
 Eindhoven University of Technology

MASTER

Contextual Anomaly Detection through Multivariate Monitoring of Regression Profiles

van Dalen, Okki

Award date:
2020

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/c7cb8d46-7f52-428a-a591-190e40fff61f


Department of Mathematics and Computer Science

Master’s Thesis

Contextual Anomaly Detection through
Multivariate Monitoring of Regression

Profiles

Author:
Okki van Dalen
0960299

Supervisor:
Dr. Alessandro Di

Bucchianico

Eindhoven, September 2020



Abstract

Statistical monitoring methods are currently widely used to control the quality of a process. Most
real-life processes, e.g. wind turbines, require a multivariate approach so that multiple crucial
quality characteristics can be monitored simultaneously. Many commonly used multivariate meth-
ods, like the Hotelling T 2 chart, rely on the multivariate normality assumption which is hardly
ever satisfied for process data. In this thesis we therefore propose a monitoring approach based
on copula theory which allows for efficient monitoring of non-normal multivariate data. Copu-
las allow to separate the multivariate dependence structure from the marginals. The dependence
structure described by copulas captures dependence details that go beyond the covariance matrix.
We perform a simulation study to compare the copula-based approach with conventional monitor-
ing methods. The results show that the copula-based approach outperforms conventional methods
in several out-of-control cases.

In light of the wind turbines, we additionally present a case study where we apply the copula-based
approach and the Hotelling T 2 chart to a real-life data set of a wind turbine. In order to correctly
interpret the results, we have to introduce the notion of contextual anomalies, which arise when
changes in or extreme values from observed processes can only be interpreted correctly if other
information is taken into account. These contextual anomalies can be identified by first applying
the multivariate regression model and subsequently monitor the deviation of the model. The case
study shows the promising potential of the copula-based approach for effective monitoring of the
condition of the wind turbine, which contributes to reducing repair costs and downtime.

Keywords: condition based monitoring, statistical process control, linear regression, multivariate
monitoring, copula modeling.
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1 | Introduction

Data science is nowadays becoming increasingly popular, since it offers great career opportunities
and it contributes to improving corporate and industrial processes. It is even declared as the
“sexiest” job of the 21st century. Data science is enforced by large data sets containing extensive
information which are easily and quickly accessible these days. The incoming flow of data is enor-
mous and new data is generated every second. Most of these data sets are naturally multivariate,
that is, variables of interest should be considered simultaneously. For instance, in the light of sensor
data it is necessary to monitor multiple temperatures simultaneously to account for dependencies
among the individual temperatures. Such dependencies could arise when two sensors are closely
located to each other. Univariate analyses turn out to be invalid or inefficient as they neglect
dependencies between the temperatures. Therefore, we need multivariate analyses to account for
dependencies among the variables under investigation whenever independence cannot be assumed.

In this thesis we mainly focus on multivariate monitoring methods. Specifically, we investigate
multivariate monitoring of regression profiles, which is inspired by the univariate analyses presented
in Kenbeek (2016). These univariate analyses are about contextual anomaly detection through
monitoring of regression profiles, including a specific industrial example by applying the theory to
wind turbine data. Contextual anomalies arise when changes in or extreme values from observed
processes can only be interpreted correctly if other information is taken into account. In other
words, observed values are sometimes not abnormal by themselves, but this condition is dependent
on the context. A concrete example are wind turbines where the interpretation of sensor values
for temperatures and vibrations have to take into account environmental factors like ambient
temperature and wind speed (see, e.g., Kenbeek et al. (2016)). To this purpose, we use a monitoring
approach that is based on regression analysis. By means of appropriate regression models we can
adjust observed values based on external factors, which enables us to detect contextual anomalies.
In the univariate case, we can monitor the deviation of the regression model in the spirit of Brown
et al. (1975), Chu et al. (1996) or Zeileis et al. (2001). First steps into this monitoring approach
were taken in Kenbeek (2016), and follow-up studies were presented in Meeuwis (2017) and van
Dalen (2018).

The monitoring techniques are based on several popular control charts that follow the Statistical
Process Control (SPC) methodology, which originates from Shewhart (1925). SPC is being used
to improve the quality of industrial and business processes by effectively detecting deviations
from normal behavior, based on which optimal decisions can be made. The basic concepts of
SPC and several commonly used (univariate) control charts, including derivation, properties and
performance, are thoroughly documented in Qiu (2013, Chapter 1-5).

The main goal of this thesis is to extend the univariate monitoring approach to the multivariate
case, where we need to define the multivariate regression model (see, e.g., Monahan (2008, Chapter
9)) and develop an effective multivariate monitoring method. Most conventional multivariate
monitoring methods, such as the Hotelling T 2 control chart, are based on the assumptions that
observed values are uncorrelated and multivariate normally distributed. Under these assumptions,
several monitoring techniques as in Hawkins (1993) have become standard and been successful
in a variety of applications. In fact, these techniques have become so popular that they are
often applied without carefully checking the assumptions. However, the assumptions are hardly
ever satisfied which can question the efficiency of these methods. Moreover, most conventional
multivariate methods are able to timely detect changes in mean or variance of a multivariate
distribution that is supposed to represent a particular process. Apart from changes in mean or
variance, the distribution of the process can also change in dependence structure. Unfortunately,
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most conventional multivariate methods fail to detect such changes in dependence structure in a
timely manner. This is where the modern theory of copulas comes into play. The main appeal
of copulas is that they allow to separate a multivariate distribution into an appropriate copula,
which describes the dependence structure, and all the marginals (see, e.g., Rüschendorf (2009)).
This provides a flexible framework in multivariate modeling.

In order to accomplish the objectives, this thesis is organized as follows. In Chapter 2 we explain
the monitoring foundation and subsequently we properly define the multivariate multiple linear
regression model including some interesting properties based on Monahan (2008, Chapter 9). In
Chapter 3 we introduce the basic copula model and explain vine copula structures based on core
literature Nelsen (2007) and Joe (2014). Furthermore, in Chapter 4 we briefly explain some
conventional multivariate monitoring methods and introduce a modern copula-based monitoring
approach that was developed by Mühlig (2017). We continue to analyze the performance of this
copula-based method compared to some conventional methods in Chapter 5, where we make use of
performance measures presented in Frisén (2007). In Chapter 6 we present the results of applying
the copula-based method to wind turbine data in a case study. Finally, in Chapter 7 we discuss
our conclusions and make some interesting recommendations for further research. In the end we
should be able to answer the following research questions:

• How does the multivariate regression model relate to the univariate regression model and can
we derive similar properties of estimators?

• How can we design a multivariate control chart based on a given vine copula and what are
its main benefits?

• How can we fairly compare the performance of control charts to various changes in a process?

• How does the vine copula-based control chart perform compared to conventional multivariate
monitoring methods?
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2 | Regression model

In this chapter we explain how to combine the usual monitoring approach with regression profiles.
Furthermore, we introduce the multivariate multiple linear regression model based on Monahan
(2008, Chapter 9), following the notation style of van Dalen (2018). Many results follow the
univariate case, however, some cases require additional remarks. We will cover the most impor-
tant properties of the regression model, which includes parameter estimation and corresponding
distribution, and the predictive residual vector.

2.1 Monitoring with regression

The usual monitoring approach follows the SPC methodology, which describes a set of statistical
methods that is used to improve the quality of industrial and business processes by accurate and
timely detection of deviations from normal behavior. The deviations should then subsequently
be traced back to the initial root cause, based on which optimal decisions can be made in order
to restore the quality of the process. Note that the term “control” in SPC may be misleading,
since SPC is really about monitoring and not referring to feedback control. SPC originates from
the time of upcoming industry, when Shewhart introduced the concept (see Shewhart (1925)).
Originally, SPC was used to monitor a production line in a factory. Typically, small subgroups
of observations at fixed time points are collected. Then, statistical methods are applied to the
observations to monitor the process and to take action when the process deviates from its normal
behavior. Such behavior is called normal if it is stable, predictable and only has natural random
variations. When a process behaves normally, it is called in-control. If a process does not behave
normally, the process is not functioning well, and it is called out-of-control.

The most widely known tools to detect deviations from normal behavior are Shewhart control
charts. Such control charts are a way to visualize the deviation of a process. The deviation can
then be compared to control limits by repeated hypothesis testing. The control limits represent
boundaries for in-control behavior and can be determined from historical data. This historical
data is assumed to represent an in-control process. The training process of calculating control
limits based on historical data is referred to as phase I. Once phase I is finished, we can move on
to the online monitoring phase, the so-called phase II. During this phase, real-time observations
are coming in and we have to decide if these can be classified as in-control or out-of-control. We
compare these incoming observations with the control limits determined in phase I in order to
classify the observations. A control charts gives a warning signal, which indicates an out-of-control
situation, when the test statistic exceeds or falls below one of the control limits.

To detect changes in the mean of single observations we usually apply the Shewhart chart for indi-
vidual observations, which is exemplified in Figure 2.1. We denote the individual observations by
Xi, i = 1, 2, . . . . It is assumed that the observations are independent identically distributed (i.i.d.)
from a normal distribution. The Shewhart chart for individual observations is basically a plot of
the observations Xi versus time, including 3 horizontal lines that indicate the mean, upper control
limit (UCL) and lower control limit (LCL). Assume that we have a quality characteristic with
mean E[X] = µ and variance Var(X) = σ2. Then, as Xi are samples of the quality characteristic,
we also have E[Xi] = µ and Var(Xi) = σ2 for all i. The control limits are now usually set at µ±3σ,
and the control chart signals an alarm if an observation falls outside the control limits. In case
µ and σ are unknown, we can estimate these quantities from historical data (phase I). Usually,
we take µ̂ = X and σ̂ = MR/1.128, where X is the average of the observations and MR is the
average of the moving ranges MRi = |Xi−Xi−1|. For more information on the constant 1.128, see
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Qiu (2013, Chapter 3). Note that we make use of the moving range, since the sample variance for
subgroups of size 1 is undefined.

µ

µ+ 3σ

µ− 3σ

CL

UCL

LCL

Figure 2.1: Shewhart chart for individual observations with control limits.

As described in Chapter 1, we need to base our monitoring approach on regression analysis in
order to detect contextual anomalies. More specifically, by using regression models we are able
to describe observed values by external factors. Subsequently, we can monitor the deviation of
the regression model by monitoring the residuals, which are basically estimated error terms, with
suitable control charts. An abnormal residual value should be equivalent to an abnormal response
value, which means that there could be a problematic situation. In our context we, therefore, take
the residuals from the regression model as “observations” for phase I and phase II analysis.

2.2 Multivariate multiple linear regression model

As previously explained, it is often crucial to use regression profiles to correct for external factors.
The (univariate) multiple linear regression model for one response variable is thoroughly explained
in van Dalen (2018). In this section we generalize the linear regression model for one response
variable to the case of multiple response variables based on Monahan (2008, Chapter 9), such
that multiple quality characteristics can be monitored simultaneously. From now on, we will call
the model for multiple responses the multivariate multiple linear regression (MMLR) model. As
mentioned in the previous section, we need n fixed observations in order fit the in-control model,
which should be representative for the actual in-control process. Note that these observations are
now actually observation vectors, since we have multiple responses for each observation in time.
Based on the in-control model, we are able to accurately predict new observations. Subsequently,
we can monitor the residual vectors of these new observations in order to detect deviations from
expected behavior. Before we can derive statistical properties, we need to properly define the
MMLR model.

Consistent with the notation defined in van Dalen (2018, Section 2.2), we define the real-valued
observations Yi• as observations from the following MMLR model consisting of p regressors and q
responses:

Yi• = X(i)
∞ B + Ei•, i = 1, 2, . . . , (2.1)

where Yi• =
(
yi1 yi2 . . . yiq

)
, X(i)
∞ =

(
1 xi1 xi2 . . . xip

)
, B =


β01 β02 . . . β0q
β11 β12 . . . β1q
...

...
. . .

...
βp1 βp2 . . . βpq


and ETi• =

(
εi1 εi2 . . . εiq

)T iid∼ Nq(0,Σ). The unknown q×q covariance matrix Σ corresponds
to the unknown variance σ2 in the univariate case and is assumed to be positive definite. Here,
each Yi•-th observation vector in time is explained by the regressors defined by the row vector X(i)

∞ ,
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and the corresponding regression coefficients for each response defined by the matrix of unknown
coefficients B. We assume that the coefficient matrix B is constant for all observations coming
from an in-control period. Furthermore, the vector X(i)

∞ represents the i-th row of the infinite
matrix X∞, which contains all observations of the regressors in time and is defined by

X∞ =



1 x11 x12 . . . x1p
1 x21 x22 . . . x2p
...

...
...

. . .
...

1 xn1 xn2 . . . xnp
1 x(n+1)1 x(n+1)2 . . . x(n+1)p

1 x(n+2)1 x(n+2)2 . . . x(n+2)p

...
...

...
. . .

...


(2.2)

In order to fit the in-control model we consider the first n observations, which are assumed to
be from an in-control process. By means of the following matrix notation, also known as the
multivariate Gauss-Markov model, we are able to express the in-control model altogether:

Y[1:n,1:q] = XnB + E[1:n,1:q], (2.3)

where

Y[1:n,1:q] =


y11 y12 . . . y1q
y21 y22 . . . y2q
...

...
. . .

...
yn1 yn2 . . . ynq

 , Xn =


1 x11 x12 . . . x1p
1 x21 x22 . . . x2p
...

...
...

. . .
...

1 xn1 xn2 . . . xnp

 ,

E[1:n,1:q] =


ε11 ε12 . . . ε1q
ε21 ε22 . . . ε2q
...

...
. . .

...
εn1 εn2 . . . εnq

 ,

and B is as defined above.

Here, Y[1:n,1:q] is the n× q response matrix, Xn is the n× (p+ 1) design matrix, B is the (p+ 1)× q
coefficient matrix and E[1:n,1:q] is the n×q error matrix. Note that we assume that the design matrix
Xn is the same for all q responses. We can break the in-control model of (2.3) apart by either row
(observation) or column (response). The error vectors here are usually assumed to be uncorrelated
across observations, but the responses are not uncorrelated within an observation. Dissecting by
rows, we simply obtain the model defined in (2.1) for the i-th observation, i = 1, . . . , n. To discuss
the Gauss-Markov form, we transpose these row vectors, which results into:

Y Ti• = BT
(
X(i)
∞

)T
+ ETi• , i = 1, . . . , n. (2.4)

For estimation purposes, we work more generally and assume for now that the errors do not follow
a particular distribution. Hence, we simply obtain that

E
[
ETi•
]

= 0, and Cov
(
ETi•
)

= Σ.

The mean and covariance within an observation can thus be written directly in terms of the
response as

E
[
Y Ti•
]

= BT
(
X(i)
∞

)T
, and Cov

(
Y Ti•
)

= Σ. (2.5)

Breaking the model of (2.3) apart by columns gives a different view of this model, as we have for
the j-th response variable

Y•j = XnB•j + E•j , j = 1, . . . , q, (2.6)

where

E[E•j ] = 0, and Cov (E•j) = ΣjjIn.
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Note that this basically equals the univariate case when considering the first n observations alto-
gether, except that the errors within response j now have variance σ2

j := Σjj . Overall, we are able
to capture the covariance relationships across both rows and columns by

Cov(Eij , Est) =

{
0 if i 6= s

Σjt if i = s
or equivalently Cov(Yij , Yst) =

{
0 if i 6= s

Σjt if i = s
, (2.7)

where Eij and Yij denote the (i, j)-th entry of the matrices E[1:n,1:q] and Y[1:n,1:q], respectively.

2.2.1 Least squares estimation
We have seen that the responses within an observation are correlated. If we want to estimate
the coefficient matrix B, we cannot simply use ordinary least squares, since we have to take into
account the introduced covariance across responses. Therefore, we use the multivariate version of
generalized least squares which estimates B by minimizing the following function:

Q(B) =

n∑
i=1

(
Yi• −X(i)

∞ B
)

Σ−1
(
Yi• −X(i)

∞ B
)T

(2.8)

Now, note that (2.8) is simply the sum of the diagonal elements of the n× n square matrix(
Y[1:n,1:q] −XnB

)
Σ−1

(
Y[1:n,1:q] −XnB

)T
,

from which we deduce that

Q(B) = Tr
[(
Y[1:n,1:q] −XnB

)
Σ−1

(
Y[1:n,1:q] −XnB

)T ]
. (2.9)

Two directions are suggested in minimizing (2.9). The first route, following column dissection,
suggests a series of q univariate least squares problems, solving normal equations of the form

XT
nXnB•j = XT

n Y•j , j = 1, . . . , q.

Following the univariate case, it is obvious that the solution for the j-th response yields

B̂•j =
(
XT
nXn

)−1
XT
n Y•j , j = 1, . . . , q.

Alternatively, a second route which includes the computation of derivatives appears to be rather
complicated. However, solving the multivariate normal equations is supported by Lemma A.5,
using a matrix B̂ that solves to the multivariate normal equations:

XT
nXnB = XT

n Y[1:n,1:q]. (2.10)

The solution to the multivariate normal equations clearly yields

B̂ =
(
XT
nXn

)−1
XT
n Y[1:n,1:q], (2.11)

and by Lemma A.5 we conclude that (2.11) is the least squares estimator of B.

Subsequently, estimation of the covariance matrix uses a generalization of SSE with the error sum
of squares and cross-products matrix F , defined by

F =
(
Y[1:n,1:q] −XnB̂

)T (
Y[1:n,1:q] −XnB̂

)
. (2.12)

By Lemma A.6 we obtain that the commonly used covariance matrix estimator

Σ̂ =
1

n− p− 1
F (2.13)

is an unbiased estimator of Σ, as rank (Xn) is assumed to be equal to p+ 1.

Estimability in the multivariate case follows the univariate case, but we have to be cautious since
we are dealing with matrices. For this purpose, let m ∈ Rq be a q × 1 vector representing the
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coefficients of the linear combination across responses. With these coefficients we can select which
responses to take into account and to which extent by means of a weight.

Estimating the scalar quantity λTBm suggests taking the linear combination across responses
expressed by the vector m:

Y[1:n,1:q]m = XnBm+ E[1:n,1:q]m. (2.14)

For instance, if we want to only take into account the first response with weight 1, we simply
choose m =

(
1 0 . . . 0

)T such that (2.14) simplifies to

Y•1 = XnB•1 + E•1.

We now have a response vector Y[1:n,1:q]m, with the same design matrix Xn, but with a coefficient
vector Bm and error E[1:n,1:q]m, whose covariance matrix is

Cov
(
E[1:n,1:q]m

)
= Cov

m
TET1•
...

mTETn•

 =
(
mTΣm

)
In = Cov

(
Y[1:n,1:q]m

)
. (2.15)

Note that since mTΣm ∈ R, the model in (2.14) now appears as a standard univariate linear
model, and all the usual results can be applied.

Definition 2.1. A linear estimator of a scalar quantity λTBm in the multivariate case is an
estimator of the form tTY[1:n,1:q]m, where t ∈ Rn is an n× 1 vector which can be used to select the
observations to take into account.

Definition 2.2. The scalar quantity λTBm in the multivariate case is estimable if and only if a
linear unbiased estimator of it exists.

By Lemma A.7, we know that the scalar quantity is estimable if and only if λ ∈ C
(
XT
n

)
. Further-

more, Lemma A.8 ensures that if λTBm is estimable, then λT B̂m is constant for all solutions B̂
of the multivariate normal equations (2.10).

As usual, we are able to compute the mean and variance of this generalization of the least squares
estimator.

E
[
λT B̂m

]
= λTE

[
B̂
]
m = λT

(
XT
nXn

)−1
XT
n E
[
Y[1:n,1:q]

]
m (2.16)

= λT
(
XT
nXn

)−1
XT
nXnBm = λTBm

Var
(
λT B̂m

)
= λT

(
XT
nXn

)−1
XT
n Cov

(
Y[1:n,1:q]m

)
Xn

((
XT
nXn

)−1)T
λ (2.17)

= λT
(
XT
nXn

)−1
XT
n

(
mTΣm

)
InXn

((
XT
nXn

)−1)T
λ

=
(
mTΣm

)
λT
(
XT
nXn

)−1
λ

By Lemma A.9, we conclude that λT B̂m is the best linear unbiased estimator (BLUE) of λTBm.

2.2.2 Maximum likelihood estimation
We can now extend the Gauss-Markov model to include the assumption that the error distribution
follows the multivariate normal distribution, leading to Yi• independent of each other and

Y Ti• ∼ Nq
(
BT

(
X(i)
∞

)T
,Σ

)
, i = 1, . . . , n. (2.18)

This easily leads to the joint density and a likelihood function of the form

logL(B,Σ) = `(B,Σ)

= −nq
2

log(2π)− n

2
log(|Σ|)− 1

2

n∑
i=1

(
Yi• −X(i)

∞ B
)

Σ−1
(
Yi• −X(i)

∞ B
)T
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= −nq
2

log(2π)− n

2
log(|Σ|)− 1

2
Tr
[(
Y[1:n,1:q] −XnB

)
Σ−1

(
Y[1:n,1:q] −XnB

)T ]
= −nq

2
log(2π)− n

2
log(|Σ|)− 1

2
Tr
[
Σ−1

(
Y[1:n,1:q] −XnB

)T (
Y[1:n,1:q] −XnB

)]
= −nq

2
log(2π)− n

2
log(|Σ|)

− 1

2
Tr

[
Σ−1

(
Y[1:n,1:q] −XnB̂

)T (
Y[1:n,1:q] −XnB̂

)]
− 1

2
Tr

[
Σ−1

(
B̂ −B

)T
XT
nXn

(
B̂ −B

)]
,

where we make use of the fact that two matrices in a trace of a product can be switched without
changing the result, and that the following relation holds: XT

nXnB̂ = XT
n Y[1:n,1:q].

Now, it should be obvious that the log-likelihood `(B,Σ) can be maximized as a function of B by
taking B = B̂. In this way the negative term in the end, which is the only term depending on B,
vanishes. This leads to the function

`∗(Σ) = `
(
B̂,Σ

)
= −nq

2
log(2π)− n

2
log(|Σ|)− 1

2
Tr
[
Σ−1F

]
,

where F is the error sum of squares matrix as defined in (2.12). Maximizing `∗ as function of
Σ is rather difficult, but we use a clever route that avoids derivatives. Namely, when we apply
Lemma A.11 to `∗(Σ), we conclude that the maximum likelihood estimators of B and Σ are the
solution to the multivariate normal equations B̂ (2.11) and Σ̂ML = 1

nF . Note that therefore the
least squares and maximum likelihood estimator of B are the same, whereas Σ̂ and Σ̂ML are slightly
different.

It now simply follows from (2.16) and (2.17) that

λT B̂m ∼ N
(
λTBm,

(
mTΣm

)
λT
(
XT
nXn

)−1
λ
)

Also, by Lemma A.12 we have that λT B̂m is the minimum-variance unbiased estimator (MVUE)
of λTBm.

The distribution of the matrix F , however, requires some new definitions, including the Wishart
distribution, which is a generalization of the chi-square distribution.

Definition 2.3. Let Z(i), i = 1, . . . ,m, be iid Nq(0,Σ), then the q× q non-negative definite matrix
W =

∑m
i=1 Z

(i)
(
Z(i)

)T
has the Wishart distribution with m degrees of freedom and scale matrix

Σ, or equivalently W ∼Wq(m,Σ).

We will briefly state the most important results of the Wishart distribution. By Lemma A.14, we
know that if W ∼Wq(m,Σ), then for any q × 1 vector a,

aTWa

aTΣa
∼ χ2

m.

Furthermore, from the characterization in Definition 2.3 it directly follows that ifW1 ∼Wq(m1,Σ)
and, independently, W2 ∼Wq(m2,Σ), then

W1 +W2 ∼Wq(m1 +m2,Σ).

And finally, by Lemma A.15 we know that if W ∼Wq(m,Σ), and A is a p× q matrix, then

AWAT ∼Wp

(
m,AΣAT

)
.

We are now able to determine the distribution of the matrix F by the following theorem.

Theorem 2.1. The error sum of squares matrix F , defined by

F =
(
Y[1:n,1:q] −XnB̂

)T (
Y[1:n,1:q] −XnB̂

)
,

follows the Wq(n− p− 1,Σ) distribution.

20



Proof. This proof basically generalizes the proof of Theorem B.1 in van Dalen (2018) to the mul-
tivariate model. For convenience, we denote Y[1:n,1:q] by Y during this proof. Then, we simply
have that XnB̂ = Xn

(
XT
nXn

)−1
XT
n Y = PY , where P = Xn

(
XT
nXn

)−1
XT
n . Lemma A.17 en-

sures that P and In − P are symmetric and idempotent. Subsequently, by using that In − P is
symmetric, we deduce that

F = (Y − PY )
T

(Y − PY )

= ((In − P )Y )
T

((In − P )Y )

= Y T (In − P ) (In − P )Y

= Y T (In − P )
1/2

(In − P ) (In − P )
1/2

Y

= Ỹ T P̃ Ỹ ,

where Ỹ = (In − P )
1/2

Y and P̃ = (In − P ).

Then, we define ei = (0, . . . , 0, 1, 0, . . . , 0) to be the base vector with all components equal to 0,
except the i-th, which is equal to 1. Subsequently, we have for the i-th row of Ỹ , i = 1, . . . , n, that

E
[
Ỹ Ti•

]
= E

[
Ỹ T ei

]
= E

[
Y T
]

(In − P )
1/2

ei

= BTXT
n (In − P ) (In − P )

−1/2
ei

=
(
BTXT

n −BTXT
n P
)

(In − P )
−1/2

ei

=
(
BTXT

n −BTXT
nXn

(
XT
nXn

)−1
XT
n

)
(In − P )

−1/2
ei

= 0.

and, by using that In − P is symmetric and idempotent and by Lemma A.18, we have that

Var
(
Ỹ Ti•

)
= Var

(
Ỹ T ei

)
= Var

(
Y T (In − P )

1/2
ei

)
= Var

(
Y T (In − P ) (In − P )

−1/2
ei

)
= Σ

(
(In − P ) (In − P )

−1/2
ei

)T
(In − P ) (In − P )

−1/2
ei

= Σ
(
eTi (In − P )

−1/2
(In − P ) (In − P ) (In − P )

−1/2
ei

)
= Σ

(
eTi (In − P )

−1/2
(In − P ) (In − P )

−1/2
ei

)
= Σ.

Therefore, we conclude that Ỹ Ti• are independent of each other and

Ỹ Ti• ∼ Nq (0,Σ) , i = 1, . . . , n.

Let us now define A1 := P̃ and A2 := P , which are symmetric, idempotent matrices with ranks
n− p− 1 and p+ 1, respectively. Since A1 +A2 = In, we obtain by Lemma A.16 that

F = Ỹ T P̃ Ỹ ∼Wq(n− p− 1,Σ).

Theorem 2.1 confirms that the usual estimator of Σ as stated in (2.13) is indeed unbiased, since
by properties of the Wishart distribution we simply have that

E
[
Σ̂
]

=
1

n− p− 1
E[F ] =

1

n− p− 1
(n− p− 1)Σ = Σ.
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Note that the maximum likelihood estimator of Σ, however, is biased. The bias of the maximum
likelihood estimator is given by

E
[
Σ̂ML

]
− Σ =

n− p− 1

n
Σ− Σ = − (p+ 1)

n
Σ→ 0q×q as n→∞,

which means that Σ̂ML is asymptotically unbiased.

2.2.3 Prediction
Now that we have completely defined the in-control model (2.3) and derived its most important
properties, we can use the model to predict new observations. More specifically, we fit the MMLR
model for a fixed in-control period consisting of n observations of q responses. Then, we use the
estimators from the in-control model to predict new observations for the online monitoring period,
which are called fitted values. These predictions enable us to calculate the predictive residuals,
which are the differences between the real observations and the corresponding fitted values.

First, we introduce the MMLR model for m new observations for phase II analysis. We break
the model apart by row (observation), so we basically obtain the model defined in (2.1) for the
i-th observation, i = n + 1, . . . , n + m. That is, we define the new observation vector Y(n+j)• as
observations from the following MMLR model consisting of p regressors and q responses:

Y(n+j)• = X(n+j)
∞ B + E(n+j)•, j = 1, . . . ,m, (2.19)

where Y(n+j)•, X
(n+j)
∞ , B and E(n+j)• are as defined previously. Note that the coefficient matrix B is

constant for all new observations. Since the error distribution is assumed to follow the multivariate
normal distribution, that is ET(n+j)•

iid∼ Nq(0,Σ), it obviously follows that Y(n+j)• are independent
of each other and

Y T(n+j)• ∼ Nq
(
BT

(
X(n+j)
∞

)T
,Σ

)
, j = 1, . . . ,m. (2.20)

Now, we simply use the estimator B̂ (2.11), which is based on the n fixed observations, for B in
order to predict new observations. Hence, the fitted value of a new observation Y(n+j)• becomes

Ŷ(n+j)• = X(n+j)
∞ B̂ = X(n+j)

∞
(
XT
nXn

)−1
XT
n Y[1:n,1:q] = P(n,j)Y[1:n,1:q],

where P(n,j) = X
(n+j)
∞

(
XT
nXn

)−1
XT
n .

