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Abstract

This thesis is a collaborative work between TU/e and De Lage Landen (DLL) to design an ex-
plainable model to solve the problem of prioritization of debtors for Collections and Recovery
agents. In this work, we present a new glass box model architecture called Decomposable Gen-
eralized Additive Neural Network with Pairwise Interactions (DGANN2). We further present an
efficient algorithm to approximate Shapley values on DGANN2 utilizing its decomposable nature
for easy marginalization. We use a debtor information and behaviour data set provided by DLL
to classify debtors using DGANN2, and benchmark DGANN2 against several other models. We
find that DGANN2 can be a useful alternative to existing black box and glass box models, due to
its comparative performance and efficient explainability methods.
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Chapter 1

Introduction

1.1 Problem Formulation

Explainability in AI has come under focus especially in the recent years due to two main reasons:
the rise of black box models with the recent developments in neural networks and deep learning,
and regulatory action from lawmakers such as GDPR requiring clear explanations from model
predictions. Explainability is a wide field with methods that span model-specific and model-
agnostic approaches, and different ways of representing a model’s decision making. A main reason
for the variety of explainability methods is the term’s ambiguity. It is not immediately clear what
is meant by ‘explainability’, who the audience is, or how explainability can be measured. Thus,
some of the methods have been developed for field experts such as machine learning engineers,
while others have been developed for laypeople. The definition of explainability that we will use
in this thesis comes from [5]:

Given an audience, an explainable Artificial Intelligence is one that produces details
or reasons to make its functioning clear or easy to understand.

This definition of explainability can be considered wide. However, it encompasses the two concepts
of human-centric and model-centric explainability. Explainability and interpretability are two
terms that are often used interchangeably in literature, while having slightly separate meanings.
[23] define interpretation as the ‘mapping of an abstract concept (e.g. a predicted class) into a
domain that the human can make sense of’, and define explanation as ‘the collection of features
of the interpretable domain, that have contributed for a given example to produce a decision’.
While the difference is subtle, interpretability is human-centric. The interpretation of the model
should be in a domain natural to a human being, such as text or images. Explainability, on the
other hand, is model-centric, requiring an observer to be able to understand why a certain model
made a certain decision starting from the interpretable domain, such as features in a data set or
words for a natural language processing task. In this thesis, we will be using explainability as
described by [5] above as an umbrella term. It is also important to note that the explainability
in this context refers to more than a low-level understanding of the underlying algorithms of a
model. Rather than the mathematical operations that make up the decision-making of a model,
explainability requires a functional understanding of a model [15].

The upsurge of research around explainability coincides with the advancements in the field of deep
learning. In critical fields such as medicine, finance, self-driving cars, and in the legal field, machine
learning models and deep networks in particular are successfully utilized to either automate tasks
or to help human experts. When the decisions made by models and algorithms affect human
lives, the need for understanding how these decisions are taken arises. This wide deployment
of machine learning (ML) has caused several issues to be raised in terms of confidence, fairness,

Efficient Calculation of Approximate Shapley Values in DGANN2s 1



CHAPTER 1. INTRODUCTION

informativeness, and trustworthiness. Explainable Artificial Intelligence (XAI) as a broad field
aims to address these issues.

In this thesis, we will be focusing on a specific method of providing explainability to machine
learning models, namely Shapley values. Calculating Shapley values is a model-agnostic method
that takes its roots from game theory, first used in machine learning in [42]. Shapley values are
calculated per feature; the Shapley value for a feature can be interpreted as the contribution of the
specific feature towards the prediction. Calculating Shapley values exactly is exponential in the
number of features that the model takes as input. Shapley values are generally calculated using
approximation techniques on black box models, i.e. models that are not inherently explainable.
Black box models include complex, non-intuitive models including deep neural networks, such as
recursive neural networks (RNNs). In this thesis, we are aiming to enhance the explainability
of a glass box model inspired by generalized additive models with interactions, or GA2Ms. We
call this new type of models DGANN2s, for Decomposable Generalized Additive Neural Networks
with Pairwise Interactions. We will be focusing on the question of calculating approximate Shapley
values efficiently on DGANN2s utilizing an easy way of marginalization of variables inherent in
DGANN2’s architecture.

1.2 Business Application

The thesis presented here has been done in collaboration with De Lage Landen (DLL), a global
finance partner for equipment and technology assets, under the Rabobank group. As a financial
company founded more than 50 years ago, DLL combines years of experience and data with
artificial intelligence to help human agents in taking critical decisions. A key requirement for the
models that are put into production at DLL is explainability, due to the regulations regarding
handling of user data and financial decision making. This explicit requirement for explainability
can be limiting in the type of models that can be put into production. The developers need to
approach the balance between explainability and complexity of the models carefully. Traditionally,
models such as linear or logistic regression have been deployed to comply with explainability
requirements. However, these models are not complex enough to give accurate predictions, and
more complex models with better predictive power can be combined with model agnostic methods
to be put into production. Explainability can also be useful internally at DLL. Complex models
can discover underlying trends in the data, and can lead to improving the internal processes of
DLL.

This work has been done in the AI Lab, a new group inside DLL that’s focused on providing value
to the organization via artificial intelligence. AI Lab focuses on several projects, and operates with
agile development practices. This thesis is in relation to the project ‘Prioritization of Collection
and Recovery Activities’, also referred to as C&R. The C&R project focuses on the activities of
collections and recovery agents. As a financing partner for assets, DLL has a large number of
debtors, and a large number of invoices and contracts to keep track of. C&R agents are the first
line of contact from DLL; they contact a debtor after an invoice goes past its due date, and try to
set up a deal. If an invoice goes past due a certain number of days, then the debtor is moved to
a different management section. C&R agents get a list of debtors every day that have gone past
the due date on their invoices. However, this list is not sorted or prioritized. The aim of the C&R
project within AI Lab is to prioritize the debtors and the corresponding actions of C&R agents
based on the potential risk of the debtors.

Towards this goal, DLL has provided data on past behaviours of debtors, their contracts, and
invoices. Based on this historical data, the goal is to predict which debtors are more likely to go
past a certain number of days from their due date. To put it more formally, the problem at hand
is a binary classification problem. The classifier should be able to accurately predict whether a
debtor will go 17 days past due from the due date of the invoice, in which case they are called
given a ‘late’ classification of 1. The ‘on-time’ debtors are denoted with a 0 label.

2 Efficient Calculation of Approximate Shapley Values in DGANN2s
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At DLL, currently an XGBoost model is developed for this particular use case. XGBoost (eXtreme
Gradient Boosting) implements gradient boosting, creating an ensemble of multiple weaker learners
into a single model. In the case of XGBoost, these weaker models are regression or decision trees.
XGBoost is not inherently explainable by itself. However, as described later in this thesis, with
a certain method called SHAP values for tree-based learners (Tree SHAP), feature importance
values can be calculated from XGBoost models in polynomial time.

This thesis aims to construct a proof-of-concept for an alternative solution to the C&R project
using DGANN2s. The introduced model can in turn be used in other projects as well.

1.3 Proposed Solution and Motivation

Our work presents a specific model architecture that we call Decomposable Generalized Additive
Neural Networks with Pairwise Interactions, or DGANN2 that allows for efficient approximate
calculation of Shapley values. This model architecture is inspired by generalized additive neural
networks (GANN) and generalized additive models plus interactions (GA2M).

Our aim is twofold: We show that this model architecture has comparative performance to its close
alternatives and widely used black box models while retaining intrinsic explainability. We further
show that subject to some general assumptions about the data, we can calculate approximate
Shapley values much more efficiently compared to standard methods of calculation. This efficiency
is due to the decomposable nature of the network, enabling easy marginalization of variables.

The motivation for this thesis is to present a glass box model with an additional efficient explain-
ability technique, namely efficient Shapley value calculations. Each explainability method can
enrich the understanding of a model further. While glass box additive models such as GA2Ms
allow the users to observe how the changes to a variable affects the model output, they do not
natively support feature importance observations. Providing feature importances in an efficient
way equips the data scientist with more power to better understand the model, and provides a
better overview of the model for end users.

1.4 Contributions

We present a new type of model called DGANN2 and test its performance on several data sets.
We compare DGANN2 against widely used models like GAMs, GA2Ms or EBMs, and XGBoost.
We further present D-Shapley, a closed form solution that utilizes probabilistic marginalization
inherent in the decomposable structure of DGANN2 to calculate approximate Shapley values. We
find that DGANN2 shows comparative performance, making it a strong solution to be used in
the C&R project. We further show that DGANN2 is equipped with several ways of providing
explanations to the user. With its highly explainable nature, DGANN2 is a valuable addition to
the explainability literature.

1.5 Thesis Outline

The thesis is structured as follows: Chapter 2 will present an overview of explainability in AI and
some of the models and methods to achieve explainability. Chapter 3 will describe the new type
of model called DGANN2 proposed in this work, and derive the closed form solution to calculate
Shapley values efficiently on this model. Chapter 4 will describe the main data set used in this
work, along with the experimental setup to test the performance of DGANN2. Chapter 5 will
provide explanations generated by the trained DGANN2 on the DLL data set, and will present
performance comparisons of DGANN2. Lastly, Chapter 6 will provide conclusions and limitations
of the thesis, and will present suggestions on future work.

