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Abstract

Statistical monitoring methods are currently widely used to control the quality of a process. Most
real-life processes, e.g. wind turbines, require a multivariate approach so that multiple crucial
quality characteristics can be monitored simultaneously. Many commonly used multivariate meth-
ods, like the Hotelling 72 chart, rely on the multivariate normality assumption which is hardly
ever satisfied for process data. In this thesis we therefore propose a monitoring approach based
on copula theory which allows for efficient monitoring of non-normal multivariate data. Copu-
las allow to separate the multivariate dependence structure from the marginals. The dependence
structure described by copulas captures dependence details that go beyond the covariance matrix.
We perform a simulation study to compare the copula-based approach with conventional monitor-
ing methods. The results show that the copula-based approach outperforms conventional methods
in several out-of-control cases.

In light of the wind turbines, we additionally present a case study where we apply the copula-based
approach and the Hotelling T2 chart to a real-life data set of a wind turbine. In order to correctly
interpret the results, we have to introduce the notion of contextual anomalies, which arise when
changes in or extreme values from observed processes can only be interpreted correctly if other
information is taken into account. These contextual anomalies can be identified by first applying
the multivariate regression model and subsequently monitor the deviation of the model. The case
study shows the promising potential of the copula-based approach for effective monitoring of the
condition of the wind turbine, which contributes to reducing repair costs and downtime.

Keywords: condition based monitoring, statistical process control, linear regression, multivariate
monitoring, copula modeling.
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1 Introduction

Data science is nowadays becoming increasingly popular, since it offers great career opportunities
and it contributes to improving corporate and industrial processes. It is even declared as the
“sexiest” job of the 21st century. Data science is enforced by large data sets containing extensive
information which are easily and quickly accessible these days. The incoming flow of data is enor-
mous and new data is generated every second. Most of these data sets are naturally multivariate,
that is, variables of interest should be considered simultaneously. For instance, in the light of sensor
data it is necessary to monitor multiple temperatures simultaneously to account for dependencies
among the individual temperatures. Such dependencies could arise when two sensors are closely
located to each other. Univariate analyses turn out to be invalid or inefficient as they neglect
dependencies between the temperatures. Therefore, we need multivariate analyses to account for
dependencies among the variables under investigation whenever independence cannot be assumed.

In this thesis we mainly focus on multivariate monitoring methods. Specifically, we investigate
multivariate monitoring of regression profiles, which is inspired by the univariate analyses presented
in Kenbeek (2016). These univariate analyses are about contextual anomaly detection through
monitoring of regression profiles, including a specific industrial example by applying the theory to
wind turbine data. Contextual anomalies arise when changes in or extreme values from observed
processes can only be interpreted correctly if other information is taken into account. In other
words, observed values are sometimes not abnormal by themselves, but this condition is dependent
on the context. A concrete example are wind turbines where the interpretation of sensor values
for temperatures and vibrations have to take into account environmental factors like ambient
temperature and wind speed (see, e.g., Kenbeek et al. (2016)). To this purpose, we use a monitoring
approach that is based on regression analysis. By means of appropriate regression models we can
adjust observed values based on external factors, which enables us to detect contextual anomalies.
In the univariate case, we can monitor the deviation of the regression model in the spirit of Brown
et al. (1975), Chu et al. (1996) or Zeileis et al. (2001). First steps into this monitoring approach
were taken in Kenbeek (2016), and follow-up studies were presented in Meeuwis (2017) and van
Dalen (2018).

The monitoring techniques are based on several popular control charts that follow the Statistical
Process Control (SPC) methodology, which originates from Shewhart (1925). SPC is being used
to improve the quality of industrial and business processes by effectively detecting deviations
from normal behavior, based on which optimal decisions can be made. The basic concepts of
SPC and several commonly used (univariate) control charts, including derivation, properties and
performance, are thoroughly documented in Qiu (2013, Chapter 1-5).

The main goal of this thesis is to extend the univariate monitoring approach to the multivariate
case, where we need to define the multivariate regression model (see, e.g., Monahan (2008, Chapter
9)) and develop an effective multivariate monitoring method. Most conventional multivariate
monitoring methods, such as the Hotelling 72 control chart, are based on the assumptions that
observed values are uncorrelated and multivariate normally distributed. Under these assumptions,
several monitoring techniques as in Hawkins (1993) have become standard and been successful
in a variety of applications. In fact, these techniques have become so popular that they are
often applied without carefully checking the assumptions. However, the assumptions are hardly
ever satisfied which can question the efficiency of these methods. Moreover, most conventional
multivariate methods are able to timely detect changes in mean or variance of a multivariate
distribution that is supposed to represent a particular process. Apart from changes in mean or
variance, the distribution of the process can also change in dependence structure. Unfortunately,
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most conventional multivariate methods fail to detect such changes in dependence structure in a
timely manner. This is where the modern theory of copulas comes into play. The main appeal
of copulas is that they allow to separate a multivariate distribution into an appropriate copula,
which describes the dependence structure, and all the marginals (see, e.g., Riischendorf (2009)).
This provides a flexible framework in multivariate modeling.

In order to accomplish the objectives, this thesis is organized as follows. In Chapter 2 we explain
the monitoring foundation and subsequently we properly define the multivariate multiple linear
regression model including some interesting properties based on Monahan (2008, Chapter 9). In
Chapter 3 we introduce the basic copula model and explain vine copula structures based on core
literature Nelsen (2007) and Joe (2014). Furthermore, in Chapter 4 we briefly explain some
conventional multivariate monitoring methods and introduce a modern copula-based monitoring
approach that was developed by Miihlig (2017). We continue to analyze the performance of this
copula-based method compared to some conventional methods in Chapter 5, where we make use of
performance measures presented in Frisén (2007). In Chapter 6 we present the results of applying
the copula-based method to wind turbine data in a case study. Finally, in Chapter 7 we discuss
our conclusions and make some interesting recommendations for further research. In the end we
should be able to answer the following research questions:

e How does the multivariate regression model relate to the univariate regression model and can
we derive similar properties of estimators?

e How can we design a multivariate control chart based on a given vine copula and what are
its main benefits?

e How can we fairly compare the performance of control charts to various changes in a process?

e How does the vine copula-based control chart perform compared to conventional multivariate
monitoring methods?
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2 Regression model

In this chapter we explain how to combine the usual monitoring approach with regression profiles.
Furthermore, we introduce the multivariate multiple linear regression model based on Monahan
(2008, Chapter 9), following the notation style of van Dalen (2018). Many results follow the
univariate case, however, some cases require additional remarks. We will cover the most impor-
tant properties of the regression model, which includes parameter estimation and corresponding
distribution, and the predictive residual vector.

2.1 Monitoring with regression

The usual monitoring approach follows the SPC methodology, which describes a set of statistical
methods that is used to improve the quality of industrial and business processes by accurate and
timely detection of deviations from normal behavior. The deviations should then subsequently
be traced back to the initial root cause, based on which optimal decisions can be made in order
to restore the quality of the process. Note that the term “control” in SPC may be misleading,
since SPC is really about monitoring and not referring to feedback control. SPC originates from
the time of upcoming industry, when Shewhart introduced the concept (see Shewhart (1925)).
Originally, SPC was used to monitor a production line in a factory. Typically, small subgroups
of observations at fixed time points are collected. Then, statistical methods are applied to the
observations to monitor the process and to take action when the process deviates from its normal
behavior. Such behavior is called normal if it is stable, predictable and only has natural random
variations. When a process behaves normally, it is called in-control. If a process does not behave
normally, the process is not functioning well, and it is called out-of-control.

The most widely known tools to detect deviations from normal behavior are Shewhart control
charts. Such control charts are a way to visualize the deviation of a process. The deviation can
then be compared to control limits by repeated hypothesis testing. The control limits represent
boundaries for in-control behavior and can be determined from historical data. This historical
data is assumed to represent an in-control process. The training process of calculating control
limits based on historical data is referred to as phase I. Once phase I is finished, we can move on
to the online monitoring phase, the so-called phase II. During this phase, real-time observations
are coming in and we have to decide if these can be classified as in-control or out-of-control. We
compare these incoming observations with the control limits determined in phase I in order to
classify the observations. A control charts gives a warning signal, which indicates an out-of-control
situation, when the test statistic exceeds or falls below one of the control limits.

To detect changes in the mean of single observations we usually apply the Shewhart chart for indi-
vidual observations, which is exemplified in Figure 2.1. We denote the individual observations by
X;,i=1,2,.... It is assumed that the observations are independent identically distributed (i.i.d.)
from a normal distribution. The Shewhart chart for individual observations is basically a plot of
the observations X; versus time, including 3 horizontal lines that indicate the mean, upper control
limit (UCL) and lower control limit (LCL). Assume that we have a quality characteristic with
mean E[X] = p and variance Var(X) = o2. Then, as X; are samples of the quality characteristic,
we also have E[X;] = p and Var(X;) = o2 for all . The control limits are now usually set at 1+ 30,
and the control chart signals an alarm if an observation falls outside the control limits. In case
p and o are unknown, we can estimate these quantities from historical data (phase I). Usually,
we take i = X and ¢ = MR/1.128, where X is the average of the observations and MR is the
average of the moving ranges MR,; = | X; — X;,_1|. For more information on the constant 1.128, see
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Qiu (2013, Chapter 3). Note that we make use of the moving range, since the sample variance for
subgroups of size 1 is undefined.

w4+ 30 UCL

uw—30 LCL

Figure 2.1: Shewhart chart for individual observations with control limits.

As described in Chapter 1, we need to base our monitoring approach on regression analysis in
order to detect contextual anomalies. More specifically, by using regression models we are able
to describe observed values by external factors. Subsequently, we can monitor the deviation of
the regression model by monitoring the residuals, which are basically estimated error terms, with
suitable control charts. An abnormal residual value should be equivalent to an abnormal response
value, which means that there could be a problematic situation. In our context we, therefore, take
the residuals from the regression model as “observations” for phase I and phase II analysis.

2.2 Multivariate multiple linear regression model

As previously explained, it is often crucial to use regression profiles to correct for external factors.
The (univariate) multiple linear regression model for one response variable is thoroughly explained
in van Dalen (2018). In this section we generalize the linear regression model for one response
variable to the case of multiple response variables based on Monahan (2008, Chapter 9), such
that multiple quality characteristics can be monitored simultaneously. From now on, we will call
the model for multiple responses the multivariate multiple linear regression (MMLR) model. As
mentioned in the previous section, we need n fixed observations in order fit the in-control model,
which should be representative for the actual in-control process. Note that these observations are
now actually observation vectors, since we have multiple responses for each observation in time.
Based on the in-control model, we are able to accurately predict new observations. Subsequently,
we can monitor the residual vectors of these new observations in order to detect deviations from
expected behavior. Before we can derive statistical properties, we need to properly define the
MMLR model.

