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Abstract

Electronic health records (EHRs) are recognised as a valuable source of data to support a wide
range of health-care informatics use cases. Psychiatric EHRs contain information regarding the
mental health status of patients in a free-text form. The goal of this thesis is to implement
and evaluate suitable text processing pipelines for Dutch clinical EHRs. In particular, this thesis
focuses on using NLP techniques along with Classical Machine Learning and Deep/Transfer Learn-
ing frameworks to predict involuntary admissions for patients with severe psychiatric disorders,
preferably in advance. The main challenges encountered in this study pertain to working with
clinical free-text, which usually involves different writing styles, varying text lengths, non-standard
vocabularies, and a lack of rich annotations; and working with a very small and highly imbalanced
data-set. We explore Support Vector Machines, Logistic Regression, and Decision forest classifiers
from the Classical Machine Learning methodologies. Then, we explore transfer learning using
the state-of-the-art pre-trained Dutch-BERT model. Furthermore, a novel fine-tuning approach
based on Siamese Learning is proposed for fine-tuning the BERT architecture in order to classify
small and highly skewed data-sets. Based on our experiments, we observe that performance better
than random guessing can be achieved for the prediction task when using both, classical machine
learning and deep transfer learning methods. We find that the classical machine learning meth-
ods outperform the deep transfer learning models as classifiers. For the deep transfer learning
models, we note that in terms of model quality, the Regular and Siamese fine-tuning approach to
train models as feature extractors and using classical machine learning classifiers results in better
model performance than directly fine-tuning a classification model; and can be explored further
for classification.
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Chapter 1

Introduction

Mental health disorders refer to a wide range of mental health conditions such as depression, anxi-
ety disorders and schizophrenia, that affect a person’s mood, thinking and behavior. The use of
coercive measures such as involuntary admission is sometimes inevitable in managing dangerous
and severely disturbing deviations of behavior that can manifest as violent, suicidal, and many
other inappropriate tendencies. Although the exact definition of compulsory or involuntary ad-
mission might differ from country to country depending on the judicial context, an involuntary
admission is always an admission against the will of the patient. This measure is usually employed
in emergency situations where there is a high risk of danger to the patient or others and immediate
treatment is necessary.

In the Netherlands, the Law for special admissions in psychiatric hospitals, Bijzondere Opnem-
ingen Psychiatrische Ziekenhuizen (BOPZ), primarily regulates admission and allows coercive
interventions to some extent under strict conditions. The law contains two different sections de-
scribing the procedures of involuntary admission. The first relates to Inbewaringstelling (IBS) or
short-term involuntary admission because of immediate danger for the patient himself or others
and has to be initiated by the mayor, accompanied by a written certificate of a physician. The
other procedure Rechterlijke Machtiging (RM) is mandated by a judge and concerns long-term
admissions aiming at treatment of patients who suffer from a severe psychiatric disorder leading
to danger for others or self, including severe self-neglect or social breakdown [Steinert et al. 2014].

Coercive measures in psychiatry are a controversial topic and raise ethical, legal and clinical
issues. Involuntary admission of patients is a long-lasting problem and indicates a problematic
pathway to care situations within the community, largely because personal freedom is fundament-
ally covered by the UN declaration of human rights. Thus, there is widespread consensus that
compulsory measures in psychiatry have to be considered only as measures of last resort when no
other less restrictive alternatives are available [Jungfer et al. 2014].

Electronic health records (EHRs) are recognised as a valuable source of data to support a
wide range of secondary informatics use cases, such as clinical decision support, observational
research and business intelligence [Jensen et al. 2012]. Unlike other disciplines, free text is a
key means to record information in mental healthcare as there are few laboratory tests that can
describe symptoms and their severity (unlike, e.g., measuring the blood pressure for hypertension).
While common conditions in mental health are represented in classification taxonomies such as
the International Classification of Diseases (ICD) and Diagnostic and Statistical Manual(DSM)
systems, generally speaking, it is the symptomatology of a condition that is used by clinicians
to determine an appropriate treatment plan. Even when specific instruments and tests (e.g.,
mini mental state examination) are used, they are most often reported in free-text narrative.
Mental healthcare therefore mainly relies on textual descriptions of symptoms, which are then
inspected, interpreted, and assessed by health professionals in order to understand the type and
the severity of the disease [Karystianis et al. 2017]. The free text portion of the EHR contains
valuable clinical information which to date has not been effectively utilized for research or clinical
evaluation. The key question we explore in this thesis is whether we can use machine learning
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CHAPTER 1. INTRODUCTION

techniques to automatically process such clinical notes from the EHR in order to predict the need
for involuntary admission for a given patient in advance. Such advance predictions can then be
used for preemptive patient care such that the need for coercive treatments can be minimized.

1.1 Business Understanding

Antes is a non-profit mental healthcare institution based in Rotterdam, The Netherlands, that spe-
cializes in psychiatry and addiction. Since late 2017, Antes and Parnassia Groep (Bavo Europoort)
have merged with the aim of jointly improving mental health care in the Rotterdam-Rijnmond
region, South Holland Islands and Drechtsteden. The three core values of Antes are : Knowledge-
able, Optimistic, and Respectful. The mission is to provide people with mental health problems
with the right care, at the right time, and as intensively as necessary but no longer than neces-
sary. Treatment is focused towards the recovery of adults and the elderly with serious psychiatric
disorders. Antes aims at minimizing serious consequences of mental illness so that patients can
regain and maintain control of their lives, and enter into social relationships according to their
wishes and participate in society.

Schizophrenia and bi-polar disorder are the most common psychiatric conditions that are
treated at the institution. Treatments are offered as in-patient and out-patient options and the
intensity of treatment varies according to the severity of the condition. In certain patients, the use
of coercive measures such as involuntary admission is sometimes inevitable in managing dangerous
and severely disturbing deviations of behavior that can manifest as violent, suicidal, and many
other inappropriate tendencies. Identification of such patients in advance can have clinical and
policy implications for patient care, program development, and service planning.

The procedure followed at Antes for an involuntary admission is as follows: Patients with
severe psychiatric disorder(s) are treated by a treating psychiatrist. In case this psychiatrist is
of the opinion that a patient may need immediate involuntary admission, a second opinion is
sought by requesting another examining psychiatrist to evaluate the patient. This psychiatrist is
neither aware of the patient history nor has access to the patient’s medical records. If the patient
is evaluated to be of imminent danger to himself/herself or others, the examining psychiatrist
prepares a medical certificate or ’geneeskunde verklaring’ for the patient and sends it to the
Mayor of the municipality of the patient. After receiving the medical certificate, the Mayor
consults with the examining psychiatrist and signs the detention order if it is decided that an
involuntary admission is required. The patient is then immediately admitted to the mental health
facility.

In the Netherlands, there is an accelerated increase in the number of involuntary admissions
seen in recent decades [Mulder et al. 2006], leading to many undesirable consequences. Many
patients are not able to receive timely access to mental healthcare as they are placed on long wait-
lists. Additionally, the number of available beds are insufficient to cater to the patient demand.
This places a burden on the government budgets to allocate more funds towards mental health-
care. Government agencies and health insurance companies may also demand for efficient and
transparent use of available resources. In this context, there is a need for preventive and preemptive
measures for better patient outcomes. If high risk patients can be identified in advance, appropriate
interventions can be designed that reduce the number of involuntary admissions, deliver care to
the patients that need the most, and ensure better utilization of resources.

In the context of a need for advanced identification of critical patients and the status of mental
health-care in The Netherlands, Antes aims to determine whether it is possible to use EHR data
to predict an involuntary admission before it occurs. If such an approach works, then the extra
time can be utilized by the treatment staff to work out a ‘crisis’ plan and prevent the involuntary
admission.

2 Siamese Fine-tuning of BERT for Classification of Small and Imbalanced Datasets, Applied to
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CHAPTER 1. INTRODUCTION

1.2 Problem Description

Current research in processing text data is mostly focused on the English language and existing
state-of-the-art classifiers are based on using data-sets with ample amount of training examples
and balanced class distributions [Friedman et al. 2013]. Given a critical problem like predicting
adverse outcomes for psychiatric patients, and a small real-world clinical free-text data-set in the
Dutch language with a highly skewed class distribution, we aim to investigate the possibility of
developing a machine learning framework that can be used to predict involuntary admissions in
psychiatric patients, preferably in advance. We investigate the use of data driven methods for
this task, such that there is no need for psychiatric domain knowledge and specially hand-crafted
features with the hope that the method may be applicable to broader areas of research and not
just limited to this data-set in particular or only Dutch mental healthcare in general. To this end,
we explore using NLP techniques to extract information from unstructured data and then using
machine learning algorithms to perform the required analysis.

1.3 Research Challenges

Research in analyzing clinical free-text data is challenging because the data is usually imbalanced
with respect to the class of interest [Pereira et al. 2015]. There is also a lack of publicly available
data-sets and current research is conducted on private institutional data [Wang et al. 2018]. Such
data tends to be smaller when compared to data used in general NLP research, and thus presents
another challenge when working in the health-care domain.

While unstructured clinical texts store a lot of valuable patient information, they are very
subjective to the doctor or the nurse writing them and lack common structural frameworks. There
could also be many errors related to language use such as improper grammatical use, short phrases,
local dialects, and semantic ambiguities, which increase the complexity of data processing and
analysis. A related challenge includes the extensive use of negations to rule out clinical signs and
references to subjects other than the actual patient.

For our study, some critical challenges that may possibly undermine the performance of machine
learning(ML) algorithms are the use of abbreviations, the particular writing style of the clinician,
whether multiple persons make observations on the same patient, and patient behaviours/outcomes
related to the person making the observation itself.

While commonly recognized abbreviations from the medical literature can be incorporated and
accounted for by an ML algorithm, use of personal and custom abbreviations that are specific to
a clinician becomes difficult to analyse without input from the person that made the observation.
This issue becomes complicated if multiple persons use multiple personal abbreviations to make
observations on the same patient.

Since there is no established structural framework or a specific vocabulary for reporting patient
observations, the writing style used by the clinicians varies considerably. This variation in style
itself may introduce variations in the degree of severity of the symptom that is recorded in the
EHR. Additionally, the severity of a symptom is based on the subjective perception of the clinician.
For instance, one clinician may record a facial expression as ’sad’ while another may record it as
’mildly depressed’. It is possible that certain clinicians tend to either over-estimate the severity
and recommend an involuntary admission or alternatively, under-estimate the severity and fail to
identify a patient that needed an involuntary admission. The problem gets compounded when
different clinicians with different writing styles make notes on a single patient. Thus, it becomes
difficult for a ML algorithm to learn to predict correctly.

In rare cases, it is also possible that a patient reacts differently in the presence of different
clinicians that results in different mental health evaluations for a patient. This again introduces a
modelling challenge since the data and outcome would differ based on the clinician.

In these above mentioned cases, the clinicians may become confounding factors. They may
affect the data and the outcome and introduce spurious associations.The fact that multiple con-
founding clinicians may make observations only makes it more confusing for a ML model to learn
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and predict correctly.
Furthermore, it should be noted that in practice, a patient is evaluated for involuntary admis-

sion by a psychiatrist who has no information about the patient’s history. The patient’s reference
to involuntary admission is not made based on the EHR text but on the perception of imminent
danger by a non-treating psychiatrist.

The rest of this thesis is organised as follows: Chapter 2 provides a literature review of related
work in the domain of mental healthcare and an exploratory analysis of suitable NLP tasks,
classical machine learning, and deep learning methodologies that may be explored in this thesis.
Chapter 3 gives a description of the data-set provided by Antes Groep that we use for the prediction
task. In chapter 4 we describe the methodological frameworks that we explored for our research.
Section 4.2 provides a description of the various NLP tasks that were used for pre-processing the
raw text data, and making it suitable for use by machine learning algorithms. Then, in section 4.3
we present various classical machine learning and deep learning frameworks that we considered
suitable for the prediction task. We present our proposed Siamese Fine-tuning approach in this
chapter. Then we present our experimental setup and results in chapter 5. We conclude the thesis
by reflecting over the contributions and limitations of this work, and possible future research
directions in chapter 6.
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Chapter 2

Literature Review

Using natural language processing (NLP) techniques along with machine learning algorithms to
analyze data from EHRs is emerging as a promising approach for applications such as the identi-
fication of health conditions [Melton and Hripcsak 2005] and prediction of adverse outcomes such
as post-operative complications [Murff et al. 2011].

2.1 Research on using EHR data in Mental Healthcare

In the mental health domain, there have been studies for predicting psychiatric admissions [Fried-
man et al. 1983; Lyons et al. 1997; Olfson et al. 2011] but these make use of structured variables
like medical codes, patient demographics, medication history, and other risk factors. Research on
suicide risks indicates that the predictive value of combinations of risk factors obtained from struc-
tured EHR fields becomes asymptotic due to the risk conferred by multiple risk factors being less
than the sum of each individual risk factor [Conner et al. 2012]. Therefore, extracting information
from the unstructured clinical texts present in the EHR may help to build more useful prediction
models in the mental health domain.

Free-text along with patient demographics and structured variables from the EHR has been
used in performing diagnosis of suicide [Cook et al. 2016] and depression [Huang et al. 2014]. How-
ever, these models were used to differentiate patients that were likely to have mental issues from
patients that were mentally healthy. In such a scenario, structured variables such as medication
history, patient health questionnaires, and demographics are likely to have sufficient discrimin-
atory power for the particular analysis. For predicting involuntary admissions in patients with
schizophrenia and bi-polar disorders, structured variables may not have enough discriminatory
strength as all patients are already diagnosed with the disorder and are likely to have similar
values for the structured variables. Additionally, the use of demographic data in such a scenario
may increase the risk of introducing unintended bias into the model.

Clinical observations and notes made by nurses, doctors and other health-care professionals
in a free-text format are likely to contain valuable information that may help with predicting
admissions since deviations from some normal behaviour precipitate the need for involuntary
admissions. Such deviations are highly likely to be recorded in the patient’s case record. Research
using unstructured text from the EHR for mental health-care is still in its nascent stages and there
have been very few studies in this area. Suicide risk among veterans was predicted using only the
free-text from the EHR by Poulin et al. [2014]. More recently, Menger et al. [2018b] used clinical
text for predicting inpatient violence incidents in treatment facilities. In this study, we contribute
to this very nascent research area by investigating the use of EHR text to predict involuntary
psychiatric admissions.

Clinical NLP systems are built on the foundation of words or phrases as medical terms to
represent the domain concepts and understanding the relations between these identified concepts
[Demner-Fushman et al. 2009]. Traditional NLP tools follow a knowledge-driven methodology
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based on semantic and lexical rules combined with manually constructed dictionaries [Eriksson
et al. 2013]. It has often been necessary for a new NLP tool to be developed or adapted for each
medical database, and even for each clinical question, when processing EHR free-text [Ford et al.
2016]. This is labor intensive, as it requires significant clinical knowledge and also requires that the
tools be tested on significant amounts of text annotated by human experts. In the present study,
since there is a lack of specialist domain knowledge and specially annotated text, we use NLP
techniques to pre-process the data into a form that can then be used by more general classification
algorithms. NLP methods like tokenization, stop word removal, and part-of-speech tagging can be
used to pre-process the text to identify terms or relations depending on the context and analytical
goals [Manning et al. 2008]. Next, the text can be represented in terms of appropriate features.
Then suitable data mining techniques are used to perform the analytical task.

The most successfully used methods for text mining in general and mining EHR data in
particular are support vector machines(SVM), logistic regression, naive Bayes, and decision trees
[Abbe et al. 2015; Aggarwal and Zhai 2012]. For this study we start by exploring some of these
classical machine learning methods in order to examine their suitability for use in our clinical
data-set, as well as to establish a reference for baseline model performance against which we could
compare other proposed solutions.

2.2 Deep Learning and EHR Data

While the use of classical machine learning methods has been widely established in classification
tasks, novel Deep Learning [Hao et al. 2016] techniques have also been utilized recently for text
classification. In exploring EHR data, various Deep Learning techniques act as powerful feature
discriminators and show promising results for applications such as information extraction, outcome
prediction and de-identification [Shickel et al. 2017]. When dealing with text data, the classical
methods do not generalize well to new texts which may include words that were not used to train
the model. On the other hand, deep learning techniques like Convolutional neural networks(CNN)
[LeCun et al. 1995] and Recurrent Neural Networks(RNN) [Elman 1990] that make use of dense
word embeddings to represent text are able to generalize well to words not seen in the training
vocabulary [Goldberg 2016]. An additional advantage of using deep learning techniques is that
they can analyze text as a sequence of words, allowing for a richer representation of the input. In
contrast, the popular Bag-of-Words(BOW) model [Manning et al. 2008] used to represent text for
classical machine learning algorithms completely disregards the order of words.

For text classification, RNNs process a text sequentially, learn an internal fixed sized encoding
of the input, and determine class based on this encoded representation. Similarly, CNNs also learn
a fixed encoding of the input but do so by using the convolution operator on the input sequence,
applied in a sliding window manner. While CNNs are an improvement over the BOW model,
they are sensitive to mostly local patterns and not to the order of patterns that are far apart in a
sequence. RNNs are capable of paying attention to structured patterns across the entire sequence.
Since the present study uses clinical notes for prediction, it is expected that information may be
spread out over the entire text and hence RNNs may be more suitable. For the present study, since
we have a very small data-set, training CNN and RNN models from scratch becomes unfeasible,
and we turn to using deep transfer learning approaches instead. Next, we briefly describe the
problem of imbalanced data-set classification before moving on to transfer learning.

2.3 Classification of Imbalanced Text Data

Imbalanced classification is a challenge in text classification and although many strategies have
been proposed in the non-text domain, they were not effective when applied to text data [Sun
et al. 2009]. The commonly used strategies are: (i) resampling: under-sampling negative examples
or over-sampling positive examples to re-balance the training examples; (ii) instance weighting:
assigning different error-classification costs to negative and positive training examples during clas-
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sifier training; and (iii) thresholding: adjusting decision thresholds of a classifier to balance the
precision and recall. Experiments by Sun et al. [2009] showed that the best decision surface was
often learned by the standard SVM, without any of the proposed strategies. Hence, we investigate
the use of the standard classical machine learning classifiers for this study, and explore transfer
learning for further improvements in classification performance.