Efficient Calculation of Approximate Shapley Values in DGANN2s 3



Chapter 2

Literature Review

In this chapter, background on explainability as a field is given. In the following sections, certain
influential glass box models and model-agnostic explainability methods for calculating feature
importances are presented.

2.1 Explainability

2.1.1 Motivations for Explainability in AI

Explainability in AI has a variety of motivations, centered around the issues of fairness, confidence,
informativeness, and trustworthiness.

Fairness in AI has been addressed in numerous publications. An article on the risk assessment
tool COMPAS brought to daylight the racial discrimination automated decision making can lead
to if not controlled and designed correctly [4]. Safiya Noble wrote about the negative effects of
automated decision making on minority groups like people of color, women, LGBTQ+ individu-
als, religious minorities, and their intersections [25]. Computer vision algorithms and in particular
automatic gender recognition came under scrutiny after Buolamwini’s seminal paper on how com-
mercial gender classification tools perform significantly worse for darker-skinned women when
compared to light-skinned people [7]. These have pushed prominent organizations to publish re-
sponsible AI principles to make machine learning more transparent, fair, and explainable [1, 2].
Organizations are gradually becoming more aware of fairness and inclusivity practices, and this in
turn is starting to reflect in their practices in artificial intelligence. The fairness concept is espe-
cially important for organizations dealing with human data, not only from an ethical standpoint,
but also from a legal standpoint.

From a legal perspective, the GDPR has been influential in bringing AI explainability and trans-
parency to the forefront. Since 2018, General Data Protection Regulation or the GDPR has been
in place with regards to the citizens of the European Union. The GDPR changed how data is
being handled worldwide, since any company handling the data of any EU citizen, regardless of
their current residence, has to comply with the new regulations. While the GDPR doesn’t directly
address the right to explanation, Articles 13-15 and Article 22 touch upon the subject [28, 27]:

Article 13(2): In addition to the information referred to in paragraph 1, the controller
shall, at the time when personal data are obtained, provide the data subject with the
following further information necessary to ensure fair and transparent processing:

Article 13(2)(f): the existence of automated decision-making, including profiling, re-
ferred to in Article 22(1) and (4) and, at least in those cases, meaningful informa-
tion about the logic involved, as well as the significance and the envisaged

4 Efficient Calculation of Approximate Shapley Values in DGANN2s
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consequences of such processing for the data subject.

Article 22(3): In the cases referred to in points (a) and (c) of paragraph 2, the data
controller shall implement suitable measures to safeguard the data subject’s rights
and freedoms and legitimate interests, at least the right to obtain human intervention
on the part of the controller, to express his or her point of view and to contest the
decision.

Even though there is no clear definition of the right to explanation, the authors of [38] argue that
in practice, these articles point to a right to explanation and should be treated as such. Thus,
the GDPR forms a legal basis for companies to put more emphasis into explainability. Given the
recent rising concerns around fairness, and the legal restrictions, an active emphasis should be put
on explainability in AI at financial companies like DLL.

2.1.2 Taxonomy of Explainability

Explainability can be understood differently across applications and stakeholders.

In [6], authors have surveyed data scientists and representatives from different organizations to
arrive at several different explainability needs: model debugging, model monitoring, model trans-
parency, and model audit. While these needs often intersect for large organizations, debugging and
monitoring generally concern internal stakeholders like ML engineers and quality assurance teams.
Model transparency and audit at large can concern compliance teams and may be necessary to
explain models to end users or management. In the financial sector, model auditing takes on an
important role due to regulations.

In [32], authors identify four main stakeholder groups: developers, theorists, ethicists, and users.
They argue that definitions and methods of explainability can change between the different stake-
holders, even if they overlap at some parts. According to the authors, developers are concerned
with explainability in terms of quality assurance and debugging. Theorists aim to use explainab-
ility to advance research and improve existing models, such as finding their weak points. Ethicists
are interested in fairness and accountability of systems, concerned with model transparency and
possibly auditing. The final group, users, are active consumers of AI systems. They require
explainability to act rationally when faced with decisions made by an AI system. In financial
systems, all these stakeholders are generally involved. Thus, it is important to take the definition
of explainability as general as possible to include all the different stakeholders. Multiple methods
of explainability can be appropriate to be able to explain the model to these different groups.

The taxonomy around explainability is large, and some terms can be used interchangeably in
literature (e.g. explainability and interpretability, transparent and interpretable). However, the
following terms are necessary for further discussion, and we present the most widely-used defini-
tions:

Local Explainability: Local explainability methods are aimed towards explaining the model
behaviour for a single instance. e.g. if a loan request is rejected for a particular applicant, which
factors have caused this rejection? For a given application, changes to which variables can cause
this application to be accepted instead of rejected?

Global Explainability: Global explainability refers to describing the behaviour of a model in
its entirety, rather than explaining the decision-making process for a single instance. For example,
the existence of which words in a spam detection model is important?

Ante-hoc Approaches to Explainability: These approaches consider explainability by design.
Glass box models as described further in Section 2.2 fit into ante-hoc framework. The recent years
have especially seen a push for new ante-hoc explainable models, such as Reverse Time Attention
models (RETAIN) [10] and GA2Ms [19]. The main challenge in developing ante-hoc models lies
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in providing explainability while maintaining a high predictive performance. With the rise of
explainable AI, the newer body of work aims to challenge the assumption that performance and
explainability present a trade-off. This work falls under this category, presenting a performant
and explainable architecture.

Post-hoc Approaches to Explainability: In post-hoc approaches, explainability is not de-
signed into the system, and is provided after a model has been trained. These methods explain the
model by what is readily interpretable, e.g. in terms of how much importance is gives to certain
features [15]. Post-hoc approaches are explained more in detail in Section 2.3.

2.2 Glass Box Models

Glass box models, also called transparent models, are models that are understandable by them-
selves [5]. Several types of models fall under this category: linear/logistic regression, decision trees,
K-nearest neighbours, Bayesian models, and Generalized Additive Models. The simplest one, lin-
ear regression, learns a scalar weight for each feature. The explanation is straightforward, as the
weight for each feature lets the user explicitly understand how much of a change would result from
the perturbation of input features. However, there usually is a performance and explainability
trade-off especially when glass box models are considered. Linear regression and decision trees are
generally less powerful than black box models such as neural networks, especially when extensive
feature engineering has not been performed. Researching and developing glass box models that
are also performant is an ongoing area of research.

In the following sections, we will describe Generalized Additive Models and some extensions,
as these models lay the groundwork for the architecture of DGANN2 that we will describe in
Section 3.1.

2.2.1 Generalized Additive Models (GAM)

Generalized additive models, or GAMs, have been proposed in [14] as an improvement over linear
models such as linear regression and logistic regression models. The GAM architecture replaces
each variable in a linear regression model with a (potentially nonlinear) function. The general
mathematical form of GAMs are:

g(E[y]) = β0 +

p∑
i=1

fi(xi) (2.1)

where g is a link function such as identity or logit, E is the expectation operator, y is the target
variable, β0 is the intercept, and each xi is a predictor variable. GAMs are considered to be glass
box models: for local explainability, for each feature i, we can observe the result from fi(xi). For
global explainability, the functions fi themselves serve as explanations over a domain for each
feature i.

GAMs have traditionally been fit using splines [14], boosted stumps, and tree-based methods such
as bagged or boosted ensembles of trees [18].

2.2.2 Generalized Additive Neural Networks (GANN)

Generalized additive neural networks, or GANNs, form a specific subset of generalized additive
models. In a GANN model, the family of functions for each variable is constricted to artificial
neural networks. First developed deeply in [31], GANNs have the same form as GAMs as described
in Equation (2.1). The simplest version of GANN with only a single hidden layer of h units and
a skip connection would have the following function for each variable:
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fj(xj) =

h∑
k=1

wkj · g(w0kj + w1kjxj) + xj (2.2)

where w = {whj , w0hj , w1hj |h = 1...H, j = 1...D} denotes the network parameters, and g is a link
function. Thus, each fj is parameterized by a neural network.

Figure 2.1: A simple GANN architecture with a single hidden layer for each feature [11]

2.2.3 Generalized Additive Models Plus Interactions (GA2M)

A natural improvement to GAMs has come in the form of generalized additive models plus in-
teractions [19]. The basic form of GAMs as in Equation (2.1) have been extended to explicitly
consider pairwise interactions between features:

g(E[y]) = β0 +

p∑
i=1

fi(xi) +
∑
i 6=j

fij(xi, xj) (2.3)

GA2M s have been used in numerous settings, including medical settings to predict pneumonia risk
and hospital readmission [8]. Authors of [8] show GA2Ms to be competitively accurate compared
to black box models such as random forests, while retaining both local and global explainability.
For local explainability, the contribution of each feature and each interaction to the prediction
can be seen simply from inspecting the results of fi(xi) and fij(xi, xj) for a given data point x.
Because of the inherent additivity of GA2Ms, feature contributions can be sorted and visualized.
For global explainability, the separate functions fi and fij can be visualized as line graphs and
heatmaps, respectively. However, GA2Ms do not natively support global feature importance.
Local feature importance for a given data point can be determined easily from the results of the
additive functions, as it is clear how much each feature contributes to the prediction. However, to
get global feature importances, other methods can be applied, such as observing the difference in
evaluation metrics when a single feature is removed.