Consistent with the notation defined in van Dalen (2018, Section 2.2), we define the real-valued
observations Y. as observations from the following MMLR model consisting of p regressors and ¢
responses:

Y =XYB+E. i=12,..., (2.1)
Bor Boz --- Bog
where Y. = (yﬂ Yiz ... yiq), Xé? = (1 Til Tiz ... :rip), B = B:H 6:12 ﬂ:lq
/5;-71 ﬁ;.o2 5;1q

and EL = (ei1 €2 iq)T iid ;(0,%). The unknown ¢ x ¢ covariance matrix ¥ corresponds

2 in the univariate case and is assumed to be positive definite. Here,

c()é)

to the unknown variance o
each Yj.-th observation vector in time is explained by the regressors defined by the row vector X
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and the corresponding regression coefficients for each response defined by the matrix of unknown
coefficients B. We assume that the coefficient matrix B is constant for all observations coming
from an in-control period. Furthermore, the vector Xc()é) represents the i-th row of the infinite
matrix X, which contains all observations of the regressors in time and is defined by

1 11 T12 e T1p
1 T21 T22 e T2p
Xoe=1]1 Tnl Tn2 e Tnp (2.2)
1 Tyt Tegn2 -+ Ttlp
1 Zmyo)yr Tma22 -+ Tnt2)p

In order to fit the in-control model we consider the first n observations, which are assumed to
be from an in-control process. By means of the following matrix notation, also known as the
multivariate Gauss-Markov model, we are able to express the in-control model altogether:

}/[lzn,lzq] = X,B+ E[l:n,l:q]7 (23)
where
Y11 Y12 .-+ Yiq 1 211 22 ... T
Y21 Y22 .- Y2q 1 2o x2 ... T2
Yv[l:n,l:q] = . . . . ) Xn = . . . . . y
Ynl Yn2 .- UYng 1 Inl Tp2 --- Tnp
€11 €12 ... E1g
€921 £99 L. E2q
E[l:n,l:q] = . . . . 5
Enl €n2 ... Eng

and B is as defined above.

Here, Y[1.,1:9) is the n X q response matriz, X,, is the n x (p+1) design matriz, B is the (p+1) x ¢
coefficient matriz and Ejy., 1.4 is the nxq error matriz. Note that we assume that the design matrix
X, is the same for all g responses. We can break the in-control model of (2.3) apart by either row
(observation) or column (response). The error vectors here are usually assumed to be uncorrelated
across observations, but the responses are not uncorrelated within an observation. Dissecting by
rows, we simply obtain the model defined in (2.1) for the i-th observation, i = 1,...,n. To discuss
the Gauss-Markov form, we transpose these row vectors, which results into:

N\T

For estimation purposes, we work more generally and assume for now that the errors do not follow
a particular distribution. Hence, we simply obtain that

E[E.] =0, and Cov (E}.) = X.

The mean and covariance within an observation can thus be written directly in terms of the
response as

5. (2.5)

\T
E[YzT] =BT (ngj)) , and Cov (YIT)

Breaking the model of (2.3) apart by columns gives a different view of this model, as we have for
the j-th response variable

Y:j :XnB.j—FE.j, j = 17...,q, (26)
where

E[E.;] = 0, and Cov (E.;) = X;;1,.
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Note that this basically equals the univariate case when considering the first n observations alto-
gether, except that the errors within response j now have variance 032- := X;j. Overall, we are able
to capture the covariance relationships across both rows and columns by

0 ifi#s
S ifi=s

0 ifi#s

(27
%, ifi=s 27)

Cov(E;j, Eg) = { or equivalently  Cov(Y;;,Ys) = {

where Ej;; and Y;; denote the (i, j)-th entry of the matrices Ej1.,1.q and Y1.n 1., respectively.

2.2.1 Least squares estimation

We have seen that the responses within an observation are correlated. If we want to estimate
the coefficient matrix B, we cannot simply use ordinary least squares, since we have to take into
account the introduced covariance across responses. Therefore, we use the multivariate version of
generalized least squares which estimates B by minimizing the following function:

. _ T
QB =Y (}Q - XQB) $-! (}q - Xg}B) (2.8)
i=1
Now, note that (2.8) is simply the sum of the diagonal elements of the n X n square matrix
_ T
(Yv[lzn,l:q} - XnB) zt (Yr[lzn,lzq] - X’rLB) ;
from which we deduce that

Q(B) =Tr |:(Yv[1:n,1:q] - XnB) 2_1 (Yv[lzn,ltq] - XnB)T:| . (29)

Two directions are suggested in minimizing (2.9). The first route, following column dissection,
suggests a series of ¢ univariate least squares problems, solving normal equations of the form

XI'X,B,;=XY,, j=1,...,q
Following the univariate case, it is obvious that the solution for the j-th response yields
~ 1 i
B, =(XIX,) XYy, j=1,...,q

Alternatively, a second route which includes the computation of derivatives appears to be rather
complicated. However, solving the multivariate normal equations is supported by Lemma A.5,
using a matrix B that solves to the multivariate normal equations:

XZ;XWB = X;{Yv[lzn,l:q]‘ (210)
The solution to the multivariate normal equations clearly yields
B\ = (Xan)il X}Lﬂyv[l:n,lzq]a (211)

and by Lemma A.5 we conclude that (2.11) is the least squares estimator of B.

Subsequently, estimation of the covariance matrix uses a generalization of SSE with the error sum
of squares and cross-products matrix F', defined by

F= (Y[lm,l:q] _ XnE)T (Y'[l:ml:q] _ Xnﬁ) . (2.12)

By Lemma A.6 we obtain that the commonly used covariance matrix estimator

a 1
S=—— F (2.13)
n—p—1
is an unbiased estimator of X, as rank (X,,) is assumed to be equal to p + 1.

Estimability in the multivariate case follows the univariate case, but we have to be cautious since
we are dealing with matrices. For this purpose, let m € R? be a ¢ x 1 vector representing the
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coefficients of the linear combination across responses. With these coefficients we can select which
responses to take into account and to which extent by means of a weight.

Estimating the scalar quantity A7 Bm suggests taking the linear combination across responses
expressed by the vector m:

Yv[l:n,l:q]m = Xan + E[l:n,l:q]m~ (214)

For instance, if we want to only take into account the first response with weight 1, we simply
choose m= (1 0 ... O)T such that (2.14) simplifies to

Yy =X,B.,+E.,.

We now have a response vector Y[1., 1.qm, with the same design matrix X,,, but with a coefficient
vector Bm and error K., 1.qm, whose covariance matrix is

mT EL,
COV( [1in,1:q] ) Cov = (mTZm) I, = Cov (Y[lm,l,q]m) . (2.15)
mTET,
Note that since m?3Ym € R, the model in (2.14) now appears as a standard univariate linear
model, and all the usual results can be applied.

Definition 2.1. A linear estimator of a scalar quantity AT Bm in the multivariate case is an
estimator of the form tTY[lm’l:q]m, where t € R™ is an n X 1 vector which can be used to select the
observations to take into account.

Definition 2.2. The scalar quantity AT Bm in the multivariate case is estimable if and only if a
linear unbiased estimator of it exists.

By Lemma A.7, we know that the scalar quantity is estimable if and only if A € C (X,:f ) Further-

more, Lemma A.8 ensures that if A¥ Bm is estimable, then AT Bm is constant for all solutions B
of the multivariate normal equations (2.10).

As usual, we are able to compute the mean and variance of this generalization of the least squares
estimator.

E[ATEm] —\TE [ﬁ} m = AT (XTX,) " XTE[Viyn1.q]m (2.16)

=T (XTX,) " XTX,Bm = \"Bm

Var (ATBm) = AT (X7 X,) " XTCov (Yiimgm) Xa ((X] Xn)_l)T A (2.17)

_ N\T
=T (XTX) " XE (mTEm) LX (X5 X)) A
= (m"Sm) AT (XTX,) A
By Lemma A.9, we conclude that AT Bm is the best linear unbiased estimator (BLUE) of AT Bm.

2.2.2 Maximum likelihood estimation

We can now extend the Gauss-Markov model to include the assumption that the error distribution
follows the multivariate normal distribution, leading to Y;. independent of each other and

\T
YT ~ N, (BT (ng) ,z), i=1,...,n. (2.18)

This easily leads to the joint density and a likelihood function of the form

log L(B, %) = (B, %)

n

. i T
> (V- x0B) s (vi. - xB)

i=1

10g(27r) - = 1og =) —

N)\»—l
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nq n 1 _ T
=~ log(2m) — S log(|S)) — 5 Tr [(Y[l;n,l:q] ~ X, B) S (Vi1 — XnB) }
ngq n 1 _ T
= _7 10g(27‘(’) - 5 1Og(‘2|) - 5 Tr |:E ! (Y[l:ml:q] - XnB) (Yr[l:ml:q] - XnB):|

= — 5 log(2m) — = log(|)

1

- Tr [2_1 (Y[Ln,l:q] — XnE)T (Y[Ln,l:q] - Xné)}

_ %TT {2—1 <§_B)TX§{Xn (E—B)] :

where we make use of the fact that two matrices in a trace of a product can be switched without
changing the result, and that the following relation holds: X! X, B = X Y1, 1.9
Now, it should be obvious that the log-likelihood ¢(B, X)) can be maximized as a function of B by

taking B = B. In this way the negative term in the end, which is the only term depending on B,
vanishes. This leads to the function

0.(2) =0 (E, 2)

1
=~ log(2m) — Z log(|B)) — 5 Tr [E7'F]

where F' is the error sum of squares matrix as defined in (2.12). Maximizing ¢, as function of
> is rather difficult, but we use a clever route that avoids derivatives. Namely, when we apply
Lemma A.11 to £.(X), we conclude that the maximum likelihood estimators of B and X are the

solution to the multivariate normal equations B (2.11) and iML = %F . Note that therefore the

least squares and maximum likelihood estimator of B are the same, whereas S and Sy, are slightly
different.

It now simply follows from (2.16) and (2.17) that
N B~ N (AT B, (m”Sm) AT (XTX,) " A)

Also, by Lemma A.12 we have that AT Bm is the minimum-variance unbiased estimator (MVUE)
of AT Bm.

The distribution of the matrix F', however, requires some new definitions, including the Wishart
distribution, which is a generalization of the chi-square distribution.

Definition 2.3. Let Z®W) i =1,...,m, be #id N,(0,%), then the g x g non-negative definite matriz
W = Z:il AQ (Z(i))T has the Wishart distribution with m degrees of freedom and scale matriz
X, or equivalently W ~ Wy(m,X).
We will briefly state the most important results of the Wishart distribution. By Lemma A.14, we
know that if W ~ W, (m,X), then for any ¢ x 1 vector a,

a’Wa 9

atXa

Furthermore, from the characterization in Definition 2.3 it directly follows that if W ~ W,(m4,X)
and, independently, Wy ~ W, (mg, ¥), then

Wi+ Wy ~ Wq(m1 + mg,Z).
And finally, by Lemma A.15 we know that if W ~ W (m, %), and A is a p X ¢ matrix, then
AWAT ~ W, (m, AXAT).

We are now able to determine the distribution of the matrix F' by the following theorem.

Theorem 2.1. The error sum of squares matriz F', defined by

F= (Y[1;n,1:q} - XnE)T (Y[lzn,lzq] - Xné) )

follows the Wy(n —p — 1,%) distribution.
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Proof. This proof basically generalizes the proof of Theorem B.1 in van Dalen (2018) to the mul-
tivariate model. For convenience, we denote Y[, 1.q by Y during this proof. Then, we simply

have that X, B = X,, (X7X,))”' XTY = PY, where P = X,, (X7X,)”" XI. Lemma A.17 en-
sures that P and I, — P are symmetric and idempotent. Subsequently, by using that I,, — P is
symmetric, we deduce that

F=(Y -PY)" (Y - PY)
= (I, — P)Y)" (I, = P)Y)
=yT'(1,-P)(I,-P)Y
=yT (1, - P)"* (1, - P)(I, - P)"*Y
=vTpy,
where Y = (I, — P)"/*Y and P = (I, — P).

