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Abstract

Process mining and novel techniques for route and performance analysis have
been developed and applied on logistics processes for business services ad-
vancement. The existing techniques used with single-item processes con-
sist of data complexity reduction, seeking significant locations by using an
unsupervised-learning technique, and clustering route by the behaviors with
the significant locations. However, the deployment of these techniques has
been limited to single-item processes. The applicability in a multi-item pro-
cess that encompasses multiple items and interrelation has not been vali-
dated. The main objective of this research is, hence, to adopt the existing
process mining methods and techniques, which were originally developed for
single-item process, and extend them to the process that involves multiple
items in Warehouse Automation Systems (WAS).

Specifically, conceptualization of WAS, data transformation using the
artifact-centric process mining approach, and the methodology for multi-
item data pre-processing are applied, gaining the input for existing single-
item techniques that perform route and performance analysis. Results of
route clustering and performance assessment are visualized and interpreted,
together with the verification by a domain expert, allowing the investigation
of suitability in applying single-item techniques in WAS.

The results show that extending single-item techniques in WAS context
can show the overall process highlighting the relationship between items.
However, the data-driven approach without established ground-truth and
the special characteristics of WAS domain negatively influence the inter-
pretability of the outcome, questioning the applicability. Additional contex-
tual information, more fine-grained analysis, and improving visualization can
benefit future studies.

Keywords: process mining, multi-item process, lifecycle model, artifact-
centric, multi-dimensional event log, warehouse automation system, route
analysis, performance analysis, log extraction specification and pre-processing
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Chapter 1

Introduction

This master thesis is the result of graduation project conducted at Vander-
lande Industries B.V. as part of the Master of Computer Science in Eras-
mus Mundus Big Data Management and Analytics, coordinated by the con-
sortium of Universit Libre de Bruxelles (ULB), Universitat Politcnica de
Catalunya (UPC), Eindhoven University of Technology (TU/e), Technis-
che Universität Berlin (TUB) and Université Paris-Saclay (CentraleSupelec).
This graduation project has been supervised in Process Analytics research
group from TU/e.

In this chapter, the motivation and the context of the study are explained
in Section 1.1 Next, the research question is formulated and described in
Section 1.2. The methodology to resolve the research question is introduced
in Section 1.4. Then, we briefly explain about use case applied with this
study in Section 1.3.

1.1 Motivation and Context

Many novel process mining techniques have been applied to automation of
logistics processes in airports, parcel markets and warehouses in order to ad-
vance business services. The state-of-the-art methods and techniques work
well in identifying physical product routes, clustering them based on signifi-
cant physical locations and detecting the deviation from the optimum. More
information about the state-of-the-art methods and techniques can be found
in [3].

One of the main reasons of route clustering is the enormous size of the
data and complexity. Full physical route data in the system can be larger
than 10,000 of segments as pairs of steps over 10,000s of traces which leads
to a very large feature space having more features than data points. With
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this large number of data, it also creates difficulties for analysts and domain
experts to gain useful insights from the data.

However, the applicability of the state-of-the-art methods is limited to
a single type of item and they do not allow analyzing the dynamics and
interrelation between multiple items. This limitation hinders the analysis
for Warehouse Automation Systems wherein items of multiple types are in-
volved. In particular, the system may receive multiple pallets of products
from suppliers, which are then unbundled and distributed into smaller trays.
The trays are then kept in storages or batched with other trays into roll cages
based on the received orders. Subsequently, the roll cages are delivered to
the end customers.

In addition, the artifact-centric process mining [2] has been developed as
an approach to analyze multi-item processes. With this approach, business
process could be explored providing understandable each item’s characteristic
in the process and the interaction between different items. Hence, it could
facilitate data and process understanding.

1.2 Research Question

Established techniques [3] have been implemented for single-item processes
such as airport system to enable route and performance analysis at Van-
derlande, but none has been applied to multi-item process like warehouse
automation system. From a business perspective, implementing a new tech-
nique that has not been proven could come with costs in time and resources.
The issue leads to our motivation to explore the possibility to adopt exist-
ing concept and techniques of single-item process that have been previously
proven in other domains and apply in our context. We, thus, define the
general research question as;

Given a dataset of Warehouse Automation System (WAS) and single-item
techniques for route and performance analysis, could we adopt and extend
the existing techniques to multi-item process to be able to understand the
characteristics and performance of inter-related routes?

It is assumed that the data contains a timestamp, identifiers indicating
each item and events considered as an activity could represent the whole
process in the WAS. Moreover, it is assumed that data is available and ready
to be used in some sort of database and WAS documents are complete and
adequate for understanding the data.

2



1.3 Case Study

This research is conducted in the context of Warehouse Automation Sys-
tem, which had been implemented by Vanderlande Industry B.V. (referred to
hereafter as Vanderlande). The applicability in warehouse domain remained
unexplored and becomes the goal of this research.

Vanderlande is a business-to-business company that is active in logistic
industry offering automation of logistics processes in airports, parcel markets
and warehouses [4]. To have more practical and efficient operation, there is
a demand to improve logistics processes but the improvement is confronting
with challenges of the growth in size and complexity of solutions demanding
the advancement of business service. Under collaboration with TU/e, process
mining is widely adopted and improved at the company via the development
of various techniques for the analysis of route and performance.

The warehouse system involves multiple items including pallets, trays,
and roll cages. During operation, items are received and transferred from
one to another based on a customer’s order, in automation manner under
the management through software to ensure the orchestration among many
machinery modules creating data complexity where events of the same item
is distributed over many tables.

In Chapter 3, warehouse process and data structure are explained by
examples. Then, the proposed solutions are explained as step-by-step ap-
proaches which help us solve the challenges of our study in Chapter 4.

1.4 Methodology

Here, Cross Industry Standard Process for Data Mining (referred to hereafter
as CRISP-DM) is followed as depicted in 1.1. In this study, we applied
5 steps on CRISP-DM; business understanding, data understanding, data
preparation, modeling and evaluation.

1. The first step, business understanding, is done by reading technical
specification, process documents, and discussing with domain experts
to gain more understanding how the warehouse process works. Then,
an artifact and its lifecycle in the system are defined allowing depiction
of interrelation between artifacts. Explanation about business process
is elaborated in Chapter 3.

2. The second step, data understanding, is obtained by checking database
and data structure together with the procedure of machine message

3



Figure 1.1: Diagram of CRISP-DM [1] and our approach

recording in WAS which is also mentioned regarding to data context in
Chapter 3.

From the first and second steps, we can then define sub-research prob-
lems for data preparation, modeling, and evaluation in Chapter 4.

3. The third step, data preparation, is to pre-process data; in this case,
raw data from many tables are transformed into event logs. In particu-
lar, main events of the process are first identified and then categorized
by traces in the process. Since data is retrieved from multiple sources
where the consistency cannot be guaranteed, therefore it is necessary
to clean data by removal of outlier and out-of-scope items and by data
verification. Detailed explanation is described in Chapter 5.

4. The forth step, modeling, is to integrate the derived event-logs with
single-item process analyses on route and performance explained in
Chapter 6. Then, we visualize the clusters and routes after integrating
our event logs with single-item techniques and also use textual descrip-
tion enabling further analysis which is detailed in Chapter 7.

5. The fifth step, evaluation, is performed to verify the soundness of the
visualization and textual description obtained from the methods; it
facilitates the assessment of the applicability of the existing methods
to multi-item process. More information is described in Chapter 8.

4



Chapter 2

Preliminaries

In this chapter, we explain all necessary fundamental concepts to provide
background knowledge, terms, techniques used in this thesis.

Three main topics are referred. We first explain about process mining
by mainly presenting event log in Section 2.1. Then, we provide explanation
about multi-item process, single-item process, their difference and the process
mining method used for multi-item data pre-processing in Section 2.2. Lastly,
Section 2.3 provides fundamental idea of existing techniques for summarizing
routes of single-item processes.

2.1 Process Mining

Process mining is a technique for extracting knowledge from the event logs in
present-day information systems. It is an interdisciplinary research blending
data mining and computational intelligence and can be generally classified
into three categories; process discovery, conformance checking and process
enhancement [5]. In this study, we mainly focus on how to transform ware-
house data to an appropriate format, so called event log, that can be used in
process mining.

Event log is normally used as an input for process mining techniques.
Prime examples include database, transaction log, and audit trail and spread-
sheet, which are transformed data that records behavior of a process. Three
attributes are required for each event in an event log: case, activity and
timestamp. However, an event log could have another attribute that pro-
vides additional information of the event, for instance, event executor, and
resource utilization [6] [7].

Table 2.1 shows a simplified example of an event log in a warehouse
process with the main component and its attributes. Each row in the table
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represents one event and the events are grouped per case in this example.
Columns “Item”, “Activity” and “Date and Time” serve as attributes case,
activity and timestamp respectively, satisfying the minimal requirement of an
event. The last column “Product” is an example of supplementary attribute
that could be recorded in the event log.

Table 2.1: Example of Event Log

Moreover, there are 2 definitions normally used in process mining which
are case and trace.

• Case represents physical items handled in the process.

• Trace represents sequence of events of a case.

From the example in Table 2.1, there are 5 cases; two cases for pallet
which are Pallet1 and Pallet2 and other three cases Tray1, Tray2, Tray3
for tray. Both Pallet1 and Pallet2 have a same trace <Started, Processed,
Completed>, while Tray1, Tray2 and Tray3 have a trace as <Started>.

2.2 Multi-item Process vs Single-item Pro-

cess

Multi-item process is a process that encompasses a vast variety of type of
items. It differs from single-item process that has only one item in the pro-
cess, which could be traced from start to end through the whole process.
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2.2.1 The Differences between Multi-item Process and
Single-item Process

Multi-item process is dissimilar to single-item process with four main differ-
ences.

1. The number of items in the process;

A single-item process has only one item, while multi-item process has
more than one items in the process.

2. Lifecycle of each item;

Different items in multi-item process have their own lifecycles that rep-
resent the different major activities within the same range of time and
synchronize with the lifecycle of other items at certain steps. Mean-
while, the single item in single-item process contains only one lifecycle
while it is applied for every item in the process.

Moreover, all records of all items having same type in a single-item
process are logged in an order. In other words, we could obtain only
one item when identifying events by a specific time in the data. On the
other hand, the behavior of multi-item process is no longer a sequence
of event but multiple related sequences depending on items, resembling
a graph that could have one node linking multiple nodes or an order
that contains multiple partial orders inside.

3. Relation between items;

As single-item process has only one item, hence, there is no relation
to be considered in this process. In contrast, multi-item process has
handover activities creating a relation between different items. The
relation could be one-to-one, one-to-many, or many-to-many relations.

4. The interaction between item lifecycles;

We could observe the interaction between item lifecycles in a multi-
item process. Hence, we could perform an analysis on how one item
could impact another, which is not possible in a single-item process.

2.2.2 Artifact-Centric Process Mining

Artifact-Centric process mining is one of the multi-item process mining tech-
niques. Its output is an artifact-Centric process model that describes pro-
cesses with multiple items, items’ lifecycles, relations and interactions. It
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could prevent false dependencies according to data divergence and conver-
gence [8].

Figure 2.1 shows the overview on artifact-centric process discovery. The
input of this technique could be either event log or relational database. Then,
the input is used to create data model having multiple items with own case
identifier and their relations, together with artifact-centric process model as
outputs. In brief, the goal of this technique is to relate the recorded data
with modeled behavior; it can be conducted by following this procedure [2]:

Figure 2.1: Overview on artifact-centric process discovery [2]

1. Identify items in the process;

The first matter that we should consider is the number of items in the
process. Therefore, all independent items have to be identified from
the data.

2. Identify lifecycle of each item;

After item discovery, it is crucial to understand the behavior of each
item and identify its lifecycle. From this step, we could distinguish
items within the same type and understand the key behavior of different
item lifecycles.
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3. Identify relation between items;

The output yielded from the previous step has separate events of each
item by item lifecycles. Hence, we need to define the relationship that
we could relate items and link them together through the whole dataset.

4. Identify interaction between item lifecycles;

To enable fruitful analysis, interaction between item lifecycle is included
to find behavioral dependencies, which could be defined based on the
interests in any kind of process. As a result, we could create a complete
behavior model representing all items and their interactions.

2.3 Existing Techniques of Single-item Pro-

cess for Route and Performance Analysis

In this section, we explain the state-of-art technique from prior master thesis
[3] that are currently used with single-item process at Vanderlande. All
methods in this section have been proven that they could determine route and
assess performance of baggage handling system (BHS) and provide interesting
insights.

We first introduce the definition of route and logistic step. Route is a
sequence of activities/locations, different bags in BHS can follow the same
route. Logistic step is a subsystem in BHS denoting one specific logistic task.
As BHS has over 2,000 individual locations, all locations are organized into
a set of subsystems having different logistic functions.

Figure 2.2 shows the overview of single-item technique, consisting of three
steps. The result of each step will be an input of the next step.

The initial input of this technique is a set of route per logistic step in the
system and the final output is route clusters.

Figure 2.2: Overview of the Single-item Technique used in this study

Step 1: identify all activities/locations which are significantly related to
different routes.
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Principle Component Analysis (PCA) is applied to find those activi-
ties/locations. Then, it returns set of “principle locations”. However, set
of principle locations is still too large because many very similar routes share
some principle locations but also have additionally other principle locations
that makes them different, although we would consider them similar.

Simplified example is illustrated in Figure 2.3. Eight locations – A,B,C,D,E,F,G,H
– are projected on PCA space. Each location has it own values presenting
the level of significantly related to different routes.

Figure 2.3: Simplified example of Single-item Technique Step 1

Step 2: reduce set of principle locations further to set of “interesting loca-
tions”.

K-means clustering is used in PCA space to reduce principle locations to
a set of interesting location. The location which is the closet to the centroid
of each cluster in PCA space are chosen as an interesting location.

After applying K-mean clustering on the simplified example in Figure
2.3. We could yield a result in Figure 2.4. The locations highlighted in the
same colour indicate that they are in the same cluster. Hence, two clusters
are identified; green and orange clusters. Assume that location C and H
are closet to the centroid of green and orange clusters respectively. As a
consequence, location C and H are chosen as interesting locations.

Figure 2.4: Simplified example of Single-item Technique Step 2

Step 3: group all routes which have the same multi-set of interesting loca-
tions into one route cluster.

Routes in one route cluster may show interesting locations in a different
order, but if an interesting location occurs for example two times in a route,
then all routes in this cluster visit this location twice
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We use the result from K-means clustering in Figure 2.4 as an input of
multi-set abstraction of interesting locations. The result could be obtained as
shown in Figure 2.5. Bag 1 and Bag 4 visit interesting location C, thus they
are in the same group, Cluster 1. Bag 2, Bag 3 and Bag 5 pass interesting
location H once. These three bags are in Cluster 2. Meanwhile, Bag 6 also
visit location H but it occur two times. Hence, this bag is clustered to the
different group called Cluster 3.