In GA2Ms, the number of interactions to consider rises quadratically with the number of features.
Modelling every interaction can hurt performance and accuracy of the model, as well as diminish
the explainability of the model. A variety of interaction detection methods are available, such as
an ANOVA test, RuleFit [13], Partial Dependence Functions, and FAST [19].

Efficient Calculation of Approximate Shapley Values in DGANN2s 7
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In [26], GA2Ms are also referred to as Explainable Boosting Machines, or EBMs. EBMs are
available as a Python library under the name interpret.

2.3 Post-hoc Approaches

Complex models such as deep neural networks are regarded as black-box models and are not
intrinsically explainable. Black box models usually represent complicated functions that cannot
easily understood by humans. As an example, deep neural networks, without restricting their
form, are comprised of a large number of connections, layers, non-linear transformations, and
interactions between the input features. A user cannot understand how a deep neural network
makes decisions simply by looking at the weights of the network. To explain the predictions of
black-box models, several post-hoc methods have been developed over the years [34, 43, 21, 36].

Model-agnostic post-hoc approaches can be applied to any type of model, and they generally treat
the model at hand as a function that can be repeatedly probed. Some post-hoc methods can be
model-specific as well, such as Tree SHAP, that is developed specifically for tree-based models.

Post-hoc approaches can take several forms of explanation, as can be seen in Figure 2.2:

• Generating textual explanations to explain the results of a model, either in textual or sym-
bolic form.

• Training a simpler and explainable model to approximate the decisions of the original model.

• Providing explanations via visualizations. These visualizations can show the decision making
process of a model, for example by showing how a model divides the data set.

• Generating feature relevance values to explain how each feature contributes to the model’s
decision making.

• Understanding the model behavior on a local level, in a simplified space. A common form
of local explanations is sensitivity analysis.

• Selecting or constructing example instances to show the inner workings of a model. For
example, a visual emotion recognition network from faces can explain its decision on an
image by showing images that look similar that have the same emotion.

2.3.1 LIME

Presented in [34], Local Interpretable Model-Agnostic Explanations, or LIME, is an explanation
method to find an interpretable substitute model that locally approximates the original model
around a singular prediction. LIME provides locally faithful explanations by approximating the
model’s behavior in the neighborhood of a certain data point using an inherently interpretable
model.

In mathematical terms, LIME operates on an interpretable representation x′ ∈ {0, 1}d′
in place

of the original data point x ∈ Rd. d′ is the number of features in the interpretable representation,
whereas x′ acts as an activation function denoting which features in the interpretable repres-
entation will be considered. We can define a function hx(x′) = x to transform the simplified
representation x′ to the original input x. An explanation model g is a model that will locally
approximate the original model around x′.

In the original paper, authors have taken g to belong to the class of linear models, such that
g(z′) = φ0 +

∑d
i=1
′φiz

′
i, where φi ∈ R, and z′ ∈ {0, 1}d′

. z′ corresponds to a perturbed sample
that is in the locality of x′. g thus becomes a linear regression problem. This is one of the
underlying assumptions of LIME, that when the locality around an instance is considered, the
complex model can behave in a linearly separable way.
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Figure 2.2: Several different post-hoc explainability approaches [5]

Figure 2.3: Blue/pink background represents the unknown decision function for a black box
model. To explain the decision around the instance represented by the bold red plus, LIME

samples instances in the locality, and finds an approximate explanation that is locally faithful,
represented as the dashed line. Source: [35]
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LIME essentially tries to minimize the complexity of the explanation g, denoted as Ω(g), and a
loss function. This loss function is denoted as L(f, g,Πx), where Πx(z) is a proximity measure
between z and x. L measures local fidelity - how close is g to representing f in the locality around
x.

The fidelity loss function is defined as

L(f, g,Πx) =
∑

z,z′∈Z
Πx(z)

(
f(z)− g(z′)

)2
(2.4)

where Z is a data set of perturbed samples of z, z′, around the locality of the original data point
x.

LIME minimizes the objective function ξ comprised of the loss function L and the complexity
function Ω(g) as described in Equation (2.5).

ξ(x) = arg min
g∈G

L(f, g,Πx) + Ω(g) (2.5)

Algorithmically, LIME works by approximating L through sampling perturbed samples from Z.
f(hx(z′)) = f(z) serves as the labels to the explanation model g. Given this data set Z, Equa-
tion (2.5) can be solved using Lasso regression or another penalized linear regression method.

LIME requires picking a kernel function to define the proximity measure Πx(z) and a complexity
function Ω(g). These functions are chosen heuristically. The authors have defined Πx(z) =
exp(−D(x, z)2/σ2) in [34], where D is the cosine distance. However, picking a kernel function is
not straightforward especially in the cases of tabular data. Cosine distance can work for textual
data better, but in case of tabular data, defining the distance between two instances becomes
harder, since a mix of categorical and numerical features can be present. Furthermore, LIME
has been shown to be sensitive to minor perturbations [3], and this sensitivity can be utilized in
adversarial attacks to create a desired explanation [41].

2.3.2 Shapley Values

Shapley values have their roots in game theory, and have first been introduced by Lloyd Shapley
[40]. The main problem Shapley values are developed to solve is fairly distributing surplus payoff
among players in a coalitional game setting. In the coalitional, or cooperative game setting, there
is a finite set of N = {1, 2, ..., n} players, where each non-empty subset of N forms a coalition [39].
v : 2N 7→ R denotes a payoff function, also called a characteristic function, such that v(∅) = 0.
The payoff function v gives each coalition S ⊆ N a real-valued payoff to be distributed among
players in the coalition. v(S) can also be thought as the worth of S. The individual payoff for
each player i ∈ N is denoted as φi.

Shapley has first introduced 4 axioms to solve the problem of distributing v(S) fairly and uniquely
among S:

1. Efficiency axiom: The payoffs for each player must add up to v(N).

n∑
i=1

φi = v(N) (2.6)

2. Symmetry axiom: If two players always contribute the same to each coalition, these players
should receive the same payoff.

If v(S ∪ {i}) = v(S ∪ {j}) for all S ⊆ N \ {i, j}, then φi = φj (2.7)
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3. Additivity axiom: If there are two games with payoff functions v1 and v2, and another game
is created where v3(S) = v1(S) + v2(S) for all coalitions S, then a player’s payoff under the
single game (φ3i ) should be the sum of the payoff in two separate games.

If v3(S) = v1(S) + v2(S) for all S ⊆ N, then for all i ∈ N,φ3i = φ1i + φ21 (2.8)

4. Dummy player axiom: If there is a player that does not contribute to the payoff of any
coalition, then that player should receive a 0 payoff.

If v(S ∪ {i}) = v(S) for every S ⊂ N \ {i}, then φi = 0 (2.9)

Shapley has produced a unique solution that satisfies the axioms listed above to distribute surplus
fairly among players in a coalitional game with N players and the payoff function v. The result is
called the Shapley value of each player:

φi =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |!

(
v(S ∪ {i})− v(S)

)
(2.10)

The Shapley value for each player can be understood as the average marginal contribution over
all the different coalitions they can be a part of.

Shapley values were first used in [42] in a machine learning setting to explain individual classific-
ations. In a machine learning setting, the concept of players is mapped to features. We assume a
model to have N = {1, 2, ..., n} features.

Authors of [43] starts by defining a model’s prediction, f(x) as conditional to a subset of features’
values being known:

fS(x) = E[f |Xi = xi, i ∈ S], where S ⊆ N (2.11)

Using Equation (2.11), we can define the contribution of S to be:

∆S(x) = fS(x)− f∅(x) (2.12)

∆S(x), further called as contribution function, corresponds to the payoff function v(S) in the game
theory explanation. With this definition of contribution, [42] defines the contribution of a feature
for a given data point x to be:

ϕi(x) =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |!

(
∆S∪{i}(x)−∆S(x)

)
(2.13)

Since we know that from Equation (2.12) ∆S(x) = fS(x) − f∅(x), we can further simplify Equa-
tion (2.13) as:

ϕi(x) =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |!

(
fS∪{i}(x)− fS(x)

)
(2.14)

Since calculating Shapley values exactly for a single data point requires re-training the model
and evaluating the result for each possible coalition, the operations required for exact calculation
increase exponentially with respect to the number of features. A sampling-based approximation
algorithm has been proposed in [43]. This approximation assumes that individual features in a
given data point are independently distributed.
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The approximation works by sampling: given a data point x, we are trying to assign Shapley
values to feature i. In each iteration, we sample a data point w ∈ X , where X is the data set,
and a permutation of the feature indices, uniformly at random, O ∈ π(n), where π(n) is the set
of all permutations of n items. We construct two data points z1 and z2, that only differ in their
values for feature i. For features that come before i in the permutation O, Prei(O), the values are
taken from x, and for features that come after i in the permutation O, Post i(O), the values are
taken from w. In z1, the value of the ith feature comes from x, whereas in z2, the value of the ith

feature comes from w. We evaluate the model for z1 and z2, and take the differences. The mean
of these differences gives us an approximate value. The proof can be found in [42].