Then, we define e; = (0,...,0,1,0,...,0) to be the base vector with all components equal to 0,
except the i-th, which is equal to 1. Subsequently, we have for the i-th row of Y, i = 1,... n, that

B[] ~B[77el
=E[YT) (I, - P)"?¢,
=BTXT (I, — P)(I, — P)""?¢
= (B"XT - BTXIP) (I, — P) ¢,
= (BTX,{ ~ B'XTX, (X'X,)" X,{) (I, — P)"?e;

0.
and, by using that I,, — P is symmetric and idempotent and by Lemma A.18, we have that
Var (fﬁT) = Var (?Tel)
= Var (YT (I, — p)l/2 61‘)
= Var (Y7 (I = P) (I, - P) /2 ¢;)
((In — P) (I, — p)—l/z ei)T (L~ P) (I, - P)_1/2 .

7

_ (eT (I, — P)"Y? (I, — P) (I, — P) (I, — P)~"/? ei)

Therefore, we conclude that }ZT are independent of each other and
YT ~N,(0,%), i=1,...,n.

Let us now define 4; := P and Ay := P, which are symmetric, idempotent matrices with ranks
n —p— 1 and p+ 1, respectively. Since A; + As = I,,, we obtain by Lemma A.16 that

F=YTPY ~ Wyn—p—1,%).
O

Theorem 2.1 confirms that the usual estimator of ¥ as stated in (2.13) is indeed unbiased, since
by properties of the Wishart distribution we simply have that

~ 1 1

E{E} - EFl=—— (n-p-1)T =1

n—p—1 n—p—1

21



Note that the maximum likelihood estimator of ¥, however, is biased. The bias of the maximum
likelihood estimator is given by

n—p-—1 (p+1)

E[iML}—E: Son=—LT 5 0,0, asn— oo,
n n

which means that EA]ML is asymptotically unbiased.

2.2.3 Prediction

Now that we have completely defined the in-control model (2.3) and derived its most important
properties, we can use the model to predict new observations. More specifically, we fit the MMLR,
model for a fixed in-control period consisting of n observations of ¢ responses. Then, we use the
estimators from the in-control model to predict new observations for the online monitoring period,
which are called fitted values. These predictions enable us to calculate the predictive residuals,
which are the differences between the real observations and the corresponding fitted values.

First, we introduce the MMLR model for m new observations for phase II analysis. We break
the model apart by row (observation), so we basically obtain the model defined in (2.1) for the
i-th observation, : = n +1,...,n + m. That is, we define the new observation vector Y, ). as
observations from the following MMLR model consisting of p regressors and ¢ responses:

Yo = XU B+ Eggye, j=1,...,m, (2.19)

where Y, 1 j)., Xégﬂ), B and E,, ;). are as defined previously. Note that the coefficient matrix B is
constant for all new observations. Since the error distribution is assumed to follow the multivariate

normal distribution, that is E(:Cl +i)e 1}51 N,(0,%), it obviously follows that Y(n+j). are independent

of each other and
T
)

YT~ N, (BT (xz) z) D i=1...m. (2.20)

Now, we simply use the estimator B (2.11), which is based on the n fixed observations, for B in
order to predict new observations. Hence, the fitted value of a new observation Y{,,, ;). becomes

i}(nJrj)' = Xég-‘r])é = Xég-‘rj) (Xan)il Xg}/[lzmlzq} = P(mj)Yr[l:n,l:q]a
where P, ;) = X8 (X7 x,) " X7
By simple calculations and using Lemma A.18, we obtain that
yT N, | BT ( x(n+9) 4 v xm+) (xTx )\ ( x (0t 4 291
(n+j)‘N q ( 0o ) ’ 0o ( n Tl) ( 0o ) . ( )
Subsequently, we want to compare these fitted values with the real, actual observations. Therefore,
we define the difference of these quantities as the predictive residual vector. The (n+j)-th predictive
residual vector becomes
Etntjye = Yo = Yorrie = Yourj)e = Lo Y, g1 (2:22)
From (2.20) and (2.21) it easily follows that
~ N\T AT
T _ T n+ T n+
E[E(nﬂ),} - B (ch ])) ~B (xgo J>)

and by using that Y, ;). and ff(nﬂ-). are independent as }A’(nﬂ-). only depends on the first n
observations, we obtain that

oT T oT
Var (E(n+j)_) = Var (Y(nﬂ-),) + Var (}/(n+j),>

. _ N7
=9+ (ng:ﬂ) (xTx,)”" (ngﬂ)) )
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_ ¥ (1 + X0 (xTx,) 7 (ngH))T) .

Finally, the MMLR model (2.19) assumes that the error terms are independent from each other.
Now, we check if the residuals satisfy this assumption. Consider two residual vectors F(, ;). and

E(ntk)., where j,k € {1,...,m}, j # k. Then, we have that
-oT -oT _ T T T T T T
Cov (E(W-)., E<n+k>-) = Cov (Y<n+j>- Y g Py Yorkye = Yiim g 2 <n,k>)

— T T T N
= Cov (Y[ltn’l:q]P(nJyY[l;n,l:q]P(n,k))

P jpYa Py Yo
= Cov : ,
Pinj)Yeg)  \Pni)Yeg
P(nvj)EHPT;L,k) P(n,j)Eij;,k) P(n,j)Equng@,k)
_ P J)leP(n,k:) P(nJ)E22P(n,k) P(n,j)z%P(n,k)
Py Pl PoipZaePl Pnj)SaaPlh 1y

= SPi ) Pl
. _ T
=3 <X<§2+J) (Xan) 1 (ngwrk)) ) )

T

Therefore, we conclude that E(n +4)

. are dependent on each other and that

~ . _ N\ T
EL .~ N, <0,2<1+X(§§+J) (xTX,) 1(X§;L+J>) >> j=1,...,m.

Note, however, that most conventional multivariate monitoring charts, like Hotelling T2 require
that the predictive residual vectors have equal variance. Therefore, we first have to standardize
the predictive residuals such that they have equal variance.

2.3 Summary

7

e The univariate multiple linear regression model is generalized to the case of multiple
responses for each observation to the multivariate multiple linear regression model.

e Standard estimation results generalize easily to the multivariate case.

e The least squares and maximum likelihood estimator of B are equal and the resulting
estimator B (2.11) is unbiased.

e The chi-square distribution is generalized to the Wishart distribution, and similar
properties can be derived.

e The matrix F' (2.12) follows the W,(n — p — 1, %) distribution.

e The maximum likelihood estimator fJML is biased. An unbiased estimator of X is
given by ¥ (2.13).

e Unlike the error terms, the residuals as defined in (2.22) are dependent on each other.
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3 Copula model

Most conventional multivariate control charts are based on the multivariate normality assumption.
In practice, this assumption is hardly ever satisfied which can question the efficiency of these
methods. The modern theory of copulas offers a great solution since it allows to construct a
monitoring method which is not based on multivariate normality. Copula modeling is becoming
increasingly popular and it is used in a wide variety of applications. Originally, the theory of copulas
was mainly applied in the financial sector. However, it quickly became clear that the theory was
very useful in other fields of application as well. In this chapter we explain the foundation of the
copula model, which is based on the core literature Nelsen (2007) and Joe (2014). For a more
detailed view on the application of copulas, see Hofert et al. (2018). First, we introduce the main
idea behind copulas and its most important properties. Then, we thoroughly describe bivariate
and vine copula models.

3.1 An introduction to copulas

A copula is a multivariate cumulative distribution function with all univariate marginals being
uniform on the unit interval. This can be easily achieved since any continuous random variable
can be transformed to a uniform random variable over the unit interval by its probability integral
transformation. The name “copula” is derived from the fact that a copula “couples” a multivariate
distribution function to its marginals. More specifically, copulas allow to combine the marginals
of univariate random variables to arrive at the multivariate distribution of these random variables,
which makes them very useful to model non-normal multivariate data. Furthermore, copulas
can be used to efficiently describe the dependence structure of a multivariate distribution, as they
define non-parametric measures of dependence between the individual components. The usefulness
of copulas is based on Sklar’s theorem, which allows to separate a multivariate distribution into
two components: an appropriate copula which describes the dependence structure and all the
marginals. This provides great flexibility in multivariate modeling.

We will go into more detail and introduce the mathematical foundation of copulas, which is based
on Nelsen (2007) and Hofert et al. (2018). First of all, we need to define a copula in probabilistic
terms.

Definition 3.1. (Copula). C : [0,1]¢ — [0,1] is a d-dimensional copula if C is a joint CDF of a
d-dimensional random vector on the unit cube [0,1]% with uniform marginals.

Additionally, we need to define some analytic conditions for a copula. The above defined function
C' is a d-dimensional copula if:

o Clu,...,ui—1,0,u41,...,up) =0, the copula equals 0 if at least one coordinate is 0.
e C(1,...,1,u;1,...,1) = u;, the copula is equal to u; if all coordinates are 1 except u;.

e (' is d-increasing. Before we are able to define this concept, we need additional definitions.
First, for any a,b € [0,1]%, a; < b;, i = 1,...,d, let (a,b] denote the hyper-rectangle with
lower end point @ and upper end point b defined by {u € [0,1]% : a; < u; < b;,i = 1,...,d}.
Then, for any hyper-rectangle (a,b] in [0,1]%, define its C-volume as

AanC= > (~DE=50 (P01, ... albh )
i€{0,1}4

where the summation is taken over all 2%-many vectors i = (i1,...,1q) for 41,...,44 € {0,1}.
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If it holds that
A@yC >0 foralla,be[0,1]%a<b,

then C' is called d-increasing.

Now, we consider a random vector (Xi,...,X) and suppose that the marginal cumulative dis-
tribution functions F;(z) = Pr[X; < z], ¢ = 1,...,d, are continuous. Then, by applying the
probability integral transform (see Lemma A.1) to each component, the random vector

(Ur,...,Uq) = (F1(X1),..., Fa(Xq))

has uniformly distributed marginals on the closed interval [0,1]. The copula C of (Xq,...,Xg) is
now defined as the joint cumulative distribution function of (Uy,...,Uy):

C(uy,...,uq) =Pr[Us <uq,...,Us < ugl. (3.1)

The copula C' now contains all information on the dependence structure between the components
of (X1,...,X4), whereas the marginal cumulative distribution functions F; contain all information
on the marginal distributions. The importance of the way copulas are defined above is that the
procedure can be reversed to generate pseudo-random samples from general classes of multivariate
probability distributions. Specifically, given a sample (Us,...,Uy) from the copula distribution
generated with the above procedure, the required sample from the multivariate probability distri-
bution can be constructed as:

(X1,..., Xa) = (F7HU), ..., E; Y (U)).

Note that the inverse functions Ffl do not cause problems since the marginal cumulative distri-
bution functions F; were assumed to be continuous. Formula (3.1) can now be rewritten as:
C(uy, ..., uq) =Pr[F1(X1) <wup,y...,Fy(Xa) < ug)
=Pr[X; < Fy N u), ..., Xa < Fy M (ua)).
The above derivation leads to Sklar’s theorem, which provides the theoretical foundation of the
application of copulas.
Theorem 3.1. (Sklar’s theorem,).