Figure 2.5: Simplified example of Single-item Technique Step 3

2.3.1 Principal Component Analysis

Principal Component Analysis (PCA) is a technique that is used to re-
duce the dimension of a large dataset by finding principle components that
could represent most information of data, while reducing the number of vari-
ables [9]. This technique is implemented on each of logistic steps in BHS
to reduce the huge number of routes which is complex and difficult to gain
insights. By applying PCA and pertaining only principle components which
are activities/locations, we could obtain a new compressed data that could
still preserve much information of the data, easing exploration and visualiza-
tion. Then, this compressed data is utilized in the next step to identify a set
of principle locations in each logistic step deemed to be locations that should
gain extra attention. These location might well represent the entire route
at conceptual level. In other words, instead of examining all locations in a
specific route in a particular logistic step, only interesting locations are kept
as they could provide general representation of the whole route by themselves
already.

To exemplify, a system with four locations has links A-B, A-C, B-D, and
C-D, as depicted in Figure 2.6. Possible routes from location A to location
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D are to go either via B (A-B-D) or via C (A-C-D). Apparently, B and C
can be supposedly more important than A and D as these two locations can
differentiate two possible routes thereby capturing more variants of routes,
while every route passes A and D. If PCA manages to learn the importance
of B and C, and then we select the principle component that explains this
route variability (equivalent to keeping these two locations), the locations A
and D, which are less important, can be discarded. This would result in a
compact representation of data while preserving important characteristics.

Figure 2.6: Example of actual layout of location and its routes

One important setup currently used with BHS is the number of dimension
of PCA. As we mention that PCA is a dimension reduction technique. Hence,
we could identify the number of PCA dimensions we would like to obtain as
an output. The existing setup uses three dimension of PCA to conduct the
analysis. As a consequence, we adopt this idea with our study. Figure 2.7
shows an example of three-dimension PCA we could gain as an output which
we call compressed data.

Figure 2.7: Input and Output of 3 dimension PCA
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2.3.2 K-means Clustering

K-means clustering is an unsupervised techniques that is used to group unla-
beled instances of data. The number of clusters is a user-defined parameter
K [10].

The aim of using this method is to find an interesting location of each
logistic step that could be a representative of a set of locations having similar
behavior in a same cluster.

This technique is applied with the compressed data gained from PCA
method in BHS. Each location in compressed data are located, in principle
component (PC) space, close to another location that has similar character-
istic, resulting in multiple groups of locations in the space. Then, K-means
clustering is performed yielding the centroid of each cluster; a representa-
tive location of each cluster is selected as the instance which is closet to the
centroid and supposed to be an attention-worth location, thereby named as
interesting location.

Figure 2.8 illustrates the obtained result of one logistic step from applying
K-means clustering with compressed data from three dimensions PCA. In this
example, K is defined as four. Each colored dot on the graph represents an
instance of location in the system and the coordinate x, y and z are the value
of such instance projected to PC1, PC2, and PC3 respectively. Hence, we
could see four different groups with different colors representing particular
clusters and the dot in a red circle is the representative location of that
cluster.

The currently-used approach at Vanderlande with BHS defines a single
value of K for finding interesting locations in the system. In other words, all
logistic steps in BHS have the same number of interesting locations.

Moreover, the interesting locations are used with the next technique
named multi-set for clustering routes in the system.

2.3.3 Multi-set

Multi-set is one of data structure storing a collection of elements which allows
duplication. It is dissimilar to a normal set whose elements in the collections
can not be duplicated [11].

This concept is implemented in BHS for clustering routes. The inter-
esting locations gained from K-means clustering is used for grouping routes
that pass through the interesting locations. However, as multi-set allows
duplication, it means that, by applying this concept, the frequency of a spe-
cific visited location is considered. Hence, if some routes pass through the
same interesting locations with different number of visiting, all routes are
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Figure 2.8: Example Result of K-means clustering with K = 4

not grouped in the same cluster but are separated in different groups having
different number of visiting.

The main advantage of using multi-set in BHS allows the capability of
detecting repeated activities or the presence of loop. Hence, the route passing
through any interesting locations more than once could be detected.

2.3.4 Visualization

The current BHS visualization is implemented with the aim to depict clusters
of routes, the number of baggage in each cluster providing start and end point
of routes and the performance (execution time) of each baggage through
different part of system.

Data is separated into routes per logistic step. Each logistic step has their
own clusters and each cluster can belong to only one specific logistic step.
Hence, the visualization shows sequence logistic steps as sequence of cluster
having start and end locations.

All routes are visualized in form of graph. Two main components of graph
are nodes and edges. Nodes represent locations (start and end locations in
each path of the system) and clusters. Meanwhile, edges represent the trace
of baggage via a sequence of locations and clusters.

Figure 2.9 shows the structure of the visualization. The color legend on
the top of visualization shows ranges of performance measured as execution
time in seconds. Below the legend is the visualization graph. Red box rep-
resents a logistic step which means that all nodes and edges in that box
belong to the same logistic step. Each logistic step consists of start, end lo-
cations and clusters. Start and end nodes have darker blue color referring to
the physical locations in the system, while the lighter blue nodes are logical
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nodes representing clusters. This visualization shows bags following the same
sequence of logistic steps. The full visualization could be seen in Figure 2.10.

Figure 2.9: Visualization Structure

Figure 2.10: Visualization Structure
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Chapter 3

Use Case

In this Chapter, Warehouse Automation System is introduced as an example
of multi-item process with complex data structure.

Section 3.1 introduces the warehouse process that occurs through the
entire system. In Section 3.2, we explain process lifecycle and hierarchy.
Then, data context is described showing WAS data structure, its complexity,
scope and limitation of the analysis in Section 3.3. We finally elaborate our
research question and break down into multiple sub-questions in Section 3.4.

This chapter explains business understanding and data understanding
steps of our methodology in CRISP-DM which are previously explained in
Section 1.4.

3.1 Warehouse Automation System

Before using warehouse data for any analysis, it is important to understand
how the process in WAS works, so that we can define item lifecycle and
process hierarchy which are required for data pre-processing as a next step.

Section 3.1.1 outlines the warehouse process from the start to the end,
depicting how the process works and providing more understanding on multi-
item process behavior.

3.1.1 Warehouse Process

Warehouse can be defined as ”a large building for storing goods and products
prior to distribution” [12]. A warehouse receives products from various sup-
pliers and fulfils orders of the end customer by consolidating a set of products
that usually come from different pallets into one or more roll cages based on
customer’s requests. This process is qualified to be a multi-item process be-
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cause there are 3 primary items involved in the process, which are pallet,
tray, and roll cage. Figure 3.1 illustrates the end-to-end process consisting
of 9 steps which are explained as follows.

Figure 3.1: An Overview of Warehouse Process

1. A process starts when suppliers deliver pallets and the pallets enter
inbound area in warehouse.

2. The pallets are forwarded to Pallet Storage.

3. Pallets are parked in the storage until replenishment order has arrived.

4. a. Pallets are transported from the storage to unbundle stations.

b. Products on the pallets are distributed into multiple trays.

5. a. Pallets leave the system after finishing unbundling.

b. Trays are forwarded to Tray Storage.

6. When customer orders arrive, trays are transferred to bundle station.

7. The products from multiple trays are stacked on single or multiple roll
cages.

8. Roll cages are conveyed to docks and loaded on trucks.
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9. Trucks deliver a set of products to end customers.

Apparently, only steps 1 to 7 take place in WAS, while steps 8 and 9 are
not handled in this system and hence are not included in the scope of this
study.

3.2 Process Lifecycle and Hierarchy

Multi-item process like warehouse process has a different behavior from
single-item process. As we deal with multiple items in the system, it is cru-
cial to understand the behavior of each item and its lifecycle, subsequently
allowing us to find relations and interactions among items. This section pro-
vides the explanation of items, item lifecycles and end-to-end process flow
occurring in WAS. In addition, the hierarchy of WAS is also explained to
show the general concept that is used in the system. The numerical labels
appearing in the figures in this section are in line with the warehouse process
appeared in Figure 3.1.

As an exploratory research, we focus on pallet and tray lifecycle together
with their interrelation, while roll cages are excluded from this study because
they have similar behavior to pallets, and the implication of this study may,
later on, apply to roll cages.

3.2.1 Lifecycle Model Concept

Pallet Lifecycle

Pallet is used at the beginning of the process once warehouse receives a pallet
of products from suppliers until the products are distributed to multiple
trays. Pallets can be classified into two different types: pool pallets, which
are the pallets that come from suppliers having unique identification number,
and slave pallets, which are pallets that are used internally in the warehouse
and could be reused for multiple times. Figure 3.2 illustrates pallet lifecycle
and the process is described as follows.

1. Starting from inbound area, pool pallets are stacked on the top of
slave pallets to ensure the stability and endurance of pallet while being
forwarded around the system with 1:1 relation. (1 in Fig. 3.2)

2. Products on both pool and slave pallets are stored in Pallet Storage.
(2 in Fig. 3.2)
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3. Pallets are kept in the storage. When replenishment order arrives,
pallets are forwarded to Unbundle station. (3 in Fig. 3.2)

4. All products on each pallet are unbundled and distributed to multiple
trays. (4a in Fig. 3.2)

5. After finishing unbundling, empty pool and slave pallets are de-stacked
then leave the system. (5a in Fig. 3.2)

For the last step, empty slave pallets return to buffer and could be reused with
another new-coming pool pallet. Even though it is specified that both pool
and slave pallets leave the system, the true meaning is that all the activities
after this step are not recorded from the system’s perspective. Only slave
pallets are re-used in the next cycle meaning that their activities will start
being recorded again.

Figure 3.2: Pallet Lifecycle Model
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Tray Lifecycle

Tray is another important item in WAS that collects products from different
pallets and combines them to a roll cage for delivering to end customers. This
section explains how tray handles products until the point that the handled
products are combined to multiple roll cages.

The behavior of trays in the system is different from the behavior of
pallets. They can be reused for multiple times with two possible statuses
1) trays are empty 2) tray are still filled with products. For an empty tray,
its lifecycle starts when products are put on the tray at Unbundle station
and ends when the tray becomes empty. This cycle is called a full cycle.
During each full cycle, trays are in the filled status and contain sub-cycle(s)
depending on how often products are taken out from them into a roll-cage.
However, a sub-cycle can start when products are moved to trays or when
un-empty trays are stored in the Tray storage. Then, the cycle ends when
products are moved from trays to roll cage(s).

Figure 3.3 shows the tray lifecycle and its full cycle and sub-cycle(s).

1. Starting from Unbundle station, products from pallets are distributed
to multiple empty trays (4b in Fig. 3.3).

2. Two directions are possible after tray leaves Unbundle station: 1) trays
are forwarded to Bundle station directly or 2) trays are stored in Tray
storage and will be forwarded to Bundle station later when there is an
incoming order from end customers (5b in Fig. 3.3).

3. In the case that trays are moved to Bundle station which is the start
of sub-cycle, some products on the trays are distributed to designated
roll cage(s). The relation between tray and roll cages could be 1:1 or
1:many. If trays are still not empty, they will be transported back to
Tray storage. This step is considered as the end of sub-cycle (6 in Fig.
3.3).

4. Once there is no product left on trays, trays are turned to empty tray
status and their lifecycles end (7 in Fig. 3.3).
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Figure 3.3: Tray Lifecycle Model
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Complete Lifecycle

After lifecycles of pallet and tray are known, we could now find the relation
between these two items and link them together. This section explains a
complete lifecycle representing the relations among pallets, trays, and roll
cages.

Figure 3.4 illustrates a complete cycle of WAS.

1. WAS receives pool pallets from suppliers at the inbound area and stacks
each pool pallet on a slave pallet (1 in Fig. 3.4).

2. Products on stacked pool and slave pallets are transported to Pallet
Storage (2 in Fig. 3.4).

3. Pallets are kept in Pallet Storage until receiving replenishment request
(3 in Fig. 3.4).

4. Pallets are forwarded to Unbundle station and the products are dis-
tributed to multiple trays until pallets turn to be empty (4a, 4b in Fig.
3.4).

5. Empty pallets leave the system (5a in Fig. 3.4) while trays with prod-
ucts are directly moved to Bundle station or transferred to Tray Storage
(5b in Fig. 3.4).

6. Once customer orders arrive, the requested trays are moved to Bundle
station. This step is the start of sub-cycle (6 in Fig. 3.4).

7. Products on the selected trays are combined to a roll cage (7 in Fig.
3.4).

The connection among items in WAS could be seen in steps 4 and 7. Step 4
has the relation between pallet and trays having 1:many relations, while step
7 has the relation between tray and roll cages. This relation could be many:1
or many:many depending on customer order and the number of products on
each tray.
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Figure 3.4: Complete Lifecycle Model
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3.2.2 High Level Process

Lifecycles are defined from physical movements of items at different locations
in warehouse, but these movements take place at different areas of the sys-
tem which perform a specific logistic task, so called logistic step. Moreover,
there are more than 1,000 physical locations in the warehouse. This creates
difficulties for an analysis and gaining useful insight. Hence, we define high
level (HL) steps to represent core activities by aggregating locations that fall
in the same logistic step. Once we can define all HL steps, we could derive
HL process that explains the steps in the warehouse at higher abstraction
level.

It could be said that a HL step is simply a set of locations in a specific
part of the system. As long as an item is at/moving between any location of
the HL step, we consider that this HL step is being executed. This concept
is adopted from BHS two-level structure, which is assumed for the route
clustering technique to be applied in this study.

An example of the derived HL process is shown in Figure 3.5. The
HL process starts at PALLET INBOUND representing all activities once
a pallet is entering inbound area. Afterward, the pallet moves to storage
which is denoted as PALLET STORAGE. Once, pallet is requested, PAL-
LET UNBUNDLE is recorded to show the steps conveying pallet from stor-
age to Unbundle station. The relation between pallet and trays occurs when
products are transferred from pallet to trays, as can be seen as the con-
nection with the next HL step: TRAY UNBUNDLE. This is followed by
TRAY STORAGE representing the movement of trays to storage, and lastly,
TRAY BUNDLE occurs when trays go to Bundle station and products are
transferred to roll cage(s).

3.2.3 Low Level Process

A high level step explained in the previous section is composed of physical
movement steps by locations that we call a logistic step, which describes the
activities in the system at higher abstraction level. In contrast, a low level
step is defined as a physical movement step or a routing step that specifies
the actual locations that are transited by items in the system.