Algorithm 1: Shapley value approximation as described in [43]

Input: Data point to explain x, data set X , model function f
1 for i← 0 to n do
2 ϕi(x)← 0
3 for k ← 1 to m do
4 select a random permutation O ∈ π(n)
5 select a random data point w ∈ X
6 construct two instances:
7 z1 ← (xPrei(O)1 , ..., , xi, wPosti(O)1 , ...)

8 z2 ← (xPrei(O)1 , ..., , wi, wPosti(O)1 , ...)

9 ϕi(x)← ϕi(x) + f(z1)− f(z2)

10 end
11 ϕi(x)← ϕi(x)/m

12 end

Shapley values are widely used in practice. In [6], authors have found that Shapley values were
the most common method for providing feature importance explanation.

Global Shapley values can be calculated to reach at global feature importances. Since Shapley
values represent feature importances for a single instance, global Shapley values can be calculated
by iterating over instances in a data set. Denoting global feature importance for feature i to be
Φi, the explicit approximate calculation of global Shapley values is given in Equation (2.15).

Φi =
1

K

K∑
k=i

|φi(x(k))| (2.15)

where K is the number of instances in the data set. K can also be chosen to be a random sample
from the data set, however, the approximation will be less accurate.

2.3.3 Shapley Additive Explanations (SHAP)

Presented in [21], SHAP values combine several model-agnostic explanation methods, including
LIME and Shapley values under a unified measure to determine feature importance. They define
additive feature attribution methods as methods that have an explanation model that is a linear
function of binary variables:

g(z′) = φ0 +

m∑
i=1

φiz
′
i (2.16)

where z′ is an input of binary variables z′ ∈ {0, 1}m, m is the dimension of the binary input z′,
and φi ∈ R is the coefficient denoting the attribution or contribution of the ith feature. In essence,
g(z′) can be seen as a simple linear regression model, where the input z′ has m binary features,
and φi is the coefficient denoting the contribution of feature i.
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Kernel SHAP

Kernel SHAP is a model-agnostic method under the SHAP framework. Kernel SHAP modifies
LIME as an additive feature attribution method, and reduces approximate Shapley value calcula-
tion to finding φi for each feature in a penalized linear regression model. Authors prove that when
complexity, proximity, and loss functions are set as described in Equation (2.17), the solution to
the Equation (2.5) gives Shapley values.

Πx′(z′) =
m− 1(

m
|z′|
)
|z′|(m− |z′|)

Ω(g) = 0

L(f, g,Πx) =
∑
z′∈Z

Πx′(z′)
(
f(hx(z′))− g(z′)

)2 (2.17)

where |z′| is the number of non-zero elements in z′. Like in LIME, Z represents a data set
constructed of randomly perturbed data points in the simplified input space that are locally close
to x′, and hx is the function used to convert from simplified input space to original input space,
such that hx(x′) = x. The proof can be found in the supplementary material of [21].

Kernel SHAP reduces computing Shapley values to a penalized linear regression problem. Like
LIME, the algorithm works by randomly sampling data points in the simplified input space around
the locality of x′, and uses the predictions f(hx(z′)) as labels. Then, the binary vectors z′ and
labels f(hx(z′)) are fit using linear regression.

Tree SHAP

While we cover Tree SHAP under post-hoc approaches, unlike the previous approaches that we
have described, Tree SHAP is not a model-agnostic method. Tree SHAP is a model-specific method
for computing exact Shapley values for tree-based models [20]. Tree based models include random
forests, decision trees, gradient boosted trees, and the variations of gradient boosted trees such
as XGBoost (eXtreme Gradient Boosting) [9], LightGBM [16], CatBoost [33], etc. Tree SHAP is
very commonly used, since tree-based models are popular when dealing with tabular data. Tree
SHAP is currently used at DLL to explain the predictions of various XGBoost models.

2.4 Sum Product Networks

In this work, we describe DGANN2, with a decomposable architecture allowing the efficient calcu-
lation of approximate Shapley values. This calculation is motivated from Sum Product Networks
(SPNs) [30]. To this end, we introduce them here.

Sum product networks are a newer type of probabilistic model similar to probabilistic graphical
models (PGMs) such as Bayesian and Markov networks. In their essence, sum product networks
are ‘networks of sum and product operations with certain numeric inputs’ [29]. They represent
probability distributions over random variables, and can be seen as deep neural networks with
only sum and product nodes. A simple sum product network representing a distribution over
three independent binary random variables X,Y, Z looks like Figure 2.4. The joint distribution is
represented at the product node, and its children each represent a marginal.
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Figure 2.4: A simple SPN of three independent binary random variables [29]

The one aspect of SPNs that we will make use of in this work is marginalization of random
variables. In probabilistic terms, a marginal distribution refers to the probability distribution of
a subset of random variables S in a larger set X, while not assuming any knowledge about the
other random variables that are not in S. Intuitively, marginalization calculates the probability
distribution of the subset by considering all possible values of the variables that are not in the
subset, and summing over them.

For a set of continuous random variables X = {X1, X2, ..., Xn} with an integrable probability
density function pX , for a set S ∈ X where M = X \ X = {M1,M2, ...,Mk}, we can find the
marginal distribution of pS(s) as described in Equation (2.18).

pS(s) =

∫
m1

∫
m2

...

∫
mk

pX(s,m1,m2, ...,mk)dm1...dmk (2.18)

In SPNs, marginalization of random variables can be done in a single pass through the network
on the condition that decomposability is met [29]. A sum product network is decomposable if and
only if a random variable appears no more than once in the children of any product node.
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Proposed Approach

3.1 Description of DGANN2

In this work, we propose a generalized additive model that is inspired by GANNs and GA2Ms, as
described in Section 2.2.2 and Section 2.2.3, respectively.

The proposed model is a generalized additive model that has the following general form:

g(E[y]) =

n∑
i=1

fi(xi) +
∑

(i,j)∈I

fij(xi) · fji(xj) (3.1)

where g is a link function, n is the number of features, I is a set of tuples denoting which
interactions will be modeled and each of fi and fij denotes a neural network with a single input
and a single output neuron.

DGANN2 is essentially a glass box model: for each data point x, we can clearly see how much each
feature has contributed to the result, by examining the results of fi(xi) and fij(xi). Furthermore,
we can construct graphs of fi and heatmaps of fij over their respective domains, and get an
understanding of how feature interactions behave.

To select which interactions to include in the model, we first fit DGANN2 without considering any
interactions. Looking at the coefficients of the variables that DGANN2 has learned, we select k
features with the highest coefficients, and take the pairwise combinations from this subset.

The model architecture is quite similar to GAMI-Nets as described in [45]. The key difference
between GAMI-Net and DGANN2 is the construction of interaction terms. GAMI-Net architecture
trains a single neural network for each interaction term, taking as input two values corresponding
to the interacting variables. In contrast, DGANN2 architecture trains a neural network for each
interactive variable and then multiplies the results from each neural network at the end. The
architecture described in this thesis allows for decomposability, which aids us in the efficient
calculation of Shapley values as described below in Section 3.2.

As we pointed out before, in GAMs certain explainability measures such as getting feature im-
portances for local explainability is not straightforward when interactions are present. Moreover,
ranking features with global importance is also not directly possible from the model structure.
Thus, for feature importance calculation, we turn to Shapley values.
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3.2 Efficient Calculation of Shapley Values

The calculation of Shapley values and the corresponding approximation algorithm have been
described in Section 2.3.2. The algorithm can be thought of as two nested loops:

1. Loop over different subsets of features S ∈ N \ {k}.

2. Sample a number of instances w ∈ X , and evaluate f(z1)− f(z2) for z1 and z2 as described
in Algorithm 1.

In its core, the algorithm is constructing subsets S ∈ N \ {k}, and for each subset S, tries to
find the approximate value of the prediction of f marginalized over features that are not in S. In
essence, to find fS∪{k}(x)−fS(x), we would need to construct two models, one built with features
in S ∪ {k}, and one built with features in S, and find the difference of their predictions. Viewing
from a holistic perspective of our model f with all features N , we are trying to marginalize f over
features that are not in S.

fS(x) =

∫
f(x1, x2, ..., xn)dPxa,a/∈S (3.2)

We take integrals over the domains of each variable xa such that a /∈ S. Equation (3.3) re-writes
Equation (3.2) as nested integrals.

fS(x) =

∫
val(xa1

)

∫
val(xa2

)

...

∫
val(xak

)

f(x1, x2, ..., xn)p(xa1
, xa2

, ..., xak
)dxa1

...dxak
(3.3)

where k = |N \ S|, xaj
∈ N \ S for j ∈ {1, 2, ..., k}, and val(xaj

) denotes the domain of variable
xaj . We use the more concise version in Equation (3.2) in the rest of the section.

Algorithm 1 uses sampling from the data set to approximate fS(x), and also samples random
subsets S ∈ N to emulate coalitions. With the model described in Section 3.1, we can calculate
Shapley values without the need for sampling, as we can arrive at a closed form solution. We
make the assumption first that all the features are independent, as in the original approximation
algorithm as described in Algorithm 1.