2.4 Transfer Learning

The problem of classifying small data-sets can be approached using transfer learning [Aggarwal and
Zhai 2012]. In this framework, knowledge is extracted from some auxiliary domain to help improve
the learning in a target domain. In the context of using classical machine learning algorithms for
text classification, we find that such cross domain transfer learning starts with the underlying
assumption and requirement that the data are represented with the same feature space for both
auxiliary and target learning domains. Since our study uses psychiatric clinical text in Dutch, it is
extremely difficult to find a suitable auxiliary data-set for cross domain transfer learning. Hence,
we turn towards deep transfer learning in order to find a solution that does not need such suitable
data-sets.

2.5 Deep Transfer Learning in NLP

Transfer learning in deep learning networks is different from that in classical machine learning
methods and may be considered for use in text classification. Features in deep neural networks
in computer vision(CV) have been observed to transition from general to task-specific from the
first to the last layer [Yosinski et al. 2014]. Therefore, most transfer learning methods in CV focus
on transferring the first layers of the model [Long et al. 2015]. Razavian et al. [2014] achieved
state-of-the-art results using features of an ImageNet model as input to a simple classifier. This
approach was superseded by fine-tuning either the last [Donahue et al. 2014] or several of the last
layers of a pre-trained model and leaving the remaining layers frozen [Long et al. 2015].

Transfer learning research in deep learning related to NLP is largely focused on fine-tuning
language models with pre-trained word embeddings [Mikolov et al. 2013]. While this approach has
had a large impact and is used in most state-of-the-art models, word-embeddings are used only
in the first layer and the entire model needs to be trained from scratch using a large number of
examples. In addition, Mou et al. [2016] find that the transferability of a neural network model in
NLP largely depends on the semantic similarity of the tasks and leads to catastrophic forgetting
in case of dissimilar tasks. They also find that the output layer is mainly specific to the data-set
and is not transferable. For our study, since pre-trained clinical psychiatric word embeddings in
the Dutch language are not publicly available, we search for other transfer learning techniques
instead.

Howard and Ruder [2018] introduced Universal Language Model Fine-tuning (ULMFiT), an
effective transfer learning method that can be applied to any task in NLP, and introduce tech-
niques that are key for fine-tuning a language model for a new task such that the model does
not forget what it previously learnt. The language model is first trained on a large amount of
general data and then fine-tuned for another task. Training a language model requires a lot of
computational power which is out of scope of a master project and hence this type of transferab-
ility cannot be considered due to feasability reasons. In addition, the publicly available ULMFiT
model is trained for English and hence is unsuitable for a Dutch data-set. Eisenschols et al (2019)
introduced Efficient Multi-lingual Language Model Fine-tuning (MultiFit) for language modelling
beyond English [Eisenschlos et al. 2019]. However, a model for Dutch language is still not publicly
available.

More recently, pre-trained language models such as BERT (Bidirectional Encoder Represent-
ations from Transformers) have shown to be useful in learning common language representations
by utilizing a large amount of unlabeled data [Devlin et al. 2019]. BERT uses transformers based
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on bidirectional conditioning to learn contextualized word embeddings [Peters et al. 2018]. When
compared to embeddings such as word2vec and GloVe that capture only semantic and syntactic
relationships, BERT computes contextualized embeddings that are able to also take into account
the context of a word. Thus, BERT language models are able to handle polysemy as well.

Sun et al. [2019] demonstrated that BERT models could be fine-tuned to achieve state-of-the-art
results in classification tasks on English data-sets. They also demonstrated its usability for as few
as 200 training examples. However, these tasks were performed on balanced data-sets. Recently,
multilingual BERT models have been made public and hence a BERT language model exists for
the Dutch language. For our study, we would first investigate whether a general language model
like BERT(Dutch) could be used as classifier for a clinical data-set in Dutch. Further, inspired
by one-shot learning for image classification using the Siamese architecture where a model learns
discriminative features using very few training examples [Koch 2015], we propose to investigate
whether such an architecture could be used for classifying our small and imbalanced text data-set.
To handle the problem of class imbalance, we propose to fine-tune BERT(Dutch) using Siamese
learning and then use it as a document feature extractor. The fine-tuned model can be used to
represent documents in the form of embeddings and these document representations can then be
used as input features for use in a simple classical machine learning classifier like an SVM.

2.6 Conclusion

We find that there is no other study that investigates using free-text from the EHR to predict
involuntary admissions in patients with severe psychiatric illnesses. We would be the first to
investigate this prediction objective in general, and for Dutch clinical texts in particular. Due to
the lack of a richly annotated data-set incorporating expert psychiatric knowledge, it is decided
to limit the use of NLP techniques to the data pre-processing stage and to use more general
classification algorithms for the prediction task. Next, we find that the challenge of working with
a small and highly imbalanced data-set could also be approached using the state-of-the-art deep
transfer learning approaches. In this regard, pre-trained BERT language models could be used
as classifiers and feature extractors to investigate their predictive potential. Classical machine
learning algorithms can be used as a baseline to evaluate the performance of the deep transfer
learning models.
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Chapter 3

Data Description

In this chapter we provide a detailed description of the data-set that we used in order to train a
model that can predict involuntary admissions. We also provide an overview of the privacy, legal
and ethical considerations that were taken into account.

The data for this study was provided by Antes Groep. Patients diagnosed with schizophrenia
or bipolar disorder were selected for this study. These patients were in contact with Antes for
at least 30 days in 2016. They were followed through the years 2017, 2018, and 2019 to check
whether an involuntary admission took place. The patients were then divided into two groups:
patients with and without involuntary admission. The health records starting 2016 could be
extracted from the EHR system for analysis. Many patients with involuntary admissions in 2016
had historical records but these records were in another format and could not be extracted for
analysis. Therefore, patients with involuntary admissions in 2016 were excluded from the analysis
so that sufficient historical data was available. Nine advance prediction time-frames corresponding
to 0, 3, 7, 10, 14, 30, 60, 90 and 180 days before involuntary admission were selected for the analysis.
These time-frames were selected by Antes as being relevant for the predictions. The extraction,
de-identification, and organization of the data was done by Antes.

The data-set was a collection of health records for the selected patients and was organized into
two fields. One field contained the EHR text, and the other contained information about the in-
voluntary admission in a binary form, where a value of 1 corresponded to an involuntary admission
and a value of 0 corresponded to no involuntary admission. The EHR text was a concatenation of
all reports from a patient’s EHR. The reports were in the form of textual observations entered by
the care givers (psychiatrists, psychologists, nurses etc), both at the moment of intake, and during
treatment. They were all written using the Dutch language.

The data was hosted in the Data Science Environment of the institution. In accordance with
the data confidentiality policy of the company, remote access was provided to analyze the data.
A total of 9 data-sets corresponding to the nine time-frames were made available in the pickle 1

format. The text for the different time-frames was selected as follows :

• 0 days before admission: concatenation of all text reports starting from 2016 till the start
of the involuntary admission

• 3 days before admission: concatenation of all text reports starting from 2016 till 3 days
before the start of the involuntary admission

• 7 days before admission: concatenation of all text reports starting from 2016 till 7 days
before the start of the involuntary admission

• 10 days before admission: concatenation of all text reports starting from 2016 till 10 days
before the start of the involuntary admission

1Python module implementing binary protocols for serializing and de-serializing a Python object structure.
https://docs.python.org/3/library/pickle.html

Siamese Fine-tuning of BERT for Classification of Small and Imbalanced Datasets, Applied to
Prediction of Involuntary Admissions in Mental Healthcare

9



CHAPTER 3. DATA DESCRIPTION

Data-set (days
before

admission)

Number of
Positive
examples

Number of
Negative
examples

0 days 187 2249
3 days 185 2249
7 days 185 2249
10 days 185 2249
14 days 185 2249
30 days 182 2249
60 days 182 2249
90 days 180 2249
180 days 175 2249

Table 3.1: Class distribution for all data-sets, before data pre-processing

• 14 days before admission: concatenation of all text reports starting from 2016 till 14 days
before the start of the involuntary admission

• 30 days before admission: concatenation of all text reports starting from 2016 till 30 days
before the start of the involuntary admission

• 60 days before admission: concatenation of all text reports starting from 2016 till 60 days
before the start of the involuntary admission

• 90 days before admission: concatenation of all text reports starting from 2016 till 90 days
before the start of the involuntary admission

• 180 days before admission: concatenation of all text reports starting from 2016 till 180 days
before the start of the involuntary admission

Descriptive statistics were computed for each of the data-sets. Table 3.1 shows the distribution
of the examples across the two classes. We note that this is a very imbalanced data-set with the
positive examples representing only 7% of the data-set on average. Next, Table 3.2 shows the
token-level text statistics for the different data-sets. We note that while there are some very long
texts, there are also texts with just a single token. These texts will be scrutinized at the data
preparation to see whether they provide any meaningful information. We note that the type-token
ratio for the data-sets is 0.0082 on average. The type-token ratio(TTR) is a measure of lexical
richness, or variety in vocabulary. The closer the TTR ratio is to 1, the greater the lexical richness
of the segment. It varies very widely in accordance with the length of the text and generally
decreases with increasing text lengths since the longer a text runs on, the fewer novel words will
be introduced. Next, we note that the mean sentence length is very high. This could be because
the text still contains different special characters that would all be counted as tokens.

Privacy considerations

The use of patient data for research puts a strain on patient privacy, since this requires using the
data out of the context of health care. This entails, for example, copying the data to different
databases, where it can be accessed by data analysts. Medical staff is allowed to see patient in-
formation under medical confidentiality but technical staff such as data managers or data analysts
typically do not have a treatment relation with the patient, and therefore should not be able to
identify individual patients in a research data-set.

From a patient perspective, protecting the private details of a disease from the public is es-
sential in retaining the trust bond between a physician and the patient. Any violation of this
confidentiality can therefore have serious consequences for the relation between a healthcare in-
stitution and a patient. A patient may be averse to their data being used for research and might
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Data-set
(days
before
admis-
sion)

Corpus
Size

(Total
Tokens)

Number
of

Unique
Tokens

Type-
Token
Ratio

Mean
Sentence
length

(in
tokens)

Minimum
record
length

(in
tokens)

Maximum
record
length

(in
tokens)

Mean
record
length

(in
tokens)

0 days 47215351 386120 0.008178 1652 1 266835 19382
3 days 47090026 385445 0.008185 1650 1 266835 19346
7 days 46999008 384870 0.008188 1647 1 266835 19309
10 days 46954096 384589 0.00819 1645 1 266835 19290
14 days 46897041 384244 0.00819 1644 1 266835 19267
30 days 46720212 383378 0.0082 1640 1 266835 19218
60 days 46493037 382212 0.00822 1632 1 266835 19125
90 days 46311103 381224 0.00823 1627 1 266835 19065
180 days 45885013 378838 0.008256 1617 1 266835 18929

Table 3.2: Text Statistics, before pre-processing

even consider seeking treatment elsewhere. Moreover, a potential data breach may expose private
patient information to the general public. Therefore, appropriate privacy considerations must be
made before the start of the research.

The patient data used in this study was de-identified at Antes by the DEDUCE algorithm
[Menger et al. 2018a] for legal and privacy considerations. The following Personal Health Inform-
ation (PHI) data were removed:

• Person names, including initials

• Geographical locations smaller than a country

• Names of institutions that are related to patient treatment

• Dates

• Ages

• Patient Numbers

• Telephone numbers

• E-mail addresses and URLs

Legal Considerations

From 25 May 2018, the General Data Protection Regulation (GDPR) has been directly applicable
in all Member States of the European Union. In addition to these regulations, EU Member
States may maintain or introduce further conditions, including limitations, with regard to the
processing of genetic data, biometric data or data concerning health. According to the GDPR,
health data2 refers to personal information (also called personal data) that relates to the health
status of a person. This includes both medical data (doctor referrals and prescriptions, medical
examination reports, laboratory tests, radiographs, etc.), but also administrative and financial
information about health (the scheduling of medical appointments, invoices for healthcare services
and medical certificates for sick leave management, etc.). Health data is considered sensitive data
and is subject to particularly strict rules and can only be processed by health professionals who
are bound by the obligation of medical secrecy. Furthermore, the organisation is required to take
the necessary security measures to ensure that the health data is protected and not subject to
any unauthorised disclosure. In compliance with the GDPR, a data confidentiality contract was

2https://edps.europa.eu/data-protection/data-protection/reference-library/health-data-workplace en
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agreed to by the research student. In addition, the student provided a report of the data access
made, along with the access purpose, on a daily basis to the company supervisor.

In the Netherlands no specific laws on the reuse of medical data exist, but there are general
rules for dealing with personal data, that can be applied to medical data as well. Since EHR data
is used for retrospective research, is not specifically collected for research purposes, and human
subjects are only indirectly involved, the Medical Research Involving Human Subjects Act (WMO)
does not need to be taken into account. Only the Agreement on Medical Treatment Act (WBGO)
and the GDPR play a role in this situation. Retrospective research with medical records needs to
be proposed to the Medical Ethics Committee (METC), which verifies that the proposed research
is in line with privacy legislation. An exception to this is when only anonymized data is used,
which is the case if the de-identification process is executed perfectly.

For the purpose of this study, since the data was de-identified, approval of the METC was not
required. The Privacy Officer at Antes had to approve the research.

Ethical Considerations

A number of ethical dilemmas arise when working with patient data. According to Wade [2007],
collecting and using patient data, beyond making an individual clinical decision, may be ethically
justified only if: there is (or could reasonably arise) a question to be answered; the methodology
(design, data collected, etc) will answer the question; and the costs, including both communal
healthcare resources and any risks and burden imposed on the participants, justify the benefits to
society. In contemplating these decision factors, another difficult dilemma arises: who should ask
the questions, and who should make the ethical judgment?

While such philosophical dilemmas regarding the decision factors and decision makers are chal-
lenging to address, some ethical concerns of a practical nature were addressed sufficiently. The
two primary ethical concerns pertaining to research based on medical records are obtaining in-
formed consent from patients and maintaining the confidentiality of data subjects [Ashwinkumar
and Anandakumar 2010]. Under the Netherlands’ Agreement on Medical Treatment Act (Dutch
abbreviation WGBO), patient record research does not require patients’ informed consent if indi-
vidual patients cannot be identified on the basis of the data. In this study, since the patient data
is de-identified, no informed consent was required. Further, as per the applicable Dutch laws, all
researchers involved in the analysis were bound to strict confidentiality, thereby maintaining the
data subject confidentiality.

In addition to ethical concerns around data use, certain undesirable consequences of creating
models to predict involuntary admissions must also be analysed. With the availability of advance
prediction models, care providers might resort to direct action rather than increasing therapeutic
attention towards the patient. Hence, proper measures should be in place to ensure that such
models are used only to prevent adverse patient outcomes and not for preemptive coercive treat-
ments.
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Experimental Methodology

4.1 Overview

Figure 4.1: An overview of the experimental methodologies

In this chapter, we provide a high level view of the experimental methodologies that will be
used in this project. There are two broad sections of methods that are explored here. Figure
4.1 provides an organization of these methods. The first section relates to using NLP along with
classical machine learning classification algorithms to perform the classification task. We explore
Logistic regression, Support Vector Machines, and Random forest classifiers here. The second
section relates to using NLP along with deep transfer learning in order to classify the data. In
this section, we explore two transfer learning techniques for training the classifiers. One is the
regular fine-tuning technique where a pre-trained model is fine-tuned on the current data-set as a
classifier. Here, we fine-tune a pre-trained model to use in two configurations: as a direct classifier
and as a feature extractor. The other technique that we propose and explore is fine-tuning a
pre-trained model in a Siamese manner as a feature extractor. When using models as feature
extractors, the pre-trained model is fine-tuned such that it can be used to represent the input
text as features and classical machine learning algorithms can then use these representations to
perform the classification. For both sections the given data-set is first pre-processed before training
a classifier. These pre-processing techniques based on NLP are described in section 4.2. The pre-
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processing for classical ML classifiers is described in 4.2.1 and that for deep transfer learning based
classifiers is described in 4.2.2. The various modelling methodologies are then described in section
4.3.

4.2 Data Preparation

Text documents in natural language are in an unstructured form as strings of characters. This
form of data cannot be directly analysed by classification algorithms. These algorithms require the
data to be in a numerical form. Hence, the text data needs to be pre-processed into linguistically
significant and methodologically useful units or features that can be interpreted and analysed by
the classification algorithms. In order to achieve this, various tasks can be performed, and they
largely depend on the data analysis goals. For the purpose of predicting involuntary admissions
from EHR data, a pre-processing pipeline consisting of various NLP tasks will be implemented for
cleaning the data and selecting text features. The goal is to eliminate noise and select a compact
meaningful representation of the input for efficient classification. In the rest of this chapter, we
provide a motivation and explanation of the various NLP tasks that were applied to the data-set
described in chapter 3.

4.2.1 Data Preparation for Machine Learning Models

In this section we describe the pre-processing pipeline that we used for preparing the text data to
be analysed by the classical ML algorithms. This pipeline is illustrated in figure 4.2 and each step
is explained in the following sub-sections.

Removal of Very Short Text Records

In the given data-sets, there may be texts that are too short for any meaningful analysis. In our
dataset, some records had a length of just one token (see table 3.2 ). On examining such short
records, it was found that some records just had one number in the text field, and others consisted
of a single sentence ’Refer to patient dossier’. Since such texts have no information to help with
the prediction task, these records must be removed.

Removal of Numbers, Special Characters, Single and Double Characters

After selecting appropriate records for analysis, we noted that there were words with tags like
<Persoon>. We also noted that some patients had some inclusion of diagnostic results in their
records and many special characters like +, -, (, and ) were used. Since diagnostic abbreviations,
numbers, and special characters are not expected to contribute to the present study, all special
characters, numbers and strings of single or double characters must be removed.