In other words, we use physical movement step for low-level and logis-
tics step for high-level representation. Additionally, if we consider low-level
routing locations, there are two elements to be considered: physical locations
(at low level) and logistic step (at high level). As a sequence of activities,
occurring at various locations, share the same high-level step, we can group
all low-level steps in the same logistic step into one high-level step.
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Figure 3.5: Example of High Level process in Warehouse Automation System

Low-level concept can be explained by an example illustrated in Figure
3.6. Four locations in the warehouse are passed by a pallet, generating four
different activities. First, the pallet goes to receiving station number 2 at
inbound area. Next, it moves to location1 and location2 and finally transfers
to conveyor belt number 5. These four low-level steps are aggregated into 1
high-level step under PALLET INBOUND.

Figure 3.6: Example of Low Level process in Warehouse Automation System

3.3 Data Context

In this section, we aim to understand the complexity of warehouse data
including scope and requirement needed for artifact-centric process mining
technique. This is related to data understanding step in CRISP-DM on
Section 1.4.
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3.3.1 Scope and Complexity

Machine’s Communication Messages

In the system, five modules are working together to control each component
of the system via machine’s communication messages. One of the modules
is a central module called a Conductor that orchestrates the other modules.
Each module has a bidirectional communication with the Conductor to send
and respond to communication messages. Meanwhile, other modules can
communicate only with Conductor but not between each other as shown in
Figure 3.7. Moreover, each module has different number of communication
messages.

These messages are what were indeed recorded in the system and consid-
ered as raw input data in this study. This raw data will be later transformed
to obtain sequences of events per item for process mining.

All messages contain Transportation Unit ID (TsuID) which is used to
identify pallets and trays in the system.

Figure 3.7: Communication Modules in Warehouse Automation System

Information of all modules in WAS are briefly described below.

1. Conductor: a control module that communicates with other modules
in the system.

2. Unbundle: a module for “Unbundling”.

3. Bundle: a module for “Bundling”.

4. Transport: a module for “Transporting product from place to place”
and controlling the flows of pallets and trays in the whole system.

5. Pallet and Tray Storage: a module for “Storing and Retrieving products
in both Pallet and Tray Storage”.

In total, there are in total 59 message tables that are used in the system
combined from all modules.
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Types of Messages

Messages can be classified into two types: first is related to system’s order
and second is related to system’s action.

In this project, we consider only message tables that are related to sys-
tem’s action because message tables relevant to order have their own sepa-
rated process flows. They interact with action-driven messages only when
replenishment order or end customers’ orders arrive. However, there are
some arbitrary interaction between these two types of messages suggesting
that some order-driven messages could interrupt action-driven messages any-
time. One example is the case that a replenishment order arrives and is sent
to action message to move a pallet out of the storage to Unbundle station.
However, the order can be canceled by a certain reason. Hence, all events
that occur must be rolled back meaning that the pallet needs to go back to
the storage.

Moreover, including all messages for data analysis have been studied in
a previous research by a TU/e Master student, K.W. (Koen) Verhaegh, as a
result, all messages can generate a huge spaghetti model posing the difficulties
to interpret the results [13]. Besides, this cannot perfectly represent actions
in the main system due to the aforementioned cases that certain processes of
order-driven events can execute the change in action-driven message at any
time throughout the whole process.

To conclude, we only focus on system action messages and ignore order-
driven messages in this study.

Complex Data Structure

Apart from the data flow in the system that hinders data understanding, data
structure and the records in the data themselves are also complicated. Unlike
a typical relational database that links relations between tables by primary
and foreign keys, source data of WAS are communication messages without
unique keys or identifiers for the tables, posing a challenge to understand the
whole process from the data.

Figure 3.8 shows two simplified message tables: one from Transportation
module and one from Unbundle module. The relations between these mod-
ules use TsuID as a linkage. In this example, there are two items – pallet
and tray – with four items – two pallets and two trays. First, we focus on
two pallets. The Pallet1 has multiple records in Transportation table and
two records in Unbundle table. Meanwhile, Pallet2 has multiple records in
Transportation table and one record in Unbundle table.

Considering timeline 1 shown at the top of Figure 3.8, the pallet activities,
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which are recorded in Transportation table, starts when Pallet1 containing
boxes of water sequentially moves to location 1, 2 and ends at location 10.
In the meantime, both Tray1 (green) and Tray2 (orange) are forwarded to
location 11, 12 and end at location 20. In the message table, Pallet1 in
Unbundle table contains two records for Tray1 and Tray2 at Unbundle sta-
tion 05. Meanwhile, both trays also have a record of receiving products at
Unbundle station 05 in this table as well. Afterward, both trays are stored
and used until becoming empty allowing the start of a new round. However,
we simplify the example by focusing only on Transportation and Unbundle
tables. Hence, all records that do not belong to these two tables are not fully
shown.

Next round is shown in timeline 2 as appeared in the middle of Figure
3.8. Pallet2 enters the system and moves to locations 1, 2 and 10, which are
in the same route to Pallet1. Meanwhile, it goes to Unbundle station 01 and
transfers snacks to Tray1. In this round, it can be seen that Tray1 has been
reused by having the same TsuID from the previous cycle.
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Figure 3.8: Example of data structure in Warehouse Automation System
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Identical Events with Different Behaviors

In the source data, two identical events that are generated from different ma-
chine can have different behaviors. For instance, PalletInPosition can be from
automatic Unbundle-station or manual Unbundle-station, where recording
approaches are different. At an automatic station, products are distributed
into trays automatically and the difference between each consecutive Pal-
letInPosition represents the time spent in that distribution. In contrast, a
manual station requires a working staff to manually press a button to move
pallet into a correct position and the event is recorded every button pressing.

Different ways of event recording can lead to confusion, but it is decided
not to discard any data of these to remain maximal information as possible
with the awareness of the variation in recording.

3.3.2 Requirements for Artifact-centric Process Min-
ing

This section describes the main requirements for artifact-centric process min-
ing and explains how the source data are not satisfied for these requirements.

3.3.2.1 Unique identifier

From the example provided in Figure 3.8, there is no unique identifier. In
WAS, both pallet and tray IDs could be reused for many times. Hence,
defining lifecycle is necessary for differentiating pallets and trays that are
used in different rounds. Hence, we could obtain unique identifier as a result.

3.3.2.2 Needs of Complete Lifecycle

Only pallets and trays that contain complete cycles are considered because
they show the complete events that occur in the system and all rolling-back
actions that create incomplete flows will be discarded from the analysis. In
addition, analyzing end-to-end process requires both pallet and tray (with
interrelation) to have fully complete cycles. Hence, this information facili-
tates the understandings of bottleneck or the findings of the causes of delay
in the system.

3.3.2.3 Same Aspect Data

The utilized data are communication messages between machines. Hence,
the names of event are recorded from the aspect of machine module. For
example, an event being recorded in transportation module can be named as
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“ExitPalletStorage”. However, the exact meaning of this event is, “Pallet ex-
its the transportation module and enters Pallet Storage”. Naming approach
can be confusing when considering other events from a variety of modules.
It could be a case that event from Unbundle module is named “PalletExit”,
which actually means “Pallet exits the Unbundle station”.

As can be seen from the above example, all event names in the modules
need to be revised accordingly, and the aspects, from which the new names
are generated, should be consistent.

3.3.2.4 Including Only Necessary Data for Analysis

In this study, we decide to discard records of empty trays. The main reason
is that an empty tray has an arbitrary movement and it could go throughout
the whole system, especially the routes between Tray Storage and Empty
Tray Buffers. Moreover, it could be parked in any location in the storage.
This is due to the management that WAS is configured to balance the flows
and number of trays in the system. From discussion with domain expert,
this information is not interesting for route and performance analysis and
also generates confusion, it is thus excluded from this study.

3.3.2.5 Suitable level of Data Granularity

The current system specifies locations in Tray Storage by using many features
including storage number, aisle, rack number, and positions in three dimen-
sions. This approach of specification results in having in total 26,400 tray
locations, excluding in-transit records within the storage. This huge number
of tray locations generates difficulties in visualization and makes it hard to
differentiate and understand interesting locations of TRAY STORAGE HL
step. It is thus necessary to simplify the information by discarding features
that are less interesting: rack number and positions in three dimension. In
practice, this is to lower the granularity of location recording, resulting in
having 52 different locations in total, which is more suitable for analysis.

3.4 Problem Description

From the research question in section 1.2, this section describes the prob-
lem and how we can apply process mining techniques with the source data
from WAS. Research question in section 1.2 has been defined at conceptual
level and can be divided into several sub-research questions in more concrete
details as follow.
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RQ1 Given a dataset of WAS, how could we understand the behavior of a
warehouse and enable the extraction and integration of multiple items and
their interrelations into a multi-dimensional event log that can represent
multi-item dynamics?

The complex and unstructured communication messages are difficult to
entail the overall behavior, challenging the assessment of process efficiency.

Artifact-centric approach [2] as explained in Section 2.2.2 is here applied
to our multi-item process data set from WAS. To apply this approach, there
are prerequisites of items, sequences of events per items (routes) and time in-
formation per event for measuring system performance. However, the source
data does not satisfy the requirement for artifact-centric process mining as
explained in Section 3.3.2. To enable artifact-centric process mining approach
in our data, more information is necessary, leading us to divide our research
question RQ1 into 3 sub-questions.

• RQ1.1 Given a dataset of WAS, how could we define items, lifecycles
and table relations stored in the data?

• RQ1.2 Given a dataset of WAS, how could we obtain route for each
item lifecycle including time information?

• RQ1.3 Given a dataset of WAS, how could we obtain information of
interrelation between items from the source data and information of
interaction from domain knowledge?

RQ2 Given a set of WAS event logs, how could we apply the existing methods
such as single-item route analysis, classification techniques and develop a
meaningful notion?

Established methods in process mining whose efficiency have been proven
in a certain context (airport baggage handling system) shall be used with
WAS.

RQ3 Given a set of WAS event logs, how could we explore the behavior of
multi-item process flow for a large warehouse and salient flows by textual
description or visualization?

These flows can elaborate the different behaviors between group of routes
and the visualization can reveal possible underlying cause of deviation from
optimum.
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Chapter 4

Solution Proposal

In this chapter, we introduce the limitations and methods that are used to
solve the research questions mentioned in Section 3.4.

We first mention about the limitations in this study on Section 4.4. Then,
we explain our propose solution in the following sections. Figure 4.1 shows
the overall steps of the methodology that are used in this project. To an-
swer the RQ1, artifact-Centric approach, and multi-dimensional event log
pre-processing is used to transform un-structured raw data to an event log
explained in Section 4.1 and 4.2. These steps lead to the understanding
of system behavior and identifying the relation between items. Next, the
techniques for finding principle locations significantly representing different
routes (PCA), reducing large number of principle locations to interesting lo-
cations (using K-means clustering), and grouping all routes into route clusters
(multi-set), which are the existing techniques for single-item process elabo-
rated in Section 4.3, are applied. The result from this step helps determine
clusters of the routes in the system that have similar behavior which could
answer RQ2. Then, we use the result from the route and performance anal-
ysis to develop two types of visualizations illustrating the overall routes with
their clusters and the performance of the whole systems which could lead to
the answer of RQ3.

4.1 Artifact-centric Process Analysis with Multi-

items

To comprehend multi-item behavior from the raw data, it is necessary to
determine items, lifecycles of items, relations and interaction between lifecy-
cles.

Artifact-centric approach is suitable for multi-item process with many
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Figure 4.1: The summary of data pipeline

items that have their own lifecycles involved. In addition, each item has its
own identifier and interacts with other items belonging to different item class;
the dynamic communication and intensive updates are prominent character-
istics of the process.

Besides, un-structured raw data is retrieved from various modules in the
system and there is no unique identifier that could well represent specific item
consistently throughout the whole process. We could solve this problem by
adopting the concept of artifact-centric process analysis with the four follow-
ing steps shown in Figure 4.2. The procedure will be explained thoroughly
in Chapter 5.

Figure 4.2: Overview of Artifact-centric Approach

Define Artifact Schema

As data is not in the form ready for analysis, each table has mixed identifiers
in a column which could be either a pallet or a tray in our use case. Moreover,
tables are created from different modules with different purposes; multiple
tables can refer to the same item but record activity independently. In brief,
the data of each item are diffused to many tables, each of which records
different behavior of the item but still in chronological order.
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This leads to the first step of artifact-centric approach: Artifact Schema
Definition. In this step, it is necessary to determine appropriate tables that
could represent all of the main system activities. Defining the schema needs
cooperation with a domain expert to gain understanding on data.

Define Artifact Type

Once schema to be used is known, it is necessary to discover artifact type.
The artifact type concept is applied for finding the relation across tables. To
define artifact type, we start with selecting items of interest: pallet and tray
in this study. We define identifier that could be used to link tables. In other
words, the identifier is used as a table linkage. Then, the conditions (to be
applied when retrieving data from tables) are established in order to extract
only data of interest. We decide which data is essential for the analysis (to
keep or to remove data) by using the conditions defined at this step.

Define Lifecycle

After artifact schema and artifact types are established, we need a concrete
definition of lifecycle to reveal event-level interaction between items. While
pallets and trays can be reused for many times, the current identifiers of them
do not change by the repetitive uses. To distinguish the usages in different
lifecycles, it is thus necessary to define new identifiers.

To do so, we start from studying the process model of each item at con-
ceptual level. Then, we define the start activity and the end activity of pallet
cycle and tray cycle. Furthermore, tray has a special behavior that it can
contain several sub-cycles within its cycle because products on the tray could
be stacked to a roll cage for many times until tray becomes empty, while all
products on each pallet are always used at Unbundle station only once. This
step also requires a domain expert to share knowledge on the system behav-
ior and technical documents explaining the procedures of each module in the
system. Note this step extracts the lifecycle conceptual level. We could not
determine the actual event in the data yet.

Define Interrelation between Items

We now have artifact schema, artifact types and lifecycles. Then, behavioral
dependencies between the artifact life cycles is need to be explored. This step
could be done by reading technical documents and discussing with a domain
expert to find the information to be used for finding the dependencies and
to be able to understand end-to-end process.
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With artifact-centric concept, we could answer sub-research question RQ1.1,
which is relevant to the definition of items, lifecycles and table relations.

RQ1.1 Given a dataset of WAS, how could we define items, lifecycles
and table relations stored in the data?

After obtaining the result from artifact-centric method, we can now relate
each event to one item and to one specific lifecycle of the item. The newly
identified lifecycle identifier can distinguish two different lifecycle executions
of the same physical item. We can also relate all tables and have data that
contains only important information that represents main activities in the
system for the analysis.

This output will be used for creating a multi-dimensional event log in the
following section.

4.2 Pre-processing Multi-dimensional Event

Logs

Warehouse raw data are in form of mixed tables of communication message,
which are not in the form ready for process mining as it requires identifiers,
activities, and timestamps.

To convert the raw data into a usable event log, it is crucial to transform
the data into an appropriate format that is easy for analysis.