We show how the efficient marginalization works:
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fS(x) =

∫
f(x1, ..., xn)dPxa,a/∈S (3.4)

=

∫ [ n∑
i=1

fi(xi) +
∑

(i,j)∈I

fij(xi) · fji(xj)
]
dPxa,a/∈S

=

∫ ∑
i∈S

fi(xi)dPxa,a/∈S +

∫ ∑
i/∈S

fi(xi)dPxa,a/∈S +

∫ [ ∑
(i,j)∈I

fij(xi) · fji(xj)
]
dPxa,a/∈S

=
∑
i∈S

fi(xi)

=1︷ ︸︸ ︷∫
dPxa,a/∈S +

∫ ∑
i/∈S

fi(xi)dPxa,a/∈S +

∫ [ ∑
(i,j)∈I

fij(xi) · fji(xj)
]
dPxa,a/∈S

=
∑
i∈S

fi(xi) +

∫ ∑
i/∈S

fi(xi)dPxa,a/∈S +

∫ [ ∑
(i,j)∈I

fij(xi) · fji(xj)
]
dPxa,a/∈S

=
∑
i∈S

fi(xi) +
∑
i/∈S

∫
fi(xi)p(xi)dxi +

∫ [ ∑
(i,j)∈I

fij(xi) · fji(xj)
]
dPxa,a/∈S (3.5)

=
∑
i∈S

fi(xi) +
∑
i/∈S

E[fi(xi)] +

∫ [ ∑
(i,j)∈I

fij(xi) · fji(xj)
]
dPxa,a/∈S (3.6)

In Equation (3.5), we make use of the assumption that the variables are independently distributed
to decompose p(xi, xi+1, ..., xk) = p(xi) · p(xi+1)... · p(xk).

From Equation (3.6), we will focus only on the remaining integral part:

∫ [ ∑
(i,j)∈I

fij(xi) · fji(xj)
]
dPxa,a/∈S =

∫ ∑
(i,j)∈I & i,j∈S

fij(xi) · fji(xj)dPxa,a/∈S

+

∫ ∑
(i,j)∈I & i∈S & j /∈S

fij(xi) · fji(xj)dPxa,a/∈S

+

∫ ∑
(i,j)∈I & i/∈S & j∈S

fij(xi) · fji(xj)dPxa,a/∈S

+

∫ ∑
(i,j)∈I & i,j /∈S

fij(xi) · fji(xj)dPxa,a/∈S (3.7)

We look at each component of Equation (3.7) separately:

∫ ∑
(i,j)∈I & i,j∈S

fij(xi) · fji(xj)dPxa,a/∈S =
∑

(i,j)∈I & i,j∈S

fij(xi) · fji(xj)
∫
dPxa,a/∈S

=
∑

(i,j)∈I & i,j∈S

fij(xi) · fji(xj) (3.8)

∫ ∑
(i,j)∈I & i∈S & j /∈S

fij(xi) · fji(xj)dPxa,a/∈S =
∑

(i,j)∈I & i∈S & j /∈S

fij(xi) ·
∫
fji(xj)dPxa,a/∈S

=
∑

(i,j)∈I & i∈S & j /∈S

fij(xi) · E[fji(xj ] (3.9)
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∫ ∑
(i,j)∈I & i/∈S & j∈S

fij(xi) · fji(xj)dPxa,a/∈S =
∑

(i,j)∈I & i/∈S & j∈S

fji(xj) ·
∫
fij(xi)dPxa,a/∈S

=
∑

(i,j)∈I & i/∈S & j∈S

fji(xj) · E[fij(xi)] (3.10)

∫ ∑
(i,j)∈I & i,j /∈S

fij(xi) · fji(xj)dPxa,a/∈S =
∑

(i,j)∈I & i,j /∈S

∫
fij(xi) · fji(xj)dPxa,a/∈S

=
∑

(i,j)∈I & i,j /∈S

∫
fij(xi) · fji(xj) · p(xi) · p(xj)dxidxjdPxa,a/∈S∪{i,j}

=
∑

(i,j)∈I & i,j /∈S

E[fij(xi)] · E[fji(xj)] (3.11)

Putting everything together, we arrive at the following result for Equation (3.2):

fS(x) =

∫
f(x1, x2, ..., xn)dPxa,a/∈S

=
∑
i∈S

fi(xi) +
∑
i/∈S

E[fi(xi)] +
∑

(i,j)∈I & i,j∈S

fij(xi) · fji(xj) +
∑

(i,j)∈I & i∈S & j /∈S

fij(xi) · E[fji(xj)]

+
∑

(i,j)∈I & i/∈S & j∈S

fji(xj) · E[fij(xi)] +
∑

(i,j)∈I & i,j /∈S

E[fij(xi)] · E[fji(xj)] (3.12)

Thus, as can be seen in Equation (3.12), in our model we can marginalize over features without
having to repeatedly sample for approximation. The expected runtime for this calculation is
O(n + |I|), provided that the expected values of each of the functions in the additive model are
calculated once during training, and are available in the form of a dictionary. To calculate the
expected values of each function, or each neural network, we use the training set to arrive at an
empirical expected value. Explicitly, we sum the results of each network over the data points
in the training set, and divide by the number of data points. Another approach we have tried
is simulating a Gaussian distribution from the data, from each feature, to arrive at an expected
value. However, our experiments have shown that using empirical expected value gives better
results. Lastly, we only need to make one pass through the model with the data point x to get
the results of 1-D and 2-D functions. However, to approximate Shapley values, we still need to
iterate over possible subsets S of the feature set, N = {1, 2, .., n}.

A way to incorporate these subsets would be sampling random permutations, as in Algorithm 1,
and constructing two subsets. However, the formulation in Equation (3.12) allows us to calculate
this in closed form, without resorting to sampling.

Recall that we calculate fS(x) in Equation (3.12) to plug it into the right-hand side of Equa-
tion (2.14). We are effectively marginalizing out the features that are not in S, to arrive at a
substitute for fS(x). Let us denote the feature index we are interested in as k, and per the right-
hand side of Equation (2.14), we take the difference fS∪{k}(x)−fS(x). We can see that fS∪{k}(x)
and fS(x) share some common terms, and we can simplify this difference further. First of all,
looking at the first two additive terms that are not related to interactions in Equation (3.12),
we can observe that when taking the difference fS∪{k}(x) − fS(x), the terms

∑
i∈S fi(xi) cancel

each other out. Furthermore, we see that the terms
∑

i/∈S∪{k} E[fi(xi)] also cancel each other out.
Thus, in building the difference we arrive at:
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fS∪{k}(x)− fS(x) = fk(xk)− E[fk(xk)] +R (3.13)

where R is a placeholder for the remainder terms. Next, observe that for pairwise interaction tuples
(i, j) ∈ I, if i 6= k and j 6= k, the multiplicative terms cancel each other out in the difference as
well, since k is the only member of the sets S and S ∪ {k} that is different. Thus, we are only
interested in pairwise interactions where k is one of the features interacting. Thus, when finding
R:

fS∪{k}(x) = ...+
∑

(k,j)∈I & j∈S

fkj(xk) · fjk(xj) +
∑

(k,j)∈I & j /∈S

fkj(xk) · E[fjk(xj)] (3.14)

fS(x) = ...+
∑

(k,j)∈I & j∈S

fjk(xj) · E[fkj(xk)] +
∑

(k,j)∈I & j /∈S

E[fkj(xk)] · E[fjk(xj)] (3.15)

Thus, when finding the remainder R in the difference:

R =
∑

(k,j)∈I & j∈S

(
fkj(xk)−E[fkj(xk)]

)
·fjk(xj)+

∑
(k,j)∈I & j /∈S

(
fkj(xk)−E[fkj(xk)]

)
·E[fjk(xj)]

(3.16)

Putting it all together, we arrive at the difference:

fS∪{k}(x)− fS(x) = fk(xk)− E[fk(xk)] +
∑

(k,j)∈I & j∈S

(
fkj(xk)− E[fkj(xk)]

)
· fjk(xj) (3.17)

+
∑

(k,j)∈I & j /∈S

(
fkj(xk)− E[fkj(xk)]

)
· E[fjk(xj)]

We reach a closed form for the difference. Recall that S as we use it here refers to the Prek(O),
where O is a permutation in the set of permutations of n features, π(n). Thus, S denotes the
features in O that come before k, the feature we’re computing the Shapley value for. Observe that
in Equation (3.17), for each feature j where (k, j) ∈ I, we have two possible options: either j ∈ S
or j /∈ S. Our goal is to iterate over every single permutation O ∈ π(n), where S = Prek(O), and
divide by the number of iterations. Observe that exactly in half of these permutations, j ∈ S, and
in the other half, j /∈ S. In other words, exactly in half of these permutations j will be before k,
and exactly in half of these permutations j will be after k. Thus, when calculating the Shapley
value for feature k, we will have:

φk(x) = fk(xk)−E[fk(xk)]+
∑

(k,j)∈I

(
fkj(xk)−E[fkj(xk)]

)(
0.5 ·fjk(xj)+0.5 ·E[fjk(xj)]

)
(3.18)

Equation (3.18) gives us a closed form of calculating Shapley values for a single instance. We
denote this closed form calculation as D-Shapley, as in Decomposable Shapley approximation.
Recall that these values are not exact, since in the original Shapley construction, fS∪{k}(x) would
be a model trained using the subset of features S∪{k}, and fS would be a model trained using the
subset of features S. Having pointed this out, the values calculated using Equation (3.18) are exact
for the approximation algorithm, since we do not need to sample data points nor subsets S ∈ N .
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The closed form solution thus is able to arrive at the exact values without explicit iterations that
would have an exponential complexity in the number of features.

