
.25 120 .7627 .8095 .9948 1.0000 1.0000 1.0000 .9531 .0655 67 55.8%
.5 120 .7425 .7944 .9999 1.0000 1.0000 1.0000 .9597 .0680 78 65.0%
.75 120 .6640 .7620 1.0000 1.0000 1.0000 1.0000 .9511 .0805 77 64.2%

std evo scale

.1 60 .6640 .7425 .8342 .9925 .9945 .9982 .8519 .0788 4 6.7%
.25 60 .7941 .8580 .9479 1.0000 1.0000 1.0000 .9400 .0522 17 28.3%
.5 60 .7706 .8852 1.0000 1.0000 1.0000 1.0000 .9835 .0394 47 78.3%
.75 60 .8846 .8866 1.0000 1.0000 1.0000 1.0000 .9895 .0297 51 85.0%
1 60 .8786 .9297 1.0000 1.0000 1.0000 1.0000 .9937 .0236 56 93.3%

1.5 60 .7627 .7732 1.0000 1.0000 1.0000 1.0000 .9692 .0663 47 78.3%

NE

zeta
.25 120 .4953 .7745 .8807 1.0000 1.0000 1.0000 .8769 .1018 40 33.3%
.5 120 .7737 .7757 1.0000 1.0000 1.0000 1.0000 .9443 .0749 68 56.7%
.75 120 .4556 .7744 .9499 1.0000 1.0000 1.0000 .9258 .0896 52 43.3%

std evo scale

.1 60 .4556 .7651 .8955 1.0000 1.0000 1.0000 .9062 .0930 19 31.7%
.25 60 .7760 .7791 .9999 1.0000 1.0000 1.0000 .9560 .0668 34 56.7%
.5 60 .7741 .7747 1.0000 1.0000 1.0000 1.0000 .9377 .0885 36 60.0%
.75 60 .7680 .7753 .9996 1.0000 1.0000 1.0000 .9249 .0893 32 53.3%
1 60 .4953 .7758 .8965 1.0000 1.0000 1.0000 .9113 .1013 26 43.3%

1.5 60 .7710 .7738 .8136 1.0000 1.0000 1.0000 .8580 .0898 13 21.7%

RNE

zeta
.25 120 .7782 .8492 .9998 1.0000 1.0000 1.0000 .9630 .0583 75 62.5%
.5 120 .7887 .8465 .9999 1.0000 1.0000 1.0000 .9715 .0527 80 66.7%
.75 120 .7798 .8095 .9999 1.0000 1.0000 1.0000 .9594 .0644 73 60.8%

std evo scale

.1 60 .7798 .7913 .8722 .9970 .9981 1.0000 .8833 .0641 5 8.3%
.25 60 .8080 .8614 .9701 1.0000 1.0000 1.0000 .9569 .0451 19 31.7%
.5 60 .8801 .8814 1.0000 1.0000 1.0000 1.0000 .9882 .0293 48 80.0%
.75 60 .7811 .8806 1.0000 1.0000 1.0000 1.0000 .9883 .0387 54 90.0%
1 60 .8796 .8950 1.0000 1.0000 1.0000 1.0000 .9911 .0282 53 88.3%

1.5 60 .7782 .7800 1.0000 1.0000 1.0000 1.0000 .9801 .0527 49 81.7%

Table B.2: Tuning evolutionary hyperparameters on the ZigZag dataset based on the same
model and optimal hyperparemeters chosen from Table B.1. A simple grid search was per-
formed on 18 combinations out of 2 parameters. 20 trials per combination are run. Other
illustrations are the same as Table B.1.
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There is a note with regard to the resource cost: ca. 2.6 hours on an ordinary laptop with a
4-core-8-threaded Intelr CPU were spent on tuning the non-evolutionary parameters, whereas
the evolutionary parameters took ca. 16 hours to tune for each evolutionary algorithm. The
duration was simply a rough idea and not measured with precision.
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(a) Round 1

(b) Round 2 (LE) (c) Round 2 (RLE)

(d) Round 2 (NE) (e) Round 2 (RNE)

Figure B.1: Visualization of hyperparameter tuning on ZigZag. All models bore a single
hidden layer of 16 neurons. Model accuracy values (R2) evaluated using test data are mapped
to the test acc axis and colorized. Subfigure (a): the first round of tuning on non-evolutionary
hyperparameters (BN=batch normalization). Subfigure (b)-(e): the second round of tuning
on evolutionary hyperparameters for algorithm LE, RLE, NE and RNE. Refer to Section 4.2.1
for descriptions of the tuning procedure.
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B.3 NatSign (4 Hidden Neurons)

hyperparameter value n min q05 median q95 q975 max avg std n best best rate

init lr

.3 48 .8450 .8525 .8925 1.0000 1.0000 1.0000 .9075 .0525 11 22.9%

.1 48 .8600 .8650 .8950 1.0000 1.0000 1.0000 .9260 .0531 14 29.2%
.03 48 .8750 .8750 .9075 1.0000 1.0000 1.0000 .9320 .0491 13 27.1%
.01 48 .8650 .8725 .8950 1.0000 1.0000 1.0000 .9221 .0505 10 20.8%
.003 48 .8625 .8675 .8925 1.0000 1.0000 1.0000 .9154 .0470 6 12.5%
.001 48 .7875 .8625 .8825 .9750 .9850 1.0000 .8898 .0388 2 4.2%