By simple calculations and using Lemma A.18, we obtain that

Ŷ T(n+j)• ∼ Nq
(
BT

(
X(n+j)
∞

)T
,Σ

(
X(n+j)
∞

(
XT
nXn

)−1 (
X(n+j)
∞

)T))
. (2.21)

Subsequently, we want to compare these fitted values with the real, actual observations. Therefore,
we define the difference of these quantities as the predictive residual vector. The (n+j)-th predictive
residual vector becomes

Ê(n+j)• = Y(n+j)• − Ŷ(n+j)• = Y(n+j)• − P(n,j)Y[1:n,1:q]. (2.22)

From (2.20) and (2.21) it easily follows that

E
[
ÊT(n+j)•

]
= BT

(
X(n+j)
∞

)T
−BT

(
X(n+j)
∞

)T
= 0,

and by using that Y(n+j)• and Ŷ(n+j)• are independent as Ŷ(n+j)• only depends on the first n
observations, we obtain that

Var
(
ÊT(n+j)•

)
= Var

(
Y T(n+j)•

)
+ Var

(
Ŷ T(n+j)•

)
= Σ + Σ

(
X(n+j)
∞

(
XT
nXn

)−1 (
X(n+j)
∞

)T)
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= Σ

(
1 +X(n+j)

∞
(
XT
nXn

)−1 (
X(n+j)
∞

)T)
.

Finally, the MMLR model (2.19) assumes that the error terms are independent from each other.
Now, we check if the residuals satisfy this assumption. Consider two residual vectors Ê(n+j)• and
Ê(n+k)•, where j, k ∈ {1, . . . ,m}, j 6= k. Then, we have that

Cov
(
ÊT(n+j)•, Ê

T
(n+k)•

)
= Cov

(
Y T(n+j)• − Y

T
[1:n,1:q]P

T
(n,j), Y

T
(n+k)• − Y

T
[1:n,1:q]P

T
(n,k)

)
= Cov

(
Y T[1:n,1:q]P

T
(n,j), Y

T
[1:n,1:q]P

T
(n,k)

)
= Cov


P(n,j)Y•1

...
P(n,j)Y•q

 ,

P(n,k)Y•1
...

P(n,k)Y•q




=


P(n,j)Σ11P

T
(n,k) P(n,j)Σ12P

T
(n,k) . . . P(n,j)Σ1qP

T
(n,k)

P(n,j)Σ21P
T
(n,k) P(n,j)Σ22P

T
(n,k) . . . P(n,j)Σ2qP

T
(n,k)

...
...

. . .
...

P(n,j)Σq1P
T
(n,k) P(n,j)Σq2P

T
(n,k) . . . P(n,j)ΣqqP

T
(n,k)


= ΣP(n,j)P

T
(n,k)

= Σ

(
X(n+j)
∞

(
XT
nXn

)−1 (
X(n+k)
∞

)T)
.

Therefore, we conclude that ÊT(n+j)• are dependent on each other and that

ÊT(n+j)• ∼ Nq
(
0,Σ

(
1 +X(n+j)

∞
(
XT
nXn

)−1 (
X(n+j)
∞

)T))
, j = 1, . . . ,m.

Note, however, that most conventional multivariate monitoring charts, like Hotelling T 2 require
that the predictive residual vectors have equal variance. Therefore, we first have to standardize
the predictive residuals such that they have equal variance.

2.3 Summary

• The univariate multiple linear regression model is generalized to the case of multiple
responses for each observation to the multivariate multiple linear regression model.

• Standard estimation results generalize easily to the multivariate case.
• The least squares and maximum likelihood estimator of B are equal and the resulting

estimator B̂ (2.11) is unbiased.
• The chi-square distribution is generalized to the Wishart distribution, and similar
properties can be derived.

• The matrix F (2.12) follows the Wq(n− p− 1,Σ) distribution.
• The maximum likelihood estimator Σ̂ML is biased. An unbiased estimator of Σ is

given by Σ̂ (2.13).
• Unlike the error terms, the residuals as defined in (2.22) are dependent on each other.
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3 | Copula model

Most conventional multivariate control charts are based on the multivariate normality assumption.
In practice, this assumption is hardly ever satisfied which can question the efficiency of these
methods. The modern theory of copulas offers a great solution since it allows to construct a
monitoring method which is not based on multivariate normality. Copula modeling is becoming
increasingly popular and it is used in a wide variety of applications. Originally, the theory of copulas
was mainly applied in the financial sector. However, it quickly became clear that the theory was
very useful in other fields of application as well. In this chapter we explain the foundation of the
copula model, which is based on the core literature Nelsen (2007) and Joe (2014). For a more
detailed view on the application of copulas, see Hofert et al. (2018). First, we introduce the main
idea behind copulas and its most important properties. Then, we thoroughly describe bivariate
and vine copula models.

3.1 An introduction to copulas

A copula is a multivariate cumulative distribution function with all univariate marginals being
uniform on the unit interval. This can be easily achieved since any continuous random variable
can be transformed to a uniform random variable over the unit interval by its probability integral
transformation. The name “copula” is derived from the fact that a copula “couples” a multivariate
distribution function to its marginals. More specifically, copulas allow to combine the marginals
of univariate random variables to arrive at the multivariate distribution of these random variables,
which makes them very useful to model non-normal multivariate data. Furthermore, copulas
can be used to efficiently describe the dependence structure of a multivariate distribution, as they
define non-parametric measures of dependence between the individual components. The usefulness
of copulas is based on Sklar’s theorem, which allows to separate a multivariate distribution into
two components: an appropriate copula which describes the dependence structure and all the
marginals. This provides great flexibility in multivariate modeling.

We will go into more detail and introduce the mathematical foundation of copulas, which is based
on Nelsen (2007) and Hofert et al. (2018). First of all, we need to define a copula in probabilistic
terms.

Definition 3.1. (Copula). C : [0, 1]d → [0, 1] is a d-dimensional copula if C is a joint CDF of a
d-dimensional random vector on the unit cube [0, 1]d with uniform marginals.

Additionally, we need to define some analytic conditions for a copula. The above defined function
C is a d-dimensional copula if:

• C(u1, . . . , ui−1, 0, ui+1, . . . , up) = 0, the copula equals 0 if at least one coordinate is 0.

• C(1, . . . , 1, ui, 1, . . . , 1) = ui, the copula is equal to ui if all coordinates are 1 except ui.

• C is d-increasing. Before we are able to define this concept, we need additional definitions.
First, for any a, b ∈ [0, 1]d, ai ≤ bi, i = 1, . . . , d, let (a, b] denote the hyper-rectangle with
lower end point a and upper end point b defined by {u ∈ [0, 1]d : ai < ui ≤ bi, i = 1, . . . , d}.
Then, for any hyper-rectangle (a, b] in [0, 1]d, define its C-volume as

∆(a,b]C =
∑

i∈{0,1}d
(−1)

∑d
j=1 ijC

(
ai11 b

1−i1
1 , . . . , aidd b

1−id
d

)
,

where the summation is taken over all 2d-many vectors i = (i1, . . . , id) for i1, . . . , id ∈ {0, 1}.
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If it holds that

∆(a,b]C ≥ 0 for all a, b ∈ [0, 1]d, a ≤ b,

then C is called d-increasing.

Now, we consider a random vector (X1, . . . , Xd) and suppose that the marginal cumulative dis-
tribution functions Fi(x) = Pr[Xi ≤ x], i = 1, . . . , d, are continuous. Then, by applying the
probability integral transform (see Lemma A.1) to each component, the random vector

(U1, . . . , Ud) = (F1(X1), . . . , Fd(Xd))

has uniformly distributed marginals on the closed interval [0, 1]. The copula C of (X1, . . . , Xd) is
now defined as the joint cumulative distribution function of (U1, . . . , Ud):

C(u1, . . . , ud) = Pr[U1 ≤ u1, . . . , Ud ≤ ud]. (3.1)

The copula C now contains all information on the dependence structure between the components
of (X1, . . . , Xd), whereas the marginal cumulative distribution functions Fi contain all information
on the marginal distributions. The importance of the way copulas are defined above is that the
procedure can be reversed to generate pseudo-random samples from general classes of multivariate
probability distributions. Specifically, given a sample (U1, . . . , Ud) from the copula distribution
generated with the above procedure, the required sample from the multivariate probability distri-
bution can be constructed as:

(X1, . . . , Xd) = (F−11 (U1), . . . , F−1d (Ud)).

Note that the inverse functions F−1i do not cause problems since the marginal cumulative distri-
bution functions Fi were assumed to be continuous. Formula (3.1) can now be rewritten as:

C(u1, . . . , ud) = Pr[F1(X1) ≤ u1, . . . , Fd(Xd) ≤ ud]
= Pr[X1 ≤ F−11 (u1), . . . , Xd ≤ F−1d (ud)].

The above derivation leads to Sklar’s theorem, which provides the theoretical foundation of the
application of copulas.

Theorem 3.1. (Sklar’s theorem).

1. For any d-dimensional distribution function H with univariate marginals F1, . . . , Fd, there
exists a d-dimensional copula C such that

H(x1, . . . , xd) = C (F1(x1), . . . , Fd(xd)) , (x1, . . . , xd) ∈ Rd. (3.2)

If all marginals F1, . . . , Fd are continuous, the copula C is uniquely defined and given by

C(u1, . . . , ud) = H
(
F−11 (u1), . . . , F−1d (ud)

)
(3.3)

2. Conversely, given a d-dimensional copula C and univariate distribution functions F1, . . . , Fd,
H defined by (3.2) is a d-dimensional distribution function with marginals F1, . . . , Fd and
“dependence structure” C.

Proof. See the proof of Theorem 2.2 of Rüschendorf (2009).

By Sklar’s theorem it is clear that copulas are those functions which combine the univariate
marginals F1, . . . , Fd to form the d-dimensional distribution function H. For estimation of H
from data, this offers great flexibility as it allows one to model the marginals separately from the
dependence structure. Copulas are thus exactly the functions to investigate if one is interested in
the dependence structure between the components of a random vector.

A copula is a multivariate distribution function and if it is continuous the corresponding density
function is defined by

c(u1, . . . , ud) =
∂d

∂u1 . . . ∂ud
C(u1, . . . , ud) (3.4)
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When we assume that f1, . . . , fd are the univariate marginal densities corresponding to F1, . . . , Fd,
we have by (3.2) and (3.4) that

h(x1, . . . , xd) = c (F1(x1), . . . , Fd(xd)) · f1(x1) · . . . · fd(xd) (3.5)

Furthermore, since copulas are able to describe correlation of a multivariate distribution, they are
bounded by an upper and lower bound. These bounds are called the Fréchet-Hoeffding bounds
and they are one of the cornerstones of copula theory. These bounds are comparable to the +1
and −1 bounds of the linear correlation coefficient.

Theorem 3.2. (Fréchet-Hoeffding bounds). For any d-dimensional copula C,

W (u) ≤ C(u) ≤M(u), u ∈ [0, 1]d,

where

W (u) = max


d∑
j=1

uj − d+ 1, 0

 and M(u) = min
1≤j≤d

{uj}, u ∈ [0, 1]d.

Proof. See the proof of Proposition 1 of Genest et al. (1999).

Note that W is a copula only if d = 2, whereas M is a copula for all d ≥ 2.

3.2 Copula families

Multivariate data often exhibit several characteristic properties that should be described as pre-
cisely as possible using a multivariate distribution function. Therefore, there exist various copula
families that are able to express specific distributional characteristics like heavy tails or asymmetry.
It is crucial to choose the right copula family for a given data set in order to receive a well-fitting
model that covers the characteristic properties of the data. In this section the most popular and
commonly used copulas will be described.

Definition 3.2. (Independence copula). One of the simplest copulas is the independence copula,
which corresponds to independent standard uniform components, defined by

Π(u) =

d∏
j=1

uj , u ∈ [0, 1]d.

3.2.1 Elliptical copulas
Elliptical copulas are among the most widely used copulas in practice, describing the dependence
of the multivariate normal distribution in terms of the Normal copula and the dependence of
the multivariate Student-t distribution in terms of the Student-t copula. The main advantage
of elliptical copulas is that they are able to describe different levels of correlation between the
components. The disadvantages are that they do not have closed form expressions and that they
are restricted to have radial symmetry. Due to their implicit construction by Sklar’s theorem,
properties of elliptical copulas can be derived from the properties of the corresponding elliptical
distributions. For detailed properties and results about elliptical distributions, see, e.g., Fang
(2018). The general density function of an elliptical distribution is given by

fg(x) = |Σ|−1/2g
(

(x− µ)
T

Σ−1 (x− µ)
)
, x ∈ Rd.

By declaring the function g(t) it is possible to define some well-known density functions. For
instance, taking g(t) = (2π)−d/2 exp{−t/2} results in the multivariate normal distribution, and
taking g(t) = c (1 + t/ν)

−(d+ν)/2 where c is a constant, results in the multivariate Student-t distri-
bution with ν degrees of freedom. The contour of such elliptical density functions has the form of
an ellipse. Now, by Hofert et al. (2018), we can define the corresponding elliptical copulas.
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Definition 3.3. (Normal copula). The d-dimensional Normal copula CnP is the copula obtained
by Sklar’s theorem from the multivariate normal distribution Nd(0, P ) with correlation matrix P .
If ΦP denotes the distribution function of the latter, we have

CnP (u) = ΦP
(
Φ−1(u1), . . . ,Φ−1(ud)

)
, u ∈ [0, 1]d, (3.6)

where Φ−1 denotes the quantile function of N (0, 1).

When P is positive definite, the corresponding copula density function is denoted by

cnP (u) =
ϕP
(
Φ−1(u1), . . . ,Φ−1(ud)

)∏d
j=1 ϕ (Φ−1(uj))

, u ∈ (0, 1)d.

Bivariate copulas are often easy to interpret and visualize and, they are used in constructing vine
copulas. Therefore, we consider the bivariate Normal copula by setting d = 2. Formula (3.6) now
simplifies to

CnP (u1, u2) = ΦP
(
Φ−1(u1),Φ−1(u2)

)
, 0 ≤ u1, u2 ≤ 1,

where ΦP denotes the distribution function of the bivariate normal distribution N2(0, P ) with

correlation matrix P =

(
1 ρ
ρ 1

)
, where ρ is Pearson’s correlation coefficient that measures linear

correlation between two variables. For more information on Pearson’s correlation coefficient, see
Section 3.3. Figure 3.1 shows the bivariate Normal copula for several parameters ρ.

Figure 3.1: Bivariate Normal copula for different parameters ρ.

Before we are able to define the Student-t copula, we need to define the multivariate Student-t
distribution.

Definition 3.4. (Multivariate Student-t distribution). Let Y and u be independent from each
other and distributed as N (0,Σ) and χ2

ν , respectively. Then,

X =
Y√
u
ν

+ µ

is said to be distributed as a multivariate Student-t distribution with location vector µ, scale matrix
Σ and degrees of freedom ν.

Definition 3.5. (Student-t copula). The d-dimensional Student-t copula CtP,ν is the copula ob-
tained by Sklar’s theorem from the multivariate Student-t distribution with location vector 0, scale
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matrix P and ν > 0. If TP,ν denotes the distribution function of the latter, we have

CtP,ν(u) = TP,ν
(
T−1ν (u1), . . . , T−1ν (ud)

)
, u ∈ [0, 1]d, (3.7)

where T−1ν denotes the quantile function of the univariate Student-t distribution with ν degrees of
freedom.

If P is positive definite, the corresponding copula density function is denoted by

ctP,ν(u) =
tP,ν

(
T−1ν (u1), . . . , T−1ν (ud)

)∏d
j=1 tν

(
T−1ν (uj)

) , u ∈ (0, 1)d.

For d = 2 we consider the bivariate Student-t copula, which simply follows from (3.7) and becomes

CtP,ν(u1, u2) = TP,ν
(
T−1ν (u1), T−1ν (u2)

)
, 0 ≤ u1, u2 ≤ 1,

where TP,ν denotes the distribution function of the bivariate Student-t distribution with location

vector 0, scale matrix P =

(
1 ρ
ρ 1

)
and ν > 0. Note that the bivariate Student-t copula has two

parameters instead of one, namely ρ and ν. Figures 3.2 and 3.3 show the bivariate Student-t copula
for various values of ρ and ν.

Figure 3.2: Bivariate Student-t copula for different parameters ρ.
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Figure 3.3: Bivariate Student-t copula for several degrees of freedom ν.

3.2.2 Archimedean copulas
Archimedean copulas are important in copula modeling since they can be constructed with ease and
they offer a wide choice of families and, therefore, many distributional properties can be covered.
Before we can define the general Archimedean copula we need to define the concept pseudo-inverse.

Definition 3.6. For a continuous and strictly decreasing function φ : [0, 1]→ [0,∞) with φ(1) = 0,
the pseudo-inverse is defined as

φ[−1](t) =

{
φ−1(t), 0 ≤ t ≤ φ(0),

0, φ(0) ≤ t ≤ ∞.

The pseudo-inverse of φ is continuous, non-increasing on [0,∞) and even strictly decreasing on
[0, φ(0)]. Furthermore, it holds that

φ
(
φ[−1](t)

)
=

{
t, 0 ≤ t ≤ φ(0),

φ(0), φ(0) ≤ t ≤ ∞,

and on [0, 1] it holds that φ[−1] (φ(u)) = u. Additionally, we have that φ[−1] = φ−1 if φ(0) =∞.

Now, we have all the information we need to define the general Archimedean copula.

Definition 3.7. (Archimedean copula). Let φ be a function as defined above and let φ[−1] be its
pseudo-inverse. Then, a d-dimensional Archimedean copula is a copula of the form

Cθ(u) = φ[−1] (φ(u1) + . . .+ φ(ud)) , u ∈ [0, 1]d, (3.8)

where φ is the so-called generator of the copula.

Again, we set the dimension d = 2 and, by (3.8), a bivariate Archimedean copula is defined as

Cθ(u1, u2) = φ[−1] (φ(u1) + φ(u2)) , 0 ≤ u1, u2 ≤ 1. (3.9)

By choosing appropriate generators φ we can define various families in the extensive class of
Archimedean copulas. Within these families we can distinguish by a different choice of the pa-
rameter θ. In this section we only discuss the most important Archimedean copulas. Many more
families are described in Nelsen (2007) and Joe (2014).
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Definition 3.8. (Clayton copula). The Clayton family is defined by the generator

φθ(t) = 1
θ

(
t−θ − 1

)
where θ ∈ [−1,∞) \ {0}. The bivariate Clayton copula is

Ccθ(u1, u2) =
[
max

{
u−θ1 + u−θ2 − 1, 0

}]− 1
θ , 0 ≤ u1, u2 ≤ 1. (3.10)

Figure 3.4 exemplifies the bivariate Clayton copula for various parameters θ. From the figure it
becomes clear that the Clayton copula is asymmetric, exhibiting greater dependence in the negative
tail than in the positive tail.

Figure 3.4: Bivariate Clayton copula for various parameters θ.

Definition 3.9. (Gumbel copula). The Gumbel family is defined by the generator φθ(t) = (− ln t)θ

where θ ∈ [1,∞). The bivariate Gumbel copula is

Cgθ (u1, u2) = exp
{
−
[
(− lnu1)θ + (− lnu2)θ

] 1
θ

}
, 0 ≤ u1, u2 ≤ 1. (3.11)

Figure 3.5 illustrates the bivariate Gumbel copula for various parameters θ. From the figure it
becomes clear that the Gumbel copula is asymmetric, exhibiting greater dependence in the positive
tail than in the negative tail.

30



Figure 3.5: Bivariate Gumbel copula for different parameters θ.

Definition 3.10. (Frank copula). The Frank family is defined by the generator φθ(t) = − ln
(
e−θt−1
e−θ−1

)
where θ ∈ (−∞,∞) \ {0}. The bivariate Frank copula is

Cfθ (u1, u2) = −1

θ
ln

(
1 +

(
e−θu1 − 1

) (
e−θu2 − 1

)
e−θ − 1

)
, 0 ≤ u1, u2 ≤ 1. (3.12)

Figure 3.6 shows the bivariate Frank copula for various parameters θ.

Figure 3.6: Bivariate Frank copula for several parameters θ.

3.3 Rank correlation

From the application point of view, it is often desirable to summarize the dependence between
components of a random vector by a real number. Such numerical summaries of dependence are
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known as measures of association and are mostly studied in the bivariate case. In this section
several measures of association are discussed, based on Hofert et al. (2018) and Mühlig (2017).

Recall that one widely known measure of association is Pearson’s (or the linear) correlation coef-
ficient defined, for a random vector (X1, X2) whose components have finite variances, by

ρ(X1, X2) =
Cov(X1, X2)√

Var(X1)
√

Var(X2)
(3.13)

The most important properties of Pearson’s correlation coefficient are summarized below.

1. −1 ≤ ρ(X1, X2) ≤ 1.

2. If X1 and X2 are independent, then ρ(X1, X2) = 0.

3. For any a1 > 0, a2 > 0, or any a1 < 0, a2 < 0, and for any b1, b2 ∈ R,

ρ(a1X1 + b1, a2X2 + b2) = ρ(X1, X2).

4. In particular, Pearson’s correlation coefficient is invariant under strictly increasing linear
transformations.

The use of Pearson’s correlation coefficient as a measure of association, however, involves some
severe limitations:

1. ρ(X1, X2) does not exist for all random vectors (X1, X2) (only for those with finite second
moments).

2. ρ(X1, X2) depends on the marginal distribution functions of (X1, X2), even when the latter
are continuous. The correlation can thus not be expressed in terms of the unique underlying
copula alone. We explain this by Sklar’s theorem. As a consequence of Sklar’s theorem,
all the dependence information between two continuous random variables is captured by the
underlying copula. If we keep the copula unchanged, and hence the dependence unchanged,
we can change ρ according to (3.13) by simply changing one of the marginals.

3. ρ(X1, X2) is not invariant under strictly increasing transformations in general.

By only depending on the underlying copula in the case of continuous random vectors, rank cor-
relation coefficients overcome the aforementioned limitations of Pearson’s correlation coefficient.
We elaborate on the two best-known examples of rank correlation measures: Kendall’s tau and
Spearman’s rho.

Definition 3.11. (Kendall’s tau, Spearman’s rho). Let (X1, X2) be a bivariate random vector with
continuous marginal distribution functions F1 and F2.

1. Spearman’s rho is defined by

ρs(X1, X2) = ρ(F1(X1), F2(X2)),

where ρ is Pearson’s correlation coefficient.

2. Let (X ′1, X
′
2) be an independent copy of (X1, X2). Kendall’s tau is defined by

τ(X1, X2) = Pr[(X1 −X ′1) (X2 −X ′2) > 0]− Pr[(X1 −X ′1) (X2 −X ′2) < 0].

Lemma A.19 provides representations of Kendall’s tau and Spearman’s rho in terms of the under-
lying copula C, namely

τ(C) = 1− 4

∫
[0,1]2

∂

∂u1
C(u1, u2)

∂

∂u2
C(u1, u2)du1du2,

and

ρs(C) = 12

∫
[0,1]2

C(u1, u2)du1du2 − 3.

From these expressions it becomes clear that Kendall’s tau and Spearman’s rho only depend on
the underlying copula C, and thus not on the marginals F1 and F2. Therefore, we can conclude
that Kendall’s tau and Spearman’s rho
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1. always exist.

2. are invariant under strictly increasing transformations.

3. can reach any value in [−1, 1].

From a copula modeling point of view, one advantage of Kendall’s tau over Spearman’s rho is that
there are analytical formulas known for the classes of elliptical and Archimedean copulas. For a
detailed comparison of these rank correlation measures, see Nelsen (2007, Section 5.1.3).

3.4 Parameter estimation

In order to fit the correct copula family to cover characteristic properties of the data, one has to
estimate the unknown parameters of the copula model based on the available data. In this section
we only briefly describe two methods which are often used in practice.

First, we describe the method of maximum likelihood estimation based on the exposition in Choroś
et al. (2010). Recall formula (3.5), which states that the density h of the d-dimensional distribution
function H with univariate marginals F1, . . . , Fd and corresponding univariate densities f1, . . . , fd
can be represented as

h(x1, . . . , xd) = c (F1(x1), . . . , Fd(xd))

d∏
i=1

fi(xi),

where c(u1, . . . , ud) is the density of the d-dimensional copula C(u1, . . . , ud) as defined in (3.4). We
consider a random sample of (i.i.d.) vectors x(j) =

(
x
(j)
1 , . . . , x

(j)
d

)
, j = 1, . . . , n, with the density h.

Furthermore, we assume that the copula C belongs to a family of copulas indexed by a parameter
θ : C = C(u1, . . . , ud; θ), and the marginals Fi and the corresponding densities fi are indexed by
parameters αi : Fi = Fi(xi;αi), fi = fi(xi;αi). The parameter vector (α1, . . . , αd, θ) can then be
estimated by the maximum likelihood estimator, that is, the maximizer

(
α̂ML
1 , . . . , α̂ML

d , θ̂ML
)
of

the log-likelihood function

` (α1, . . . , αd, θ) =

n∑
j=1

log c
(
F1

(
x
(j)
1 ;α1

)
, . . . , Fd

(
x
(j)
d ;αd

)
; θ
)

+

d∑
i=1

n∑
j=1

log fi

(
x
(j)
i ;αi

)
.

In practice, the marginal distributions are often unknown and, therefore, we have to adapt the
above parametric method. One solution is to use a semiparametric approach that is based on the
pseudo-maximum likelihood. In this approach the marginals Fi are replaced by non-parametric
estimators F̂i, which could be the empirical distribution functions, for instance. As a result, the
parameter θ can be estimated by the pseudo-maximum likelihood estimator, that is, the maximizer
θ̂PML of the log-likelihood function

` (θ) =

n∑
j=1

log c
(
F̂1

(
x
(j)
1

)
, . . . , F̂d

(
x
(j)
d

)
; θ
)
.

An alternative method to estimate the copula parameters is the use of rank correlation coefficients
which are introduced in Section 3.3. These rank correlation coefficients are particularly useful for
bivariate copulas with only one parameter to estimate. As shown in Hofert et al. (2018, Section
4.1.2), it is often possible to define an explicit function between the copula parameters and rank
correlation coefficients. This relation can be used to estimate the copula parameter directly by
the estimated correlation. For instance, if we consider bivariate copula families and Kendall’s tau,
Table 3.1 shows some of the relations that hold.

Family Normal Student-t Clayton Gumbel

Parameter ρ̂ = sin
(
π
2 τ̂
)

ρ̂ = sin
(
π
2 τ̂
)

θ̂ = 2τ̂
1−τ̂ θ̂ = 1

1−τ̂

Table 3.1: Estimation of copula parameters with Kendall’s tau.
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3.5 Vine copulas

It should be clear that for the bivariate case, there exist many well-investigated copula families
which can be used in order to find the best-fitting copula model. For higher dimensions, however,
the choice of usable copula families is somewhat limited, since these copula families are restrictive
in terms of flexibility and dependence modeling. To overcome this drawback, we will make use of
vine copulas which provide a flexible graphical model for describing multivariate copulas composed
of a cascade of bivariate copulas, so-called pair-copulas. The main idea of this construction is to
decompose a multivariate probability density into blocks of pair-copulas, where each pair can be
chosen independently from the others (see, e.g., Brechmann and Schepsmeier (2013)).

3.5.1 Pair-copula decomposition
Vines are a graphical representation to specify pair-copula as introduced by Aas et al. (2009). We
consider a vectorX = (X1, . . . , Xn) of random variables with a joint density function f(x1, . . . , xn).
This density can be decomposed as

f(x1, . . . , xn) = fn(xn) · fn−1(xn−1|xn) · fn−2(xn−2|xn−1, xn) · . . . · f1(x1|x2, . . . , xn).
(3.14)

For the bivariate case it holds by (3.5) that

f(x1, x2) = c12 (F1(x1), F2(x2)) · f1(x1) · f2(x2),

where c12 is the appropriate pair-copula density for the pair of transformed variables F1(x1) and
F2(x2). It now simply follows that, if f2(x2) 6= 0,

f1(x1|x2) = c12 (F1(x1), F2(x2)) · f1(x1), (3.15)

for the same pair-copula. The density decomposition (3.14) now becomes

f(x1, x2) = f2(x2) · c12 (F1(x1), F2(x2)) · f1(x1),

which turns out to be trivial.