1. For any d-dimensional distribution function H with univariate marginals Fy, ..., Fy, there
exists a d-dimensional copula C such that

H(zy,...,2q) = C(Fi(z1),...,Fa(zq)), (x1,...,2q) € R (3.2)

If all marginals Fy, ..., Fy are continuous, the copula C' is uniquely defined and given by
Clugy ..., uq) :H(Ffl(ul),...,Fdfl(ud)) (3.3)
2. Conversely, given a d-dimensional copula C and univariate distribution functions Fy,. .., Fy,

H defined by (3.2) is a d-dimensional distribution function with marginals Fy,...,Fq and
“dependence structure” C.

Proof. See the proof of Theorem 2.2 of Riischendorf (2009). O

By Sklar’s theorem it is clear that copulas are those functions which combine the univariate
marginals FY,..., Fy to form the d-dimensional distribution function H. For estimation of H
from data, this offers great flexibility as it allows one to model the marginals separately from the
dependence structure. Copulas are thus exactly the functions to investigate if one is interested in
the dependence structure between the components of a random vector.

A copula is a multivariate distribution function and if it is continuous the corresponding density
function is defined by

ad
c(ug, ..., uq) = 3 C(ug, ..., uq) (3.4)

ul...aud
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When we assume that f1,..., fq are the univariate marginal densities corresponding to Fi, ..., Fy,
we have by (3.2) and (3.4) that

hx1, ... zq) = c(Fi(z),..., Fa(zq)) - frlz1) - ...« fa(za) (3.5)

Furthermore, since copulas are able to describe correlation of a multivariate distribution, they are
bounded by an upper and lower bound. These bounds are called the Fréchet-Hoeffding bounds
and they are one of the cornerstones of copula theory. These bounds are comparable to the +1
and —1 bounds of the linear correlation coefficient.

Theorem 3.2. (Fréchet-Hoeffding bounds). For any d-dimensional copula C,

W(u) < Clu) < M(u), uel0,1),

where
d
_ o o _ d
W (u) = max ;uj d+1,0 and M (u) 1r£nj_11§1d{uj}a u € [0,1]%
Proof. See the proof of Proposition 1 of Genest et al. (1999). O

Note that W is a copula only if d = 2, whereas M is a copula for all d > 2.

3.2 Copula families

Multivariate data often exhibit several characteristic properties that should be described as pre-
cisely as possible using a multivariate distribution function. Therefore, there exist various copula
families that are able to express specific distributional characteristics like heavy tails or asymmetry.
It is crucial to choose the right copula family for a given data set in order to receive a well-fitting
model that covers the characteristic properties of the data. In this section the most popular and
commonly used copulas will be described.

Definition 3.2. (Independence copula). One of the simplest copulas is the independence copula,
which corresponds to independent standard uniform components, defined by

d
(u) = Huj u e [0,1]%

3.2.1 Elliptical copulas

Elliptical copulas are among the most widely used copulas in practice, describing the dependence
of the multivariate normal distribution in terms of the Normal copula and the dependence of
the multivariate Student-¢ distribution in terms of the Student-t copula. The main advantage
of elliptical copulas is that they are able to describe different levels of correlation between the
components. The disadvantages are that they do not have closed form expressions and that they
are restricted to have radial symmetry. Due to their implicit construction by Sklar’s theorem,
properties of elliptical copulas can be derived from the properties of the corresponding elliptical
distributions. For detailed properties and results about elliptical distributions, see, e.g., Fang
(2018). The general density function of an elliptical distribution is given by

fo(@) =122 (@ =)' =7 @ - ), weR

By declaring the function g¢(t) it is possible to define some well-known density functions. For
instance, taking g(t) = (27)~%/2exp{—t/2} results in the multivariate normal distribution, and
taking g(t) = ¢(1 4+ t/u)f(dﬂ')/2 where ¢ is a constant, results in the multivariate Student-t distri-
bution with v degrees of freedom. The contour of such elliptical density functions has the form of
an ellipse. Now, by Hofert et al. (2018), we can define the corresponding elliptical copulas.
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Definition 3.3. (Normal copula). The d-dimensional Normal copula C} is the copula obtained
by Sklar’s theorem from the multivariate normal distribution Ny(0, P) with correlation matriz P.

If ®p denotes the distribution function of the latter, we have
Ch(u) =@p (2 (u1),..., 2 H(uq)), uel0,1]%, (3.6)

where ®~1 denotes the quantile function of N'(0,1).

When P is positive definite, the corresponding copula density function is denoted by

_ep (@ Nm), 07 wa) o gya
I e @) |

Bivariate copulas are often easy to interpret and visualize and, they are used in constructing vine
copulas. Therefore, we consider the bivariate Normal copula by setting d = 2. Formula (3.6) now

simplifies to

cp(u)

Ch(ui,uz) = Pp (<I>_1(ul),<I>_1(uQ)) ., 0<u,ug <1,

where ®p denotes the distribution function of the bivariate normal distribution N5(0, P) with

1

correlation matrix P = p [1) , where p is Pearson’s correlation coefficient that measures linear

correlation between two variables. For more information on Pearson’s correlation coefficient, see
Section 3.3. Figure 3.1 shows the bivariate Normal copula for several parameters p.

p=-1 p=-05 p=0
107 1.0 o g L% - 104 T —
I BFam e T L D W
Laef le et e ot . I s I T A BN
0. 08, Fabof® P 0 0 w8 T ea v ot o 084 48 ® oo, % R :
K .3 y;w“"w TSR e £ ° e R R L)
o By T L ey e g 2 e RANE N
061 08, ot epeee, 8T B TR S o | 0s] L2t el ety T
R O R A LN i) 2 e o o ° o #
LS - 3 20% o o o gt '
¥ g taTe e B : anfo R ¥ S @o %%‘%e vagne 0 fog, ® 2ot % %
0.4 0.4 PUCIA - P LT Y 044 = _o & T o n%,,w:% ° oo™
@ el TN e T Gt 85° Ve . 3 R, S e T e,
AL R LREOLFD fee PR T T
02 029 e, w T g et TPiyT e B B R I N
A . I -9 A %%L\%L\oao i : P ) 009,,,,00 fo 70 ° oo &
B CE T e® 5T g AL LI S ® B °,
oa Tpo ° c0g o etgn -y o,
001 004 o o Seo  a’te Thzoof 004 ®° 0 e, o4y ELPN s
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
u u u
1 1 1
p=05 p=08 p=1
10 B T o e s 10 - 10
o A T 5 2 ° o %0 :
R oo DS%o“ooo LY N B T B oE g £ s
| e 0, e T e o - Y LR 0sd
IR § o o o fpead 8.0 : R SN
R sse B o " of A & T8 o 1YYy & P
P o & 0 m7F0 e ° ° o Sop 855F e
08| =y 0TE FRese TREI S WS o] I R I 0ed
A PR Py - 8 ° o e aYae °
5 D e e e o J5. aete wn | B R ORI Pt 5
04l @ SI et g we I, T 0a] TR mem et R BT 041
e s s & 500 o - of, Cobe ot 0o g N
- EREY ] on%ngoza a: e B é &“"ﬁwoyﬂ% . a:vp?sqon )
o, 2 ° > 50, @ @ % o8 m , Bafa®erge oo
02 » ::wgaf? S 02 B ce b 0.2
SE o e . 0,508 050
Ggwe ¥ of ¢ At e o
- %%‘Jw?é«w EUCA I | - E nnf&‘g%ﬁ’" ot 8 B 00
, T . T T T T : . T T T . . . . T
0.0 02 04 08 08 10 0.0 02 0.4 08 08 10 0.0 02 0.4 06 08 10
Us Us Uy

Figure 3.1: Bivariate Normal copula for different parameters p.

Before we are able to define the Student-t copula, we need to define the multivariate Student-t
distribution.

Definition 3.4. (Multivariate Student-t distribution). Let Y and u be independent from each
other and distributed as N'(0,%) and X2, respectively. Then,

Y
\/E
14
1s said to be distributed as a multivariate Student-t distribution with location vector u, scale matriz

>} and degrees of freedom v.

Definition 3.5. (Student-t copula). The d-dimensional Student-t copula Cf),u is the copula ob-
tained by Sklar’s theorem from the multivariate Student-t distribution with location vector 0, scale

X =

+p
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matriz P and v > 0. If Tp, denotes the distribution function of the latter, we have
Cp,(u) =Tp, (T, (u1), ..., T, (ua)), weo, 1]4, (3.7)

where T, % denotes the quantile function of the univariate Student-t distribution with v degrees of
freedom.

If P is positive definite, the corresponding copula density function is denoted by

Cg) (u) _ tpw (T;l(ul), .. ,T;l(ud))
v H?:1 ty (TJl(u]))

For d = 2 we consider the bivariate Student-t copula, which simply follows from (3.7) and becomes

. we(0,1)%

Cp, (w1, u2) = Tpy (T, (u1), T, (u2)), 0 <ug,up <1,

where Tp, denotes the distribution function of the bivariate Student-t¢ distribution with location

1
parameters instead of one, namely p and v. Figures 3.2 and 3.3 show the bivariate Student-¢ copula

for various values of p and v.

vector 0, scale matrix P = /1) P) and v > 0. Note that the bivariate Student-t copula has two
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Figure 3.2: Bivariate Student-t copula for different parameters p.
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Figure 3.3: Bivariate Student-t copula for several degrees of freedom v.

3.2.2 Archimedean copulas

Archimedean copulas are important in copula modeling since they can be constructed with ease and
they offer a wide choice of families and, therefore, many distributional properties can be covered.
Before we can define the general Archimedean copula we need to define the concept pseudo-inverse.

Definition 3.6. For a continuous and strictly decreasing function ¢ : [0,1] — [0, 00) with ¢(1) =0,
the pseudo-inverse is defined as

The pseudo-inverse of ¢ is continuous, non-increasing on [0,00) and even strictly decreasing on
[0, #(0)]. Furthermore, it holds that

t, 0 <t <¢(0),

o (470) = Lo, g0 <1< o

and on [0, 1] it holds that ¢[=! (¢(u)) = u. Additionally, we have that ¢!~ = ¢~ if ¢(0) = cc.
Now, we have all the information we need to define the general Archimedean copula.

Definition 3.7. (Archimedean copula). Let ¢ be a function as defined above and let ¢~ be its
pseudo-inverse. Then, a d-dimensional Archimedean copula is a copula of the form

Co(u) = o (B(wr) + ... + d(ua)), we0,1], (3.8)

where ¢ is the so-called generator of the copula.