batch normalization
False 144 .7875 .8650 .8950 1.0000 1.0000 1.0000 .9174 .0549 40 27.8%
True 144 .8575 .8625 .8925 .9925 .9925 .9950 .9135 .0459 16 11.1%

dropout rate
0 144 .7875 .8650 .9750 1.0000 1.0000 1.0000 .9448 .0558 56 38.9%
.2 144 .8050 .8625 .8850 .9100 .9100 .9850 .8861 .0174 0 0.0%

signed epochs
0 96 .8575 .8675 .8950 1.0000 1.0000 1.0000 .9185 .0491 17 17.7%
50 96 .8050 .8625 .8900 1.0000 1.0000 1.0000 .9124 .0505 18 18.8%
100 96 .7875 .8600 .8925 1.0000 1.0000 1.0000 .9154 .0523 21 21.9%

batch size

16 72 .8525 .8625 .8950 1.0000 1.0000 1.0000 .9192 .0490 13 18.1%
32 72 .8450 .8650 .8925 1.0000 1.0000 1.0000 .9161 .0507 14 19.4%
64 72 .8575 .8650 .8950 1.0000 1.0000 1.0000 .9156 .0495 15 20.8%
128 72 .7875 .8575 .8875 1.0000 1.0000 1.0000 .9109 .0530 14 19.4%

Table B.3: Tuning non-evolutionary hyperparameters on the NatSign dataset with an MLP
model bearing a single hidden layer of 4 neurons. A simple grid search was performed on
288 combinations out of 5 parameters. One trial per combination was run. The main figures
reported is prediction accuracy. For the reported columns, n is the number of runs. q05, q95
and q975 are the 5%, 95% and 97.5% quantiles. n best is the number of models achieving
accuracy = 1 and best rate = n best/n. The bold values were chosen for subsequent runs.
Refer to Table 4.1 for the definition of the hyperparemeters.

The results of hyperparameter tuning on NatSign is reported in Table B.3 and B.4 for
non-evolutionary and evolutionary hyperparameters respectively. As one can easily observe in
Table B.4 (the second run), perfect prediction is reached for nearly all the test cases disregard
the choice of the evolutionary parameters. Therefore, the proposed evolutionary algorithms
were not executed using a fixed set of hyperparameter due to the lack of distinguishing power
of the NatSign dataset for these algorithms.
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algo hyperparameter value n min q05 median q95 q975 max avg std n best best rate

LE

zeta
.25 25 .8800 .9950 1.0000 1.0000 1.0000 1.0000 .9948 .0235 24 96.0%
.5 25 .9925 .9950 1.0000 1.0000 1.0000 1.0000 .9988 .0021 25 100.0%
.75 25 .9950 .9975 1.0000 1.0000 1.0000 1.0000 .9996 .0012 25 100.0%

std evo scale

.25 15 .8800 .8800 1.0000 1.0000 1.0000 1.0000 .9917 .0299 14 93.3%
.5 15 .9975 .9975 1.0000 1.0000 1.0000 1.0000 .9998 .0006 15 100.0%
1 15 .9950 .9950 1.0000 1.0000 1.0000 1.0000 .9993 .0014 15 100.0%
2 15 .9950 .9950 1.0000 1.0000 1.0000 1.0000 .9992 .0017 15 100.0%
3 15 .9925 .9925 1.0000 1.0000 1.0000 1.0000 .9987 .0024 15 100.0%

RLE

zeta
.25 25 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .0000 25 100.0%
.5 25 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .0000 25 100.0%
.75 25 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .0000 25 100.0%

std evo scale

.25 15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .0000 15 100.0%
.5 15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .0000 15 100.0%
1 15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .0000 15 100.0%
2 15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .0000 15 100.0%
3 15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .0000 15 100.0%

NE

zeta
.25 25 .9975 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .0005 25 100.0%
.5 25 .9950 .9950 1.0000 1.0000 1.0000 1.0000 .9996 .0014 25 100.0%
.75 25 .9925 .9925 1.0000 1.0000 1.0000 1.0000 .9987 .0025 25 100.0%

std evo scale

.25 15 .9925 .9925 1.0000 1.0000 1.0000 1.0000 .9983 .0025 15 100.0%
.5 15 .9950 .9950 1.0000 1.0000 1.0000 1.0000 .9997 .0012 15 100.0%
1 15 .9975 .9975 1.0000 1.0000 1.0000 1.0000 .9998 .0006 15 100.0%
2 15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .0000 15 100.0%
3 15 .9925 .9925 1.0000 1.0000 1.0000 1.0000 .9992 .0022 15 100.0%