Tokenization

Tokenization is the task of splitting up a given character sequence from a defined document unit
into sub-units, called tokens [Manning et al. 2008]. A token is a sequence of characters that
are grouped together as a useful semantic unit for a particular task. The splitting is done after
locating the token boundary. A token boundary defines the end of one token and the beginning of
the next token. Token boundaries are dependent on the language, task and type of document, and
are usually white spaces or punctuation characters. The resulting list of tokens is used as input
for further processing. A token is different from a word in the sense that a word is a string of
alphabetical characters while a token can be a string of any type of characters (alphabets, numbers,
special symbols, etc). For example, consider the following sentence : Welcome to Eindhoven
University !. After tokenization using the white space as the token boundary, the resulting list of
tokens or vocabulary is : ’Welcome’, ’to’, ’Eindhoven’, ’University’, ’ !’. The exclamation character
is a token but is not a word.
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Figure 4.2: An overview of the data pre-processing pipeline for classical machine learning al-
gorithms

Case Folding

In this task, all letters are reduced to lower-case. This is done in order to normalize the tokens into
the same case form so that superficial differences between tokens can be ignored. This helps with
better analysis since available information is properly utilized. For instance, suppose a document
contains the words ’good’, ’Good’, and ’GOOD’. Without case-folding the three words are treated
as different words, which reduces the quality of information that can be extracted.

Removal of Stop Words

Text documents usually have a number of common words like ’a’, ’an’ and ’the’ that are very
frequent and uniformly distributed across all documents in a corpus. Such words have little
semantic value and do not add value in discriminating one document from the other. Hence
they are removed from the vocabulary. A list of stop words is called a stop list. Such a list is
usually determined by first sorting the terms by the total number of times each term appears in
the document collection, and then selecting the most frequent terms, often filtered manually for
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their semantic content relative to the domain of the documents being indexed, as a stop list. The
publicly available list of stopwords for the Dutch language was used. Furthermore, it is possible
that clinicians use negations to note down certain symptoms such as ’not talking’. Therefore
certain words from the stop list must still be included to not lose meaningful information. A list
of all the Dutch stopwords is given in Appendix A at A.

Addition of Bi-grams

A bi-gram is a two-word sequence of words [Manning et al. 2008]. When using classical machine
learning algorithms like SVMs for classifying text data, word/token order is not taken into account
by the classifier. Tokens are independent of one another and this may reduce the quality of analysis.
For instance, in the context of mental healthcare, the care provider may note the absence of
certain behaviours in the patients. Remarks like ’not depressed’ or ’not friendly’ are highly likely
to be present in the patient record. Ignoring such sequences may lower the classifying power.
Hence, bi-grams are included in the document token list. Note that here bi-grams are used only
with classical machine learning algorithms. Neural network models like recurrent neural networks
and transformers that use word embeddings to represent tokens have capabilities to consider the
sequence of tokens and hence bi-grams need not be added.

Feature Encoding

At this stage the text documents are in the form of a list of tokens. Machine learning algorithms
still cannot directly analyse data in this form and hence the documents need to be encoded into a
numeric form as vectors. This process is called vectorization, and the Bag-of-Words(BOW) model
is used to represent the vectorized documents. In this model, first a vocabulary is created by
considering all unique words in the document collection. Then, each document is represented as
a numeric vector as some function of the words present in that document. Each dimension in the
vector corresponds to a separate term. If a term occurs in the document, its value in the vector
is non-zero. Two weighting schemes are considered when calculating the value of the term, as
follows:

Word frequency weights Using the frequencies of words is the simplest form of weighting words
in a document. Each document is represented in terms of the frequency of occurrence of words
within the document. Thus, a document consisting of a list of tokens is transformed into a vector
consisting of the count of words. Only the word count is retained as a feature and any information
about the order of words is discarded.

Term frequency-Inverse document frequency (TF-IDF) weights In this scheme, a document is
represented as a vector of term frequency- document frequency (tf-idf) weights of its constituent
words/tokens. The tf-idf weight is a statistical measure used to evaluate the importance of a word
in a document collection. It consists of two frequencies: the term frequency, and the document
frequency. Term Frequency scores how frequently a word appears in a document. Since documents
can be of different lengths, it is possible that a word would appear more frequently in longer
documents than shorter ones. Hence the word count is adjusted for the document length to arrive
at the term frequency.

term frequency, tf =
Number of times word appears in document

Document length

Inverse document frequency scores the rarity of a word across the document collection. Rarer
terms have a higher score to reflect their importance. It is the logarithmically scaled inverse
fraction of the documents that contain the word.

inverse document frequency, idf = log
Number of documents

Number of documents in which word appears

tf-idf weight = tf × idf
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A high tf–idf weight is reached by a high term frequency (in a given document) and a low document
frequency of the term in the whole collection of documents; the weights hence tend to filter out
common terms and favour more relevant terms.

Selection of top-N words

In chapter 3 it was seen that after pre-processing there were on average 340000 unique tokens in
every data-set. Since these were too many features, some dimensionality reduction was needed so
that the models learn from the words with the most discriminatory power. This has the advantage
of reducing over-fitting on redundant data and improving training efficiency. With reduced number
of features, it also helps in interpretability of model behaviour by human stakeholders. The Chi-
square feature selection method was first used to determine how many important features were
present in general. A brief description of the chi-square statistic is given next.

For selecting features(words) from text data, the χ2 test is used to test whether the occurrence
of a term(word) and the occurrence of a class are independent. Formally, given a document D, we
compute the following χ2 score for each term t and rank the words by their scores to perform the
selection:

χ2(D, t, c) =
∑

et∈{0,1}

∑
ec∈{0,1}

=
(Netec − Eetec)2

Eetec

where

• N is the observed frequency in D and E is the expected frequency

• et takes the value 1 if the document contains term t and 0 otherwise

• ec takes the value 1 if the document is in class c and 0 otherwise

For each term (word), a corresponding high χ2 score indicates that the null hypothesis that the
document class has no influence over the word’s frequency should be rejected and the occurrence
of the word and class are considered dependent. Such dependent words are selected as features.
The dependent words are ranked in order of their χ2 scores and the top-N words are chosen.

This type of feature selection can be viewed as a method for replacing a complex classifier (using
all features) with a simpler one (using a subset of the features). It may appear counter-intuitive
that a seemingly weaker classifier that uses lesser features is advantageous in text classification,
but [Manning et al. 2008] in a detailed discussion of the bias-variance trade-off show that simpler
models are often preferable for classifying texts when limited training data are available. Note
that the top-N words are used only when using classical machine learning models, and not when
using neural networks.

The results after applying all these pre-processing methods are shown described next. Some
texts that were very short and did not have any meaningful analytical information were removed.
This is shown in the class distribution of the examples after pre=processing in Table 4.1. Table
4.2 shows the text statistics after pre-processing. We note that the corpus size has now reduced
by more than 50%. The number of unique tokens have also reduced. This can be attributed to
the removal of special characters, single tokens, and stop-words. We also note that the text-token
ratio has increased by 80% after pre-processing.

4.2.2 Data Preparation for Deep Learning Models

For the deep transfer learning approach, a pre-trained language model (BERT) will be used. This
model was trained to distinguish case differences in words and hence there is no need to convert
the text into lower-case characters. This model also has its own tokenizer that processes the text
and hence minimal data preparation will need to be done. The pre-processing pipeline that we
used for preparing the text data to be analysed by the deep transfer learning based algorithms
is illustrated in figure 4.3 and each step is explained next. Similar to the previous section, the
preparation starts with removing text records that are too short. The next steps are described
further.
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Data-set (days
before

admission)

Number of
Positive
examples

Number of
Negative
examples

0 days 186 2200
3 days 183 2200
7 days 183 2200
10 days 182 2200
14 days 182 2200
30 days 181 2200
60 days 179 2200
90 days 179 2200
180 days 171 2200

Table 4.1: Class distributions for all time-frames, after pre-processing

Data-set
(days
before

admission)

Corpus
Size (Total

Tokens)

Number of
Unique
Tokens

Type-
Token
Ratio

Minimum
record

length (in
tokens)

Maximum
record

length (in
tokens)

Mean
record

length (in
tokens)

0 days 21466687 313413 0.01459 21 129944 8996
3 days 21408415 312872 0.01461 21 129944 8983
7 days 21366108 312479 0.01460 21 129944 8966
10 days 21345457 312257 0.01462 21 129944 8961
14 days 21318974 311983 0.01463 21 129944 8950
30 days 21237961 311369 0.01466 21 129944 8919
60 days 21134205 310475 0.01469 21 129944 8883
90 days 21052737 309809 0.01471 21 129944 8849
180 days 20861159 307902 0.01475 21 129944 8798

Table 4.2: Text Statistics for all time-frames, after pre-processing

Removal of Special Characters

Since BERT is a language model, some common punctuation marks used in language must be
retained to maintain the natural language structure.

Text Summarization

A constraint imposed by the BERT architecture is a restriction on the size of the maximum length
of text that can be used as input. For classification tasks the maximum length of the input
can be 512 tokens. Hence, the text in our data-set was to be reduced to this size. There are
two major types of text summarization techniques: Extractive and Abstractive. In extractive
summarization, key phrases and sentences are selected to make a summary but no new text is
generated. In abstractive summarization, new phrases ans sentences are created that convey the
most useful information. However, this technique would require a large corpus of training data
in order to first develop a summarizer. Hence, we chose the extractive technique to summarize
the data. Text summarization based on the TextRank algorithm was used to reduce the length of
the input to 500 tokens, in the cases where the text length exceeded this number. If the length
was less than 500 tokens, the entire text was retained. The text statistics after summarization
are shown in Table 4.3. When compared to the raw text in table 3.2, the type-token ratio has
increased by 370%, indicating a higher semantic richness, as a result of the reduction in document
length.
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Figure 4.3: An overview of the data pre-processing pipeline for deep learning algorithms

Data-set
(days
before
admis-
sion)

Total
Tokens

Total
Types

(Unique
Tokens)

Type-
Token
Ratio

Mean
Sentence
length

(in
tokens)

Minimum
record
length

(in
tokens)

Maximum
record
length

(in
tokens)

Mean
record
length

(in
tokens)

0 days 1196007 45996 0.03845 18 29 802 501
3 days 1193919 45930 0.03846 18 29 802 501
7 days 1192941 45878 0.03845 18 29 802 500
10 days 1192625 45876 0.03846 18 29 802 500
14 days 1191985 45841 0.03845 18 29 802 500
30 days 1191468 45802 0.03844 18 29 802 500
60 days 1190480 45790 0.03846 18 29 802 500
90 days 1189414 45755 0.03846 18 29 802 500
180 days 1184672 45657 0.03853 18 29 802 499

Table 4.3: Text Statistics for all time-frames, after summarization
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4.3 Methodological Frameworks

In this chapter we provide an overview of the various machine learning methodologies that we used
for the prediction task. We start with the classical machine learning methodologies in section 4.3.1
and present the deep learning methodology in section 4.3.2. We describe Binary Logistic Regres-
sion, Support Vector Machines, and Random Forests in sections 4.3.1, 4.3.1, and 4.3.1 respectively.
Then, we present some deep learning preliminaries covering Transformer Networks, Siamese Learn-
ing, Transfer Learning, and Bidirectional Encoder Representations from Transformers(BERT) in
section 4.3.2, and present the two deep transfer learning frameworks next. We first explain fine-
tuning the language model for direct use as a classifier in section 4.3.2 and finally present our
proposed Siamese fine-tuning approach for document feature representation in section 4.3.2.

4.3.1 Classical Machine Learning Models

Binary Logistic Regression

Logistic regression is a statistical model that uses a logistic function to model a binary dependent
variable. It is a linear classifier that attempts to partition the feature space with a hyper-plane
to classify data by optimizing a discriminative objective function. In regression analysis, logistic
regression estimates the parameters of a logistic model. Mathematically, a binary logistic model
has a dependent variable with two possible values, such as yes/no, which is represented by an
indicator variable, where the two values are labeled ”0” and ”1”. The logistic regression model
models the probability of output in terms of input and does not perform statistical classification.
It can be used to make a classifier, for instance by choosing a cutoff value and classifying inputs
with probability greater than the cutoff as one class, and those below the cutoff as the other.
Logistic regression performs better on larger documents or data-sets and is very efficient to train
[Jurafsky 2000]. However, its performs poorly on non-linear data and is sensitive to noise and
highly correlated input features.

Support Vector Machine

Given a set of training examples, each marked as belonging to a particular category, an SVM
algorithm builds a model that assigns new examples to one category or the other. The working
principle of SVMs is to determine separators in the search space which can best separate different
classes. An SVM model is a representation of the examples as points in space, mapped so that
the examples of the separate categories are divided by a clear gap that is as wide as possible. New
examples are then mapped into that same space and predicted to belong to a category based on
the side of the gap on which they fall.

More formally, a support-vector machine constructs a hyper-plane or a set of hyper-planes
in a high-dimensional space, which can be used for classification or other tasks like regression.
Intuitively, a good separation is achieved by the hyper-plane that has the largest distance to the
nearest training-data point of any class (functional margin), since in general the larger the margin,
the lower the generalization error of the classifier.

Support Vector Machines perform extremely well in classifying high dimensional data and are
robust to outliers but require that the classes are linearly separable. Their performance tends to
reduce when classes have a large amount of overlap.

Random Forest

Decision trees create class partitions by learning a hierarchical division of the underlying data
space with the use of different text features. A text is then classified based on the partition it is
most likely to belong to [Aggarwal and Zhai 2012]. A random forest is a meta estimator that fits
a number of decision tree classifiers on various sub-samples of the data-set and uses averaging to
improve the predictive accuracy and control over-fitting. This collection of decision tree classifiers
is also known as the forest. Each tree is trained on an independent random sample of the training
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data. In a classification problem, each tree votes for a class and the most popular class is chosen
as the final result. Significant improvements in classification accuracy have resulted from growing
an ensemble of decision trees trained on subsets of the data-set and letting them vote for the most
popular class [Breiman 2001]. These classifiers are robust to outliers and generalize well but they
need meaningful features to perform well. A large number of noisy features reduces performance.

4.3.2 Deep Transfer Learning

In this section, we first briefly describe the necessary preliminary concepts that are used in the
explored models.

Preliminaries

Deep Learning
A deep-learning architecture is a multi-layer stack of simple modules, all (or most) of which

are subject to learning, and many of which compute non-linear input–output mappings. Each
module in the stack transforms its input to increase both the selectivity and the invariance of the
representation. With multiple non-linear layers, say a depth of 5 to 20, a system can implement
extremely intricate functions of its inputs that are simultaneously sensitive to minute details —
distinguishing sunflowers from lotuses — and insensitive to large irrelevant variations such as the
background, pose, lighting and surrounding objects.

Many applications of deep learning use feed-forward neural network architectures, which learn
to map a fixed-size input (for example, an image) to a fixed-size output (for example, a probability
for each of several categories). To go from one layer to the next, a set of units compute a weighted
sum of their inputs from the previous layer and pass the result through a non-linear function.
Units that are not in the input or output layer are conventionally called hidden units. The hidden
layers can be seen as transforming the input in a non-linear way so that categories become linearly
separable by the last layer. Neural networks perform these transformations using parameters that
are learnt using the back-propagation algorithm [Goodfellow et al. 2016] along with an appropriate
optimizer [Goodfellow et al. 2016].

Deep learning language models use dense vectorized representations for words where each word
is associated with a vector of real valued features, and semantically related words have vectors
close to each other in that vector space. For language processing, deep-learning theory shows that
deep nets have two different exponential advantages over classic learning algorithms that do not
use distributed representations. Both of these advantages arise from the power of composition
and depend on the underlying data-generating distribution having an appropriate componential
structure. First, learning distributed representations enable generalization to new combinations of
the values of learned features beyond those seen during training (for example, 2n combinations are
possible with n binary features). Second, composing layers of representation in a deep net brings
the potential for another exponential advantage(exponential in the depth) [LeCun et al. 2015].

Transformer Networks
A Transformer network is a feed-forward neural network using only the attention mechanism

and is based on the sequence-to-sequence architecture.
The attention-mechanism looks at an input sequence and decides at each step which other parts

of the sequence are important. It directly models relationships between all words in a sentence,
regardless of their respective position. For example, consider the following sentence “I arrived at
the bank after crossing the river”. To determine that the word “bank” refers to the shore of a
river and not a financial institution, the Transformer can learn to immediately attend to the word
“river” and make this decision in a single step.

A transformer network consists of two main components: a set of encoders chained together
and a set of decoders chained together. The function of each encoder is to process its input vectors
to generate encodings, which contain information about the parts of the inputs which are relevant
to each other. It passes its set of generated encodings to the next encoder as inputs. Each decoder
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does the opposite, taking all the encodings and processing them, using their incorporated contex-
tual information to generate an output sequence. For this, each encoder and decoder makes use
of an attention mechanism, which for each input, weighs the relevance of every input and draws
information from the input accordingly when producing the output. Each decoder also has an
additional attention mechanism which draws information from the outputs of previous decoders,
before the decoder draws information from the encodings. Both the encoders and decoders have
a final feed-forward neural network for additional processing of the outputs, and also contain re-
sidual connections and layer normalization steps. Transformers typically undergo semi-supervised
learning in a two step approach that involves unsupervised pre-training followed by supervised
fine-tuning. Pre-training is typically done on a much larger data-set than fine-tuning, due to the
restricted availability of labeled training data.

Siamese Learning

Figure 4.4: Siamese Neural Network Architecture

Siamese Neural Networks (SNNs) are a type of neural networks that have many instances of
the same model with shared weights. Since the outputs of these different instances are connected
at a later stage, such architectures are referred as Siamese networks similar to how Siamese babies
are connected. In this project we make use of SNNs with dual instances of neural networks. In
computer vision applications, this architecture shows its strength when it has to learn with limited
data such as Zero/One shot learning tasks for image recognition. In this project we investigate
whether such SNNs could be used for our data-set. An overview of a twin Siamese architecture is
shown in figure 4.4. While traditional neural networks learn to classify data into different classes,
SNNs learn to discriminate between different inputs and represent the similarity of the inputs.
As shown in the figure, the training data-set for a Siamese network consists of input data pairs
(input 1, input 2) and corresponding labels,y. The label y ∈ {0,1} indicates whether input 1 and
input 2 are similar or dissimilar. The aim of training is to minimize the distance between similar
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pairs and maximize the distance between dissimilar pairs, in an embedding space. After training,
a single instance of the model can then be used as a feature extractor.

We aim to leverage this type of training input structure to build a feature extractor for our
data-set. For a small binary data-set with x number of samples belonging to the class of interest,
one can artificially create up-to x∗(x−1)/2 1 number of similar input pairs. An equivalent number
of similar pairs can then be created for the other class. Next, an appropriate number of dissimilar
input pairs can be created such that the number of dissimilar pairs is equal to the number of
similar input pairs. This process results in a balanced number of similar and dissimilar training
examples. The model can then learn discriminative features from this input data.