Again, we set the dimension d = 2 and, by (3.8), a bivariate Archimedean copula is defined as
Co(ur,uz) = ¢ (p(ur) + d(us)), 0 < ug,up < 1. (3.9)

By choosing appropriate generators ¢ we can define various families in the extensive class of
Archimedean copulas. Within these families we can distinguish by a different choice of the pa-
rameter 6. In this section we only discuss the most important Archimedean copulas. Many more
families are described in Nelsen (2007) and Joe (2014).
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Definition 3.8. (Clayton copula). The Clayton family is defined by the generator
do(t) = 5 (t7% — 1) where 6 € [-1,00) \ {0}. The bivariate Clayton copula is

Cg(ug,ug) = [max{ul_e +uy? — 1,0}]

=

0 S Ui, u2 S 1. (310)

Figure 3.4 exemplifies the bivariate Clayton copula for various parameters 6. From the figure it
becomes clear that the Clayton copula is asymmetric, exhibiting greater dependence in the negative

tail than in the positive tail.

g=-1 6=-0.5 8=01
10 10 en e Lo 5 . . L 0 7 o v 10 et v gF Lo 0 oe
%T‘,’Dﬂo&,oo%qya @ Fe "0 % . T N o g%, o
PRI LA AP LY TSI P ML L1
| | emm, 2t TR T e o B 1 Fre wpefee > £ . 28 ac ©
08 087 o) O P B R 0.8 P S RISt
Ed o o o Ta o ® T 3 Y @ 22 7 e
Bty Wt 2L B e
06 LR AR A S LT A 1 06 e W EE L e em DG o e
o oo ° . e 9 s % e® e N sy e
s 1 R LR AR A e Tt .
s %e §o0 PR M e % e e T m
0.4 0.4+ 8%, oo ° et g0 b @ 0.4 “pe o, o o g e
% o ) “ - co %00 ¢ e Y 00"a
o ppeh o B0 oo oflads,, &, 8 o8 % ° = e 7o ®
2oty S X e B & P T e o W ntg ot s iy
021 0.2 4 LU S SR 8 02 gy bz BT ooy Tutoe Ko
PR t e PeT TS geedet w0Ten Vi
ow@ag‘n&;é:&oon ?vng’ o Tt et st Ty T e o
00| 004 Fod Faol T A P L
0.0 02 04 08 08 0.0 0.2 0.4 06 08 10 0.0 0.2 0.4 06 08 10
u u u
1 1 1
6=1 6=>5
0] L. R qzi%oeoﬂ R 10 ] h e ettt 10
3 o, Hota S o g, B
=2 e P oted Wy 8 © % oﬁ%%s m& e
0.8 ° Tre a7 s 0.8 T o g ¥R S 0.8
. R . 20 gt s AT
efe . e W R S N
e e et s e p32 & S B A N
06 So TareE IR 06 4 D R Dt X 06
5 CR R A o P °m,: T o RGN 4% - T
P PR S Rk AR R
L RS I A T W O L 0.4 o ‘{& Y C P 0.4
2, TER G e, , Shecliagm © Ol
02 G %m0 Y e, e 5T 029 Foomflel o 0 02+
8, I S I, R
e R °° & e
UU’\ T T T T DD_I T T T T T UU?\ T T T T T
0.0 02 0.4 06 08 0.0 02 0.4 08 08 10 0.0 02 0.4 08 08 10
Uy Uy Uy

Figure 3.4: Bivariate Clayton copula for various parameters 6.

Definition 3.9. (Gumbel copula). The Gumbel family is defined by the generator ¢g(t) = (—Int)?
where § € [1,00). The bivariate Gumbel copula is

CJ(u1,uz) = exp {— [(—lnul)e + (—lnug)e] G

}, 0<wug,up <L

(3.11)

Figure 3.5 illustrates the bivariate Gumbel copula for various parameters . From the figure it
becomes clear that the Gumbel copula is asymmetric, exhibiting greater dependence in the positive

tail than in the negative tail.
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Figure 3.5: Bivariate Gumbel copula for different parameters 6.

Definition 3.10. (Frank copula). The Frank family is defined by the generator ¢p(t) = —In (%)
where 6 € (—o0,00) \ {0}. The bivariate Frank copula is

- (e 1) ()

1
Cg(ul,yg):—gln 1+ e ,

0 S Uy, U2 S 1. (312)

Figure 3.6 shows the bivariate Frank copula for various parameters 6.
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Figure 3.6: Bivariate Frank copula for several parameters 6.

3.3 Rank correlation

From the application point of view, it is often desirable to summarize the dependence between
components of a random vector by a real number. Such numerical summaries of dependence are
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known as measures of association and are mostly studied in the bivariate case. In this section
several measures of association are discussed, based on Hofert et al. (2018) and Miihlig (2017).

Recall that one widely known measure of association is Pearson’s (or the linear) correlation coef-
ficient defined, for a random vector (X7, X5) whose components have finite variances, by

Cov(X1, X2)
N v/ Var(X7)y/Var(X>)
The most important properties of Pearson’s correlation coefficient are summarized below.
L —1<p(Xy, X2) < 1.
2. If X; and X, are independent, then p(X;, X3) = 0.
3. For any a; > 0, as > 0, or any a; < 0, as < 0, and for any by, by € R,

p(X1, X2)

(3.13)

p(a1 X1 + b1, a0 Xs 4 bo) = p(X1, Xo).

4. In particular, Pearson’s correlation coefficient is invariant under strictly increasing linear
transformations.

The use of Pearson’s correlation coefficient as a measure of association, however, involves some
severe limitations:

1. p(X;, X2) does not exist for all random vectors (X7, X2) (only for those with finite second
moments).

2. p(X1,X3) depends on the marginal distribution functions of (X, X2), even when the latter
are continuous. The correlation can thus not be expressed in terms of the unique underlying
copula alone. We explain this by Sklar’s theorem. As a consequence of Sklar’s theorem,
all the dependence information between two continuous random variables is captured by the
underlying copula. If we keep the copula unchanged, and hence the dependence unchanged,
we can change p according to (3.13) by simply changing one of the marginals.

3. p(X1, X5) is not invariant under strictly increasing transformations in general.

By only depending on the underlying copula in the case of continuous random vectors, rank cor-
relation coefficients overcome the aforementioned limitations of Pearson’s correlation coefficient.
We elaborate on the two best-known examples of rank correlation measures: Kendall’s tau and
Spearman’s rho.

Definition 3.11. (Kendall’s tau, Spearman’s rho). Let (X1, X2) be a bivariate random vector with
continuous marginal distribution functions F and F.

1. Spearman’s Tho is defined by
ps(X1, X2) = p(F1(X1), F2(X2)),

where p is Pearson’s correlation coefficient.

2. Let (X1, X}) be an independent copy of (X1, Xs2). Kendall’s tau is defined by

T(Xl,Xg) = PI‘[(Xl — X{) (Xg — Xé) > 0] — PI‘[(Xl — X{) (X2 — Xé) < O]

Lemma A.19 provides representations of Kendall’s tau and Spearman’s rho in terms of the under-
lying copula C', namely

0 0
T(C)=1- 4/[0,1]2 a—ulC(ul,u2)8—u20(u1,u2)du1du2,

and

ps(C) =12 C(u1, uz)durdug — 3.
[0,1]2

From these expressions it becomes clear that Kendall’s tau and Spearman’s rho only depend on
the underlying copula C', and thus not on the marginals F} and F,. Therefore, we can conclude
that Kendall’s tau and Spearman’s rho
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1. always exist.
2. are invariant under strictly increasing transformations.
3. can reach any value in [—1,1].

From a copula modeling point of view, one advantage of Kendall’s tau over Spearman’s rho is that
there are analytical formulas known for the classes of elliptical and Archimedean copulas. For a
detailed comparison of these rank correlation measures, see Nelsen (2007, Section 5.1.3).

3.4 Parameter estimation

In order to fit the correct copula family to cover characteristic properties of the data, one has to
estimate the unknown parameters of the copula model based on the available data. In this section
we only briefly describe two methods which are often used in practice.

First, we describe the method of maximum likelihood estimation based on the exposition in Choros
et al. (2010). Recall formula (3.5), which states that the density h of the d-dimensional distribution
function H with univariate marginals Fy,..., Fy and corresponding univariate densities fi,..., f4
can be represented as

d

h(xla"'vxd) = C(Fl(xl)v"'7Fd(xd))Hfi(xi),

i=1

where c(uq, ..., uq) is the density of the d-dimensional copula C(u1, ..., uq) as defined in (3.4). We
consider a random sample of (i.i.d.) vectors z() = (:vgj), .. ,xgj)) ,j=1,...,n, with the density h.
Furthermore, we assume that the copula C' belongs to a family of copulas indexed by a parameter
0:C = Cluy,...,ug80), and the marginals F; and the corresponding densities f; are indexed by
parameters «; : F; = Fy(x;;04), fi = fi(zi; ;). The parameter vector (aq,...,aq,0) can then be
estimated by the maximum likelihood estimator, that is, the maximizer (a}",... ,agﬂ, @\/IL) of
the log-likelihood function

llag,...,aq,0) = ilogc(Fl (mgj);al) U O (xfij);ad> ;9) —&—zd:zn:logfi (xgj);ai) .

j=1 i=1 j=1

In practice, the marginal distributions are often unknown and, therefore, we have to adapt the
above parametric method. One solution is to use a semiparametric approach that is based on the
pseudo-maximum likelihood. In this approach the marginals F; are replaced by non-parametric
estimators F;, which could be the empirical distribution functions, for instance. As a result, the
parameter € can be estimated by the pseudo-maximum likelihood estimator, that is, the maximizer
OPML of the log-likelihood function

£0) - zlg (B (). B (o) 0).

An alternative method to estimate the copula parameters is the use of rank correlation coefficients
which are introduced in Section 3.3. These rank correlation coeflicients are particularly useful for
bivariate copulas with only one parameter to estimate. As shown in Hofert et al. (2018, Section
4.1.2), it is often possible to define an explicit function between the copula parameters and rank
correlation coefficients. This relation can be used to estimate the copula parameter directly by
the estimated correlation. For instance, if we consider bivariate copula families and Kendall’s tau,
Table 3.1 shows some of the relations that hold.

Family Normal Student-t Clayton | Gumbel

Parameter | p=sin (37) | p=sin(57) h=22 | = ==

)

Table 3.1: Estimation of copula parameters with Kendall’s tau.
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3.5 Vine copulas

It should be clear that for the bivariate case, there exist many well-investigated copula families
which can be used in order to find the best-fitting copula model. For higher dimensions, however,
the choice of usable copula families is somewhat limited, since these copula families are restrictive
in terms of flexibility and dependence modeling. To overcome this drawback, we will make use of
vine copulas which provide a flexible graphical model for describing multivariate copulas composed
of a cascade of bivariate copulas, so-called pair-copulas. The main idea of this construction is to
decompose a multivariate probability density into blocks of pair-copulas, where each pair can be
chosen independently from the others (see, e.g., Brechmann and Schepsmeier (2013)).

3.5.1 Pair-copula decomposition

Vines are a graphical representation to specify pair-copula as introduced by Aas et al. (2009). We
consider a vector X = (X3, ..., X,,) of random variables with a joint density function f(z1,...,z,).
This density can be decomposed as

f(xla cee 7xn) = fn(xn) : fnfl(xnflkxn) : fn72(xn72|xn717xn) Tee” fl(x1|1'27 .. .,(En).

For the bivariate case it holds by (3.5) that

f(z1,22) = c12 (Fi(z1), Fa(z2)) - fi(x1) - fa(za),

where ¢;2 is the appropriate pair-copula density for the pair of transformed variables F(z1) and
Fy(x9). Tt now simply follows that, if fo(xz2) # 0,

fi(@i|ze) = cr2 (Fi(21), Fa(z2)) - f1(21), (3.15)

for the same pair-copula. The density decomposition (3.14) now becomes

f(x1,22) = fa(xz) - c12 (F1(21), Fa(x2)) - fi(21),

which turns out to be trivial.