DGANN2 and D-Shapley can further be generalized to include interactions of higher order. While
we will not derive the equation here, we make the following observations for 3-way interactions:
For each 3-way interaction (i, j, k) ∈ I3, we have 3 functions fijk(xi), fjik(xj), fkij(xk). Our model
would look like Equation (3.19).

g(E[y]) = β +

n∑
i=1

fi(xi) +
∑

(i,j)∈I2

fij(xi) · fji(xj) +
∑

(i,j,k)∈I3

fijk(xi) · fjik(xj) · fkij(xk) (3.19)

We can plug this equation in to Equation (3.2), and again assuming independence of variables,
we can deconstruct the function in a similar way. This is also apparent when we construct a SPN
to represent the model. The SPN would still be decomposable, and so we can easily marginalize
out a given subset of variables. This fast marginalization leads to a closed form equation, just as
in Equation (3.18).
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Data and Methodology

4.1 Description of Data Sets

4.1.1 Data from DLL

Data from DLL comes from a consolidation of different tables. The features of interest can be
broadly categorized into debtor information and invoice information. Features on debtors include
identifying personal information, such as debtor’s address and contact information, along with
information about debtor’s standing within DLL, such as the debtor’s internal risk rating. Fea-
tures on invoices include information about particular invoices, such as the amount of invoice, due
date, overdue interest from the given invoice. The data from different tables are merged, and a
consolidated file is created. The granularity of the data is on a daily level for each debtor, as the
C&R agents receive daily lists of debtors to reach. Since each debtor can have multiple contracts
and multiple invoices over these contracts, variables related to these contracts and invoices are
aggregated on a daily level. Feature selection is then performed with expert input and identify-
ing features are discarded from the data set. Several rounds of row selection are performed in
accordance with the scope of the project and recommendations of the experts. A list of the model
features can be found in Appendix A.

After the row selection, aggregation, and feature selection steps, the resulting data set contains
47943 rows, each row representing a debtor’s situation on a given day, and 49 features for each
row. The target variable, y, is a binary variable to predict whether a debtor will go 17 days past
due on their invoice. When y = 0, i.e. the debtor will not go 17 days past due, we call them an
on-time debtor, whereas when y = 1, we call them a late debtor.

Out of the 47493 rows, 38763 (81.6%) have the target variable 1, while 9180 (19.4%) have the
target variable 0. The data set thus has an imbalance. As per this imbalance, we check different
metrics and not simply accuracy while training and testing DGANN2 and the other models.

Since neural networks cannot naturally handle categorical features, they are encoded using one-hot
encoding for DGANN2. One-hot encoding is commonly used to represent a categorical variable
xi of d distinct values as d binary variables, where only the binary variable corresponding to xi’s
value is set to 1 [17]. This one-hot encoding is not used for GAMs and GA2M s, since they can
handle categorical features natively. Furthermore, numerical features in the data set are scaled
using a standard scaler.
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4.1.2 Other Classification Data Sets

Bank Marketing Data Set

Bank marketing data set [24] contains information about the marketing campaigns of a Portuguese
bank. The marketing campaign was run through phone calls. The goal is to predict whether a
client that is called will subscribe a term deposit. The data set consists of 41188 rows, with 20
features. Like the data set from DLL, bank marketing data set also shows a class imbalance,
with only 6557 (12.38%) instances with positive target variables. The feature ‘duration’ is not
considered in the model, since it is very highly correlated to the output, as duration of 0 indicates
a negative output.

Diabetes Data Set

Obtained from UCI ML repository [12], Pima Indians Diabetes data set contains patient inform-
ation and medical readings related to diabetes. The target is a binary variable denoting whether
a patient tested positive for diabetes.

Banknote Authentication Data Set

Banknote authentication data set [12] consists of 4 features obtained from the wavelet transform
of images of banknotes. The goal is to determine whether a banknote is authentic.

MAGIC Gamma Telescope Data Set

This data set [12] contains simulated observations to be able to differentiate between gamma rays
(signal) and hadronic showers (background) when a Major Atmospheric Gamma-Ray Imaging
Cherenkov (MAGIC) Gamma Telescope is used to register high energy gamma particles. Since
the data is simulated, the ratio of positive events, i.e. gamma ray registrations are higher than
normal. For the data set, simple accuracy measures are not suitable, since it is important to not
classify background events as a signal. The data set contains 19020 instances, with 10 features.

4.1.3 Regression Data Sets

Parkinsons Data Set

Parkinsons data set [44] consists of biomedical voice measurements from 42 patients with early
stage Parkinson’s disease. The goal of the data set is to predict the Parkinson’s disease symp-
tom score on the UPDRS scale from 16 voice measures. For each patient, there are around 200
recordings, for a total of 5875 recordings.

California Housing Data Set

A well-known data set in the field of machine learning, California Housing data set is used to train
a model to predict housing prices in California in 1990, based on location-related and house-related
features. The goal is to predict the median house value for a given block. The description of the
variables in the data set can be found in Appendix A under Table A.2. The data set contains
20640 instances, with 9 features.

Abalone Data Set

This data set [12] contains features about the characteristics of abalones, such as length, height,
and weight, in order to predict their age. The data set contains 4177 instances, with 8 features.
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Airfoil Self-Noise Data Set

This data set [12] is from a series of aerodynamic and acoustic tests, aimed at predicting the sound
pressure level of airfoil blade sections. With only 5 features, this data set can be tested using all
available interactions. The data set contains 1503 instances.

4.2 Practical Implementation of DGANN2

To implement the model, we utilize Keras with Tensorflow 2.0 backend. The model has several
hyperparameters that can be tweaked:

1. For each feedforward neural network, the number of hidden layers and the number of neurons
in each hidden layer

2. Learning rate

3. Dropout rate

4. Number of interactions to consider

To determine the hyperparameters, we use grid search with 5-fold cross validation. However, since
the number of neural networks in the model can be quite large, i.e. one for each feature and two for
each interaction, we restrict our search space. We divide the neural network architectures into two
groups, so that all feature networks have the same structure, and so do all interaction networks.
Thus, instead of n+ 2|I|, we will only search for 2 architectures. While neural architecture search
is being continuously researched, we deem it to be out of scope for this thesis.

Another point of interest is choosing the interactions to be included in the model. We achieve
this by first training a DGANN2 without pairwise interactions to arrive at a GANN. We use the
contributions of each feature to be representative of the importance of the feature when the whole
training data set is considered. We pick the top k features and get the pairwise combinations of
these k features to arrive at the interactions. k can be tweaked as a hyperparameter and thus can
be found using cross validation.

4.3 Experimental Setup

We test the performance of DGANN2 against several baselines:

1. GAM: To model GAMs, we use Explainable Boosting Machines (EBMs), which are im-
plemented using gradient boosting of bagged trees. To emulate GAMs, we explicitly re-
strict EBMs to not consider interactions. EBMs are open-sourced under the Python library
interpret [26]. When training, the default parameters are used.

2. GA2M: We again use EBMs with default parameters, only changing the number of interac-
tions to be considered to fit the model. We set the number of interactions to be the same
number as the interactions considered in DGANN2 for the same data set.

3. XGBoost: eXtreme Gradient Boosting [9], a tree-based ensemble algorithm utilizing the
gradient boosting framework, is one of the most popular ML algorithms in competitions like
Kaggle. XGBoost is also currently used for the C&R project at DLL. The hyperparameters
for XGBoost models in the experiments are tuned using randomized search.

While evaluating the models, we look at several metrics. For regression tasks, we use Root Mean
Squared Error (RMSE). For classification tasks we look at:

1. AUC [22]: Area Under the ROC Curve. A receiver operating characteristic (ROC) curve
measures the performance of a classifier at all classification thresholds. ROC curve plots true

Efficient Calculation of Approximate Shapley Values in DGANN2s 23



CHAPTER 4. DATA AND METHODOLOGY

positive rate vs. false positive rate. AUC is the calculation of the area under the ROC curve.
AUC values range from 0 to 1, where higher values indicate a better performing model.

2. F1 Score [37]: Also referred to as F score, this metric measures the accuracy of a model
based on precision and recall. The metrics below are calculated using True Positives (TP),
True Negatives (TN), False Positives (FP), and False Negatives (FN).

Accuracy =
TP + TN

TP + FP + TN + FN
(4.1)

Precision =
TP

TP + FP
(4.2)

Recall =
TP

TP + FN
(4.3)

F1 =
2

1/Recall + 1/Precision
= 2 · Precision · Recall

Precision+Recall
(4.4)

We prefer F1 score since there is a class imbalance for the DLL data set, as simply looking at
accuracy as defined in Equation (4.1) can give misleading results. For an extreme example,
imagine that the model predicts 0 for every data point in the DLL data set. Since 81.6% of
data points have 0 as a label, the model would have 81.6% accuracy. However, the model
would not have discriminatory power, as we cannot identify and late debtors. F1 score, on
the other hand, punishes such non-discriminatory models since it takes into account precision
and recall explicitly. F1 score can be between 0 and 1, just as precision and recall, and a
higher F1 score indicates better discriminatory power for a model.
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Results and Discussion

5.1 Performance Comparisons for DGANN2

Table 5.1: AUC and F1 on classification data sets for different models. Each value represents the
mean AUC/F1 ± one standard deviation from 5-fold cross validation. Higher AUC and higher

F1 score is better.