Transfer Learning

Transfer learning is aimed to make use of valuable knowledge in a source domain to help im-
prove model performance in a target domain. It is particularly important to neural networks,
which are very likely to over-fit when trained on small data-sets. Parameters from a network
model trained on a source task are transferred to initialize a network on the target task. The
model may be trained again using the target data. This is called fine-tuning. The fine-tuned
model is then used on the intended target task.

BERT

BERT stands for Bidirectional Encoder Representations from Transformers. It is designed to
pre-train deep bidirectional language representations from unlabeled text by jointly conditioning
on both left and right context of the input text. It uses the WordPiece [Wu et al. 2016] tokeniza-
tion algorithm to segment words into sub-words. This type of tokenization is capable of covering a
wider spectrum of rare and out-of-vocabulary words since the input text is tokenized at a sub-word
level, and this could be very useful in processing our clinical data-set. BERT is pre-trained on
a large corpus of unlabelled text including the entire Wikipedia (2,500 million words) and Book
Corpus (800 million words). As a result, the pre-trained BERT model can be fine-tuned with just
one additional output layer to create state-of-the-art models for a wide range of NLP tasks. This
BERT model is available as an English model and as a multi-lingual model with support for 104
languages, including Dutch. The multilingual BERT model for Dutch is only based on the Dutch
Wikipedia text, which is a specific domain, unrepresentative of general language use, and hence
we chose to use a more advanced Dutch BERT model, BERTje [Vries et al. 2019].

BERTje

BERTje is a monolingual Dutch BERT model based on the same architecture as BERT and
trained on a large and diverse dataset of 2.4 billion tokens. It was trained using multi-genre data
to be more representative of general Dutch language use. In addition to Wikipedia text, this
model was also trained on fiction novels, Dutch news articles, and articles from a multi-genre
reference corpus. The resulting model has been shown to consistently outperform the multilingual
BERT model on downstream NLP tasks like part-of-speech tagging, named-entity recognition and
sentiment analysis.

An overview of using BERTje as a classifier model is provided in figure 4.5. When using
BERTje as a classifier, it takes the input text as a sequence of at most 512 tokens and outputs the
token-wise representation of the sequence. The input sequence has a pre-defined structure where
the first token of the sequence is set to be a special [CLS] token. This segment of the output
then contains the special classification embedding. For text classification tasks, BERTje takes this
final state of the first token [CLS] as the representation of the whole sequence. A softmax layer
[Goodfellow et al. 2016] can then be applied at this output to classify the document into classes.
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Figure 4.5: BERTje as a classifier

Figure 4.6: Fine-tuning of BERTje as a classifier

Fine-tuning of BERTje for Text Classification

Here we explore using transfer learning to fine-tune BERTje as a classifier. For classification
problems, fine-tuning a model as a classifier is the common or regular approach to transfer learning
for classification [Sun et al. 2019] and hence we refer to this type of fine-tuning as ’regular’ fine-
tuning in this work. In Sun et al. [2019], it was shown that fine-tuning on as few as 200 training
examples could provide good classification results. Hence, we down-sample the majority class such
that it has the same number of examples as the minority class and then use this balanced data-set
as the training data-set. Figure 4.6 depicts the model overview when fine-tuning BERTje as a
text classifier. As shown, we add a dense layer on top of BERTje, followed by a softmax layer to
predict the correct class label. Note that we use only the output from the first <CLS> token that
provides a representation for the full input document. We fine-tune all the parameters of BERTje
and the parameters for the dense layer jointly by maximising the log-probability of the correct
label using the binary cross-entropy loss [Goodfellow et al. 2016].

1Each sample can be paired with all other samples. For x samples, the total number of unique pairings possible
= (x-1) + (x-2) + (x-3) + ... + 1 = x ∗ (x− 1)/2
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Fine-tuning of BERTje as a Feature Extractor

Here, we use the same classifier model that was trained in section 4.3.2 but instead of classifying
the documents, we extract the document representation provided by the output of the <CLS>
token, and use the classical ML classifiers to then perform the classification task. This way, we
can compare the difference between using the BERTje neural network model as a classifier and a
feature extractor. We can also evaluate the quality of document representations by our proposed
Siamese fine-tuning approach with respect to the embeddings after regular fine-tuning.

Proposed Siamese Fine-tuning Approach

Figure 4.7: Siamese Fine-tuning of BERTje as a feature extractor

Here, we intend to leverage transfer learning to investigate the use of neural network models as
feature extractors for our small data-set. The extracted features could then be used in a classical
machine learning algorithm. Neural networks are used here as feature extractors to investigate the
quality of using dense embeddings as feature representations. In addition to the small size of the
data-set, another challenge we face is the highly imbalanced nature of the data-set. Fine-tuning
BERTje on a skewed data-set might not be the best approach since it is possible that it would
classify all input as belonging to the majority class. Also, fine-tuning models on a down-sampled
data-set might also not result in good classifier performance since the model is not trained using
all available data. To mitigate this, we propose to use Siamese learning to fine-tune BERTje. We
hypothesize that creating a balanced number of positive and negative training samples and then
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fine-tuning BERT to learn discriminative features would yield better classification results.
An overview of the fine-tuning architecture is depicted in figure 4.7. The model is setup as 2

instances of the same model with the same weights processing two different inputs. The processed
outputs are then merged later to yield the appropriate output. When fine-tuning in this manner,
we provide positive and negative samples of document pairs as the dual model input. A positive
sample is when the two documents in a pair belong to the same class and a negative sample is
when the two documents in a pair belong to different classes. Each document in a pair is input
to a BERTje model. The first document is processed by one instance of BERTje and the second
document is processed by the second instance of BERTje. Then the L2 distance is calculated
between the representations for the two input documents. A dense layer followed by a softmax
layer is added to the layer that calculates the L2 distance. All the parameters of BERTje and
the parameters for the dense layers are jointly fine-tuned by maximising the log probability of the
correct label of the sample pairs. In this architecture, the model learns to minimize the distance
between documents representations for documents belonging to the same class and maximizes the
distance between document representations for documents belonging to different classes. After
fine-tuning, we encode the original text data-set in the form of the document representation
provided by the model. These representations can then be used by classical machine learning
algorithms capable of handling imbalanced data-sets to perform the required classification.

26Siamese Fine-tuning of BERT for Classification of Small and Imbalanced Datasets, Applied to
Prediction of Involuntary Admissions in Mental Healthcare



Chapter 5

Experimental Setup and Results

5.1 Implementation

5.1.1 System Specifications and Programming Tools

All experiments were carried out on a Windows 7 operating system with an Intel Xeon CPU
E5-2650 2.0 GHz and 100GB RAM. This was made available through remote access by Antes-
Parnassia. The programming language used was Python version 3.7.7. The python libraries
numpy and pandas were used for data storage and manipulation. The nltk library was used for
implementing the data pre-processing methods. The scikitlearn and scipy libraries were used for
implementing the classical machine learning algorithms. The plots were generated using mat-
plotlib. Text summarization was carried out using the gensim library. Lastly, the pytorch and
transformers libraries were used to implement the deep transfer learning methods.

5.1.2 Data-sets

As described in chapter 3, 9 data-sets corresponding to 9 different advance prediction time-frames
were used. Furthermore, we created two versions of the data-set for training the classifiers corres-
ponding to full and the past month’s patient history, as described next.

Full Data

In this version of the data-sets, the entire patient history as provided by Antes was used for
training the classifiers.

Last Month Data

Since the full data had the entire patient history of up-to 2 or 3 years and it was possible that
only recent data may be more useful in predicting an event such as an involuntary admission, the
experiments were performed over data from the last month of the prediction period as well. The
last month’s text was chosen by selecting only the 9000 most recent characters. This number of
characters roughly corresponded to a month’s text records. The selected text was then processed
in the same manner as the full text. We clarify this selection of the last month’s history with the
following example.

Consider the data-set 60 days before admission. Suppose a patient A had an involuntary
admission on 1st August 2018. This patient would have historical data starting from, for instance,
January 2016 up-to 30 April 2018 (all data till 60 days before admission). Now, this entire twenty-
eight month history may not be relevant for predicting a sudden event such as an involuntary
admission. It is likely that the patient’s recent history corresponding to the last month may have
more information for the prediction. So in this case, we retain the most recent 9000 characters.
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This would approximately correspond to using the data from the month of April 2018 in order to
predict whether an admission would occur in August 2018.

It is important to note that this selection does not strictly correspond to a month’s history. It
could be a longer time-frame for a patient undergoing a less intensive treatment with less frequent
observations, or a shorter time-frame for a patient undergoing a more intensive treatment with
more frequent observations.

5.1.3 Data Preparation for Classical ML Models

In this section, we describe the particular choices made for the NLP pre-processing methods.

Data Cleaning

Records of length less than 50 characters were removed.

Removal of stopwords

The stop words that were included were: ’niet’, ’niets’, ’geen’, ’maar’, and ’zonder’.

Addition of Bigrams

The top 15 bigrams were added to each text record.

Selection of top-N words

Using the chi-square statistic, we observed that for the data-sets on average there were 1700
important (discriminatory) words. Based on this number, it was decided to test different models
with the top 100, 250, 500, 750, 1000, 1500, and 2500 chi2 words. The top 2500 words selection
was made as a proxy for all words, for performance reasons. Using the full data-set would overload
the company’s server and hamper entire organizational performance.

5.1.4 Data Preparation for Deep Transfer Learning Models

Removal of Special Characters

All special characters except full-stop(.), question mark(?), comma(,), and exclamation(!) are
removed from the text field.

Text Summarization

The text records were summarized to a maximum length of 510 words. In case the record length
was already less than 510 characters, it was retained as is.

5.1.5 Modelling Setup

The data was split into training and testing data corresponding to 70% and 30% of the total
data. This split was based on recommendations in data mining literature. In addition, this choice
corresponded to training the models on 2 year’s data and testing on 1 year’s data. Such a choice
for the testing set is helpful in evaluating the model usability in a practical scenario.

5.1.6 Hyper-parameter Selection and other Modelling Decisions

Classical Machine Learning Models

The hyper-parameters for the three different classifiers were tuned using 5-fold cross validated
randomized grid search. For each classifier type, a grid of a range of parameter values was defined
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and the best model out of 100 candidate models was selected. The hyper-parameter grid was as
follows:

1. Logistic Regression:

• C: uniform distribution between 0 and 4

• Penalty: l1, l2

• Class weights: None, balanced, 1:2, 1:5, 1:10, 1:20

2. Support Vector Machine :

• C: uniform distribution between 0 and 4

• Class weights: None, balanced, 1:2, 1:5, 1:10, 1:20

3. Random Forest:

• Number of trees: 100 to 2000

• Maximum depth: 15 different depths from the interval (1, 50)

• Class weights: None, balanced, 1:2, 1:5, 1:10, 1:20

Deep/Transfer Learning Models

Recommendations provided in ’How to fine-tune BERT for Text Classification’ [Sun et al. 2019]
were used for choosing the fine-tuning hyper-parameters. We varied the recommended hyper-
parameters to find a combination that gave quick convergence to a low loss. We noted that the
loss tended to converge to a low value by the 2nd or 3rd epoch and increased thereafter. Hence,
the models were fine-tuned for 4 epochs and the best model was selected based on the model with
the lowest loss on the validation data-set. Since our data-set was already small, we chose to use
a small batch size of 16 training examples. The final hyper-parameters used for both, the regular
fine-tuning and Siamese fine-tuning were as follows:

• Number of epochs: 4

• Batch size: 16

• Learning rate: 5e-5

Apart from these hyper-parameters, we used a Dense layer of 768 neurons followed by a SoftMax
layer with 2 outputs for both the types of fine-tuning architectures. The parameters of the Dense
layer provide the model with some more capability to learn to perform the classification. The
SoftMax layer with 2 outputs is used since this is a binary classification. Next, we used the cross
entropy loss [Goodfellow et al. 2016] function along with the Adam optimizer [Kingma and Ba
2014] for back-propagation as recommended in Sun et al. [2019] for fine-tuning the models.

In addition, for the Siamese fine-tuning, we used a data-set with 1200 training examples. The
examples were organized as 600 pairs of positive samples where the text samples in a training
pair were from the same class and 600 pairs of negative samples, where the text samples in a
training pair were from different classes. There was an operational constraint when fine-tuning
in a Siamese manner. The fine-tuning could not be performed over the day-time since the high
CPU and RAM utilization would hamper the work of other users in the organization. Hence a
model for one data-set could be fine-tuned over one night only. Thus, this value of 1200 training
examples was chosen such that this time constraint could be satisfied.
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5.1.7 Evaluation Metrics

Since we were working with a highly imbalanced data-set, accuracy was not used as a model
performance metric. Precision, recall, F1 score, Area under the Precision-Recall curve, and Area
under the kappa curve are reported as model performance measures. All these metrics are briefly
described below.

• Precision: The percentage of the model predictions that were correctly classified.

Precision =
True Positives

True Positives + False Negatives

• Recall: The percentage of total correct results that were correctly classified.

Recall =
False Positives

False Positives + True Negatives

• F1 score: The F1 score can be interpreted as a weighted average of the precision and recall,
where an F1 score reaches its best value at 1 and worst score at 0. It is given by

F1 = 2 ∗ (precision ∗ recall)/(precision+ recall)

• Area under Precision-Recall curve (PR-AUC): It is a plot of the precision of the classifier as
a function of its recall. In imbalanced data-sets, there are a high number of true negatives
and a lower number of true positives, and the goal is usually to obtain a classifier that is
good at discriminating these positive examples. Since Precision and Recall are both not
dependent on the true negatives, using the area under the Precision-Recall curve helps one
evaluate the performance of a classifier with respect to how well it can classify the positive
examples. We determine a baseline value for PR-AUC as follows: We note that irrespective
of the recall obtained, the best precision one can obtain by random guessing is the real
fraction of positive samples in the data-set. Thus, for our data-set this value is on average,
181/2200 = 0.08. Classifiers with PR-AUC values less than or equal to this baseline can be
considered random classifiers with no skill.

• Area under Kappa curve (AUK): The AUK [Kaymak et al. 2010] is a measure of classifier
performance, useful in evaluating classifiers for skewed data-sets. Here Cohen’s kappa values
are plotted against the false positive rates at different classifier thresholds. In the classific-
ation setting, Cohen’s kappa is used to evaluate the agreement between the ground truth
and the predictions made by a classifier, while taking into account correct predictions by
chance. The area under this curve thus gives another measure of overall performance of the
classifier. Positive values for AUK would denote skillful classifiers.

The confusion metrics (true positives, true negatives, false positives, and false negatives) were also
used where appropriate. These help one evaluate the model use in a practical setting. In addition,
these also help differentiate between a model with and without skill. For imbalanced data-sets, a
model that classifies all examples as the majority class would be considered as having no skill. It
must be noted that this is only a preliminary analysis and we provide the confusion metrics for
the default setting. In a real world setting, such models would be ideally calibrated to suit the
purpose of the institution or company deploying the models.

5.2 Results

In this section we present the results of our experiments for the various modelling methodologies.
We first begin by presenting the results of training the classical ML algorithms on the data with
various input feature representations (BOW/Tf-idf, Top-N chi2 words). Next we present the
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results of fine-tuning BERTje as a classifier. Then we evaluate whether classical machine learning
classifiers can classify the embeddings provided by this model. Next we provide the results of
using classical machine learning classifiers to classify the embeddings after Siamese fine-tuning.
For all the modelling methodologies, we present model quality metrics and confusion metrics for
the best models, and discuss our findings.

5.2.1 Classical Machine Learning: Best Models

In this section, we elaborate over our findings for the experiments using NLP techniques along with
classical machine learning classifiers for the prediction task. The results for all the experiments
using various input representations are provided in Appendix C. The configurations for the best
models for full and past month data are provided in Tables 5.1 and 5.2 respectively. We note
that the logistic regression and support vector machine classifiers use some degree of class weights
for the under-represented class. The random forest almost always prefers balanced class weights.
There were some random forest models that did not use any class weights. Next, we note that
the random forest classifier always performs well using the tf-idf form of input representation,
while the logistic regression and support vector machine classifiers use either the BOW of tf-idf
representations. Further, we observe that all classifiers tend to perform better using 100 to 250
input features. This indicates that even though there are around 310000 unique tokens in each
of the data-sets, only a small number of these tokens are important for classification. The best
random forest model almost always has a large number of trees with a maximum depth of 8 along
with balanced class weighting. The small value of the maximum depth again indicates that only a
few features were sufficient for the classification task. Further, the preference for l1 penalty by the
logistic regression classifier shows that there are some words that were representative of the class
of interest. l1 penalty favors sparsity of features, in contrast to l2 penalty. Sparse input features
indicate that only some features have a non-zero value, which are used to discriminate one class
from the other.

The model quality metrics for the models using the full and past month data are provided in
tables 5.3 and 5.4 respectively. We note that all the models perform better than random guessing.
We note this by the fact that for these models, the PR-AUC is greater than the baseline of
0.08, along with a positive AUK value. We observe that the predictive power diminishes as the
prediction time-frames move farther from the time of involuntary admission. We note that the
F1 score, PR-AUC and AUK are greater for models trained on the past month’s patient. Thus,
models are able to perform much better when using the last one month’s patient history rather
than the full patient history, especially for predicting 0 and 3 days in advance. This difference in
model quality after using the full and the past month’s patient history for the logistic regression
classifier is illustrated in Precision-Recall plots in figures 5.1 and 5.2 respectively. Note that the
area under the PR curve is larger for the models trained on the past month’s data, especially for
predicting 0 and 3 days in advance. Similar plots for the other classifiers are provided in Appendix
B. To evaluate the suitability of model use in a practical setting, we refer to the confusion metrics
shown in tables 5.5 and 5.6 for models using full and past month’s data, respectively. Here, we
observe that using the previous month’s data results in models with better predictive power. The
models predicting up-to 0 and 3 days in advance tend to have a high number of true positives
along with a low number of false positives, resulting in models with a true positive rate of around
40%. The models for the other time-frames have a very high number of false positives, making
them unsuitable for a practical setting.