Similarly, for three random variables X7, X5 and X3 we have that

f2($2|$3) = C23 (FQ(CU2)7 Fs(xs)) : f2(352)a

where co3 is the appropriate pair-copula density for the pair of transformed variables Fy(z2) and
F5(x3). Furthermore,

fi(@1|ze, x3) = cig3 (F(21|23), F(22]|23)) - f1(z1]23), (3.16)

where c9)3 is the appropriate pair-copula density for the pair of transformed variables F'(z1|z3)
and F(xz|xs). Alternatively, (3.16) can be decomposed as

fi(wy|wo, 23) = C13|2 (F(z1]z2), F(zs]z2)) - f1(z1]x2), (3.17)

where cy3)2 is different from the pair-copula c;93. We can decompose (3.17) further by using (3.15),
which leads to

fi(@1|za, x3) = cigp (F(@1|22), F(23]22)) - 12 (Fi(21), Fa(22)) - fi(z1),

where two pair-copulas are present. The density decomposition (3.14) now becomes

J(x1,m2,23) = f3(x3) - fa(xa|w3) - f1(z1]72, 23)
= f3(z3) - cos (F2(w2), F3(23)) - fa(2)
“cagp (F(@1|22), Fslee)) - 12 (Fi(21), Fa(22)) - fi(21).

It has now become clear that each term in (3.14) can be decomposed into the appropriate pair-
copula times a (conditional) marginal density. In this way we can iteratively construct a product
of pair-copulas and marginal densities for the joint density function.
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In general, for a d-dimensional vector v, it holds that

fx(JL‘|’U) = Cyjlv_; (F (Q?|’U_j) 7F(Uj|v—j)) : fx(ﬁﬁ"l)_j),

where v; is one arbitrarily chosen component of v and v_; denotes the vector v, excluding the
component v;. In this decomposition we use marginal conditional distributions of the form F(z|v).
Joe (1996) showed that, for every j,

ac{lﬁ',vj‘vfj (F (‘T|U—j) 7F(Uj|v—j))

F(z|lv) = ) (3.18)
OF (vj|v;)
where Cj|x, is a bivariate copula distribution function. If v is univariate, (3.18) becomes
0C, . (F(x), F(v))
F = ’
(z[v) 9F (1)
If x and v are uniform, this conditional distribution function can simply be expressed as
9C;s (20,0

h(z,v,0) = F(z|v) = %, (3.19)

where the second parameter of i always corresponds to the conditioning variable and © denotes
the set of parameters for C, ,,.

3.5.2 Vines

The decomposition of a multivariate density from Section 3.5.1, however, is not unambiguous.
Therefore, a graphical model which is able to distinguish between the possibilities is needed (see,
e.g., Brechmann and Schepsmeier (2013)). For this purpose, Bedford and Cooke (2002) introduced
the model of regular vines, so-called R-vines, which are based on a set of trees. For a random vector
consisting of d components, we obtain a d-dimensional vine. This vine can then be represented as
a set of d — 1 trees with d(d — 1)/2 edges in total, where each edge stands for the corresponding
pair-copula density. In general, the nodes of a tree are equivalent to the edges of the tree above.
There is, however, one exception to this rule that only applies to the first tree. Namely, the nodes
of the first tree are represented by the d variables. In order to get an idea of what such R-vine could
look like, a possible graphical representation of a 5-dimensional R-vine is shown in Figure 3.7.

Tree1 Tree 2
_,-o-'-""'_ﬂ-'-)
Tree 3 Tree 4

Figure 3.7: Possible 5-dimensional R-vine tree structure.
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The above figure shows a possible R-vine for a 5-dimensional vector, consisting of four trees. The
first tree simply consists of the nodes 1,2, 3,4, 5. Subsequently, the second tree is constructed such
that the nodes are the edges of the first tree. Then, the third tree is constructed in such a way that
the nodes are the edges of the second tree. This procedure is repeated until the fourth and final
tree, in which only one edge is left. The edge label describes the index of the corresponding pair-
copula density. For instance, the node (4, 5;2, 3) of the fourth tree is equivalent to the bottom-left
edge of the third tree, which represents the copula density of the fourth and fifth variable given
the values of the second and third variable, denoted as c4 52 3.

Following Bedford and Cooke (2002) we are able to define vines and R-vines in a mathematical
way.
Definition 3.12. (Vine.) If
1. V=("T,...,T,) where T; is a tree.
2. Ty has nodes Ny = {1,...,n} and a set of edges denoted by F.
3. Fort=2,...,m, T; has nodes N; C NtUFE; UFEyU---UE;_1 and an edge set F;.
hold, then V is called a vine on n elements.
Definition 3.13. (R-vine.) If
1. m=n.
2. T; is a connected tree with edge set E; and n—i+ 1 nodes where N; = E; 1, fori=1,...,n.
3. Fori=2,...,n—1, ifa={a1,az2} and b = {by,ba} are two nodes in N; linked with an edge,
then the number of elements inaNb=1.
hold, then V is called an R-vine on n elements.

Following Czado (2010) we denote the edges in tree T; by jk|D where j < k and D is the condition-
ing set. If the conditioning set D is empty, the edge is simply denoted by jk. The notation of an
edge e in tree T; will depend on the two adjacent nodes and, hence, on the two edges in 7;_; that
have a common node. We now denote these edges by a = j(a), k(a)|D(a) and b = j(b), k(b)|D(b),
where we define V(a) := {j(a), k(a), D(a)} and V(b) := {j(b), k(b), D(b)}, respectively. The edges
a and b in tree T;_; are nodes in tree T; connected by the edge e = j(e), k(e)|D(e), where

jle):=min{i:i e (V(a) UV (b)) \ D(e)}
k(e) :=max{i:i € (V(a) UV (b)) \ D(e)}
D(e) :=V(a) NV (b).

Furthermore, there exist two special cases of R-vine structures. First, an R-vine is called drawable
vine, or so-called D-vine, if in each tree there exist two edges for each node at most. Second, an
R-vine is called canonical vine, or so-called C-vine, if in each tree there exists one unique node
with the number of edges equal to the total number of nodes in that particular tree, minus one.
In order to clarify these descriptions, a possible graphical representation of a 5-dimensional D-vine
and C-vine is shown in Figures 3.8 and 3.9, respectively.
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Tree1 Tree 2

T

Tree 3 Tree 4

- 1

Figure 3.8: Possible 5-dimensional D-vine tree structure.

Tree1 Tree 2
Tree 3 Tree 4

Tl

Figure 3.9: Possible 5-dimensional C-vine tree structure.

We are now able to properly construct a statistical model on an R-vine tree with nodes A4 :=
{N1,...,Ny_1} and edges & := {E1, ..., E4_1} based on Czado (2010). Each edge e = j(e), k(e)|D(e)
in E; corresponds with a bivariate copula density c;(c) x(e)|D(e)- Subsequently, let Xp(.) be the
subvector of X indicated by the indices contained in D(e). Now, a vine distribution is defined as
the distribution of the random vector X = (X1,...,X,) with marginal densities f;, i = 1,...,d,
and the conditional density of (X j(e), X k(e)) given the variables X p ) specified as ¢;(e) x(e)|D(e) for
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the R-vine tree with nodes .#” and edges &. By Kurowicka and Cooke (2006) we know that the
joint density of X is uniquely determined and expressed by

d d-1
f@r,za) = [T @) T 1T o meine (F @elepe)  F (@kelepe)) . (3:20)
r=1 i=1ecE;
where zp(.) is the subvector of = indicated by the indices contained in D(e).

Furthermore, by Aas et al. (2009) we are able to express the joint density of X corresponding to
a D-vine or C-vine tree. Regarding the D-vine structure, it holds that

d d—1d—j
f(fUh cee ,md) = H f(xr) : H H Ciyitjlit1,...,i+5—1
r=1 j=1i=1
F(zilziga, o Tipi—1), F(@igjleicn, - 2igg-1)),

where index j identifies the trees, while index ¢ runs over the edges in each tree.

And finally, for the C-vine structure, we have that

d d—1d—j
f@y,oooma) = [ F@) - T T crwin i (Flslen,oaia), Fajpale, 1)
r=1 j=1i=1

3.5.3 Model selection

To select the best-fitting vine copula model for a given dataset, we must process the following
separate points. First, we have to select the R-vine structure, i.e., selecting which pairs of variables
to use. Second, we have to choose a bivariate copula family for each selected pair. And finally,
we need to estimate the parameters for each pair-copula. These steps can be done based on a
sequential, heuristic method proposed by Dissmann et al. (2013). The structure of the tree is
basically determined by spanning trees with an edge weight represented by, for instance, Kendall’s
tau or Spearman’s rho. The procedure based on Kendall’s tau starts at the first tree Ty = (N, E),
where the term

max > 175k

e={j,k} in spanning tree

must be solved and the resulting is selected. Note that the tree is selected in such a way that the
chosen pairs model the strongest pairwise dependencies present. When the first tree structure is
selected, we can choose an appropriate bivariate copula family for each edge of the tree by means of
the AIC. Alternatively, one could use the BIC or cAIC as decision criterion or a goodness-of-fit test
can be performed. Besides that, the independence copula is selected if independence is reasonable
to assume by tests based on, for instance, Kendall’s tau. Subsequently, we are able to estimate the
parameters for each pair-copula in the tree with the methods described in Section 3.4. Next, the
data is transformed using the fitted copula and (3.19). Now, we move forward to the next tree and
repeat the steps. A small remark is that for the remaining trees T3, ¢ = 2,...,n — 1, Kendall’s tau
must be determined for the conditional variable pairs, so the corresponding optimization problem
becomes

max > 7.0
e={j,k|D} in spanning tree
where D is the conditioning set. In the end, we have defined all trees in order to construct a
suitable R-vine model.
3.5.4 Matrix representation

The graphical model of vine copulas is not feasible for statistical algorithms, as storage of the trees is
too expensive and too complicated. Therefore, a convenient way of representing an R-vine structure
is to use matrix notation. In this subsection we introduce the R-vine matrix representation based on
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the notation and definitions of Dissmann et al. (2013). Before we formally define an R-vine matrix
we need to introduce the following two sets. For a lower-triangular matrix M = (m; ;)i j=1
fori=1,...,n—1,

,,,,,

By (i) :={(m;;, D)k =i+1,...,nD ={mp;,...,mn;}},
BM(Z) {(mri, D)k =i+1,....05D = {mi; } U{mps14,---,Mni}}.

Definition 3.14. (R-vine matriz). A lower triangular matrizc M = (m; ;); j=1,...n is an R-vine
matriz if fori=1,...,n—1 and for allk=i+1,...,n—1 thereisanj € {i+1,...,n—1} with

(Miyis (M1, - Mni}) € Bar(j)  or € Bu(j).

From the above definition it can be shown that every column contains all elements from the
column to the right, i.e., {m;;,...,mpn;} C {mj;,...,my ;} for 1 < j < i < n. Furthermore,
there is a different element on the diagonal in every column, i.e., m; ; ¢ {m;y141,...,Mp 41} for
i=1,...,n—1.