Figure 4.3 illustrates the overview of data pre-processing. We have ma-
chine communication message tables as inputs. After applying four data
pre-processing steps (define case and unique item identifier, define lifecycles
and interrelations, and log extraction specification), we yield event log that
has unique identifier per lifecycle as a result.

Figure 4.3: Overview of Multi-dimensional Event Log Pre-processing

Additionally, activities in the system are recorded from machine module
aspect and do not satisfy the requirement in Section 3.3.2.3. It is difficult
for an analyst or a domain expert to interpret because the same activity in
different module could have different meaning. In this step, name correction
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is required to fix the meaning of each activity in the system to avoid confusion
during the analysis.

To correct the records that explains the occurring activities in single as-
pect, a domain expert incorporates in defining and providing more infor-
mation regarding the actual activities occurring in each machine module.
As a result, we could rename the activity names to meaningful and logical
keywords for all items.

We execute all pre-processing steps by creating several Scala scripts. We
firstly search for each item type (pallet and tray) for all event-record activities
of that item type, then rename all activities name based on one aspect, and
sort all event records by item and time. Next, we identify item lifecycle
identifier by using the lifecycle concept gained in Section 4.1 to acquire route
for each item lifecycle with time information. Hence, we could answer sub-
research question RQ1.2.

RQ1.2 Given a dataset of WAS, how could we obtain route for each item
lifecycle including time information?

Afterward, we create interrelations between different items – pallet and
tray – by extracting their relations from the data. Hence, we can now an-
swer sub-research question RQ1.3, which is relevant to interrelation between
items. RQ1.3 Given a dataset of WAS, how could we obtain interrelation
information of interrelation between items from the source data and infor-
mation of interaction from domain knowledge?

The output from Section 4.1 and 4.2 will be used in the Section 4.3.
Details about data pre-processing is given in Chapter 5.

4.3 Integrating Multi-dimensional Event Log

with existing single-item techniques and

visualizations

To validate the applicability of single-item techniques to multi-item process
for route and performance analysis, the techniques and visualization previ-
ously proven to be successful in airport-baggage context are adopted.

4.3.1 Single-item techniques

In this study, we apply three techniques for route and performance analysis.
We use principle component analysis (PCA) as a first techniques. Princi-

ple components (PC) are calculated by sub-traces per HL step, rather than
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computing with the whole end-to-end traces. Considering sub-traces by HL
step offers an understanding of significant behavior representing the part of
the system.

PCA is used to reduce the dimension of routes in the warehouse system.
The number of the remaining PCs is fixed to 3.

Besides, having three dimensions also allows visualizing the obtained re-
sult from PCA and using visualization to find an appropriate number of
clusters in the next step.

Second, we use K-means clustering to uncover principle locations. We
vary the value K per HL step because each HL step contains different number
of locations. Using a fixed K for all HL steps are not appropriate, possibly
leading to over-estimation or under-estimation of the number of clusters and
failing to reflect the actual route clusters to be obtained at the end.

After applying K-means clustering, we find the centroid of each cluster
and define the location closest to the centroid to be the location of interest.
In order to determine an appropriate K value, we plot PCA-transformed data
and visually estimate groups of points. Besides, we calculate the average Eu-
clidean distance to corresponding centroid of each point and plot the average
distance by the variation of K; we then select the ”elbow” of curve as the
appropriate K value, expected to be consistent with the visual estimation
from PCA visualization. Then, interesting locations are selected for route
clustering in the next step.

Third, multi-set abstraction is used after obtaining interesting locations
by HL steps. We assume that those routes that transit the locations of inter-
est for the same number of times might have similar behavior, for example,
containing loop, having repeated steps, and tending to be grouped in the
same cluster by K-means.

This step could lead to the answer of RQ2, which is relevant to the ap-
plication of single-item methods to analyze and classify routes and make
meaningful inference.

RQ2 Given set of WAS event logs, how could we apply the existing meth-
ods such as single-item route analysis, classification techniques and develop
a meaningful notion?

We use the result yielded from this step in the subsequent visualizations.
In-detailed single-item techniques used in this study will be elaborated in
Chapter 6.
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4.3.2 Visualization

There are two visualizations used in this study. The first one is the exist-
ing visualization used with airport system in Vanderlande (referred to as
single-item visualization). The other one is the extended version showing
interrelation between items, referred to as multi-item visualization.

We use the event log together with cluster information obtained from
previous steps to generate both visualizations. As we define pallet and tray
in the event log by using artifact-centric approach and determine clusters
of routes by applying the existing single-item techniques, we can create the
visualization for pallet and tray separately based on their HL variants in
single-item visualization and merge both pallet and tray HL variants with
their interrelation in multi-item visualization.

Single-item visualization

To create the single-item visualization, pallet and tray must have complete
lifecycle because we would like to show average time spent in each HL step.
The average spent time is color-coded in the visualization to represent system
performance through cycle.

Each pallet/tray has its own visualization that contains all routes sum-
marized from HL variants without considering the relation between items.
In other words, we define HL variants on this visualization by pallet and tray
separately under the conditions that pallet has complete cycle and tray has
complete cycle but both pallet and tray that have interrelation do not need
to be completed at the same time.

The generated visualization illustrates the performance and route clus-
tering by HL variant in the system.

Multi-item visualization

This visualization is extended from single-item visualization by combining
HL variants of items with interrelations. The outputted interaction between
multiple items can be verified by this visualization, providing more insights
beyond the dynamics of single item.

We pair up the pallet and tray with complete lifecycle that have interrela-
tion between each other, as we adopt the concept in single-item visualization
and extend it by combining HL variants. In our case, the paired pallet and
tray are merged to create a new end-to-end HL variant, named pallet-tray
HL variant.

We first create a table that lists all pallet-tray pairs in the system, named
interrelation table. After that, we check all of the pallets’ HL variants and
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trays’ HL variants separately. Then, interrelation table is used to generate
all possible combination of pallet’s HL variant and tray’s HL variant. The
combination becomes our pallet-tray HL variant.

Afterward, we visualize end-to-end routes by using new HL variant to
connect pallet and tray together. Hence, we could see the relation between
pallet and tray under same newly-created HL variant.

From this step, RQ3, which is relevant to flow behavior, could be answered
by these two visualizations.

RQ3 Given a set of WAS event logs, how could we explore the behavior
of multi-item process flow for a large warehouse and salient flows by textual
description or visualization?

The behaviors, notable from the visualization, are further investigated to
identify possible underlying causes which will then be explained in text or
by illustration. More information about the 2 visualizations is detailed in
Chapter 7.

4.4 Limitations

This study focuses on a WAS of a specific Dutch supermarket company, which
is a Vanderlande’s client, where the generalizability to other WAS is limited.
Specifically, suitable data structures might vary across systems. In addition,
the data duration is restricted to one week, which might not capture some
interesting information that require longer time span to analyze.

The locations mentioned in this thesis refer to the area of location, which
would be adequate for analysis as confirmed by a domain expert. They are
not indicating to the exact physical locations in the warehouse but are still
referred to as ”locations” hereafter in this thesis.

The clarity of result presentation in this thesis might be limited due to
the impossibility to to disclose actual layout of the warehouse, under the
agreement with the company. Results are described by text.

It is also important to realize that the warehouse we are considering
has many Bundling and Unbundling stations. Routes to different Bundling
or Unbundling stations are parallel routes that have the same number of
locations, performing the same sequence of activities.
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Chapter 5

Multi-dimensional Event Logs
Pre-Processing

In the Chapters 3 and 4 , we gain comprehension at the conceptual level on
WAS and the approach to handle data.

In this chapter, we explain, in details, on how to pre-process and trans-
form source data to appropriate event log that we can use for subsequent
analysis. The approach described here is in data preparation step, the third
step of CRISP-DM mentioned in Section 1.4.

Data structure in WAS is different from a normal relational database that
has a unique identifier used as primary key and foreign key linking tables in
the database. This is because the interesting relations are all records in
different tables referring to the same lifecycle of the same physical item.
Moreover, that physical item has a unique identifier, but it can participate
in multiple lifecycles after each other.

Because of the complicated way of storing data in tables, it is neces-
sary to define log extraction specification (LES) by applying artifact-centric
approach to enable the adoption of techniques for route and performance
analysis.

LES is a technique to define the way to find two main information from
a set of tables.

1. Case Notions: find the main table carrying the primary keys, each
primary key value becomes a case identifier.

2. Event Types: define which timestamp attribute in which table defines
which activity.

In general, LES could be used with both single-item and multi-item processes
to extract all events of all types as structured records. Events that have the
same case are grouped into a trace.
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To apply LES with multi-item process, we use artifact-centric approach
to construct LES that has multiple case notions by firstly defining items and
defining LES for each item with its own identifier. Artifact-centric approach
is required because of the complexity of stored data. There are two main
steps to construct LES.

1. Find all tables that contain event records for a particular item. How-
ever, the collected tables may contain more event records that do not
belong to the item for which we want to extract the log.

2. Define the LES on the selected tables and add selection predicates that
only take those records for both case notion and event types that really
belong to the item.

Figure 5.1 depicts the overview of pre-processing steps to create multi-
dimensional event log in this study. The input is source data and knowledge
from Chapter 3, which is then pre-processed using three main steps as de-
scribed below, eventually yielding multi-dimensional event log. It should be
noted that the first two steps could be done by using artifact-centric ap-
proach.

1. Defining case identifiers and unique item identifiers.

2. Defining lifecycle of each item and the interrelation between items.

3. Log Extraction Specification (LES).

Figure 5.1: Multi-dimensional Event Logs Pre-processing Overview

The artifact-centric approach itself encompasses four pre-processing steps,
which are elaborated here. In Section 5.1, we first explain artifact-schema
used for identifying the tables that should be considered together to acquire
all relevant data for one item. Then, artifact type is used to specify conditions
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under which events are linked/related to an item in Section 5.2. We then
create a new unique identifier that distinguishes different lifecycle, which is
explained in Section 5.3, and we create interrelation table as explained in
Section 5.4. Lastly, the final event logs from the source data is explained in
Section 5.5.

5.1 Defining Artifact Schema

It is essential to find a principle table per item that has an identifier (primary
key as TsuIDs) capable of correlating that item to other message tables. The
principle table will be linked and integrated with other message tables to
create a unified multi-dimensional event log that represents its multi-item
dynamics covering the whole process.

In this study, a message from transportation module is chosen because
the data inside the message table appear from start to end through the whole
process. Then, we identify other related message tables that represent the
main activities in the system. To do so, we review technical documents to
gain comprehension on how the system records data together with discussing
with domain expert getting to know interesting activities/tables which should
be included.

Table 5.1 illustrates artifact schema in WAS. With the data we have,
both pallet and tray have the same principle table called “Transportation-
Tracking”. The other are the tables that contain all main system activities.
However, in this example, we focus on two tables for the sake of simplicity:
TransportationTracking and UnbundleContentMove.

Table 5.1: Example of Artifact Schema
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5.2 Defining Artifact Type

The objective of this step is to find related events that link to an item because
the table contains more data records than just for the focused item. Hence,
conditions is required to keep only the related records and the associated
records from other tables linking to the main table in a specific way.

After we create artifact schema which is defined for each item from all
the tables that hold information of this item and designates a main table
holding a primary key identifier for the various cases.

Next, artifact type comes to define all records in the data per item. There
are several components of artifact type as explained below:

1. Conditions when records of the main table actually define an item of
this type (e.g.the main table record actually refers to a pallet/tray).

2. A list of event type, where each of event type defines following infor-
mation:

(a) The name of the activity, which requires domain-knowledge to
map technical message names to human-understandable process
steps.

(b) The table and attribute from which the unique item identifier is
taken for the event type. In other words, all events with same
item identifier belong to the same item.

(c) The table and attribute from which the timestamp information is
taken.

(d) A condition specifying whether a record in a specific table may be
considered at all. This is to only include records actually related
to the item type because a table can hold records of many different
item types.

Having such LES then allows generating a query for each event type that
extracts event records of 3 columns (name, identifier, and timestamp) for all
events in the data. The output of running the queries for all event types is a
uniform table of events having name, identifier, and timestamp as columns.

We need to define such LES, then we will obtain the needed event table.
In this study, we create two artifact types; pallet and tray, which are

shown in Table 5.2 and 5.3 respectively.
For example, we use our Artifact Schema in Table 5.1 to build pallet

and tray artifact types. Hence, both pallet and tray have Transportation-
Tracking table as a principle table. Another table used as an example is
UnbundleContentMove table for both pallet and tray.
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First, we consider pallet artifact type in Table 5.2. The primary key
artifact ID is redefined by the value in TsuID column on principle table,
TransportationTracking, starting with ”Pallet”. As a result, we could select
only pallet records by using data format on TsuID column. Next, we define
event types. Each event type could have different name, identifier, times-
tamp and conditions. This example show two event type; PalletToLoc1 and
PalletAtUnbundle05 coming from different tables. Considering event type
PalletToLoc1, the event is from TransportationTracking table, and conse-
quently event ID is redefined by TsuID. No event type condition is applied.
Meanwhile, event type PalletAtUnbundle05 comes from another table, Un-
bundleContentMove, having event ID from TsuID column, and event type
condition pertaining only records having TsuID starting with ”Pallet”.

Similarly, the same concept is applied to tray artifact type. We have
TransportationTracking as principle table but it is necessary to specify the
condition of having TsuID that starts with ”Tray”. First event type, Tray-
ToLoc11, is the same as pallet’s first event type but refers to a different
location. Furthermore, event type TrayAtUnbundle05 is from UnbundleCon-
tentMove table having TsuID as event ID, necessitating the establishment of
event type condition to include only TsuIDs starting with ”Tray”.

For Timestamp attribute, the data in all message tables have column
Date and Time. Therefore, this column is used to redefine Timestamp in all
selected tables for creating artifact type.

Table 5.2: Example of Pallet artifact Type

After obtaining artifact type consisting of all related tables from artifact
Schema, we can now create one unified table that has all items and events
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Table 5.3: Example of Tray Artifact Type

for each pallet and tray. All items in this table are grouped by TsuID and
ordered by Date and Time. In addition, the activity names recorded in the
data may be unclear or duplicated between pallet and tray. Therefore, we
could redefine to meaningful and logical name at this step. We call the tables
obtained from this step as an intermediate event log. Next, we need to create
new TsuID that is unique across different lifecycles.

Table 5.4 and 5.5 are examples of intermediate event logs gained from
this step with new meaningful name. These examples are created and in line
with the timelines in Figure 3.8 in Section 3.3.1 which will also be used in
the following section.

5.3 Creating new unique identifier by lifecy-

cle

In this step, we apply artifact lifecycle together with the LES from Section
5.2 called as intermediate event logs of pallet and tray in Table 5.4 and 5.5
respectively. Artifact lifecycle is involved in this step because the intermedi-
ate event logs contain multiple cycles that are not distinguished. Hence, we
need to re-define identifier that groups events by lifecycle, not by TsuID.