Data Set Metric DGANN2 EBM-GAM EBM-GA2M XGBoost

DLL
AUC 0.760± 0.004 0.750± 0.009 0.751± 0.009 0.731± 0.018

F1 0.863± 0.007 0.892± 0.006 0.892± 0.006 0.887± 0.008

Bank
AUC 0.712± 0.010 0.738± 0.022 0.740± 0.017 0.724± 0.021

F1 0.322± 0.027 0.194± 0.027 0.239± 0.024 0.360± 0.018

Diabetes
AUC 0.821± 0.040 0.832± 0.029 0.835± 0.028 0.822± 0.032

F1 0.659± 0.018 0.608± 0.029 0.640± 0.042 0.612± 0.058

Banknote
Authentication

AUC 1.0± 0.0 1.0± 0.0 0.999± 0.0006 0.999± 0.0005

F1 0.998± 0.003 1.0± 0.0 0.997± 0.003 0.983± 0.011

MAGIC
AUC 0.916± 0.006 0.903± 0.003 0.920± 0.007 0.932± 0.005

F1 0.788± 0.012 0.781± 0.005 0.803± 0.006 0.811± 0.007

It can be seen from Table 5.1 that DGANN2 performs better in terms of AUC on the primary
DLL data set, while it’s slightly worse than the other methods when it comes to F1 score. On
the regression tasks, as can be seen from Table 5.2, DGANN2 performs slightly worse than the
models it’s compared against. We can attribute this performance drop to possible convolution
of the model by forcing the model to explicitly consider certain interactions. This drop can be
possibly addressed with a more advanced automated interaction detection algorithm.

Generally speaking, DGANN2 shows comparative performance to the benchmark models in clas-
sification tasks. In regression tasks, XGBoost outperforms the other models. However, DGANN2

can still be considered as an alternative when the additional explainability can be useful.
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Table 5.2: RMSE on regression data sets for different models. Each value represents the mean
RMSE ± one standard deviation from 5-fold cross validation. Lower RMSE is better.

Data Set DGANN2 GAM GA2M XGBoost

Parkinsons 1.224± 0.132 1.216± 0.209 1.259± 0.236 1.205± 0.186

Housing 0.789± 0.105 0.732± 0.073 0.709± 0.056 0.666± 0.048

Abalone 2.209± 0.556 2.289± 0.526 2.217± 0.488 2.162± 0.523

Airfoil 4.133± 1.051 5.132± 1.346 3.714± 0.696 3.676± 1.087

5.2 Explainability of DGANN2

Since DGANN2 is essentially a glass box model, we can visualize how each variable contributes to
the housing price in a line plot for 1D functions, and in heatmaps for interaction functions. On
top of these visualizations, we can efficiently calculate Shapley values to get feature importances,
both on a local and global level, using D-Shapley. In the following subsections, we look into two
data sets: DLL data and California Housing data.

5.2.1 DLL Data

The initial GAM model, trained as DGANN2 without interactions, identified country,

min principle amount invoice, max days past due, max principle amount invoice,

sum principle amount invoice, min amount invoice as the features to be considered for pair-
wise interactions. Most of these features are related to invoice information, such as the principal
amount and total invoice amount. The explanations of these variables can be found in Table A.1.

DGANN2 trained with the pairwise interactions of features mentioned above, yields several ex-
planations. The contributions of a few selected features and interactions can be seen in Figure 5.1
and Figure 5.2, respectively. The contribution plots for all features and all interactions can be
found in the appendix, specifically Figures A.1 to A.4.

Recall that a classification of 1 means that the debtor will be more than 17 days past due on
their invoices, i.e. they will be classified as late. The positive contribution of a feature indicates
that it is pushing the prediction towards a late classification. Looking at the global feature plots
in Figure 5.1, we can identify maximum principle amount invoice and overdue invoices to be
important in deciding a debtor’s payment behavior, particularly in deciding that a debtor will
pay in time, since a large part of their contributions negatively influence the outcome. We can
also see that the features maximum days past due and average days between due and invoice
date positively influence the outcome. These explanations can be used at DLL to validate the
behaviour of the model with expert input. They can also lead to the discovery of patterns that
were not considered by experts before.

Looking at the interaction plots in Figure 5.2, we can make a couple of observations:

• From the top left plot, we observe that debtors with large invoice amounts and short payment
periods are more likely to pay their debts late.

• From the bottom middle plot, we see that debtors with invoices close to passing more than
17 days on their due date and large invoice amounts are more likely to pay their debts late.

• From the bottom right plot, we observe that the model considers debtors at the beginning
of their payment period and with large principal payments are less likely to go past due on
their invoices.
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Figure 5.1: Global interpretation of a subset of 1D features for DGANN2 trained on DLL data
set. All plots share the same y-scale.

Figure 5.2: Global interpretation of a subset of interaction features for DGANN2 trained on DLL
data set.
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Furthermore, to get feature importances for the main features, global Shapley values can be cal-
culated using D-Shapley. The calculated global Shapley values can be seen in Figure 5.3. Since
the categorical features are one-hot encoded, each categorical feature is represented as separate
features, one for each class. Note that the Shapley values as presented in Figure 5.3 are ap-
proximately 1000 times the actual Shapley values. The actual Shapley values are rather small,
since the problem at hand is a binary classification problem, and so each value is scaled to allow
for easier interpretation. Globally, the trained model considers max days past due, x1 724V7,

max principle amount invoice to be the most important features. This is consistent with the
plots that have been gathered from the 1D functions. The global Shapley values can provide
insight into the decision making processes of the model. For example, x1 724V7 refers to the
categorical variable ‘reason for technical default’, and the value 724V7 refers to a Corona payment
plan. Even though the global Shapley values do not show in which direction the features affect the
outcome, it can be hypothesized that when debtors have defaulted on their previous payments due
to Corona, the model considers this as a sign that they might not be able to pay newer invoices
on time. Another influential feature, max days past due refers to the maximum days past after
the due date among the invoices of a debtor. It can be hypothesized that the closer a debtor gets
to being 17 days past due, the more likely the model is to consider the debtor to be late. This
can also be in the 1D feature plot for the feature max days past due in Figure 5.1. On the other
end of the spectrum, the irrelevant features can be observed, such as indicate aftercare and
x3 AI-Direct-Debit. These binary features share the same value across all data points in the
data set, and should have been excluded from the development data set in the feature selection
steps. Similarly, indication forbearance also doesn’t influence the outcome of the model, and
can be excluded as well. Such observations from global Shapley values can help the developers
perform better feature selection.

It is further possible to delve into a single instance and explain how the model behaves specifically
for that instance. For a particular instance, referred to as Debtor A from now on, the calculated
Shapley values can be seen in Figure 5.4. Debtor A is a late debtor, i.e. they will be more than 17
days past due on their payment. The prediction for Debtor A is 0.96, meaning the model is quite
certain in its prediction that Debtor A is a late debtor. As can be observed, the most influential
feature is x1 724V7, which refers to the Corona payment plan. This debtor has previously defaulted
on a payment due to Corona, and the model considers this to be highly informative. It can also
be seen that ‘maximum days past due’ and ‘minimum days past due’ are influential. Debtor A
has 3 invoices, each 14 days past due, so the values for ‘maximum days past due’ and ‘minimum
days past due’ are both 14. Since Debtor A is close to going past 17 days on the due date for each
of their invoices, it makes sense that the model considers these features to be influential.

On the other hand, the values as shown in Figure 5.5 are obtained when Shapley values are
calculated for an on-time debtor. This debtor, referred to as Debtor B from now on, will pay
their debt before going 17 days past due. The model is able to predict this with a prediction of
0.05. As can be observed, the most influential features are related to the unpaid invoice amount
and maximum days past due. This debtor has a single invoice, and this invoice is only 1 day
past due. The model considers this to be an indicator that Debtor B is still likely to pay their
invoice. It is not immediately clear how the model considers unpaid invoice amount as an indicator,
however, Debtor B’s unpaid invoice amount is in the 80th percentile, meaning they have a rather
large unpaid invoice amount. This can be a direction of investigation to determine whether debtors
with larger unpaid invoice amounts are more likely to pay their debts, perhaps because the interest
they would pay would be higher. Another observation can be made towards days between due
date and invoice date. For Debtor B, the payment period is rather small at 6 days. Since Debtor
B has a single invoice, all the maximum, minimum, and average values point to 6 days, which is
in the 25th percentile. The model could have discovered the trend in the data that debtors with
smaller payment periods are more likely to pay their debts before going significantly past due.
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Figure 5.3: Scaled global Shapley values of features for DGANN2 trained on DLL data set. The
features are ranked from most important to least important according to their respective global

Shapley values.
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Figure 5.4: Local Shapley values for a specific late debtor, i.e. outcome = 1. The values are
calculated on a DGANN2 that was trained on the DLL data set using D-Shapley.
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Figure 5.5: Local Shapley values for a specific on-time debtor, i.e. outcome = 0. The values are
calculated on a DGANN2 that was trained on the DLL data set using D-Shapley.
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It can be seen with the examples provided that DGANN2 provides several ways of explainability,
both on a global and local level. These methods can help developers to validate and audit the
model as well as to discover trends within the data. At DLL, currently deployed XGBoost paired
with TreeSHAP is able to provide local and global Shapley value explanations as well. However,
being a glass box model, DGANN2 can also easily provide the feature and interaction plots in
Figure 5.1 and Figure 5.2, along with Shapley values calculated with D-Shapley.