Siamese Fine-tuning of BERT for Classification of Small and Imbalanced Datasets, Applied to
Prediction of Involuntary Admissions in Mental Healthcare

31



CHAPTER 5. EXPERIMENTAL SETUP AND RESULTS

Figure 5.1: Precision-Recall Curves for Logistic Regression Classifiers (Full History)

Figure 5.2: Precision-Recall Curves for Logistic Regression Classifiers (Past Month History)
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Dataset (Days
before admission)

LR SVC RF

0

C:0.0005 ,
class weights:(1:5) ,

penalty: l2,
Top-250 BOW

C: 2.74,
class weights:(1:5)

Top-100 Tf-idf

estimators: 2000,
max depth: 8 ,

class weights: balanced,
Top-100 BOW

3

C: 1.16 ,
class weights: (1:5),

penalty: l1,
Top-100 Tf-idf

C: 0.04 ,
class weights:balanced

Top-250 BOW

estimators: 2000,
max depth: 8 ,

class weights: balanced,
Top-500 Tf-idf

7

C: 1.16,
class weights: (1:5),

penalty: l1,
Top-250 BOW

C: 0.2 ,
class weights: (1:10)

Top-250 Tf-idf

estimators:2000
max depth: 8,

class weights: balanced,
Top-750 Tf-idf

10

C: 0.0005,
class weights: (1:5),

penalty: l2,
Top-100 Tf-idf

C: 0.29 ,
class weights: balanced

Top-250 BOW

estimators: 2000 ,
max depth: 8,

class weights: balanced,
Top-250 Tf-idf

14

C: 1.16,
class weights: (1:5),

penalty: l1,
Top-250 BOW

C: 0.07 ,
class weights: (1:5),

Top-250 Tf-idf

estimators: 2000 ,
max depth: 8 ,

class weights: balanced
Top-250 Tf-idf

30

C: 1.06,
class weights: balanced,

penalty: l1,
Top-250 Tf-idf

C: 0.29,
class weights:balanced

Top-250 Tf-idf

estimators:2000 ,
max depth:8 ,

class weights:balanced
Top-250 Tf-idf

60

C:1.16 ,
class weights: (1:5),

penalty: l1,
Top-100 BOW

C: 0.29,
class weights:balanced

Top-250 BOW

estimators: 2000,
max depth:8 ,

class weights:balanced
Top-500 Tf-idf

90

C: 0.0005,
class weights:(1:5) ,

penalty: l2,
Top-250 Tf-idf

C: 1.16,
class weights: (1:5)

Top-250 BOW

estimators:2000 ,
max depth:8 ,

class weights:balanced
Top-500 Tf-idf

180

C:1.06 ,
class weights: balanced,

penalty: l1,
Top-250 Tf-idf

C:2.46 ,
class weights:(1:10)

Top-100 BOW

estimators:2000 ,
max depth:8 ,

class weights:balanced
Top-100 Tf-idf

Table 5.1: Model Parameters: Best Classical Machine Learning Models on Full History
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Dataset (Days
before admission)

LR SVC RF

0

C: 0.33,
class weights: none,

penalty: l1,
Top-100 BOW

C: 0.11 ,
class weights: (1:2),

Top-100 BOW

estimators: 1788 ,
max depth:25 ,

class weights: none,
Top-100 Tf-idf

3

C: 0.0005 ,
class weights: (1:5),

penalty: l2,
Top-250 BOW

C: 0.11,
class weights: (1:2),

Top-250 BOW

estimators:2000 ,
max depth: 8,

class weights: balanced,
Top-100 Tf-idf

7

C: 1.16 ,
class weights: (1:5),

penalty: l1,
Top-100 Tf-idf

C:0.11 ,
class weights:(1:5),

Top-100 Tf-idf

estimators:2000 ,
max depth:8 ,

class weights: balanced,
Top-100 Tf-idf

10

C: 0.0005,
class weights: (1:5),

penalty: l2,
Top-100 Tf-idf

C: 3,
class weights: (1:2),

Top-100 BOW

estimators: 944 ,
max depth: 36 ,

class weights: none,
Top-250 Tf-idf

14

C: 1.16,
class weights: (1:5),

penalty: l1,
Top-100 Tf-idf

C:0.34 ,
class weights: (1:10),

Top-100 BOW

estimators: 100 ,
max depth: 32,

class weights: none,
Top-250 Tf-idf

30

C: 2.8,
class weights: balanced,

penalty: l1,
Top-2500 BOW

C:0.35 ,
class weights:none,

Top-250 BOW

estimators:2000 ,
max depth: 8,

class weights:balanced,
Top-100 Tf-idf

60

C:1.06 ,
class weights:balanced ,

penalty: l1,
Top-100 Tf-idf

C:3.39 ,
class weights:(1:20),

Top-100 Tf-idf

estimators:2000 ,
max depth:8 ,

class weights:balanced
Top-500 Tf-idf

90

C:0.0005 ,
class weights:(1:5),

penalty: l2,
Top-250 Tf-idf

C:0.29 ,
class weights:balanced,

Top-100 Tf-idf

estimators:2000 ,
max depth: 8,

class weights:balanced
Top-250 Tf-idf

180

C: 1.67,
class weights: (1:10),

penalty: l1,
Top-250 Tf-idf

C: 3.73,
class weights:balanced

Top-100 Tf-idf

estimators: 2000,
max depth:8 ,

class weights:balanced
Top-100 Tf-idf

Table 5.2: Model Parameters: Best Classical Machine Learning Models on Past Month History
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Dataset
(Days)

LR SVC RF
F1 PR-AUC AUK F1 PR-AUC AUK F1 PR-AUC AUK

0 0.34 0.33 0.07 0.35 0.37 0.12 0.29 0.33 0.10
3 0.32 0.25 0.09 0.31 0.16 0.06 0.33 0.34 0.12
7 0.30 0.19 0.06 0.27 0.20 0.08 0.21 0.26 0.10
10 0.29 0.20 0.06 0.27 0.21 0.07 0.27 0.27 0.10
14 0.29 0.18 0.06 0.28 0.22 0.09 0.29 0.26 0.10
30 0.24 0.17 0.07 0.26 0.18 0.07 0.19 0.17 0.08
60 0.21 0.24 0.06 0.26 0.16 0.07 0.23 0.17 0.07
90 0.21 0.16 0.05 0.27 0.18 0.07 0.22 0.16 0.07
180 0.19 0.11 0.04 0.20 0.14 0.05 0.15 0.11 0.04

Table 5.3: Model Quality metrics: Classical Machine Learning Models (Full History)

Dataset
(Days)

LR SVC RF
F1 PR-AUC AUK F1 PR-AUC AUK F1 PR-AUC AUK

0 0.48 0.47 0.15 0.44 0.42 0.13 0.46 0.48 0.14
3 0.44 0.39 0.13 0.38 0.33 0.10 0.42 0.39 0.12
7 0.31 0.20 0.09 0.28 0.22 0.09 0.19 0.21 0.09
10 0.29 0.18 0.07 0.27 0.19 0.07 0.16 0.22 0.09
14 0.23 0.20 0.09 0.24 0.17 0.06 0.13 0.20 0.08
30 0.19 0.24 0.05 0.18 0.15 0.04 0.15 0.12 0.05
60 0.26 0.16 0.07 0.28 0.18 0.08 0.21 0.18 0.06
90 0.18 0.11 0.01 0.26 0.19 0.07 0.24 0.15 0.06
180 0.15 0.11 0.04 0.19 0.12 0.04 0.16 0.10 0.04

Table 5.4: Model Quality metrics: Classical Machine Learning Models (Past Month History)

Dataset (days
before admission)

LR SVC RF
TP FP TN FN TP FP TN FN TP FP TN FN

0 14 12 648 42 16 19 641 40 11 9 651 45
3 18 38 622 37 21 61 599 34 12 5 655 43
7 16 34 626 39 22 86 574 33 7 4 656 48
10 14 28 632 41 20 71 589 35 11 16 644 44
14 17 45 615 38 14 32 628 41 12 16 644 43
30 20 92 569 34 22 95 566 32 9 31 630 45
60 10 32 628 44 19 74 586 35 9 15 645 45
90 9 22 638 45 12 23 637 42 8 11 649 46
180 14 82 579 37 10 38 623 41 7 35 626 44

Table 5.5: Confusion metrics: Classical Machine Learning Classifiers (Full History)
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Dataset (days
before admission)

LR SVC RF
TP FP TN FN TP FP TN FN TP FP TN FN

0 23 16 644 33 22 22 638 34 18 4 656 38
3 22 23 637 33 20 29 631 35 17 8 652 38
7 17 39 621 38 14 30 630 41 8 21 639 47
10 18 53 607 37 12 22 638 43 5 4 656 50
14 12 36 624 43 16 64 596 39 4 2 658 51
30 8 22 639 46 8 28 633 46 7 32 629 47
60 19 74 586 35 21 77 583 33 8 15 645 46
90 10 47 613 44 18 68 592 36 11 26 634 43
180 10 74 587 41 15 89 572 36 10 68 593 41

Table 5.6: Confusion metrics: Classical Machine Learning Classifiers (Past Month History)

36Siamese Fine-tuning of BERT for Classification of Small and Imbalanced Datasets, Applied to
Prediction of Involuntary Admissions in Mental Healthcare



CHAPTER 5. EXPERIMENTAL SETUP AND RESULTS

5.2.2 Deep/Transfer Learning: Best Models

Regular Fine-tuning for Classification

In this section, we discuss the results of fine-tuning BERTje as a classifier. The model quality
and confusion metrics for models trained using the full and the previous month’s patient history
are provided in tables 5.7 and 5.8 respectively. We observe that the PR-AUC is just marginally
above the baseline of 0.08 for most of the time-frames. This classifier has a performance better
than random guessing only when predicting 0 days in advance using the previous month’s patient
history. When observing the confusion metrics, although this model has a true positive rate of
60%, the very high number of false positives make it unsuitable for practical use. We also see in
the confusion metrics that all other models tend to classify all test examples as belonging to one
of the two classes, reflecting the poor model quality.

Data-set (Days before admission) F1 PR-AUC AUK TP FP TN FN
0 0.15 0.08 -0.00 56 660 0 0
3 0.00 0.11 0.02 55 660 0 0
7 0.14 0.14 0.05 55 660 0 0
10 0.20 0.14 0.06 38 287 373 17
14 0.00 0.08 -8.72 0 0 660 55
30 0.14 0.17 0.06 54 660 0 0
60 0.00 0.14 0.07 0 2 658 54
90 0.14 0.06 -0.03 54 660 0 0
180 0.13 0.08 0.01 51 661 0 0

Table 5.7: Model quality and confusion metrics: BERTje as a Classifier (Full History)

Data-set (Days before admission) F1 PR-AUC AUK TP FP TN FN
0 0.28 0.27 0.10 34 150 510 22
3 0.14 0.11 0.05 55 660 0 0
7 0.00 0.13 0.04 0 0 660 55
10 0.00 0.06 -0.04 0 0 660 55
14 0.14 0.10 0.03 55 660 0 0
30 0.14 0.09 0.02 54 661 0 0
60 0.14 0.10 0.04 54 660 0 0
90 0.14 0.09 0.02 54 660 0 0
180 0.13 0.10 -0.00 51 661 0 0

Table 5.8: Model quality and confusion metrics: BERTje as a Classifier (Past Month histroy)
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Regular Fine-tuning for feature extraction

In this section, we discuss the results of extracting document embeddings from a BERtje model that
was fine-tuned for classification, and using the classical machine learning algorithms to perform
the classification. Logistic Regression (LR), Support Vector Classifier (SVC), and Random Forests
(RF) are used as the classifiers. The parameters for the best classifiers are provided in Appendix
D. We observe that all models used class weights for the under-represented class. The model
quality metrics for models fine-tuned on the full and the previous month’s patient history are
provided in tables 5.9 and 5.10 respectively. We observe that model performance diminishes
as the prediction time-frames move farther from the time of involuntary admission, and models
trained on the previous month’s patient history have better predictive power when compared to
models trained on full patient history. We note that the PR-AUC is greater than the baseline
of 0.08 when predicting at time-frames closer to the time of involuntary admission and is only
marginally greater than the baseline for time-frames such as 60, 90, and 180 days in advance. We
also note that the random forest classifier has the least predictive power. The confusion metrics
for models fine-tuned on full and the previous month’s patient history are provided in tables 5.11
and 5.12 respectively. Here, we clearly see the low predictive power of the random forest since it
classified most examples as belonging to the majority class. For the logistic regression and support
vector machine, though they do have some predictive power, the high number of false positives
tends to make these models unsuitable for practical use.

We note that though the classifier model had a poor performance, the embeddings generated
by the model still had some information that allowed other classifiers to classify the examples.
We also note that the poor performance of the random forest classifier could indicate that the
individual dimensions of the document embeddings cannot be partitioned in a hierarchical manner.

Dataset (Days
before admission)

LR SVC RF
F1 PR-AUC AUK F1 PR-AUC AUK F1 PR-AUC AUK

0 0.18 0.12 0.05 0.19 0.13 0.05 0.00 0.14 0.06
3 0.14 0.13 0.03 0.14 0.13 0.03 0.03 0.12 0.04
7 0.09 0.09 0.01 0.10 0.10 0.01 0.00 0.11 0.04
10 0.22 0.19 0.07 0.22 0.17 0.06 0.11 0.15 0.07
14 0.16 0.12 0.04 0.16 0.11 0.03 0.00 0.09 0.00
30 0.24 0.27 0.08 0.27 0.24 0.08 0.04 0.23 0.08
60 0.12 0.08 0.01 0.12 0.08 0.01 0.00 0.10 0.03
90 0.09 0.10 0.01 0.14 0.08 0.01 0.00 0.08 0.01
180 0.10 0.09 0.02 0.08 0.07 0.01 0.04 0.10 0.02

Table 5.9: Model quality metrics: Classical ML Classifiers on Embeddings after Regular Fine-
tuning (Full History)
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Dataset (Days
before admission)

LR SVC RF
F1 PR-AUC AUK F1 PR-AUC AUK F1 PR-AUC AUK

0 0.33 0.36 0.11 0.35 0.34 0.10 0.22 0.32 0.12
3 0.31 0.22 0.09 0.22 0.19 0.07 0.16 0.26 0.09
7 0.27 0.21 0.08 0.27 0.23 0.08 0.06 0.15 0.06
10 0.21 0.18 0.07 0.24 0.17 0.08 0.07 0.18 0.07
14 0.18 0.14 0.06 0.13 0.11 0.02 0.00 0.14 0.04
30 0.16 0.16 0.04 0.26 0.13 0.05 0.00 0.11 0.03
60 0.15 0.10 0.03 0.11 0.09 0.03 0.00 0.10 0.02
90 0.14 0.11 0.02 0.15 0.11 0.03 0.00 0.10 0.02
180 0.12 0.09 0.03 0.13 0.11 0.03 0.00 -0.01 0.10

Table 5.10: Model quality metrics: Classical ML Classifiers on Embeddings after Regular Fine-
tuning (Past Month History)

Dataset (days before
admission)

LR SVC RF
TP FP TN FN TP FP TN FN TP FP TN FN

0 19 136 524 37 11 50 610 45 0 0 660 56
3 14 131 529 41 13 124 536 42 1 3 657 54
7 6 69 591 49 9 110 550 46 0 0 660 55
10 31 198 462 24 18 93 567 37 4 14 646 51
14 20 176 484 35 20 170 490 35 0 0 660 55
30 10 18 642 44 14 37 623 40 1 0 660 53
60 11 123 537 43 11 116 544 43 0 1 659 54
90 8 111 549 46 17 165 495 37 0 0 660 54
180 11 152 508 40 7 110 550 44 1 3 657 50

Table 5.11: Confusion metrics: Classical ML Classifiers on Embeddings after Regular Fine-tuning
(Full History)

Dataset (days before
admission)

LR SVC RF
TP FP TN FN TP FP TN FN TP FP TN FN

0 17 30 630 39 20 38 622 36 8 10 650 48
3 15 26 634 40 19 96 564 36 5 2 658 50
7 15 41 619 40 24 98 562 31 2 6 654 53
10 13 54 606 42 27 143 517 28 2 1 659 53
14 25 195 465 30 9 71 589 46 0 1 659 55
30 22 192 469 32 16 51 610 38 0 0 661 54
60 17 156 504 37 8 89 571 46 0 2 658 54
90 16 166 494 38 15 127 533 39 0 0 660 54
180 10 105 556 41 11 112 549 40 0 2 659 51

Table 5.12: Confusion metrics: Classical ML classifiers on Embeddings after Regular Fine-tuning
(Past Month History)
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Siamese Fine-tuning

In this section, we discuss the results of extracting document embeddings extracted from a BERtje
model that was fine-tuned using Siamese learning, and using the classical machine learning al-
gorithms (Logistic Regression (LR), Support Vector Classifier (SVC), and Random Forests (RF))
to perform the classification. The parameters for the best classifiers are provided in Appendix D.
Again, we observe that all models used class weights for the under-represented class. The model
quality metrics when fine-tuned on full and the previous month’s patient history are provided in
tables 5.13 and 5.14. Similar to models in previous sections, model performance diminishes as the
prediction time-frames move farther from the time of involuntary admission, and models trained
on the previous month’s patient history have better predictive power when compared to models
trained on full patient history. We note that the PR-AUC is greater than the baseline of 0.08
when predicting at time-frames closer to the time of involuntary admission and is only marginally
greater than the baseline for time-frames such as 60, 90, and 180 days in advance. We also note
that the random forest classifier has the least predictive power in terms of model quality metrics.
The confusion metrics for models fine-tuned on full and the previous month’s patient history are
provided in tables 5.15 and 5.16 respectively. Here, we clearly see the low predictive power of
the random forest since it classified most examples as belonging to the majority class. For the
logistic regression and support vector machine, though they do have some predictive power, the
high number of false positives tends to make these models unsuitable for practical use yet.