RNE

zeta
.25 25 .9975 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .0005 25 100.0%
.5 25 .9950 .9975 1.0000 1.0000 1.0000 1.0000 .9997 .0011 25 100.0%
.75 25 .8425 .8725 1.0000 1.0000 1.0000 1.0000 .9878 .0387 23 92.0%

std evo scale

.25 15 .8425 .8425 1.0000 1.0000 1.0000 1.0000 .9885 .0390 14 93.3%
.5 15 .8725 .8725 1.0000 1.0000 1.0000 1.0000 .9912 .0317 14 93.3%
1 15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .0000 15 100.0%
2 15 .9975 .9975 1.0000 1.0000 1.0000 1.0000 .9997 .0008 15 100.0%
3 15 .9950 .9950 1.0000 1.0000 1.0000 1.0000 .9997 .0012 15 100.0%

Table B.4: Tuning evolutionary hyperparameters on the ZigZag dataset based on the same
model and optimal hyperparemeters chosen from Table B.3. A simple grid search was per-
formed on 15 combinations out of 2 parameters. 5 trials per combination are run. Other
illustrations are the same as Table B.3.
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B.4 Downsampled MNIST (16 Hidden Neurons)

Panel 1: Initial Search

hyperparameter value n min q05 median q95 q975 max avg std

epochs
30 126 .0990 .1090 .7210 .8970 .9070 .9200 .5848 .3060
60 126 .1020 .1090 .8310 .9090 .9140 .9270 .6480 .3076
100 126 .1020 .1090 .8650 .9100 .9170 .9250 .6788 .3062

batch size
64 126 .0990 .1090 .8730 .9200 .9210 .9270 .6632 .3345
256 126 .1090 .1090 .8530 .9060 .9080 .9190 .6711 .3015

1,024 126 .1020 .1090 .6520 .8740 .8780 .9060 .5773 .2799

batch normalization
True 189 .1020 .2710 .8680 .9170 .9200 .9270 .7422 .2242
False 189 .0990 .1090 .7330 .8850 .8870 .8960 .5322 .3446

dropout rate
0 126 .0990 .1090 .8570 .9190 .9210 .9270 .6685 .2999
.2 126 .1020 .1090 .8110 .9060 .9100 .9200 .6307 .3176
.4 126 .1020 .1090 .7840 .8940 .8960 .9010 .6124 .3068

init lr

1.0 54 .0990 .1020 .1090 .6320 .6820 .7540 .2312 .1787
.3 54 .1020 .1020 .3130 .8980 .8980 .9190 .4452 .3438
.1 54 .1020 .1090 .5060 .9130 .9160 .9210 .5301 .3446
.03 54 .2920 .4930 .8670 .9140 .9200 .9270 .8001 .1371
.01 54 .5170 .5210 .8680 .9100 .9190 .9250 .8455 .0864
.003 54 .2890 .4180 .8700 .9060 .9070 .9250 .8197 .1344
.001 54 .3780 .5140 .8470 .8970 .9020 .9050 .7887 .1272

Panel 2: Refined Search

hyperparameter value n min q05 median q95 q975 max avg std

batch size

32 50 .8990 .9040 .9120 .9200 .9210 .9230 .9124 .0051
64 50 .8990 .9000 .9100 .9200 .9210 .9260 .9101 .0059
128 50 .8910 .8950 .9080 .9150 .9150 .9170 .9067 .0063
256 50 .8870 .8920 .9040 .9130 .9130 .9210 .9037 .0063

init lr
.01 100 .8920 .8980 .9100 .9210 .9210 .9260 .9098 .0066
.003 100 .8870 .8930 .9070 .9170 .9180 .9210 .9068 .0066

Table B.5: Tuning non-evolutionary hyperparameters on the downsampled MNIST dataset
with an MLP model bearing a single hidden layer of 16 neurons. The main figures reported
is prediction accuracy. Panel 1 : A simple grid search was performed on 378 combinations
out of 5 parameters. One trial per combination is run. Panel 2 : Additional grid search to
better refine batch size and init lr. 200 trials are run and there are 25 trials per combination
of parameters. For the reported columns, n is the number of runs. q05, q95 and q975 are the
5%, 95% and 97.5% quantiles. The bold values were chosen for subsequent runs. Refer to
Table 4.1 for the definition of the hyperparemeters.

The results of hyperparameter tuning on NatSign is reported in Table B.5 and B.6 for
the non-evolutionary and evolutionary hyperparameters respectively. The individual runs are
visualized in Figure B.2.

For the non-evolutionary hyperparameters, note that an additional run was performed to
better refine batch size and init lr. The need of this additional run stemmed from the much
narrower range of the distribution of model accuracy, which made the optimal hyperparameter
values much more difficult to be distinguished. While this could also be done in a single step
by using a more refined search grid on the hyperparameters, the number of combinations
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to be tested would be considerably greater than the approach adopted. The main deviation
from the results of the synthetic datasets is that batch normalization now improves model
accuracy, which is an empirically expected feature for image data.