In order to fully describe an R-vine we need two additional matrices T = (ti,j)i,jzlywn and
P = (pij)ij=1,. n that contain information about the families and parameters of the pair-copulas,
respectively. For all j =1,...,n—1,i=j41,...,n, the entry m; ; represents the pair-copula of
the variables indexed by m; ; and m; ; conditional on the variables indexed by {m;+1 ;,...,mn ;},
t;,; represents the family corresponding to this copula and p; ; contains the parameters of this
copula.

For instance, if we look at the R-vine from Figure 3.7, the corresponding matrices are

G 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 4 0 0 O to1 0 0 0 O Pp21 0 0 0 0
M=|@® 1 3 0 0|, T=|G t2 0 0 0f,P= ps2 O 0 0
2 21 20 tyr ta2 taz 0 0O pa1 pa2 pa3 0 O
3 3 2 1 1 ts1  ts2 (ts3) ts4 O P51 P52 (Ps3) Psa O

First, consider the red circled elements. Here, the copula with conditioned variables indexed
by {5,4} and conditioning variables indexed by {2,3}, i.e., ¢54p23, has copula family t3; with
corresponding parameter p3;. Then, consider the green circled elements. The copula c3 2 belongs
to the family t53 and has parameter pss.

Furthermore, we consider the two examples of a possible D-vine and C-vine as illustrated in
Figures 3.8 and 3.9, respectively. The R-vine matrix corresponding to the D-vine structure is
given by

5000 0
14000
M=|2 130 of,
321 2 0
43 2 1 1

and the R-vine matrix corresponding to the C-vine structure is denoted by

5 0 0 0 0
4 4 0 0 0
M=13 3 3 0 0
2 2 2 20
111 11

By means of the three matrices M, T and P we are able to store all necessary information of an
R-vine distribution in a convenient way. Subsequently, we can determine the joint density of the
R-vine specification by an algorithm, which can be found in Dissmann et al. (2013).
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3.6 Summary

e Copula modeling is robust against non-normal multivariate data.

e Elliptical copulas are widely used and they are able to specify different levels of cor-
relation between the components.

e Archimedean copulas are very popular as they can be constructed with ease and they
can express many distributional properties.

e For bivariate copulas there often exists an explicit relation between the parameters
and rank correlation coefficients.

e Vine copula structures provide a flexible model for copulas in dimension > 3.
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4 Monitoring approach

In Chapter 2 we briefly described the Shewhart chart for individual observations, which is a uni-
variate monitoring method. As stated in Chapter 1, most processes require multivariate monitoring
methods to take into account possible dependencies between the components under investigation.
To this purpose, we first discuss two conventional multivariate monitoring approaches in this chap-
ter, namely the Hotelling 72 chart and the MCUSUM chart. These approaches, however, rely on
assumptions that are hardly ever satisfied in practice. To overcome these limitations, we explain
the modern vine copula-based monitoring method based on Miihlig (2017). The performance of this
vine copula-based approach compared to the conventional methods will be thoroughly analyzed in
the next chapter.

4.1 Hotelling 72 control chart

The Hotelling T2 chart is one of the most, if not the most, popular control chart for multivariate
monitoring. In this section we briefly describe the Hotelling 7% chart following the exposition in Qiu
(2013, Chapter 7). We assume that we have a random sample (Xi, ..., X;) from a p-dimensional

population with the distribution N, (p,%). Furthermore, let X and S? denote the sample mean
and sample covariance matrix, respectively. Then, the random variable

12— (- p) ()7 (K1)

is called the Hotelling’s T? statistic, which is basically a generalization of the univariate t-test
statistic. The T? statistic was first applied for multivariate SPC by Hotelling (1947). For the
phase I problem, we assume that we have a phase I dataset (Xi,..., X)) obtained from a p-
dimensional process. We assume that the phase I data is representative for the actual in-control
process and that it follows the distribution N, (1o, Xo). If o and g are known, we consider the
statistic

g
To: = (Xi — o) Sg " (Xi — po) (4.1)
where ¢ denotes the i-th time point.
When the process is in-control at the i-th time point, it holds that
TO2,i ~ X?)a
and, typically, the chart signals when
CZ—‘02,2' > Xifa,zn (42)

where a € [0,1] is a given significance level and xi_,, is the (1 — a)-th quantile of the x3
distribution. In this setup, if we assume that all observations are independent and the process is
in-control, the average in-control run length is equal to 1/a. The average in-control run length is
simply the average number of observations which are being measured until a false alarm occurs,
see Section 5.1.

In practice, however, the values of o and % are rarely known and they need to be estimated
by the sample mean X and the sample covariance matrix S2. Subsequently, the charting statistic
becomes

T2 = (X, -X) (5%) 7 (X, - X).
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By Tracy et al. (1992) we know that

M

mTii ~ Beta(p/2,(M —p —1)/2),

and, therefore, the chart would give a signal when

QL1 Betay _a(p/2. (M ~p - 1)/2),

T?, >

where « € [0,1] is a given significance level and Beta;_o(p/2,(M —p — 1)/2) is the (1 — «)-th
quantile of the Beta(p/2, (M — p — 1)/2) distribution.
Then, for the phase II problem we assume that X;, Xs,... are incoming observations obtained
from a p-dimensional process with in-control distribution J\fp(u(], 30). In case both py and ¥, are
known, we can simply use the chart (4.1)-(4.2) for online monitoring. In most cases both 1o and X
are unknown and they must be estimated from an in-control dataset. We assume that we have an
in-control sample of M observations, and 1o and X are estimated by the sample mean and sample
covariance matrix denoted as fip and X, respectively. Then, we can use the following statistic

TS ~
T3, = (Xi — o))" S5 (Xi — o),

where ¢ denotes the ¢-th point in time.

When the process is in-control at the i-th time point, Tracy et al. (1992) have shown that

(M —p)M
p(M —1)(M +1)

T22,i ~ Fp,pra
where F, y;—p denotes the F distribution with the numerator degrees of freedom p and the denom-
inator degrees of freedom M — p. Typically, the resulting chart gives a signal when

p(M —1)(M +1)
(pr)M 1—a,p,M—p>

T5; >

where Fi_q p m—p is the (1 — a)-th quantile of the F), a;_, distribution.

4.2 MCUSUM control chart

The Hotelling 72 chart uses test statistics for a given time point which only depend on the observed
data at that particular time point. Just as in the univariate case, such control charts are effective
for detecting relatively large and transient shifts. In this section we introduce the multivariate
CUSUM (MCUSUM) control chart, which seems to be more effective for detecting relatively small
and persistent shifts (see, e.g., Qiu (2013)). There exist many different versions of the MCUSUM
control chart. In this section we only focus on one particular version that receives much attention
in literature, namely the chart proposed by Crosier (1988) since this chart is demonstrably effective
for detecting shifts in the process mean. Alternative versions of the MCUSUM chart can be found
in Qiu (2013, Chapter 7). We will only discuss the phase II problem as these charts are typically
used in phase II analysis, although they can also be used in phase I analysis.

We assume that X, Xs, ... are phase II observations obtained from a p-dimensional process with
in-control distribution J\/p(uo, %), where both po and Xy are known. The charting statistic C,,,
for n > 1, depends on the n-th observation as well as earlier observations and is defined as follows.
Let

U — 0, ity, <k
" (Up—1+ Xy —po)(1 — k/Y,), otherwise,

where Uy = 0, k > 0 is an allowance constant, and

T 1 1/2
Y" = |:(Un—1 + Xn - NO) E() (Un—l + Xn - NO)
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Furthermore, the chart signals at the n-th time point if
C, = (UTS5'0,) " > b,

where h > 0 is the control limit chosen in order to reach a pre-specified in-control average run
length.

In cases where both gy and X are unknown, they can simply be estimated by the sample mean
io and sample covariance matrix Yy of an in-control dataset. Furthermore, when we consider a
mean shift, k is usually set at %5 where § is the size of the shift in standard deviation units. Since
we obviously do not know the shift size in advance, the allowance parameter k£ should be chosen
such that we detect a desirable shift as soon as possible. If we want to quickly detect relatively
small shifts, we could for instance set £ = 0.25. On the other hand, if we want to detect relatively
large shifts, an optimal choice could be to set k = 0.75. Once k is selected we should choose h to
reach the desired in-control average run length. For more information on the allowance parameter
k, see, e.g., Qiu (2013, Section 4.2.2).

4.3 Vine copula-based control chart

The conventional multivariate monitoring methods, like the ones described in the previous sections,
are based on the assumptions that observed values follow the multivariate normal distribution and
do not exhibit serial correlation. Real-life data sets almost never satisfy these assumptions and the
efficiency of these conventional methods will be harmed. Therefore, we introduce the modern vine
copula-based approach developed by Miihlig (2017) which is suitable for non-normal multivariate
data. The aim of the approach is to timely detect changes in the dependence structure of a
multivariate distribution, as well as changes in its mean or covariance matrix. This refreshing
approach focuses on combining vine copula structures with the SPC methodology and basically
extends the ideas of Baillo and Cuevas (2006) and Verdier (2013).

4.3.1 Tolerance region approach

The basic idea of the vine copula-based monitoring approach follows Baillo and Cuevas (2006).
We assume that the quality characteristics vector X = (X R ¢ (d)) is a d-dimensional random
vector with continuous marginal distribution functions Fy, ..., Fy, which describes a d-dimensional
process independent over time. When the process is in-control, we assume that H and h denote
the in-control distribution function and density of X, respectively. When a change in the process
occurs, the process does no longer follow the in-control distribution and can be declared as out-
of-control. For each new observation, we have to decide whether it was generated from H (the
process is still in-control) or from G # H (the process is out-of-control). We base our decision on
a set of i.i.d. observations Xi,..., X, drawn from H. More specifically, we construct a tolerance
region by means of density level set estimation. If a new observation falls outside the tolerance
region, the process is statistically out-of-control. This tolerance region is constructed such that the
false alarm probability is equal to a pre-specified level .. Following Verdier (2013), the tolerance
region is defined as

D(ca) = {x € R4 h(z) > ca} ,
where ¢, satisfies
I=P[X € D(cy)] = / h(z)de =1—a.
D(ca)
In practice, the density function h is often unknown and has to be estimated. We assume for now

that the unknown function A can be estimated by h,,. Then, the value ¢, will be estimated by c,,
which satisfies

I, = / hp(z)de =1—a as.
{hnzcn}

Consequently, the estimated tolerance region is

Dy(cn) ={z € R?|h,, (z) > n}-
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By this construction it follows that
Php(X)>en)=1—aq,

and therefore ¢, is the a-th quantile of h,(X). The main objective is to determine the value
of ¢,. Cadre et al. (2013) propose to use the a-th quantile of the empirical distribution of
hn(X1), ..., hn(X,) and the resulting estimator is denoted as ¢,,. Furthermore, Verdier (2013) im-
proved the estimation and proposes to use an empirical quantile computed on N random variates
obtained from the estimated density h,, where N is a large number. For this purpose, let F}, (x)
be the distribution function of a random sample of h,(X), denoted by h,(X1.4),.. ., hn(XnNn)-
Then, it holds that

N

By ) = 5 1 (hn (Xin) <) (4.3)
=1

where 1(-) is the indicator function.

Subsequently, the estimator of ¢, is obtained by
/C\N,n = inf {C eR: F\hn(X)(C) > Oé} .