Similarly, for three random variables X1, X2 and X3 we have that

f2(x2|x3) = c23 (F2(x2), F3(x3)) · f2(x2),

where c23 is the appropriate pair-copula density for the pair of transformed variables F2(x2) and
F3(x3). Furthermore,

f1(x1|x2, x3) = c12|3 (F (x1|x3), F (x2|x3)) · f1(x1|x3), (3.16)

where c12|3 is the appropriate pair-copula density for the pair of transformed variables F (x1|x3)
and F (x2|x3). Alternatively, (3.16) can be decomposed as

f1(x1|x2, x3) = c13|2 (F (x1|x2), F (x3|x2)) · f1(x1|x2), (3.17)

where c13|2 is different from the pair-copula c12|3. We can decompose (3.17) further by using (3.15),
which leads to

f1(x1|x2, x3) = c13|2 (F (x1|x2), F (x3|x2)) · c12 (F1(x1), F2(x2)) · f1(x1),

where two pair-copulas are present. The density decomposition (3.14) now becomes

f(x1, x2, x3) = f3(x3) · f2(x2|x3) · f1(x1|x2, x3)

= f3(x3) · c23 (F2(x2), F3(x3)) · f2(x2)

· c13|2 (F (x1|x2), F (x3|x2)) · c12 (F1(x1), F2(x2)) · f1(x1).

It has now become clear that each term in (3.14) can be decomposed into the appropriate pair-
copula times a (conditional) marginal density. In this way we can iteratively construct a product
of pair-copulas and marginal densities for the joint density function.
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In general, for a d-dimensional vector υ, it holds that

fx(x|υ) = cxυj |υ−j (F (x|υ−j) , F (υj |υ−j)) · fx(x|υ−j),

where υj is one arbitrarily chosen component of υ and υ−j denotes the vector υ, excluding the
component υj . In this decomposition we use marginal conditional distributions of the form F (x|υ).
Joe (1996) showed that, for every j,

F (x|υ) =
∂Cx,υj |υ−j (F (x|υ−j) , F (υj |υ−j))

∂F (υj |υ−j)
, (3.18)

where Cij|k is a bivariate copula distribution function. If υ is univariate, (3.18) becomes

F (x|υ) =
∂Cx,υ (F (x), F (υ))

∂F (υ)
.

If x and υ are uniform, this conditional distribution function can simply be expressed as

h(x, υ,Θ) = F (x|υ) =
∂Cx,υ(x, υ,Θ)

∂υ
, (3.19)

where the second parameter of h always corresponds to the conditioning variable and Θ denotes
the set of parameters for Cx,υ.

3.5.2 Vines
The decomposition of a multivariate density from Section 3.5.1, however, is not unambiguous.
Therefore, a graphical model which is able to distinguish between the possibilities is needed (see,
e.g., Brechmann and Schepsmeier (2013)). For this purpose, Bedford and Cooke (2002) introduced
the model of regular vines, so-called R-vines, which are based on a set of trees. For a random vector
consisting of d components, we obtain a d-dimensional vine. This vine can then be represented as
a set of d − 1 trees with d(d − 1)/2 edges in total, where each edge stands for the corresponding
pair-copula density. In general, the nodes of a tree are equivalent to the edges of the tree above.
There is, however, one exception to this rule that only applies to the first tree. Namely, the nodes
of the first tree are represented by the d variables. In order to get an idea of what such R-vine could
look like, a possible graphical representation of a 5-dimensional R-vine is shown in Figure 3.7.

Figure 3.7: Possible 5-dimensional R-vine tree structure.
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The above figure shows a possible R-vine for a 5-dimensional vector, consisting of four trees. The
first tree simply consists of the nodes 1, 2, 3, 4, 5. Subsequently, the second tree is constructed such
that the nodes are the edges of the first tree. Then, the third tree is constructed in such a way that
the nodes are the edges of the second tree. This procedure is repeated until the fourth and final
tree, in which only one edge is left. The edge label describes the index of the corresponding pair-
copula density. For instance, the node (4, 5; 2, 3) of the fourth tree is equivalent to the bottom-left
edge of the third tree, which represents the copula density of the fourth and fifth variable given
the values of the second and third variable, denoted as c4,5|2,3.

Following Bedford and Cooke (2002) we are able to define vines and R-vines in a mathematical
way.

Definition 3.12. (Vine.) If

1. V = (T1, . . . , Tm) where Ti is a tree.

2. T1 has nodes N1 = {1, . . . , n} and a set of edges denoted by E1.

3. For i = 2, . . . ,m, Ti has nodes Ni ⊂ N1 ∪ E1 ∪ E2 ∪ · · · ∪ Ei−1 and an edge set Ei.

hold, then V is called a vine on n elements.

Definition 3.13. (R-vine.) If

1. m = n.

2. Ti is a connected tree with edge set Ei and n− i+ 1 nodes where Ni = Ei−1, for i = 1, . . . , n.

3. For i = 2, . . . , n− 1, if a = {a1, a2} and b = {b1, b2} are two nodes in Ni linked with an edge,
then the number of elements in a ∩ b = 1.

hold, then V is called an R-vine on n elements.

Following Czado (2010) we denote the edges in tree Ti by jk|D where j < k and D is the condition-
ing set. If the conditioning set D is empty, the edge is simply denoted by jk. The notation of an
edge e in tree Ti will depend on the two adjacent nodes and, hence, on the two edges in Ti−1 that
have a common node. We now denote these edges by a = j(a), k(a)|D(a) and b = j(b), k(b)|D(b),
where we define V (a) := {j(a), k(a), D(a)} and V (b) := {j(b), k(b), D(b)}, respectively. The edges
a and b in tree Ti−1 are nodes in tree Ti connected by the edge e = j(e), k(e)|D(e), where

j(e) := min {i : i ∈ (V (a) ∪ V (b)) \D(e)}
k(e) := max {i : i ∈ (V (a) ∪ V (b)) \D(e)}
D(e) := V (a) ∩ V (b).

Furthermore, there exist two special cases of R-vine structures. First, an R-vine is called drawable
vine, or so-called D-vine, if in each tree there exist two edges for each node at most. Second, an
R-vine is called canonical vine, or so-called C-vine, if in each tree there exists one unique node
with the number of edges equal to the total number of nodes in that particular tree, minus one.
In order to clarify these descriptions, a possible graphical representation of a 5-dimensional D-vine
and C-vine is shown in Figures 3.8 and 3.9, respectively.

36



Figure 3.8: Possible 5-dimensional D-vine tree structure.

Figure 3.9: Possible 5-dimensional C-vine tree structure.

We are now able to properly construct a statistical model on an R-vine tree with nodes N :=
{N1, . . . , Nd−1} and edges E := {E1, . . . , Ed−1} based on Czado (2010). Each edge e = j(e), k(e)|D(e)
in Ei corresponds with a bivariate copula density cj(e),k(e)|D(e). Subsequently, let XD(e) be the
subvector of X indicated by the indices contained in D(e). Now, a vine distribution is defined as
the distribution of the random vector X = (X1, . . . , Xd) with marginal densities fi, i = 1, . . . , d,
and the conditional density of

(
Xj(e), Xk(e)

)
given the variables XD(e) specified as cj(e),k(e)|D(e) for
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the R-vine tree with nodes N and edges E . By Kurowicka and Cooke (2006) we know that the
joint density of X is uniquely determined and expressed by

f(x1, . . . , xd) =

d∏
r=1

f(xr) ·
d−1∏
i=1

∏
e∈Ei

cj(e),k(e)|D(e)

(
F
(
xj(e)|xD(e)

)
, F
(
xk(e)|xD(e)

))
, (3.20)

where xD(e) is the subvector of x indicated by the indices contained in D(e).

Furthermore, by Aas et al. (2009) we are able to express the joint density of X corresponding to
a D-vine or C-vine tree. Regarding the D-vine structure, it holds that

f(x1, . . . , xd) =

d∏
r=1

f(xr) ·
d−1∏
j=1

d−j∏
i=1

ci,i+j|i+1,...,i+j−1

(F (xi|xi+1, . . . , xi+j−1), F (xi+j |xi+1, . . . , xi+j−1)) ,

where index j identifies the trees, while index i runs over the edges in each tree.

And finally, for the C-vine structure, we have that

f(x1, . . . , xd) =

d∏
r=1

f(xr) ·
d−1∏
j=1

d−j∏
i=1

cj,j+i|1,...,j−1 (F (xj |x1, . . . , xj−1), F (xj+i|x1, . . . , xj−1)) .

3.5.3 Model selection
To select the best-fitting vine copula model for a given dataset, we must process the following
separate points. First, we have to select the R-vine structure, i.e., selecting which pairs of variables
to use. Second, we have to choose a bivariate copula family for each selected pair. And finally,
we need to estimate the parameters for each pair-copula. These steps can be done based on a
sequential, heuristic method proposed by Dissmann et al. (2013). The structure of the tree is
basically determined by spanning trees with an edge weight represented by, for instance, Kendall’s
tau or Spearman’s rho. The procedure based on Kendall’s tau starts at the first tree T1 = (N1, E1),
where the term

max
∑

e={j,k} in spanning tree

|τ̂j,k|

must be solved and the resulting is selected. Note that the tree is selected in such a way that the
chosen pairs model the strongest pairwise dependencies present. When the first tree structure is
selected, we can choose an appropriate bivariate copula family for each edge of the tree by means of
the AIC. Alternatively, one could use the BIC or cAIC as decision criterion or a goodness-of-fit test
can be performed. Besides that, the independence copula is selected if independence is reasonable
to assume by tests based on, for instance, Kendall’s tau. Subsequently, we are able to estimate the
parameters for each pair-copula in the tree with the methods described in Section 3.4. Next, the
data is transformed using the fitted copula and (3.19). Now, we move forward to the next tree and
repeat the steps. A small remark is that for the remaining trees Ti, i = 2, . . . , n− 1, Kendall’s tau
must be determined for the conditional variable pairs, so the corresponding optimization problem
becomes

max
∑

e={j,k|D} in spanning tree

|τ̂j,k|D|,

where D is the conditioning set. In the end, we have defined all trees in order to construct a
suitable R-vine model.

3.5.4 Matrix representation
The graphical model of vine copulas is not feasible for statistical algorithms, as storage of the trees is
too expensive and too complicated. Therefore, a convenient way of representing an R-vine structure
is to use matrix notation. In this subsection we introduce the R-vine matrix representation based on
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the notation and definitions of Dissmann et al. (2013). Before we formally define an R-vine matrix
we need to introduce the following two sets. For a lower-triangular matrix M = (mi,j)i,j=1,...,n set
for i = 1, . . . , n− 1,

BM (i) := {(mi,i, D)|k = i+ 1, . . . , n;D = {mk,i, . . . ,mn,i}} ,

B̃M (i) := {(mk,i, D)|k = i+ 1, . . . , n;D = {mi,i} ∪ {mk+1,i, . . . ,mn,i}} .

Definition 3.14. (R-vine matrix). A lower triangular matrix M = (mi,j)i,j=1,...,n is an R-vine
matrix if for i = 1, . . . , n− 1 and for all k = i+ 1, . . . , n− 1 there is an j ∈ {i+ 1, . . . , n− 1} with

(mk,i, {mk+1,i, . . . ,mn,i}) ∈ BM (j) or ∈ B̃M (j).

From the above definition it can be shown that every column contains all elements from the
column to the right, i.e., {mi,i, . . . ,mn,i} ⊂ {mj,j , . . . ,mn,j} for 1 ≤ j < i ≤ n. Furthermore,
there is a different element on the diagonal in every column, i.e., mi,i /∈ {mi+1,i+1, . . . ,mn,i+1} for
i = 1, . . . , n− 1.

In order to fully describe an R-vine we need two additional matrices T = (ti,j)i,j=1,...,n and
P = (pi,j)i,j=1,...,n that contain information about the families and parameters of the pair-copulas,
respectively. For all j = 1, . . . , n− 1, i = j + 1, . . . , n, the entry mi,j represents the pair-copula of
the variables indexed by mj,j and mi,j conditional on the variables indexed by {mi+1,j , . . . ,mn,j},
ti,j represents the family corresponding to this copula and pi,j contains the parameters of this
copula.

For instance, if we look at the R-vine from Figure 3.7, the corresponding matrices are

M =


5 0 0 0 0
1 4 0 0 0
4 1 3 0 0
2 2 1 2 0
3 3 2 1 1

 , T =


0 0 0 0 0
t21 0 0 0 0
t31 t32 0 0 0
t41 t42 t43 0 0
t51 t52 t53 t54 0

 , P =


0 0 0 0 0
p21 0 0 0 0
p31 p32 0 0 0
p41 p42 p43 0 0
p51 p52 p53 p54 0


First, consider the red circled elements. Here, the copula with conditioned variables indexed
by {5, 4} and conditioning variables indexed by {2, 3}, i.e., c5,4|23, has copula family t31 with
corresponding parameter p31. Then, consider the green circled elements. The copula c3,2 belongs
to the family t53 and has parameter p53.

Furthermore, we consider the two examples of a possible D-vine and C-vine as illustrated in
Figures 3.8 and 3.9, respectively. The R-vine matrix corresponding to the D-vine structure is
given by

M =


5 0 0 0 0
1 4 0 0 0
2 1 3 0 0
3 2 1 2 0
4 3 2 1 1

 ,

and the R-vine matrix corresponding to the C-vine structure is denoted by

M =


5 0 0 0 0
4 4 0 0 0
3 3 3 0 0
2 2 2 2 0
1 1 1 1 1

 .

By means of the three matrices M , T and P we are able to store all necessary information of an
R-vine distribution in a convenient way. Subsequently, we can determine the joint density of the
R-vine specification by an algorithm, which can be found in Dissmann et al. (2013).
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3.6 Summary

• Copula modeling is robust against non-normal multivariate data.
• Elliptical copulas are widely used and they are able to specify different levels of cor-
relation between the components.

• Archimedean copulas are very popular as they can be constructed with ease and they
can express many distributional properties.

• For bivariate copulas there often exists an explicit relation between the parameters
and rank correlation coefficients.

• Vine copula structures provide a flexible model for copulas in dimension ≥ 3.
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4 | Monitoring approach

In Chapter 2 we briefly described the Shewhart chart for individual observations, which is a uni-
variate monitoring method. As stated in Chapter 1, most processes require multivariate monitoring
methods to take into account possible dependencies between the components under investigation.
To this purpose, we first discuss two conventional multivariate monitoring approaches in this chap-
ter, namely the Hotelling T 2 chart and the MCUSUM chart. These approaches, however, rely on
assumptions that are hardly ever satisfied in practice. To overcome these limitations, we explain
the modern vine copula-based monitoring method based on Mühlig (2017). The performance of this
vine copula-based approach compared to the conventional methods will be thoroughly analyzed in
the next chapter.

4.1 Hotelling T 2 control chart

The Hotelling T 2 chart is one of the most, if not the most, popular control chart for multivariate
monitoring. In this section we briefly describe the Hotelling T 2 chart following the exposition in Qiu
(2013, Chapter 7). We assume that we have a random sample (X1, . . . , Xn) from a p-dimensional
population with the distribution Np(µ,Σ). Furthermore, let X and S2 denote the sample mean
and sample covariance matrix, respectively. Then, the random variable

T 2 = n
(
X− µ

)T (
S2
)−1 (

X− µ
)

is called the Hotelling’s T 2 statistic, which is basically a generalization of the univariate t-test
statistic. The T 2 statistic was first applied for multivariate SPC by Hotelling (1947). For the
phase I problem, we assume that we have a phase I dataset (X1, . . . , XM ) obtained from a p-
dimensional process. We assume that the phase I data is representative for the actual in-control
process and that it follows the distribution Np(µ0,Σ0). If µ0 and Σ0 are known, we consider the
statistic

T 2
0,i = (Xi − µ0)

T
Σ−10 (Xi − µ0) , (4.1)

where i denotes the i-th time point.

When the process is in-control at the i-th time point, it holds that

T 2
0,i ∼ χ2

p,

and, typically, the chart signals when

T 2
0,i > χ2

1−α,p, (4.2)

where α ∈ [0, 1] is a given significance level and χ2
1−α,p is the (1 − α)-th quantile of the χ2

p

distribution. In this setup, if we assume that all observations are independent and the process is
in-control, the average in-control run length is equal to 1/α. The average in-control run length is
simply the average number of observations which are being measured until a false alarm occurs,
see Section 5.1.

In practice, however, the values of µ0 and Σ0 are rarely known and they need to be estimated
by the sample mean X and the sample covariance matrix S2. Subsequently, the charting statistic
becomes

T 2
1,i =

(
Xi −X

)′ (
S2
)−1 (

Xi −X
)
.
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By Tracy et al. (1992) we know that

M

(M − 1)2
T 2
1,i ∼ Beta(p/2, (M − p− 1)/2),

and, therefore, the chart would give a signal when

T 2
1,i >

(M − 1)2

M
Beta1−α(p/2, (M − p− 1)/2),

where α ∈ [0, 1] is a given significance level and Beta1−α(p/2, (M − p − 1)/2) is the (1 − α)-th
quantile of the Beta(p/2, (M − p− 1)/2) distribution.

Then, for the phase II problem we assume that X1, X2, . . . are incoming observations obtained
from a p-dimensional process with in-control distribution Np(µ0,Σ0). In case both µ0 and Σ0 are
known, we can simply use the chart (4.1)-(4.2) for online monitoring. In most cases both µ0 and Σ0

are unknown and they must be estimated from an in-control dataset. We assume that we have an
in-control sample ofM observations, and µ0 and Σ0 are estimated by the sample mean and sample
covariance matrix denoted as µ̂0 and Σ̂0, respectively. Then, we can use the following statistic

T 2
2,i = (Xi − µ̂0)

T
Σ̂−10 (Xi − µ̂0) ,

where i denotes the i-th point in time.

When the process is in-control at the i-th time point, Tracy et al. (1992) have shown that

(M − p)M
p(M − 1)(M + 1)

T 2
2,i ∼ Fp,M−p,

where Fp,M−p denotes the F distribution with the numerator degrees of freedom p and the denom-
inator degrees of freedom M − p. Typically, the resulting chart gives a signal when

T 2
2,i >

p(M − 1)(M + 1)

(M − p)M
F1−α,p,M−p,

where F1−α,p,M−p is the (1− α)-th quantile of the Fp,M−p distribution.

4.2 MCUSUM control chart

The Hotelling T 2 chart uses test statistics for a given time point which only depend on the observed
data at that particular time point. Just as in the univariate case, such control charts are effective
for detecting relatively large and transient shifts. In this section we introduce the multivariate
CUSUM (MCUSUM) control chart, which seems to be more effective for detecting relatively small
and persistent shifts (see, e.g., Qiu (2013)). There exist many different versions of the MCUSUM
control chart. In this section we only focus on one particular version that receives much attention
in literature, namely the chart proposed by Crosier (1988) since this chart is demonstrably effective
for detecting shifts in the process mean. Alternative versions of the MCUSUM chart can be found
in Qiu (2013, Chapter 7). We will only discuss the phase II problem as these charts are typically
used in phase II analysis, although they can also be used in phase I analysis.

We assume that X1, X2, . . . are phase II observations obtained from a p-dimensional process with
in-control distribution Np(µ0,Σ0), where both µ0 and Σ0 are known. The charting statistic Cn,
for n ≥ 1, depends on the n-th observation as well as earlier observations and is defined as follows.
Let

Un =

{
0, if Yn ≤ k
(Un−1 +Xn − µ0)(1− k/Yn), otherwise,

where U0 = 0, k > 0 is an allowance constant, and

Yn =
[
(Un−1 +Xn − µ0)

T
Σ−10 (Un−1 +Xn − µ0)

]1/2
.
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Furthermore, the chart signals at the n-th time point if

Cn =
(
UTn Σ−10 Un

)1/2
> h,

where h > 0 is the control limit chosen in order to reach a pre-specified in-control average run
length.

In cases where both µ0 and Σ0 are unknown, they can simply be estimated by the sample mean
µ̂0 and sample covariance matrix Σ̂0 of an in-control dataset. Furthermore, when we consider a
mean shift, k is usually set at 1

2δ where δ is the size of the shift in standard deviation units. Since
we obviously do not know the shift size in advance, the allowance parameter k should be chosen
such that we detect a desirable shift as soon as possible. If we want to quickly detect relatively
small shifts, we could for instance set k = 0.25. On the other hand, if we want to detect relatively
large shifts, an optimal choice could be to set k = 0.75. Once k is selected we should choose h to
reach the desired in-control average run length. For more information on the allowance parameter
k, see, e.g., Qiu (2013, Section 4.2.2).

4.3 Vine copula-based control chart

The conventional multivariate monitoring methods, like the ones described in the previous sections,
are based on the assumptions that observed values follow the multivariate normal distribution and
do not exhibit serial correlation. Real-life data sets almost never satisfy these assumptions and the
efficiency of these conventional methods will be harmed. Therefore, we introduce the modern vine
copula-based approach developed by Mühlig (2017) which is suitable for non-normal multivariate
data. The aim of the approach is to timely detect changes in the dependence structure of a
multivariate distribution, as well as changes in its mean or covariance matrix. This refreshing
approach focuses on combining vine copula structures with the SPC methodology and basically
extends the ideas of Baíllo and Cuevas (2006) and Verdier (2013).

4.3.1 Tolerance region approach
The basic idea of the vine copula-based monitoring approach follows Baíllo and Cuevas (2006).
We assume that the quality characteristics vector X =

(
X(1), . . . , X(d)

)
is a d-dimensional random

vector with continuous marginal distribution functions F1, . . . , Fd, which describes a d-dimensional
process independent over time. When the process is in-control, we assume that H and h denote
the in-control distribution function and density of X, respectively. When a change in the process
occurs, the process does no longer follow the in-control distribution and can be declared as out-
of-control. For each new observation, we have to decide whether it was generated from H (the
process is still in-control) or from G 6= H (the process is out-of-control). We base our decision on
a set of i.i.d. observations X1, . . . , Xn drawn from H. More specifically, we construct a tolerance
region by means of density level set estimation. If a new observation falls outside the tolerance
region, the process is statistically out-of-control. This tolerance region is constructed such that the
false alarm probability is equal to a pre-specified level α. Following Verdier (2013), the tolerance
region is defined as

D(cα) =
{
x ∈ Rd|h(x) ≥ cα

}
,

where cα satisfies

I = P [X ∈ D(cα)] =

∫
D(cα)

h(x)dx = 1− α.

In practice, the density function h is often unknown and has to be estimated. We assume for now
that the unknown function h can be estimated by hn. Then, the value cα will be estimated by cn,
which satisfies

In =

∫
{hn≥cn}

hn(x)dx = 1− α a.s.

Consequently, the estimated tolerance region is

Dn(cn) =
{
x ∈ Rd|hn(x) ≥ cn

}
.
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By this construction it follows that

P (hn(X) ≥ cn) = 1− α,

and therefore cn is the α-th quantile of hn(X). The main objective is to determine the value
of cn. Cadre et al. (2013) propose to use the α-th quantile of the empirical distribution of
hn(X1), . . . , hn(Xn) and the resulting estimator is denoted as ĉn. Furthermore, Verdier (2013) im-
proved the estimation and proposes to use an empirical quantile computed on N random variates
obtained from the estimated density hn, where N is a large number. For this purpose, let F̂hn(X)

be the distribution function of a random sample of hn(X), denoted by hn(X1,n), . . . , hn(XN,n).
Then, it holds that

F̂hn(X)(y) =
1

N

N∑
i=1

1 (hn (Xi,n) ≤ y) , (4.3)

where 1(·) is the indicator function.

Subsequently, the estimator of cα is obtained by

ĉN,n = inf
{
c ∈ R : F̂hn(X)(c) ≥ α

}
.

Following Cadre et al. (2013), we define the following set and assumption:

H0 =

{
c ∈ (0; suph) : inf

{h=c}
||∇h||= 0

}

Assumption 4.1.

1. The density h is of class C2 with a bounded Hessian matrix, and h(x)→ 0 as ||x||→ ∞.

2. H0 has Lebesgue measure 0.

3. λ({h = c}) = 0 for all c > 0.

See Cadre et al. (2013) for a more detailed explanation concerning Assumption 4.1.

The estimation approach by Verdier (2013) relies on the following theorem.

Theorem 4.1. Suppose h satisfies Assumption 4.1 and that

sup
x∈Rd
|hn(x)− h(x)|→ 0 p.s.

Then, for almost all c ∈ (0, 1) (see Verdier (2013) for details),

ĉN,n → cα in probability for N →∞.

Proof. See the proof of Theorem 2 of Verdier (2013).

4.3.2 Monitoring with vine copulas
We now have enough knowledge to build a statistical framework around the copula methodology.
In this section we construct a monitoring approach based on vine copulas, which provide more
flexibility than regular copula models, see also Section 3.5. The monitoring framework will follow
the tolerance region approach by Verdier (2013) as described above, combined with a Shewhart-like
control chart approach (see Section 2.1).

We assume that a d-dimensional process is described by the quality characteristics vector X =(
X(1), . . . , X(d)

)
with continuous marginals F1, . . . , Fd and corresponding densities f1, . . . , fd. Fur-

thermore, let H and h denote the in-control distribution function and density of X, respectively.
First, we need a suitable data set for phase I, in which we assume that the process is in-control.
We assume that we have a phase I sample X1, . . . , Xn consisting of n observation vectors from X,
which follow the in-control distribution. For convenience of notation, we assume that the sample
is stored in a data matrix R ∈ Rn×d, where row Ri• ∈ R1×d corresponds to the i-th observa-
tion vector, i = 1, . . . , n, and column R•j ∈ Rn×1 corresponds to the j-th quality characteristic,
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j = 1, . . . , d. Note that we often have to transform the sample by the probability integral transform
to satisfy the requirement of standard uniform marginals. That is, we transform the sample of the
j-th quality characteristic R•j by

U•j := Fj (R•j) , j = 1, . . . , d. (4.4)

When the marginals F1, . . . , Fd are unknown, we can use so-called pseudo-observations which ba-
sically apply the empirical distribution functions to the data and scale the result such that the
transformed sample falls inside the unit interval. For this approach we assume that d ≥ 2, since
most processes require to monitor multiple quality characteristics simultaneously. Note that for
d = 2 we can simply use a bivariate copula model, since the vine copula model reduces to only one
regular bivariate pair-copula. Now, we are able to determine the best-fitting vine copula model by
the procedure described in Section 3.5.3. Based on the selected vine copula, we can estimate the
joint density function h by (3.20) and the resulting estimated density function is denoted by hn.
Subsequently, we calculate a random sample of hn(X), denoted by hn(X1,n), . . . , hn(XN,n), where
N is really large. This density sample serves as the base of the quantile estimation by Verdier
(2013) as described in the section above. The density sample follows the distribution function
F̂hn(X) as defined by (4.3) and we can calculate the corresponding control limits dependent on
whether we want to use the one-sided or two-sided version of the control chart. For the one-
sided version, the (lower) control limit ĉN,n is defined as the α-th quantile of the density sample
hn(X1,n), . . . , hn(XN,n), where α is the pre-specified false alarm probability. For the two-sided ver-
sion, the upper control limit ûN,n and lower control limit l̂N,n are defined as the (1− α

2 )-th quantile
and (α2 )-th quantile of the density sample hn(X1,n), . . . , hn(XN,n), respectively. For phase I anal-
ysis, the test statistics corresponding to the sample X1, . . . , Xn are given by hn(U1•), . . . , hn(Un•)
and an alarm for the one-sided version is raised when

hn(Ui•) < ĉN,n, i = 1, . . . , n,

and an alarm for the two-sided version is raised when

hn(Ui•) < l̂N,n or hn(Ui•) > ûN,n, i = 1, . . . , n.

For phase II analysis, we have incoming observation vectors X1, X2, . . . from a d-dimensional pro-
cess and we need to decide if they are generated from the in-control distribution. Again, we first
need to transform the incoming observations by either the probability integral transform or pseudo
observations. Similar to (4.4), let Uk•, k = 1, 2, . . . , denote the transformation of the k-th obser-
vation vector. Then, the test statistics corresponding to the incoming observations X1, X2, . . . are
given by hn(U1•), hn(U2•), . . . , where hn is the estimated joint density function obtained from phase
I. Subsequently, we compare these density evaluations with the control limits that we determined
in phase I. For the one-sided version, we raise an alarm when

hn(Uk•) < ĉN,n, k = 1, 2, . . . ,

and for the two-sided version we raise an alarm when

hn(Uk•) < l̂N,n or hn(Uk•) > ûN,n, k = 1, 2, . . .