Dataset (Days
before admission)

LR SVC RF
F1 PR-AUC AUK F1 PR-AUC AUK F1 PR-AUC AUK

0 0.19 0.16 0.07 0.20 0.14 0.06 0.00 0.10 0.02
3 0.18 0.12 0.03 0.15 0.11 0.03 0.00 0.07 -0.01
7 0.15 0.10 0.03 0.15 0.09 0.02 0.00 0.08 0.01
10 0.16 0.11 0.03 0.17 0.11 0.03 0.00 0.09 0.01
14 0.17 0.10 0.03 0.17 0.10 0.04 0.00 0.09 0.02
30 0.14 0.15 0.03 0.14 0.12 0.03 0.00 0.08 0.01
60 0.19 0.12 0.05 0.17 0.11 0.04 0.00 0.07 -0.01
90 0.18 0.10 0.03 0.15 0.10 0.03 0.00 0.08 0.01
180 0.08 0.07 -0.00 0.10 0.07 -0.01 0.00 0.08 0.01

Table 5.13: Model quality metrics: Classical ML Classifiers on Embeddings after Siamese Fine-
tuning (Full History)

Dataset (Days
before admission)

LR SVC RF
F1 PR-AUC AUK F1 PR-AUC AUK F1 PR-AUC AUK

0 0.30 0.20 0.09 0.27 0.20 0.09 0.09 0.14 0.04
3 0.31 0.26 0.09 0.14 0.26 0.09 0.00 0.17 0.05
7 0.14 0.09 0.02 0.19 0.12 0.04 0.00 0.09 0.02
10 0.24 0.13 0.06 0.22 0.13 0.06 0.05 0.11 0.04
14 0.16 0.15 0.04 0.19 0.12 0.04 0.00 0.12 0.05
30 0.15 0.09 0.02 0.17 0.09 0.02 0.00 0.07 0.01
60 0.17 0.11 0.03 0.17 0.10 0.03 0.00 0.08 0.01
90 0.11 0.09 0.01 0.12 0.09 0.01 0.00 0.08 0.01
180 0.15 0.13 0.04 0.19 0.12 0.05 0.00 0.09 0.02

Table 5.14: Model quality metrics: Classical ML Classifiers on Embeddings after Siamese Fine-
tuning (Past Month History)
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Dataset (days
before admission)

LR SVC RF
TP FP TN FN TP FP TN FN TP FP TN FN

0 10 37 623 46 18 105 555 38 0 3 657 56
3 20 142 518 35 17 154 506 38 0 0 660 55
7 19 175 485 36 19 188 472 36 0 0 660 55
10 20 169 491 35 24 199 461 31 0 0 660 55
14 26 219 441 29 24 196 464 31 0 0 660 55
30 9 69 591 45 17 179 481 37 0 0 660 54
60 22 153 507 32 21 166 494 33 0 2 658 54
90 23 185 475 31 14 122 538 40 0 0 660 54
180 8 134 526 43 11 165 495 40 0 0 660 51

Table 5.15: Confusion metrics: Classical ML Classifiers on Embeddings after Siamese Fine-tuning
(Full History)

Dataset (days
before admission)

LR SVC RF
TP FP TN FN TP FP TN FN TP FP TN FN

0 19 52 608 37 18 61 599 38 3 11 649 53
3 21 58 602 34 5 9 651 50 0 0 660 55
7 16 163 497 39 16 99 561 39 0 0 660 55
10 28 152 508 27 26 160 500 29 2 16 644 53
14 17 140 520 38 23 165 495 32 0 7 653 55
30 16 143 518 38 19 157 504 35 0 2 659 54
60 16 115 545 38 15 107 553 39 0 2 658 54
90 10 117 543 44 9 91 569 45 0 0 660 54
180 15 139 522 36 26 193 468 25 0 1 660 51

Table 5.16: Confusion metrics: Classical ML Classifiers on Embeddings after Siamese Fine-tuning
(Past Month History)

5.3 Discussion

5.3.1 Full vs. Past Month Patient History

We note that using recent patient history to perform the analysis results in better models when
using both, the classical machine learning algorithms, and the deep transfer learning based models.
The model quality metrics F1, PR-AUC and AUK are all greater when models are trained on recent
patient history as opposed to full patient history. This difference is also visually illustrated by the
precision-recall plots.

5.3.2 Classical Machine Learning Classifiers

We observe that the best classical models tend to favor a lower number of features (top 250 or
100 words) along with some degree of weighting for the minority class. The logistic regression and
support vector classifier use both, the BOW and Tf-idf input representations; while the random
forest classifier performs well using only the Tf-idf input representation.

5.3.3 Classical Machine Learning Classifier vs. Deep Transfer Learning
Classifier

We note that the classical machine learning algorithms result in much better models in terms of
model quality and confusion metrics when compared to deep learning based classifiers. The deep
learning based classifier exhibits no skill at classification. The PR-AUC is just marginally greater

Siamese Fine-tuning of BERT for Classification of Small and Imbalanced Datasets, Applied to
Prediction of Involuntary Admissions in Mental Healthcare

41



CHAPTER 5. EXPERIMENTAL SETUP AND RESULTS

than baseline and based on the confusion metrics, it classifies all testing samples as belonging to
just one of the classes for a large majority of the data-sets. It also exhibits no skill when fine-
tuned on the recent patient history. This deep transfer learning based model is recommended in
literature and is shown to have state-of-the-art classification power. It is interesting to note that
this model had the worst skill in our experiments.

5.3.4 Classical Machine Learning Classifiers on Embeddings after Fine-
tuning

We note that when classical ML algorithms are used to classify the embeddings generated by a
fine-tuned model, the resulting models have some classification skill. This is seen when embeddings
generated after both, regular and Siamese fine-tuning, are used. In these experiments, we observe
that while logistic regression and support vector machines were able to classify the document
embeddings, random forests were unable to do. Random forests tended to classify all testing
samples as belonging to the majority class for all the data-sets, regardless of whether full or recent
history was used for fine-tuning the model.

Comparing the model quality metrics, we note that the performance of the classifiers trained
on the embeddings on the regularly fine-tuned models was slightly higher. When we observe the
confusion metrics, we note that the models trained on the regularly fine-tuned embeddings tend
to result in fewer false positives when compared to the models trained on the embeddings after
Siamese fine-tuning. Additionally, the classifiers trained on the Siamese embeddings have slightly
higher true positives and lower false negatives when compared to the models based on regular
fine-tuning. However, for classifiers based on both types of embeddings, the false positives are too
high to be of use in a practical setting.

For our small and imbalanced data-set with 181 examples for the under-represented positive
class of interest, it was theoretically possible to create up-to 180∗179/2 = 16110 pairs of positive
samples pairs. However, in practice, we were able to use only 300 samples due to operational
constraints. In computer vision, the number of positive pairs is usually 5 to 10 times the number
of positive samples. Since in our experiments the number of pairs is just 1.5 times that of the
number of positive examples, we believe this to be a major reason for the lower performance. There
is a strong possibility that performance could increase on experiments using a larger number of
paired samples. Hence, it is premature to conclude with certainty that the Siamese fine-tuning
approach has a poor performance compared to the regular fine-tuning approach.

5.3.5 Feasible Advance Prediction Time-frames

From our experiments, we observe that advance prediction for all time-frames may not be feasible
yet. For practical settings, we observe that only for the time-frames 0 and 3 days before admission
the classical machine learning models may be used on recent patient history; with at least 0.39 for
PR-AUC, F1 scores around 0.44, and a true positive rate around 40%. In such settings, the number
of false positives is still low enough for such a classifier to be of some benefit to a company. For all
other time-frames, however, though the classifiers have some skill, the number of false positives is
too high to be useful in a practical setting.

While the classifiers trained on the deep transfer learning based embeddings are able to reach
a true positive rate of upto 56% (e.g., logistic regression classifier trained on embeddings after
regular fine-tuning on full patient history 10 days before admission, table 5.11), similar to the
classical machine learning models, the very high number of false positives makes such models
unsuitable for practical use.
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Chapter 6

Conclusions

6.1 Discussion

We explored classical machine learning and deep transfer learning models in order to predict
involuntary psychiatric admissions using Dutch EHR data provided by Antes Groep. We trained
various models to investigate whether involuntary admissions can be predicted days or even months
in advance. We report the F1 scores, Area under Kappa curve, and Area under Precision-Recall,
and confusion metrics. The performance of our models is mainly evaluated using area under
the precision-recall curve (PR-AUC), and we use the confusion metrics to evaluate model use in
practical settings. The PR-AUC is greater than 0.35 for the classical ML classifiers and greater
than 0.20 for the deep transfer learning based classifiers when predicting up-to 3 days in advance
using the last month’s patient history. The PR-AUC was above the baseline of 0.08 for other
time-frames as well and indicates that performance better than random guessing is possible for
this prediction task. Based on the confusion metrics we find that the models for all prediction
time-frames are not suitable for practical purposes yet and more research is needed for further
improvements.

6.2 Contribution

As far as we are aware, we are the first to investigate using clinical text in Dutch for prediction of
involuntary admissions in patients suffering from severe psychiatric disorders. In this regard, we
have explored NLP techniques along with traditional machine learning algorithms as well as the
state-of-the-art deep transfer learning approaches. We also proposed a novel Siamese fine-tuning
approach for training document feature extractors.

6.3 Limitations

We did not perform many experiments in order to select the best hyper-parameters for the deep
learning models, and used the best hyper-parameters that were recommended in literature. We
note that our work was severely limited by the computational resources and hence we were unable
to fully exploit the power of deep transfer learning. For the Siamese fine-tuning, the training
data-set was too small. While it was theoretically possible to create a large number of training
examples, it was impractical for us to do so. As a result, we believe, we were not able to effectively
evaluate and demonstrate the full potential of Siamese fine-tuning.
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6.4 Future Work

In this work we observed that patient history corresponding to the last month of the prediction
time-frame was more useful in predicting involuntary admissions. This finding could be explored
further to determine the most effective amount of patient history that should be considered for
this prediction task.

The full potential of the proposed fine-tuning approach could not be evaluated in this study.
In the future, the approach could be evaluated in settings without any operational constraints.
Currently we used the binary cross entropy loss to fine-tune the Siamese model. Future work
could explore using triplet loss to fine-tune the model. While we did use a BERT model trained
on multi-genre data to account for different writing styles, clinical data could be specifically used to
further pre-train the model. Another related direction for future work could be incorporating more
domain specific vocabulary while fine-tuning the model. In addition, other more representative
clinical data-sets could be used to validate the findings of this study.
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Appendix A

A List of Dutch Stopwords with
English Translations

Table A.1: A list of Dutch stopwords and their English meanings

Word Meaning in English Word Meaning in English
de the deze these
en and u you
van from, of, by want because
ik I nog yet, still
te to zal shall

dat that me me, I
die that, which, who zij she, they, it
in in, into, at nu now

een a, an ge -
hij he geen no, none, neither
het the iets something, anything, somewhat
niet no, not worden be, become
zijn to be, his, its, her toch yet, still, however
is be al already, all, every

was was, wash waren goods
op on, up veel many
aan to, on, at meer more
met with, by, on doen to do, make
als as, if, when toen then, when, as

voor for, before moet must
had had ben am
er there zonder without

maar but, only kan can
om to, for, at hun their, them
hem him dus so, therefore, thus
dan than alles all, everything
zou will, shall onder under, amongst
of or, either, whether ja yes

wat what, which, some eens once
mijn my, mine hier here
dit this, it wie who, which
zo so, that, thus werd became

Table continues below
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APPENDIX A. A LIST OF DUTCH STOPWORDS WITH ENGLISH TRANSLATIONS

Word Meaning in English Word Meaning in English
door by, through, from altijd always
over about, on, over doch but, yet
ze she, they, them wordt is becoming

zich herself, himself, itself, themselves wezen being
bij at, in, to, bee kunnen can, may, able to
ook also onze our
tot until, to, for zelf self
je you, your tegen at, against

mij my, I na after, on, behind
uit from, out, in reeds already
der - wil want

daar there kon could
haar her, its, their niets nil, nothing
naar to, for, at uw your
heb have iemand someone
hoe how geweest been

heeft has andere others, another, else
hebben have omdat because

stopwords from nltk.stopwords(’dutch’)
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Appendix B

Precision Recall Plots

B.1 Precision-Recall Plots for Classical ML Classifiers

Figure B.1: Precision-Recall Curves for Logistic Regression Classifiers (Full History)
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APPENDIX B. PRECISION RECALL PLOTS

Figure B.2: Precision-Recall Curves for Logistic Regression Classifiers (Last Month History)

Figure B.3: Precision-Recall Curves for Support Vector Classifier (Full History)
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APPENDIX B. PRECISION RECALL PLOTS

Figure B.4: Precision-Recall Curves for Support Vector Classifier (Last Month History)

Figure B.5: Precision-Recall Curves for Random Forest Classifier (Full History)
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APPENDIX B. PRECISION RECALL PLOTS

Figure B.6: Precision-Recall Curves for Random Forest Classifier (Last Month History)
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APPENDIX B. PRECISION RECALL PLOTS

B.2 Precision-Recall Plots for BERTje as a Classifier

Figure B.7: Precision-Recall Curves: BERTje as a Classifier (Full History)
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APPENDIX B. PRECISION RECALL PLOTS

Figure B.8: Precision-Recall Curves: BERTje as a Classifier (Last Month History)

B.3 Precision-Recall Plots for BERTje as a feature extractor
followed by Classical ML Classifiers
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APPENDIX B. PRECISION RECALL PLOTS

Figure B.9: Precision-Recall Curves for Logistic Regression Classifier on Embeddings after Regular
Fine-tuning (Full History)

Figure B.10: Precision-Recall Curves for Logistic Regression Classifier on Embeddings after Reg-
ular Fine-tuning (Last Month History)
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APPENDIX B. PRECISION RECALL PLOTS

Figure B.11: Precision-Recall Curves for Support Vector Classifier on Embeddings after Regular
Fine-tuning (Full History)

Figure B.12: Precision-Recall Curves for Support Vector Classifier on Embeddings after Regular
Fine-tuning (Last Month History)
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APPENDIX B. PRECISION RECALL PLOTS

Figure B.13: Precision-Recall Curves for Random Forest Classifier on Embeddings after Regular
Fine-tuning (Full History)

Figure B.14: Precision-Recall Curves for Random Forest Classifier on Embeddings after Regular
Fine-tuning (Last Month History)
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APPENDIX B. PRECISION RECALL PLOTS

B.4 Precision-Recall Plots for BERTje as a feature extractor
after Siamese Fine-tuning, followed by Classical ML
Classifiers

Figure B.15: Precision-Recall Curves for Logistic Regression Classifier on Embeddings after Sia-
mese Fine-tuning (Full History)
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APPENDIX B. PRECISION RECALL PLOTS

Figure B.16: Precision-Recall Curves for Logistic Regression Classifier on Embeddings after Sia-
mese Fine-tuning (Last Month History)

Figure B.17: Precision-Recall Curves for Support Vector Classifier on Embeddings after Siamese
Fine-tuning (Full History)
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APPENDIX B. PRECISION RECALL PLOTS

Figure B.18: Precision-Recall Curves for Support Vector Classifier on Embeddings after Siamese
Fine-tuning (Last Month History)

Figure B.19: Precision-Recall Curves for Random Forest Classifier on Embeddings after Siamese
Fine-tuning (Full History)
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APPENDIX B. PRECISION RECALL PLOTS

Figure B.20: Precision-Recall Curves for Random Forest Classifier on Embeddings after Siamese
Fine-tuning (Last Month History)
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Appendix C

Results: Classical Machine
Learning Models

Here we provide the model metrics for the logistic regression, support vector machine, and random
forest classifiers under various input representations. The metrics are provided per dataset for
BOW and Tf-idf representations. Further, the metrics using full and the most recent past month
patient history that is available for the respective time-periods is also given. In general, model
performance is better when using data from the past month, and the better models tend to prefer
a lower number of words as input features. Model performance also declines as the prediction
time-frames move further away from the time of involuntary admission. Note that in the tables
that follow, ’recent’ is used to denote ’the last month data of the respective time-period’.