We first explain the general idea how we could create a new unique iden-
tifier by lifecycle.

1. Define start and end point of a lifecycle by using domain knowledge.
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Table 5.4: Example of Pallet Intermediate Event Log

Table 5.5: Example of Tray Intermediate Event Log

2. Extract the intervals of lifecycles into a temporary table. This step is
to obtain start and end timestamps of each lifecycle.

3. Refine TsuID attribute by appending the number of the lifecycle to the
TsuID for all events belonging to the same lifecycle.
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At this point, the current intermediate event logs have TsuID as a case
identifier specifying pallet or tray. However, using only TsuID is not sufficient
for creating a unique case identifier because any pallet and tray can be reused
but the corresponding TsuIDs remain unchanged. Consequently, lifecycle
concept is required and used in defining the unique pallet and tray case
identifiers that occur in different lifecycle.

A simplified example in Table 5.6 demonstrates the issue of duplicated
case identifier. We select column “TsuID” as our identifier. There are two
unique tray IDs; Tray1 and Tray2.

Given that start point is the time when activity becomes “Started” and
that end point is the time when activity becomes “Completed”, it can be
seen that TsuID Tray1 or Tray2 has two cycles emerging in the system.
With existing ID, we could not clearly identify items by lifecycle.

Table 5.6: Simplified example of duplication ID in different lifecycles

After understanding the reason why the LES from 5.2 could not be used
to create final event log, the procedure to create new unique identifier by
lifecycle is applied.

Defining start and end point of a lifecycle

We need to split a sequence of events for the same TsuID based on domain
information when a lifecycle starts or ends. Hence, we could obtain start and
end point of pallet and tray lifecycle as follows.

• Pallet Lifecycle
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– Start: the time when pallet enters the system.

– End: the time when pool and slave pallets are de-stacked.

• Tray Lifecycle

– Start: the time when products on pallets are distributed into trays.

– End: the time when a tray becomes empty.

∗ Sub-cycle Start: the time when products on pallets are dis-
tributed into trays or after a tray has finished Bundling ac-
tivity.

∗ Sub-cycle End: the time when a tray has finished Bundling
activity or a tray becomes empty.

Extracting the intervals of lifecycles into a temporary table

For each pallet and tray, we create a new table containing start and end
timestamps of lifecycle. Hereafter, we refer to this new table as start-end
table.

As mentioned in Section 5.2, our pallet and tray intermediate event logs
are grouped by TsuID and ordered by Date and Time. Hence, we can use
these logs directly. While we know start and end points of lifecycle, mapping
start and end points with real records in the intermediate event logs is still
required to find actual timestamp.

We use Table 5.4 and 5.5 as an example to show how we can find start
and end timestamp by items.

Pallet lifecycle starts at the time point when pallet enters the system and
ends at the time point when pool and slave pallets are de-stacked. Here,
we suppose that activity PalletToLoc1 is the first activity recorded by the
system and that PalletToLoc10 is the activity that pallet goes to the place
where pool and slave are separated.

On the other hand, tray starts lifecycle when products on pallets are
distributed into trays and ends when a tray becomes empty. Here, we suppose
that activity starting with TrayAtUnbundle in the intermediate event log
equivalent to the start point and that TrayToLoc20 refers to the end activity
when tray status changes from tray with some product to an empty tray.

Once we finish mapping activity in the intermediate event log with start
and end point from lifecycle, we can gain the actual start and end times-
tamps recorded with activities that are defined in the mapping step. Then,
we can create start-end record. However, the records of some items in the
intermediate event log, which have either start or end activity but do not
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both of them, are discarded because they could not represent complete cycle
where the motivation is given in Section 3.3.1.

Table 5.7 and 5.8 are the output in this step. We could see that Table
5.7 consists of two records because both Pallet1 and Pallet2 have only one
cycle. Meanwhile, Table 5.8 has three records. Because Tray1 is reused, it
has two records referring to two cycles, while Tray2 has only one cycle.

Table 5.7: Example of Pallet Start-End Table

Table 5.8: Example of Tray Start-End Table

However, we still have the duplicated TsuID for Tray1 and the other
pallets and trays can also be reused in the future. Therefore, we create a
serial number of the cycle for each TsuID running in chronological order.
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We append the cycle number at the end of existing identifier. With this
approach, we could track how many times those items are reused and gain
the knowledge on cycle order.

The TsuID in Table 5.7 and 5.8 is redefined as shown in Table 5.9 and
5.10.

Table 5.9: Example of Pallet Start-End Table with new unique identifiers

Table 5.10: Example of Tray Start-End Table with new unique identifiers

Refining TsuID attribute

Lastly, the start-end table is used to assign new TsuID in our intermediate
event log. By checking the timestamp of the records in the intermediate
event log, we examine if the time falls between any start and end timestamp
record in the start-end table. If the time falls into any range of start-end pair,
a new TsuID is assigned to that record. Otherwise, the record is discarded
because we consider that this record is not in any cycles in start-end table or
not in domain expert’s interests as explained in Section 3.3.1. The resultant
event logs are yielded and shown in Table 5.11 and 5.12

After finishing all three steps, we could gain the final event log that has
new unique identifier by lifecycle, activity and timestamp columns which
represent each physical item in the system as a result.
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Table 5.11: Example of Pallet Event Log

Table 5.12: Example of Tray Event Log
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5.4 Creating Interrelation Table

Interrelation table allows identifying the relation between items and could
shed more light on end-to-end process in warehouse.

We use start-end table obtained from Section 5.3 together with a message
table containing interrelation information to create interrelation table.

First we explain how interrelations between items are recorded, then we
explain how we transform the data to be in a more usable form.

5.4.1 Understanding existing interrelation data

There is one message table from Unbundle module containing interrelation
information between pallet and tray. However, we could not straightfor-
wardly use this table because data is not in a usable form. Therefore, we
need to transform this table into a right format.

Table 5.13 is an example of the message table that has information about
pallet and tray interrelation. In this example, there are five records in total,
two for pallet and three for tray. Pallet identifier is stored in a column
named SourceTsuID with its Unbundle station number 05 for Pallet1 and 01
for Pallet2 in column TargetTsuID. In contrast, tray identifier is recorded in
TargetTsuID column and Unbundle information is stored in SourceTsuID.
Both pallet and tray are linked by a column called OrderID. The OrderID is
specific for one pallet with the distribution to many trays. It can be seen that
the products in Pallet1 are distributed into Tray1, Tray2by the same OrderID
1 at Unbundle station 05, thus Pallet1 is related to Tray1 and Tray2 On the
other hand, Products on Pallet2 are distributed to Tray1 at Unbundle station
01 by the OrderID 2. Consequently, Pallet2 has interrelation with Tray1.
Apparently, the activities of pallet and tray are recorded independently and
resulting records of them are not appearing in the same row.

5.4.2 Transformation to interrelation table

After we understand the existing interrelation in Section 5.4.1, data trans-
formation is required to create interrelation table.

The first step is to replace the global TsuIDs with the refined TsuIDs.
We use start-end tables – Table 5.9 and 5.10 obtained from Section 5.3 – to
assign unique identifier. We do it by checking timestamp of each record if it
falls between the start-end timestamp pairs in start-end table, identical to
the step we assign new unique item identifier in Section 5.3. Hence, we could
obtain unique identifier as shown in Table 5.14.

Afterward, we construct logic to create interrelation table as follows.
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We split the interrelation table by classifying records as pallet and tray.
We select OrderID and SourceTsuID columns that have SourceTsuID start-
ing with “Pallet” as pallet records. Meantime, OrderID and TargetTsuID
columns are used for tray records by having value starting with “Tray” in
TargetTsuID. Both pallet and tray must have distinct records. Then, Or-
derID is utilized to connect pallet and tray which have interrelation together.
The query used to extract interrelation from interrelation table is:

SELECT d i s t i n c t ( OrderID , SourceTsuId ) as P a l l e t
FROM Inte r r a t i onTab l e
WHERE SourceTsuId = P a l l e t ∗

SELECT d i s t i n c t ( OrderID , TargetTsuId ) as Tray
FROM Inte r r a t i onTab l e
WHERE TargetTsuId = Tray∗

SELECT SourceTsuId , TargetTsuId
FROM P a l l e t JOIN Tray
WHERE P a l l e t . OrderId = Tray . OrderId

As a result, we could now create interrelation table as shown in Table
5.15.

Table 5.13: Example of message table for creating Interrelation Table

Table 5.14: Example of message table with Unique Item Identifier for creating
Interrelation Table
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Table 5.15: Example of Interrelation Table

5.5 Results of Log Extraction

After executing all event log pre-processing steps with one-week data in WAS,
we achieve pallet event log consisting of 63,841 events and 1,585 cases, and
tray event log consisting of 1,699,215 events and 55,189 cases. Each case
regards to one lifecycle of an item; pallet and tray.

The pallet and tray event logs will be used with the existing single-item
technique for route and performance analysis in the next chapter.
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Chapter 6

Route Summarization on
Warehouse Items

After converting data into a single-item event log per item type as explained
in Chapter 5, we then summarize route per item type. To do this, the existing
single-item technique, as explained in Section 2.3, is applied. This chapter
provides detailed information on how we configure parameters that are suit-
able for multi-dimensional event log from WAS and how we apply existing
techniques with the data to cluster route and gain more understanding on
WAS route behavior.

This chapter explains modeling steps of our methodology in CRISP-DM
which are previously explained in Section 1.4.

A single-item technique comprising of three steps are applied in this study.
PCA is applied with the objective to reduce data dimension and to extract
only important features representing the whole data set. Once we have com-
pressed data, we apply K-means clustering to obtain representative locations
as interesting locations for route clustering in the subsequent step. Then,
all interesting locations are applied with multi-set abstraction of interesting
locations to create a cluster that aggregates all routes with similar behaviors
into the same group.

Table 6.1 shows input and output of single-item techniques used in this
study.

Table 6.1: Input and Output of Single-item Techniques
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6.1 PCA

In order to reduce dimensionality of data by removing redundant informa-
tion, PCA is applied to sub-traces in each HL step, where each principle
component (PC) captures characteristic sub-trace behavior. Only top three
PCs capturing most data variants are kept.

6.1.1 Visited vs Unvisited Locations

In this study, locations in event log can be categorized into visited locations
and unvisited locations. In 1-week warehouse data, there are some locations
that are never visited by any pallet nor tray. While including and exclud-
ing unvisited locations when applying PCA may not significantly influence
the learning of PC, they could impact results of the subsequent finding of
interesting location and the clustering routes.

We do not consider unvisited locations once we pass the event log to PCA
algorithm in this study because unvisited locations will have same PC infor-
mation and they will be grouped together in the space of 3 PCs. Then, one
of unvisited location will be selected as an interesting location. Afterward,
unvisited location is used to create a cluster.

Nonetheless, the found locations of interest is subsequently utilized to-
gether with multi-set abstraction of interesting locations for creating cluster
of routes. If unvisited location is considered as an interesting location, we
will not be able to create any cluster from this location because there is no
route passing this location. Hence, we yield zero cluster from this location
that is supposed to be interesting. Besides, another location that should
receive extra attention, which might generate cluster(s) that is more worthy
for investigation, might not be picked up as the availability of interesting
locations, resulting from K-means, has been partially allocated to the trivial
unvisited location. This is undersirable and the chance of missing significant
locations should be reduced by removing unvisited location from the analysis
beforehand.

However, excluding unvisited locations cannot be done by straightforward
removing the locations from the raw system log. It is rather done after
generating the input matrix, which will be explained in the next step.

6.1.2 Preparing Data for PCA

In generating input matrix for PCA, the first step requires an extra file that
contains the information of mapping between activities and HL steps, named
as mapping file. This file is manually created from our discussion with a
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domain expert; it is simply exemplified in Table 6.2. It is used together with
pallet and tray event logs (with refined identifier) yield from Section 5.3 to
append HL step information. Table 6.3 and 6.4 are examples of pallet and
tray event logs.

Table 6.2: Example of mapping file from Activities to HL step

Table 6.3: Example of Pallet Event Log

Table 6.4: Example of Tray Event Log
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To append HL step information, we use Activity column to link the map-
ping file with event logs, yielding Table 6.5 and 6.6 for pallet and tray re-
spectively. Then, we split the full sequence of events by grouping events per
TsuID and HL step. Table 6.7 and 6.8 show the event logs after splitting
traces and group events per HL step. More information can be found in [3].

Table 6.5: Example of Pallet Event Log with HL Step

Table 6.6: Example of Tray Event Log with HL Step

Table 6.7: Example of Pallet Event Log with Grouped Traces

Table 6.8: Example of Tray Event Log with Grouped Traces
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Grouping Trace

• TsuID

This represents either pallet and tray ID having lifecycle information.

• LL Trace

LL Trace is the sequence of low-level locations belonging to the same
items in particular HL step.

• HL Variant

The list of all HL Steps that items pass through in the whole system.

• Execution Time

This uses the timestamps to calculate time spent, in seconds, from one
location to the next location.

• HL Step

This field specifies the HL step that the row belongs to. This is used
to determine the rows that fall into the same HL step.

Once we have a table grouping traces by HL step, we then aggregate
all items that have identical features of HL step, LL trace and HL variant.
Then, we count the number of records with the same features and use it as
another feature after aggregation. Also, we recalculate time spent by using
the average execution time. Additional features have been augmented:

Aggregating Trace

• Number of Items

This number shows the number of items with the same HL step, LL
trace and HL variant, yielded by counting during aggregation step.

• List of Items

This list collects all items with the same HL step, LL trace and HL
variant during aggregation step.

• Average Execution Time

The execution time is calculated by summing the execution time of
corresponding items and then divided by number of aggregated items
(arithmetic mean).
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From the exemplified tables (Table 6.7), assume that the trace with Loca-
tion6, Location7, Location8, belonging to the HL variant “PALLET INBOUND;
PALLET STORAGE; PALLET UNBUNDLE” and the HL step “PALLET STORAGE”
(the second row in the table), appears once more in the table with the execu-
tion time of 13, 4, and 4 seconds respectively. The TsuIDs of these two items
are collected in the “List of Items” feature and the occurrence of two are
marked in the “Number of Items” feature. Besides, average time at Location
6 is re-calculated as 15+13

2
= 14 seconds. Similarly, average time at Location

7 and 8 are adjusted to 1+4
2

= 2.5 seconds and 3+4
2

= 3.5 seconds respectively
as shown in Table 6.9.

Table 6.9 and 6.10 show the examples on how the actual results from
aggregation appear for pallet and tray respectively.

Table 6.9: Example of Pallet Event Log with Aggregated Traces

Table 6.10: Example of Tray Event Log with Aggregated Traces

After obtaining the new tables summarizing traces per HL step, trace,
and HL variant, we use these tables as interim PCA input.