The results of evolutionary hyperparameters exhibit consistent trend over LE, RLE, NE
and RNE. The evolutionary hyperparameters selected for the formal experiment are ζ = .25
and std evo scale = .25.

algo hyperparameter value n min q05 median q95 q975 max avg std

LE

zeta
.25 20 .8700 .8700 .8970 .9090 .9090 .9110 .8974 .0086
.5 20 .6460 .6460 .8970 .9070 .9070 .9080 .8764 .0581
.75 20 .6100 .6100 .8900 .9040 .9040 .9080 .8673 .0653

std evo scale

.25 12 .8960 .8960 .9000 .9040 .9040 .9050 .8999 .0027
.5 12 .8880 .8880 .8970 .9080 .9080 .9080 .8987 .0063
1 12 .8900 .8900 .9000 .9090 .9090 .9110 .9008 .0068
2 12 .8090 .8090 .8850 .9000 .9000 .9060 .8799 .0246
3 12 .6100 .6100 .8620 .8960 .8960 .8970 .8224 .0920

RLE

zeta
.25 20 .8700 .8700 .8960 .9100 .9100 .9120 .8952 .0099
.5 20 .8330 .8330 .8950 .9130 .9130 .9140 .8909 .0189
.75 20 .8160 .8160 .8940 .9080 .9080 .9120 .8830 .0266

std evo scale

.25 12 .8880 .8880 .9040 .9120 .9120 .9140 .9021 .0087
.5 12 .8920 .8920 .9020 .9070 .9070 .9130 .9021 .0054
1 12 .8900 .8900 .8970 .9080 .9080 .9100 .8988 .0060
2 12 .8530 .8530 .8830 .8980 .8980 .8990 .8814 .0153
3 12 .8160 .8160 .8700 .8900 .8900 .8910 .8641 .0238

NE

zeta
.25 20 .8590 .8590 .8810 .8890 .8890 .8900 .8785 .0099
.5 20 .8170 .8170 .8770 .8930 .8930 .8930 .8726 .0163
.75 20 .7650 .7650 .8760 .8910 .8910 .8920 .8655 .0304

std evo scale

.25 12 .8740 .8740 .8850 .8920 .8920 .8930 .8857 .0055
.5 12 .8700 .8700 .8840 .8890 .8890 .8930 .8842 .0054
1 12 .8700 .8700 .8780 .8860 .8860 .8880 .8796 .0053
2 12 .8510 .8510 .8650 .8780 .8780 .8800 .8675 .0082
3 12 .7650 .7650 .8570 .8710 .8710 .8740 .8441 .0306

RNE

zeta
.25 20 .8590 .8590 .8900 .9020 .9020 .9070 .8884 .0106
.5 20 .8040 .8040 .8880 .9020 .9020 .9030 .8812 .0241
.75 20 .8350 .8350 .8810 .8990 .8990 .9010 .8796 .0177

std evo scale

.25 12 .8850 .8850 .8950 .9010 .9010 .9020 .8943 .0056
.5 12 .8890 .8890 .8920 .9030 .9030 .9070 .8947 .0056
1 12 .8800 .8800 .8900 .8990 .8990 .9020 .8903 .0073
2 12 .8460 .8460 .8800 .8860 .8860 .8870 .8768 .0106
3 12 .8040 .8040 .8660 .8780 .8780 .8960 .8591 .0244

Table B.6: Tuning evolutionary hyperparameters on the downsampled MNIST dataset based
on the same model and optimal hyperparemeters chosen from Table B.5. A simple grid search
was performed on 15 combinations out of 2 parameters. 4 trials per combination are run.
Other illustrations are the same as Table B.5.
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(a) Round 1 (b) Refined Round 1

(c) Round 2 (LE) (d) Round 2 (RLE)

(e) Round 2 (NE) (f) Round 2 (RNE)

Figure B.2: Visualization of hyperparameter tuning on downsampled MNIST. All models
bore a single hidden layer of 16 neurons. Model accuracies evaluated using test data are
mapped to the test acc axis and colorized. Subfigure (a): the first round of tuning on non-
evolutionary hyperparameters (BN=batch normalization). Subfigure (b): the refined first
round on init lr and batch size. Subfigure (c)-(f): the second round of tuning on evolutionary
hyperparameters for algorithm LE, RLE, NE and RNE. Refer to Section 4.2.1 for descriptions
of the tuning procedure.
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Supplementary Experiments

Experiments in addition to the main results were performed and reported in this section.
The effect of network size was investigated for the ZigZag dataset using a smaller (8) and a
greater (16×16) size compared to that of the main experiment (16) in Section 4.3.1. Summary
statistics of hyperparameter tuning runs, parallel coordinate plots and summary statistic of
the formal runs are presented.

C.1 ZigZag (8 Hidden Neurons)

Based on the success of the proposed evolutionary algorithms on ZigZag with 16 neurons, a
follow-up question arose: Would the effectiveness of the redesigned SET algorithms become
greater for an even smaller network? Thus, an additional experiment on a network with 8
hidden neurons was performed. The size chosen was very close to the theoretical minimal
optimal network size (7) as discussed in Appendix A.1. The choice also resembled the fact
that one is very unlikely to pick an exact size that equals to the theoretical minimum optimum
size in a real case.