C.1 Models for all data-sets using different feature repres-
entations

Precision Recall F1 scoreTop-N words,
Full/Recent Data LR RF SVM LR RF SVM LR RF SVM

2500-Full History 0.46 0.5 0.28 0.11 0.07 0.09 0.17 0.12 0.14
2500-Recent History 0.65 0.93 0.62 0.27 0.23 0.09 0.38 0.37 0.16
1500-Full History 0.28 0.56 0.21 0.2 0.09 0.14 0.23 0.15 0.17
1500-Recent History 0.71 0.80 0.58 0.3 0.14 0.2 0.42 0.24 0.29
1000-Full History 0.45 0.55 0.10 0.18 0.11 0.07 0.26 0.18 0.08
1000-Recent History 0.58 0.83 0.48 0.32 0.18 0.18 0.41 0.29 0.26
750-Full History 0.39 0.58 0.19 0.16 0.12 0.14 0.23 0.21 0.16
750-Recent History 0.55 0.85 0.34 0.38 0.20 0.18 0.45 0.32 0.24
500-Full History 0.42 0.7 0.27 0.2 0.12 0.29 0.27 0.21 0.28
500-Recent History 0.57 0.86 0.36 0.38 0.21 0.29 0.45 0.34 0.32
250-Full History 0.54 0.67 0.37 0.25 0.14 0.18 0.34 0.24 0.24
250-Recent History 0.58 0.87 0.45 0.38 0.23 0.43 0.46 0.37 0.44
100-Full History 0.28 0,58 0.29 0.39 0.2 0.39 0.33 0.29 0.33
100-Recent History 0.59 0.81 0.50 0.41 0.23 0.39 0.48 0.36 0.44

Table C.1: Classifier Scores for Dataset: 0 days before admission with BOW representation
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APPENDIX C. RESULTS: CLASSICAL MACHINE LEARNING MODELS

Precision Recall F1 scoreTop-N words,
Full/Recent Data LR RF SVM LR RF SVM LR RF SVM

2500-Full History 0.33 1.00 0.44 0.18 0.05 0.21 0.24 0.10 0.29
2500-Recent History 0.53 0.89 0.57 0.34 0.29 0.14 0.41 0.43 0.23
1500-Full History 0.23 1.00 0.20 0.12 0.04 0.16 0.16 0.07 0.18
1500-Recent History 0.58 0.83 0.42 0.34 0.27 0.20 0.43 0.29 0.21
1000-Full History 0.23 1.00 0.20 0.14 0.09 0.21 0.18 0.16 0.21
1000-Recent History 0.51 0.79 0.55 0.34 0.27 0.20 0.41 0.40 0.29
750-Full History 0.29 1.00 0.29 0.14 0.11 0.20 0.19 0.19 0.23
750-Recent History 0.69 0.87 0.43 0.32 0.23 0.16 0.44 0.37 0.23
500-Recent History 0.52 0.67 0.30 0.20 0.11 0.14 0.29 0.18 0.19
500-Recent History 0.47 0.88 0.41 0.39 0.25 0.29 0.43 0.39 0.34
250-Full History 0.42 0.88 0.33 0.29 0.12 0.16 0.34 0.22 0.22
250-Recent History 0.51 0.77 0.38 0.39 0.30 0.34 0.44 0.44 0.36
100-Full History 0.48 0.58 0.46 0.21 0.12 0.29 0.30 0.21 0.35
100-Recent History 0.56 0.82 0.48 0.36 0.32 0.39 0.43 0.46 0.43

Table C.2: Classifier Scores for Data-set: 0 days before admission with Tf-idf representation

Precision Recall F1 scoreTop-N words,
Full/Recent Data LR RF SVM LR RF SVM LR RF SVM
2500-Full History 0.27 1.00 0.26 0.2 0.04 0.22 0.23 0.07 0.24

2500-Recent History 0.36 0.88 0.2 0.22 0.13 0.02 0.37 0.22 0.03
1500-Full History 0.24 0.00 0.22 0.15 0.00 0.15 0.18 0.00 0.17

1500-Recent History 0.43 0.90 0.36 0.22 0.16 0.07 0.29 0.28 0.12
1000-Full History 0.26 0.00 0.17 0.18 0.00 0.13 0.21 0.00 0.15

1000-Recent History 0.45 0.75 0.36 0.18 0.11 0.15 0.26 0.19 0.21
750-Full History 0.42 0.00 0.31 0.20 0.00 0.22 0.27 0.00 0.26

750-Recent History 0.46 0.67 0.27 0.20 0.07 0.18 0.28 0.13 0.22
500-Full History 0.17 1.00 0.16 0.27 0.05 0.22 0.21 0.10 0.18

500-Recent History 0.44 0.78 0.20 0.31 0.13 0.18 0.36 0.22 0.19
250-Full History 0.32 0.83 0.26 0.31 0.09 0.38 0.31 0.16 0.31

250-Recent History 0.50 0.71 0.42 0.40 0.18 0.36 0.44 0.29 0.39
100-Full History 0.42 0.90 0.26 0.20 0.16 0.38 0.27 0.28 0.31

100-Recent History 0.45 0.75 0.35 0.40 0.27 0.38 0.42 0.40 0.37

Table C.3: Classifier Scores for Dataset: 3 days before admission with BOW representation
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APPENDIX C. RESULTS: CLASSICAL MACHINE LEARNING MODELS

Precision Recall F1 scoreTop-N words,
Full/Recent Data LR RF SVM LR RF SVM LR RF SVM

2500-Full History 0.33 0.00 0.19 0.16 0.00 0.09 0.22 0.00 0.12
2500-Recent History 0.39 0.92 0.20 0.16 0.22 0.02 0.23 0.35 0.03
1500-Full History 0.18 0.00 0.20 0.11 0.00 0.11 0.14 0.00 0.14
1500-Recent History 0.38 0.85 0.50 0.18 0.20 0.11 0.25 0.32 0.18
1000-Full History 0.22 1.00 0.22 0.15 0.02 0.15 0.17 0.04 0.18
1000-Recent History 0.31 0.82 0.44 0.18 0.27 0.15 0.23 0.27 0.22
750-Full History 0.37 1.00 0.37 0.13 0.02 0.24 0.19 0.04 0.29
750-Recent History 0.25 0.82 0.52 0.18 0.16 0.20 0.21 0.27 0.29
500-Full History 0.44 0.67 0.43 0.20 0.18 0.16 0.28 0.29 0.24
500-Recent History 0.33 0.71 0.40 0.25 0.22 0.18 0.29 0.33 0.25
250-Full History 0.50 0.88 0.30 0.24 0.13 0.13 0.32 0.22 0.18
250-Recent History 0.27 0.67 0.35 0.47 0.33 0.31 0.34 0.44 0.33
100-Full History 0.32 0.52 0.33 0.33 0.20 0.27 0.32 0.29 0.30
100-Recent History 0.33 0.69 0.32 0.36 0.33 0.35 0.34 0.44 0.33

Table C.4: Classifier Scores for Dataset: 3 days before admission with Tf-idf representation

Precision Recall F1 scoreTop-N words,
Full/Recent Data LR RF SVM LR RF SVM LR RF SVM

2500-Full History 0.26 0.00 0.24 0.13 0.00 0.13 0.17 0.00 0.17
2500-Recent History 0.27 0.00 0.33 0.18 0.00 0.04 0.22 0.00 0.07
1500-Full History 0.21 0.00 0.17 0.13 0.00 0.13 0.16 0.00 0.15
1500-Recent History 0.37 0.50 0.38 0.13 0.02 0.15 0.19 0.04 0.21
1000-Full History 0.15 1.00 0.12 0.09 0.05 0.11 0.11 0.10 0.12
1000-Recent History 0.26 0.50 0.22 0.13 0.02 0.11 0.17 0.04 0.15
750-Full History 0.24 0.00 0.21 0.15 0.00 0.13 0.18 0.00 0.16
750-Recent History 0.33 0.00 0.18 0.11 0.00 0.09 0.16 0.00 0.12
500-Full History 0.19 0.00 0.14 0.18 0.00 0.22 0.18 0.00 0.17
500-Recent History 0.32 0.50 0.12 0.15 0.02 0.05 0.20 0.04 0.07
250-Full History 0.32 1.00 0.25 0.29 0.00 0.25 0.30 0.04 0.25
250-Recent History 0.29 0.67 0.26 0.22 0.04 0.18 0.25 0.07 0.21
100-Recent History 0.20 0.67 0.18 0.33 0.07 0.25 0.25 0.13 0.21
100-Recent History 0.38 0.43 0.30 0.18 0.05 0.16 0.25 0.10 0.21

Table C.5: Classifier Scores for Dataset: 7 days before admission with BOW representation
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APPENDIX C. RESULTS: CLASSICAL MACHINE LEARNING MODELS

Precision Recall F1 scoreTop-N words,
Full/Recent Data LR RF SVM LR RF SVM LR RF SVM

2500-Full History 0.14 0.00 0.22 0.05 0.00 0.07 0.08 0.00 0.11
2500-Recent History 0.21 0.40 0.20 0.09 0.04 0.02 0.13 0.07 0.03
1500-Full History 0.08 0.00 0.22 0.07 0.00 0.15 0.08 0.00 0.18
1500-Recent History 0.12 0.67 0.27 0.05 0.04 0.05 0.08 0.07 0.09
1000-Full History 0.14 0.64 0.20 0.05 0.20 0.11 0.08 0.32 0.14
1000-Recent History 0.11 0.67 0.14 0.05 0.04 0.04 0.07 0.27 0.06
750-Full History 0.27 0.64 0.29 0.15 0.13 0.18 0.19 0.21 0.22
750-Recent History 0.15 0.50 0.21 0.16 0.04 0.07 0.16 0.07 0.11
500-Full History 0.21 0.58 0.25 0.07 0.13 0.11 0.11 0.21 0.15
500-Recent History 0.15 0.31 0.27 0.22 0,07 0.11 0.18 0.12 0.16
250-Full History 0.21 0.40 0.20 0.42 0.15 0.40 0.28 0.21 0.27
250-Recent History 0.18 0.38 0.28 0.27 0.09 0.20 0.22 0.15 0.23
100-Full History 0.31 0.5 0.27 0.22 0.04 0.16 0.26 0.07 0.20
100-Recent History 0.30 0.32 0.40 0.31 0.18 0.18 0.31 0.23 0.25

Table C.6: Classifier Scores for Data-set: 7 days before admission with Tf-idf representation

Precision Recall F1 scoreTop-N words,
Full/Recent Data LR RF SVM LR RF SVM LR RF SVM

2500-Full History 0.21 0.00 0.12 0.13 0.00 0.09 0.16 0.00 0.11
2500-Recent History 0.27 0.50 0.33 0.13 0.02 0.04 0.17 0.04 0.07
1500-Full History 0.19 0.00 0.21 0.13 0.00 0.16 0.15 0.00 0.19
1500-Recent History 0.24 0.75 0.42 0.13 0.05 0.09 0.17 0.10 0.15
1000-Full History 0.19 0.00 0.13 0.25 0.00 0.18 0.22 0.00 0.15
100-Recent History 0.14 0.00 0.09 0.05 0.00 0.04 0.08 0.00 0.05
750-Full History 0.13 0.00 0.12 0.25 0.00 0.16 0.17 0.00 0.14
750-Recent History 0.15 0.67 0.16 0.07 0.04 0.09 0.10 0.07 0.12
500-Full History 0.23 1.00 0.26 0.18 0.02 0.20 0.20 0.04 0.23
500-Recent History 0.29 0.50 0.19 0.11 0.02 0.13 0.16 0.04 0.15
250-Full History 0.38 1.00 0.22 0.22 0.02 0.36 0.28 0.04 0.27
250-Recent History 0.29 0.60 0.20 0.24 0.05 0.18 0.26 0.10 0.19
100-Full History 0.24 0.33 0.21 0.18 0.02 0.22 0.21 0.21 0.21
100-Recent History 0.32 0.50 0.35 0.18 0.07 0.22 0.23 0.13 0.27

Table C.7: Classifier Scores for Data-set: 10 days before admission with BOW representation
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APPENDIX C. RESULTS: CLASSICAL MACHINE LEARNING MODELS

Precision Recall F1 scoreTop-N words,
Full/Recent Data LR RF SVM LR RF SVM LR RF SVM

2500-Full History 0.08 0.00 0.21 0.05 0.00 0.11 0.07 0.00 0.14
2500-Recent History 0.13 0.75 0.14 0.07 0.05 0.05 0.09 0.10 0.08
1500-Full History 0.09 0.00 0.14 0.04 0.00 0.09 0.05 0.00 0.11
1500-Recent History 0.15 0.60 0.15 0.09 0.05 0.04 0.11 0.10 0.06
1000-Full History 0.29 0.00 0.26 0.13 0.00 0.18 0.18 0.00 0.22
1000-Recent History 0.09 0.50 0.12 0.07 0.04 0.05 0.08 0.07 0.07
750-Full History 0.23 0.00 0.26 0.13 0.00 0.22 0.16 0.00 0.22
750-Recent History 0.12 0.00 0.09 0.13 0.00 0.05 0.12 0.00 0.07
500-Full History 0.23 0.53 0.35 0.22 0.15 0.20 0.22 0.23 0.26
500-Recent History 0.11 0.50 0.24 0.15 0.04 0.15 0.13 0.07 0.18
250-Full History 0.32 0.42 0.26 0.15 0.02 0.25 0.20 0.27 0.26
250-Recent History 0.16 0.56 0.17 0.20 0.09 0.09 0.18 0.16 0.12
100-Full History 0.33 0.28 0.30 0.25 0.24 0.18 0.29 0.03 0.23
100-Recent History 0.25 0.44 0.30 0.33 0.07 0.22 0.28 0.12 0.25

Table C.8: Classifier Scores for Data-set: 10 days before admission with tfidf representation

Precision Recall F1 scoreTop-N words,
Full/Recent Data LR RF SVM LR RF SVM LR RF SVM
2500-Full History 0.17 0.00 0.15 0.07 0.00 0.09 0.10 0.00 0.11

2500-Recent History 0.17 0.00 0.14 0.09 0.00 0.02 0.12 0.00 0.03
1500-Full History 0.21 0.00 0.19 0.09 0.00 0.11 0.13 0.00 0.14

1500-Recent History 0.14 1.00 0.23 0.09 0.02 0.05 0.11 0.04 0.09
1000-Full History 0.24 0.00 0.24 0.15 0.00 0.25 0.18 0.00 0.25

1000-Recent History 0.18 1.00 0.14 0.09 0.02 0.07 0.12 0.04 0.10
750-Full History 0.12 0.00 0.09 0.18 0.00 0.15 0.15 0.00 0.11

750-Recent History 0.19 1.00 0.18 0.07 0.02 0.13 0.11 0.04 0.15
500-Full History 0.09 0.00 0.16 0.16 0.00 0.13 0.11 0.00 0.14

500-Recent History 0.26 0.50 0.23 0.13 0.02 0.11 0.17 0.04 0.15
250-Full History 0.28 0.00 0.2 0.31 0.00 0.35 0.29 0.00 0.25

250-Recent History 0.24 0.50 0.17 0.11 0.02 0.13 0.15 0.04 0.14
100-Full History 0.25 0.00 0.24 0.20 0.24 0.29 0.22 0.00 0.26

100-Recent History 0.28 0.38 0.20 0.15 0.05 0.29 0.19 0.10 0.24

Table C.9: Classifier Scores for Data-set: 14 days before admission with BOW representation
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APPENDIX C. RESULTS: CLASSICAL MACHINE LEARNING MODELS

Precision Recall F1 scoreTop-N words,
Full/Recent Data LR RF SVM LR RF SVM LR RF SVM
2500-Full History 0.07 0.00 0.07 0.04 0.00 0.04 0.05 0.00 0.05

2500-Recent History 0.19 0.50 0.33 0.09 0.04 0.11 0.12 0.07 0.16
1500-Full History 0.21 0.00 0.21 0.07 0.00 0.15 0.11 0.00 0.17

1500-Recent History 0.10 0.00 0.29 0.09 0.00 0.13 0.10 0.00 0.18
1000-Full History 0.35 0.83 0.28 0.20 0.09 0.20 0.26 0.16 0.23

1000-Recent History 0.09 0.00 0.20 0.09 0.00 0.05 0.09 0.00 0.09
750-Full History 0.26 0.60 0.21 0.16 0.11 0.20 0.20 0.18 0.21

750-Recent History 0.11 0.50 0.16 0.13 0.02 0.05 0.12 0.04 0.08
500-Full History 0.28 0.47 0.23 0.16 0.16 0.05 0.21 0.24 0.09

500-Recent History 0.10 0.50 0.22 0.13 0.02 0.13 0.11 0.04 0.16
250-Full History 0.30 0.41 0.30 0.25 0.22 0.25 0.27 0.29 0.28

250-Recent History 0.17 0.57 0.28 0.22 0.07 0.13 0.19 0.13 0.17
100-Full History 0.33 0.27 0.16 0.24 0.22 0.35 0.28 0.00 0.22

100-Recent History 0.25 0.22 0.19 0.22 0.04 0.24 0.23 0.06 0.21

Table C.10: Classifier Scores for Data-set: 14 days before admission with Tf-idf representation

Precision Recall F1 scoreTop-N words,
Full/Recent Data LR RF SVM LR RF SVM LR RF SVM
2500-Full History 0.22 0.00 0.19 0.13 0.00 0.13 0.16 0.00 0.15

2500-Recent History 0.24 0.00 0.20 0.13 0.00 0.02 0.17 0.00 0.03
1500-Full History 0.14 0.00 0.11 0.07 0.00 0.07 0.10 0.00 0.09

1500-Recent History 0.17 0.00 0.18 0.04 0.00 0.06 0.06 0.00 0.08
1000-Full History 0.21 0.00 0.15 0.15 0.00 0.17 0.17 0.00 0.16

1000-Recent History 0.12 0.00 0.16 0.06 0.00 0.06 0.08 0.00 0.08
750-Full History 0.12 0.00 0.08 0.09 0.00 0.09 0.11 0.00 0.08

750-Recent History 0.07 0.00 0.08 0.04 0.00 0.04 0.05 0.00 0.05
500-Full History 0.20 0.00 0.15 0.15 0.00 0.15 0.17 0.00 0.15

500-Recent History 0.14 0.67 0.16 0.06 0.04 0.06 0.08 0.07 0.08
250-Full History 0.14 0.00 0.19 0.44 0.00 0.30 0.21 0.00 0.23

250-Recent History 0.18 0.50 0.18 0.13 0.02 0.11 0.15 0.04 0.14
100-Full History 0.11 0.00 0.13 0.43 0.00 0.30 0.17 0.24 0.18

100-Recent History 0.18 0.67 0.16 0.09 0.07 0.11 0.12 0.13 0.13

Table C.11: Classifier Scores for Data-set: 30 days before admission with BOW representation
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APPENDIX C. RESULTS: CLASSICAL MACHINE LEARNING MODELS

Precision Recall F1 scoreTop-N words,
Full/Recent Data LR RF SVM LR RF SVM LR RF SVM
2500-Full History 0.12 0.00 0.15 0.07 0.00 0.06 0.09 0.00 0.08

2500-Recent History 0.15 0.50 0.40 0.07 0.04 0.07 0.10 0.07 0.12
1500-Full History 0.11 0.67 0.13 0.06 0.07 0.07 0.07 0.13 0.10

1500-Recent History 0.07 0.50 0.20 0.07 0.04 0.04 0.07 0.07 0.06
1000-Full History 0.17 0.31 0.21 0.07 0.09 0.11 0.10 0.14 0.14

1000-Recent History 0.05 0.60 0.10 0.06 0.06 0.02 0.05 0.10 0.03
750-Full History 0.15 0.38 0.27 0.07 0.11 0.15 0.10 0.17 0.19

750-Recent History 0.05 0.60 0.00 0.06 0.06 0.00 0.06 0.10 0.00
500-Full History 0.18 0.41 0.15 0.07 0.13 0.15 0.11 0.20 0.05

500-Recent History 0.09 0.60 0.22 0.11 0.06 0.09 0.10 0.10 0.13
250-Full History 0.18 0.26 0.19 0.37 0.19 0.41 0.24 0.22 0.26

250-Recent History 0.13 0.25 0.15 0.17 0.09 0.09 0.15 0.14 0.11
100-Full History 0.28 0.16 0.19 0.19 0.17 0.33 0.21 0.00 0.24

100-Recent History 0.10 0.17 0.16 0.11 0.13 0.09 0.11 0.15 0.12

Table C.12: Classifier Scores for Data-set: 30 days before admission with Tf-idf representation