Following event log grouping and aggregation, we create input matrix for
PCA by excluding unvisited locations.

6.1.3 Creating Input Matrix for PCA and Excluding
Unvisited Locations

Fundamental concept currently used in Vanderlande to generate input matrix
from event log is explained here by using a simplified example in Figure 6.1.
This example assumes that the routes shown in the example are all the traces
in the system and there are seven locations and two traces occurring; trace
1 visits A,C,D,F and trace 2 visits A,C,E,F while no trace visits location B
and G.

Input matrix is created by considering all locations in the system as fea-
tures. Now, we encode the LL trace as the multiset of locations. In the
matrix form, columns represent locations, the rows represent each LL trace,
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Figure 6.1: Example of Simple Route containing visited and unvisited loca-
tions

and the value in matrix is the number of times that the location is passed by
the specific trace as shown in Figure 6.2.

Figure 6.2: Example of PCA encoding considering visited and unvisited lo-
cations

After gaining trace encoding, we multiply the multiset of locations with
the number of items (pallets, trays) that take the same LL trace found in
the resulting table from aggregation step. Figure 6.3 shows the number of
occurrences of each route trace. Trace 1 has three occurrences and trace 2
has two occurrences. As a result, we could gain input matrix considering the
occurrences and all locations.

To exclude unvisited locations due to its undersiable impact on the sub-
sequent route clustering, we reduce matrix size by removing the columns
(locations) with all zero values. We finally obtain input matrix containing
only locations that have been visited at least once as shown in Figure 6.4.

6.1.4 Applying PCA

PCA is performed with the input matrix and the resultant compressed event
log is shown in Table 6.5. The current practice on PCA implementation with
single-item process makes use of only top three components, allowing visual-
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Figure 6.3: Example of PCA Input Matrix considering visited and unvisited
locations

Figure 6.4: Example of PCA Input Matrix excluding unvisited locations

ization in three dimensions, when analyzing route and performing clustering.
Hence, we also use three PCs in our study.

Figure 6.5: Example of PCA Output

Afterward, locations are clustered based on similarity in the PCA-transformed
visiting occurrences, which will be explained in the next section.

6.2 K-means Clustering

The next step in route summarization is to categorize locations of similarity,
as described in Section 2.3.2. K-means clustering technique is here applied
on the matrix of PCA-transformed visiting occurrences yielded from the pre-
vious step. This allows clustering the locations which are similar according
to PCA.
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6.2.1 Determining parameter K

Using K-means, it is necessary to pre-define the number of clusters (K) before
executing the algorithm. However, the number of locations in the warehouse
dramatically varies by HL step, setting global K for all steps would not be
suitable necessitating the selection of appropriate K for each HL step, which
is done by two complimentary approaches.

First, data are visualized in a space of three dimension, each of which is
corresponding to a PC. Data diffusion in this space allows an estimation of
appropriate number of clusters by using qualitative assessment. Figure 6.6
illustrates the clusters by number of K from PCA result.

Figure 6.6: Example of K Clusters from PCA 3 dimensions

Second, Euclidean distance of each data point to its centroid is calculated
and averaged over all points to be the indicator of how well data are stick into
a group (agglomeration analysis). Then, the indicators are plotted against
the varying number of K, and the elbow method is used to specify the ap-
propriate K, in a quantitative manner. An example is shown in Figure 6.7,
having horizontal axis representing number of K and vertical axis showing
the average Euclidean distance.

We use both results from two approaches to determine the suitable num-
ber of K for selecting interesting locations. Although the chosen K cannot
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Figure 6.7: Example of the result from Euclidean distance varying by number
of K

guarantee the optimal clustering results, it should be a adequately good ap-
proximation.

Once we determine appropriate number of K by HL step, we then apply
K-means clustering to obtain interesting locations for each of HL steps, these
locations are used to create clusters of routes in the system.

6.2.2 Results of K-Means clustering

Table 6.11 shows the selected parameter K for each HL step and the total
number of locations. It can be observed that the original numbers of locations
vary highly from 27 to 474, suggesting the necessity to select parameter K
per HL step. Figure 6.8 shows the average of Euclidean distance between
each data point and its centroid, plotted against varying parameter K. The
selected K, as highlighted in a red circle, is usually at the elbow of the
descending curve. Apparently, K-means clustering can reduce the number of
locations to be interested to 6-15 locations.

Table 6.11: The selected parameter K and total number of locations for each
HL step
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Figure 6.8: The Selected K from Elbow method for each HL step

6.3 Multi-set

The final step of route summarization is to create clusters of routes in WAS
that have similar behavior as explained in 2.3.3

After obtaining interesting locations by HL step, we use these locations
to create clusters by considering all routes in the event log that transit these
locations. Specifically, traces are clusters based on the number of times that
the traces pass the locations of interest.

A simplified example is shown in Figure 6.9. Given location B and E as
interesting locations, we could see that multi-set abstraction in this example
groups Trace1 and 2 into the same cluster because they pass through locations
B and E only once for each. Trace3 and 4 are in the same cluster since location
B is visited twice while E is visited once. Trace5 is segregated into another
cluster because it visits B three times and E only once. If the clustering
result is like this, multi-set abstraction of interesting locations is successful
considering that it could cluster similar routes and characterize loop and

66



repetitive behavior expected to exist in WAS data.

Figure 6.9: Example of Cluster by applying Multi-set abstraction of inter-
esting locations

The example of final tabular result with cluster information is shown as
Table 6.12 and 6.13.

Table 6.12: Example of Pallet Event Log with Cluster information

Table 6.13: Example of Tray Event Log with Cluster information

Figure 6.10 shows the number of resultant clusters gained from each HL
step. Apparently, clusters of “TRAY STORAGE” are the most prevalent,
yielding 148 clusters in total. However, it seems that clusters of each HL
step are not equally interesting, while some may not be worthwhile to further
analyze. In particular, clusters of “TRAY STORAGE” HL step might not
provide useful insights for analysis. In addition, a domain expert gave the
opinion that knowing the behavior of route in tray storage is relatively less
beneficial. This necessitates the assessment of obtained clusters and group
insignificant clusters together to suppress their importance and dominance
in subsequent analyses.
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Figure 6.10: The Number of Clusters by HL Step

6.4 Abstracting Clusters

Not all of the clusters are equally interesting. Trivial clusters may hinder
the interpretation of system behaviors and should be merged with similarly
insignificant clusters to suppress their prevalence in the subsequent visualiza-
tion. For instance, The trace visiting only locations in “TRAY STORAGE”
should be grouped together, allowing more significant clusters to be more ap-
parent in visualization results, rather than being blurred with the abundant
appearance of insignificant routes (which will impede the interpretation). In
other words, the results are reorganized based on abstraction.

In this step, we could abstract clusters by relabeling cluster of non-
interesting HL step to be a same cluster. Figure 6.11 shows the result from
cluster abstraction. Given that the locations in these cluster are not in-
teresting, we relabel all clusters in this example into a single cluster called
cluster0.

The result from this procedure is the clusters of routes, worthy for sub-
sequent analysis by visualization that will facilitate route and performance
analysis. The procedure is done per each HL step.
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Figure 6.11: Example of Abstracting Clusters
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Chapter 7

Multi-item routes Visualization

By applying the existing single-item technique on multi-dimensional event
log, we obtained route summaries for single items for each HL step. We now
visualize routes for single item using single-item visualization, which is mainly
adopted from the existing visualization, and then integrate routes of related
items via interrelation table to visualize routes in multi-item visualization.

To apply the visualization with warehouse data, it is crucial to define
item and lifecycle, pre-process data, and cluster routes as briefly explained
in Chapter 4. Afterward, we connect our event log and clustering result with
visualization.

Figure 7.1 shows a simplified example of the process with two pallet, five
trays, and their relations. It can be seen that Pallet A, Tray 1, 2, 4 and 5
have complete cycles.

7.1 Single-item visualization

As explained in Section 4.3.2, this visualization was originally implemented
for a single-item process showing route clustering of each HL variant. We
adopt the idea and concept and apply with warehouse data because it is
essential to firstly understand each item’s behavior. Hence, we aim to find
promising characteristics representing the items. In other words, we aim to
see notable behavior specifically for pallet or tray in this study.

We first explain the concept for creating single-item visualization. This
visualization mainly focuses on an item with a complete lifecycle. When
focusing on a single item in Figure 7.1, we focus only on A (complete lifecycle
of pallet) and on 1,2,4, and 5 (complete lifecycles of trays) but ignore B
(incomplete pallet) and 3 (incomplete tray).

Our event log already contains only pallet and tray with complete life-
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Figure 7.1: Overview of inter-related items to be visualized.

cycle, as defined and explained in Section 5.5, it is hence not necessary to
reformat event log prior to creating single-item visualization.

After understanding the concept of the visualization, and how pallet and
tray are selected, single-item visualization of a real data can be shown. Figure
7.2 is an example of pallet in single-item visualization having HL variant as
PALLET INBOUND, PALLET STORAGE, PALLET UNBUNDLE.

In the visualization, nodes represent locations (start and end locations in
each route) and clusters, while edges represent the connections of particular
trace to a cluster. Edges are color-coded by the averaged execution time in
seconds, where the legend of execution time range is shown in the top of
visualization. A HL step consists of start, end locations (darker blue nodes),
and clusters (lighter blue nodes); the connection between start node to end
node via cluster node represents the route from a starting point to an ending
point of the route, and the traverse (in the visualization) via cluster node
shows the cluster to which this route belongs. This visualization will be used
to analyze unusual behavior of individual items in the following chapter.

7.2 Multi-item visualization

The existing visualization technique, specially developed for single-item pro-
cesses, cannot demonstrate the interrelation between two or more items. The
lack of knowledge on links between item disables the feasibility of an end-to-
end analysis to investigate the impact of each item.
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Figure 7.2: Example of Single-item visualization

Therefore, a new visualization technique is developed by extending the
capability of a currently available technique.

To deploy the new visualization technique, a pre-requisite for an end-to-
end trace is to have complete lifecycles for both types of item (pallet and
tray). Partial satisfaction of conditions is not allowed. The requirements for
this visualization are:

1. route summaries for items of different type (for pallets and for trays)
as obtained in 6.4.

2. interrelation table between items of different type as obtained in 5.4.2.

The following steps are then applied:

1. Filtering pallet and tray from interrelation table to remain only com-
plete pallets and complete trays that have interrelation between each
other.

2. Defining appropriate ending points of pallets and starting points of
trays.

3. Creating pallet-tray HL variants for each pair of pallet and tray that
have a relation appearing in interrelation table.
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7.2.1 Filtering

From route summaries, we filter out trays and pallets with incomplete routes
(as discussed in 7.1). Then, we further filter to only keep pallets where all
related trays have complete routes, and only keep trays where all pallets have
complete routes. Finally, we filter to remain only pallets and trays that have
interrelation with each other by utilizing the interrelation table, which is
capable of representing the distribution of products from a particular pallet
to different trays as explained in Section 5.4.

Figure 7.3 illustrates the concept of filtering. In this example, two pallets
are considered. Pallet A has complete lifecycle while Pallet B has incomplete
lifecycle. Hence, all trays that have interrelation with Pallet B are discarded
in this multi-item visualization although both trays have complete lifecycle.
Then, we consider Pallet A and its interacting trays. Tray 1 and Tray 2 have
complete lifecycle, hence, we include these trays in the multi-item visualiza-
tion. Meanwhile, Tray 3 has incomplete lifecycle which is filtered out from
the visualization. Consequently, we could connect Pallet A with Tray1 and
Pallet A with Tray2.

Figure 7.3: Concept of Multi-item visualization

7.2.2 Defining Hand-over Point

In the new visualization, it is essential that a user defines the appropriate
ending point of pallet and the appropriate starting point of tray, apart from
selecting only pallets and trays with interrelation. These points are necessary
to connect the components to be generated in the next step; one for pallet
and the other for tray.
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Defining appropriate hand-over points is important for revealing system
behavior. Some trivial ending points, such as the state indicating that pool
and slave pallets are separated from each other, cannot reveal the dynamics
of product distribution from pallet to trays, hindering the interpretation
of interrelation. This way, if the trivial points are removed and another
meaningful ending point of trays is used, the processes between two variants
will be clearer.

7.2.3 Generating integrated visualization

In this step, HL variants of pallets and trays are created simultaneously,
under the constraint that pallet and tray have a relation appearing in the
interrelation table. Ending point of pallet and starting point of tray are
selected from the new pallet-tray HL variant whenever necessary as described
in previous step. The resultant event log is used to generate visualization in
which pallet and tray are integrated.

To exemplify, Table 7.1 shows event log with new pallet-tray HL variant
excluding items without interrelation. In addition, new ending point is de-
fined as an example on PALLET UNBUNDLE HL step. Instead of having
location10 (marked as red in the table) as an ending location shown in the
visualization, we select Unbundle05 (marked as green in the table) to be the
ending point because this specifies the location and time when products on
Pallet1.1 are distributed to multiple trays.

Table 7.1: Example of Event Log with Pallet-Tray HL Variant for Multi-item
visualization; note that Unbundle05 is selected instead of location10.

The visualization is then built by firstly determining the order of item
types. In particular, pallet activities occur before tray activities and therefore
should be placed on the left side of the visualization. Then, pallet-tray HL
variants with the adjustment of ending point of pallet and starting point of
tray are used as the input for single-item route visualization (as explained in
Section 7.1). In other words, instead of modifying existing program for single-
item visualization, we opt to purely adopt the program but with transforming
the data into the format that would achieve our design goal to show both
pallet and tray with interrelation in the visualization. As pallet part of
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HL variant always precedes tray part, pallet visualization thus appears on
the left side of the visualization and tray visualization is on the right side.
Connections between pallet and tray are generated in the identical way to
those between any two adjacent HL steps.

In the visualization, representation of nodes, edges and colors is identical
to single-item visualization as explained in Section 7.1. In addition, the
connection between ending location of pallet and the starting location of
tray is apparent as an edge, which is also color-coded by averaged execution
time following the same color ranges as shown in the top legend. Note the
1-1 relation between the ending location of the last pallet HL step and the
starting location of the first tray HL step, as the interrelation takes place at
the same Unbundle station location.

Figure 7.2 is an example of pallet-tray in multi-item visualization having
HL variant as PALLET INBOUND, PALLET STORAGE, PALLET UNBUNDLE,
TRAY UNBUNDLE, TRAY STORAGE, TRAY BUNDLE. It is apparent
that this HL variant merges both pallets and trays together by their interre-
lations.
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Figure 7.4: Example of Multi-item visualization; note the hand-over points
highlighted in red rectangle
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Chapter 8

Evaluation

In this chapter, we present the analysis of the technique introduced in Chap-
ter 4. We validate our result by conducting the experiment with warehouse
use case, discussing with domain expert, visualizing the result obtained from
the proposed techniques. Then, we evaluate and answer our research question
and sub-research questions.