The results of hyperparameter tuning is reported in Table C.1 and Table C.2 for non-
evolutionary and evolutionary parameters respectively. The individual runs are visualized
in Figure C.1. To conserve experimental time, the evolutionary parameters were tuned in a
slightly modified way. First, only random evolution algorithms were tuned. The non-random
evolution algorithms will adopt the same choice of hyperparameters for their randomized
versions.1 Second, init lr was re-tuned as a confirmation of the choice of the selected value.
Third, std evo scale = 3 made the median of R2 slightly reduced than std evo scale = 2 as
found in a separate experiment (unreported), hence std evo scale > 2 was not considered.

The main findings from a model with 16 hidden neurons indeed holds for this even smaller
model model. The result of the main experiment is reported in Table C.3. NI still performed
worse than plain training. The median R2 of the evolutionary algorithms outperformed
the 97.5% quantile of plain training and was again able to reach the best fit (R2 > .99)
occasionally. The frequency of the best fit, however, is greatly reduced when compared to

1This was based on similarity between the results found in the past experience. Luckily, the conclusions
were quite robust to the choice of hyperparameters and no serious problems appeared.
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hyperparameter value n min q05 median q95 q975 max avg std

batch size

16 240 -.0194 .0413 .1194 .3345 .3860 .7790 .1381 .1074
32 240 .0234 .0492 .1291 .4332 .5768 .8903 .1658 .1480
64 240 -.0202 .0485 .1206 .3514 .5507 .7804 .1552 .1296
128 240 -.0206 .0429 .1120 .3337 .3952 .7651 .1380 .0984
256 240 -.0891 .0071 .0670 .3472 .4181 .5247 .1047 .1038

batch normalization
True 600 -.0891 .0162 .1095 .3076 .3860 .7651 .1307 .1009
False 600 -.0161 .0415 .1023 .4161 .5022 .8903 .1500 .1370

dropout rate
0 400 -.0891 .0488 .1050 .5247 .7651 .8903 .1946 .1761
.2 400 -.0206 .0333 .1122 .2373 .2477 .2617 .1242 .0699
.5 400 -.0553 .0120 .0991 .1861 .1878 .2008 .1022 .0563

init lr

.1 240 -.0202 .0456 .1682 .3698 .4400 .8749 .1805 .1199
.03 240 .0202 .0529 .1786 .5507 .7236 .8596 .2130 .1537
.01 240 -.0202 .0229 .1336 .3854 .4598 .8903 .1514 .1236
.003 240 -.0346 .0213 .0697 .1828 .2180 .3019 .0855 .0505
.001 240 -.0891 .0248 .0635 .1382 .2054 .3572 .0714 .0474

weight initializer
glorot uniform 600 -.0891 .0370 .1192 .3952 .5170 .8903 .1554 .1321
random uniform 600 -.0232 .0237 .0864 .3254 .4161 .7788 .1253 .1059

bias initializer
zeros 600 -.0891 .0359 .1327 .4167 .4732 .7831 .1567 .1259

random normal 600 -.0553 .0270 .0862 .3248 .3680 .8903 .1240 .1129

patience
5 600 -.0891 .0274 .0991 .3284 .4400 .8903 .1359 .1181
10 600 -.0232 .0317 .1133 .3854 .4997 .8749 .1448 .1231

Table C.1: Tuning non-evolutionary hyperparameters on the ZigZag dataset with an MLP
model bearing a single hidden layer of 8 neurons. A simple grid search was performed on
1,200 combinations out of 7 parameters. One trial per combination was run. The main figures
reported stand for the accuracy metric, R2. For the reported columns, n is the number of
runs. q05, q95 and q975 are the 5%, 95% and 97.5% quantiles. The bold values were chosen
for subsequent runs. Refer to Table 4.1 for the definition of the hyperparemeters.

the 16-hidden-neuroned model (less than 10% vs. at least 54%). This is understandable due
to the empirical fact that a small network is harder to train. Nevertheless, the evolutionary
algorithms were still able to produce not only improved fitting results on average but also some
opportunity to reach the global optimum fit where plain training did not stand a chance. The
results from such a network again provided strong evidence on the potential of the proposed
evoltionary algorithms.
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algo hyperparameter value n min q05 median q95 q975 max avg std n best best rate

RLE

init lr

1 36 -.0402 -.0401 .0741 .1919 .2033 .3198 .0594 .0997 0 0.0%
.3 36 .0869 .0873 .3874 .8722 .8805 .8815 .3638 .2238 0 0.0%
.1 36 .4126 .4148 .8434 1.0000 1.0000 1.0000 .7539 .2051 8 22.2%
.03 36 .4379 .5792 .8810 1.0000 1.0000 1.0000 .8717 .1185 7 19.4%
.01 36 .5853 .6512 .8792 .9918 .9997 1.0000 .8570 .0941 3 8.3%

zeta
.25 60 -.0399 -.0398 .6518 1.0000 1.0000 1.0000 .5573 .3692 5 8.3%
.5 60 -.0402 -.0398 .6515 1.0000 1.0000 1.0000 .5966 .3620 10 16.7%
.75 60 -.0400 -.0398 .7564 .9885 1.0000 1.0000 .5895 .3355 3 5.0%

std evo scale

.5 45 -.0402 -.0398 .4647 .8816 .8823 .9831 .4566 .3357 0 0.0%
1 45 -.0401 -.0399 .7668 .9003 .9989 1.0000 .5696 .3577 3 6.7%