The one-sided and two-sided version of the vine copula-based control chart seem to focus on
different aspects of the multivariate distribution regarding the detection of shifts, which we clarify
with an example. In this example we consider d = 2 for visualization purposes, so the vine copula
model described above simplifies to the bivariate copula model. We assume that an in-control
2-dimensional process can be described by the Gumbel copula with parameter θ = 3 and that
we have perfect knowledge of the in-control distribution. We look at the phase I problem, where
we have an in-control sample X1, . . . , X1000 generated from the in-control distribution. For the
calculation of the control limits, we take N = 106 and α = 0.05. We obtain the test statistics
corresponding to the in-control sample and appropriate control limits by applying the copula-based
monitoring method that is described above. Subsequently, we identify the out-of-control points of
the in-control sample and mark these points in red. The results for the one-sided and two-sided
version are illustrated in Figures 4.1 and 4.2, respectively. From these figures we observe that the
one-sided version signals observations which are too far away from the mean line and the two-sided
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version signals observations that are even further away from the mean line plus observations that
are suspicious in the upper tail and lower tail of the distribution. Therefore, it seems that the lower
control limit aims at detecting deviations from the mean line and the upper control limit aims at
detecting deviations in tail dependence of the distribution. Mühlig (2017) studied the working
of the one-sided and two-sided version in more detail, including some illustrative examples. The
conclusion of the above example is in line with the findings of Mühlig (2017). In the following
chapter we study the advantages and disadvantages of the one-sided and two-sided version by
means of an extensive performance study.

Figure 4.1: Phase I analysis with the one-sided version of the copula-based control chart.
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Figure 4.2: Phase I analysis with the two-sided version of the copula-based control chart.

4.4 Summary

• It is possible to construct a Shewhart-like control chart based on vine copulas.
• The vine copula-based control chart is a distribution free method and therefore suit-
able for non-normal multivariate data.

• The two-sided version of the vine copula-based control chart aims at detecting devia-
tions from the mean line or deviations in tail dependence of a multivariate distribution.

• The one-sided version of the vine copula-based control chart only aims at detecting
deviations from the mean line of a multivariate distribution.
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5 | Simulation study

In this chapter we conduct a simulation study to assess the performance of the recently introduced
copula-based control chart, where we make use of the average run length measure. First, we
compare the performance of the one-sided version of the copula-based control chart with the two-
sided version. In this way we are able to recommend which version one should use in order to detect
a particular type of shift in a process. Subsequently, we analyze the performance of the copula-
based control chart compared to the conventional Hotelling T 2 and MCUSUM control charts.
These analyses follow the ideas of Mühlig (2017), but are more comprehensive in the sense that
more possibilities are included. A comparable simulation study is performed in Sukparungsee et al.
(2017), although the context is somewhat different. The similarities include a performance analysis
based on the average run length, where several copulas are fitted and various controlled out-of-
control cases are analyzed. There are also some significant differences. First of all, Sukparungsee
et al. (2017) simulated a three-dimensional in-control process from the exponential distribution.
Furthermore, they only investigated the possibility of mean shifts in the marginal distributions.
Finally, they only analyzed the performance of the MCUSUM control chart and hence were not
able to compare control charts.

5.1 Performance measures

When we apply control charts in phase I we conduct retrospective analysis. During this phase we
mainly focus on calculating appropriate control limits for phase II, such that the false alarm rate
will be low. Additionally, control charts in phase II should be able to quickly detect an out-of-
control situation. In order to measure these performance requirements, we first need to introduce
the concept of average run length (ARL). For an in-control process, the ARL equals the average
number of observations that are measured until a false alarm occurs and is denoted by ARL0. For
an out-of-control process, the ARL equals the average number of observations that are measured
until an out-of-control situation is detected and is denoted by ARL1. Ideally, we want the ARL0

to be large and the ARL1 to be small to ensure a low false alarm rate and fast detection of out-
of-control situations. However, there seems to be a trade-off between the ARL0 and the ARL1.
Clearly, increasing the ARL0 by aiming for wider control limits results in an undesired increase of
the ARL1. On the other hand, decreasing the ARL1 by aiming for tighter control limits results in
an unwanted decrease of the ARL0. Therefore, we need to find an optimal balance between the
ARL0 and ARL1. In SPC optimality is often stated as minimal ARL1 for a pre-specified ARL0,
see, e.g., Frisén (2007). Advantages of the ARL criterion are that it is very well known, widely
used and simple, and that no assumption of a distribution for the time of change is used. However,
these measures do not tell the whole story as run length distributions are often very skewed.
Additionally, estimation of parameters might influence the run length calculations. Alternatively,
one could use the conditional expected delay (CED) of detection, which represents the delay from
the first opportunity to detect a change. For a more extensive discussion on this topic, see Frisén
(2003) and Kenett and Pollak (2012).

Next, we use the basic univariate Shewhart chart for individual observations defined in Section 2.1
as an example to show how its ARL0 and ARL1 values can be computed. It is not hard to conclude
that the distribution of the ARL0 is the geometric distribution Geom(α), where α denotes the
false alarm probability. We assume that both the in-control mean µ0 and the in-control standard
deviation σ are known. Under the normality assumptions, the false alarm probability can be easily
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computed by

α = P (Xi < µ0 − 3σ) + P (Xi > µ0 + 3σ)

= P

(
Xi − µ0

σ
< −3

)
+ 1− P

(
Xi − µ0

σ
< 3

)
= Φ(−3) + 1− Φ(3)

≈ 0.0027.

By the formula of the mean of a geometrically distributed random variable, we simply obtain that

ARL0 =
1

α
≈ 370.

For computing the ARL1, we now assume that the mean of the quality characteristic shifts from
µ0 to µ1 = µ0 + kσ. It is obvious that the distribution of the ARL1 is the geometric distribution
Geom(1 − β), where β is the probability that an observation collected at a later time point is
within the upper and lower control limits. This probability can be expressed in terms of k as

β = P (µ0 − 3σ ≤ Xi ≤ µ0 + 3σ)

= P

(
−k − 3 ≤ Xi − µ1

σ
≤ −k + 3

)
= Φ (−k + 3)− Φ (−k − 3) .

By the formula of the mean of a geometrically distributed random variable, we know that

ARL1 =
1

1− β
.

The values of ARL1 for k ∈ [0, 3] are shown in Figure 5.1, from which we can conclude that the
Shewhart chart for individual observations is only effective in detecting large shifts in the mean
of a process. The calculations in this example are quite straightforward. In the multivariate case,
however, these performance measures can very often not be expressed in closed form. To overcome
this issue we can make use of Monte Carlo simulation, which is explained in the following section.

Figure 5.1: The values of ARL1 for the Shewhart chart for individual observations when k ∈ [0, 3].

5.2 Bivariate performance analysis

In this section we create empirical results to investigate the performance of the copula-based control
chart for non-normal bivariate data. Firstly, we explain the simulation setup in detail. Secondly, we
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decide on which version of the copula-based control chart to use in order to detect a shift of desired
type. Finally, we compare the performance of the copula-based control chart with conventional
methods such as Hotelling T 2 and MCUSUM control charts.

5.2.1 Simulation approach
We assume that some in-control bivariate process can best be described by a bivariate copula
family ∈ {Gumbel, Clayton, Frank, Normal, Student-t}. From now on, we will call this bivariate
copula family the in-control copula distribution. We assume that we have perfect knowledge of
the in-control copula distribution. The simulation procedure for a selected monitoring method
∈ {Hotelling T 2, MCUSUM, vine copula} is as follows:

Phase I
For t = 0.1, 0.2, . . . , 0.9:

1. Draw 2,000 random samples from the in-control copula distribution with τ = t to
build the training data.

2. Based on the training data and selected monitoring method, estimate required quan-
tities and calculate the corresponding test statistics.

3. Calculate the control limit(s) based on the training data and selected monitoring
method, where we set α = 0.0027. For the MCUSUM method the control limit is
simply equal to the chosen value of the parameter h.

4. Determine the run length value, which is equal to the index of the first occurrence of
an out-of-control signal.

5. Repeat steps 1-4 1,000 times to obtain an accurate estimate of the ARL0.

Here, the value of 0.0027 is the false alarm probability for the basic univariate Shewhart chart
for individual observations in order to reach ARL0 ≈ 370, see Section 5.1. Note that for the
MCUSUM method we do not use α, but a pre-specified control limit h instead. In this case
we should choose h such that we reach the desired ARL0, see also Section 4.2. We can often
determine a suitable value for h by trial and error. Furthermore, we vary the input parameter of
the in-control copula distribution over a sequence of possible values. More specifically, we repeat
the phase I procedure for Kendall’s tau τ ∈ {0.1, 0.2, . . . , 0.9} such that we are able to indicate the
strength of dependence. The corresponding input parameter values can be easily calculated by an
explicit function, see Section 3.4. Also, in this way we are able to determine the τ -value for which
the ARL0 of the methods that we want to compare are approximately equal. Subsequently, we
use this particular τ -value to reach our pre-specified ARL0 and move on to phase II, in which we
manually implement three possible shifts in the process.

Phase II
1. Use the 2,000 random samples from the in-control copula distribution with τ such

that the pre-specified ARL0 is reached, and manually implement a desired shift in the
process to build the test data.

2. Based on the selected monitoring method, use the estimated quantities from phase I
and calculate the corresponding test statistics for the test data.

3. Use the control limit(s) that are calculated in phase I. Note that for the Hotelling T 2

chart, however, the control limit is slightly different and needs to be recalculated.
4. Determine the run length value, which is equal to the index of the first occurrence of

an out-of-control signal.
5. Repeat steps 1-4 1,000 times to obtain an accurate estimate of the ARL1.

The three possible shifts include a shift in the mean, variance and dependence structure of the
in-control copula distribution. After such distributional shift the process is assumed to be out-of-
control. Clearly, since the ARL0 of the control charts that we want to compare are approximately
equal, the chart with minimum ARL1 value performs best. We will now elaborate on the three
possible type of shifts and how they can be implemented.
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Shift in mean

The first potential shift that we are going to investigate is a shift in the mean of the in-control
copula distribution. We can implement such a shift by simply changing the level of one or both
variables. More precisely, we use the 2,000 random samples U = (U1, U2) from the in-control
copula distribution and subsequently implement a level shift, which is constructed as follows:

Ushift = (Ushift,1, Ushift,2) = ((1 + s1) · U1, (1 + s2) · U2) ,

where sj (j = 1, 2) denotes the percentage by which the level of the j-th variable is shifted. The
level increases when sj is positive and, conversely, the level decreases when sj is negative. Note
that we have to ensure that the shifted samples remain from a copula distribution. Therefore,
points that fall outside the unit square [0, 1]2 are relocated to the boundary of the unit square.

In order to visualize what such a level shift looks like in terms of copula and its components, we
look at an example where we assume that the in-control distribution follows a Gumbel copula with
parameter θ = 5. Various shifts in the level of the first variable U1, obtained according to the
procedure described above, are shown in Figure 5.2. From a numerical point of view, the mean
and Kendall’s τ correlation coefficient of the two variables are shown in Table 5.1. From this table
we conclude that, in general, the mean indeed shifts according to the intended percentage while
the correlation remains the same. In case of an increase in the level, the mean and correlation
slightly differ from the expected values. This can be explained by the points that fall outside the
unit square, as relocating them to the boundary affects the original mean and correlation.

For an extensive simulation study we repeat the phase II procedure for sj ∈ {10, 20, . . . , 90} and
sj ∈ {−90,−80, . . . ,−10} to cover both level increases and decreases. In this way we can distinguish
between small and large shifts in the mean of the in-control copula distribution.

(a) Level increased by 20%. (b) Level increased by 80%.

(c) Level decreased by 20%. (d) Level decreased by 80%.

Figure 5.2: Illustration of a shift in the mean by changing the level of the first variable.
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Mean Correlation (τ)
In-control (0.5009, 0.4982) 0.7901
20% increase (0.5851, 0.4982) 0.7821
80% increase (0.7267, 0.4982) 0.7242
20% decrease (0.4007, 0.4982) 0.7901
80% decrease (0.1002, 0.4982) 0.7901

Table 5.1: Mean and correlation coefficient after various shifts in the level of the first variable.

Shift in variance

The second potential shift is a shift in the variance of the in-control copula distribution. Before
we go into more details, we elaborate on how we describe the variance of the distribution. The
variance can either be described by covariance or correlation. Both terms are able to measure the
relationship and dependency between two variables. Covariance measures the direction of the linear
relationship between two variables. Correlation, however, measures both the direction and strength
of the linear relationship between two variables. Basically, correlation is the standardized version
of covariance and is therefore dimensionless. Another difference is that correlation coefficients lie
between −1 and +1, while covariance varies from −∞ to +∞. The sign of a correlation coefficient
represents the direction of the correlation and the closer it is to +1 or −1, the stronger the
dependence between the two variables. Additionally, we have seen that correlation coefficients can
be easily related to the input parameter of a copula distribution (see Section 3.4 for more details).
For the above reasons, we express the variance of a copula distribution by correlation coefficients
from now on.

If we are dealing with n random variables X1, . . . , Xn, the correlation coefficients ρij between
different pairs (i, j) of random variables are expressed in a correlation matrix. Correlation matrices
must satisfy the following properties (i, j = 1, . . . , n):

• All entries must lie in the interval [−1, 1]: −1 ≤ ρij ≤ 1

• The diagonal terms are equal to one: ρii = 1

• The matrix is symmetric: ρij = ρji

• The correlation matrix Z is positive semidefinite: xTZx ≥ 0 for all x ∈ Rn

It is not straightforward to implement a shift in the correlation matrix, since the requirements can
be easily unsatisfied after a shift. Also, a 10% increase in a strong correlation does have much more
impact than a 10% increase in a weak correlation. We will illustrate this with a simple example.

Consider 1,000 random samples from a bivariate Normal copula. First, we assume that Kendall’s
τ equals 0.1. When τ increases with 10%, this coefficient becomes 0.11. Second, we assume that
Kendall’s tau is equal to 0.9. In case τ increases with 10%, this coefficient becomes 0.99. Both
shifts are also visualized in Figure 5.3. From this figure, we confirm that the same percentage
increase does have a significantly higher impact on strong correlation rather than weak correlation.

(a) τ = 0.1 increased by 10%. (b) τ = 0.9 increased by 10%.

Figure 5.3: Illustration of an increase in Kendall’s τ correlation coefficient.

52



To overcome these difficulties, we propose a method to shift the correlation matrix that is based

on Galeeva et al. (2012). Suppose that we have a correlation matrix M =

(
1 τ12
τ12 1

)
based on

Kendall’s τ correlation coefficient. We consider the following steps to shift the correlation matrix
M :

1. Decompose M into terms of its eigensystem (D,U) via

M = UDU−1 = UDUT , (5.1)

where U is the square 2 × 2 matrix whose i-th column is the eigenvector ui of M , and D
is the diagonal matrix whose diagonal elements Dii are the corresponding eigenvalues λi.
Furthermore, we assume that λ1 ≥ λ2 ≥ 0. Note that since M is real and symmetric, the
matrix U is orthogonal, i.e., U−1 = UT .

2. Shift the diagonal matrix D such that

D∗ =

(
λ∗1 0
0 λ2

)
, (5.2)

where λ∗1 = (1 + s1) ·λ1, and s1 denotes the percentage by which the largest eigenvalue λ1 is
shifted.

3. Construct the shifted matrix M∗ =

(
τ∗11 τ∗12
τ∗21 τ∗22

)
by

M∗ = UD∗UT . (5.3)

4. To ensure that the shifted matrix is a correlation matrix, define

V =

(√
τ∗11 0
0

√
τ∗22

)
, and construct Mshift = V −1M∗

(
V −1

)T
. (5.4)

Note that since V is symmetric, V −1 is symmetric as well and hence
(
V −1

)T
= V −1.

It can be easily verified that the shifted matrix Mshift indeed satisfies the requirements of a corre-
lation matrix, see Lemma A.2.

The variance shift procedure is as follows. We use the 2,000 random samples U = (U1, U2)
from the in-control copula distribution and estimate the correlation matrix M of this sample.
Subsequently, we shift the correlation matrix M according to the procedure described above to
obtainMshift. We extract the shifted correlation coefficient from the matrixMshift, which can then
be easily transformed to the corresponding shifted input parameter. Then, we simply draw 2, 000
random samples from the shifted copula distribution with shifted parameter to obtain Ushift =
(Ushift,1, Ushift,2).

To illustrate what such a shift looks like in terms of copula and its components, we consider
the following example. Assume that the in-control distribution follows a Gumbel copula with
parameter θ = 5. Figure 5.4 exemplifies several shifts in the correlation matrix by changing the
largest eigenvalue according to the procedure described above. We see that, as one would expect,
the observations become more correlated in case of an increase and less correlated in case of a
decrease. The numerical values of the mean and Kendall’s τ correlation coefficient of the two
variables are shown in Table 5.2. From this table we conclude that the correlation indeed shifts
according to the change of the largest eigenvalue, while the mean stays approximately the same.

To present an extensive simulation study we repeat the phase II procedure for s1 ∈ {10, 20, . . . , 90}
and s1 ∈ {−90,−80, . . . ,−10} to cover both correlation increases and decreases. In this way we
are able to distinguish between small and large shifts in the correlation coefficient.
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(a) Largest eigenvalue increased by 20%. (b) Largest eigenvalue increased by 80%.

(c) Largest eigenvalue decreased by 20%. (d) Largest eigenvalue decreased by 80%.

Figure 5.4: Illustration of a shift in the correlation matrix by changing the largest eigenvalue.

Mean Correlation (τ)
In-control (0.5009, 0.4982) 0.7901
20% increase (0.5015, 0.5025) 0.8291
80% increase (0.5029, 0.5035) 0.8830
20% decrease (0.4999, 0.5012) 0.7560
80% decrease (0.4933, 0.4964) 0.2728

Table 5.2: Mean and correlation coefficient after various shifts in the largest eigenvalue of the
correlation matrix.

Shift in dependence structure

The third and final possible shift that we will analyze is a shift in the dependence structure of the
in-control copula distribution. This shift can be realized by simply changing the underlying copula
structure from the in-control copula to a different, out-of-control, copula. More specifically, we use
the 2,000 random samples U = (U1, U2) from the in-control copula distribution. Then, we deter-
mine the correlation coefficient τ based on which we calculate the input parameter corresponding
to a particular shifted copula distribution. Subsequently, we draw 2,000 random samples from this
shifted copula distribution to obtain Ushift = (Ushift,1, Ushift,2).

We look at a concrete example to visualize what such a shift looks like in terms of copula and its
components. We assume that the in-control distribution follows a Gumbel copula with parameter
θ = 5. Figure 5.5 illustrates what several shifts in the underlying copula structure look like. Also,
the mean and Kendall’s τ correlation coefficient of the two variables are shown in Table 5.3. From
this table we conclude that the mean and correlation remain approximately the same after a shift
in copula structure has occurred.
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(a) Shift to Clayton copula. (b) Shift to Frank copula.

(c) Shift to Normal copula. (d) Shift to Student-t copula with 3 degrees of
freedom.

Figure 5.5: Illustration of a shift in the underlying copula structure.

Mean Correlation (τ)
In-control (0.5009, 0.4982) 0.7901
Clayton (0.4935, 0.4986) 0.7877
Frank (0.4935, 0.4902) 0.7862
Normal (0.4974, 0.4962) 0.7877
Student-t (df = 3) (0.4981, 0.4995) 0.7856

Table 5.3: Mean and correlation coefficient after various shifts in the underlying copula structure.

Design matrix

We are now able to give an overview of the simulations in the design matrix, in which the following
parameters are used:

• Copula: the in-control copula distribution. Note that we use 3 degrees of freedom when the
Student-t copula is specified.

• τ : the Kendall’s τ correlation coefficient of the two variables.

• Phase: the phase that we execute.

• Shift: the type of shift that we implement. The possibilities are shift in mean (M), shift in
variance (V) and shift in dependence structure (C). Furthermore, 1LVL, 2LVLs, + and −,
respectively, stand for “1 level”, “2 levels”, “increase” and “decrease”. In case of an increase,
the shift size varies from 10 to 90 percent, by steps of 10 percent. Conversely, in case of a
decrease, the shift size varies from −90 to −10 percent, by steps of 10 percent.

• M1: the first method of the methods that we want to compare. The options are two-sided
copula-based chart (Cop. 2S), one-sided copula-based control chart (Cop. 1S), Hotelling T 2
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chart (Hot. T 2) and MCUSUM chart.

• M2: the second method of the methods that we want to compare. The options are two-sided
copula-based chart (Cop. 2S), one-sided copula-based control chart (Cop. 1S), Hotelling T 2

chart (Hot. T 2) and MCUSUM chart.

• α: the false alarm probability.

• h: the value of the control limit for the MCUSUM chart.

• k: the allowance parameter of the MCUSUM chart.

The design matrix of the simulations is shown in Table 5.4. Note that for this design matrix
the potential shift always occurs at the first point of phase II, hence we investigate persistent
shifts in a bivariate distribution. The performance comparison procedure of the one-sided and
two-sided copula-based control chart for several in-control copulas is covered in cases 1 through
55. Subsequently, the comparison procedure of the Hotelling T 2 chart and two-sided copula-based
chart for several in-control copulas is included in cases 56 through 110. Finally, we compare the
performance of the two-sided copula-based chart and the MCUSUM chart with allowance parameter
0.25, 0.50 and 0.75 for various in-control copulas with cases 111 through 165, 166 through 220 and
221 through 275, respectively.