5.2.2 California Housing Data

For California housing data, we can interpret how each feature contributes to price from a global
point of view with the plots in Figure 5.6. As can be seen, longitude, latitude, median income,
and population have strong effects on the outcome. When checked, the peaks in the longitude
and latitude graphs coincide with Los Angeles and San Francisco areas. LA area corresponds to
the peak around longitude -118.4, and latitude 33.8. SF area corresponds to the peak around
longitude -122.4, and the small stagnation around latitude 37.5. Another interesting observation
comes from the plot for total rooms. It appears that to the model trained on the California housing
data set, the number of total rooms within a block has absolutely no effect on the outcome. This
can also be observed in the global Shapley values calculated on a subset of the data set as plotted
in Figure 5.8. It appears that the number of total rooms has a global Shapley value of 0. We have
run the experiments again, using a different subset of the data to train the model, and using a
yet different subset to calculate global Shapley values. However, the effect of total rooms on the
outcome stays at a minimal level. This warrants further investigation into the data.

The most influential feature for the trained model seems to be median income, as can be seen
from Figure 5.8. This would make sense, as income and housing prices can be mutually reinforcing
factors: neighbourhoods higher income households inhabit will have more luxurious houses built,
and will in turn attract richer households.

From the top left plot of the interaction plots in Figure 5.7, it can be deduced that when population
is low with higher median income, house values are higher. However, in the same plot, there is
an interesting behaviour where house values also seem to be higher when population is higher
and median income is lower. Such an observation can lead to doing extra sanity checks for the
available data, or can influence the data selection process by pointing out the existence of outliers.

It is also possible to look at a single instance, and inspect which features influence the prediction
of the model on that particular instance. For a particular instance, the local Shapley values are
plotted in Figure 5.9. The values for this particular instance are given in Appendix A, in Table A.3.
The predicted median house value for this instance is 300771, while the real value is 310900. Being
in the 83rd percentile, this value is quite high for the data set. It can be seen that latitude and
longitude are both influential for the rise in value. When checked, these coordinates correspond
to Oxnard, a city very close to LA. As it was already observed on 1D plots, LA and SF areas have
higher housing prices. A feature that brings the prediction down is median income. Even though
the median income of the block is higher compared to the data set at 43693 USD, compared to
the area this income is at the 60th percentile. The population is also a feature that brings the
prediction lower, and this can be explained in a similar way to the income. The population in the
block is at the 80th percentile, and judging from the 1D plots, larger populations tend to bring
the housing prices lower.
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Figure 5.6: Global interpretation of 1D features for DGANN2 trained on California housing data
set

Figure 5.7: Global interpretation of a subset of interaction features for DGANN2 trained on
California housing data set
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Figure 5.8: Scaled global Shapley values of features for DGANN2 trained on California housing
data set. The features are ranked from most important to least important according to their

respective global Shapley values.

Figure 5.9: Local Shapley values of features for a specific instance. The values are calculated
using D-Shapley on a DGANN2 trained on the California housing data set. The details of this

particular instance can be seen in Table A.3
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Chapter 6

Conclusions

In this work, we have presented a new decomposable glass box model called DGANN2. By
limiting GA2Ms to only consider neural networks, and forcing pairwise interactions to have a
multiplicative form, we made DGANN2 decomposable. Due to its decomposable architecture, we
presented a faster method to calculate approximate Shapley values for DGANN2, equipping it
with an additional and efficient method of explainability.

In Chapter 3, we describe the architecture of DGANN2 and provide the algorithm D-Shapley to
calculate approximate Shapley values on DGANN2s. In Chapter 5, we use DGANN2 to provide
explanations for the data set obtained from DLL. We see that due to its glass box nature, DGANN2

can provide feature and interaction plots in the form of line graphs and heatmaps, respectively.
Furthermore, using D-Shapley we can calculate global Shapley values to get feature importances.
These give us a ranking of the features in terms of their influence on the model outcome. The same
algorithm can be used to provide local explainability on a single data point as well. In Figure 5.4
and Figure 5.5, we look at the Shapley values for two data points with different outcomes. The
approximate Shapley values in these plots allow us to provide explanations on how the model
came to a decision.

We further tested DGANN2 against a few other models on 9 data sets. We can see that DGANN2

has comparative performance to similar GAM-based models, and outperforms its competitors in
a few classification data sets. However, DGANN2 performs worse than XGBoost models in all
provided regression data sets. We suggest ways to improve DGANN2 to possibly improve its
performance in Section 6.2.

The glass box nature of DGANN2 and the efficient calculation of Shapley values using D-Shapley
make DGANN2 a desirable alternative to existing models and methods used. Furthermore, as
can be seen from Table 5.1, DGANN2 shows comparative performance in the DLL data set. We
believe that DGANN2 can be used in the C&R project.

6.1 Limitations

DGANN2 has several limitations with how it is described in this work. The biggest limitation
is the lack of a structured way of deciding how many and which interactions to include. The
performance of the model depends heavily on the choice of interactions, since forcing the model
to consider wrong interactions can lead the model away from learning. Another limitation is the
possible long training times. Since each function in DGANN2 is a neural network, the training
time for DGANN2s especially on data sets with a large number of features can be quite long.
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6.2 Future Work

Throughout this work, we have endeavored to provide a proof of concept for DGANN2. While this
work can lay the basis for such decomposable models, there can be made numerous improvements.

One direction is improving the implementation of DGANN2, by introducing constraints to consider
only a subset of the features, and using a smarter algorithm such as FAST [8] to select which
pairwise interactions to include in the model. Furthermore, the architecture can be extended to
consider not only pairwise interactions, but higher order interactions as well. Another technical
implementation detail could be in automatic architecture selection in the neural networks that
make up the 1D and 2D functions. Neural architecture search (NAS) is a rapidly developing area
of research, and methods from NAS can be integrated into DGANN2 to reach better performance.
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Appendix A

Data Set Descriptions and Plots

Table A.1: Features in the DLL data set. The features indicated with a ∗ are related to singular
invoices. They are aggregated to get minimum, maximum, average, and sum values. These

aggregate features are included in the modeling data set.

Variables Type Description

country Categorical The country a debtor operates in.

reason for technical de-
fault

Categorical A technical default indicates that a debtor cannot uphold
an aspect of the loan terms. This field gives the reason in
the case of a technical default.

reason default masterscale Categorical A master scale is an organization’s own rating board. Reas-
ons for default are collected under certain risk groups.

debtor exposure Numerical Debtor exposure is the maximum potential loss to DLL in
case the debtor defaults on a payment.

theoretical lpi Numerical Theoretical late payment interest.

total debtor Numerical The total amount of money a debtor owes.

invoices overdue Numerical The amount of money owed on overdue invoices.

remaining days probation Numerical The number of remaining days of probation for a debtor.
A probation period can be thought of as a trial time during
which DLL assesses a debtor.

number of invoices Numerical The number of invoices a debtor has on a day. Aggregated
variable.

days past due ∗ Numerical Number of days past due for an invoice, calculated as cur-
rent date - due date.

amount invoice ∗ Numerical The amount of money owed on an invoice.

unpaid amount invoice ∗ Numerical The unpaid amount on an invoice.

principal amount invoice ∗ Numerical A principal amount on an invoice is the amount owed
without calculating the interest.

days between due date
and invoice date ∗

Numerical Self-explanatory.

indicate aftercare Binary When 1, a debtor has an aftercare status.

indicate forbearance Binary When 1, a debtor is under forbearance. During a forbear-
ance period, DLL can reduce or halt payments due to ex-
traordinary causes.

indicate probation Binary When 1, a debtor is in their probation period.
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Table A.2: Features in the California Housing data set.

Variables Type Description

longitude Numerical Longitude of the house.

latitude Numerical Latitude of the house.

housing median age Numerical Median age of houses within a block.

total rooms Numerical Total number of rooms in the houses within a block.

total bedrooms Numerical Total number of bedrooms in the houses within a
block.

population Numerical Total number of people residing within a block.

households Numerical Total number of households within a block.

median income Numerical Median income for households within a block.

ocean proximity Categorical Proximity of the house to the ocean.

Table A.3: Values of features for a singular instance from the California housing data set.

Feature Value

longitude -119.27

latitude 34.17

housing median age 15

total rooms 11403

total bedrooms 2131

population 3327

households 1585

median income 4.3693

ocean proximity NEAR OCEAN

median house value (target) 423300
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Figure A.1: Global interpretation of 1D features for DGANN2 trained on DLL data set.
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Figure A.2: Global interpretation of 1D features for DGANN2 trained on DLL data set, scale
shared between the plots.
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Figure A.3: Global interpretation of interaction features for DGANN2 trained on DLL data set.
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Figure A.4: Global interpretation of interaction features for DGANN2 trained on DLL data set,
scale shared between the plots.
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