We begin the chapter with outlining how to answer research question and
sub-research questions by our methods in Section 8.1. Then, we discuss the
obtained result and inference from the proposed techniques in Section 8.2 to
8.5.

8.1 Validation of Research Questions

To find the answer to the general research question introduced in Section
1.2 and sub-research questions introduced in Section 3.4, our methods are
implemented. We begin with re-introducing our general research question.

Given a dataset of Warehouse Automation System (WAS) and single-item
techniques for route and performance analysis, could we adopt and extend
the existing techniques to multi-item process to be able to understand the
characteristics and performance of inter-related routes?

Then, we evaluate our question by considering sub-research questions and
investigate if our proposed solution could answer the questions.

RQ1 Given a dataset of WAS, how could we understand the behavior of a
warehouse and enable the extraction and integration of multiple items and
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their interrelations into a multi-dimensional event log that can represent
multi-item dynamics?

Reading process and system documents and discussion with domain ex-
pert, process engineer at Vanderlande could respond to RQ1 by providing
more understanding on system behavior and exceptional cases. Beyond sys-
tem and process comprehension, sub-questions can be responded.

• RQ1.1 Given a dataset of WAS, how could we define items, lifecycles
and table relations stored in the data?

• RQ1.2 Given a dataset of WAS, how could we obtain route for each
item lifecycle including time information?

• RQ1.3 Given a dataset of WAS, how could we obtain interrelation
information between items from the source data and interaction infor-
mation from domain knowledge?

RQ1.1, RQ1.2 and RQ1.3 could be answered by applying artifact-
centric method and validating the obtained result with a process en-
gineer. With this technique, we could identify items, lifecycle models
and relationship among message tables. We use lifecycle model to map
start and end activities in the model to the actual event happening in
the system. Lastly, the interrelation is defined to connect pallets and
trays. Implementation is thoroughly described in Chapter 5.

RQ2 Given a set of WAS event logs, how could we apply the existing methods
such as single-item route analysis, classification techniques and develop a
meaningful notion?

In response to this RQ, we apply previously-proven techniques that are
currently used for a single-item process – Airport BHS – with our warehouse
multi-dimensional event log as explained in Chapter 6.

RQ3 Given a set of WAS event logs, how could we explore the behavior of
multi-item process flow for a large warehouse and salient flows by textual
description or visualization?

In response to this RQ, exploration is done via the creation of two vi-
sualizations as explained in Chapter 7. We adopt the existing visualization
used for BHS with WAS and also extend it by creating an end-to-end flows
showing the interrelation between pallets and trays.
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8.2 Warehouse Multi-dimensional Event Log

8.2.1 Objective

We aim to validate our multi-dimensional event log of warehouse data be-
cause this event log is the fundamental input that we use with the adopted
techniques for route and performance analysis. We examine if the event log
(traces for each item type) is correct with respected to the real system and
original data. Hence, domain expert and system documents involve in the
assessment of outcome.

8.2.2 Method

As validating each event is infeasible, we therefore focus on the following
points.

• Validity of start and end points of item lifecycles: this can be validated
by checking redundancy and overlap of start-end pairs of timestamp
across lifecycles.

• Uniqueness of identifiers indicating cycles: different lifecycle of item
should have unique identifier and this can be confirmed by visual in-
spection.

• Comprehensiveness of renamed activity: the new name should be from
the aspect of executing machine and understandable, where the under-
standability is assessed by the evaluation from a domain expert.

• Agreement of visualized pattern and actual known behavior: the con-
sistency between visualization of route summarization and system doc-
uments is investigated.

In addition, ProM, an extensive framework for process mining [14], is also
used to facilitate the validation.

8.2.3 Results

The evaluation suggests that the start and end points of item lifecycles have
been verified. No redundant or overlapping start-end pairs of timestamp
across lifecycles were found. Pallet and tray event logs are in line with
the actual process. Besides, the correctness of unique identifiers indicating
cycles has been verified. In addition, the proposed renaming method, which
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is based on aspect of machine, is qualitatively validated by a domain expert
who confirmed the satisfactory comprehensiveness.

Furthermore, the resultant behaviors appearing in the visualized route
summaries are in line with system and sub-system design documents, in-
terface requirement specification documents, and the concordance has been
confirmed by the domain expert.

8.3 Interesting Locations

8.3.1 Objective

We evaluate the soundness of the result from applying single-item techniques
by validating if the obtained interesting locations are sensible with respect
to the actual system. In addition, the interpretability of obtained interesting
locations is compared with BHS to assess the extent of transferability of the
techniques across domains.

8.3.2 Method

We examine the interesting locations of HL step called PALLET UNBUNDLE.
Hereby, we focus at activity and station of the location. Besides, its order in
HL step, frequency of occurrence compared with total cases, and the number
of clusters that it creates, are taken into account.

8.3.3 Results

Table 8.1 shows samples of interesting locations we used for analyzing the
validity. Significant characteristics of each location are included as remarks
in the table.

Table 8.1: Interesting Locations of HL step PALLET UNBUNDLE

• PalletFromStorage02ToUnbundle: we found that this location is vis-
ited moderately. No significant behavior could be observed from this
location.
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• CorrectStock@Unbundle07, CorrectStock@Unbundle08, and DefoilPal-
let@Unbundle04 : we find that these three locations are passed with
small number of occurrences, compared to other locations that execute
the same activity but at different stations. At the same time, DefoilPal-
let@Unbundle10 is selected because many pallets transit this location
more frequently than other stations.

• DestackPoolAndSlavePallet : this is the end location of all pallets. Hence,
all pallets must transit this location.

• PalletInPosition@Unbundle06 : this location has a prominent behav-
ior. It creates 62 clusters out of 82 clusters in our result. Then, we
further investigate on why this location generates a huge number of
clusters, and we consequently found the speciality of this location. We
mentioned in Section 3.3.1 regarding the variation of recording method
for an event, which we need to keep in mind during performing analy-
sis. This location records activities differently depending on the station
connecting to this location. In this case, PalletInPosition@Unbundle06
is occurred at manual station and it is recorded every button press-
ing, irrespective of the number of product’s layers on pallet. Hence,
the number of button pressing is diverse without any fixed number as
in automatic station that has maximum 20 layers; this leads to the
creation of non-meaningful clusters.

8.3.4 Discussion

According to the result shown in Table 8.1, it can be inferred that while
PCA can successfully compress data and preserve important characteristics
of process such as frequency of visit, it could also lead to inconclusive results
that are difficult to interpret.

In fact, there are considerable differences between warehouse and airport
system. A prime example is the number of locations in the system. Airport
has much lower number of locations and a set of activities might be mapped
toward only one or two locations, such as main and back-up conveyor belt
at the same location of the layout. This eases the interpretation of process
behavior. In contrast, the same set of activities in warehouse can be mapped
toward a wide range of locations in various stations (e.g. there are 11 unbun-
dle stations and 26 bundle stations). This limits the interpretability and is
due to the fact that warehouse has many parallel paths that either start or
end at the same location. In other words, the captured interesting locations
in warehouse system could not directly suggest the distinction of prominent
behavior between stations, as they have a same set of activities.
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Moreover, the results of finding interesting locations by K-means ap-
proach are highly sensitive to the coordinates of location instances in PC
space. Only one location closest to the centroid of each cluster is selected
with the presumption that this location would well represent the cluster and
provides useful insight, which may not always be the case. In contrast, the
location that is worth more interest might be located further away from the
centroid might not be picked up. This data-driven approach might subse-
quently yield the route clustering results (by applying multi-set abstraction
of interesting locations) that are less useful, especially when interesting lo-
cations are not really worth interest.

Although multi-set abstraction of interesting locations in a route is suit-
able for finding repeated actions or loop, the presence of such behavior might
not be prevailing in the context of warehouse or not in the scope of our data.
In particular, the repetition of actions might occur with empty tray or filled
trays but located in tray storage, which has been discarded in our study as
mentioned in Section 3.3.1. Besides, if pallet or tray indeed needs to transit
the same location, it often goes to another HL step and comes back later.
Hence, repeated activities within HL steps are scarce as shown in the visual-
ization. The limited existence of repeated actions or loop therefore questions
the suitability and importance of applying multi-set abstraction in warehouse
data.

In conclusion, although PCA, K-means clustering and multi-set tech-
niques work well with airport system due to high interpretability, the cross-
domain applicability is doubtful. Especially in our warehouse context, the
inference is hard to make due to system layout that has a plenty of parallel
paths. In addition, research questions are different across contexts. Never-
theless, the techniques can still provide some general patterns that might be
useful for certain analyses.

8.4 Common Route of Each Item

8.4.1 Objective

To evaluate the soundness of HL variants, top three HL variants of pallet,
tray, and the merged pallet-tray are investigated, together with the percent-
age they account for compared to the whole cases. The pattern should be
corresponding to the known behavior in the process, therefore a process engi-
neer is involved in the evaluation of the correspondence and providing useful
insights.
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8.4.2 Method

We select top three HL variants of pallet, tray, and the merged pallet-tray to
present current WAS item behavior and their interrelation. The pattern and
its occurrence of each HL variant is investigated and discussed with a process
engineer to confirm if it is sensible and reflecting system actual behavior.

8.4.3 Results

Pallet HL variants

Figure 8.1 shows the most frequent three pallet HL variants in WAS. The first
variant is the simplest pallet characteristic. Pallets enter the system, go to
storage and Unbundle Station at the end. In addition, Figure 8.2 illustrates
the proportion of HL variants. We could see that first HL variant covers 91.8
percent of all cases while the second and third HL variants combined cover
around 5 percent in total.

When we consider the second HL variant, we could observe that pallets
enter the system and then go to Clearing Station. After that, they come
back to inbound area, go to storage and Unbundle Station similar to the fist
HL variant.

Then, we check third HL variant, the route of HL steps are combined the
first and second HL variant, connecting by HL variant called PALLET LIFT.

With this observation, we could infer that a normal pallet tends to have
behavior that falls into the first HL variant more than others. Furthermore,
the first HL variant seems to be the optimal HL variant of WAS. However,
the optimal HL variant cannot automatically imply the optimum of actual
physical routes within the HL variant. There are more factors, such as actual
point-to-point execution time, number of visited locations and physical dis-
tance between locations, needed to be considered when assessing the optimal
operation. Our visualization is restricted to HL variant and therefore cannot
elaborate the details of LL physical routes. Therefore, the inference from
optimal HL variant to optimal LL physical routes cannot be confirmed.

Tray HL variants

Focusing on tray, the top three tray HL variants have interesting behaviors.
As shown in Figure 8.3, the three HL variants have highly similar HL steps.
The difference is when trays are reused at different bundle stations. Hence,
we could see from top three HL variants that trays usually start at unbundle
station then directly go to storage and eventually go to bundle station. If
trays are not empty, trays are forwarded back to the storage and sent to
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Figure 8.1: Top 3 Pallet HL variants

Figure 8.2: Pallet HL variants proportion

bundle station again depending on customers’ request. This happens until
trays become empty. Trays in the first HL variant are moved to bundle
station twice, whereas trays in the second HL variant are used once finishing
all the products. The third HL variant visits bundle station for three times
until trays become empty.

Then, we analyze the HL variants with their proportion in Figure 8.4, we
found that the first and second HL variants have slightly different percentage
of the occurrence (around 40 percent). This means that most of trays are
used once or twice.

Figure 8.3: Top 3 Tray HL variants
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Figure 8.4: Tray HL variants proportion

Pallet-Tray HL variants

Here, we consider end-to-end process. HL variant merges pallet and tray
and is called pallet-tray HL variant. Figure 8.5 shows top three of pallet-
tray HL variants. We consider pallet-tray HL variants together with the the
consideration of pallet and tray HL variants separately as explained in the
previous section. It is obvious that the first pallet HL variants (91.8 percent
of all pallets) are the first part of all pallet-tray HL variants connecting with
top three of tray HL variants.

Figure 8.5: Top 3 Pallet-Tray HL variants

8.4.4 Interpretation

Pallet HL variants

We discuss with process engineer about our observation on pallet HL vari-
ants. We received the confirmation that the first HL variant is within the
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Figure 8.6: Pallet-Tray HL variants proportion

expectation of the process engineer as it takes the shortest HL steps and
spends less time compared to other variants. For example, the second and
third variants have clearing activity. This activity occurs when pallet has
a problem that requires re-measurement, package ordering or other product
details which take time to be corrected, and the pallet is then sent back to
inbound area.

Tray HL variants

Based on the evidence that most of trays are used for once or twice, we
verified result with the process engineer and received the confirmation on
repetitive usage. There is no unexpected HL step occurring in our top three
HL variants, e.g. TRAY CLEARING representing incomplete products on
tray that requires a staff to manually check case by case. Moreover, the sys-
tem has been configured with the objective to maximize the use of products
in each tray. This is because if trays are not empty, it is necessary to allocate
some space in the storage, while the space is very limited in the warehouse.
In other words, reducing the number of times requiring the same trays to
be present at bundle station can increase the efficiency of warehouse space
management.

However, the number of times of using a specific tray is not the only factor
to optimize. Size and the number of products should also be considered.
Concerning only one aspect in the analysis for the warehouse could not cover
all dimensions of system behavior.

Pallet-Tray HL variants

Apparently, the order of tray HL variants in the second part of pallet-tray
HL variants are not same as top three of tray HL variants. This is because
the percentage of tray HL variant proportion between first and second are
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close to each other. After we create pallet-tray HL variant, the proportion
could be slightly changed due to the additional condition that leads us to
filter only trays with complete lifecycle and have interrelation with pallet.

8.5 Interrelation Analysis and Visualization

8.5.1 Objective

After understanding pallet-tray HL variant, next, we consider interrelation
between both items. We aim to find an interesting relation that could impact
the overall process.

We are specifically interested in the potential delayed operation of tray.
As can be seen from Figure 8.3, trays usually start at Unbundle station
then directly go to storage and eventually go to bundle station. The arrival
of tray at bundle station is purely dependent on the orders of customer,
which greatly vary. At this station, a tray delivers products to roll cages (by
customer’s order) but the time spent in each delivery varies by situations.
In normal operation, a tray is effectively used to deliver maximal available
products to a roll cage or deliver products to many roll cages in different
bundle station without going back to the storage. This usage can minimize
the total operation time. On the other hand, a delay can occur when the
requested products are out-of-available on the tray, which needs to further
request the products from pallets. Delay can also be caused by the placement
of tray storage in warehouse; unpopular products might be stored further
away from the bundle station, constituting the delay when relocating from
storage to bundle station. It can be noticed that the arrival of tray at bundle
station can occur for multiple times and the time difference between each
arrival can indicate the normal operation and the unusual delayed behaviors.
We therefore calculate the time difference between trays coming to bundle
station. If tray takes longer time to arrive bundle station than usual, we
speculate that the tray encounters a certain problem creating a delay.