Case Copula τ Phase Shift M1 M2 α h k
1 Gumbel {0.1, . . . , 0.9} I x Cop. 2S Cop. 1S 0.0027 x x
2 Clayton {0.1, . . . , 0.9} I x Cop. 2S Cop. 1S 0.0027 x x
3 Frank {0.1, . . . , 0.9} I x Cop. 2S Cop. 1S 0.0027 x x
4 Normal {0.1, . . . , 0.9} I x Cop. 2S Cop. 1S 0.0027 x x
5 Student-t {0.1, . . . , 0.9} I x Cop. 2S Cop. 1S 0.0027 x x
6 Gumbel 0.80 II M: 1LVL+ Cop. 2S Cop. 1S 0.0027 x x
7 Gumbel 0.80 II M: 2LVLs+ Cop. 2S Cop. 1S 0.0027 x x
8 Gumbel 0.80 II M: 1LVL− Cop. 2S Cop. 1S 0.0027 x x
9 Gumbel 0.80 II M: 2LVLs− Cop. 2S Cop. 1S 0.0027 x x
10 Gumbel 0.80 II V: + Cop. 2S Cop. 1S 0.0027 x x
11 Gumbel 0.80 II V: − Cop. 2S Cop. 1S 0.0027 x x
12 Gumbel 0.80 II C: Clayton Cop. 2S Cop. 1S 0.0027 x x
13 Gumbel 0.80 II C: Frank Cop. 2S Cop. 1S 0.0027 x x
14 Gumbel 0.80 II C: Normal Cop. 2S Cop. 1S 0.0027 x x
15 Gumbel 0.80 II C: Student-t Cop. 2S Cop. 1S 0.0027 x x
16 Clayton 0.80 II M: 1LVL+ Cop. 2S Cop. 1S 0.0027 x x
17 Clayton 0.80 II M: 2LVLs+ Cop. 2S Cop. 1S 0.0027 x x
18 Clayton 0.80 II M: 1LVL− Cop. 2S Cop. 1S 0.0027 x x
19 Clayton 0.80 II M: 2LVLs− Cop. 2S Cop. 1S 0.0027 x x
20 Clayton 0.80 II V: + Cop. 2S Cop. 1S 0.0027 x x
21 Clayton 0.80 II V: − Cop. 2S Cop. 1S 0.0027 x x
22 Clayton 0.80 II C: Gumbel Cop. 2S Cop. 1S 0.0027 x x
23 Clayton 0.80 II C: Frank Cop. 2S Cop. 1S 0.0027 x x
24 Clayton 0.80 II C: Normal Cop. 2S Cop. 1S 0.0027 x x
25 Clayton 0.80 II C: Student-t Cop. 2S Cop. 1S 0.0027 x x
26 Frank 0.60 II M: 1LVL+ Cop. 2S Cop. 1S 0.0027 x x
27 Frank 0.60 II M: 2LVLs+ Cop. 2S Cop. 1S 0.0027 x x
28 Frank 0.60 II M: 1LVL− Cop. 2S Cop. 1S 0.0027 x x
29 Frank 0.60 II M: 2LVLs− Cop. 2S Cop. 1S 0.0027 x x
30 Frank 0.60 II V: + Cop. 2S Cop. 1S 0.0027 x x
31 Frank 0.60 II V: − Cop. 2S Cop. 1S 0.0027 x x
32 Frank 0.60 II C: Gumbel Cop. 2S Cop. 1S 0.0027 x x
33 Frank 0.60 II C: Clayton Cop. 2S Cop. 1S 0.0027 x x
34 Frank 0.60 II C: Normal Cop. 2S Cop. 1S 0.0027 x x
35 Frank 0.60 II C: Student-t Cop. 2S Cop. 1S 0.0027 x x
36 Normal 0.40 II M: 1LVL+ Cop. 2S Cop. 1S 0.0027 x x
37 Normal 0.40 II M: 2LVLs+ Cop. 2S Cop. 1S 0.0027 x x
38 Normal 0.40 II M: 1LVL− Cop. 2S Cop. 1S 0.0027 x x
39 Normal 0.40 II M: 2LVLs− Cop. 2S Cop. 1S 0.0027 x x
40 Normal 0.40 II V: + Cop. 2S Cop. 1S 0.0027 x x
41 Normal 0.40 II V: − Cop. 2S Cop. 1S 0.0027 x x
42 Normal 0.40 II C: Gumbel Cop. 2S Cop. 1S 0.0027 x x
43 Normal 0.40 II C: Clayton Cop. 2S Cop. 1S 0.0027 x x
44 Normal 0.40 II C: Frank Cop. 2S Cop. 1S 0.0027 x x
45 Normal 0.40 II C: Student-t Cop. 2S Cop. 1S 0.0027 x x
46 Student-t 0.40 II M: 1LVL+ Cop. 2S Cop. 1S 0.0027 x x
47 Student-t 0.40 II M: 2LVLs+ Cop. 2S Cop. 1S 0.0027 x x
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48 Student-t 0.40 II M: 1LVL− Cop. 2S Cop. 1S 0.0027 x x
49 Student-t 0.40 II M: 2LVLs− Cop. 2S Cop. 1S 0.0027 x x
50 Student-t 0.40 II V: + Cop. 2S Cop. 1S 0.0027 x x
51 Student-t 0.40 II V: − Cop. 2S Cop. 1S 0.0027 x x
52 Student-t 0.40 II C: Gumbel Cop. 2S Cop. 1S 0.0027 x x
53 Student-t 0.40 II C: Clayton Cop. 2S Cop. 1S 0.0027 x x
54 Student-t 0.40 II C: Frank Cop. 2S Cop. 1S 0.0027 x x
55 Student-t 0.40 II C: Normal Cop. 2S Cop. 1S 0.0027 x x
56 Gumbel {0.1, . . . , 0.9} I x Hot. T 2 Cop. 2S 0.0027 x x
57 Clayton {0.1, . . . , 0.9} I x Hot. T 2 Cop. 2S 0.0027 x x
58 Frank {0.1, . . . , 0.9} I x Hot. T 2 Cop. 2S 0.0027 x x
59 Normal {0.1, . . . , 0.9} I x Hot. T 2 Cop. 2S 0.0027 x x
60 Student-t {0.1, . . . , 0.9} I x Hot. T 2 Cop. 2S 0.0027 x x
61 Gumbel 0.56 II M: 1LVL+ Hot. T 2 Cop. 2S 0.0027 x x
62 Gumbel 0.56 II M: 2LVLs+ Hot. T 2 Cop. 2S 0.0027 x x
63 Gumbel 0.56 II M: 1LVL− Hot. T 2 Cop. 2S 0.0027 x x
64 Gumbel 0.56 II M: 2LVLs− Hot. T 2 Cop. 2S 0.0027 x x
65 Gumbel 0.56 II V: + Hot. T 2 Cop. 2S 0.0027 x x
66 Gumbel 0.56 II V: − Hot. T 2 Cop. 2S 0.0027 x x
67 Gumbel 0.56 II C: Clayton Hot. T 2 Cop. 2S 0.0027 x x
68 Gumbel 0.56 II C: Frank Hot. T 2 Cop. 2S 0.0027 x x
69 Gumbel 0.56 II C: Normal Hot. T 2 Cop. 2S 0.0027 x x
70 Gumbel 0.56 II C: Student-t Hot. T 2 Cop. 2S 0.0027 x x
71 Clayton 0.59 II M: 1LVL+ Hot. T 2 Cop. 2S 0.0027 x x
72 Clayton 0.59 II M: 2LVLs+ Hot. T 2 Cop. 2S 0.0027 x x
73 Clayton 0.59 II M: 1LVL− Hot. T 2 Cop. 2S 0.0027 x x
74 Clayton 0.59 II M: 2LVLs− Hot. T 2 Cop. 2S 0.0027 x x
75 Clayton 0.59 II V: + Hot. T 2 Cop. 2S 0.0027 x x
76 Clayton 0.59 II V: − Hot. T 2 Cop. 2S 0.0027 x x
77 Clayton 0.59 II C: Gumbel Hot. T 2 Cop. 2S 0.0027 x x
78 Clayton 0.59 II C: Frank Hot. T 2 Cop. 2S 0.0027 x x
79 Clayton 0.59 II C: Normal Hot. T 2 Cop. 2S 0.0027 x x
80 Clayton 0.59 II C: Student-t Hot. T 2 Cop. 2S 0.0027 x x
81 Frank 0.53 II M: 1LVL+ Hot. T 2 Cop. 2S 0.0027 x x
82 Frank 0.53 II M: 2LVLs+ Hot. T 2 Cop. 2S 0.0027 x x
83 Frank 0.53 II M: 1LVL− Hot. T 2 Cop. 2S 0.0027 x x
84 Frank 0.53 II M: 2LVLs− Hot. T 2 Cop. 2S 0.0027 x x
85 Frank 0.53 II V: + Hot. T 2 Cop. 2S 0.0027 x x
86 Frank 0.53 II V: − Hot. T 2 Cop. 2S 0.0027 x x
87 Frank 0.53 II C: Gumbel Hot. T 2 Cop. 2S 0.0027 x x
88 Frank 0.53 II C: Clayton Hot. T 2 Cop. 2S 0.0027 x x
89 Frank 0.53 II C: Normal Hot. T 2 Cop. 2S 0.0027 x x
90 Frank 0.53 II C: Student-t Hot. T 2 Cop. 2S 0.0027 x x
91 Normal 0.87 II M: 1LVL+ Hot. T 2 Cop. 2S 0.0027 x x
92 Normal 0.87 II M: 2LVLs+ Hot. T 2 Cop. 2S 0.0027 x x
93 Normal 0.87 II M: 1LVL− Hot. T 2 Cop. 2S 0.0027 x x
94 Normal 0.87 II M: 2LVLs− Hot. T 2 Cop. 2S 0.0027 x x
95 Normal 0.87 II V: + Hot. T 2 Cop. 2S 0.0027 x x
96 Normal 0.87 II V: − Hot. T 2 Cop. 2S 0.0027 x x
97 Normal 0.87 II C: Gumbel Hot. T 2 Cop. 2S 0.0027 x x
98 Normal 0.87 II C: Clayton Hot. T 2 Cop. 2S 0.0027 x x
99 Normal 0.87 II C: Frank Hot. T 2 Cop. 2S 0.0027 x x
100 Normal 0.87 II C: Student-t Hot. T 2 Cop. 2S 0.0027 x x
101 Student-t 0.44 II M: 1LVL+ Hot. T 2 Cop. 2S 0.0027 x x
102 Student-t 0.44 II M: 2LVLs+ Hot. T 2 Cop. 2S 0.0027 x x
103 Student-t 0.44 II M: 1LVL− Hot. T 2 Cop. 2S 0.0027 x x
104 Student-t 0.44 II M: 2LVLs− Hot. T 2 Cop. 2S 0.0027 x x
105 Student-t 0.44 II V: + Hot. T 2 Cop. 2S 0.0027 x x
106 Student-t 0.44 II V: − Hot. T 2 Cop. 2S 0.0027 x x
107 Student-t 0.44 II C: Gumbel Hot. T 2 Cop. 2S 0.0027 x x
108 Student-t 0.44 II C: Clayton Hot. T 2 Cop. 2S 0.0027 x x
109 Student-t 0.44 II C: Frank Hot. T 2 Cop. 2S 0.0027 x x
110 Student-t 0.44 II C: Normal Hot. T 2 Cop. 2S 0.0027 x x
111 Gumbel {0.1, . . . , 0.9} I x MCUSUM Cop. 2S 0.0027 10.1 0.25
112 Clayton {0.1, . . . , 0.9} I x MCUSUM Cop. 2S 0.0027 10.1 0.25
113 Frank {0.1, . . . , 0.9} I x MCUSUM Cop. 2S 0.0027 10.0 0.25
114 Normal {0.1, . . . , 0.9} I x MCUSUM Cop. 2S 0.0027 10.0 0.25
115 Student-t {0.1, . . . , 0.9} I x MCUSUM Cop. 2S 0.0027 10.1 0.25
116 Gumbel 0.80 II M: 1LVL+ MCUSUM Cop. 2S 0.0027 10.1 0.25
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117 Gumbel 0.80 II M: 2LVLs+ MCUSUM Cop. 2S 0.0027 10.1 0.25
118 Gumbel 0.80 II M: 1LVL− MCUSUM Cop. 2S 0.0027 10.1 0.25
119 Gumbel 0.80 II M: 2LVLs− MCUSUM Cop. 2S 0.0027 10.1 0.25
120 Gumbel 0.80 II V: + MCUSUM Cop. 2S 0.0027 10.1 0.25
121 Gumbel 0.80 II V: − MCUSUM Cop. 2S 0.0027 10.1 0.25
122 Gumbel 0.80 II C: Clayton MCUSUM Cop. 2S 0.0027 10.1 0.25
123 Gumbel 0.80 II C: Frank MCUSUM Cop. 2S 0.0027 10.1 0.25
124 Gumbel 0.80 II C: Normal MCUSUM Cop. 2S 0.0027 10.1 0.25
125 Gumbel 0.80 II C: Student-t MCUSUM Cop. 2S 0.0027 10.1 0.25
126 Clayton 0.60 II M: 1LVL+ MCUSUM Cop. 2S 0.0027 10.1 0.25
127 Clayton 0.60 II M: 2LVLs+ MCUSUM Cop. 2S 0.0027 10.1 0.25
128 Clayton 0.60 II M: 1LVL− MCUSUM Cop. 2S 0.0027 10.1 0.25
129 Clayton 0.60 II M: 2LVLs− MCUSUM Cop. 2S 0.0027 10.1 0.25
130 Clayton 0.60 II V: + MCUSUM Cop. 2S 0.0027 10.1 0.25
131 Clayton 0.60 II V: − MCUSUM Cop. 2S 0.0027 10.1 0.25
132 Clayton 0.60 II C: Gumbel MCUSUM Cop. 2S 0.0027 10.1 0.25
133 Clayton 0.60 II C: Frank MCUSUM Cop. 2S 0.0027 10.1 0.25
134 Clayton 0.60 II C: Normal MCUSUM Cop. 2S 0.0027 10.1 0.25
135 Clayton 0.60 II C: Student-t MCUSUM Cop. 2S 0.0027 10.1 0.25
136 Frank 0.80 II M: 1LVL+ MCUSUM Cop. 2S 0.0027 10.0 0.25
137 Frank 0.80 II M: 2LVLs+ MCUSUM Cop. 2S 0.0027 10.0 0.25
138 Frank 0.80 II M: 1LVL− MCUSUM Cop. 2S 0.0027 10.0 0.25
139 Frank 0.80 II M: 2LVLs− MCUSUM Cop. 2S 0.0027 10.0 0.25
140 Frank 0.80 II V: + MCUSUM Cop. 2S 0.0027 10.0 0.25
141 Frank 0.80 II V: − MCUSUM Cop. 2S 0.0027 10.0 0.25
142 Frank 0.80 II C: Gumbel MCUSUM Cop. 2S 0.0027 10.0 0.25
143 Frank 0.80 II C: Clayton MCUSUM Cop. 2S 0.0027 10.0 0.25
144 Frank 0.80 II C: Normal MCUSUM Cop. 2S 0.0027 10.0 0.25
145 Frank 0.80 II C: Student-t MCUSUM Cop. 2S 0.0027 10.0 0.25
146 Normal 0.80 II M: 1LVL+ MCUSUM Cop. 2S 0.0027 10.0 0.25
147 Normal 0.80 II M: 2LVLs+ MCUSUM Cop. 2S 0.0027 10.0 0.25
148 Normal 0.80 II M: 1LVL− MCUSUM Cop. 2S 0.0027 10.0 0.25
149 Normal 0.80 II M: 2LVLs− MCUSUM Cop. 2S 0.0027 10.0 0.25
150 Normal 0.80 II V: + MCUSUM Cop. 2S 0.0027 10.0 0.25
151 Normal 0.80 II V: − MCUSUM Cop. 2S 0.0027 10.0 0.25
152 Normal 0.80 II C: Gumbel MCUSUM Cop. 2S 0.0027 10.0 0.25
153 Normal 0.80 II C: Clayton MCUSUM Cop. 2S 0.0027 10.0 0.25
154 Normal 0.80 II C: Frank MCUSUM Cop. 2S 0.0027 10.0 0.25
155 Normal 0.80 II C: Student-t MCUSUM Cop. 2S 0.0027 10.0 0.25
156 Student-t 0.60 II M: 1LVL+ MCUSUM Cop. 2S 0.0027 10.1 0.25
157 Student-t 0.60 II M: 2LVLs+ MCUSUM Cop. 2S 0.0027 10.1 0.25
158 Student-t 0.60 II M: 1LVL− MCUSUM Cop. 2S 0.0027 10.1 0.25
159 Student-t 0.60 II M: 2LVLs− MCUSUM Cop. 2S 0.0027 10.1 0.25
160 Student-t 0.60 II V: + MCUSUM Cop. 2S 0.0027 10.1 0.25
161 Student-t 0.60 II V: − MCUSUM Cop. 2S 0.0027 10.1 0.25
162 Student-t 0.60 II C: Gumbel MCUSUM Cop. 2S 0.0027 10.1 0.25
163 Student-t 0.60 II C: Clayton MCUSUM Cop. 2S 0.0027 10.1 0.25
164 Student-t 0.60 II C: Frank MCUSUM Cop. 2S 0.0027 10.1 0.25
165 Student-t 0.60 II C: Normal MCUSUM Cop. 2S 0.0027 10.1 0.25
166 Gumbel {0.1, . . . , 0.9} I x MCUSUM Cop. 2S 0.0027 6.1 0.50
167 Clayton {0.1, . . . , 0.9} I x MCUSUM Cop. 2S 0.0027 6.1 0.50
168 Frank {0.1, . . . , 0.9} I x MCUSUM Cop. 2S 0.0027 6.1 0.50
169 Normal {0.1, . . . , 0.9} I x MCUSUM Cop. 2S 0.0027 6.0 0.50
170 Student-t {0.1, . . . , 0.9} I x MCUSUM Cop. 2S 0.0027 6.1 0.50
171 Gumbel 0.44 II M: 1LVL+ MCUSUM Cop. 2S 0.0027 6.1 0.50
172 Gumbel 0.44 II M: 2LVLs+ MCUSUM Cop. 2S 0.0027 6.1 0.50
173 Gumbel 0.44 II M: 1LVL− MCUSUM Cop. 2S 0.0027 6.1 0.50
174 Gumbel 0.44 II M: 2LVLs− MCUSUM Cop. 2S 0.0027 6.1 0.50
175 Gumbel 0.44 II V: + MCUSUM Cop. 2S 0.0027 6.1 0.50
176 Gumbel 0.44 II V: − MCUSUM Cop. 2S 0.0027 6.1 0.50
177 Gumbel 0.44 II C: Clayton MCUSUM Cop. 2S 0.0027 6.1 0.50
178 Gumbel 0.44 II C: Frank MCUSUM Cop. 2S 0.0027 6.1 0.50
179 Gumbel 0.44 II C: Normal MCUSUM Cop. 2S 0.0027 6.1 0.50
180 Gumbel 0.44 II C: Student-t MCUSUM Cop. 2S 0.0027 6.1 0.50
181 Clayton 0.40 II M: 1LVL+ MCUSUM Cop. 2S 0.0027 6.1 0.50
182 Clayton 0.40 II M: 2LVLs+ MCUSUM Cop. 2S 0.0027 6.1 0.50
183 Clayton 0.40 II M: 1LVL− MCUSUM Cop. 2S 0.0027 6.1 0.50
184 Clayton 0.40 II M: 2LVLs− MCUSUM Cop. 2S 0.0027 6.1 0.50
185 Clayton 0.40 II V: + MCUSUM Cop. 2S 0.0027 6.1 0.50
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186 Clayton 0.40 II V: − MCUSUM Cop. 2S 0.0027 6.1 0.50
187 Clayton 0.40 II C: Gumbel MCUSUM Cop. 2S 0.0027 6.1 0.50
188 Clayton 0.40 II C: Frank MCUSUM Cop. 2S 0.0027 6.1 0.50
189 Clayton 0.40 II C: Normal MCUSUM Cop. 2S 0.0027 6.1 0.50
190 Clayton 0.40 II C: Student-t MCUSUM Cop. 2S 0.0027 6.1 0.50
191 Frank 0.47 II M: 1LVL+ MCUSUM Cop. 2S 0.0027 6.1 0.50
192 Frank 0.47 II M: 2LVLs+ MCUSUM Cop. 2S 0.0027 6.1 0.50
193 Frank 0.47 II M: 1LVL− MCUSUM Cop. 2S 0.0027 6.1 0.50
194 Frank 0.47 II M: 2LVLs− MCUSUM Cop. 2S 0.0027 6.1 0.50
195 Frank 0.47 II V: + MCUSUM Cop. 2S 0.0027 6.1 0.50
196 Frank 0.47 II V: − MCUSUM Cop. 2S 0.0027 6.1 0.50
197 Frank 0.47 II C: Gumbel MCUSUM Cop. 2S 0.0027 6.1 0.50
198 Frank 0.47 II C: Clayton MCUSUM Cop. 2S 0.0027 6.1 0.50
199 Frank 0.47 II C: Normal MCUSUM Cop. 2S 0.0027 6.1 0.50
200 Frank 0.47 II C: Student-t MCUSUM Cop. 2S 0.0027 6.1 0.50
201 Normal 0.40 II M: 1LVL+ MCUSUM Cop. 2S 0.0027 6.0 0.50
202 Normal 0.40 II M: 2LVLs+ MCUSUM Cop. 2S 0.0027 6.0 0.50
203 Normal 0.40 II M: 1LVL− MCUSUM Cop. 2S 0.0027 6.0 0.50
204 Normal 0.40 II M: 2LVLs− MCUSUM Cop. 2S 0.0027 6.0 0.50
205 Normal 0.40 II V: + MCUSUM Cop. 2S 0.0027 6.0 0.50
206 Normal 0.40 II V: − MCUSUM Cop. 2S 0.0027 6.0 0.50
207 Normal 0.40 II C: Gumbel MCUSUM Cop. 2S 0.0027 6.0 0.50
208 Normal 0.40 II C: Clayton MCUSUM Cop. 2S 0.0027 6.0 0.50
209 Normal 0.40 II C: Frank MCUSUM Cop. 2S 0.0027 6.0 0.50
210 Normal 0.40 II C: Student-t MCUSUM Cop. 2S 0.0027 6.0 0.50
211 Student-t 0.53 II M: 1LVL+ MCUSUM Cop. 2S 0.0027 6.1 0.50
212 Student-t 0.53 II M: 2LVLs+ MCUSUM Cop. 2S 0.0027 6.1 0.50
213 Student-t 0.53 II M: 1LVL− MCUSUM Cop. 2S 0.0027 6.1 0.50
214 Student-t 0.53 II M: 2LVLs− MCUSUM Cop. 2S 0.0027 6.1 0.50
215 Student-t 0.53 II V: + MCUSUM Cop. 2S 0.0027 6.1 0.50
216 Student-t 0.53 II V: − MCUSUM Cop. 2S 0.0027 6.1 0.50
217 Student-t 0.53 II C: Gumbel MCUSUM Cop. 2S 0.0027 6.1 0.50
218 Student-t 0.53 II C: Clayton MCUSUM Cop. 2S 0.0027 6.1 0.50
219 Student-t 0.53 II C: Frank MCUSUM Cop. 2S 0.0027 6.1 0.50
220 Student-t 0.53 II C: Normal MCUSUM Cop. 2S 0.0027 6.1 0.50
221 Gumbel {0.1, . . . , 0.9} I x MCUSUM Cop. 2S 0.0027 4.1 0.75
222 Clayton {0.1, . . . , 0.9} I x MCUSUM Cop. 2S 0.0027 4.1 0.75
223 Frank {0.1, . . . , 0.9} I x MCUSUM Cop. 2S 0.0027 4.1 0.75
224 Normal {0.1, . . . , 0.9} I x MCUSUM Cop. 2S 0.0027 4.1 0.75
225 Student-t {0.1, . . . , 0.9} I x MCUSUM Cop. 2S 0.0027 4.2 0.75
226 Gumbel 0.41 II M: 1LVL+ MCUSUM Cop. 2S 0.0027 4.1 0.75
227 Gumbel 0.41 II M: 2LVLs+ MCUSUM Cop. 2S 0.0027 4.1 0.75
228 Gumbel 0.41 II M: 1LVL− MCUSUM Cop. 2S 0.0027 4.1 0.75
229 Gumbel 0.41 II M: 2LVLs− MCUSUM Cop. 2S 0.0027 4.1 0.75
230 Gumbel 0.41 II V: + MCUSUM Cop. 2S 0.0027 4.1 0.75
231 Gumbel 0.41 II V: − MCUSUM Cop. 2S 0.0027 4.1 0.75
232 Gumbel 0.41 II C: Clayton MCUSUM Cop. 2S 0.0027 4.1 0.75
233 Gumbel 0.41 II C: Frank MCUSUM Cop. 2S 0.0027 4.1 0.75
234 Gumbel 0.41 II C: Normal MCUSUM Cop. 2S 0.0027 4.1 0.75
235 Gumbel 0.41 II C: Student-t MCUSUM Cop. 2S 0.0027 4.1 0.75
236 Clayton 0.40 II M: 1LVL+ MCUSUM Cop. 2S 0.0027 4.1 0.75
237 Clayton 0.40 II M: 2LVLs+ MCUSUM Cop. 2S 0.0027 4.1 0.75
238 Clayton 0.40 II M: 1LVL− MCUSUM Cop. 2S 0.0027 4.1 0.75
239 Clayton 0.40 II M: 2LVLs− MCUSUM Cop. 2S 0.0027 4.1 0.75
240 Clayton 0.40 II V: + MCUSUM Cop. 2S 0.0027 4.1 0.75
241 Clayton 0.40 II V: − MCUSUM Cop. 2S 0.0027 4.1 0.75
242 Clayton 0.40 II C: Gumbel MCUSUM Cop. 2S 0.0027 4.1 0.75
243 Clayton 0.40 II C: Frank MCUSUM Cop. 2S 0.0027 4.1 0.75
244 Clayton 0.40 II C: Normal MCUSUM Cop. 2S 0.0027 4.1 0.75
245 Clayton 0.40 II C: Student-t MCUSUM Cop. 2S 0.0027 4.1 0.75
246 Frank 0.40 II M: 1LVL+ MCUSUM Cop. 2S 0.0027 4.1 0.75
247 Frank 0.40 II M: 2LVLs+ MCUSUM Cop. 2S 0.0027 4.1 0.75
248 Frank 0.40 II M: 1LVL− MCUSUM Cop. 2S 0.0027 4.1 0.75
249 Frank 0.40 II M: 2LVLs− MCUSUM Cop. 2S 0.0027 4.1 0.75
250 Frank 0.40 II V: + MCUSUM Cop. 2S 0.0027 4.1 0.75
251 Frank 0.40 II V: − MCUSUM Cop. 2S 0.0027 4.1 0.75
252 Frank 0.40 II C: Gumbel MCUSUM Cop. 2S 0.0027 4.1 0.75
253 Frank 0.40 II C: Clayton MCUSUM Cop. 2S 0.0027 4.1 0.75
254 Frank 0.40 II C: Normal MCUSUM Cop. 2S 0.0027 4.1 0.75
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255 Frank 0.40 II C: Student-t MCUSUM Cop. 2S 0.0027 4.1 0.75
256 Normal 0.52 II M: 1LVL+ MCUSUM Cop. 2S 0.0027 4.1 0.75
257 Normal 0.52 II M: 2LVLs+ MCUSUM Cop. 2S 0.0027 4.1 0.75
258 Normal 0.52 II M: 1LVL− MCUSUM Cop. 2S 0.0027 4.1 0.75
259 Normal 0.52 II M: 2LVLs− MCUSUM Cop. 2S 0.0027 4.1 0.75
260 Normal 0.52 II V: + MCUSUM Cop. 2S 0.0027 4.1 0.75
261 Normal 0.52 II V: − MCUSUM Cop. 2S 0.0027 4.1 0.75
262 Normal 0.52 II C: Gumbel MCUSUM Cop. 2S 0.0027 4.1 0.75
263 Normal 0.52 II C: Clayton MCUSUM Cop. 2S 0.0027 4.1 0.75
264 Normal 0.52 II C: Frank MCUSUM Cop. 2S 0.0027 4.1 0.75
265 Normal 0.52 II C: Student-t MCUSUM Cop. 2S 0.0027 4.1 0.75
266 Student-t 0.40 II M: 1LVL+ MCUSUM Cop. 2S 0.0027 4.2 0.75
267 Student-t 0.40 II M: 2LVLs+ MCUSUM Cop. 2S 0.0027 4.2 0.75
268 Student-t 0.40 II M: 1LVL− MCUSUM Cop. 2S 0.0027 4.2 0.75
269 Student-t 0.40 II M: 2LVLs− MCUSUM Cop. 2S 0.0027 4.2 0.75
270 Student-t 0.40 II V: + MCUSUM Cop. 2S 0.0027 4.2 0.75
271 Student-t 0.40 II V: − MCUSUM Cop. 2S 0.0027 4.2 0.75
272 Student-t 0.40 II C: Gumbel MCUSUM Cop. 2S 0.0027 4.2 0.75
273 Student-t 0.40 II C: Clayton MCUSUM Cop. 2S 0.0027 4.2 0.75
274 Student-t 0.40 II C: Frank MCUSUM Cop. 2S 0.0027 4.2 0.75
275 Student-t 0.40 II C: Normal MCUSUM Cop. 2S 0.0027 4.2 0.75

Table 5.4: Design matrix.

5.2.2 R software
R is a free software environment for statistical computing and graphics which is supported by the
R Foundation for Statistical Computing (R Core Team (2020)). The programming language R is
very popular among statisticians for developing statistical software and data analysis. Both the
simulation study of this chapter and the case study of Chapter 6 will be analyzed using R. The R
software includes a wide variety of libraries which implement statistical and graphical techniques.
Furthermore, it contains several packages which are extremely useful for our research objectives.
In particular, we make use of the packages copula (see Hofert et al. (2020)), VineCopula (see
Schepsmeier et al. (2019)) and rvinecopulib (see Nagler and Vatter (2020)) for copula modeling
and monitoring. Besides, we make use of the package MSQC (see Santos-Fernández (2013)) for
conventional multivariate monitoring methods.

5.2.3 One-sided vs. two-sided version

Gumbel (case 1 & cases 6− 15)

As stated in Section 5.1, our conclusions cannot be based solely on the ARL as run length distribu-
tions are often very skewed. Therefore, we provide additional kernel density plots to substantiate
our statements.

According to Figures 5.6 and 5.7, we can set τ = 0.80 to achieve that both methods reach approx-
imately the same ARL0. In this way we have a fair comparison when analyzing shifts in phase II.
Note that a τ value of around 0.77 would have been a better choice. We observe that the ARL0

of the two-sided version is around 370 and the ARL0 of the one-sided version varies around 360,
which could indicate that the ARL0 is equal to 1/α. Note that the ARL0 values of both methods
do not variate that much for any input parameter τ , that is, for any level of dependence between
the two variables.
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Figure 5.6: ARL0 vs. Kendall’s τ for the one-sided and two-sided version of the copula-based
control chart, where the in-control distribution follows a Gumbel copula.

Figure 5.7: Kernel density plot of the in-control run length for the one-sided and two-sided version
of the copula-based control chart, where the in-control distribution follows a Gumbel copula, and
τ = 0.80.

From Figure 5.8 we conclude that both methods perform equally well when the level of one or
two variables is increased, although the one-sided version seems to perform a bit better for small
shifts. When the level of the first variable is decreased, we see that the one-sided version performs
slightly better for small shifts. The main difference is in the case when the level of both variables
is decreased. Note that when no value of the ARL is plotted, the estimated value is unknown but
for sure higher than 2,000. Both methods perform poorly in this case. However, the one-sided
version seems to be unable to detect large negative shifts in the level of both variables.
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(a) Level of the first variable increased. (b) Level of both variables increased.

(c) Level of the first variable decreased. (d) Level of both variables decreased.

Figure 5.8: ARL1 vs. level shift for the one-sided and two-sided version of the copula-based control
chart, where the in-control distribution follows a Gumbel copula.

When looking at Figure 5.9, we notice that the two-sided version performs better if the largest
eigenvalue of the correlation matrix is increased, which means that the two-sided version is better in
detecting positive shifts in the correlation matrix in general. Note that the ARL1 values, however,
are unacceptably high. On the other hand, when there is a negative shift in the correlation matrix,
the one-sided version seems to perform a bit better when the shift size is small or medium.

(a) Largest eigenvalue increased. (b) Largest eigenvalue decreased.

Figure 5.9: ARL1 vs. largest eigenvalue shift for the one-sided and two-sided version of the copula-
based control chart, where the in-control distribution follows a Gumbel copula.

From Figure 5.10 and the fact that we set τ = 0.80, we conclude that both methods perform
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equally well when the underlying copula structure shifts to the Clayton or Frank copula, although
the one-sided version might perform slightly better in the latter case. In case the underlying copula
shifts to the Normal or Student-t copula, the one-sided version performs significantly better. This
could indicate that both methods perform equally well when the underlying copula remains an
Archimedean copula, and that the one-sided version performs better when the underlying copula
shifts to an elliptical copula. Note that the ARL1 values for a shift to the Normal copula are
undesirable.

(a) Shift to Clayton copula. (b) Shift to Frank copula.

(c) Shift to Normal copula. (d) Shift to Student-t copula with 3 degrees of
freedom.

Figure 5.10: ARL1 vs. Kendall’s τ for the one-sided and two-sided version of the copula-based
control chart, where the in-control distribution follows a Gumbel copula and shifts to a different
copula.

Normal (case 4 & cases 36− 45)

According to Figure 5.11, there is no value of τ for which the ARL0 values are exactly equal.
However, the ARL0 values of both methods do not differ that much. Note that the ARL0 values of
both methods are constant for any input parameter τ and the values are around 350. We simply
choose τ = 0.40 in order to reach approximately the same ARL0 for both methods, which is verified
by Figure 5.12, and proceed to phase II analysis.
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Figure 5.11: ARL0 vs. Kendall’s τ for the one-sided and two-sided version of the copula-based
control chart, where the in-control distribution follows a Normal copula.

Figure 5.12: Kernel density plot of the in-control run length for the one-sided and two-sided version
of the copula-based control chart, where the in-control distribution follows a Normal copula, and
τ = 0.40.

From Figure 5.13 we conclude that both methods perform equally well when the level of one or
two variables is increased. When the level of the first variable is decreased, we observe that the
one-sided version performs better in general. The main difference is in the case when the level
of both variables is decreased. Both methods perform quite poorly in this case. However, the
one-sided version is unable to detect negative shifts in the level of both variables when the shift
size is medium or large.
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(a) Level of the first variable increased. (b) Level of both variables increased.

(c) Level of the first variable decreased. (d) Level of both variables decreased.

Figure 5.13: ARL1 vs. level shift for the one-sided and two-sided version of the copula-based
control chart, where the in-control distribution follows a Normal copula.

When looking at Figure 5.14, we notice that the two-sided version is way better in detecting
positive shifts in the correlation matrix for any shift size. Note that the ARL1 values, however,
are very high. Furthermore, when there is a negative shift in the correlation matrix, the one-sided
version seems to perform better when the shift size is small or medium.

(a) Largest eigenvalue increased. (b) Largest eigenvalue decreased.