Precision Recall F1 scoreTop-N words,
Full/Recent Data LR RF SVM LR RF SVM LR RF SVM
2500-Full History 0.16 0.00 0.14 0.17 0.00 0.09 0.17 0.00 0.11

2500-Recent History 0.09 0.00 0.00 0.04 0.00 0.00 0.05 0.00 0.00
1500-Full History 0.09 0.00 0.08 0.06 0.00 0.06 0.07 0.00 0.07

1500-Recent History 0.11 0.00 0.17 0.06 0.00 0.02 0.07 0.00 0.03
1000-Full History 0.11 0.00 0.12 0.19 0.00 0.17 0.14 0.00 0.14

1000-Recent History 0.06 0.00 0.06 0.02 0.00 0.02 0.03 0.00 0.03
750-Full History 0.15 0.00 0.15 0.15 0.00 0.20 0.15 0.00 0.17

750-Recent History 0.04 0.75 0.13 0.02 0.06 0.06 0.03 0.10 0.08
500-Full History 0.24 0.00 0.22 0.15 0.00 0.24 0.18 0.00 0.23

500-Recent History 0.11 0.38 0.21 0.06 0.06 0.15 0.07 0.10 0.17
250-Full History 0.25 0.00 0.20 0.13 0.00 0.35 0.17 0.00 0.26

250-Recent History 0.14 0.00 0.14 0.11 0.00 0.13 0.12 0.00 0.14
100-Full History 0.24 0.00 0.22 0.19 0.00 0.30 0.21 0.17 0.25

100-Recent History 0.22 0.17 0.16 0.22 0.06 0.37 0.22 0.08 0.22

Table C.13: Classifier Scores for Data-set: 60 days before admission with BOW representation

70Siamese Fine-tuning of BERT for Classification of Small and Imbalanced Datasets, Applied to
Prediction of Involuntary Admissions in Mental Healthcare



APPENDIX C. RESULTS: CLASSICAL MACHINE LEARNING MODELS

Precision Recall F1 scoreTop-N words,
Full/Recent Data LR RF SVM LR RF SVM LR RF SVM
2500-Full History 0.19 0.00 0.10 0.06 0.00 0.06 0.09 0.00 0.07

2500-Recent History 0.05 0.00 0.00 0.04 0.00 0.00 0.04 0.00 0.00
1500-Full History 0.17 0.50 0.11 0.11 0.06 0.06 0.13 0.10 0.07

1500-Recent History 0.11 0.00 0.05 0.11 0.00 0.02 0.11 0.00 0.03
1000-Full History 0.27 0.62 0.28 0.11 0.09 0.20 0.16 0.16 0.24

1000-Recent History 0.06 0.33 0.06 0.07 0.09 0.02 0.07 0.14 0.03
750-Full History 0.31 0.44 0.24 0.07 0.07 0.17 0.12 0.13 0.20

750-Recent History 0.07 0.36 0.14 0.09 0.07 0.06 0.08 0.12 0.08
500-Full History 0.12 0.38 0.04 0.07 0.17 0.02 0.09 0.23 0.03

500-Recent History 0.10 0.33 0.19 0.13 0.13 0.09 0.11 0.19 0.12
250-Full History 0.26 0.24 0.17 0.17 0.17 0.35 0.20 0.20 0.23

250-Recent History 0.12 0.20 0.10 0.17 0.19 0.04 0.14 0.19 0.05
100-Full History 0.15 0.19 0.17 0.28 0.22 0.30 0.20 0.00 0.22

100-Recent History 0.21 0.08 0.21 0.35 0.22 0.39 0.26 0.12 0.28

Table C.14: Classifier Scores for Data-set: 60 days before admission with Tf-idf representation

Precision Recall F1 scoreTop-N words,
Full/Recent Data LR RF SVM LR RF SVM LR RF SVM
2500-Full History 0.04 0.00 0.08 0.02 0.00 0.06 0.03 0.00 0.07

2500-Recent History 0.19 0.00 0.00 0.09 0.00 0.00 0.12 0.00 0.00
1500-Full History 0.12 0.19 0.17 0.17 0.09 0.24 0.14 0.12 0.20

1500-Recent History 0.23 0.00 0.00 0.06 0.00 0.00 0.09 0.00 0.00
1000-Full History 0.11 0.00 0.10 0.20 0.00 0.26 0.14 0.00 0.15

1000-Recent History 0.12 0.33 0.18 0.02 0.02 0.04 0.03 0.04 0.06
750-Full History 0.23 0.00 0.21 0.15 0.00 0.22 0.18 0.00 0.22

750-Recent History 0.04 0.00 0.17 0.02 0.00 0.04 0.03 0.00 0.06
500-Full History 0.20 0.00 0.17 0.13 0.00 0.17 0.16 0.00 0.17

500-Recent History 0.13 0.00 0.14 0.06 0.00 0.06 0.08 0.00 0.08
250-Full History 0.32 0.26 0.34 0.15 0.11 0.22 0.20 0.16 0.27

250-Recent History 0.14 0.00 0.09 0.09 0.00 0.06 0.11 0.00 0.07
100-Full History 0.21 0.29 0.23 0.15 0.13 0.20 0.17 0.18 0.22

100-Recent History 0.15 0.16 0.13 0.13 0.07 0.22 0.14 0.10 0.17

Table C.15: Classifier Scores for Data-set: 90 days before admission with BOW representation

Siamese Fine-tuning of BERT for Classification of Small and Imbalanced Datasets, Applied to
Prediction of Involuntary Admissions in Mental Healthcare

71



APPENDIX C. RESULTS: CLASSICAL MACHINE LEARNING MODELS

Precision Recall F1 scoreTop-N words,
Full/Recent Data LR RF SVM LR RF SVM LR RF SVM
2500-Full History 0.09 0.00 0.08 0.06 0.00 0.04 0.07 0.00 0.05

2500-Recent History 0.16 0.25 0.00 0.09 0.02 0.00 0.12 0.03 0.00
1500-Full History 0.15 0.00 0.24 0.04 0.00 0.11 0.06 0.00 0.15

1500-Recent History 0.11 0.00 0.04 0.13 0.00 0.02 0.12 0.00 0.03
1000-Full History 0.14 0.62 0.21 0.07 0.09 0.11 0.10 0.16 0.14

1000-Recent History 0.07 0.14 0.08 0.11 0.02 0.02 0.09 0.03 0.03
750-Full History 0.11 0.44 0.26 0.15 0.07 0.11 0.12 0.13 0.16

750-Recent History 0.08 0.20 0.08 0.11 0.02 0.11 0.09 0.03 0.10
500-Full History 0.12 0.40 0.07 0.06 0.15 0.02 0.07 0.22 0.03

500-Recent History 0.10 0.15 0.12 0.13 0.06 0.04 0.11 0.08 0.06
250-Full History 0.30 0.24 0.27 0.17 0.17 0.11 0.21 0.20 0.16

250-Recent History 0.17 0.25 0.25 0.19 0.15 0.11 0.18 0.19 0.15
100-Full History 0.28 0.23 0.31 0.15 0.22 0.15 0.19 0.22 0.20

100-Recent History 0.21 0.11 0.21 0.15 0.15 0.33 0.17 0.12 0.26

Table C.16: Classifier Scores for Data-set: 90 days before admission with Tf-idf representation

Precision Recall F1 scoreTop-N words,
Full/Recent Data LR RF SVM LR RF SVM LR RF SVM
2500-Full History 0.15 0.11 0.16 0.18 0.12 0.14 0.16 0.12 0.15

2500-Recent History 0.12 0.18 0.00 0.04 0.08 0.00 0.06 0.11 0.00
1500-Full History 0.13 0.12 0.16 0.16 0.12 0.22 0.14 0.12 0.19

1500-Recent History 0.11 0.15 0.38 0.08 0.08 0.06 0.09 0.10 0.10
1000-Full History 0.15 0.14 0.17 0.18 0.14 0.25 0.16 0.14 0.20

1000-Recent History 0.10 0.16 0.19 0.04 0.10 0.06 0.06 0.12 0.09
750-Full History 0.14 0.11 0.13 0.31 0.12 0.27 0.19 0.12 0.18

750-Recent History 0.16 0.17 0.15 0.10 0.12 0.08 0.12 0.14 0.10
500-Full History 0.11 0.15 0.14 0.27 0.14 0.33 0.16 0.14 0.20

500-Recent History 0.15 0.15 0.21 0.14 0.08 0.10 0.14 0.10 0.13
250-Full History 0.10 0.20 0.18 0.04 0.16 0.18 0.06 0.18 0.18

250-Recent History 0.16 0.15 0.14 0.06 0.08 0.10 0.09 0.10 0.12
100-Full History 0.15 0.22 0.21 0.22 0.08 0.20 0.18 0.12 0.20

100-Recent History 0.11 0.00 0.11 0.06 0.00 0.10 0.08 0.00 0.11

Table C.17: Classifier Scores for Data-set: 180 days before admission with BOW representation
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APPENDIX C. RESULTS: CLASSICAL MACHINE LEARNING MODELS

Precision Recall F1 scoreTop-N words,
Full/Recent Data LR RF SVM LR RF SVM LR RF SVM
2500-Full History 0.06 0.00 0.29 0.02 0.00 0.08 0.03 0.00 0.12

2500-Recent History 0.19 0.00 0.10 0.10 0.00 0.02 0.13 0.00 0.03
1500-Full History 0.22 0.00 0.24 0.08 0.00 0.08 0.12 0.00 0.12

1500-Recent History 0.15 0.50 0.00 0.10 0.02 0.00 0.12 0.04 0.00
1000-Full History 0.24 0.25 0.21 0.12 0.04 0.10 0.16 0.07 0.13

1000-Recent History 0.08 0.33 0.08 0.08 0.04 0.02 0.08 0.07 0.03
750-Full History 0.25 0.20 0.36 0.08 0.04 0.10 0.12 0.07 0.15

750-Recent History 0.10 0.00 0.07 0.10 0.00 0.04 0.10 0.00 0.05
500-Full History 0.21 0.27 0.25 0.14 0.08 0.14 0.16 0.12 0.18

500-Recent History 0.07 0.14 0.00 0.06 0.04 0.00 0.06 0.06 0.00
250-Full History 0.15 0.22 0.10 0.27 0.12 0.25 0.19 0.15 0.15

250-Recent History 0.11 0.16 0.12 0.14 0.08 0.16 0.12 0.11 0.14
100-Full History 0.12 0.09 0.12 0.20 0.10 0.16 0.15 0.10 0.13

100-Recent History 0.12 0.13 0.14 0.20 0.20 0.29 0.15 0.16 0.19

Table C.18: Classifier Scores for Data-set: 180 days before admission with Tf-idf representation
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Appendix D

Parameters for Best Classifiers
after Fine-tuning

Here, we provide the parameter settings for the best logistic regression, support vector machine
and random forest classifiers when used on the embeddings. The best models using full and the
past month’s history for both types of embeddings follow below.

D.1 Classifiers after Regular Fine-tuning
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APPENDIX D. PARAMETERS FOR BEST CLASSIFIERS AFTER FINE-TUNING

Dataset (Days
before admission)

LR SVC RF

0
C:1.06,

class weights:balanced ,
penalty: l1

C: 0.56,
class weights:(1:2)

estimators: 311,
max depth: 29 ,

class weights: balanced

3
C: 1.15 ,

class weights: (1:10),
penalty: l2,

C: 3.11 ,
class weights:balanced

estimators: 1155,
max depth: 11,

class weights: none

7
C: 1.68,

class weights: (1:2),
penalty: l1

C: 0.29 ,
class weights: balanced

estimators:311,
max depth: 29,

class weights: balanced

10
C: 0.0005,

class weights: (1:5),
penalty: l2

C: 0.37,
class weights: (1:10)

estimators: 2000 ,
max depth: 8,

class weights: balanced

14
C: 0.75,

class weights: (1:20),
penalty: l1,

C: 0.34 ,
class weights: (1:20)

estimators: 100 ,
max depth: 32,

class weights: none

30
C: 0.59,

class weights: none,
penalty: l2

C: 0.11,
class weights:(1:2)

estimators:1155,
max depth:11 ,

class weights:none

60
C:0.75,

class weights: (1:20),
penalty: l1,

C: 0.41,
class weights:balanced

estimators: 311,
max depth:36 ,

class weights:none

90
C: 0.0005,

class weights:(1:5) ,
penalty: l2

C: 0.37,
class weights: (1:10)

estimators:311 ,
max depth:29 ,

class weights:balanced

180
C:0.0005 ,

class weights: (1:5),
penalty: l2

C:0.41 ,
class weights:balanced

estimators:311,
max depth:36 ,

class weights:none

Table D.1: Model Parameters: Best Classical Machine Learning Models on Embeddings after
Regular Fine-tuning (Full History)
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APPENDIX D. PARAMETERS FOR BEST CLASSIFIERS AFTER FINE-TUNING

Dataset (Days
before admission)

LR SVC RF

0
C: 0.16,

class weights: (1:2),
penalty: l2

C: 0.11 ,
class weights: (1:2),

estimators: 2000 ,
max depth:8 ,

class weights: balanced

3
C: 0.16 ,

class weights: (1:2),
penalty: l1

C: 2.29,
class weights: balanced

estimators:2000,
max depth: 8,

class weights: balanced,

7
C: 0.0005 ,

class weights: (1:5),
penalty: l2,

C:0.29,
class weights:balanced

estimators:311 ,
max depth:18,

class weights: (1:20)

10
C:0.0005,

class weights: (1:5),
penalty: l2

C: 0.29,
class weights: balanced

estimators: 311 ,
max depth: 18 ,

class weights: (1:20)

14
C: 0.0005,

class weights: (1:5),
penalty: l2

C:1.72,
class weights: none

estimators: 100 ,
max depth: 32,

class weights: none

30
C: 0.0005,

class weights: (1:5),
penalty: l2

C:0.52 ,
class weights:(1:20)

estimators:311 ,
max depth: 29,

class weights:balanced,

60
C:0.0005 ,

class weights:(1:5) ,
penalty: l2

C:0.41 ,
class weights:balanced

estimators:1788 ,
max depth:25 ,

class weights:none

90
C:0.0005 ,

class weights:(1:5),
penalty: l2

C:2.46,
class weights:(1:10),

estimators:1155 ,
max depth: 11,

class weights:none

180
C: 0.0005,

class weights: (1:5),
penalty: l2

C: 0.41,
class weights:balanced

estimators: 100,
max depth:32 ,

class weights:none

Table D.2: Model Parameters: Best Classical Machine Learning Models on Embeddings after
Regular Fine-tuning (Past Month History)
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APPENDIX D. PARAMETERS FOR BEST CLASSIFIERS AFTER FINE-TUNING

D.2 Classifiers after Siamese Fine-tuning

Dataset (Days
before admission)

LR SVC RF

0
C:0.0005 ,

class weights:(1:5) ,
penalty: l2,

C: 0.41,
class weights:balanced

estimators: 1788,
max depth: 25 ,

class weights: none,

3
C: 0.0005 ,

class weights: (1:5),
penalty: l2,

C: 2.50 ,
class weights:balanced

estimators: 311,
max depth: 29,

class weights: balanced,

7
C: 1.06,

class weights: balanced,
penalty: l1,

C: 0.37 ,
class weights: (1:10)

estimators:944 ,
max depth: 36,

class weights: none,

10
C: 1.06,

class weights: balanced,
penalty: l1,

C: 0.39 ,
class weights: (1:20)

estimators: 311 ,
max depth: 15,

class weights: none,

14
C: 0.75,

class weights: (1:20),
penalty: l1,

C: 0.29 ,
class weights: balanced,

estimators: 311 ,
max depth: 29 ,

class weights: balanced

30
C: 1.16,

class weights: (1:5),
penalty: l1,

C: 1.55,
class weights:(1:10)

estimators:1366,
max depth:39 ,

class weights:(1:2)

60
C:0.75,

class weights: (1:20),
penalty: l1,

C: 0.29,
class weights:balanced

estimators: 100,
max depth:32 ,

class weights:none

90
C: 0.75,

class weights:(1:20) ,
penalty: l1,

C: 2.90,
class weights: (1:10)

estimators:311 ,
max depth:29 ,

class weights:balanced

180
C:1.06 ,

class weights: balanced,
penalty: l1,

C:0.34 ,
class weights:(1:20)

estimators:311,
max depth:29 ,

class weights:balanced

Table D.3: Model Parameters: Best Classical Machine Learning Models embeddings after Siamese
Fine-tuning (Full History)
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APPENDIX D. PARAMETERS FOR BEST CLASSIFIERS AFTER FINE-TUNING

Dataset (Days
before admission)

LR SVC RF

0
C: 1.16,

class weights: (1:5),
penalty: l1

C: 1.65 ,
class weights: (1:5),

estimators: 2000 ,
max depth:8 ,

class weights: balanced

3
C: 1.16 ,

class weights: (1:5),
penalty: l1

C: 2.29,
class weights: none,

estimators:311,
max depth: 29,

class weights: balanced,

7
C: 0.0005 ,

class weights: (1:5),
penalty: l2,

C:1.16,
class weights:(1:5)

estimators:311 ,
max depth:29,

class weights: balanced,

10
C: 1.06,

class weights: balanced,
penalty: l1

C: 0.37,
class weights: (1:10),

estimators: 2000 ,
max depth: 8 ,

class weights: balanced,

14
C: 1.06,

class weights: balanced,
penalty: l1,

C:0.29,
class weights: balanced,

estimators: 2000 ,
max depth: 8,

class weights: balanced,

30
C: 1.06,

class weights: balanced,
penalty: l1,

C:0.29 ,
class weights:balanced,

estimators:311 ,
max depth: 29,

class weights:balanced,

60
C:3.83 ,

class weights:balanced ,
penalty: l1,

C:3.39 ,
class weights:(1:20),

estimators:100 ,
max depth:32 ,

class weights:none

90
C:0.75 ,

class weights:(1:20),
penalty: l1

C:0.34 ,
class weights:(1:20),

estimators:311 ,
max depth: 29,

class weights:balanced

180
C: 3.83,

class weights: balanced,
penalty: l1,

C: 0.41,
class weights:balanced

estimators: 2000,
max depth:8 ,

class weights:balanced

Table D.4: Model Parameters: Best Classical Machine Learning Models on embeddings after
Siamese fine-tuning (Past Month History)
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