1.5 45 -.0399 -.0398 .8145 1.0000 1.0000 1.0000 .6186 .3646 7 15.6%
2 45 -.0398 .0759 .8722 1.0000 1.0000 1.0000 .6798 .3278 8 17.8%

RNE

init lr

1 36 -.0866 -.0235 -.0234 .3109 .3119 .3189 .0661 .1192 0 0.0%
.3 36 .0756 .1374 .3173 .8779 .8779 1.0000 .4124 .2469 1 2.8%
.1 36 .3031 .3050 .5341 .8780 .8791 1.0000 .6417 .1992 1 2.8%
.03 36 .5135 .5325 .8780 1.0000 1.0000 1.0000 .8637 .1249 7 19.4%
.01 36 .5328 .6442 .8746 1.0000 1.0000 1.0000 .8694 .1034 8 22.2%

zeta
.25 60 -.0235 -.0234 .6548 .9999 1.0000 1.0000 .5436 .3682 5 8.3%
.5 60 -.0866 -.0234 .5858 .9997 1.0000 1.0000 .5891 .3408 5 8.3%
.75 60 -.0234 -.0234 .5848 .9962 1.0000 1.0000 .5792 .3282 7 11.7%

std evo scale

.5 45 -.0866 -.0234 .4577 .8781 .8784 .9133 .4544 .3341 0 0.0%
1 45 -.0235 -.0234 .5325 .9999 1.0000 1.0000 .5310 .3425 4 8.9%

1.5 45 -.0234 -.0234 .8537 .9996 1.0000 1.0000 .6343 .3437 7 15.6%
2 45 -.0234 -.0234 .8451 .9997 1.0000 1.0000 .6629 .3257 6 13.3%

Table C.2: Tuning evolutionary hyperparameters on the ZigZag dataset based on the same
model and optimal hyperparemeters chosen from Table C.1. A simple grid search was per-
formed on 60 combinations out of 3 parameters. One trial per combination is run. Only
random evolution algorithms were tuned because of the similarity of the choice of hyperpara-
meters between random and non-random algorithms. init lr is re-tuned as a confirmation of
the choice of the selected value. Other illustrations are the same as Table C.1.

algo n min q05 median q95 q975 max avg std n best best rate

Plain 2,000 -.0330 .0466 .4377 .7830 .7833 .9584 .5121 .2417 0 .0%
NI 1,000 -.0227 -.0144 .3723 .7385 .7398 .8806 .4526 .2392 0 .0%
LE 100 .4605 .7454 .8624 .9818 .9953 .9998 .8520 .0742 5 5.0%

RLE 100 .7425 .7715 .8655 .9919 .9977 .9998 .8668 .0626 6 6.0%
NE 100 .4397 .7479 .8538 .9757 .9885 .9993 .8435 .0799 3 3.0%

RNE 100 .7022 .7249 .8457 .9959 .9975 .9995 .8385 .0773 7 7.0%

Table C.3: Summary statistics of the R2 values of models trained by the proposed algorithms
on the ZigZag dataset. All models bore a single hidden layer of 8 neurons. For the reported
columns, n is the number of runs. q05, q95 and q975 are the 5%, 95% and 97.5% quantiles.
n best is the number of models achieving R2 > .99 and best rate = n best/n. All models
were trained with batch size = 32, init lr = .03, ζ = .5, std evo scale = 2 and other optimal
settings from hyperparameter tuning. Refer to Section 3.1 for the definition of algorithms
and Section 4.2 for the experimental setup.
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(a) Round 1

(b) Round 2 (RLE) (c) Round 2 (RNE)

Figure C.1: Visualization of hyperparameter tuning on ZigZag. All models bore a single
hidden layer of 8 neurons. Model accuracy values (R2) evaluated using test data are mapped
to the test acc axis and colorized. Subfigure (a): the first round of tuning on non-evolutionary
hyperparameters (BN=batch normalization). Subfigure (b)(c): the second round of tuning
on evolutionary hyperparameters respectively for RLE and RNE. Tuning of LE and NE were
skipped because the results were assumed to be similar to their randomized versions based
on past experience. Refer to Section 4.2.1 for descriptions of the tuning procedure.
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C.2 ZigZag (16x16 Hidden Neurons)

hyperparameter value n min q05 median q95 q975 max avg std n best best rate

batch size

16 60 -.0431 -.0407 .7889 1.0000 1.0000 1.0000 .6175 .3844 12 2.0%
32 60 -.0452 .0106 .7887 1.0000 1.0000 1.0000 .6854 .2824 6 1.0%
64 60 -.0391 .1235 .7888 .9971 1.0000 1.0000 .7088 .2516 4 6.7%
128 60 -.0403 .0593 .7880 .9702 .9715 1.0000 .6725 .2642 2 3.3%
256 60 -.0385 .0780 .7878 .9570 .9879 1.0000 .6266 .2731 2 3.3%

init lr

.3 50 -.0431 -.0409 .2521 .5971 .6126 .8507 .2479 .2158 0 0.0%

.1 50 -.0452 .0498 .4861 .9544 .9702 1.0000 .4856 .3048 2 4.0%
.03 50 .3860 .3866 .8882 1.0000 1.0000 1.0000 .8505 .1610 12 24.0%
.01 50 .4353 .7866 .8103 1.0000 1.0000 1.0000 .8431 .1099 8 16.0%
.003 50 .4284 .7871 .8045 .9956 .9960 .9999 .8308 .0859 4 8.0%
.001 50 .0678 .2885 .7886 .9193 .9250 .9335 .7150 .2061 0 0.0%

Table C.4: Tuning non-evolutionary hyperparameters on the ZigZag dataset with an MLP
model bearing double hidden layers of 16× 16 neurons. A simple grid search was performed
on 30 combinations out of 2 parameters. 10 trials per combination were run. The main figures
reported stand for the accuracy metric, R2. For the reported columns, n is the number of
runs. q05, q95 and q975 are the 5%, 95% and 97.5% quantiles. n best is the number of
models achieving R2 > .99 and best rate = n best/n. Refer to Table 4.1 for the definition of
the hyperparemeters.

The question arose in Appendix C.1 could also be stated in a reversed manner: Will the
effectiveness of evolutionary algorithms still be eminent with multiple hidden layers? Thus,
an experiment using a double-hidden-layered MLP was performed to investigate whether the
main findings could be generalized. The network structure chosen contained 16 neurons in
each layer and this will be denoted as a ”16× 16” network hereafter. The dataset being used
is still ZigZag.

The results of hyperparameter tuning is reported in Table C.4 and C.5 for non-evolutionary
and evolutionary parameters respectively. The individual runs are visualized in Figure C.2.
The number of non-evolutionary parameters to be tuned was reduced to conserve execution
time: batch normalization = false, dropout rate = 0 and patience = 5 were fixed based on
prior experience. Only batch size and init lr were tuned. To further increase the stability of
the tuning result, the number of trials per combination of hyperparameters was increased to
10 in response of the reduced total number of combinations. The non-evolutionary hyper-
parameters chosen are batch size = 32 and init lr = .01 upon consideration of the balance
between stability and performance. The evolutionary hyperparameters chosen are ζ = .25
and std evo scale = .25 for all evolutionary algorithms.

The main result of the experiment is reported in Table C.6. The effectiveness of the 97.5%
quantile of plain and NI as well as the medians of the evolutionary algorithms all achieved
the best fit. This implied that a 16 × 16 network was too easy to train for this dataset and
therefore not very suitable for benchmarking between the proposed algorithms. However, the
evolutionary algorithms still found an edge over plain training in terms of perfect stability.
On the other hand, NI again performed worse than plain training in terms of both the median
R2 (.8707 vs. .8971) and stability (std = .1154 vs. .0965). The results were consistent with
the main ZigZag experiment in Section 4.3.1.

The finding in this experiment suggests that ZigZag may have very limited capability for
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benchmarking MLPs with sizes greater than 16×16. To further extend the use of the proposed
algorithms, it is highly possible that either a suitable real-world dataset or a systematic way
of generating suitable datasets will have to be found.
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algo hyperparameter value n min q05 median q95 q975 max avg std n best best rate

LE

zeta
.25 70 .8928 .9537 1.0000 1.0000 1.0000 1.0000 .9952 .0198 66 94.3%
.5 70 .7785 .8736 1.0000 1.0000 1.0000 1.0000 .9845 .0418 59 84.3%
.75 70 .8701 .8921 .9999 1.0000 1.0000 1.0000 .9895 .0304 60 85.7%

std evo scale

.05 30 .8701 .9876 1.0000 1.0000 1.0000 1.0000 .9949 .0234 27 90.0%
.1 30 .9998 .9999 1.0000 1.0000 1.0000 1.0000 1.0000 .0000 30 100.0%
.25 30 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .0000 30 100.0%
.5 30 .9996 .9999 1.0000 1.0000 1.0000 1.0000 1.0000 .0001 30 100.0%
.75 30 .9998 .9998 1.0000 1.0000 1.0000 1.0000 .9999 .0001 30 100.0%
1 30 .8922 .9908 .9997 1.0000 1.0000 1.0000 .9957 .0193 29 96.7%

1.5 30 .7785 .8667 .9508 .9991 .9996 .9998 .9376 .0562 9 30.0%

RLE

zeta
.25 70 .9982 .9994 1.0000 1.0000 1.0000 1.0000 .9999 .0003 70 100.0%
.5 70 .9566 .9884 1.0000 1.0000 1.0000 1.0000 .9980 .0074 66 94.3%
.75 70 .9299 .9879 1.0000 1.0000 1.0000 1.0000 .9977 .0092 65 92.9%

std evo scale

.05 30 .9879 .9939 1.0000 1.0000 1.0000 1.0000 .9991 .0025 29 96.7%
.1 30 .9969 .9996 1.0000 1.0000 1.0000 1.0000 .9999 .0005 30 100.0%
.25 30 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .0000 30 100.0%
.5 30 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .0000 30 100.0%
.75 30 .9998 .9999 1.0000 1.0000 1.0000 1.0000 1.0000 .0000 30 100.0%
1 30 .9976 .9995 .9999 1.0000 1.0000 1.0000 .9998 .0004 30 100.0%

1.5 30 .9299 .9566 .9985 .9999 .9999 1.0000 .9910 .0161 22 73.3%

NE

zeta
.25 70 .9413 .9976 1.0000 1.0000 1.0000 1.0000 .9988 .0071 68 97.1%
.5 70 .8707 .9346 1.0000 1.0000 1.0000 1.0000 .9934 .0244 65 92.9%
.75 70 .8813 .9487 1.0000 1.0000 1.0000 1.0000 .9936 .0226 63 90.0%

std evo scale

.05 30 .9746 1.0000 1.0000 1.0000 1.0000 1.0000 .9992 .0046 29 96.7%
.1 30 .9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .0000 30 100.0%
.25 30 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .0000 30 100.0%
.5 30 .9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .0000 30 100.0%
.75 30 .9998 .9998 1.0000 1.0000 1.0000 1.0000 1.0000 .0000 30 100.0%
1 30 .9885 .9978 .9998 1.0000 1.0000 1.0000 .9993 .0021 29 96.7%

1.5 30 .8707 .8813 .9914 .9995 .9998 .9999 .9683 .0432 18 60.0%

RNE

zeta
.25 70 .8976 .9971 1.0000 1.0000 1.0000 1.0000 .9976 .0133 68 97.1%
.5 70 .8811 .9871 1.0000 1.0000 1.0000 1.0000 .9970 .0144 64 91.4%
.75 70 .8590 .8981 1.0000 1.0000 1.0000 1.0000 .9895 .0290 59 84.3%

std evo scale

.05 30 .8590 .8981 1.0000 1.0000 1.0000 1.0000 .9903 .0311 27 90.0%
.1 30 .9952 .9996 1.0000 1.0000 1.0000 1.0000 .9998 .0009 30 100.0%
.25 30 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .0000 30 100.0%
.5 30 .9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .0000 30 100.0%
.75 30 .9998 .9999 1.0000 1.0000 1.0000 1.0000 1.0000 .0000 30 100.0%
1 30 .9644 .9960 .9998 1.0000 1.0000 1.0000 .9985 .0064 29 96.7%

1.5 30 .8811 .8839 .9892 .9999 .9999 .9999 .9745 .0373 15 50.0%

Table C.5: Tuning evolutionary hyperparameters on the ZigZag dataset based on the same
model and optimal hyperparemeters chosen from Table C.4. A simple grid search was per-
formed on 21 combinations out of 2 parameters. 10 trials per combination were run. Other
illustrations are the same as Table C.4.



(a) Round 1

(b) Round 2 (LE) (c) Round 2 (RLE)

(d) Round 2 (NE) (e) Round 2 (RNE)

Figure C.2: Visualization of hyperparameter tuning on ZigZag. All models bore two hidden
layers with 16 neurons per layer. Model accuracy values (R2) evaluated using test data were
mapped to the test acc axis and colorized. Subfigure (a): the first round of tuning on non-
evolutionary hyperparameters. Subfigure (b)-(e): the second round of tuning on evolutionary
hyperparameters for algorithm LE, RLE, NE and RNE. Refer to Section 4.2.1 for descriptions
of the tuning procedure.



algo n min q05 median q95 q975 max avg std n best best rate

Plain 2,000 0.3665 0.7733 0.8971 1.0000 1.0000 1.0000 0.8983 0.0965 729 36.5%
NI 1,000 0.3218 0.7499 0.8707 1.0000 1.0000 1.0000 0.8649 0.1154 324 32.4%
LE 100 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 100 100.0%

RLE 100 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 100 100.0%
NE 100 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 100 100.0%

RNE 100 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 100 100.0%

Table C.6: Summary statistics of the R2 values of models trained by the proposed algorithms
on the ZigZag dataset. All models bore double hidden layers of 16 × 16 neurons. For the
reported columns, n is the number of runs. q05, q95 and q975 are the 5%, 95% and 97.5%
quantiles. n best is the number of models achieving R2 > .99 and best rate = n best/n.
All models are trained with batch size = 32, init lr = .01, ζ = .25, std evo scale = .25 and
other optimal settings from hyperparameter tuning. Refer to Section 3.1 for the definition of
algorithms and Section 4.2 for the experimental setup.
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