Figure 5.14: ARL1 vs. largest eigenvalue shift for the one-sided and two-sided version of the
copula-based control chart, where the in-control distribution follows a Normal copula.

From Figure 5.15 and the fact that we set τ = 0.40, we conclude that the one-sided version performs
slightly better when the underlying copula shifts to the Gumbel or Clayton copula. Moreover, if
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the underlying copula shifts to the Frank or Student-t copula, the one-sided version performs better
as well. Note, however, that we could have chosen a different value of τ , see Figure 5.11. If we,
for instance, would have chosen a smaller τ , the two-sided version would perform better when the
copula shifts to the Gumbel or Clayton copula. For really small τ , the two-sided version performs
also better when the copula shifts to the Student-t copula. And if we would have chosen a larger
τ , the one-sided version seems to outperform the two-sided version when the copula shifts to a
different copula in general.

(a) Shift to Gumbel copula. (b) Shift to Clayton copula.

(c) Shift to Frank copula. (d) Shift to Student-t copula with 3 degrees of
freedom.

Figure 5.15: ARL1 vs. Kendall’s τ for the one-sided and two-sided version of the copula-based
control chart, where the in-control distribution follows a Normal copula and shifts to a different
copula.

Overall, we see that our main conclusions are similar in case the in-control distribution follows a
Gumbel or Normal copula. Basically, we conclude that both methods perform equally well when
the level is increased. If the level of only one variable is decreased, it seems that the one-sided
version performs a bit better. However, when the level of both variables is decreased, the one-sided
version is unable to detect large shifts and performs equal to or worse than the two-sided version
for small shifts. Furthermore, the two-sided version performs way better for positive shifts in the
correlation matrix, whereas the one-sided version performs slightly better for small or medium
negative shifts in the correlation matrix. For large negative shifts in the correlation matrix, we
observe that the two methods perform equally well. In case the underlying copula shifts to a
different copula, the one-sided version seems to perform better in general. Most of these findings
are in line with the results in case the in-control distribution follows a Clayton, Frank or Student-t
copula, which can be found in Appendix B.1. There are some minor differences, but these can
be regarded as insignificant. For instance, consider the case that the in-control distribution is a
Student-t copula. Then, the one-sided version seems to perform slightly better for small shifts
when the level of both variables is decreased. Besides that, when there is a negative shift in the
correlation matrix, the one-sided version performs better for any shift size. Furthermore, only
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when the in-control distribution follows a Frank copula, the two-sided version performs better if
the underlying copula shifts to a different copula.

We advise to use the two-sided version instead of the one-sided version for detecting mean shifts
in general, as the two-sided version is able to detect shifts of any size. Also, we propose to use the
two-sided version in order to detect arbitrary shifts in the correlation matrix, as the large difference
in performance for positive shifts outweigh the smaller difference for negative shifts. Finally, if one
desires to detect a shift in the dependence structure, we recommend to use the one-sided version
since it performs better than the two-sided version. All in all, we advise to use the two-sided
version in general to detect shifts of arbitrary type. There are, however, particular cases in which
the one-sided version performs significantly better.

5.2.4 Copula-based control chart vs. Hotelling T 2

Gumbel (case 56 & cases 61− 70)

According to Figures 5.16 and 5.17, we can choose τ = 0.56 to achieve that both methods reach
approximately the same ARL0. Again, we observe that the ARL0 of both methods is close to
370, which suggests that the ARL0 could be equal to 1/α. Note that the ARL0 values of the
copula-based chart are roughly constant for any input parameter τ , whereas the ARL0 values of
the T 2 chart are highly influenced by the input parameter τ .

Figure 5.16: ARL0 vs. Kendall’s τ for the two-sided version of the copula-based control chart and
Hotelling T 2 chart, where the in-control distribution follows a Gumbel copula.
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Figure 5.17: Kernel density plot of the in-control run length for the two-sided version of the
copula-based control chart and Hotelling T 2 chart, where the in-control distribution follows a
Gumbel copula, and τ = 0.56.

From Figure 5.18 we conclude that the copula-based chart performs better when the level of one
or two variables is increased, especially for small shift sizes. When the level of the first variable
is decreased, we conclude that the copula-based chart performs better in general. Furthermore,
when the level of both variables is decreased, the T 2 chart is unable to detect negative shifts in
the level of both variables when the shift size is medium or large. Only really small shift sizes can
be detected in this case. The copula-based chart is able to detect these kinds of shifts, however,
the resulting ARL1 values are very high.
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(a) Level of the first variable increased. (b) Level of both variables increased.

(c) Level of the first variable decreased. (d) Level of both variables decreased.

Figure 5.18: ARL1 vs. level shift for the two-sided version of the copula-based control chart and
Hotelling T 2 chart, where the in-control distribution follows a Gumbel copula.

When observing Figure 5.19, we see that the copula-based chart is way better in detecting positive
shifts in the correlation matrix for any shift size. Note that the ARL1 values, however, are quite
high. Furthermore, when there is a negative shift in the correlation matrix, the T 2 chart seems to
perform better, especially for small shift sizes.

(a) Largest eigenvalue increased. (b) Largest eigenvalue decreased.

Figure 5.19: ARL1 vs. largest eigenvalue shift for the two-sided version of the copula-based control
chart and Hotelling T 2 chart, where the in-control distribution follows a Gumbel copula.

From Figure 5.20 and the fact that we set τ = 0.56, we conclude that the copula-based chart
massively outperforms the T 2 chart when the underlying copula structure shifts to a Clayton,
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Frank or Normal copula. In case the copula shifts to a Normal copula, the resulting ARL1 values
are unacceptably high. If the underlying copula shifts to the Student-t copula, the copula-based
chart seems to perform slightly better. Hence, it does not make any difference whether the copula
family remains Archimedean or switches to an elliptical type.

(a) Shift to Clayton copula. (b) Shift to Frank copula.

(c) Shift to Normal copula. (d) Shift to Student-t copula with 3 degrees of
freedom.

Figure 5.20: ARL1 vs. Kendall’s τ for the two-sided version of the copula-based control chart
and Hotelling T 2 chart, where the in-control distribution follows a Gumbel copula and shifts to a
different copula.

Normal (case 59 & cases 91− 100)

According to Figures 5.21 and 5.22, we can choose τ = 0.87 to achieve that both methods reach ap-
proximately the same ARL0. This corresponds to a high level of dependence between the variables,
and the resulting ARL0 is close to 370. Again, we note that the ARL0 values of the copula-based
chart are constant for any input parameter τ , whereas the ARL0 values of the T 2 chart are highly
influenced by the input parameter τ .
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Figure 5.21: ARL0 vs. Kendall’s τ for the two-sided version of the copula-based control chart and
Hotelling T 2 chart, where the in-control distribution follows a Normal copula.

Figure 5.22: Kernel density plot of the in-control run length for the two-sided version of the
copula-based control chart and Hotelling T 2 chart, where the in-control distribution follows a
Normal copula, and τ = 0.87.

From Figure 5.23 we conclude that the copula-based chart performs better when the level of one
or two variables is increased, especially for small shifts. When the level of the first variable is
decreased, both methods seem to perform equally well except for small shift sizes, in which case
the copula-based chart performs better. Furthermore, when the level of both variables is decreased,
the T 2 chart is unable to detect negative shifts in the level of both variables when the shift size is
medium or large. The copula-based chart, however, is able to detect these kinds of shifts.
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(a) Level of the first variable increased. (b) Level of both variables increased.

(c) Level of the first variable decreased. (d) Level of both variables decreased.

Figure 5.23: ARL1 vs. level shift for the two-sided version of the copula-based control chart and
Hotelling T 2 chart, where the in-control distribution follows a Normal copula.

When looking at Figure 5.24, we see that the copula-based chart is significantly better in detecting
positive shifts in the correlation matrix for any shift size. Note that the ARL1 values, however,
are quite high. Furthermore, when there is a negative shift in the correlation matrix, the T 2 chart
seems to perform slightly better for small shift sizes.

(a) Largest eigenvalue increased. (b) Largest eigenvalue decreased.

Figure 5.24: ARL1 vs. largest eigenvalue shift for the two-sided version of the copula-based control
chart and Hotelling T 2 chart, where the in-control distribution follows a Normal copula.

All results in Figure 5.25 more or less exhibit the same behavior. From the fact that we set τ = 0.87,
we conclude that the copula-based chart performs significantly better when the underlying copula
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shifts to a Gumbel, Clayton or Frank copula. If the underlying copula shifts to the Student-
t copula, both methods seem to perform equally well. This could indicate that both methods
perform equally well when the underlying copula remains an elliptical copula, and that the copula-
based chart performs better when the underlying copula shifts to an Archimedean copula.

(a) Shift to Gumbel copula. (b) Shift to Clayton copula.

(c) Shift to Frank copula. (d) Shift to Student-t copula with 3 degrees of
freedom.

Figure 5.25: ARL1 vs. Kendall’s τ for the two-sided version of the copula-based control chart
and Hotelling T 2 chart, where the in-control distribution follows a Normal copula and shifts to a
different copula.

Altogether, we conclude that our main findings are similar in case the in-control distribution follows
a Gumbel or Normal copula. In general, we see that the copula-based chart performs better when
the level is increased, particularly for small shift sizes. If the level of only one variable is decreased,
the copula-based chart seems to perform equal to or better than the T 2 chart in all cases. When
the level of both variables is decreased, the T 2 chart is unable to detect medium or large shift
sizes. The copula-based chart seems to be able to detect these types of shifts, although for small
shifts the resulting ARL1 is occasionally higher than the ARL1 of the T 2 chart. Furthermore,
the copula-based chart performs significantly better for positive shifts in the correlation matrix,
whereas the T 2 chart performs slightly better for small or medium negative shifts in the correlation
matrix. Additionally, we notice that both methods perform equally well for large negative shifts
in the correlation matrix. In case the underlying copula shifts to a different copula, no matter
which copula family it belongs to, the copula-based chart seems to perform equal to or better than
the T 2 chart. Most of these findings are in line with the results in case the in-control distribution
follows a Clayton, Frank or Student-t copula, which can be found in Appendix B.2. There are
some differences, but these do not influence our conclusions. For instance, when the in-control
distribution follows a Clayton or Frank copula, the T 2 chart seems to perform better in general
if the level of one variable is decreased. Also, when the in-control distribution follows a Frank
or Student-t copula, the T 2 chart performs better in general for negative shifts in the correlation
matrix.
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Consequently, one should use the copula-based chart instead of the T 2 chart in general to detect
mean shifts of arbitrary type. Also, we advise to use the copula-based chart in order to detect
arbitrary shifts in the correlation matrix, as the significant difference in performance for positive
shifts outweigh the smaller difference for negative shifts. Finally, we recommend to use the copula-
based chart in order to detect a shift in the dependence structure, since it performs equal to or
better than the T 2 chart. Overall, we propose to use the copula-based chart in general to detect
shifts of arbitrary type. Note, however, that there are some cases in which the T 2 chart is more
effective.

5.2.5 Copula-based control chart vs. MCUSUM

k = 0.25

Gumbel (case 111 & cases 116− 125)

According to Figures 5.26 and 5.27, we can set τ = 0.80 to achieve that both methods reach
approximately the same ARL0. Note that we could have chosen different values for τ . Again, we
observe that the ARL0 of both methods is approximately equal to 370, which suggests that the
ARL0 could be equal to 1/α. Furthermore, the ARL0 values of both methods do not differ that
much for any input parameter τ .

Figure 5.26: ARL0 vs. Kendall’s τ for the two-sided version of the copula-based control chart and
the MCUSUM chart with k = 0.25, where the in-control distribution follows a Gumbel copula.
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Figure 5.27: Kernel density plot of the in-control run length for the two-sided version of the copula-
based control chart and the MCUSUM chart with k = 0.25, where the in-control distribution follows
a Gumbel copula, and τ = 0.80.

From Figure 5.28 we conclude that the copula-based chart performs better when the level of one
or two variables is increased, especially for small shifts. When the level of the first variable is
decreased, both methods seem to perform equally well except for small shift sizes, in which case
the MCUSUM chart performs slightly better. Furthermore, when the level of both variables is
decreased, the MCUSUM chart massively outperforms the copula-based chart for any shift size.

(a) Level of the first variable increased. (b) Level of both variables increased.

(c) Level of the first variable decreased. (d) Level of both variables decreased.

Figure 5.28: ARL1 vs. level shift for the two-sided version of the copula-based control chart and
the MCUSUM chart with k = 0.25, where the in-control distribution follows a Gumbel copula.
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When observing Figure 5.29, we conclude that the copula-based chart is better in detecting positive
shifts in the correlation matrix for any shift size. Note that the ARL1 values, however, are higher
than the ARL0. Furthermore, the copula-based chart seems to perform better when there is a
negative shift in the correlation matrix except for small shifts, in which case the MCUSUM chart
performs slightly better.

(a) Largest eigenvalue increased. (b) Largest eigenvalue decreased.

Figure 5.29: ARL1 vs. largest eigenvalue shift for the two-sided version of the copula-based control
chart and the MCUSUM chart with k = 0.25, where the in-control distribution follows a Gumbel
copula.

From Figure 5.30 and the fact that we set τ = 0.80, we conclude that the copula-based chart
massively outperforms the MCUSUM chart when the underlying copula shifts to a Clayton, Frank
or Student-t copula. If the underlying copula shifts to the Normal copula, the MCUSUM chart
seems to perform better. The resulting ARL1 values, however, are higher than the ARL0. We
could have chosen a different value for τ , however, this will most likely not influence our findings.
Only if we would have chosen a very small τ , the MCUSUM chart performs slightly better in case
the copula shifts to a Clayton or Frank copula.
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(a) Shift to Clayton copula. (b) Shift to Frank copula.

(c) Shift to Normal copula. (d) Shift to Student-t copula with 3 degrees of
freedom.

Figure 5.30: ARL1 vs. Kendall’s τ for the two-sided version of the copula-based control chart and
the MCUSUM chart with k = 0.25, where the in-control distribution follows a Gumbel copula and
shifts to a different copula.

Normal (case 114 & cases 146− 155)

According to Figures 5.31 and 5.32, we can set τ = 0.80 in order to achieve that both methods
reach approximately the same ARL0. Note that we could have chosen more appropriate values for
τ . We see that the ARL0 of both methods is approximately equal to 347. Furthermore, the ARL0

values of the copula-based chart are constant, whereas the ARL0 values of the MCUSUM chart
vary for different τ .
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Figure 5.31: ARL0 vs. Kendall’s τ for the two-sided version of the copula-based control chart and
the MCUSUM chart with k = 0.25, where the in-control distribution follows a Normal copula.

Figure 5.32: Kernel density plot of the in-control run length for the two-sided version of the copula-
based control chart and the MCUSUM chart with k = 0.25, where the in-control distribution follows
a Normal copula, and τ = 0.80.

From Figure 5.33 we conclude that the copula-based chart performs better when the level of one
or two variables is increased, particularly for small shifts. When the level of the first variable is
decreased, the copula-based chart performs slightly better except for small shifts, in which case
the MCUSUM chart seems to perform better. The main difference occurs when the level of both
variables is decreased. In this case the MCUSUM chart massively outperforms the copula-based
chart for any shift size.
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(a) Level of the first variable increased. (b) Level of both variables increased.

(c) Level of the first variable decreased. (d) Level of both variables decreased.

Figure 5.33: ARL1 vs. level shift for the two-sided version of the copula-based control chart and
the MCUSUM chart with k = 0.25, where the in-control distribution follows a Normal copula.

From Figure 5.34, we conclude that the copula-based chart is better in detecting positive shifts in
the correlation matrix, except for small shift sizes. Again, note that for this type of shift the ARL1

values are quite high. Moreover, the copula-based chart seems to perform better in general when
there is a negative shift in the correlation matrix.

(a) Largest eigenvalue increased. (b) Largest eigenvalue decreased.

Figure 5.34: ARL1 vs. largest eigenvalue shift for the two-sided version of the copula-based control
chart and the MCUSUM chart with k = 0.25, where the in-control distribution follows a Normal
copula.

From Figure 5.35 and the fact that we set τ = 0.80, we deduce that the copula-based chart massively
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outperforms the MCUSUM chart when the underlying copula shifts to a different copula. We could
have chosen a different value for τ , however, this will not influence our conclusions at all.

(a) Shift to Gumbel copula. (b) Shift to Clayton copula.

(c) Shift to Frank copula. (d) Shift to Student-t copula with 3 degrees of
freedom.

Figure 5.35: ARL1 vs. Kendall’s τ for the two-sided version of the copula-based control chart and
the MCUSUM chart with k = 0.25, where the in-control distribution follows a Normal copula and
shifts to a different copula.

k = 0.50

Gumbel (case 166 & cases 171− 180)

According to Figures 5.36 and 5.37, we can choose τ = 0.44 to achieve that both methods reach
approximately the same ARL0. The resulting ARL0 is close to 370. Furthermore, we note that the
ARL0 values of the copula-based chart are roughly constant for any input parameter τ , whereas
the ARL0 values of the MCUSUM chart are influenced by the input parameter τ .
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Figure 5.36: ARL0 vs. Kendall’s τ for the two-sided version of the copula-based control chart and
the MCUSUM chart with k = 0.50, where the in-control distribution follows a Gumbel copula.

Figure 5.37: Kernel density plot of the in-control run length for the two-sided version of the copula-
based control chart and the MCUSUM chart with k = 0.50, where the in-control distribution follows
a Gumbel copula, and τ = 0.44.

From Figure 5.38 we deduce that the copula-based chart performs better when the level of one or
two variables is increased, especially for small shift sizes. On the other hand, the MCUSUM chart
performs significantly better in general if the level of one or two variables is decreased.
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(a) Level of the first variable increased. (b) Level of both variables increased.

(c) Level of the first variable decreased. (d) Level of both variables decreased.

Figure 5.38: ARL1 vs. level shift for the two-sided version of the copula-based control chart and
the MCUSUM chart with k = 0.50, where the in-control distribution follows a Gumbel copula.

From Figure 5.39, we conclude that the copula-based chart is better in detecting positive shifts in
the correlation matrix, especially when the shift size is medium or large. Note that once again the
ARL1 values are higher than the ARL0. Furthermore, the copula-based chart seems to perform
better in general when there is a negative shift in the correlation matrix.

(a) Largest eigenvalue increased. (b) Largest eigenvalue decreased.

Figure 5.39: ARL1 vs. largest eigenvalue shift for the two-sided version of the copula-based control
chart and the MCUSUM chart with k = 0.50, where the in-control distribution follows a Gumbel
copula.

From Figure 5.40 and the fact that we set τ = 0.44, we see that the copula-based chart performs
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better than the MCUSUM chart when the underlying copula shifts to a Clayton, Frank or Student-
t copula. Furthermore, if the underlying copula shifts to the Normal copula, the MCUSUM chart
seems to perform better although the resulting ARL1 is quite poor.

(a) Shift to Clayton copula. (b) Shift to Frank copula.

(c) Shift to Normal copula. (d) Shift to Student-t copula with 3 degrees of
freedom.

Figure 5.40: ARL1 vs. Kendall’s τ for the two-sided version of the copula-based control chart and
the MCUSUM chart with k = 0.50, where the in-control distribution follows a Gumbel copula and
shifts to a different copula.

Normal (case 169 & cases 201− 210)

According to Figures 5.41 and 5.42, we can set τ = 0.40 to accomplish that both methods reach
approximately the same ARL0. The resulting ARL0 is a little less than 350. Furthermore, we note
that the ARL0 values of the copula-based chart are constant for any input parameter τ , whereas
the ARL0 values of the MCUSUM chart are significantly influenced by the input parameter τ .
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Figure 5.41: ARL0 vs. Kendall’s τ for the two-sided version of the copula-based control chart and
the MCUSUM chart with k = 0.50, where the in-control distribution follows a Normal copula.

Figure 5.42: Kernel density plot of the in-control run length for the two-sided version of the copula-
based control chart and the MCUSUM chart with k = 0.50, where the in-control distribution follows
a Normal copula, and τ = 0.40.

From Figure 5.43 we conclude that the copula-based chart performs better when the level of one or
two variables is increased, especially for small shift sizes. On the other hand, the MCUSUM chart
massively outperforms the copula-based chart when the level of one or two variables is decreased,
particularly if the shift size is small or medium.
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(a) Level of the first variable increased. (b) Level of both variables increased.

(c) Level of the first variable decreased. (d) Level of both variables decreased.

Figure 5.43: ARL1 vs. level shift for the two-sided version of the copula-based control chart and
the MCUSUM chart with k = 0.50, where the in-control distribution follows a Normal copula.

When observing Figure 5.44, we conclude that the copula-based chart is better in detecting positive
shifts in the correlation matrix, especially when the shift size is medium or large. Note that once
again the ARL1 values are on the high side. Besides that, the copula-based chart performs better
in general when there is a negative shift in the correlation matrix.

(a) Largest eigenvalue increased. (b) Largest eigenvalue decreased.

Figure 5.44: ARL1 vs. largest eigenvalue shift for the two-sided version of the copula-based control
chart and the MCUSUM chart with k = 0.50, where the in-control distribution follows a Normal
copula.

The results in Figure 5.45 are quite obvious. We simply conclude that the copula-based chart

85



performs significantly better when the underlying copula shifts to a different copula. This holds
for any input parameter τ .

(a) Shift to Gumbel copula. (b) Shift to Clayton copula.

(c) Shift to Frank copula. (d) Shift to Student-t copula with 3 degrees of
freedom.

Figure 5.45: ARL1 vs. Kendall’s τ for the two-sided version of the copula-based control chart and
the MCUSUM chart with k = 0.50, where the in-control distribution follows a Normal copula and
shifts to a different copula.

k = 0.75

Gumbel (case 221 & cases 226− 235)

When looking at Figures 5.46 and 5.47, we can set τ = 0.41 to accomplish that both methods reach
approximately the same ARL0. The resulting ARL0 is close to 370 in this case. Furthermore,
we observe that the ARL0 values of the copula-based chart are roughly constant for any input
parameter τ , whereas the ARL0 values of the MCUSUM chart are highly influenced by the input
parameter τ .
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Figure 5.46: ARL0 vs. Kendall’s τ for the two-sided version of the copula-based control chart and
the MCUSUM chart with k = 0.75, where the in-control distribution follows a Gumbel copula.

Figure 5.47: Kernel density plot of the in-control run length for the two-sided version of the copula-
based control chart and the MCUSUM chart with k = 0.75, where the in-control distribution follows
a Gumbel copula, and τ = 0.41.

From Figure 5.48 we deduce that the copula-based chart performs better when the level is increased,
especially for small shift sizes. On the other hand, the MCUSUM chart performs significantly better
in general if the level is decreased. The copula-based chart is even unable to detect small shifts in
case the level of both variables is decreased.
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(a) Level of the first variable increased. (b) Level of both variables increased.

(c) Level of the first variable decreased. (d) Level of both variables decreased.

Figure 5.48: ARL1 vs. level shift for the two-sided version of the copula-based control chart and
the MCUSUM chart with k = 0.75, where the in-control distribution follows a Gumbel copula.

When observing Figure 5.49, we conclude that the copula-based chart is better in detecting positive
shifts in the correlation matrix for any shift size. Again, the ARL1 values are higher than the ARL0.
Furthermore, the copula-based chart seems to perform slightly better when there is a negative shift
in the correlation matrix except for small shifts, in which case the MCUSUM chart performs slightly
better.

(a) Largest eigenvalue increased. (b) Largest eigenvalue decreased.

Figure 5.49: ARL1 vs. largest eigenvalue shift for the two-sided version of the copula-based control
chart and the MCUSUM chart with k = 0.75, where the in-control distribution follows a Gumbel
copula.

From Figure 5.50 and the fact that we set τ = 0.41, we see that the copula-based chart performs
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significantly better than the MCUSUM chart when the underlying copula shifts to a Clayton,
Frank or Student-t copula. Furthermore, if the underlying copula shifts to the Normal copula, the
MCUSUM chart seems to perform better although the resulting ARL1 is undesirable.

(a) Shift to Clayton copula. (b) Shift to Frank copula.

(c) Shift to Normal copula. (d) Shift to Student-t copula with 3 degrees of
freedom.

Figure 5.50: ARL1 vs. Kendall’s τ for the two-sided version of the copula-based control chart and
the MCUSUM chart with k = 0.75, where the in-control distribution follows a Gumbel copula and
shifts to a different copula.

Normal (case 224 & cases 256− 265)

According to Figures 5.51 and 5.52, we can set τ = 0.52 to accomplish that both methods reach
approximately the same ARL0. Again, when the in-control distribution is a Normal copula, the
resulting ARL0 is close to 350. Furthermore, we note that the ARL0 values of the copula-based
chart are constant for any input parameter τ , whereas the ARL0 values of the MCUSUM chart
are influenced by the input parameter τ .

89



Figure 5.51: ARL0 vs. Kendall’s τ for the two-sided version of the copula-based control chart and
the MCUSUM chart with k = 0.75, where the in-control distribution follows a Normal copula.

Figure 5.52: Kernel density plot of the in-control run length for the two-sided version of the copula-
based control chart and the MCUSUM chart with k = 0.75, where the in-control distribution follows
a Normal copula, and τ = 0.52.

From Figure 5.53 we conclude that the copula-based chart performs better when the level of one
or two variables is increased, especially for small shift sizes. On the other hand, the MCUSUM
chart significantly outperforms the copula-based chart when the level of one or two variables is
decreased.
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(a) Level of the first variable increased. (b) Level of both variables increased.

(c) Level of the first variable decreased. (d) Level of both variables decreased.

Figure 5.53: ARL1 vs. level shift for the two-sided version of the copula-based control chart and
the MCUSUM chart with k = 0.75, where the in-control distribution follows a Normal copula.

When observing Figure 5.54, we conclude that the copula-based chart is significantly better in
detecting positive shifts in the correlation matrix. Note that once again the ARL1 values are
unacceptable. Furthermore, the copula-based chart seems to perform better in general when there
is a negative shift in the correlation matrix.

(a) Largest eigenvalue increased. (b) Largest eigenvalue decreased.

Figure 5.54: ARL1 vs. largest eigenvalue shift for the two-sided version of the copula-based control
chart and the MCUSUM chart with k = 0.75, where the in-control distribution follows a Normal
copula.

The results in Figure 5.55 are very straightforward. We simply conclude that the copula-based
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chart performs significantly better when the underlying copula shifts to a different copula. This
holds for any input parameter τ .

(a) Shift to Gumbel copula. (b) Shift to Clayton copula.

(c) Shift to Frank copula. (d) Shift to Student-t copula with 3 degrees of
freedom.

Figure 5.55: ARL1 vs. Kendall’s τ for the two-sided version of the copula-based control chart and
the MCUSUM chart with k = 0.75, where the in-control distribution follows a Normal copula and
shifts to a different copula.

Overall, we conclude that our main findings are similar for all investigated values of k in case the
in-control distribution follows a Gumbel or Normal copula. In general, we see that the copula-based
chart performs better when the level of one or two variables is increased, particularly for small
shift sizes. When the level of just one variable is decreased, the MCUSUM chart seems to perform
better than or equal to the copula-based chart in general. Also, when the level of both variables
is decreased, the MCUSUM chart massively outperforms the copula-based chart. Furthermore,
the copula-based chart performs better for positive shifts in the correlation matrix in general. For
negative shifts in the correlation matrix, the copula-based chart performs better except for small
shifts, in which case the MCUSUM chart occasionally performs slightly better. Finally, when the
underlying copula shifts to a different copula, the copula-based chart performs significantly better
than the MCUSUM chart, except when the copula shifts to the Normal copula. In this case both
methods perform poorly, but the MCUSUM chart seems to be the most effective chart. Most
of these findings are in line with the results in case the in-control distribution follows a Clayton,
Frank or Student-t copula, which can be found in Appendix B.3. There are some differences which
are worth mentioning. For instance, when the in-control distribution is a Clayton or Frank copula,
the copula-based chart performs better if the underlying copula shifts to a Normal copula. Besides
that, the resulting ARL1 values are reasonable. Also, when the in-control distribution follows a
Frank copula and k = 0.75, the MCUSUM chart seems to perform better for negative shifts in the
correlation matrix. Furthermore, if the in-control distribution is a Student-t copula, the MCUSUM
chart performs significantly better for negative shifts in the correlation matrix. Finally, when the
in-control distribution is a Student-t copula and k = 0.25, the MCUSUM chart performs slightly
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better if the underlying copula shifts to a Gumbel copula. The resulting ARL1 values, however,
are undesirable.

All things considered, we recommend to choose the MCUSUM chart with k = 0.25 over the copula-
based chart to detect mean shifts of arbitrary type, since this MCUSUM chart performs significantly
better when the level is decreased and is able to detect level increases within a reasonable time as
well. Furthermore, we advise to use the copula-based chart in order to detect arbitrary shifts in
the correlation matrix, as it performs better for positive and negative shifts in general except on a
few occasions. Finally, we propose to use the copula-based chart in order to detect a shift in the
dependence structure, since it significantly outperforms the MCUSUM chart. The only exception
is when the copula shifts to the Normal copula, in which case the MCUSUM chart performs better
on some occasions. Overall, we recommend to use the copula-based chart in general to detect shifts
of arbitrary type. Note, however, that there seem to be quite some cases in which the MCUSUM
chart is much more effective, particularly in detecting mean shifts.

5.3 Summary

• The MCUSUM chart with k = 0.25 seems to be a suitable choice for detecting arbi-
trary mean shifts in an efficient way.

• The two-sided version of the copula-based control chart is the obvious choice in order
to detect arbitrary shifts in the correlation matrix.

• The one-sided version of the copula-based control chart is the optimal choice,
performance-wise, if one desires to detect a shift in the dependence structure.

• The two-sided version of the copula-based control chart seems to be more efficient
than the one-sided version in detecting shifts of arbitrary type.

• The two-sided copula-based control chart outperforms the conventional control charts
in detecting shifts of almost any type.

• All of the investigated methods seem to have great difficulty with timely detection of
positive shifts in the correlation matrix.

• In case the in-control distribution follows a Gumbel or Student-t copula, all of the
investigated methods have a lot of trouble with timely detection when the dependence
structure shifts to a Normal copula.
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6 | Wind turbine case study

In this chapter we apply the two-sided version of the vine copula-based monitoring approach, which
is explained in Section 4.3, to a real-life data set of a wind turbine. More specifically, we combine
the univariate multiple linear regression models found by Kenbeek (2016) to obtain suitable multi-
variate multiple linear regression models, which are discussed in Chapter 2. Subsequently, we apply
the two-sided version of the vine-copula based chart and the Hotelling T 2 chart to the residuals
and investigate the differences in performance. Finally, we compare the results with the findings
in van Dalen (2018) to analyze the difference between univariate and multivariate monitoring of
the wind turbine data.

6.1 Data description

The wind turbine data is provided by a Dutch energy supplier and consists of 229,680 observations
on 110 variables. This data was collected in the period from 19/06/2013 18:32:00 to 18/03/2015
23:56:00 and the observations were measured every four minutes. The most important variables
can be subdivided into two categories:

1. Environmental variables: variables that describe environmental factors like wind speed
and environmental temperature.

2. Conditional variables: variables that describe the state of several components of the wind
turbine. These variables can be further subdivided into:

(a) Speed: rotor speed and generator speed.

(b) Temperatures: measurements of bearing, gearbox, primary generator, secondary gen-
erator, nacelle and oil temperatures.

(c) Vibrations: different vibration measurements on various components.

(d) Operational: power output, operating state, pitch angle and yaw measurements.

In order to get a better understanding of the inside of a wind turbine, most of the related compo-
nents are visualized in Figure 6.1. Additionally, the most important variable names are listed in
Table 6.1. We follow the choice of Kenbeek (2016) to only use the overall vibration readings and do
not consider subdivision of the vibration readings into bands of frequency levels. Subsequently, we
process the data on the condition that the wind turbine is running and that the primary generator
is in use. In this way we should be able to predict failures more precisely, as the wind turbine
behaves very differently when the starting generator is in use. After data pre-processing we are
left with 30,775 observations. We will analyze the data with the regular four-minute intervals, but
also a subsample with intervals of four hours to reduce possible autocorrelation. In Figure 6.2 we
present plots of several individual variables versus time based on the subsample with four-hour
intervals. Note that there are some large gaps in the data, which correspond to maintenance peri-
ods or malfunctioning of sensors. We know that the wind turbine suffered a mechanical failure of
the primary generator on December 2014. The identification of the root cause and the magnitude
of the problem became apparent only during inspection after the failure. Therefore, it is crucial
to adopt an effective monitoring strategy which is able to timely detect indications of imminent
failure. For an in-depth analysis of the provided wind turbine data, see Kenbeek (2016).
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Figure 6.1: Basic overview of the inside of a wind turbine. Photo courtesy of the U.S. Department
of Energy.

Name Name
1 Taken NarcellTemp 23
2 BrgTemp OilTemp 24
3 EnvTemp OpState 25
4 GbxISA10KHzOvr PitchAngle 26
5 GbxISA1KHzOvr PlanGbxA10KHzOvr 27
6 GbxMSA10KHzOvr PlanGbxA200HzOvr 28
7 GbxMSA1KHzOvr PlanGbxD500HzOvr 29
8 GbxMSD500HzOvr Power 30
9 GbxMSV1KHzOvr RotorSpeed 31
10 GbxOSA10KHzOvr ServiceState 32
11 GbxOSA2KHzOvr ShftGbxA10KHzOvr 33
12 GbxOSD1KHzOvr ShftGbxA50HzOvr 34
13 GbxTemp ShftGbxD50HzOvr 35
14 Gen1Temp ShftGbxV1KHzOvr 36
15 Gen2Temp ShftPropA10KHzOvr 37
16 GenDEA10KHzOvr ShftPropA50HzOvr 38
17 GenDED1KHzOvr ShftPropD50HzOvr 39
18 GenDEV1KHzOvr ShftPropV1KHzOvr2 40
19 GenNDEA10KHzOvr WindSpeed 41
20 GenNDED1KHzOvr YawCCW 42
21 GenNDEV1KHzOvr YawCW 43
22 GenSpeed - 44

Table 6.1: The available variables in the data set excluding subdivision of the vibration readings
into bands.

95



Figure 6.2: The environmental temperature, nacelle temperature, gearbox temperature, bearing
temperature, primary generator temperature and secondary generator temperature versus time.

6.2 Model

As explained in Chapter 1, the observations are often not abnormal by themselves, but this state
depends on external factors like environmental temperature and wind speed. By first applying
a suitable regression model we can describe the observations by these external factors, which
enables us to identify contextual anomalies by monitoring the residuals of the model. Since we
want to monitor multiple quality characteristics simultaneously, we will fit multivariate multiple
linear regression models which we are able to fully understand due to the theoretical work done in
Chapter 2. Kenbeek (2016) already performed extremely valuable research and found six suitable
univariate multiple linear regression models which are given below. Here, the variables before the
“∼” sign denote the response variables and the variables after the “∼” sign denote the regressors
of the linear regression models.

1. Nacelle Temperature ∼ Environmental Temperature.

2. Oil Temperature ∼ Environmental Temperature.
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3. Bearing Temperature ∼ Environmental Temperature + Wind Speed + (Wind Speed)2 +
(Wind Speed)3 + (Generator Speed)2 + (Generator Speed)3.

4. Gearbox Temperature ∼ (Environmental Temperature)3 + (Wind Speed)2 + Generator
Speed + (Generator Speed)2 + GbxMSD500HzOvr + GbxOSA10KHzOvr + GbxOSA2KHzOvr
+ GbxOSD1KHzOvr.

5. Primary Generator Temperature ∼ Environmental Temperature + Wind Speed + Generator
Speed.

6. Secondary Generator Temperature ∼ Environmental Temperature + Wind Speed + Gener-
ator Speed + Power.

In addition, we assume normally distributed error terms for all of the above mentioned models.

Now, we want to monitor quality characteristics of the wind turbine at the same time, which leads
to two obvious multivariate multiple linear regression models.

Model 1 consists of 2 response variables and 1 regressor:(
Nacelle Temperature
Oil Temperature

)
∼ Environmental Temperature

Model 2 consists of 2 response variables and 4 regressors:(
Primary Generator Temperature
Secondary Generator Temperature

)
∼ Environmental Temperature + Wind Speed +

Generator Speed + Power

In order to fit the models, we need a large sample of phase I data in which we assume the process
to be in-control. Therefore, we will continue this case study with the phase I period determined
in Kenbeek (2016), which corresponds to the period from 19/06/2013 up to 12/10/2013. After
we fitted the multivariate multiple linear regression models, we apply the two-sided version of
the vine-copula based chart and the Hotelling T 2 chart, which are discussed in Chapter 4, to the
residuals of the models for both phase I and phase II analysis.

6.3 Results

In this section we create phase I and phase II results for the two models when applying the
two-sided version of the vine-copula based chart and the conventional Hotelling T 2 chart to the
residuals, using both the regular 4-minute interval and 4-hour interval subsample of the wind
turbine data. For both monitoring charts we set α = 0.0027, which is the false alarm probability
for the univariate Shewhart chart for individual observations in order to reach ARL0 ≈ 370, see
Section 5.1. We investigate the signals, which could be indicators of the upcoming failure, and
analyze the differences between both methods. Finally, we compare the results with the findings
of the case study in van Dalen (2018) in order to investigate the difference between the univariate
and multivariate approach of the wind turbine data. In the following figures, the vertical green
line indicates the phase I limit determined by Kenbeek (2016).

6.3.1 Model 1

4-minute intervals

When looking at Figure 6.3, we observe that some test statistics for the vine copula-based chart
are very high and that most test statistics are grouped in the lower region. In order to get a
more detailed view of the test statistics we modify the range in the y-axis, which is visualized in
Figures 6.3b and 6.4a. We combine the results of phase I and phase II after applying the vine
copula-based chart and the Hotelling T 2 chart, see Figure 6.4. From this figure we conclude that
the vine copula-based chart signals way less than the Hotelling T 2 chart. In fact, for the vine
copula-based chart, 4 out of 6617 observations are outside the control limits in phase I, and 18 out
of 24,158 observations are outside the control limits in phase II. This corresponds to approximately
0.06% and 0.07%, respectively. In total, this leads to 22 out of 30,775 observations outside the
control limits, or approximately 0.07%. For the Hotelling T 2 chart, 110 out of 6617 observations,
or approximately 1.66%, and 2343 out of 24,158 observations, or approximately 9.70%, are outside
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the limit in phase I and phase II, respectively. This corresponds to a total of 2453 out of 30,775
observations, or approximately 7.97%, marked as out-of-control. Hence, based on the vine copula-
based chart there are no significant indications that the process is out-of-control. If we assume
that, indeed, the process is in-control during phase I, the vine copula-based chart has a lower false
alarm rate than desired in phase I. Besides that, given that the wind turbine suffered a failure on
December 2014, we would expect more signals in phase II, especially in the period prior to the
failure. This could, however, also mean that we have to take these signals very seriously. The first
signal during phase II is at 13/10/2013 12:56:00. On the other hand, according to the Hotelling
T 2 chart there are clear indications that the process is not functioning as expected. As we would
expect, we see many signals in phase II and peaks of signals in the period prior to the failure.
However, the Hotelling T 2 chart gives too many false alarms than desired in phase I. In phase II,
the Hotelling T 2 chart signals for the first time at 13/10/2013 03:20:00 which is a bit earlier than
the vine copula-based chart.

(a) Full range in the y-axis. (b) Modified range in the y-axis.

Figure 6.3: Vine copula-based control chart for model 1 when using a phase I period to calculate
the regression model, and using 4-minute intervals.

(a) Vine copula-based control chart. (b) Hotelling T 2 control chart.

Figure 6.4: Multivariate control charts for model 1 when using a phase I period to calculate the
regression model, and using 4-minute intervals.

4-hour intervals

We performed a similar analysis for the subsample based on 4-hour intervals and the corresponding
results are visualized in Figure 6.5. From this figure we conclude that the results are comparable.
This time the vine copula-based chart does not even signal once which is remarkable. Based on
4-hour intervals the vine copula-based chart is therefore not able to detect the upcoming failure.
For the Hotelling T 2 chart, 2 out of 112 observations, or approximately 1.79%, and 28 out of 388
observations, or approximately 7.22%, are outside the limit in phase I and phase II, respectively.

98



This corresponds to a total of 30 out of 500 observations, or 6.00%, marked as out-of-control. The
first signal during phase II is at 13/10/2013 08:00:00. As we would expect, we see clear indications
of upcoming failure during phase II. However, the false alarm rate is still higher than desired in
phase I.

(a) Vine copula-based control chart. (b) Hotelling T 2 control chart.

Figure 6.5: Multivariate control charts for model 1 when using a phase I period to calculate the
regression model, and using 4-hour intervals.

6.3.2 Model 2

4-minute intervals

The results for model 2 using the regular 4-minute intervals can be seen in Figure 6.6. From
this figure we conclude that again the vine copula-based chart signals way less than the Hotelling
T 2 chart. However, this time the vine copula-based chart produces more signals than for model
1. In fact, 18 out of 6617 observations are outside the control limits in phase I, and 506 out of
24,158 observations are outside the control limits in phase II. This corresponds to approximately
0.27% and 2.09%, respectively. In total, this leads to 524 out of 30,775 observations outside the
control limits, or approximately 1.70%. For the Hotelling T 2 chart, 180 out of 6617 observations, or
approximately 2.72%, and 2625 out of 24,158 observations, or approximately 10.87%, are outside
the limit in phase I and phase II, respectively. This corresponds to a total of 2805 out of 30,775
observations, or approximately 9.11%, marked as out-of-control. Hence, based on the vine copula-
based chart there are some significant indications that the process is out-of-control. Additionally,
note that the false alarm rate is approximately 0.27%, as one would expect by setting α = 0.0027.
Besides, it seems that the amount of signals accumulates in the period prior to the failure which
is in line with our expectation. The first signal during phase II is at 12/10/2013 23:16:00 which is
also the time of the first observation in phase II. On the other hand, according to the Hotelling T 2

chart there are very clear indications that the process is not functioning as expected. Once again,
we see many signals in phase II and peaks of signals in the period prior to the failure. However,
the Hotelling T 2 chart for model 2 still produces too many false alarms than desired in phase I.
In phase II, the Hotelling T 2 chart signals for the first time at 13/10/2013 05:52:00 which is a bit
later than the vine copula-based chart.
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(a) Vine copula-based control chart. (b) Hotelling T 2 control chart.

Figure 6.6: Multivariate control charts for model 2 when using a phase I period to calculate the
regression model, and using 4-minute intervals.

4-hour intervals

The results for the subsample based on 4-hour intervals are visualized in Figure 6.7. From this
figure we conclude that the results are similar to the above mentioned findings. For the vine copula-
based chart, all of the 112 observations in phase I are within the control limits. Furthermore, 5 out
of 388 observations are outside the control limits in phase II, which corresponds to approximately
1.29%. In total, this leads to 5 out of 500 observations outside the control limits, or 1.00%. This
is slightly more than expected from a well-behaved process, and this could be an indication that
things are not working properly. The first signal during phase II is at 13/10/2013 12:00:00. For
the Hotelling T 2 chart, 3 out of 112 observations, or approximately 2.68%, and 34 out of 388
observations, or approximately 8.76%, are outside the limit in phase I and phase II, respectively.
This corresponds to a total of 37 out of 500 observations, or 7.40%, marked as out-of-control. This
is much more than expected from a well-behaved process, and this is definitely an indication that
things are not working properly. The first signal during phase II is at 13/10/2013 08:00:00 which
is one observation earlier than the vine copula-based chart. The false alarm rate, however, is still
higher than desired in phase I.

(a) Vine copula-based control chart. (b) Hotelling T 2 control chart.

Figure 6.7: Multivariate control charts for model 2 when using a phase I period to calculate the
regression model, and using 4-hour intervals.

Overall, we conclude that the vine copula-based chart performs very good in phase I given the low
false alarm rates. For the first model, it is questionable whether this chart is powerful enough to
detect the upcoming failure as the amount of signals is not significant. For the 4-minute intervals,
the time of the first signal in phase II is acceptable and all signals must be seriously taken into
consideration. The Hotelling T 2 chart is powerful enough to detect the upcoming failure since the
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amount of signals is much more than expected from a well-behaved process. The time of the first
signal in phase II is about 9 hours earlier than the vine copula-based chart. However, the false
alarm rate for the Hotelling T 2 chart is unacceptable, which questions the true meaning behind
the signals. It is known that autocorrelation might cause many false alarms for the Hotelling T 2

chart. By using the 4-hour interval subsample, we reduce the autocorrelation and consequently the
relative amount of signals, however, the false alarm rate remains significant. For the second model,
the vine copula-based chart is powerful enough to detect the upcoming failure as the amount of
signals is significant. For the 4-minute intervals, the chart signals instantly and for the 4-hour
intervals, the chart signals almost instantly. The Hotelling T 2 chart is also powerful enough to
detect the upcoming failure since the amount of signals is much more than expected from a well-
behaved process. For the 4-minute intervals, the time of the first signal in phase II is about 7
hours later than the vine copula-based chart. For the 4-hour intervals, the time of the first signal
in phase II is 4 hours earlier than the vine copula-based chart. However, the false alarm rate for
the Hotelling T 2 chart is, once again, much higher than desired for both the 4-minute interval
data and 4-hour interval subsample. When comparing these results with the findings in van Dalen
(2018), we observe that the Hotelling T 2 chart performs quite similar as the univariate chart. Both
charts are able to quickly detect indications that the process is out-of-control. The Hotelling T 2

chart often signals a bit earlier than the univariate chart. However, the false alarm rates of both
charts are unacceptable. The vine copula-based chart offers a potential solution as it achieves an
acceptable false alarm rate and is able to quickly detect the upcoming failure based on model 2.

6.4 Summary

• The vine copula-based chart seems unable to detect the upcoming failure based on
the model that monitors the nacelle temperature and oil temperature simultaneously.

• The Hotelling T 2 chart is able to detect the upcoming failure based on the model that
monitors the nacelle temperature and oil temperature simultaneously, however, the
false alarm rate is undesirable.

• The vine copula-based chart is powerful enough to detect the upcoming failure based
on the model that monitors the primary generator temperature and secondary gener-
ator temperature simultaneously, while still achieving an acceptable false alarm rate.

• The Hotelling T 2 chart is able to detect the upcoming failure based on the model that
monitors the primary generator temperature and secondary generator temperature
simultaneously, however, the false alarm rate is much higher than desired.

• The vine copula-based chart seems less prone to highly autocorrelated observations
than the Hotelling T 2 chart.
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7 | Conclusions

7.1 Summary

The main goal of this thesis was to develop an effective multivariate monitoring method, as conven-
tional multivariate monitoring methods rely on assumptions which are rarely satisfied for process
data. In order to achieve this goal, we introduced a monitoring approach based on the mod-
ern theory of copulas and investigated the performance of this method compared to conventional
multivariate monitoring methods in an extensive simulation study. The results showed that the
copula-based approach has great potential in becoming a well-established monitoring method, as
the copula-based approach significantly outperforms conventional methods in a variety of controlled
out-of-control cases. Additionally, we deviated from the controlled environment and analyzed the
performance of the copula-based approach and the Hotelling T 2 chart in a case study. In this case
study, several quality characteristics of a wind turbine were modeled by multivariate multiple lin-
ear regression models after which both monitoring methods were applied to monitor the deviation
of the models. It immediately became clear that the copula-based approach provided a low false
alarm rate, while it was also able to quickly detect indications of the upcoming failure based on
one of the regression models.

7.2 Conclusions

In this work we were interested in answering the research questions which are given below. For
each question the main findings are stated.

How does the multivariate regression model relate to the univariate regression model and can we
derive similar properties of estimators?

The univariate regression model generalizes to the case of multiple responses for each observation
which leads to the multivariate regression model. The estimation results for the univariate model
generalize easily to the multivariate case, although we have to be careful with notation style and
deriving results as we are dealing with matrices instead of vectors. Furthermore, in order to
estimate the covariance matrix we need knowledge of the Wishart distribution, which is basically
a generalization of the chi-square distribution.

How can we design a multivariate control chart based on a given vine copula and what are its main
benefits?

The design of the vine copula-based control chart follows the ideas of Verdier (2013) by constructing
a tolerance region based on density level set estimation. The control limits are determined by a
Shewhart-like approach. The need for vine copula structures is crucial to obtain a flexible model,
especially for high dimensions. Furthermore, this vine copula-based control chart is distribution
free and therefore extremely useful for non-normal multivariate data. Additionally, this approach
seems to be a potential solution for autocorrelated data as well.

How can we fairly compare the performance of control charts to various changes in a process?

The average run length is a commonly used measure to assess the performance of control charts.
However, we have to be cautious since the comparison cannot be based solely on the average run
length value, as run length distributions are often very skewed. To gain additional insights in
the run length distribution one should additionally compare the kernel density plots of the run
length. In order to have a fair comparison we should first make sure that the average in-control run

102



lengths are approximately equal by calibrating the parameters of the charts. Only when the kernel
density plots do not show significant differences in distribution, we may conclude that the average
in-control run lengths are equal. Subsequently, we manually implement an intended change in the
process after which we are able to compare the average out-of-control run lengths. Now, we are
only able to conclude a difference in performance when the kernel density plots do show significant
differences in distribution.

How does the vine copula-based control chart perform compared to conventional multivariate mon-
itoring methods?

First of all, the vine copula-based chart outperforms the conventional methods in the majority of
the implemented out-of-control cases. There are, however, specific out-of-control cases in which
the conventional methods perform significantly better. In case one is only interested in detecting
arbitrary shifts in the mean of a multivariate process, we could say that the MCUSUM chart
with k = 0.25 seems to perform better than the vine copula-based chart in general. Furthermore,
in case one is interested in detecting arbitrary shifts in the variance or dependence structure of
a multivariate process, the vine copula-based chart seems to be the obvious choice. Overall, we
therefore conclude that the vine copula-based chart performs better than the conventional methods
in general for detecting arbitrary shifts in a multivariate process, assuming that the shift could be
of any type.

7.3 Future research

The application of copula theory within statistical process control is still in a very early stage and
therefore there is considerable room for improvement. In order to further improve this statistical
framework, we state the most important recommendations for future research.

In the simulation study we investigated the performance of multivariate control charts by means
of the average run length. Additionally, we provided some kernel density plots to give substance
to the statements about the in-control run length. It is also necessary to include kernel density
plots of the out-of-control run length to make substantial statements about performance in out-
of-control cases. On the other hand, we could have looked at confidence intervals for the average
run length in order to make solid statistical-based conclusions about difference in performance. To
investigate confidence intervals for a geometric distribution, one could look into Byrne (2005).

Furthermore, in the simulation study we assessed the performance of control charts subject to a
pre-defined type of change which could be a shift in the mean, variance or dependence structure
of a multivariate process. In practice, most shifts are a combination of the three types mentioned
above. Besides that, we only investigated sudden shifts which occur, for instance, when a piece of
equipment breaks. However, it is also quite possible that a shift gradually develops over a period
of time, for instance, when a piece of equipment wears over time. Therefore, it would be of great
interest to also investigate more complex types of shifts.

Then, we analyzed the performance of the vine copula-based chart compared to conventional charts
by simulating an in-control process directly from a copula distribution and subsequently imple-
ment controlled shifts in the process. However, the simulated in-control process is very often not
multivariate normally distributed. This could question the base of the comparison as conven-
tional charts heavily rely on the multivariate normality assumption. Therefore, we recommend
to continue the simulation study by simulating an in-control process from a multivariate normal
distribution, the home of conventional charts, and implement intended shifts in the process. Then,
one should apply a conventional chart, like Hotelling T 2, directly to the observed process. On
the other hand, one should translate the observed process to the unit hypercube by means of an
appropriate copula model and subsequently apply the vine copula-based chart to the translated
process. When the vine copula-based chart outperforms the conventional chart in some specific
out-of-control cases, this will even further improve the position of the vine copula-based chart with
respect to conventional methods.

Next, multivariate monitoring methods seem to have several advantages over univariate methods
as they take into account dependencies between quality characteristics. However, when a multi-
variate chart signals, it is unclear where the signal originated from. In order to find the quality
characteristic(s) that causes the signal, one could apply a univariate chart or the leave-one-out
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method. We suggest to consult Mason et al. (2011) to obtain more information about this signal
background detection.

Finally, from the simulation study it becomes clear that the in-control run length of the Hotelling
T 2 chart is massively affected by the input parameter value. Also, the in-control run length of the
MCUSUM chart seems to be slightly affected by the input parameter. This could indicate that
the conventional methods are significantly affected by estimation error of, for instance, the mean
vector and variance-covariance matrix. The in-control run length of the vine copula-based chart,
on the other hand, seems to be roughly constant for any input parameter. This could indicate that
the vine-copula based chart is less affected by estimation error which would be of great practical
significance. Therefore, we highly recommend to further investigate the effects of estimation error
on the run length for both in-control and out-of-control cases.
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A | Lemmas

Lemma A.1. If a random variable X has a continuous distribution for which the CDF is FX ,
then the random variable Y defined as Y = FX(X) has a uniform distribution on the interval [0, 1].

Proof. Given any continuous random variable X, define Y = FX(X). Then, we have that

FY (y) = Pr[Y ≤ y]

= Pr[FX(X) ≤ y]

= Pr[X ≤ F−1X (y)]

= FX(F−1X (y))

= y

Lemma A.2. The matrix Mshift as defined in (5.4) is a correlation matrix.

Proof. Symmetry easily follows from (5.3) and (5.4):

MT
shift =

(
V −1M∗

(
V −1

)T)T
= V −1

(
UD∗UT

)T (
V −1

)T
= V −1M∗

(
V −1

)T
= Mshift,

since D∗ is a diagonal matrix and hence symmetric.

Furthermore, by construction, we have that

Mshift = V −1M∗V −1

=

 1√
τ∗
11

0

0 1√
τ∗
22

(τ∗11 τ∗12
τ∗21 τ∗22

) 1√
τ∗
11

0

0 1√
τ∗
22


=

 1
τ∗
12√
τ∗
11τ

∗
22

τ∗
21√
τ∗
11τ

∗
22

1

 ,

which ensures that the diagonal elements are equal to one. Also, if we define U =

(
u11 u12
u21 u22

)
, we

obtain by (5.2) and (5.3) that

M∗ = UD∗UT

=

(
u11 u12
u21 u22

)(
λ∗1 0
0 λ2

)(
u11 u21
u12 u22

)
=

(
λ∗1u

2
11 + λ2u

2
12 λ∗1u11u21 + λ2u12u22

λ∗1u11u21 + λ2u12u22 λ∗1u
2
21 + λ2u

2
22

)
,
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so that

τ∗12 = τ∗21 = λ∗1u11u21 + λ2u12u22

τ∗11τ
∗
22 =

(
λ∗1u

2
11 + λ2u

2
12

) (
λ∗1u

2
21 + λ2u

2
22

)
= (λ∗1)

2
u211u

2
21 + λ22u

2
12u

2
22 + λ∗1λ2

(
u211u

2
22 + u212u

2
21

)
.

To show that all elements of Mshift lie in the interval [−1, 1], we only have to show that∣∣∣∣∣ τ∗12√
τ∗11τ

∗
22

∣∣∣∣∣ ≤ 1, or equivalently, |τ∗12| ≤
∣∣∣√τ∗11τ∗22∣∣∣ , (A.1)

as we have already shown that Mshift is symmetric. We are allowed to square both sides of (A.1)
since both sides are positive. By Lemma A.3, we can deduce that

|τ∗12|
2

= (λ∗1u11u21 + λ2u12u22)
2

= (λ∗1)
2
u211u

2
21 + λ22u

2
12u

2
22 + 2λ∗1λ2u11u22u12u21

≤ (λ∗1)
2
u211u

2
21 + λ22u

2
12u

2
22 + λ∗1λ2

(
u211u

2
22 + u212u

2
21

)
=
∣∣∣√τ∗11τ∗22∣∣∣2 ,

which implies that all entries lie in the interval [−1, 1].

Finally, we have to show that the matrixMshift is positive semidefinite. We calculate its eigenvalues
and show that they are non-negative:

∣∣Mshift − λI
∣∣ =

∣∣∣∣∣∣
1− λ τ∗

12√
τ∗
11τ

∗
22

τ∗
21√
τ∗
11τ

∗
22

1− λ

∣∣∣∣∣∣
= (1− λ)

2 − (τ∗12)
2

τ∗11τ
∗
22

⇒ λ = 1± τ∗12√
τ∗11τ

∗
22

Since we have shown that (A.1) holds, we know that λ ≥ 0 and by Lemma A.4 we conclude that
Mshift is positive semidefinite.

Lemma A.3. For all a, b ∈ R it holds that a2 + b2 ≥ 2ab.

Proof. Let a, b ∈ R. Then, we simply have that

0 ≤ (a− b)2 = a2 + b2 − 2ab

Lemma A.4. A symmetric matrix is positive semidefinite if and only if all eigenvalues are non-
negative.

Proof. Let A ∈ Rn×n be a symmetric matrix. Furthermore, let x ∈ Rn be an arbitrary vector.
Then, by the eigendecomposition of A, we have

xTAx = xT
(
UDUT

)
x =

(
xTU

)
D
(
xTU

)T
=

n∑
i=1

λi
(
[xTU ]i

)2
, (A.2)

where U is the orthogonal matrix whose i-th column is the eigenvector ui of A, and D is the
diagonal matrix whose diagonal elements Dii are the corresponding eigenvalues λi. The expression
(A.2) is non-negative for all x ∈ Rn if and only if λi ≥ 0 for all i = 1, . . . , n.

Lemma A.5. If the matrix B̂ solves the multivariate normal equations (2.10), then B̂ minimizes
Q(B) as defined in (2.8).
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Proof. See the proof of Result 9.1 of Monahan (2008, Chapter 9), where Y := Y[1:n,1:q] and X :=
Xn.

Lemma A.6. The covariance matrix estimator

Σ̂ =
1

n− rank(Xn)
F =

1

n− rank(Xn)

(
Y[1:n,1:q] −XnB̂

)T (
Y[1:n,1:q] −XnB̂

)
is an unbiased estimator of Σ.

Proof. See the proof of Result 9.2 of Monahan (2008, Chapter 9), where Y := Y[1:n,1:q] and X :=
Xn.

Lemma A.7. The scalar quantity λTBm is estimable if and only if λ ∈ C
(
XT
n

)
.

Proof. First, assume that λTBm is estimable. Then, by definitions 2.1 and 2.2, there exists an
a ∈ Rn such that

E
[
aTY[1:n,1:q]m

]
= λTBm for all B,m.

It also holds that

E
[
aTY[1:n,1:q]m

]
= aTXnBm for all B,m.

Hence,
(
λT − aTXn

)
Bm = 0 for all B,m and therefore λ = XT

n a. So, λ ∈ C
(
XT
n

)
.

Second, assume that λ ∈ C
(
XT
n

)
. Then for some a,

λTBm = aTXnBm = aTE
[
Y[1:n,1:q]m

]
= E

[
aTY[1:n,1:q]m

]
.

So aTY[1:n,1:q]m is an unbiased estimator of λTBm, and therefore λTBm is estimable.

Lemma A.8. If λTBm is estimable, then λT B̂m is constant for all solutions B̂ of the multivariate
normal equations (2.10).

Proof. See the proof of Result 9.4 of Monahan (2008, Chapter 9), where X := Xn.

Lemma A.9. If B̂ solves the multivariate normal equations (2.10), then the best linear unbiased
estimator (BLUE) of estimable λTBm is λT B̂m.

Proof. Assume that B̂ is a solution of the multivariate normal equations (2.10). To prove that
λT B̂m is the BLUE of λTBm, we have to show that

Var
(
λT B̂m

)
≤ Var

(
λT B̃m

)
, (A.3)

for any constant vectors λ, m, and any other linear unbiased estimator B̃.

We can write condition (A.3) as

λT
(

Var
(
B̃m

)
−Var

(
B̂m

))
λ ≥ 0,

and therefore, condition (A.3) is satisfied if and only if

Var
(
B̃m

)
−Var

(
B̂m

)
(A.4)

is a positive semidefinite matrix. Before we prove that (A.4) is positive semidefinite, we need to
derive some properties. Similar to the derivations in (2.16) and (2.17), we can show that

E
[
B̂m

]
= Bm

Var
(
B̂m

)
=
(
mTΣm

) (
XT
nXn

)−1
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Now, let B̃m = CY[1:n,1:q]m be another linear estimator of Bm with C = D +
(
XT
nXn

)−1
XT
n ,

where D is a (p+ 1)× n non-zero matrix. Then, we can write

B̃m = CY[1:n,1:q]m

= DY[1:n,1:q]m+
(
XT
nXn

)−1
XT
n Y[1:n,1:q]m

= DY[1:n,1:q]m+ B̂m

Subsequently, we calculate

E
[
B̃m

]
= DE

[
Y[1:n,1:q]m

]
+ E

[
B̂m

]
= DXnBm+Bm

= (DXn + Ip+1)Bm

Hence, B̃m is unbiased if and only if DXn = 0. Then, by using (2.15) and the fact that DXn = 0,
we have

Var
(
B̃m

)
= Var

(
CY[1:n,1:q]m

)
= C Var

(
Y[1:n,1:q]m

)
CT

=
(
mTΣm

)
CCT

=
(
mTΣm

)
DDT +

(
mTΣm

)
DXn

(
XT
nXn

)−1
+
(
mTΣm

) (
XT
nXn

)−1
XT
nD

T

+
(
mTΣm

) (
XT
nXn

)−1
XT
nXn

(
XT
nXn

)−1
=
(
mTΣm

)
DDT +

(
mTΣm

) (
XT
nXn

)−1
=
(
mTΣm

)
DDT + Var

(
B̂m

)
As a consequence,

Var
(
B̃m

)
−Var

(
B̂m

)
=
(
mTΣm

)
DDT (A.5)

is positive semidefinite by the property that the covariance matrix Σ is positive semidefinite and
by Lemma A.10. This is true for any linear unbiased estimator B̃m and, therefore, λT B̂m is the
BLUE of λTBm.

Lemma A.10. For any real matrix Z ∈ Rn×k, the product ZZT is positive semidefinite.

Proof. Let Z ∈ Rn×k be a real matrix and let x ∈ Rn be an arbitrary vector. Then,

xTZZTx =
(
ZTx

)T (
ZTx

)
= ||ZTx||22≥ 0

by definition of the norm.

Lemma A.11. Let f(A) = |A|−k/2exp
{
− 1

2 Tr
[
A−1F

]}
, where F is a symmetric, positive definite

matrix of order p. Then f(A) is maximized over positive definite matrices at A = 1
kF where

f
(
1
kF
)

= | 1kF |
−k/2e−kp/2.

Proof. See the proof of Lemma 9.1 of Monahan (2008, Chapter 9).

Lemma A.12. If λTBm is estimable, then λT B̂m is the minimum-variance unbiased estimator
(MVUE) of λTBm.

Proof. Assume that Yi• independent and

Y Ti• ∼ Nq
(
BT

(
X(i)
∞

)T
,Σ

)
, i = 1, . . . , n.
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We are able to factorize the joint density as

f
(
yT1•, . . . , y

T
n•|B,Σ

)
=

n∏
i=1

((2π)q|Σ|)−
1
2 exp

{
−1

2
(yi• −XnB) Σ−1 (yi• −XnB)

T

}

= ((2π)q|Σ|)−
n
2 exp

{
−1

2

n∑
i=1

(yi• −XnB) Σ−1 (yi• −XnB)
T

}
= ((2π)q|Σ|)−

n
2

· exp

{
−1

2
Tr

[
Σ−1

(
y[1:n,1:q] −XnB̂

)T (
y[1:n,1:q] −XnB̂

)]
− 1

2
Tr

[
Σ−1

(
B̂ −B

)T
XT
nXn

(
B̂ −B

)]}
= ((2π)q|Σ|)−

n
2

· exp

{
−1

2
Tr

[
Σ−1

(
yT[1:n,1:q]y[1:n,1:q] − y

T
[1:n,1:q]XnB̂ − B̂TXT

n y[1:n,1:q]

+ B̂TXT
nXnB̂

)]
− 1

2
Tr

[
Σ−1

(
B̂ −B

)T
XT
nXn

(
B̂ −B

)]}
=: g

(
yT[1:n,1:q]y[1:n,1:q], X

T
n y[1:n,1:q]|B,Σ

)
h
(
yT1•, . . . , y

T
n•

)
,

where h(·) = 1.

By Fisher-Neyman’s factorization theorem and the fact that XnB̂ = Xn

(
XT
nXn

)−1
XT
n Y[1:n,1:q]

is a function of XT
n Y[1:n,1:q], we know that

(
Y T[1:n,1:q]Y[1:n,1:q], X

T
n Y[1:n,1:q]

)
is sufficient for (B,Σ).

Furthermore, by Lemma A.13, the statistic
(
Y T[1:n,1:q]Y[1:n,1:q], X

T
n Y[1:n,1:q]

)
is also complete for

(B,Σ). Note that λT B̂m is a function of XT
n Y[1:n,1:q] and, hence, a function of the complete

sufficient statistic. If λTBm is estimable, then λT B̂m is an unbiased estimator for λTBm (see
(2.16)). By the Lehmann-Scheffé theorem, we now conclude that λT B̂m is the MVUE of λTBm.

Lemma A.13. If P is in an exponential family of full rank with p.d.f.’s given by

fη(x) = exp
{
ηTT (x)− ζ(η)

}
h(x),

then T (X) is complete for η ∈ Ξ.

Proof. See the proof of Proposition 2.1 of Shao (2003).

Lemma A.14. If W ∼Wq(m,Σ), then for any q × 1 vector a,

aTWa

aTΣa
∼ χ2

m.

Proof. See the proof of Result 9.8 of Monahan (2008, Chapter 9).

Lemma A.15. If W ∼Wq(m,Σ), and A is a p× q matrix, then

AWAT ∼Wp

(
m,AΣAT

)
.

Proof. See the proof of Result 9.10 of Monahan (2008, Chapter 9).

Lemma A.16. (Generalization of Cochran’s Theorem) Let E follow the error distribution in the

MMLR model (2.18), that is, ETi•
iid∼ Nq(0,Σ), i = 1, . . . , n, where Σ is non-singular. Also let Ai,

i = 1, . . . , k, be symmetric, idempotent matrices with ranks si, respectively. If
∑k
i=1Ai = In, then

ETAiE are independently distributed as Wq(si,Σ), and
∑k
i=1 si = n.

Proof. See the proof of Theorem 9.1 of Monahan (2008, Chapter 9).
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Lemma A.17. If P is the matrix defined as P = Xn

(
XT
nXn

)−1
XT
n , then P and In − P are

symmetric and idempotent.

Proof. See the proof of Lemma A.6 of van Dalen (2018).

Lemma A.18. Let Y[1:n,1:q] be as defined in (2.3). If m =
(
m1 . . . mn

)T is an n× 1 constant
vector, then

Var
(
Y T[1:n,1:q]m

)
= ΣmTm.

Proof. Consider the model as defined in (2.3) and let m =
(
m1 . . . mn

)T be an n× 1 constant
vector. Then, we deduce by using (2.7) that

Var
(
Y T[1:n,1:q]m

)
= Var

m
TY•1
...

mTY•q



=


mTΣ11m mTΣ12m . . . mTΣ1qm
mTΣ21m mTΣ22m . . . mTΣ2qm

...
...

. . .
...

mTΣq1m mTΣq2m . . . mTΣqqm


= ΣmTm,

since mTm ∈ R.

Lemma A.19. Let (X1, X2) be a bivariate random vector with continuous marginals and copula
C. Then, it holds that

τ(C) = 1− 4

∫
[0,1]2

∂

∂u1
C(u1, u2)

∂

∂u2
C(u1, u2)du1du2,

and

ρs(C) = 12

∫
[0,1]2

C(u1, u2)du1du2 − 3.

Proof. See the proof of Theorem 2.3.1 and Theorem 2.3.2 of Mühlig (2017).
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B | Additional results

B.1 One-sided vs. two-sided version

Clayton (case 2 & cases 16− 25)

Figure B.1: ARL0 vs. Kendall’s τ for the one-sided and two-sided version of the copula-based
control chart, where the in-control distribution follows a Clayton copula.
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(a) Level of the first variable increased. (b) Level of both variables increased.

(c) Level of the first variable decreased. (d) Level of both variables decreased.

Figure B.2: ARL1 vs. level shift for the one-sided and two-sided version of the copula-based control
chart, where the in-control distribution follows a Clayton copula.

(a) Largest eigenvalue increased. (b) Largest eigenvalue decreased.

Figure B.3: ARL1 vs. largest eigenvalue shift for the one-sided and two-sided version of the
copula-based control chart, where the in-control distribution follows a Clayton copula.
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(a) Shift to Gumbel copula. (b) Shift to Frank copula.

(c) Shift to Normal copula. (d) Shift to Student-t copula with 3 degrees of
freedom.

Figure B.4: ARL1 vs. Kendall’s τ for the one-sided and two-sided version of the copula-based
control chart, where the in-control distribution follows a Clayton copula and shifts to a different
copula.

Frank (case 3 & cases 26− 35)

Figure B.5: ARL0 vs. Kendall’s τ for the one-sided and two-sided version of the copula-based
control chart, where the in-control distribution follows a Frank copula.
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(a) Level of the first variable increased. (b) Level of both variables increased.

(c) Level of the first variable decreased. (d) Level of both variables decreased.

Figure B.6: ARL1 vs. level shift for the one-sided and two-sided version of the copula-based control
chart, where the in-control distribution follows a Frank copula.

(a) Largest eigenvalue increased. (b) Largest eigenvalue decreased.

Figure B.7: ARL1 vs. largest eigenvalue shift for the one-sided and two-sided version of the
copula-based control chart, where the in-control distribution follows a Frank copula.
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(a) Shift to Gumbel copula. (b) Shift to Clayton copula.

(c) Shift to Normal copula. (d) Shift to Student-t copula with 3 degrees of
freedom.

Figure B.8: ARL1 vs. Kendall’s τ for the one-sided and two-sided version of the copula-based
control chart, where the in-control distribution follows a Frank copula and shifts to a different
copula.

Student-t (case 5 & cases 46− 55)

Figure B.9: ARL0 vs. Kendall’s τ for the one-sided and two-sided version of the copula-based
control chart, where the in-control distribution follows a Student-t copula with 3 degrees of freedom.
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(a) Level of the first variable increased. (b) Level of both variables increased.

(c) Level of the first variable decreased. (d) Level of both variables decreased.

Figure B.10: ARL1 vs. level shift for the one-sided and two-sided version of the copula-based control
chart, where the in-control distribution follows a Student-t copula with 3 degrees of freedom.

(a) Largest eigenvalue increased. (b) Largest eigenvalue decreased.

Figure B.11: ARL1 vs. largest eigenvalue shift for the one-sided and two-sided version of the
copula-based control chart, where the in-control distribution follows a Student-t copula with 3
degrees of freedom.
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(a) Shift to Gumbel copula. (b) Shift to Clayton copula.

(c) Shift to Frank copula. (d) Shift to Normal copula.

Figure B.12: ARL1 vs. Kendall’s τ for the one-sided and two-sided version of the copula-based
control chart, where the in-control distribution follows a Student-t copula with 3 degrees of freedom
and shifts to a different copula.

B.2 Copula-based vs. Hotelling T 2

Clayton (case 57 & cases 71− 80)

Figure B.13: ARL0 vs. Kendall’s τ for the two-sided version of the copula-based control chart and
Hotelling T 2 chart, where the in-control distribution follows a Clayton copula.
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(a) Level of the first variable increased. (b) Level of both variables increased.

(c) Level of the first variable decreased. (d) Level of both variables decreased.

Figure B.14: ARL1 vs. level shift for the two-sided version of the copula-based control chart and
Hotelling T 2 chart, where the in-control distribution follows a Clayton copula.

(a) Largest eigenvalue increased. (b) Largest eigenvalue decreased.

Figure B.15: ARL1 vs. largest eigenvalue shift for the two-sided version of the copula-based control
chart and Hotelling T 2 chart, where the in-control distribution follows a Clayton copula.
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(a) Shift to Gumbel copula. (b) Shift to Frank copula.

(c) Shift to Normal copula. (d) Shift to Student-t copula with 3 degrees of
freedom.

Figure B.16: ARL1 vs. Kendall’s τ for the two-sided version of the copula-based control chart
and Hotelling T 2 chart, where the in-control distribution follows a Clayton copula and shifts to a
different copula.

Frank (case 58 & cases 81− 90)

Figure B.17: ARL0 vs. Kendall’s τ for the two-sided version of the copula-based control chart and
Hotelling T 2 chart, where the in-control distribution follows a Frank copula.
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(a) Level of the first variable increased. (b) Level of both variables increased.

(c) Level of the first variable decreased. (d) Level of both variables decreased.

Figure B.18: ARL1 vs. level shift for the two-sided version of the copula-based control chart and
Hotelling T 2 chart, where the in-control distribution follows a Frank copula.

(a) Largest eigenvalue increased. (b) Largest eigenvalue decreased.

Figure B.19: ARL1 vs. largest eigenvalue shift for the two-sided version of the copula-based control
chart and Hotelling T 2 chart, where the in-control distribution follows a Frank copula.
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(a) Shift to Gumbel copula. (b) Shift to Clayton copula.

(c) Shift to Normal copula. (d) Shift to Student-t copula with 3 degrees of
freedom.

Figure B.20: ARL1 vs. Kendall’s τ for the two-sided version of the copula-based control chart
and Hotelling T 2 chart, where the in-control distribution follows a Frank copula and shifts to a
different copula.

Student-t (case 60 & cases 101− 110)

Figure B.21: ARL0 vs. Kendall’s τ for the two-sided version of the copula-based control chart and
Hotelling T 2 chart, where the in-control distribution follows a Student-t copula.
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(a) Level of the first variable increased. (b) Level of both variables increased.

(c) Level of the first variable decreased. (d) Level of both variables decreased.

Figure B.22: ARL1 vs. level shift for the two-sided version of the copula-based control chart and
Hotelling T 2 chart, where the in-control distribution follows a Student-t copula.

(a) Largest eigenvalue increased. (b) Largest eigenvalue decreased.

Figure B.23: ARL1 vs. largest eigenvalue shift for the two-sided version of the copula-based control
chart and Hotelling T 2 chart, where the in-control distribution follows a Student-t copula.
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(a) Shift to Gumbel copula. (b) Shift to Clayton copula.

(c) Shift to Frank copula. (d) Shift to Normal copula.

Figure B.24: ARL1 vs. Kendall’s τ for the two-sided version of the copula-based control chart
and Hotelling T 2 chart, where the in-control distribution follows a Student-t copula and shifts to
a different copula.

B.3 Copula-based vs. MCUSUM

k = 0.25

Clayton (case 112 & cases 126− 135)

Figure B.25: ARL0 vs. Kendall’s τ for the two-sided version of the copula-based control chart and
the MCUSUM chart with k = 0.25, where the in-control distribution follows a Clayton copula.
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(a) Level of the first variable increased. (b) Level of both variables increased.

(c) Level of the first variable decreased. (d) Level of both variables decreased.

Figure B.26: ARL1 vs. level shift for the two-sided version of the copula-based control chart and
the MCUSUM chart with k = 0.25, where the in-control distribution follows a Clayton copula.

(a) Largest eigenvalue increased. (b) Largest eigenvalue decreased.

Figure B.27: ARL1 vs. largest eigenvalue shift for the two-sided version of the copula-based control
chart and the MCUSUM chart with k = 0.25, where the in-control distribution follows a Clayton
copula.
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(a) Shift to Gumbel copula. (b) Shift to Frank copula.

(c) Shift to Normal copula. (d) Shift to Student-t copula with 3 degrees of
freedom.

Figure B.28: ARL1 vs. Kendall’s τ for the two-sided version of the copula-based control chart and
the MCUSUM chart with k = 0.25, where the in-control distribution follows a Clayton copula and
shifts to a different copula.

Frank (case 113 & cases 136− 145)

Figure B.29: ARL0 vs. Kendall’s τ for the two-sided version of the copula-based control chart and
the MCUSUM chart with k = 0.25, where the in-control distribution follows a Frank copula.
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(a) Level of the first variable increased. (b) Level of both variables increased.

(c) Level of the first variable decreased. (d) Level of both variables decreased.

Figure B.30: ARL1 vs. level shift for the two-sided version of the copula-based control chart and
the MCUSUM chart with k = 0.25, where the in-control distribution follows a Frank copula.

(a) Largest eigenvalue increased. (b) Largest eigenvalue decreased.

Figure B.31: ARL1 vs. largest eigenvalue shift for the two-sided version of the copula-based control
chart and the MCUSUM chart with k = 0.25, where the in-control distribution follows a Frank
copula.
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(a) Shift to Gumbel copula. (b) Shift to Clayton copula.

(c) Shift to Normal copula. (d) Shift to Student-t copula with 3 degrees of
freedom.

Figure B.32: ARL1 vs. Kendall’s τ for the two-sided version of the copula-based control chart and
the MCUSUM chart with k = 0.25, where the in-control distribution follows a Frank copula and
shifts to a different copula.

Student-t (case 115 & cases 156− 165)

Figure B.33: ARL0 vs. Kendall’s τ for the two-sided version of the copula-based control chart and
the MCUSUM chart with k = 0.25, where the in-control distribution follows a Student-t copula.
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(a) Level of the first variable increased. (b) Level of both variables increased.

(c) Level of the first variable decreased. (d) Level of both variables decreased.

Figure B.34: ARL1 vs. level shift for the two-sided version of the copula-based control chart and
the MCUSUM chart with k = 0.25, where the in-control distribution follows a Student-t copula.

(a) Largest eigenvalue increased. (b) Largest eigenvalue decreased.

Figure B.35: ARL1 vs. largest eigenvalue shift for the two-sided version of the copula-based control
chart and the MCUSUM chart with k = 0.25, where the in-control distribution follows a Student-t
copula.
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(a) Shift to Gumbel copula. (b) Shift to Clayton copula.

(c) Shift to Frank copula. (d) Shift to Normal copula.

Figure B.36: ARL1 vs. Kendall’s τ for the two-sided version of the copula-based control chart and
the MCUSUM chart with k = 0.25, where the in-control distribution follows a Student-t copula
and shifts to a different copula.

k = 0.50

Clayton (case 167 & cases 181− 190)

Figure B.37: ARL0 vs. Kendall’s τ for the two-sided version of the copula-based control chart and
the MCUSUM chart with k = 0.50, where the in-control distribution follows a Clayton copula.
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(a) Level of the first variable increased. (b) Level of both variables increased.

(c) Level of the first variable decreased. (d) Level of both variables decreased.

Figure B.38: ARL1 vs. level shift for the two-sided version of the copula-based control chart and
the MCUSUM chart with k = 0.50, where the in-control distribution follows a Clayton copula.

(a) Largest eigenvalue increased. (b) Largest eigenvalue decreased.

Figure B.39: ARL1 vs. largest eigenvalue shift for the two-sided version of the copula-based control
chart and the MCUSUM chart with k = 0.50, where the in-control distribution follows a Clayton
copula.
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(a) Shift to Gumbel copula. (b) Shift to Frank copula.

(c) Shift to Normal copula. (d) Shift to Student-t copula with 3 degrees of
freedom.

Figure B.40: ARL1 vs. Kendall’s τ for the two-sided version of the copula-based control chart and
the MCUSUM chart with k = 0.50, where the in-control distribution follows a Clayton copula and
shifts to a different copula.

Frank (case 168 & cases 191− 200)

Figure B.41: ARL0 vs. Kendall’s τ for the two-sided version of the copula-based control chart and
the MCUSUM chart with k = 0.50, where the in-control distribution follows a Frank copula.
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(a) Level of the first variable increased. (b) Level of both variables increased.

(c) Level of the first variable decreased. (d) Level of both variables decreased.

Figure B.42: ARL1 vs. level shift for the two-sided version of the copula-based control chart and
the MCUSUM chart with k = 0.50, where the in-control distribution follows a Frank copula.

(a) Largest eigenvalue increased. (b) Largest eigenvalue decreased.

Figure B.43: ARL1 vs. largest eigenvalue shift for the two-sided version of the copula-based control
chart and the MCUSUM chart with k = 0.50, where the in-control distribution follows a Frank
copula.
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(a) Shift to Gumbel copula. (b) Shift to Clayton copula.

(c) Shift to Normal copula. (d) Shift to Student-t copula with 3 degrees of
freedom.

Figure B.44: ARL1 vs. Kendall’s τ for the two-sided version of the copula-based control chart and
the MCUSUM chart with k = 0.50, where the in-control distribution follows a Frank copula and
shifts to a different copula.

Student-t (case 170 & cases 211− 220)

Figure B.45: ARL0 vs. Kendall’s τ for the two-sided version of the copula-based control chart and
the MCUSUM chart with k = 0.50, where the in-control distribution follows a Student-t copula.
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(a) Level of the first variable increased. (b) Level of both variables increased.

(c) Level of the first variable decreased. (d) Level of both variables decreased.

Figure B.46: ARL1 vs. level shift for the two-sided version of the copula-based control chart and
the MCUSUM chart with k = 0.50, where the in-control distribution follows a Student-t copula.

(a) Largest eigenvalue increased. (b) Largest eigenvalue decreased.

Figure B.47: ARL1 vs. largest eigenvalue shift for the two-sided version of the copula-based control
chart and the MCUSUM chart with k = 0.50, where the in-control distribution follows a Student-t
copula.
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(a) Shift to Gumbel copula. (b) Shift to Clayton copula.

(c) Shift to Frank copula. (d) Shift to Normal copula.

Figure B.48: ARL1 vs. Kendall’s τ for the two-sided version of the copula-based control chart and
the MCUSUM chart with k = 0.50, where the in-control distribution follows a Student-t copula
and shifts to a different copula.

k = 0.75

Clayton (case 222 & cases 236− 245)

Figure B.49: ARL0 vs. Kendall’s τ for the two-sided version of the copula-based control chart and
the MCUSUM chart with k = 0.75, where the in-control distribution follows a Clayton copula.
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(a) Level of the first variable increased. (b) Level of both variables increased.

(c) Level of the first variable decreased. (d) Level of both variables decreased.

Figure B.50: ARL1 vs. level shift for the two-sided version of the copula-based control chart and
the MCUSUM chart with k = 0.75, where the in-control distribution follows a Clayton copula.

(a) Largest eigenvalue increased. (b) Largest eigenvalue decreased.

Figure B.51: ARL1 vs. largest eigenvalue shift for the two-sided version of the copula-based control
chart and the MCUSUM chart with k = 0.75, where the in-control distribution follows a Clayton
copula.
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(a) Shift to Gumbel copula. (b) Shift to Frank copula.

(c) Shift to Normal copula. (d) Shift to Student-t copula with 3 degrees of
freedom.

Figure B.52: ARL1 vs. Kendall’s τ for the two-sided version of the copula-based control chart and
the MCUSUM chart with k = 0.75, where the in-control distribution follows a Clayton copula and
shifts to a different copula.

Frank (case 223 & cases 246− 255)

Figure B.53: ARL0 vs. Kendall’s τ for the two-sided version of the copula-based control chart and
the MCUSUM chart with k = 0.75, where the in-control distribution follows a Frank copula.
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(a) Level of the first variable increased. (b) Level of both variables increased.

(c) Level of the first variable decreased. (d) Level of both variables decreased.

Figure B.54: ARL1 vs. level shift for the two-sided version of the copula-based control chart and
the MCUSUM chart with k = 0.75, where the in-control distribution follows a Frank copula.

(a) Largest eigenvalue increased. (b) Largest eigenvalue decreased.

Figure B.55: ARL1 vs. largest eigenvalue shift for the two-sided version of the copula-based control
chart and the MCUSUM chart with k = 0.75, where the in-control distribution follows a Frank
copula.
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(a) Shift to Gumbel copula. (b) Shift to Clayton copula.

(c) Shift to Normal copula. (d) Shift to Student-t copula with 3 degrees of
freedom.

Figure B.56: ARL1 vs. Kendall’s τ for the two-sided version of the copula-based control chart and
the MCUSUM chart with k = 0.75, where the in-control distribution follows a Frank copula and
shifts to a different copula.

Student-t (case 225 & cases 266− 275)

Figure B.57: ARL0 vs. Kendall’s τ for the two-sided version of the copula-based control chart and
the MCUSUM chart with k = 0.75, where the in-control distribution follows a Student-t copula.
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(a) Level of the first variable increased. (b) Level of both variables increased.

(c) Level of the first variable decreased. (d) Level of both variables decreased.

Figure B.58: ARL1 vs. level shift for the two-sided version of the copula-based control chart and
the MCUSUM chart with k = 0.75, where the in-control distribution follows a Student-t copula.

(a) Largest eigenvalue increased. (b) Largest eigenvalue decreased.

Figure B.59: ARL1 vs. largest eigenvalue shift for the two-sided version of the copula-based control
chart and the MCUSUM chart with k = 0.75, where the in-control distribution follows a Student-t
copula.
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(a) Shift to Gumbel copula. (b) Shift to Clayton copula.

(c) Shift to Frank copula. (d) Shift to Normal copula.

Figure B.60: ARL1 vs. Kendall’s τ for the two-sided version of the copula-based control chart and
the MCUSUM chart with k = 0.75, where the in-control distribution follows a Student-t copula
and shifts to a different copula.
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