
 Eindhoven University of Technology

MASTER

Universal Coating by Programmable Matter in 3D

Traversat, Wayan K.R.

Award date:
2020

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/36ce9ab9-c2d3-4bbd-b00b-c4a45d70a827


Universal Coating by
Programmable Matter in

3D

Wayan Traversat

Department of Mathematics and Computer Science
Architecture of Information Systems Research Group

Supervisors:
Irina Kostitsyna

version 1.0

Eindhoven, August 2020





Abstract

Matter dictates the physical properties of everything around us. