
 Eindhoven University of Technology

MASTER

Determining the Impact of Business Requirement Changes in Process Models’ Graph
Representation by NLP Assisted Text Matching

Salmaan, Shabana

Award date:
2020

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/52620e8a-6ac0-47ba-a189-398e085a46d3


Department of Mathematics and Computer Science
Architecture of Information Systems Research Group

Determining the Impact of Business
Requirement Changes in Process
Models’ Graph Representation by

NLP Assisted Text Matching

Master Thesis

Shabana Salmaan

Supervisors:
Prof. dr. ir. Hajo Reijers

Dr. ir. Eduardo Gonzalez Lopez de Murillas

15-August-2020

shaba
Placed Image

shaba
Placed Image



Abstract

Business process models are often subjected to change rapidly to cope with
the requirements needed for organisational growth. These business changes
are considered to be a tedious process. It may be helpful to the organisation
to search for the changes in its process repository. Earlier methods have
been addressed in different perspectives like the text to model alignment and
analysing the impact on a specific use case. This thesis describes one such
method for an organisation to help business analysts with a semi-automated
method to identify all the impacted components in the business processes
for a given set of change requirements. To this end, we define a Knowledge
Graph implemented using Grakn technology to represent and query different
types of business models. By this, business analysts in an organisation can
evaluate the impact of an incoming change requirement in a shorter period
and more efficiently. Further, we propose methods to qualitatively determine
the impact of textual change requirements on an existing business process
repository containing several process models. To this end, we first develop
a method to match relevant business entities inside the process repository
to change requirements. This method involves the study and application of
Natural Language Processing techniques to deal with textual documents and
short-text fragments used in process model definitions. We use a small anno-
tated dataset to evaluate the performance of several state-of-the-art semantic
text similarity methods for this task. Further, we propose a text-distance-
based approach for the above semantic similarity problem improving over the
state-of-the-art methods’ performance. Finally, we determine the impact of
a change requirement on a process repository qualitatively by providing the
context of the affected matched business entities inside process models and
an OCR-assisted visualisation of these matched entities.

Keywords: Process Repository, Text Distance, Semantic Similarity, Change
impact assessment, Change Requirements



Dedicated to Yash Kumar Bhati, his family and friends.



Acknowledgements

This report results from my thesis at the Architecture of Information Sys-
tems (AIS) group in the Department of Mathematics and Computer Science,
Eindhoven University of Technology (TU/e). This thesis is only possible be-
cause of my program Erasmus Mundus Big Data Management and Analytics
(BDMA) and all the universities and professors involved. I thank everyone
for allowing me to be branded for life as a BDMA student. This thesis is a
combined effort of myself and a few select people guiding me at every step.

First of all, I want to thank Professor Hajo Reijers for believing in me
by assigning me such an exciting project and continually monitoring my
approaches and guiding me towards reaching the results. Secondly, I want
to thank Eduardo Gonzalez Lopez de Murillas for always being available
for guidance, feedback, and technical issues. It would not have been easier
without his suggestions and reviews every week until the end of the project.
I also want to thank Chris Bergman for helping me throughout the project
with their data and business understanding.

This surely could not be possible without the long-distance support from
my mother Akthar Begum, and my brother Shakeel Salmaan. A special
thanks from the bottom of heart to my dearest friend Rahini Chandrasekaran
and her mother Booma Chandrasekaran for kick-starting the idea to pursue
masters; and my friends Ashwini Hebbar, Divya Seevaratnam and Suresh
Mohan for being there for me. Finally, my heartfelt thanks and love to my
partner Amritansh Sharma for the emotional support, his constant guidance
with his knowledge and care.



List of Figures

2.1 Sample Process Repository Architecture. Source: [1] . . . . . 5
2.2 Sample BPMN Diagram. Source: [2] . . . . . . . . . . . . . . 6
2.3 Example of a Knowledge Graph . . . . . . . . . . . . . . . . . 7
2.4 Sample OCR: Extracting editable texts from a photo of an old

newspaper. Source: [3] . . . . . . . . . . . . . . . . . . . . . . 9

3.1 Business Process Change Management . . . . . . . . . . . . . 14

4.1 Schematic of the Overall Methodology . . . . . . . . . . . . . 15

5.1 Client-Server Architecture for process repository data access . 18
5.2 Process repository hierarchy . . . . . . . . . . . . . . . . . . . 19
5.3 Relationship between JSON files . . . . . . . . . . . . . . . . . 20
5.4 High Level Architecture of Grakn knowledge graph creation . 21
5.5 JSON objects representation with Grakn variables and attributes

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.6 Knowledge graph schema . . . . . . . . . . . . . . . . . . . . . 24

6.1 Text pre-processing schematic . . . . . . . . . . . . . . . . . . 27
6.2 Sample data of textual change requirements with ground truth

business entities . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7.1 Textual change requirements with the Ground Truth and Re-
trieved top 3 Ranking . . . . . . . . . . . . . . . . . . . . . . . 33

7.2 Word2Vec - Accuracy and NDCG . . . . . . . . . . . . . . . . 36
7.3 GloVe - Accuracy and NDCG . . . . . . . . . . . . . . . . . . 37
7.4 BERT - Accuracy and NDCG . . . . . . . . . . . . . . . . . . 38
7.5 Comparing Text Embedding algorithms to selected textdis-

tance algorithms in our framework using Accuracy and NDCG
metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7.6 Comparing Text Embedding algorithms with and without our
text similarity framework using Accuracy and NDCG metrics . 48

iv



7.7 Comparing Text Embedding and selected textdistance algo-
rithms, both in our text similarity framework using Accuracy
and NDCG metrics . . . . . . . . . . . . . . . . . . . . . . . . 49

8.1 The user has to enter a change requirement (highlighted in
red) to obtain the top 5 suggested matches. Then, the user
has to select the actual business entity (highlighted in blue).
Finally, the selected business entity will be placed in the stan-
dard query template to get the impacted business entities. . . 52

8.2 Impacted business entities . . . . . . . . . . . . . . . . . . . . 53
8.3 BPMN image example from our process repository . . . . . . . 55
8.4 Preprocessed example BPMN image . . . . . . . . . . . . . . . 60
8.5 Text detection by bounding box example BPMN image . . . . 61

A.1 Sample Analysis Model . . . . . . . . . . . . . . . . . . . . . . 73
A.2 Sample Company Map . . . . . . . . . . . . . . . . . . . . . . 74
A.3 Sample Document Model . . . . . . . . . . . . . . . . . . . . . 74
A.4 Sample IT System Model . . . . . . . . . . . . . . . . . . . . . 75
A.5 Sample Working Environment Model . . . . . . . . . . . . . . 75

v



List of Tables

5.1 Different types of business models loaded in Grakn . . . . . . 25

7.1 Results from NLP State of the Art Methods . . . . . . . . . . 39
7.2 Ranks generated for each Change Requirements by NLP State

of the Art Methods . . . . . . . . . . . . . . . . . . . . . . . 40
7.3 Results for textdistance algorithms in our text similarity

framework. The best performing algorithm for each category
using the top 5 NDCG has been highlighted and the corre-
sponding NDCG score marker with an *. . . . . . . . . . . . . 43

7.4 Ranks generated for each Change Requirements by textdis-
tance algorithms in our text similarity framework. . . . . . . 45

7.5 Median Ranks for the different algorithms . . . . . . . . . . . 46

vi



List of Abbreviations

BERT Bidirectional Encoder Representations from Transformers

BPM Business Process Management

BPMN Business Process Model and Notation

CRD Change Requirement Document

GloVe Global Vectors for Word Representation

HTTP Hyper Text Transfer Protocol

ID Identifier

JPEG Joint Photographic Experts Group

JSON JavaScript Object Notation

KG Knowledge Graph

NDCG Normalised Discounted Cumulative gain

NLP Natural Language Processing

NLTK Natural Language Toolkit

OCR Optical Character Recognition

RDBMS Relational Database Management System

REST Representational state transfer

SOAP Simple Object Access Protocol

URL Uniform Resource Locator

vii



Contents

List of Figures iv

List of Tables vi

List of Abbreviations vii

1 Introduction 1
1.1 Problem Context . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research Question . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 4
2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Process Repository . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Grakn: Knowledge Graph Database . . . . . . . . . . . 6
2.1.3 Natural Language Processing: Existing Methods . . . . 7
2.1.4 Pytesseract : Optical Character Recognition . . . . . . 8

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Text to Process Matching . . . . . . . . . . . . . . . . 10
2.2.2 Change Impact Analysis . . . . . . . . . . . . . . . . . 11
2.2.3 Process Repository Framework . . . . . . . . . . . . . 11

3 Business Understanding 13

4 Methodology 15

5 Graph Representation of Process Repositories 17
5.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2 Data Understanding . . . . . . . . . . . . . . . . . . . . . . . 18
5.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.3.1 Schema Definition in Grakn . . . . . . . . . . . . . . . 22
5.3.2 Data Insertion into Grakn . . . . . . . . . . . . . . . . 24

viii



5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6 Text Similarity 26
6.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.1.1 State-of-the-art in Text Similarity . . . . . . . . . . . . 26
6.1.2 Framework for Text Similarity applied to Change Re-

quirement Matching . . . . . . . . . . . . . . . . . . . 28
6.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.2.1 State-of-the-art in Text Similarity . . . . . . . . . . . . 30
6.2.2 Framework for Text Similarity applied to Change Re-

quirement Matching . . . . . . . . . . . . . . . . . . . 31
6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7 Text Similarity Evaluation 32
7.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.2 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.3 Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7.4.1 State-of-the-art models . . . . . . . . . . . . . . . . . . 35
7.4.2 Text-distance algorithms in our Similarity Framework . 41
7.4.3 Comparing our framework with the State-of-the-Art . . 46

7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

8 Impact Assessment 51
8.1 Context Detection . . . . . . . . . . . . . . . . . . . . . . . . 51
8.2 Visualisation Tool for Impact Assessment . . . . . . . . . . . . 54

8.2.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . 54
8.2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . 54
8.2.3 Implementation . . . . . . . . . . . . . . . . . . . . . . 59
8.2.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 62

8.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

9 Conclusion 63
9.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . 63
9.2 Limitations and Future Works . . . . . . . . . . . . . . . . . . 64

Bibliography 66

A Types of Business Models 73

B Graql Queries 76



Chapter 1

Introduction

In this work, we present the method and evaluation of a semi-automated
method to identify the business entities in a process repository impacted
by textual business change requirements. Further, we propose methods to
qualitatively determine the impact on these business entities in the context
of the business process models that they belong to. This semi-automated
method is designed to be effectively used by business analysts, who will save
their time that would otherwise be employed in manually identifying the
impacted business entities. In this chapter, we will discuss the context of the
overall problem is detailed, then we present our research goals in the form of
research questions. Finally, the outline of the following chapters is provided.

1.1 Problem Context

Many organisations maintain their graphical representation of their business
processes, generally in process models, for various stakeholders to logically
and visually interpret what the organisation does [4]. Some examples of
business models are process models expressed in Business Process Models
and Notation (BPMN), Use-Case Diagrams, Organisational Diagrams, etc.

In order to keep up with the expectation of their clients, to adopt new
and evolving technologies, to optimise existing solutions, or to be able to
compete, businesses need to make changes to their existing business pro-
cesses [5]. One of the important steps involved in planning and changing
existing business processes is creating a formal textual document containing
the change requirements to be implemented, based on the analysis provided
by business analysts [6]. A business analyst is a person who has the required
domain knowledge and experience to evaluate all kinds of business changes
and to make decisions on how to apply these changes to the existing busi-

1



ness depending upon the level of impact. The business models tend to be
huge in most organisations, and business analysts spend enormous amounts
of time evaluating the impact of each requirement. To avoid this time con-
suming task and to identify the impacted business entities more efficiently,
we developed a semi-automated system for this task.

1.2 Research Question

This study focuses on how to qualitatively determine the impact of given
change requirements on existing business processes. In order to evaluate our
system for identifying the matching business entity in existing business pro-
cesses from the textual change requirement, we will need some ground truth
for the same. Further, we have to process and collect the relevant data cor-
responding to process models in available data formats (such as JSON, XML)
that are available in the organisation’s process repository in a format that
is amenable to our analysis. Next, we wish to match business change re-
quirements to impacted business entities in the process repository using text
similarity approaches. Finally, the impacted business entities thus obtained
can be shown in the context of the process repository representation. With
the availability of data and description of the problem context, we can for-
mally define our research questions below.

RQ1: Can we design a framework for representing raw process repositories
which can be easily queried to obtain relevant information related to different
entities in the contained process models?

We will investigate available techniques in the literature that are used to
store business process information. Also, we will compare the related works
to our approach.

RQ2: How well do generic state-of-the-art text matching algorithms perform
in matching change requirements to relevant business entities represented as
text? Is there is a scope of improving their performance using a different
method better suited to the problem domain?

The objective of this question is to evaluate state-of-the-art text match-
ing methods when applied to our ground truth dataset and possibly develop
a new approach, if needed, to improve upon these methods when applied to
our dataset.

RQ3:Can we develop better models in the specific domain of matching change
requirements to relevant business entities?

2



This will help provide a better solution if needed making the job of the
business analyst easier by providing better suggestions for matched business
entities.

RQ4: Can we qualitatively determine the impact of a change requirement
through the impacted entities obtained in RQ2 or RQ3 by querying the pro-
cess repository framework defined in RQ1?

This would help complete our pipeline for semi-automatically determining
the qualitative impact of business change requirements on process models.
Note that a quantitative impact analysis requires ground truth data based
on business expertise in the context of the business process models and is
hence, outside the scope of this project.

1.3 Thesis Outline

The remainder of this report is structured as follows. In Chapter 2, the
detailed background and preliminary concepts necessary to understand the
rest of the report are explained along with the related work. In Chapter 3,
the business understanding is explained, wherein we explain what happens
in an organisation when there is a new change requirement. We present
our overall methodology in Chapter 4. In Chapters 5, 6 and 8 we answer
our research questions stated in Section 1.2 respectively. In Chapter 7, we
evaluate our system for matching business entities to change requirements
using the ground truth data. Finally, in Chapter 9, we conclude our report by
summarising our contributions, the limitations of our work, and the possible
directions for future work.

3



Chapter 2

Background

This chapter presents the relevant work, techniques, and concepts needed to
understand the rest of the thesis. Section 2.1 introduces essential concepts,
methods, and tools relevant to this project. Next, in Section 2.2, we will
present the existing approaches, their scope, and limitations and motivate
why we require an improved method to solve the research questions we will
be addressing.

2.1 Preliminaries

Before describing our approach in detail, this chapter will introduce the con-
cepts, techniques, and technologies that we will use to answer our research
questions. The RQ1 can be approached by understanding the definitions of
process repository, business process model, and process collection concepts
which are discussed in Section 2.1.1 along with knowledge graph technology
for both RQ1 and RQ4 discussed in Section 2.1.2. The RQ2 requires the
understanding of the existing Natural Language Processing techniques dis-
cussed in Section 2.1.3. Lastly, in Section 2.1.4, we will discuss a concept
required for text detection in images to help answer RQ4.

2.1.1 Process Repository

A process repository is a database where an organisation can store and man-
age their business processes in different hierarchy levels. The process repos-
itory is an important module of an organisation’s Business Process Manage-
ment (BPM) architecture as shown in Figure 2.1, a hierarchical structure of
an organisation’s process models. It is a business blueprint that helps the
organisational decision-makers to execute the strategy required to solve a

4



business problem. The process repositories has its life cycle and are required
by the organisation to incorporate more business processes without being
deployed in their applications, that is, they have the potential to update
dynamically without having to change any data or application code.

Figure 2.1: Sample Process Repository Architecture. Source: [1]

The following are some benefits of having a process repository [7]:

• Along with process models, process repositories can store their relevant
business entities, elements or artifacts that are a set of graphical ele-
ments that are required to create models, domain models (a domain
that is represented in the form of a conceptual model that incorporates
both behaviour and data) and business rules (conditions to consider
while making a decision) [8].

• Continuous storing and updating of business processes with a version
number.

• A web-based interface to manage, update and deploy business processes
without having to change the data or code for the targeted business
users and developers.

• Only authorised users would be able to view and/or edit the business
processes.

5



• Synchronisation with software life-cycle development environment.

As stated earlier, a process repository can consist of several business pro-
cesses. A business process is a sequence of activities or tasks, that are defined
by roles, resources, or/and technologies, in which represents a service, appli-
cation, or product that has a specific business goal for certain customers or
users [9] [10] [11]. These business processes can be modeled to visually repre-
sent the sequence connection of business objects such as events, tasks, roles,
and resources. The purpose is to create visual models to understand and ef-
fectively improve the relevant business processes. One such way to model the
business processes is by means of the Business Process Diagram or BPMN.
It is a graphical notation for creating business process models, similar to se-
quential flowcharts, that is understood and used by every business oriented
organisation as shown in Figure 2.2 [2].

Figure 2.2: Sample BPMN Diagram. Source: [2]

2.1.2 Grakn: Knowledge Graph Database

A knowledge graph (KG) is a representation of collected and interlinked
descriptions of data. Figure 2.3 depicts a sample knowledge graph. There
are three graph elements that are required to construct a knowledge graph,
such as [12]:

• Entities distinguish data independently based on categories. For ex-
ample, an actor or a movie are entities.

• Attributes are the fields that have specific information about the en-
tity. For example, the Name of the actor or the movie.

6



• Relationships is the important aspect of a KG where it contributes
a link from one to another entity by forming a network that leads to
getting the related information. For example, an actor (one entity) acts
(relationship) in a movie (another entity).

Figure 2.3: Example of a Knowledge Graph

Knowledge graphs combine different characteristics of several data man-
agement prototypes, such as:

• Database: The data schema can be defined using a data definition
language (DDL), changed using a data manipulation language (DML)
and queried using a data query language (DQL) [13].

• Graph: A graphical structure allows it to be analysed as any other
network data structure that has defined relationships [14].

• Knowledge base: The stored data has formal semantics, which can
be used to interpret the data.

One such KG is Grakn, a database that stores and organises a complex
network of data that helps with efficient querying. It allows [15] to model
a domain-specific schema using the Entity-Relationship model. A Grakn
schema is composed of entity, relationship, and attribute types. Graql is the
query language used to perform all types of data definitions, insertion, and
manipulation with a Grakn database.

2.1.3 Natural Language Processing: Existing Methods

Natural Language Processing (NLP) is a division of Artificial Intelligence
(AI) that uses the natural language to deal with the interaction between

7



computer programs and humans [16]. NLP’s primary purpose is to read,
decode, understand, and derive meaning from human languages. One of the
NLP applications is to compare texts and determine the similarity between
them. This section describes different NLP techniques and algorithms in the
context of similarity between texts relevant to understanding the rest of this
report.

Word and Sentence Embedding Models

A standard approach to dealing with text data is to convert individual words
(or sentences) into a vector of numbers of a fixed size so that these vectors
have some semantic correspondence with the meanings of the words (or sen-
tences) to which they correspond [17]. Several different models exist in the
literature for this task, including Word2Vec, GloVe, and BERT, as described
below.

• Word2Vec [18] is a word vectorisation algorithm that takes as in-
put a text corpus and returns as output a vectorised representation
of each word in the corpus, each vector having the same size (say N-
dimensions). Word2vec embeddings are created by first, training a
neural network to predict the context of words in a text corpus. Next,
this neural network’s hidden layer value for a given word is the embed-
ding vector for that word.

• GloVe or Global Vectors for Word Representation [19], developed by
Stanford, is another word vectorisation algorithm that uses the word
context in a text corpus to obtain the word embeddings by representing
the word co-occurrence information as a matrix and minimising the
reconstruction loss of a matrix factorisation problem.

• BERT or Bidirectional Encoder Representations from Transformers
[20] is a state-of-the-art NLP model published by Google AI Language.
It performs bidirectional training of Transformer, which uses the word-
context to encode text directly into text embeddings (as opposed to
converting words into word embeddings in the Word2Vec and GloVe).

2.1.4 Pytesseract : Optical Character Recognition

Optical Character Recognition (OCR) is a program based extraction of data
strings from two-dimensional text-based images such as scanned documents
as shown in Figure 2.4 [3], soft copy of handwritten letters, a photo with text
on billboards, or a subtitle on a video. These extracted strings can be used

8



to search, edit, store, convert to speech, translate to other languages, and
find patterns.

Figure 2.4: Sample OCR: Extracting editable texts from a photo of an old
newspaper. Source: [3]

Tesseract is an open-source OCR Engine, accessible under the license
of Apache 2.0 [3]. From 2006, Tesseract is sponsored by Google, and it is
one of the most accurate known open-source OCR engines. It is compatible
with a variety of programming languages and wrapper frameworks. One
such Tesseract-OCR Engine wrapper is known as Pytesseract, an open-source
OCR library that can be used in Python along with OpenCV (Computer
Vision library) [21] and Pillow (Python Imaging Library) [22] which can
recognise and read text in images. It can read from all types of images such
as jpeg, png, gif, bmp, tiff, etc.

2.2 Related Work

Given the problem context, we present the relevant literature methods that
solved a similar problem. First, we have to check how it is solved till the
present day. Next, we have to find techniques that are used to solve the
problem context. Later, we have to analyse the limitations of the existing
methods and their applicability to our problem context.

Before we start with the improved method, it is good to look at previ-
ous works. Insights from related works can help a lot in solving the stated
research questions. Therefore, we elaborated on a literature study in this
section.

The following are the search terms used on Google Scholar, IEEE, and
Springer to find relevant research papers required for this thesis:

1. (Compare or match) Process to text (or vice versa)

9



2. Change impact analysis

3. Process repository storage

Our goal compares and matches a textual change from the requirement
document to process models/repository. Therefore we start by doing research
on how to compare and match text to models in Section 2.2.1.

Secondly, as a result of this project, we need to determine the impact of
change requirements. Therefore we start by doing research on what is known
about change impact analysis/assessment in business process management
in Section 2.2.2.

Lastly, one of our research questions is to find out how we can represent
a process repository to query relevant information. Therefore doing some
research in literature from process repository representation and querying
can yield insights into what kind of framework we can use, and what kind of
querying we can perform. This is done in Section 2.2.3.

As per the contents, we have chosen the following criteria to filter the
relevant information:

1. Business-oriented, having a direct practical application

2. Goal of the article must be to find the business process artifact from
text and match them against process models

2.2.1 Text to Process Matching

In [23], textual descriptions are compared to the process models using NLP
techniques. However, this approach is used only to detect the inconsistencies
between texts and process models.

In [24], a novel process model matching approach is presented that de-
pends on the textual descriptions of processes. The main drawback of this
model is that it was tested with a textual description generated using Natu-
ral Language Generated System (NLGS), which would be far more different
from the human-generated text with domain knowledge incorporated in it.

In [25], NLP4BPM is a tool that supports the business organisation to
help to maintain consistency between the process representations (texts and
models). However, this tool is not openly available.

In [26], a unified format approach is presented to search data in both tex-
tual and model-based business descriptions. This approach aims to combine
both of the process representations but cannot perform search operations
from text to model.

10



2.2.2 Change Impact Analysis

In [27], a rule-based technique for change impact analysis in software architec-
ture is presented. This technique uses formal semantics on business relations
and the change requirements to identify impacted business elements. How-
ever, the rules on the “add/delete/update” change types have limitations
of identifying the affected entities in real-time and defining these rules are
highly complex and different for real-world business.

In [28], an automatic approach is presented to identify the impact of
requirements changes on system design by a two-step process: 1. a static
slicing algorithm to get the set of impacted process model entities;2. rank
the result set entities according to a quantitative measure designed to predict
how likely it is for each entity to be impacted. This seems to be a logical
approach to determine the impact, but the impact can only be determined
when both the change requirements and business entities are represented in
models.

Another approach is proposed in [29]; the impact is estimated by dependency-
based analysis in service-based business processes. This approach will only
work if a change is between services and their supporting business processes.
Additionally, this approach fails to investigate the impact on complex busi-
ness structures.

Likewise in [30], change impact is estimated by dependency-based anal-
ysis for complex process models. Impact business entities are determined
by analysing and tracing the dependency relations with other connected
business entities. The results presented have two types of information: 1.
add/delete/update changes, 2. depth of impact. The intensity of impact
estimation could lead to incorrect results for sizeable real-world business
models.

[31] is another approach that determines the impact on the business pro-
cess based on graph-based BPM. By this approach, it is possible to determine
the impact on a business process model qualitatively but still uses the rules
on the change types like in [27] [30].

2.2.3 Process Repository Framework

In [32], the authors presents a Semantic Business Process Repository (SBPR)
for storage and management of semantic business process models with RDBMS
with an integrated rule inference engine. This method can be used to achieve
automation throughout the BPM life cycle, to store process models, and to
query efficiently, but could not find the required business entity in a process
model.

11



In [33], an approach is proposed to represent the business process repos-
itory in the object-relational DBMS environment. However, this approach
does not store the overall business process model. Still, its subprocess com-
ponents, i.e., relationships between the processes and their sub-processes,
are presented, which could be used only to identify the process’s hierarchical
structure.

Apart from storing a process repository in an RDBMS, there is a research
[34] that stores a process repository in XML, proposed to support the man-
agement of business processes. However, this paper fails to test the proposed
method in terms of accuracy, confidence, and other possible metrics.

Considering the XML representation of business processes from [34], we
realise that they are highly connected and, complex structured. Such data
structures are better represented in graphs as per [35]. The framework is
a visual query language, especially for querying business processes called
BPMN-Q. Still, this framework works only on specific use-cases such as
compliance checking, detecting anomalies, and discovering frequent process
patterns/anti-patterns. It does not mention querying the business entity
from a process model.

Over the years, there have been many developments in the field of graph
databases. One such graph database is known as a knowledge graph, and it
is, so far, the best way to represent an organisation’s process repository [36].
A knowledge graph can store the relationships between the different entities
of data comprising the organisation’s data. The main advantage of using a
knowledge graph for storing a process repository is that a user can query it
with the required search input and can obtain results that are semantically
and contextually relevant to the organisation’s data rather than generic and
unnecessary results.

To conclude this section, we have discussed the related work that aims
to search the impacted business entity in a process repository and determine
the impact for a given textual change. However, each of these works differs
from this thesis in some way or another. We observed that there is no
complete approach that determines the impact by matching textual change
requirements to business entities that are present in a process repository.
Hence, we will take inspiration from works related to different components
of the system that we will develop in this project from Sections 2.2.1, 2.2.2
and 2.2.3 respectively.

12



Chapter 3

Business Understanding

Businesses continuously meet various challenges such as new competitors,
the need to adapt to new business regulations, keeping up with the changing
customer demands, etc. Failure to do so may lead to huge losses or, in some
cases, failure in businesses. The management of such changes taking place
at an organisational level is referred to as Change Management. The basic
flow of change management is depicted in Figure 3.1. It starts by raising a
change request, usually from a developer, a client, or a project manager. All
these change requests are documented in a Change Requirement Document
(CRD).

A CRD is a formal document that contains information that allows a busi-
ness analyst to assess how a business or technical change impacts a project’s
existing implementation.

The change assessment is defined by the set of tasks to be performed to
analyse the level of impacts on an existing business process. The following
are some of the main components presented in CRD for effectively assessing
the change requests [37]:

• The name of the project: A name that is specific to identify a
project, among other projects in an organisation.

• Request number: An unique ID that can be referred easily by the
employee and helps when getting it to the project log.

• Requestor: A client who wants to be satisfied with the project’s out-
come; a developer who wants the process to be optimised and effectively
produces the expected results or a project lead who wants to improve
the efficiency of the project.

• Description of the change: A clear and concise change description

13



gives sufficient information allowing the business analyst to understand
it at a glance.

• The reason for the change: A reasonable precise description that
acknowledges the description of the change. Changes happen in every
organisation due to client expectations, introducing new technology,
etc.

Figure 3.1: Business Process Change Management

Once the CRD is understood, the necessary actions can only be taken
after evaluating each change request’s level of impact. The impact assess-
ment should be carefully evaluated, as it may lead to a significant loss in an
organisation. Keeping the criticality in mind, business analysts spend large
amounts of their time manually assessing the several factors in real-world
business processes and may yet lead to inefficient results due to human error.
This time consuming and ineffective evaluation can be avoided by creating
a system that can help business analysts to identify the affected business
entities from business processes for the respective change requests. The re-
maining section of this report describes how such a system can be created.

Further, a change request can be either accepted or rejected depending
on its impact level. Accepted change requests are sent to the implementation
stage, and checks are done post-deployment to ensure the business complies
with the change assessment.

14



Chapter 4

Methodology

In this Chapter, we present the overall approach we have developed to help
answer the research questions stated in Section 1.2. given the problem con-
text (Section 1.1).

Figure 4.1: Schematic of the Overall Methodology

The overall approach can be divided into 3 parts.

1. We define the schema for our Knowledge Graph database which will be
populated using the Process Repository data. This corresponds to the
green box in Figure 4.1 and is discussed in detail in Chapter 5.

2. For a given textual change requirement, we will find the text similarity
between all the business entities retrieved from the knowledge graph.

15



From this step, we get the match business entities (entities having the
highest text similarity with the change requirement). This corresponds
to the blue box in Figure 4.1 and is discussed in detail in Chapter 6.
The evaluation of different text similarity algorithms is presented in
Chapter 7.

3. Finally, the knowledge graph is queried with the matched business en-
tities, in order to determine the impacted business entities. This corre-
sponds to the red box in Figure 4.1 and is discussed in detail in Chapter
8.

16



Chapter 5

Graph Representation of
Process Repositories

In this chapter, we address our first Research Question regarding creating a
framework for representing, storing, and accessing hierarchical process repos-
itory data, including the different business entities it contains. In Section
5.1, we discuss how we obtain the data containing information related to
different process models and their respective business entities. A complete
understanding of the data is required to store a complete process repository
in a knowledge base. In Section 5.2, we will discuss how to interpret the
retrieved data considering its hierarchical structure. Lastly, in Section 5.3,
we will explain how we created a schema in the Grakn knowledge graph to
store the retrieved information.

5.1 Data Collection

This section explains retrieving all the process models and their related ob-
jects from a process repository stored on the organisation’s server. Figure
5.1 represents the client-server architecture necessary for understanding how
to obtain the necessary data in a particular desired format. An authorised
Client, who is a user can communicate with the server via an API. We use a
GET method for reading the process repository and getting the data from the
server. The communication between the client and the server is done using
REST APIs using HTTP requests.

Sending requests to the server using REST APIs is similar to providing
search requests on the internet. The web server reveals itself to a RESTful
connection to the world wide web which can be used by external clients and
devices to retrieve or manipulate data specific to the process repository. The

17



Figure 5.1: Client-Server Architecture for process repository data access

related data is displayed to the client/user in the web browser. To access this
related data, a client has to provide the credentials to log into the web client.
Later, a service is requested from the web server to the application server
by SOAP (Simple Object Access Protocol), which is a messaging protocol that
exchanges structured data that is stored in the database server. Finally,
as per the client’s preference, the data can be stored locally by the client in
JSON or XML format.

5.2 Data Understanding

The hierarchical structure of the process repository which we will work with
in this project is depicted in Figure 5.2. The given process repository has
seven levels of data hierarchy consisting of business groups (collection of
information specific to one business), business models, and business objects.
Further, business groups, models, and objects can have sub-groups, sub-
models and sub-objects, respectively.

• At the highest level (Level 1) is the process repository. This stores in-
formation at the organisation level, e.g. information about the different
business clients of the organisation.

• Level 2 (group) contains one or more business projects of the organi-
sation. In our repository, for example, we have the Roadtrip Example
group. This group contains the company map diagram (a high-level
visual representation of business) of the client to which this group cor-
responds.

• Level 3 (sub-group) has several departments based on the organisation
of the business project. For example, Roadtrip Example is a project
with a department named Documents that is responsible for collecting
and storing customer documents.

18



• Level 4 (sub-group) includes further sub-divisions of Level 3 sub-groups,
if any. For example, for the Process Flow sub-group, we have three sub-
divisions, i.e., core, management, and support processes.

• Level 5 (models and sub-models) contain the visual representation of
business processes from Levels 3 and 4 in the form of business diagrams,
organised into blocks (e.g. Document Model block). Further, sub-
model diagrams are also represented by their respective diagrams in
this Level. For instance, Process to create visa is an example of a
model inside the Business Process Diagram block shown in Level 5.

• Level 6 (objects) contains information about the business entities used
to create models and sub-models in Level 5. For example, Check valid

ID activity is a business entity in the Process to create visa model.

• Level 7 (sub-objects) has information about the people responsible for
the business object. For example, Organiser or Tour guide is respon-
sible for the task object Check valid ID.

Figure 5.2: Process repository hierarchy

Each level of data is obtained from the server as discussed in Section
5.1 by calling their respective ‘rest links’ (a unique URL) in the JSON

format. The JSON for each level contains the ‘rest links’ of its lower
level. For example, Figure 5.3 shows how each sub-group’s ‘rest links’

key is available in the higher level group’s JSON file. Hence, we are able

19



to obtain the entire process repository starting from Level 1 by following
these ‘rest links’. Along with ‘rest links’, we can also retrieve other
attributes such as:

• ID: A unique ID that is specific to each business entity. It is important
to have an ID since the same object name can be associated with entities
in different models.

• NAME: This is the name of the business entity.

• TYPE: This attribute categorises the business model and objects in
their particular type. For example, a model type can be “Use-case
diagram” or “BPMN diagram”, whereas an object type can be a Task,
Role, etc.

• DIRECTION: This attribute contains two possible sub-attributes,
INCOMING and OUTGOING, containing the IDs of incoming and outgoing
business entities, if any, for a given business entity.

Figure 5.3: Relationship between JSON files

20



5.3 Implementation

This section describes part of the implementation explaining how a knowledge
graph was created and populated to store the entire process repository data.
A high-level architecture of the implementation is shown in Figure 5.4.

Figure 5.4: High Level Architecture of Grakn knowledge graph creation

The implementation of the knowledge graph representation of the process
repository is done using the following technologies:

1. Grakn: This is the knowledge graph database used to store the process
repository data and to view the created schema in a Grakn workbase.

2. Graql: Query language to create the definitions of a knowledge graph
schema and insert queries to populate this knowledge graph with the
process repository data.

3. Python: Programming language used to parse the JSON files and to
map the Grakn schema keywords with JSON attributes with Grakn-
Client.

21



Figure 5.5: JSON objects representation with Grakn variables and attributes

In the Figure 5.5, we represent the 1559 collected JSON files, which are
either a Model JSONs or an Object JSONs. Using Python, we have pre-
processed all the JSON files to get only the required information that is nec-
essary for our work. The Model JSON contain data related to the models,
sub-models, and its objects whereas the Object JSON contain data related to
objects and sub-objects. We have defined Graql variables for all the entities
(in Figure 5.5, highlighted in red) and relationships (in Figure 5.5, high-
lighted in pink); and attributes (in Figure 5.5, highlighted in green). Below,
we explain how we defined the Grakn database schema and populate it with
our process repository data.

5.3.1 Schema Definition in Grakn

The Grakn schema definition is implemented in the following steps.

• Creating Entities First we create four types of Grakn entities using sub

entity, namely

– MODEL NAME for models and sub-models

– FLOW OBJECT for objects

– SUB OBJECT for sub-objects

22



– SUB MODEL OBJECT for objects belonging to models and sub-models,
such as, the output of the process Process to create visa

(from level 5) is visa application or the process owner is user

Following is part of Graql schema entity definition showing the MODEL NAME

entity definition.

1 #ENTITIES

2 MODEL_NAME sub entity ,

3 has ID ,

4 has NAME ,

5 has TYPE ,

6 plays MDL ,

7 plays MOD;

8 ...

• Creating Relations Further, every entity needs to be created with its
relevant roles using the plays keyword and attributes using the has

keyword as shown in the MODEL NAME entity definition above. Second,
we create four relationships (using sub relation) by relating to the
entities’ roles (using relates keyword) namely

– MODEL HAS OBJECT relationship between (sub)models and its ob-
jects

– RC SEQUENCE FLOW BPMN for preceding and succeeding objects

– OBJECT HAS SUB OBJECT relationship between object and its sub-
object information

– MODEL HAS SUB MODEL OBJECT relationship between (sub)models
and its object’s information

The following is a part of Graql schema showing the MODEL HAS OBJECT

relationship definition.

1 #RELATIONSHIPS

2

3 MODEL_HAS_OBJECT sub relation ,

4 relates MDL ,

5 relates OBJECT;

6 ...

• Adding Attributes to Entities Finally, the attributes of entities are cre-
ated (using sub attribute) along with their datatype. The following
is a part of Graql schema attribute definition:

23



1 #ATTRIBUTES

2 ID sub attribute ,

3 datatype string;

4 ...

The complete schema definition is available in Appendix B.

By running the following command in the command prompt, we can load
and visualise the created schema in the Grakn workbase tool, as shown in
Figure 5.6.

1 > grakn server start

2 > grakn console --keyspace process_repo schema --file $(pwd)/
process_repo_schema.gql

Figure 5.6: Knowledge graph schema

5.3.2 Data Insertion into Grakn

In order to insert the data mined from JSON to Grakn schema using Graql,
we need to install Python’s grakn-client [38] package. The following is the
sample code for inserting the data to Grakn. First, we have to insert data

24



for entities along with their relevant attributes. The complete list of insert
queries is provided in Appendix B.

The insert query below in line 3 inserts a model (MODEL NAME) with a
provided ID, NAME and TYPE into the Grakn database.

1 #Entities & Attributes insertion into Grakn

2 insert $model isa MODEL_NAME ,

3 has ID "{model_id}", has NAME "{model_name}", has TYPE "{

model_type}";

4 ...

The insert query below, on the other hand, inserts the relation between a
model (MODEL NAME) and an object (FLOW OBJECT) by matching the existing
model and object entities using their respective IDs in the database and
inserting the MODEL HAS OBJECT relationship between them.

1 #Relationships insertion into Grakn

2 match $model isa MODEL_NAME , has ID "{model_id}"; $object isa

FLOW_OBJECT , has ID "{object_id}";

3 insert $mho (MDL: $model , OBJECT: $object) isa

MODEL_HAS_OBJECT;

4 ...

Hence we have inserted 80 different types of business models in Grakn,
shown in Table 5.1. Except for the business process diagram, a short de-
scription of the other business models are discussed in Appendix A.

Model Type Number

Analysis Model 37
Business Process Diagram 19

Company Map 9
Document Model 1
IT System Model 2

Working Environment Model 3

Table 5.1: Different types of business models loaded in Grakn

5.4 Summary

In this Chapter, we have described our approach for accessing process repos-
itory data stored in a server, creating a Grakn Knowledge Graph schema and
inserting the process repository data in it. Next, we will discuss our approach
for identifying business entities stored in this database are impacted by given
business change requirements.

25



Chapter 6

Text Similarity

In this chapter, we address our Research Question 2 involving the applica-
bility of Text Semantic Similarity algorithms to the problem of matching
change requirements to business objects. We also address Research Question
3 by proposing an algorithmic framework for applying different text simi-
larity (or distance) algorithms tailor-made for text similarity in the context
of retrieving relevant business entities from a process repository given an
input business change requirement. This corresponds to business change re-
quirements typically in the form of a single sentence and business entities
described in the form of a short text (phrases).

6.1 Methodology

In order to be able to compare the different algorithms, we apply the same
text-preprocessing function for all algorithms described below for converting
change requirement text to a sequence of tokens. This includes punctuation
removal, converting to lowercase, tokenisation, stopword removal, and finally
lemmatisation.

6.1.1 State-of-the-art in Text Similarity

This section discusses the application of different state-of-the-art word em-
bedding models that we will evaluate later in Chapter 7 for matching busi-
ness entities to a given change requirement. This section will describe our
approach for developing a semantic similarity algorithm using the different
state-of-the-art text (or word) embedding models.

1. Text pre-processing: There are several steps involved in processing
natural language text to obtain relevant information from it in the form

26



of individual tokens. First, these involve a tokenisation step that re-
moves punctuations in the text and splits text in the form of a sentence
(or phrase) into a list of individual words, alternatively referred to as
tokens. Next, from this list of tokens, we remove the tokens that are
very commonly used (referred to as stopwords) in the language. Ex-
amples of stopwords are articles like the and prepositions like of. This
is done because the stopwords usually add additional noise to the sen-
tence embedding being calculated (described in the next step) without
adding much value in terms of a semantic understanding of the text’s
actual relevant content. Also, all tokens are converted to the lower
case. Finally, we can lemmatise individual tokens to normalise differ-
ent forms of the same root word to its common root form as shown in
Figure 6.1.

Figure 6.1: Text pre-processing schematic

2. Generating sentence embeddings: After pre-processing, an input
sentence represented by a sequence of tokens can be converted to a fea-
ture vector. For word-embedding models (Word2Vec and GloVe), each
token is converted into its corresponding embedding using available
pre-trained models. Note that some tokens can be Out-Of-Vocabulary
of the word-embedding model. The overall sentence embedding is then
calculated as the average of the word-embeddings of the tokens. BERT,
a text embedding model, works directly with the sentence inputs to ob-
tain the corresponding sentence embedding. Note that BERT could be

27



applied to a pre-processed sentence by converting the sequence of pre-
processed tokens into a sentence. This is done by merely arranging the
tokens in a sequence of words to form a sentence.

3. Computing Text Similarity: The text similarity between two texts
is calculated as the distance between their sentence embeddings using
suitable distance metrics. The Cosine and Euclidean distance between
two N-dimensional vectors A and B such that, A = (a1, ..., aN) and B
= (b1, ..., bN) are defined below.

• Cosine distance:

cosine(A,B) =

∑N
i=1 aibi√∑N

i=1 (ai)2
√∑N

i=1 (bi)2

• Euclidean distance:

euclidean(A,B) =

√√√√ N∑
i=1

(ai − bi)
2

6.1.2 Framework for Text Similarity applied to Change
Requirement Matching

In this section, we propose a generic framework for semantic similarity from
an input text query (typically a sentence) to find the ranking of candidate
texts in decreasing order of similarity or relevance. After performing text
pre-processing and tokenisation to a query and a candidate, we have:

• The set of tokens in the query: Q = {q1, ..., q|Q|}

• The set of tokens in the candidate: C = {c1, ..., c|A|}

Now, the distance between Q and C is calculated as:

distance(Q,C) =
1

|C|

|C|∑
i=1

{
min

|Q|
j=1{textdistance[ci, qj]}

}
Here, textdistance is the placeholder for an algorithm for calculating the

distance between a pair of tokens. The formula calculates each token in C, its
distance from the nearest token to it in Q using some textdistance metric.
This distance metric is calculated as the average of these distances. Finally,

28



given a set of candidates for a given query, the candidates can be ranked in
increasing the distance metric from the query. The resulting ranking is in
order of increasing distance or decreasing similarity/relevance as required.

Further, it is also possible to use word embedding models (i.e. Word2Vec
and GloVe) with cosine (or euclidean) distance as the distance metric within
our framework. These can be compared when used directly as described in
Section 6.1.1.

Framework Justification

The explanation for the design of the framework proposed above is justified
based on our ground truth data (shown in Figure 6.2).

Figure 6.2: Sample data of textual change requirements with ground truth busi-
ness entities

• The framework was designed keeping in mind the ground truth data
that we have . It contains change requirements typically in the form
of sentence and business entities typically in the form of short text (or
phrases).

• The idea of comparing each token in a business entity directly with
its nearest token in the change requirement is based on the ground
truth data where in most cases, many of the (non-stopword) Ground
Truth Business Entity tokens correspond to similar tokens in the change
requirement. We also note that the nature of this similarity in many
cases is textual as well as semantic. For example, in line 3, “Apply for
visa”:

– Apply corresponds to applications token in the change require-
ment.

– for is a stopword

29



– visa corresponds to visa token in the change requirement.

• Also, we note that instead of comparing change requirement directly
with business entities, it is relevant to compare each token in the busi-
ness entity with its most similar token in the change requirement. This
is because many of the change requirement tokens are irrelevant to
the Ground Truth Business Entity and add additional noise to the text
similarity calculation if we compare, for instance, the average word vec-
tors of change requirements directly with those of the business entities.
For example, in line 3, the (non-stopword) tokens submitted, two,
weeks, advance are irrelevant as they specify the change to be made
to the ground truth business entity. Our framework will not consider
these tokens for the text similarity calculation in the case of the ground
truth entity.

• Finally, it is important to normalise the text similarity score by tak-
ing the average of the similarity of each business entity token with its
nearest change requirement token.

6.2 Implementation

In this section, we discuss the different Python packages used for implement-
ing the different NLP algorithms and methods described in Section 6.1.

6.2.1 State-of-the-art in Text Similarity

To implement the semantic similarity framework described in Section 6.1.1,
we use several NLP packages available for Python for the different tasks.

We use the Spacy Python package [39] for doing stopword removal and
lemmatisation. For Word2Vec, we downloaded the Word2Vec pre-trained
model [40] from the Gensim package [41] for loading and accessing the word
vectors for different text tokens in Python. For GloVe embeddings, we use the
pre-trained embeddings available with the GloVe project [19]. For BERT, we
use the pre-trained models from Python’s Sentence Transformer [20] package
to encode sentences into sentence embeddings. Finally, we use Python’s
Scipy package [42] for calculating Cosine (and Euclidean) distance between
sentence vectors.

30



6.2.2 Framework for Text Similarity applied to Change
Requirement Matching

The text similarity framework described in Section 6.1.2 was implemented in
Python. We use the same pre-processing steps as above. For the similarity
function to be used in the framework, we used different types of textdis-
tance functions defined in Python’s textdistance package [43]. These in-
clude different categories of textdistance functions [44], namely:

• Simple similarity: These include simple text comparison algorithms
like prefix matching, suffix matching etc.

• Edit-based similarity: These algorithms compute metrics based on
edit-distance, for example, the number of insert, change or delete op-
erations (on characters) needed to convert one text to another.

• Phonetic based similarity: These algorithms define methods and
rules to compute distance based on the sound created when texts are
spoken verbally.

• Token-based similarity: These algorithms compute metrics based
on the similarity of sets representing two texts, e.g. set of characters
in texts, using set operations (union, intersection, difference).

• Sequence-based similarity: These algorithms use metrics based on
sequences of characters obtained from the two texts, e.g. the longest
common sub-sequence of characters.

6.3 Summary

In this chapter, we have discussed two different approaches for text similarity.
The first is based on applying state-of-the-art text embedding methods on the
pre-processed text. The second introduces a simple framework particularly
in the context of matching change requirements to business entities (both in
the form of text) within which different textdistance or word embedding
algorithms can be used. Also, we provide the intuition behind creating this
framework in the context of our ground truth data. A detailed evaluation
of these two approaches using different performance metrics on ground truth
data is provided in Chapter 7.

31



Chapter 7

Text Similarity Evaluation

In this chapter, we present the evaluation of different state-of-the-art NLP
methods used in the semantic similarity framework we describe in Section
6.1.1, namely Word2Vec, GloVe, and BERT applied to our ground truth
data. Further, we apply this evaluation strategy to different text-similarity
algorithms available with Python’s textdistance package, in the framework
of text similarity matching applied to match change requirements to business
entities, as described in Section 6.1.2.

7.1 Objective

We want to calculate the top-N accuracy and the top-N NDCG scores for the
different algorithms described above for different values of N. We want to use
these scores to compare the performance of state-of-the-art text vectorisation
algorithms with that of different textdistance algorithms when implemented
in our text-similarity framework.

7.2 Setup

We use a ground truth dataset consisting of 20 change requirements ap-
plied to a given process repository consisting of 243 business entities. For a
given algorithm, corresponding to each change requirement, we rank the 243
business entities in decreasing order of their similarity score with the textual
change requirement. We call this ranking the retrieved ranking. Figure 7.1
shows 3 change requirements in our dataset with their corresponding ground
truth business entity and the top 3 retrieved ranks (using a textdistance
algorithm in our text similarity framework.

32



Figure 7.1: Textual change requirements with the Ground Truth and Retrieved
top 3 Ranking

The Median Rank, Accuracy, and Normalised Discounted Cumulative
Gain (NDCG) metrics for a given algorithm on the ground truth data are
calculated as follows.

• Median Rank: For an input change requirement, the Rank is defined
as the position of ground truth entity in the retrieved ranking. For
example, for the first change requirement in Figure 7.1, the Rank
corresponding to the retrieved ranking is 2. Clearly, the lower the
Rank, the better the retrieved ranking. The Median Rank is the
median of the Ranks obtained corresponding to the list of (20) change
requirements in our ground truth dataset.

• Accuracy: Given the value of N, we consider the retrieved ranking
as correct if it contains the ground truth business entity in one of the
top N items. The accuracy of an algorithm is calculated as the fraction
of change requirements for which its output is correct.

• Normalised Discounted Cumulative Gain (NDCG): Accuracy
(at N) only considers if the Rank of a retrieved ranking is at most
N or not. It does not consider the actual Rank of the ground truth in
our ranking if it is at most N. The Normalised Discounted Cumulative
Gain (NDCG) is a more refined metric for evaluating recommendations
by scoring the Rank itself as described below.

33



– For the list of 243 business entities, we assign a relevance score
of 1 to the matching ground truth entity and 0 to all the other
entities.

– The Discounted Cumulative Gain (DCG) at N for a ranking is
defined as:

DCG@N =
N∑
i=1

relevancei
log2 (i + 1)

– The NDCG at N is calculated as the ratio of the DCG of the
retrieved ranking (DCGR@N) to that of the ideal ranking
(DCGI@N), where the ideal ranking arranges the entities in
decreasing order of relevance. Note that in our case, we do not
have a unique ideal ranking. However, any ideal ranking has
a relevance of 1 for the first entity and 0 for all others based
on our definition of relevance. Suppose that for a retrieved
ranking, the ground truth entity has Rank=Rank.

Using the DCG@N formula, we obtain:

DCGR@N =

{
1

log2(Rank+1)
, if Rank ≤ N

0, otherwise

DCGI@N =
1

log2 (1 + 1)
+ 0 = 1

– Finally, NDCG for a given Rank corresponding to a retrieved
ranking is calculated as:

NDCG@N =
DCGR@N

DCGI@N
=

{
1

log2(Rank+1)
, if Rank ≤ N

0, otherwise

Note that the maximum value of NDCG is 1 if Rank=1, and its mini-
mum value is 0 for Rank > N. The average NDCG score (also referred
to as NDCG in short) is the average of the NDCG scores corresponding
to the 20 change requirements.

34



7.3 Execution

In this section, we describe the different algorithms which we implemented.
Firstly, for each state-of-the-art text embedding model (Word2Vec, GloVe,
and BERT), we evaluate 4 different variants described below.

• Using Cosine distance for embedding distance calculation, and with
text pre-processing.

• Using Cosine distance for embedding distance calculation, and without
text pre-processing.

• Using Euclidean distance for embedding distance calculation, and with
text pre-processing.

• Using Euclidean distance for embedding distance calculation, and with-
out text pre-processing.

7.4 Results

In this section, we present the results for the different text embedding algo-
rithms and different textdistance algorithms in our text similarity frame-
work using the evaluation metrics described above. Further, we compare and
analyse the results obtained from these approaches.

7.4.1 State-of-the-art models

Figures 7.2, 7.3 and 7.4 compare the Accuracy and NDCG scores for the
4 variants of Word2Vec, GloVe and BERT respectively. On the horizontal
axis in each plot, the value of N is varied. From these Figures, we make the
following observations:

• In all cases, it is clear that all algorithms perform much better on pre-
processed data compared to non-preprocessed data.

• Cosine distance is better suited for Word2Vec and GloVe models com-
pared to Euclidean distance. For BERT, Cosine distance and Euclidean
distance give similar performance in terms of Accuracy and NDCG.

Hence, for each algorithm, we will discuss only the results for pre-processed
text and using Cosine distance compared with textdistance algorithms in
our Text Similarity Framework.

35



5 10 15 20 25 30 35 40
0

20

40

60

80

N

A
cc

u
ra

cy
(%

)

Cosine distance w/ pre-proccessing
Cosine distance w/o pre-proccessing

Euclidean distance w/ pre-proccessing
Euclidean distance w/o pre-proccessing

5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

N

N
D

C
G

Cosine distance w/ pre-proccessing
Cosine distance w/o pre-proccessing

Euclidean distance w/ pre-proccessing
Euclidean distance w/o pre-proccessing

Figure 7.2: Word2Vec - Accuracy and NDCG

36



5 10 15 20 25 30 35 40
0

20

40

60

80

N

A
cc

u
ra

cy
(%

)

Cosine distance w/ pre-proccessing
Cosine distance w/o pre-proccessing

Euclidean distance w/ pre-proccessing
Euclidean distance w/o pre-proccessing

5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

N

N
D

C
G

Cosine distance w/ pre-proccessing
Cosine distance w/o pre-proccessing

Euclidean distance w/ pre-proccessing
Euclidean distance w/o pre-proccessing

Figure 7.3: GloVe - Accuracy and NDCG

37



5 10 15 20 25 30 35 40
0

20

40

60

80

N

A
cc

u
ra

cy
(%

)

Cosine distance w/ pre-proccessing
Cosine distance w/o pre-proccessing

Euclidean distance w/ pre-proccessing
Euclidean distance w/o pre-proccessing

5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

N

N
D

C
G

Cosine distance w/ pre-proccessing
Cosine distance w/o pre-proccessing

Euclidean distance w/ pre-proccessing
Euclidean distance w/o pre-proccessing

Figure 7.4: BERT - Accuracy and NDCG

Table 7.1 shows the values of Accuracy and NDCG corresponding to the
different algorithms, each with Cosine and Euclidean distance, and with and
without pre-processing. As highlighted in Table 7.1, we note that Accuracy
and NDCG scores for each algorithm are highest when using Cosine distance
with pre-processed text data (except for Top 5 Accuracy and Top 5 NDCG
for BERT, marked by *).

Further, Table 7.2 shows the Ranks corresponding to the 20 different
change requirements for these algorithms.

38



Algorithm Distance Preprocess
Accuracy(%) (Top N) NDCG (Top N)

5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40

GloVe
Cosine

True 40 50 60 60 60 70 70 70 0.316 0.352 0.379 0.379 0.379 0.4 0.4 0.4
False 10 10 10 10 10 15 15 20 0.075 0.075 0.075 0.075 0.075 0.085 0.085 0.095

Euclidean
True 30 40 50 55 60 60 65 65 0.222 0.255 0.281 0.293 0.304 0.304 0.314 0.314
False 10 20 20 30 30 30 30 30 0.057 0.09 0.09 0.114 0.114 0.114 0.114 0.114

Word2Vec
Cosine

True 55 65 70 85 85 85 85 85 0.411 0.443 0.456 0.492 0.492 0.492 0.492 0.492
False 30 35 35 35 40 40 40 60 0.251 0.268 0.268 0.268 0.278 0.278 0.278 0.316

Euclidean
True 30 30 50 60 60 60 65 65 0.201 0.201 0.252 0.276 0.276 0.276 0.286 0.286
False 15 15 15 20 20 20 25 25 0.072 0.072 0.072 0.083 0.083 0.083 0.093 0.093

BERT
Cosine

True 20 40 60 65 65 65 65 65 0.182 0.247 0.299 0.311 0.311 0.311 0.311 0.311
False 25*30 35 50 50 55 60 65 0.188* 0.203 0.216 0.251 0.251 0.262 0.272 0.281

Euclidean
True 20 40 60 f65 65 f65 65 f65 0.175 0.239 0.291 0.303 0.303 0.303 0.303 0.303
False 25*25 35 45 45 50 60 65 0.185 0.185 0.211 0.235 0.235 0.245 0.265 0.275

Table 7.1: Results from NLP State of the Art Methods

39

shaba
Rectangle



Method Distance Processed
Ranks for 20 Change Requirements

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

GloVe
Cosine

True 11 4 28 6 142 151 144 27 1 1 2 145 66 2 2 12 1 1 60 6
False 89 1 74 81 179 70 136 167 143 139 96 127 222 44 108 3 28 40 265 261

Euclidean
True 15 4 25 9 75 34 98 6 1 16 5 201 133 13 2 128 1 1 210 208
False 257 2 7 103 159 76 232 71 95 16 102 173 220 19 3 41 149 7 258 264

Word2Vec
Cosine

True 18 2 16 6 49 12 18 10 1 1 2 226 46 5 3 4 1 1 2 1
False 66 107 5 1 85 2 124 135 39 1 38 216 174 40 7 1 25 39 79 1

Euclidean
True 32 2 15 18 122 17 257 13 3 14 5 165 128 13 3 165 1 1 252 206
False 258 3 18 66 179 98 256 71 73 3 62 167 234 124 4 46 222 33 259 254

BERT
Cosine

True 64 1 27 56 11 9 45 1 5 3 23 138 223 1 4 3 1 1 41 1
False 22 1 108 32 128 92 86 7 3 26 18 194 214 1 5 7 1 4 23 1

Euclidean
True 63 1 31 57 11 9 38 1 4 6 31 154 208 1 4 4 1 1 35 1
False 19 1 101 33 130 91 70 5 3 46 25 200 217 1 5 7 1 4 22 1

Table 7.2: Ranks generated for each Change Requirements by NLP State of the Art Methods

40

shaba
Rectangle



7.4.2 Text-distance algorithms in our Similarity Frame-
work

Table 7.3 shows the results for the different textdistance algorithms (grouped
by the algorithm category) applied in our Text Similarity framework. Also,
Table 7.4 shows the Ranks corresponding to the 20 different change require-
ments for these algorithms.

We choose the best performing algorithms for each category based on the
Top 5 NDCG scores (marked with *), since we are interested in showing the
Top 5 results to the business analyst to choose from in our semi-automatic
approach and because NDCG is a more refined metric for evaluating recom-
mendations than Accuracy.

These algorithms are briefly explained below:

• Simple Prefix: This algorithm computes text similarity by computing
the similarity between prefixes of different lengths in texts.

• Phonetic MRA: This algorithm compares two texts by using a set of
encoding and comparison rules corresponding to the model to compare
two text phonetics [45].

• Edit-based Jaro: The Jaro distance metric is an edit-distance based
metric between two strings [46].

• Sequence-based Longest common substring (lcsstr): This algo-
rithm uses the longest common substring similarity length as a measure
for calculating similarity between texts.

• Token-based Tversky: This algorithm computes text distance us-
ing the Tvesky index [47] between two texts by comparing the set of
characters they contain.

We will now compare the performance of these algorithms with the text-
embedding models.

41



Category Algorithm
Accuracy(%) (Top N) NDCG (Top N)

5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40

Edit based

Damerau-
Levenshtein

60 70 80 85 85 85 85 85 0.476 0.507 0.535 0.547 0.547 0.547 0.547 0.547

Gotoh 55 75 75 80 80 85 85 85 0.429 0.499 0.499 0.511 0.511 0.521 0.521 0.521
Hamming 70 75 80 85 85 85 85 85 0.466 0.481 0.494 0.506 0.506 0.506 0.506 0.506
Jaro 65 80 85 85 85 85 85 85 0.506* 0.558 0.572 0.572 0.572 0.572 0.572 0.572
Jaro Winkler 65 80 85 85 85 85 85 90 0.488 0.539 0.552 0.552 0.552 0.552 0.552 0.562
Levenshtein 60 80 85 85 85 85 85 90 0.444 0.508 0.521 0.521 0.521 0.521 0.521 0.531
MLIPNS 45 65 70 80 80 85 85 85 0.341 0.411 0.425 0.449 0.449 0.459 0.459 0.459
Needleman-
Wunsch

60 80 80 80 85 85 85 85 0.455 0.519 0.519 0.519 0.53 0.53 0.53 0.53

Smith-
Waterman

50 70 70 80 85 85 85 85 0.385 0.449 0.449 0.472 0.483 0.483 0.483 0.483

Strcmp95 70 80 85 85 85 85 85 85 0.501 0.534 0.548 0.548 0.548 0.548 0.548 0.548

Phonetic
Editex 55 75 80 80 80 80 85 85 0.422 0.49 0.503 0.503 0.503 0.503 0.513 0.513
MRA 60 75 75 75 75 80 80 80 0.461* 0.511 0.511 0.511 0.511 0.521 0.521 0.521

Sequence based
Longest
common
subsequence

55 75 80 80 85 85 85 85 0.447 0.515 0.528 0.528 0.539 0.539 0.539 0.539

Longest
common
substring

70 80 85 85 85 85 85 85 0.485* 0.519 0.533 0.533 0.533 0.533 0.533 0.533

Ratcliff-
Obershelp

60 75 80 85 85 85 85 85 0.469 0.517 0.53 0.542 0.542 0.542 0.542 0.542

42

shaba
Rectangle



Simple

Identity 50 70 75 75 75 75 75 75 0.416 0.482 0.495 0.495 0.495 0.495 0.495 0.495
Length 0 15 25 35 35 40 50 55 0 0.05 0.075 0.099 0.099 0.109 0.128 0.138
Matrix 50 70 75 75 75 75 75 75 0.416 0.482 0.495 0.495 0.495 0.495 0.495 0.495
Postfix 45 70 75 75 75 75 75 75 0.345 0.428 0.441 0.441 0.441 0.441 0.441 0.441
Prefix 70 70 80 85 85 85 85 85 0.535* 0.535 0.561 0.574 0.574 0.574 0.574 0.574

Token based

Bag 50 65 70 70 70 75 75 75 0.416 0.466 0.479 0.479 0.479 0.49 0.49 0.49
Cosine 45 70 75 85 85 85 85 85 0.378 0.46 0.473 0.497 0.497 0.497 0.497 0.497
Jaccard 55 75 85 85 85 85 85 85 0.446 0.513 0.538 0.538 0.538 0.538 0.538 0.538
Monge Elkan 55 70 75 80 80 80 80 80 0.407 0.452 0.465 0.477 0.477 0.477 0.477 0.477
Overlap 40 55 65 65 70 75 90 90 0.288 0.335 0.361 0.361 0.372 0.382 0.412 0.412
Sørensen–Dice 45 65 70 75 75 75 80 85 0.372 0.441 0.453 0.465 0.465 0.465 0.475 0.484
Tanimoto dis-
tance

0 0 0 0 0 10 15 15 0 0 0 0 0 0.02 0.03 0.03

Tversky 55 75 85 85 85 85 85 85 0.446* 0.513 0.538 0.538 0.538 0.538 0.538 0.538

Table 7.3: Results for textdistance algorithms in our text similarity framework. The best performing algorithm for each
category using the top 5 NDCG has been highlighted and the corresponding NDCG score marker with an *.

43



Category Algorithm
Ranks for 20 Change Requirements

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Edit based

Damerau
Levenshtein

9 11 131 1 17 12 1 4 2 1 2 59 100 4 1 5 1 7 1 1

Gotoh 16 6 191 1 30 6 1 5 3 1 2 69 148 4 2 6 1 7 1 1
Hamming 13 10 57 1 18 4 1 4 3 1 2 44 204 5 4 2 1 5 3 1
Jaro 11 7 110 1 3 6 1 6 3 1 1 46 217 4 1 2 1 4 2 1
Jaro Winkler 12 6 114 1 4 7 1 7 2 1 3 40 218 4 1 2 1 3 2 1
Levenshtein 12 9 186 1 10 7 1 4 3 1 2 38 170 4 3 5 1 6 1 1
MLIPNS 30 17 103 1 17 6 2 6 1 2 6 212 234 2 7 4 1 3 11 1
Needleman
Wunsch

10 5 186 1 21 9 1 4 2 1 2 81 149 5 2 6 1 7 1 1

Smith Water-
man

18 7 125 1 19 2 1 4 3 1 2 191 114 9 3 10 1 21 6 1

Strcmp95 11 6 120 1 5 10 1 5 4 1 2 52 208 4 1 2 1 3 2 1

Phonetic
Editex 7 9 76 1 32 12 1 5 3 1 2 52 65 3 4 6 1 6 1 1
MRA 2 10 194 1 28 55 1 6 6 1 2 65 140 5 3 1 1 4 2 1

Sequence based

Longest
common
subsequence

9 5 183 1 14 21 1 6 3 1 2 82 236 4 1 6 1 7 1 1

Longest
common
substring

7 5 212 1 12 2 1 6 4 1 4 42 218 4 3 3 1 5 1 1

Ratcliff-
Obershelp

16 4 199 1 9 15 1 7 3 1 2 64 241 5 1 4 1 7 1 1

44

shaba
Rectangle



Simple

Identity 6 15 101 1 7 2 121 8 8 1 1 198 234 79 2 2 1 4 1 1
Length 87 6 161 17 251 252 63 35 30 13 33 36 221 19 97 7 9 185 197 15
Matrix 6 15 101 1 7 2 121 8 8 1 1 198 234 79 2 2 1 4 1 1
Postfix 7 7 186 1 7 3 89 9 12 1 2 203 90 85 2 3 1 6 2 1
Prefix 16 11 182 1 14 1 1 3 3 1 3 45 219 2 4 2 1 3 1 1

Token based

Bag 8 4 158 1 55 49 1 6 3 1 1 207 95 13 1 7 1 26 5 1
Cosine 9 6 77 1 12 19 1 6 4 1 2 215 103 10 1 3 1 18 7 1
Jaccard 9 6 91 1 14 8 1 6 4 1 1 208 94 4 1 4 1 14 2 1
Monge Elkan 3 14 86 1 9 3 17 9 10 1 1 92 226 80 2 3 1 5 2 1
Overlap 31 30 23 1 3 3 1 15 12 2 7 244 177 9 9 3 2 32 33 1
Sørensen
–Dice

9 6 90 1 37 33 1 6 4 1 2 204 94 15 1 5 1 20 6 1

Tanimoto 117 34 85 78 165 166 110 59 164 167 111 181 224 72 255 29 28 256 189 236
Tversky 9 6 91 1 14 8 1 6 4 1 1 208 94 4 1 4 1 14 2 1

Table 7.4: Ranks generated for each Change Requirements by textdistance algorithms in our text similarity framework.

45



7.4.3 Comparing our framework with the State-of-the-
Art

The different algorithms for which results are presented in this section are
all applied to the same pre-processed text to make a fair comparison of the
results.

Firstly, Table 7.5 shows the median rank of all the selected textdistance
algorithms in our framework. Also, it shows the use of word embedding mod-
els (Word2Vec and GloVe) with Cosine distance metric in our text similarity
framework. We note that:

• The textdistance algorithms used in our framework have lower (hence
better) median rank compared to all text embedding methods.

• Using text embedding algorithms in our framework improves the per-
formance in terms of median rank for both Word2Vec and GloVe.

Method Algorithm Median Rank

Text Embedding
GloVe 8.5

Word2Vec 4.5
BERT 12.5

Text-distance + Our Framework

Simple Prefix 3
Phonetic MRA 3.5
Edit-based Jaro 3

Sequence-based lcsstr 4
Token-based tversky 4

Text Embedding + Our Framework
Word2Vec 3

GloVe 3

Table 7.5: Median Ranks for the different algorithms

Below, we will compare the three different Methods shown in Table 7.5
as follows.

• Text Embedding algorithms VS Text-distance algorithms +
Our Framework: In Figure 7.5 we note that all Text-distance algo-
rithms in our framework out-perform the Text Embedding algorithms,
particularly for the NDCG metric. In particular, we note that a simple
distance metric like the Simple Prefix algorithm applied in our frame-
work is superior to all Text Embedding algorithms.

46



5 10 15 20 25 30 35 40
0

20

40

60

80

N

A
cc

u
ra

cy
(%

)

GloVe
Word2Vec

BERT
Simple Prefix

Edit based Jaro
Phonetic MRA

Sequence based lcsstr
Token based Tversky

5 10 15 20 25 30 35 40
0.1

0.2

0.3

0.4

0.5

0.6

N

N
D

C
G

GloVe
Word2Vec

BERT
Simple Prefix

Edit based Jaro
Phonetic MRA

Sequence based lcsstr
Token based Tversky

Figure 7.5: Comparing Text Embedding algorithms to selected textdistance
algorithms in our framework using Accuracy and NDCG metrics

• Text Embedding algorithms VS Text Embedding algorithms
+ Our Framework: In Figure 7.6 we note the improvement in perfor-
mance (particularly for NDCG) of Text Embedding algorithms (Word2Vec
and GloVe) when used with our framework. This proves the usefulness
of our framework irrespective of the distance algorithm used with it.
This is because of the nature of the ground truth data as discussed in
Section 6.1.2.

47



5 10 15 20 25 30 35 40
0

20

40

60

80

N

A
cc

u
ra

cy
(%

)

GloVe
Word2Vec

BERT
Word2Vec + Our Framework

GloVe + Our Framework

5 10 15 20 25 30 35 40
0.1

0.2

0.3

0.4

0.5

0.6

N

N
D

C
G

GloVe
Word2Vec

BERT
Word2Vec + Our Framework

GloVe + Our Framework

Figure 7.6: Comparing Text Embedding algorithms with and without our text
similarity framework using Accuracy and NDCG metrics

• Text-distance algorithms + Our Framework VS Text Embed-
ding algorithms + Our Framework: In Figure 7.7 we note that
the Text-embedding and Text-distance algorithms have similar perfor-
mance in our framework. This indicates that the choice of distance
function is not the most important factor for good performance on
our dataset. Instead, it is the use of our framework itself that boosts
text-similarity performance.

48



5 10 15 20 25 30 35 40

60

80

N

A
cc

u
ra

cy
(%

)

Simple Prefix
Edit based Jaro
Phonetic MRA

Sequence based lcsstr
Token based Tversky

Word2Vec + Our Framework
GloVe + Our Framework

5 10 15 20 25 30 35 40
0.4

0.5

0.6

N

N
D

C
G

Simple Prefix
Edit based Jaro
Phonetic MRA

Sequence based lcsstr
Token based Tversky

Word2Vec + Our Framework
GloVe + Our Framework

Figure 7.7: Comparing Text Embedding and selected textdistance algorithms,
both in our text similarity framework using Accuracy and NDCG metrics

7.5 Summary

We have demonstrated the importance of performing text pre-processing be-
fore applying text embedding algorithms in the context of text similarity.
Similarly, we have shown the importance of using the right distance met-
ric, which in the case of Word2Vec and GloVe, is the Cosine similarity, by
comparing it with another standard distance metric, the Euclidean distance.

49



Finally, given the use of pre-processed text in text embedding models with
a Cosine distance metric to get the best performance with these models, we
have shown that simple textdistance algorithms outperform all state-of-art
models for our dataset. We also choose textdistance algorithms belonging
to different categories like phonetic, edit-based, etc and show that they all
outperform the text embedding models. This result shows our text similarity
framework’s robustness by providing excellent performance for a variety of
textdistance algorithms. Further, we showed that text embedding models
can be used within our framework to boost their performance. Also, we
showed that textdistance and text-embedding algorithms have similar
performance on our ground truth database. All the results obtained are
justified by the design of our framework in the context of our ground truth
data as explained in Section 6.1.2.

In the next Chapter, we will describe two approaches for qualitatively
determining the impact of business change requirements on process repository
business entities.

50



Chapter 8

Impact Assessment

In the preceding chapter, we addressed the Research Question involving the
matching of Business Change Requirements to Process Objects (represented
by short text). This chapter explores different methods for enabling a Busi-
ness Analyst to qualitatively assess the impact of a matched Business Object
in the context of the entire Process Repository. The qualitative impact anal-
ysis of a Change Requirement based on the matched business object (or
objects) is performed in two ways. First, we provide context on the matched
business object (or objects) in terms of the business model, the business role,
etc. Secondly, we develop an OCR-based algorithm for detecting text bound-
ing boxes in images to help develop a visualisation aid applied to our Process
Repository image dataset.

8.1 Context Detection

We obtained the top N matched business entities from the process repository
for given textual requirements in the previous chapter. Using Python with
GraknClient [38] and Graql, we have retrieved the related business entities
that get impacted for every change requirement. The related business entities
can be viewed at four different levels:

1. At Model level, we retrieved all the business objects, sub-objects and
sub-model objects.

2. At Object level, we retrieved the Model it belongs to, related preceding
and succeeding object; and related sub-objects.

3. At Sub-object level, we retrieved the model and objects it belongs to.

51



4. At Sub-model-object level, we retrieved the model name it belongs
to.

Figure 8.1: The user has to enter a change requirement (highlighted in red)
to obtain the top 5 suggested matches. Then, the user has to select the actual
business entity (highlighted in blue). Finally, the selected business entity will be
placed in the standard query template to get the impacted business entities.

Given a change requirement, the user would need to select the relevant
business entity from top N suggested results by a text similarity algorithm
from the previous chapter, as shown in Figure 8.1. To do so, the Grakn
knowledge graph is queried to retrieve the 243 candidate business entities
in our process repository. This need for human intervention makes our sys-
tem semi-automatic. To determine the context of the chosen business entity
in the process repository, we have created different Graql query templates
for extracting different context information of interest from the knowledge
graph. For example, for a selected business object, we retrieve the model
it belongs to, preceding and succeeding objects and its sub-objects as high-
lighted in Figure 8.2.

We describe the three query templates used and the corresponding context
information obtained below.

• The following is the Graql query used to output the related model
for the given object name. In Graql, the MATCH clause is used to get
the data from Grakn. First, we have get the instance of MODEL NAME

entity with its attribute NAME using HAS keyword followed by a variable
($modelname) as in line 1. The same format is used on FLOW OBJECT

(line 2) along with the CONTAINS keyword to search for the selected
object ’Apply for Visa’ (line 3). Later, we have to relate the entities
MODEL NAME and FLOW OBJECT (line 5) with MODEL HAS OBJECT to get
the related model name for a given object name.

52



Figure 8.2: Impacted business entities

1 #Impacted Model

2 match $x isa MODEL_NAME , has NAME $modelname;
3 $flow isa FLOW_OBJECT , has NAME $y;
4 $y contains "Apply for visa";

5 (MDL: $x , OBJECT: $flow) isa MODEL_HAS_OBJECT;

6 get $modelname;

• For retrieving the preceding and succeeding object of a given object,
we used the following Graql query. All the model objects are stored as
FLOW OBJECT. First, we have to get the instance of FLOW OBJECT entity
with its attribute NAME three times; first, for the preceding object (line
2), then for the succeeding object (line 3) and finally, for searching
the selected object (line 1 & 4). Next, we have to relate the entity
FLOW OBJECT with its relation RC SEQUENCE FLOW BPMN twice to get the
dependent objects; first to relate preceding object(s) with the selected
object (line 6) and secondly, to relate selected object with succeeding
object(s) (line 7).

1 #Impacted Preceeding and Succeeding Objects

2 match $act isa FLOW_OBJECT , has NAME $a;
3 $src isa FLOW_OBJECT , has NAME $s;
4 $dest isa FLOW_OBJECT , has NAME $d;
5 $a contains "Apply for visa";

53



6 (INCOMING: $src , OUTGOING: $act) isa

RC_SEQUENCE_FLOW_BPMN;

7 (INCOMING: $act , OUTGOING: $dest) isa

RC_SEQUENCE_FLOW_BPMN;

8 get $s ,$d;

• The last Graql query is to obtain the impacted sub object(s) for the
selected activity. First, we have to declare the instance of SUB OBJECT

with its attribute NAME to get the sub object(s) name (line 2) as well
as for FLOW OBJECT (line 3 & 4). Secondly, we have to relate the entities
FLOW OBJECT and SUB OBJECT with their relation OBJECT HAS SUB OBJECT

(line 5) to GET the impacted sub object(s) (line 6).

1 #Impacted Sub Objects

2 match $x isa SUB_OBJECT , has NAME $sub;
3 $flow isa FLOW_OBJECT , has NAME $y;
4 $y contains "Apply for visa";

5 (SUB: $x , OBJ: $flow) isa OBJECT_HAS_SUB_OBJECT;

6 get $sub;

8.2 Visualisation Tool for Impact Assessment

In this section, we describe the OCR-based algorithm that we developed for
detecting text bounding boxes in images to help develop a visualisation aid
applied to our Process Repository image dataset.

8.2.1 Data Collection

For Impact Visualisation of a matched In order to visualise the business
entities impacted by a change, we require the image of the process model.
The image of the process model is retrieved from the Model JSON that was
collected as described in Section 5.1, which has an item called IMAGEMAP.
The value of the IMAGEMAP item is a base64 encoded string. Using Python,
we first convert the encoded string to bytes, then decode it to create an image
in the JPEG format.

8.2.2 Methodology

Process Model diagrams can exist in image formats, as shown in Figure 8.3.
These diagrams contain information on different business entities in the form
of human-readable text.

54



Figure 8.3: BPMN image example from our process repository

55



In this Section, we describe a method for automatically locating a given
text (representing an existing business entity) if present in a process model
image by drawing a rectangle around it. To this end, an Optical Character
Recognition (OCR) system (like Tesseract) can be used to transcribe this
text from a human-readable format in machine-recognised text.

However, these models can recognise fragments of text (each fragment
typically representing a single word or token) individually along with their
bounding box co-ordinates representing their respective locations in the im-
age. We describe a system based on a nearest neighbour set search
algorithm that we designed to iteratively combine the relevant fragments
obtained through OCR systems based on their textual content and location.
We provide a general framework of our approach in this section, followed by
a detailed explanation of the specific algorithm applied to work well for our
Process Model Image Repository. We describe the approach for solving this
bounding box detection problem in a 3-part pipeline below.

• Preprocessing: Images may need to be pre-processed to remove, for
instance, background colors and other non-text artifacts where possi-
ble depending on some prior knowledge on the object of interest. An
example of such pre-processing applied to our image dataset is pro-
vided in Figure 8.4. This pre-processing should be designed to improve
the out-of-the-box OCR systems’ performance on the image dataset of
interest.

• OCR for Text Detection: Apply an OCR system to detect text
objects from a pre-processed input image. This is generally in the form
of text fragments with corresponding information on each fragment’s
location in the image in terms of co-ordinates of its bounding box.

• Locating Input text from OCR Text Fragments: In this part of
the pipeline, we describe the algorithm we designed for detecting the
location of an input text in an image from its OCR Text Fragments
extracted above.

Suppose we tokenise the Input Text to be found simply by splitting it
into individual words. Let us say that the set n tokens of an input text
are represented by -
X = {ti}, where i = 1, ...n

Let us say that the fragments are represented by a set Y of size m:
Y = {fj}, where j = 1, ...m

56



each fragment fj containing the following information about the jth

fragment.

– text: The text content of the fragment

– left: The minimum co-ordinate of the part of the image covered
by the fragment on the horizontal axis

– right: The maximum co-ordinate of the part of the image covered
by the fragment on the horizontal axis

– top: The minimum co-ordinate of the part of the image covered
by the fragment on the vertical axis

– bottom: The maximum co-ordinate of the part of the image
covered by the fragment on the vertical axis

– confidence: The confidence of the OCR detection for this frag-
ment

The Overall Algorithm for drawing the bounding-box around some text
in an image given X, Y , and a distance threshold is given in Algorithm
1. We start by obtaining the initial fragments (C) with the confidence
of at least 50% and matching the first token in X in line 1. Next,
we initialise a set of clusters as an empty set in line 2. For each initial
fragment c in C, we obtain a cluster of fragments starting with a cluster
containing only c (line 4 to line 12). This is done by expanding the
current cluster by including its neighbouring fragments based on the
nearestNeighboursFromPoints algorithm. The cluster is expanded
until no more fragments are added to it (line 7).
Next, for each cluster corresponding to the initial fragments, we obtain
the best cluster as the largest cluster in line 14. The size of this cluster
should ideally correspond to the size of X. In lines 16 to 19, we obtain
the bounding-box co-ordinates of the best fragment cluster using the
extreme (i.e., maximum and minimum where applicable) bounding-box
co-ordinates of its fragments. Finally, we call a procedure in line 21 to
draw a rectangle in the original image from the bounding-box defined
above.

Algorithm 2 takes as input a cluster, the set of tokens X, the set
of fragments Y , and the distance threshod. It adds to cluster all
fragments in Y corresponding to some token in X which are within a
threshold distance of some existing fragment in cluster and returns

57



this expanded cluster. The distance between two fragments fi and fj is
calculated as the smallest Euclidean distance between some bounding-
box corner of fi with some bounding-box corner of fj.

Algorithm 1 localiseTextFromFragments (image,X, Y, threshold):

1: C = {y | y ∈ Y and y.confidence > 50 and y.text = t1}
2: clusters = {}
3: for c in C do
4: cluster = {c}
5: while true do
6: clusterNew = nearestNeighboursFromPoints(cluster,X, Y,

threshold)
7: if clusterNew = cluster then
8: break
9: end if

10: cluster = clusterNew
11: end while
12: clusters.add(cluster)
13: end for
14: bestCluster = max{cluster.size | cluster ∈ clusters}
15:

16: left = min({fragment.left | fragment ∈ bestCluster})
17: right = max({fragment.right | fragment ∈ bestCluster})
18: top = min({fragment.top | fragment ∈ bestCluster})
19: bottom = max({fragment.bottom | fragment ∈ bestCluster})
20:

21: drawRectangle(image, left, right, top, bottom)

58



Algorithm 2 nearestNeighboursFromPoints(cluster,X, Y, threshold)

1: result = cluster
2: clusterTokens = {c.text | c ∈ cluster}
3: XFiltered = {x | x ∈ X, x 6∈ clusterTokens}
4: Y Filtered = {y | y ∈ Y, y.text 6∈ clusterTokens}
5: for y ∈ Y Filtered do
6: minDistance = min{distance(y, f) | f ∈ cluster}
7: if y.text ∈ XFiltered and minDistance <= threshold then
8: result.add(y)
9: end if

10: end for
11: return result

8.2.3 Implementation

In this section, we describe the implementation of the methods detailed
above. The text detection and localisation algorithm explained in Section
8.2.2 was implemented by using the Tesseract OCR engine developed by
Google [3]. We also use Python’s pytesseract package [48], which acts as a
wrapper around Tesseract to provide a purely Pythonic implementation of
our OCR system.

For pre-processing, we use Python’s OpenCV library [21] to first con-
vert our color image to greyscale, as shown in Figure 8.4. Next, we apply
simple thresholding on this greyscale image to obtain the pre-processed im-
age shown in Figure 8.4. We tested that this method works well to identify
the different text fragments in our image dataset’s images. Without this
pre-processing, only the text fragments on a white background were being
detected by Tesseract OCR.

Next, pytesseract OCR is used to obtain the set of text fragments from
this pre-processed image. Next, we apply our text detection and localisation
algorithm described in Section 8.2.2 to obtain the bounding box of the input
text. Again, we use Python’s OpenCV library to draw a rectangle around
the obtained text bounding box on the original image, as shown in Figure
8.5.

59



Figure 8.4: Preprocessed example BPMN image

60



Figure 8.5: Text detection by bounding box example BPMN image

61



8.2.4 Evaluation

In Figure 8.5, we showed an example of the result of our OCR-based al-
gorithm for drawing a rectangle around the text in a process model image.
For evaluating our OCR-algorithm, it is not practical to create ground truth
data of rectangles drawn around input texts. Instead, we test our algorithm
manually on a total of 20 business entity texts in 5 different process model
images. In all 20 cases, our algorithm correctly enclosed the input text with
a rectangle (as in the case of Figure 8.5. However, we must note that a limi-
tation of our model is that the image pre-processing as well as the threshold
parameter in our overall algorithm, Algorithm 1, need to be modified when
applied to a different image dataset.

8.3 Summary

In this Chapter, we have described two methods for the qualitative assess-
ment of the impact of a change requirement using the matched (impacted)
business entities obtained from Text Similarity algorithms.

62



Chapter 9

Conclusion

To conclude the work of this master project, first, we summarise how the re-
search questions were answered and how we achieved the research goals men-
tioned in Section 1.2 of this report. Second, the limitations of the proposed
solutions are introduced. Finally, future research possibilities are discussed.

9.1 Summary of Contributions

In this work, a method is presented that aims to semi-automatically match
the business entities from a given textual change requirement. Further, we
determine the qualitative impact of the change requirement using the con-
text of the matched business entities. The following research questions were
answered through the presented method to achieve the given goal:

RQ1: Can we design a framework for representing raw process repositories
which can be easily queried to obtain relevant information related to different
entities in the contained process models?

From the literature review in Section 2.2.3, we found that we can use the
knowledge graph as a framework for representing a process repository. So,
in Chapter 5, using Grakn (and Graql) knowledge graphs, we represented
the process models and their relevant objects from a process repository and
stored them simply and efficiently.

RQ2: How accurate are the state-of-the-art text matching algorithms? How
good are they in matching change requirements to relevant entities?

In Chapters 6 and 7, we describe the implementation and evaluation of
the state-of-the-art text similarity algorithms on our ground-truth dataset.
Further, we address the shortcomings of these approaches on our dataset in

63



the following Research Question.

RQ3: Can we develop a better model in the specific domain of matching
change requirements to relevant business entities?

In Chapter 6, we have developed a framework to identify business en-
tities from given textual change requirements. We then evaluated these
approaches and compared their performance with the state-of-the-art algo-
rithms and found superior performance in both accuracy and NDCG using
simple textdistance algorithms.

RQ4: Can we qualitatively determine the impact of a change requirement
through the impacted entities obtained in RQ2 or RQ3 by querying the pro-
cess repository framework defined in RQ1?

The goal of this thesis is to help a business analyst identify the impacted
business entities for a given change requirement. In Chapter 8, we semi-
automatically determine the qualitative impact of business change require-
ments on process models using the business entity context and an OCR-based
visualisation tool.

To summarise, by answering these research questions, we have developed
systems for:

• Representing, storing and querying process repository data in a knowl-
edge graph database.

• Ranking business entity texts in decreasing order of their relevance to
a given change requirement, using a generic text similarity framework
that outperforms current state=of-the-art methods for semantic simi-
larity base on text embeddings.

• Determining the impact of change requirements by providing context
of business entities in process models as well as indicating the location
of impacted business entities in their model images.

9.2 Limitations and Future Works

The following are the limitations of our work:

1. We could not process the information about the level in the hierarchical
process repository because each group and sub-group had various levels.

64



2. We cannot provide a fully automatic solution for matching relevant
business entities as it would require us to provide a perfect text simi-
larity algorithm always obtaining the matched entity at Rank 1.

The following future works can be considered:

1. We can try to process the level information as it will help the business
analyst to find the impacted business entities on that particular level.

2. An ensemble of textdistance algorithms applied within our framework
can be evaluated and might yield performance metrics improvements.

3. A more significant ground truth dataset can be curated and tested to
provide more reliable results.

4. We can compare and evaluate other state-of-the-art NLP techniques,
such as, ELMo [49], Transformer-XL [50], GPT-2 [51], ERNIE 2.0 [52],
XLNet [53], Compressive Transformer [54], and T-NLG [55].

5. We can enrich the context of matched business entities with more query
templates.

6. We can enhance our implementation for entity matching to incorporate
domain knowledge about the type of the business entity (e.g. activity)
that we are interested in using the knowledge graph.

65



Bibliography

[1] BPM-D. Executive Introduction Part 3 Reading, 2018
(accessed August 7, 2020). https://bpm-d.com/

executive-introduction-part-3-reading/.

[2] Adrián Marcelo Mendoza Mendoza. Bpm “gestión de proyectos de inves-
tigación” del centro universitario de investigación cient́ıfica y tecnológica
de la universidad técnica del norte utilizando auraportal. B.S. thesis,
2018.

[3] Victor Ohlsson. Optical character and symbol recognition using tesser-
act, 2016.

[4] William J Kettinger, James TC Teng, and Subashish Guha. Business
process change: a study of methodologies, techniques, and tools. MIS
quarterly, pages 55–80, 1997.

[5] V Daniel Hunt. Process mapping: how to reengineer your business pro-
cesses. John Wiley & Sons, 1996.

[6] Joon Park and Seung Ryul Jeong. A study on the relative importance
of underlying competencies of business analysts. TIIS, 10(8):3986–4007,
2016.

[7] Harry Jiannan Wang and Harris Wu. Supporting process design for e-
business via an integrated process repository. Information Technology
and Management, 12(2):97–109, 2011.

[8] Marcello La Rosa, Hajo A Reijers, Wil MP Van Der Aalst, Remco M
Dijkman, Jan Mendling, Marlon Dumas, and Luciano Garćıa-Bañuelos.
Apromore: An advanced process model repository. Expert Systems with
Applications, 38(6):7029–7040, 2011.

[9] Mathias Weske. Business process management architectures. In Busi-
ness Process Management, pages 333–371. Springer, 2012.

66

https://bpm-d.com/executive-introduction-part-3-reading/
https://bpm-d.com/executive-introduction-part-3-reading/


[10] Mathias Kirchmer et al. High performance through business process
management. Springer, 2017.

[11] Mark Von Rosing, Henrik Von Scheel, and August-Wilhelm Scheer. The
Complete Business Process Handbook: Body of Knowledge from Process
Modeling to BPM, Volume 1, volume 1. Morgan Kaufmann, 2014.

[12] Dieter Fensel, Umutcan Şimşek, Kevin Angele, Elwin Huaman, Elias
Kärle, Oleksandra Panasiuk, Ioan Toma, Jürgen Umbrich, and Alexan-
der Wahler. Introduction: What is a knowledge graph? In Knowledge
Graphs, pages 1–10. Springer, 2020.

[13] Ramez Elmasri. Fundamentals of database systems. Pearson Education
India, 2008.

[14] Alfred V. Aho, Michael R Garey, and Jeffrey D. Ullman. The transitive
reduction of a directed graph. SIAM Journal on Computing, 1(2):131–
137, 1972.

[15] Antonio Messina, Haikal Pribadi, Jo Stichbury, Michelangelo Bucci, Szy-
mon Klarman, and Alfonso Urso. Biograkn: A knowledge graph-based
semantic database for biomedical sciences. In Conference on Complex,
Intelligent, and Software Intensive Systems, pages 299–309. Springer,
2017.

[16] Christopher Manning and Hinrich Schutze. Foundations of statistical
natural language processing. MIT press, 1999.

[17] Quoc Le and Tomas Mikolov. Distributed representations of sentences
and documents. In International conference on machine learning, pages
1188–1196, 2014.

[18] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Effi-
cient estimation of word representations in vector space. arXiv preprint
arXiv:1301.3781, 2013.

[19] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove:
Global vectors for word representation. In Proceedings of the 2014 con-
ference on empirical methods in natural language processing (EMNLP),
pages 1532–1543, 2014.

[20] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
Bert: Pre-training of deep bidirectional transformers for language un-
derstanding. arXiv preprint arXiv:1810.04805, 2018.

67



[21] OpenCV. library of Python bindings designed to solve computer vision
problems, 2018 (accessed June 18, 2020). https://pypi.org/project/
opencv-python/.

[22] A et al. Lundh, F Clarck. Pillow, 2016 (accessed June 18, 2020). https:
//python-pillow.org/.

[23] Han van der Aa, Henrik Leopold, and Hajo A Reijers. Comparing tex-
tual descriptions to process models–the automatic detection of inconsis-
tencies. Information Systems, 64:447–460, 2017.

[24] Maria Rana, Khurram Shahzad, Rao Muhammad Adeel Nawab, Hen-
rik Leopold, and Umair Babar. A textual description based approach
to process matching. In IFIP Working Conference on The Practice of
Enterprise Modeling, pages 194–208. Springer, 2016.

[25] Luis Delicado Alcántara, Josep Sánchez Ferreres, Josep Carmona Var-
gas, and Llúıs Padró. Nlp4bpm: Natural language processing tools for
business process management. In BPM Demo and Industrial Track 2017
Proceedings, pages 1–5, 2017.

[26] Henrik Leopold, Han van der Aa, Fabian Pittke, Manuel Raffel, Jan
Mendling, and Hajo A Reijers. Searching textual and model-based pro-
cess descriptions based on a unified data format. Software & Systems
Modeling, 18(2):1179–1194, 2019.

[27] Arda Goknil, Ivan Kurtev, and Klaas van den Berg. A rule-based
change impact analysis approach in software architecture for require-
ments changes. arXiv preprint arXiv:1608.02757, 2016.

[28] Shiva Nejati, Mehrdad Sabetzadeh, Chetan Arora, Lionel C Briand,
and Felix Mandoux. Automated change impact analysis between sysml
models of requirements and design. In Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, pages 242–253, 2016.

[29] Yi Wang, Jian Yang, Weiliang Zhao, and Jianwen Su. Change impact
analysis in service-based business processes. Service Oriented Computing
and Applications, 6(2):131–149, 2012.

[30] Oussama Mohammed Kherbouche, Adeel Ahmad, Mourad Bouneffa,
and Henri Basson. Ontology-based change impact assessment in dy-
namic business processes. In 2013 11th International Conference on
Frontiers of Information Technology, pages 235–240. IEEE, 2013.

68

https://pypi.org/project/opencv-python/
https://pypi.org/project/opencv-python/
https://python-pillow.org/
https://python-pillow.org/


[31] Mourad Bouneffa and Adeel Ahmad. The change impact analysis in
bpm based software applications: A graph rewriting and ontology based
approach. In International Conference on Enterprise Information Sys-
tems, pages 280–295. Springer, 2013.

[32] Zhilei Ma, Branimir Wetzstein, Darko Anicic, Stijn Heymans, and Frank
Leymann. Semantic business process repository. SBPM, 251:55, 2007.

[33] Katalina Grigorova and Ivaylo Kamenarov. Object relational business
process repository. In Proceedings of the 13th International Conference
on Computer Systems and Technologies, pages 72–78, 2012.

[34] Injun Choi, Kwangmyeong Kim, and Mookyung Jang. An xml-based
process repository and process query language for integrated process
management. Knowledge and Process Management, 14(4):303–316,
2007.

[35] Sherif Sakr and Ahmed Awad. A framework for querying graph-based
business process models. In Proceedings of the 19th international con-
ference on World wide web, pages 1297–1300, 2010.

[36] Jitender Aswani, Ryan Leask, and Jens Doerpmund. Representing en-
terprise data in a knowledge graph, November 27 2014. US Patent App.
13/902,677.

[37] Lian Wen and R Geoff Dromey. From requirements change to design
change: A formal path. In Proceedings of the Second International
Conference on Software Engineering and Formal Methods, 2004. SEFM
2004., pages 104–113. IEEE, 2004.

[38] GraknClient. python interface which we can use to read from and write
to a Grakn knowledge graph., 2019. https://dev.grakn.ai/docs/

client-api/python.

[39] SpaCy. Python-based Industrial-Strength Natural Language Processing,
2015 (accessed June 12, 2020). https://spacy.io/usage.

[40] Márton Miháltz. word2vec-GoogleNews-vectors, 2016 (ac-
cessed June 12, 2020). https://github.com/mmihaltz/

word2vec-GoogleNews-vectors.

[41] Radim Řeh̊uřek and Petr Sojka. Software Framework for Topic Mod-
elling with Large Corpora. In Proceedings of the LREC 2010 Workshop
on New Challenges for NLP Frameworks, pages 45–50, Valletta, Malta,
May 2010. ELRA.

69

https://dev.grakn.ai/docs/client-api/python
https://dev.grakn.ai/docs/client-api/python
https://spacy.io/usage
https://github.com/mmihaltz/word2vec-GoogleNews-vectors
https://github.com/mmihaltz/word2vec-GoogleNews-vectors


[42] SciPy. Python-based ecosystem of open-source software for mathematics,
science, and engineering., 2001 (accessed June 12, 2020). https://www.
scipy.org/.

[43] TextDistance. python library for comparing distance between two or
more sequences by many algorithms., 2017 (accessed June 12, 2020).
https://pypi.org/project/textdistance/.

[44] life4/textdistance. 30+ algorithms python implementation for comparing
more than two sequences, 2017 (accessed June 12, 2020). https://

github.com/life4/textdistance.

[45] Wikipedia. Match rating approach., 2009 (accessed August 1, 2020).
https://en.wikipedia.org/wiki/Match_rating_approach.

[46] Wikipedia. Jaro–Winkler distance., 1989 (accessed August 1,
2020). https://en.wikipedia.org/wiki/Jaro%E2%80%93Winkler_

distance.

[47] Wikipedia. Tversky index., 1977 (accessed August 1, 2020). https:

//en.wikipedia.org/wiki/Tversky_index.

[48] Python-tesseract. an optical character recognition (OCR) tool for
python., 2014. https://pypi.org/project/pytesseract/.

[49] Zhuyun Dai and Jamie Callan. Context-aware document term weighting
for ad-hoc search. In Proceedings of The Web Conference 2020, pages
1897–1907, 2020.

[50] Leeja Mathew and VR Bindu. A review of natural language process-
ing techniques for sentiment analysis using pre-trained models. In 2020
Fourth International Conference on Computing Methodologies and Com-
munication (ICCMC), pages 340–345. IEEE, 2020.

[51] Virapat Kieuvongngam, Bowen Tan, and Yiming Niu. Automatic text
summarization of covid-19 medical research articles using bert and gpt-
2. arXiv preprint arXiv:2006.01997, 2020.

[52] Yu Sun, Shuohuan Wang, Yu-Kun Li, Shikun Feng, Hao Tian, Hua Wu,
and Haifeng Wang. Ernie 2.0: A continual pre-training framework for
language understanding. In AAAI, pages 8968–8975, 2020.

[53] Hailong Li, Jaewan Choi, Sunjung Lee, and Jung Ho Ahn. Comparing
bert and xlnet from the perspective of computational characteristics. In

70

https://www.scipy.org/
https://www.scipy.org/
https://pypi.org/project/textdistance/
https://github.com/life4/textdistance
https://github.com/life4/textdistance
https://en.wikipedia.org/wiki/Match_rating_approach
https://en.wikipedia.org/wiki/Jaro%E2%80%93Winkler_distance
https://en.wikipedia.org/wiki/Jaro%E2%80%93Winkler_distance
https://en.wikipedia.org/wiki/Tversky_index
https://en.wikipedia.org/wiki/Tversky_index
https://pypi.org/project/pytesseract/


2020 International Conference on Electronics, Information, and Com-
munication (ICEIC), pages 1–4. IEEE, 2020.

[54] Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The
long-document transformer. arXiv preprint arXiv:2004.05150, 2020.

[55] Min-Yuh Day and Chichang Jou. Universal sentence-embedding models.
Foundations, 2(2020/03):09, 2020.

71



-

72



Appendix A

Types of Business Models

Analysis Model: A high-level organisation of the objectives, controls, and
risks related to the business. This model helps to analyse the data, capacities
and the behavior of the business framework and these are converted into
the engineering, interface and component-level design in the business design
modeling as shown in Figure A.1.

Figure A.1: Sample Analysis Model

Company Map: Graphical visualisation of a business’s essential ele-
ments to plan, analyse, and develop a business. This business model is the
highest level diagram that specifies a high-level description of the business.
Those who have domain knowledge or have business expertise can understand
this mapping of business vital elements as shown in Figure A.2.

Document Model: This model is designated for textual documents.

73



Figure A.2: Sample Company Map

This model has high-level information about the documents related to busi-
ness procedures, rules, and client’s information in the file system. This model
categories the types of documents in folders and each folder has its related
files as shown in Figure A.3.

Figure A.3: Sample Document Model

IT System Model: Similar to the document model but it organises
different technologies, applications, and services based on business functions
as shown in Figure A.4.

Working Environment Model: The business process diagram is in
the form of a connected structure that represents an organisation’s business.
It gives a graphical overview of how different businesses are connected and

74



Figure A.4: Sample IT System Model

which role is responsible for these different businesses are depicted in a work-
ing environment model as shown in Figure A.5.

Figure A.5: Sample Working Environment Model

75



Appendix B

Graql Queries

The following is the complete schema definition used to create a Grakn, a
knowledge graph database as shown in Figure 5.6

1 #Entities of the business process models

2

3 #models

4 MODEL_NAME sub entity ,

5 has ID ,

6 has NAME ,

7 has TYPE ,

8 plays MN ,

9 plays MDL ,

10 plays MOD;

11

12 #objects of all models

13 FLOW_OBJECT sub entity ,

14 plays INCOMING ,

15 plays OUTGOING ,

16 plays OBJECT ,

17 plays OBJ ,

18 has ID ,

19 has NAME ,

20 has TYPE;

21

22 #subobject of object

23 SUB_OBJECT sub entity ,

24 has ID ,

25 has NAME ,

26 has TYPE ,

27 has DIRECTION ,

28 plays SUB;

29

30 #subobject of model

31 SUB_MODEL_OBJECT sub entity ,

76



32 has ID ,

33 has NAME ,

34 has TYPE ,

35 has DIRECTION ,

36 plays SMO;

1 #Relationships between each entities

2

3 RC_SEQUENCE_FLOW_BPMN sub relation ,

4 relates INCOMING ,

5 relates OUTGOING;

6

7 MODEL_HAS_OBJECT sub relation ,

8 relates MDL ,

9 relates OBJECT;

10

11 OBJECT_HAS_SUB_OBJECT sub relation ,

12 relates OBJ ,

13 relates SUB;

14

15 MODEL_HAS_SUB_MODEL_OBJECT sub relation ,

16 relates MOD ,

17 relates SMO;

1 #Atrributes

2 ID sub attribute ,

3 datatype string;

4 NAME sub attribute ,

5 datatype string;

6 TYPE sub attribute ,

7 datatype string;

8 DIRECTION sub attribute ,

9 datatype string;

The following is the complete Graql INSERT queries used in this work.

1 #Entities & Attributes insertion in Graln

2 insert $model isa MODEL_NAME ,

3 has ID "{model_id}",

4 has NAME "{model_name}",

5 has TYPE "{model_type}";

6

7 insert $object isa FLOW_OBJECT ,

8 has ID "{object_id}",

9 has NAME "{object_name}",

10 has TYPE "{object_type}";

11

12 insert $sub isa SUB_OBJECT ,

13 has ID "{sub_id}",

14 has NAME "{sub_name}",

77



15 has TYPE "{sub_type}",

16 has DIRECTION "{sub_direction}";

17

18 insert $subm isa SUB_MODEL_OBJECT ,

19 has ID "{subm_id}",

20 has NAME "{subm_name}",

21 has TYPE "{subm_type}",

22 has DIRECTION "{subm_direction}";

1 #Relationships insertion into Grakn

2 match $model isa MODEL_NAME , has ID "{model_id}";

3 $object isa C_FLOW_OBJECT , has ID "{object_id}";

4 insert $mho (MDL: $model , OBJECT: $object)
5 isa MODEL_HAS_OBJECT;

6

7 match $object isa FLOW_OBJECT , has ID "{object_id}";

8 $sub isa SUB_OBJECT , has ID "{sub_id}";

9 insert $ohs (OBJ: $object , SUB: $sub)
10 isa OBJECT_HAS_SUB_OBJECT;

11

12 match $src isa FLOW_OBJECT , has ID "{source}";

13 $dest isa FLOW_OBJECT , has ID "{dest}";

14 insert $relation (INCOMING: $src , OUTGOING: $dest)
15 isa RC_SEQUENCE_FLOW_BPMN;

16

17 match $model isa MODEL_NAME , has ID "{model_id}";

18 $subm isa SUB_MODEL_OBJECT , has ID "{sub_object_id}";

19 insert $mhsm (MOD: $model , SMO: $subm)
20 isa MODEL_HAS_SUB_MODEL_OBJECT;

The following is the complete Graql MATCH queries used to GET infor-
mation from the Grakn.

1 #For a "given model name"

2

3 #model -> sub model object(s)

4 match $model isa MODEL_NAME , has NAME $modelname;
5 $modelname contains "given model name";

6 $subm isa SUB_MODEL_OBJECT , has NAME $submodelname;
7 (MOD: $model , SMO: $subm) isa MODEL_HAS_SUB_MODEL_OBJECT;

8 get $submodelname;
9

10

11 #model -> all objects

12 match $model isa MODEL_NAME , has NAME $modelname;
13 $modelname contains "given model name";

14 $flow isa FLOW_OBJECT , has NAME $objectname;
15 (MDL: $model , OBJECT: $flow) isa MODEL_HAS_OBJECT;

16 get $objectname;
17

78



18

19 #model -> all objects -> all sub_objects

20 match $model isa MODEL_NAME , has NAME $modelname;
21 $modelname contains "given model name";

22 $flow isa FLOW_OBJECT , has NAME $objectname;
23 (MDL: $model , OBJECT: $flow) isa MODEL_HAS_OBJECT;

24 match $sub isa SUB_OBJECT , has NAME $subobjectname;
25 (OBJ: $flow , SUB: $sub) isa OBJECT_HAS_SUB_OBJECT;

26 get $subobjectname;

1 #For a "given sub object name"

2

3 #sub_object -> object(s)

4 match $sub isa SUB_OBJECT , has NAME $subobjectname;
5 $subobjectname contains "given sub object name";

6 $flow isa FLOW_OBJECT , has NAME $objectname;
7 (OBJ: $flow , SUB: $sub) isa OBJECT_HAS_SUB_OBJECT;

8 get $objectname;
9

10 #sub_object -> object(s) -> model(s)

11 match $sub isa SUB_OBJECT , has NAME $subobjectname;
12 $subobjectname contains "given sub object name";

13 $flow isa FLOW_OBJECT , has NAME $objectname;
14 (OBJ: $flow , SUB: $sub) isa OBJECT_HAS_SUB_OBJECT;

15 $model isa MODEL_NAME , has NAME $modelname;
16 MDL: $model , OBJECT: $flow) isa MODEL_HAS_OBJECT;

17 get $modelname;

1 #For a "given sub model object name"

2

3 #sub_model_object -> model(s)

4 match $subm isa SUB_MODEL_OBJECT , has NAME $submodelname;
5 $submodelname contains "given sub model object name";

6 $model isa MODEL_NAME , has NAME $modelname;
7 (MOD: $model , SMO: $subm) isa MODEL_HAS_SUB_MODEL_OBJECT;

8 get $modelname;

79


	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Problem Context
	Research Question 
	Thesis Outline

	Background
	Preliminaries
	Process Repository
	Grakn: Knowledge Graph Database
	Natural Language Processing: Existing Methods
	Pytesseract : Optical Character Recognition

	Related Work
	Text to Process Matching
	Change Impact Analysis
	Process Repository Framework


	Business Understanding
	Methodology
	Graph Representation of Process Repositories
	Data Collection
	Data Understanding
	Implementation
	Schema Definition in Grakn
	Data Insertion into Grakn

	Summary

	Text Similarity
	Methodology
	State-of-the-art in Text Similarity
	Framework for Text Similarity applied to Change Requirement Matching

	Implementation
	State-of-the-art in Text Similarity
	Framework for Text Similarity applied to Change Requirement Matching

	Summary

	Text Similarity Evaluation
	Objective 
	Setup
	Execution 
	Results
	State-of-the-art models
	Text-distance algorithms in our Similarity Framework
	Comparing our framework with the State-of-the-Art

	Summary

	Impact Assessment
	Context Detection
	Visualisation Tool for Impact Assessment
	Data Collection
	Methodology
	Implementation
	Evaluation

	Summary

	Conclusion
	Summary of Contributions
	Limitations and Future Works

	Bibliography
	Types of Business Models
	Graql Queries