The time spent is varying by situations. We regard the following situa-
tions as normal time difference:

1. A tray is used for multiple times at the same bundle station without
going back to tray storage. In other words, a roll cage in a particular
bundle station needs many units of products in the same tray. This
means that every time that machine takes product from tray to roll
cage, the system records this information. In this situation, the time
difference is around 3-10 seconds.
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2. A tray is continuously used at multiple bundle stations. This means
that many roll cages at different Bundle stations request the same prod-
uct on the same tray. The time spent is around 25-70 seconds depending
on the distance between bundle station.

In the delayed situation, tray might interact with pallet by requesting
out-of-available products from pallets as previously mentioned. Therefore,
we investigate the interrelation between pallet and tray to examine if the
interrelation can provide more insights on the delayed behavior.

After measuring the difference between the arrival of tray at bundle sta-
tion and knowing whether tray is in normal or delayed situation, we trace
back to the pallet that the tray has interaction with by using interrelation
table. As a result, we could see the end-to-end flow starting from the time
when pallet enters the system to product delivery from tray to roll cage(s).

Hence, we compare two trays that have the same pallet-tray HL variant.
One tray has normal time difference (10 seconds), named as normal situation,
and the other tray has irregularly long time difference of approximately 30
minutes (2,691 seconds), named as slow situation.

We further investigate the pallets and trays that are associated with a
specific roll cage that interacts the trays which are in normal and slow situ-
ations. This can be done by creating a new event log as explained next.

8.5.2 Method

The pallet-tray HL variant used for this comparison is the second variant in
Figure 8.5. The TRAY BUNDLE HL step occurs twice in this variant but
we analyze only the bundle activity that belongs to our selected tray which
is the second TRAY BUNDLE in this case. Afterward, we compare the flow
between these two trays.

Although multi-item visualization allows integrated illustration of the sec-
ond pallet-tray HL variant with average execution time, this visualization is
incapable of showing actual execution time for only particular pallet and
trays that are associated with the the roll cage of our interest. It is thus
inappropriate in our analysis. We, therefore, propose an alternative visual-
ization, namely multi-item visualization version 2, to illustrate actual time
spent for specific pallets and trays in separated lines, instead of showing
average execution time as in the traditional multi-item visualization. In
addition, the programming principle for multi-item visualization does not
provide flexibility for modification mainly owing to the technical limitation
of the programming function (in file access). The extension of multi-item
visualization to achieve our goal is therefore uneasy.
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Instead, multi-item visualization version 2 is rooted from single-item vi-
sualization, which allows greater extent of modification. Extended from the
previous version that does not consider interrelation between items, we filter
only the pallets and trays that are associated with a specific roll cage that
interacts the trays which are in normal and slow situations. Then, this fil-
tered event log is used as an input of single-item visualization. As a result,
we focus only the first pallet HL variant as shown in Figure 8.1 and the first
tray HL variant as mentioned in Figure 8.3 for single-item visualization.

Indeed, we can filter our event log to remain only pallet-tray pairs of
interest directly. However, having all pallet-tray pairs for a roll cage could
provide us more information for further analysis. This allows a comparison
between normal and slow situations and also the pallets and trays within the
same roll cages under same HL variant. Consequently, we can see behavioral
patterns or overall performance relevant to a particular roll cage in each
situation, not only a single pallet-tray pair creating normal or slow situations.

Filtering yields significantly lower number of pallets and trays, providing
more space for drawing connections between nodes in visualization. Unlike
single-item visualization that merges the number of all pallets or trays with
the same start and end points as one single line, our modified visualization
shows all lines separately allowing us to specify traces in normal and slow
situations.

Moreover, as the single-item visualization shows pallet and tray sepa-
rately, we need to manually connect both visualizations to illustrate the
end-to-end flows and investigate the difference between our normal and slow
situations which could be seen in Figure 8.7.

8.5.3 Results

Figure 8.7 shows the resultant visualization. Hereby, nodes represent loca-
tions (start and end locations in each route) and clusters. Edges represent the
connections among start location, cluster and end location, and color-coded
by individual execution time in seconds. Similar to single-item visualization,
the connection between start node to end node via cluster node represents
the route from a starting point to an ending point of the route in a specific
HL step, and the traverse (in visualization) via cluster node shows the cluster
to which the route belongs. It should be noted that some clusters are not
related to the route that we are considering, yielding no edge connecting the
cluster nodes; these clusters are kept for the sake of simplicity but should be
ignored.

The yellow-highlighted routes are the routes that have the normal tray
and slow tray going to Bundle stations. It can be noticed that there is only
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one pallet and tray for normal situation, and five pallets and four trays for
slow situation under the same pallet and tray HL variant. Note that the
numbers of pallet and tray are not required to be equal. One pallet could
distribute products to multiple trays and all trays can be bundled to any roll
cages under the same or different HL variants. In this example, one missing
tray has a different tray HL variant. Hence, we do not show it in this figure as
we focus on specific pallet and tray HL variant for single-item visualization.

Next, we conduct our analysis by investigating the significant differences
between the situations. We find two prominent differences as highlighted in
the red rectangles. Scenario a. encompasses pallet-related route at Pallet
Storage. The pallet of normal situation has dark green edges taking around
90-350 seconds while slow situation has orange edges having executing time
around 65,000 to 90,000 seconds. The pallet of slow situation stays in Pallet
Storage significantly longer than normal situation. Moreover, when investi-
gating other pallets in slow situations, there are also other pallets staying
in the pallet storage longer. More routes should be included in a further
analysis to confirm the generalizability of this evidence.

Afterward, we consider the second TRAY BUNDLE in scenario b. and
observe that the tray in normal situation goes from Tray Storage to Bundle
station at a much faster speed than the tray in slow situation. The tray in
normal situation takes around 90-350 seconds while the tray in slow situation
spends around 750-10,000 seconds in just relocation. Moreover, we further
compare other trays belonging to the same roll cage in the slow situation.
We found that only the tray highlighted in yellow takes significantly longer
time than others.

Figure 8.7: Multi-item visualization version 2, comparing normal situation
and slow situation.
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8.5.4 Discussion

We verify our findings with the process engineer whether these findings create
new insights or more information is needed to uncover implicit reasons after
applying the proposed techniques. The scenario a. in Figure 8.7, which
suggests the pallet in the slow situation takes significantly longer time than
normal situation, is informed and could draw the attention of the process
engineer evidenced by the returned opinion that the delay might be caused by
the activities in Pallet Storage. However, there might be storage management
plan at that moment that makes the pallet stays in the storage longer than
usual but it may not be the reason that makes tray arrive bundle station late.
However, for scenario b. in the same figure, the informed process engineer
could not provide strong opinion due to the limited information and the lack
of clarity.

Hence, additional information is needed for further investigation. Only
time spent in the storage per HL variant may not provide adequate infor-
mation because we could not explicitly identify or uncover implicit reasons
underlying these situations in the investigation on the impact of pallet on
tray. Moreover, the visualization obtained from single-item process might
not be suitable for interrelation analysis in multi-item process because it
could not reveal beneficial information for finding the root cause. Besides,
the performance measures that are used to encode color of edges are calcu-
lated by average execution time. A modification to allow the visualization
to show a separate line for each actual execution time, such as in multi-item
visualization version 2, is necessary.

To conclude, it can be seen that the existing visualization for single-item
process and the extended version are good but not perfect in warehouse
context which has interrelation between items. It cannot provide intuitive
representation of process and may require some extra work to allow extensive
analysis. More importantly, we could not give any solid reason on why partic-
ular trays are delayed. We need extra information for interrelation analysis,
where investigation only on average time of performance by HL variant is
not sufficient. However, both visualizations still provide numerous benefits
especially on allowing us to oversee the general system behavior – on which
trace pallet and tray flow from start until the end of the process.
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Chapter 9

Conclusion

In this chapter, we summarize the outcome of this study. We first conclude
the contributions in this project in Section 9.1. Then, we discuss pros, cons
and the limitation of our proposed solutions found during conducting the
experiment in Section 9.2. Finally, we provide recommendation for WAS in
9.3 and explain the potential future work in Section 9.4.

9.1 Contribution

In this section, we conclude our contributions and elaborate how they could
help achieve our research goal. Our contributions include:

• Data Abstraction

We provide a conceptualization of WAS that has complex un-structured
data. We first provide the explanation of warehouse process. Then,
we identify key items in the process (pallet and tray), create lifecycle
models, and explain the hierarchy of the process both at high and low
levels.

• Multi-Dimensional Event Log

We define the methodology for data extraction. We start from creating
unique identifiers and then identify the relation among message tables
for connecting data through the whole process, associate lifecycle and
the data, and discover the interrelation between items to comprehend
work handover between pallet and tray.

• Applicability of Single-item Techniques with Multi-item Process

We connect multi-dimensional event log with the existing single-item
techniques used with BHS in Vanderlande. The techniques used in this
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study include PCA, K-means clustering and multi-set for route and
performance analysis.

• Extended Visualization for Multiple Items

We adopt the existing visualization from BHS, capable of showing route
clustering and performance in different path of the system for one item,
and we extend the visualization to be able to show multiple items and
their interrelation within one visualization for multi-item process like
WAS.

9.2 Discussion

After we analyze the yielded results from our proposed solutions, we could
conclude that the artifact-centric approach used to generate multi-dimensional
event log works well with multi-item data as in WAS. It facilitates the sep-
aration of different items records, creation of end-to-end event log by items,
and finding the interrelation between items.

Considering the single-item techniques applied to WAS, these techniques
could be used for route and performance analysis. However, it creates dif-
ficulties for interpretation in warehouse context. The interesting locations
obtained from PCA and K-means clustering are selected in data-driven ap-
proach without incorporation with ground-truth knowledge. The speciality
of the chosen locations cannot be clearly identified or speculated; it may
lie beyond our current knowledge on system behavior, making the results
difficult to interpret. The inclusion of these locations when subsequently
applying multi-set abstraction considerably affects the consequent clusters.

Next, the number of items to be displayed in the visualization, currently
used with BHS, is limited to one. Hence, we could use this visualization
to gain more understanding on either pallet or tray behavior but not on
the end-to-end process that has both pallet and tray. Consequently, the
extension is required to present all items and their interaction in the system.
After we extend the visualization, overall behavior of the whole process is
apparent. However, it is not suitable for interrelation analysis because the
visualization is implemented to understand the routes at high level. Finding
the interrelation for some specific pallets or trays is not possible and requires
some extra works to be able to perform further analysis such as checking
data, filtering event log, calculating time different of tray at bundle station.
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9.3 Recommendation

The data recorded in WAS is logged as a communication message between
machines. This makes data structure complex with mixed information of
many items within each table. With this complexity, it requires inputs from
domain expert throughout the whole process of data transformation, invest-
ment of time to understand the whole data structure, and performing many
manual works to enable finding the relation among tables for a specific system
(Dutch supermarket). If studies are conducted on WAS but at a different
area from this project, it is necessary re-invest considerable time for data
transformation again.

A possible solution is to change the approach that system records data.
There are some solutions that could potentially reduce the effort needed for
data transformation as follow.

Item Data Separation

The first possible solution is to separate different item records in different
table. As the current system mixes pallet and tray records in a transportation
message table, if the system could separate this message into two independent
tables for pallet and tray, we could reduce the step and time of data pre-
processing.

Unique Identifier

One main problem is that items in the system could be reused and the
identifiers of these items are unchanged. As a consequence, we could not
distinguish the behavior of the items in each cycle. Thus, the system should
be able to generate a new identifier when each item enters its new lifecycle.

Non-duplicate Activity Name

There are some activities recorded in WAS having identical name but re-
ferring to different actions in the system. With different characteristics, we
could not conduct the analysis by using one assumption or single approach
while handling data because this could cause a confusion during the analysis.
Moreover, statistics (e.g. average, minimum, maximum) derived from this
step might be incorrect and lead to misleading results.

A possible solution is to have an identical activity name representing an
indistinguishable action. Hence, understanding data could be more straight-
forward without extensive reliance on domain expert clarifying the activity
from different stations, items, and message tables.
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9.4 Future Work

In this research, we use various approaches to create multi-dimensional event
log and analyze route and performance by applying existing techniques. The
results are encouraging future research opportunities that would extend our
analyses.

9.4.1 Context Analysis

In this study, we are mainly interested in route and performance analysis by
using traces and averaged execution time of different HL step to visualize
pallet, tray and their interrelation. We understand the system overview but
we could not adequately explain or find underlying reasons for the impact
of one item on another item, such as the delay of tray caused by the delay
of pallet, handover activities between pallet and tray having an impact on
the performance. Thus, relying on two attributes may not be sufficient to
determine a root cause, especially for pallet and tray interaction.

Having only a few attributes in the analysis for the warehouse could not
cover all dimensions of system behavior. To enable further investigation, it
is advised to perform a root-cause analysis by considering another data con-
text. Future research might include additional contextual information such as
product description, quantity, package size and dimension. The information
might shed a light on the underlying reason why the delay occurred, whether
the product creates a different execution time considering its quantity, the
number of product layers on pallet or the number of products contained in
a tray.

9.4.2 Improving High-Level steps

A certain high-level step can generate overwhelming clusters due to many
possibilities of usage. Unlike trivial clusters in Section 6.4, its behavior may
still contain meaningful information making it worthy to be analyzed and
redefined.

For instance, a tray may be reused for many times as the number of
items to be picked up in a single deliver varies by incoming order. The total
possibilities of tray usages, calculated from all sub-traces that belong to the
same high-level step, create the tendency of gaining excessive clusters that
may hinder interpretation.

A possible solution is to perform clustering per each time of tray us-
age based on the sub-traces yielded from “unrolling” the long trace by the
chronological order of tray usage. The diversity of sub-traces is expected to
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be lower than all original traces, resulting in the lower number of clusters
that might be appropriate for finding insights.

9.4.3 Visualization

Current visualization is implemented based on HL variant coming from a
collection of chronological HL steps. By showing HL process, the analysis
on item interrelations is difficult as the visualization could not show specific
pallets or trays of interest. In a future analysis, it would be beneficial to
create a new visualization capable of showing LL process. This would enable
the capability to specify pallet or tray with significant delayed execution
time, thus allowing in-detail analysis to understand the interaction between
items and their impacts in WAS.
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Appendix A

Acronyms

WAS Warehouse Automation System
BHS Baggage Handling System
CRISP-DM Cross Industry Standard Process for Data Mining
HL High Level
LL Low Level
PCA Principle Component Analysis
RQ Research Question
LES Log Extraction Specification
TsuID Transportation Unit Identifier
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