Following Cadre et al. (2013), we define the following set and assumption:

Ay = {c € (0;suph) : {}iLIif}HVhH: 0}

Assumption 4.1.
1. The density h is of class C? with a bounded Hessian matriz, and h(x) — 0 as ||z||— oco.
2. 4 has Lebesgue measure 0.
3. AM{h=c})=0 forall c > 0.

See Cadre et al. (2013) for a more detailed explanation concerning Assumption 4.1.

The estimation approach by Verdier (2013) relies on the following theorem.

Theorem 4.1. Suppose h satisfies Assumption 4.1 and that

sup |hp(z) — h(z)|— 0 p.s.
z€R4

Then, for almost all ¢ € (0,1) (see Verdier (2013) for details),
CNn — Co in probability for N — oo.

Proof. See the proof of Theorem 2 of Verdier (2013). O

4.3.2 Monitoring with vine copulas

We now have enough knowledge to build a statistical framework around the copula methodology.
In this section we construct a monitoring approach based on vine copulas, which provide more
flexibility than regular copula models, see also Section 3.5. The monitoring framework will follow
the tolerance region approach by Verdier (2013) as described above, combined with a Shewhart-like
control chart approach (see Section 2.1).

We assume that a d-dimensional process is described by the quality characteristics vector X =
(X(l), e 7X(d)) with continuous marginals F1, ..., F; and corresponding densities f1,..., fq. Fur-
thermore, let H and h denote the in-control distribution function and density of X, respectively.
First, we need a suitable data set for phase I, in which we assume that the process is in-control.
We assume that we have a phase I sample X7, ..., X, consisting of n observation vectors from X,
which follow the in-control distribution. For convenience of notation, we assume that the sample
is stored in a data matrix R € R"*¢ where row R;. € R'*? corresponds to the i-th observa-
tion vector, ¢ = 1,...,n, and column R.; € R™*! corresponds to the j-th quality characteristic,
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j=1,...,d. Note that we often have to transform the sample by the probability integral transform
to satisfy the requirement of standard uniform marginals. That is, we transform the sample of the
J-th quality characteristic R.; by

U.j = Fj (R.j), ]:1,,d (44)

When the marginals Fi, ..., F; are unknown, we can use so-called pseudo-observations which ba-
sically apply the empirical distribution functions to the data and scale the result such that the
transformed sample falls inside the unit interval. For this approach we assume that d > 2, since
most processes require to monitor multiple quality characteristics simultaneously. Note that for
d = 2 we can simply use a bivariate copula model, since the vine copula model reduces to only one
regular bivariate pair-copula. Now, we are able to determine the best-fitting vine copula model by
the procedure described in Section 3.5.3. Based on the selected vine copula, we can estimate the
joint density function h by (3.20) and the resulting estimated density function is denoted by h,,.
Subsequently, we calculate a random sample of h,, (X), denoted by h,(X1,n), ..., (XN ), where
N is really large. This density sample serves as the base of the quantile estimation by Verdier
(2013) as described in the section above. The density sample follows the distribution function
ﬁhn(X) as defined by (4.3) and we can calculate the corresponding control limits dependent on
whether we want to use the one-sided or two-sided version of the control chart. For the one-
sided version, the (lower) control limit ¢y, is defined as the a-th quantile of the density sample
hn(X10), - hn(XNn), where o is the pre-specified false alarm probability. For the two-sided ver-
sion, the upper control limit %y , and lower control limit lAN’n are defined as the (1— %)—th quantile
and (§)-th quantile of the density sample hy,(X1,), ..., hn(Xnn), respectively. For phase I anal-
ysis, the test statistics corresponding to the sample X7, ..., X,, are given by h,(U1.),..., h,(Un.)
and an alarm for the one-sided version is raised when

hn<Ul) <EN,n; 1=1,...,n,
and an alarm for the two-sided version is raised when
ho(Us) <lym or hp(U) >Gng, i=1,...,n.

For phase II analysis, we have incoming observation vectors X, X5, ... from a d-dimensional pro-
cess and we need to decide if they are generated from the in-control distribution. Again, we first
need to transform the incoming observations by either the probability integral transform or pseudo
observations. Similar to (4.4), let Uk., k = 1,2,..., denote the transformation of the k-th obser-
vation vector. Then, the test statistics corresponding to the incoming observations X1, Xo,... are
given by hy, (U1.), hyn(Ua.), . .., where h,, is the estimated joint density function obtained from phase
I. Subsequently, we compare these density evaluations with the control limits that we determined
in phase I. For the one-sided version, we raise an alarm when

b (Uk) < Cnpmy, k=1,2,...,
and for the two-sided version we raise an alarm when
hn(Uk'-) < Z\N,n or hn(Uk-) > aN,n; k=1,2,...

The one-sided and two-sided version of the vine copula-based control chart seem to focus on
different aspects of the multivariate distribution regarding the detection of shifts, which we clarify
with an example. In this example we consider d = 2 for visualization purposes, so the vine copula
model described above simplifies to the bivariate copula model. We assume that an in-control
2-dimensional process can be described by the Gumbel copula with parameter § = 3 and that
we have perfect knowledge of the in-control distribution. We look at the phase I problem, where
we have an in-control sample X7,..., Xi9p0 generated from the in-control distribution. For the
calculation of the control limits, we take N = 10% and o = 0.05. We obtain the test statistics
corresponding to the in-control sample and appropriate control limits by applying the copula-based
monitoring method that is described above. Subsequently, we identify the out-of-control points of
the in-control sample and mark these points in red. The results for the one-sided and two-sided
version are illustrated in Figures 4.1 and 4.2, respectively. From these figures we observe that the
one-sided version signals observations which are too far away from the mean line and the two-sided
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version signals observations that are even further away from the mean line plus observations that
are suspicious in the upper tail and lower tail of the distribution. Therefore, it seems that the lower
control limit aims at detecting deviations from the mean line and the upper control limit aims at
detecting deviations in tail dependence of the distribution. Miihlig (2017) studied the working
of the one-sided and two-sided version in more detail, including some illustrative examples. The
conclusion of the above example is in line with the findings of Miihlig (2017). In the following
chapter we study the advantages and disadvantages of the one-sided and two-sided version by
means of an extensive performance study.

1.0 7 o |n-contral
2 Qut-of-control
0a 4
06 4
o)
04 4
0z
0.0 4
T T T T T T
0.0 0z 0.4 0.6 0.8 1.0
U,

Figure 4.1: Phase I analysis with the one-sided version of the copula-based control chart.
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Figure 4.2: Phase I analysis with the two-sided version of the copula-based control chart.

4.4 Summary

It is possible to construct a Shewhart-like control chart based on vine copulas.

The vine copula-based control chart is a distribution free method and therefore suit-
able for non-normal multivariate data.

The two-sided version of the vine copula-based control chart aims at detecting devia-
tions from the mean line or deviations in tail dependence of a multivariate distribution.
The one-sided version of the vine copula-based control chart only aims at detecting
deviations from the mean line of a multivariate distribution.
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5 Simulation study

In this chapter we conduct a simulation study to assess the performance of the recently introduced
copula-based control chart, where we make use of the average run length measure. First, we
compare the performance of the one-sided version of the copula-based control chart with the two-
sided version. In this way we are able to recommend which version one should use in order to detect
a particular type of shift in a process. Subsequently, we analyze the performance of the copula-
based control chart compared to the conventional Hotelling 72 and MCUSUM control charts.
These analyses follow the ideas of Miihlig (2017), but are more comprehensive in the sense that
more possibilities are included. A comparable simulation study is performed in Sukparungsee et al.
(2017), although the context is somewhat different. The similarities include a performance analysis
based on the average run length, where several copulas are fitted and various controlled out-of-
control cases are analyzed. There are also some significant differences. First of all, Sukparungsee
et al. (2017) simulated a three-dimensional in-control process from the exponential distribution.
Furthermore, they only investigated the possibility of mean shifts in the marginal distributions.
Finally, they only analyzed the performance of the MCUSUM control chart and hence were not
able to compare control charts.

5.1 Performance measures

When we apply control charts in phase I we conduct retrospective analysis. During this phase we
mainly focus on calculating appropriate control limits for phase II, such that the false alarm rate
will be low. Additionally, control charts in phase II should be able to quickly detect an out-of-
control situation. In order to measure these performance requirements, we first need to introduce
the concept of average run length (ARL). For an in-control process, the ARL equals the average
number of observations that are measured until a false alarm occurs and is denoted by ARLg. For
an out-of-control process, the ARL equals the average number of observations that are measured
until an out-of-control situation is detected and is denoted by ARL;. Ideally, we want the ARLg
to be large and the ARL; to be small to ensure a low false alarm rate and fast detection of out-
of-control situations. However, there seems to be a trade-off between the ARLy and the ARL;.
Clearly, increasing the ARL( by aiming for wider control limits results in an undesired increase of
the ARL;. On the other hand, decreasing the ARL; by aiming for tighter control limits results in
an unwanted decrease of the ARLy. Therefore, we need to find an optimal balance between the
ARLg and ARL;. In SPC optimality is often stated as minimal ARL; for a pre-specified ARLyg,
see, e.g., Frisén (2007). Advantages of the ARL criterion are that it is very well known, widely
used and simple, and that no assumption of a distribution for the time of change is used. However,
these measures do not tell the whole story as run length distributions are often very skewed.
Additionally, estimation of parameters might influence the run length calculations. Alternatively,
one could use the conditional expected delay (CED) of detection, which represents the delay from
the first opportunity to detect a change. For a more extensive discussion on this topic, see Frisén
(2003) and Kenett and Pollak (2012).

Next, we use the basic univariate Shewhart chart for individual observations defined in Section 2.1
as an example to show how its ARLy and ARL; values can be computed. It is not hard to conclude
that the distribution of the ARLg is the geometric distribution Geom(«), where a denotes the
false alarm probability. We assume that both the in-control mean py and the in-control standard
deviation ¢ are known. Under the normality assumptions, the false alarm probability can be easily
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computed by

a = P(X; < po—30) + P(X; > po + 30)

X, — X, —
_P<“°<3>+1P<“0<3>
g g

= B(—3)+1—B(3)
~ 0.0027.

By the formula of the mean of a geometrically distributed random variable, we simply obtain that
1
ARLy = — =~ 370.
@

For computing the ARL;, we now assume that the mean of the quality characteristic shifts from
to to p1 = po + ko. It is obvious that the distribution of the ARL; is the geometric distribution
Geom(1l — ), where 8 is the probability that an observation collected at a later time point is
within the upper and lower control limits. This probability can be expressed in terms of k as

B=P(u—30 <X; <o+ 30)

:P(—k—3§ Xizm S—k+3)

o
=®(-k+3)—d(—k-—3).
By the formula of the mean of a geometrically distributed random variable, we know that
1
AR, = ——.
1= 7= 3

The values of ARL; for k& € [0, 3] are shown in Figure 5.1, from which we can conclude that the
Shewhart chart for individual observations is only effective in detecting large shifts in the mean
of a process. The calculations in this example are quite straightforward. In the multivariate case,
however, these performance measures can very often not be expressed in closed form. To overcome
this issue we can make use of Monte Carlo simulation, which is explained in the following section.

300

7 200 -
<X

100
O —

T T T T T T T

00 05 10 15 20 25 30

k

Figure 5.1: The values of ARL; for the Shewhart chart for individual observations when k € [0, 3].

5.2 Bivariate performance analysis

In this section we create empirical results to investigate the performance of the copula-based control
chart fo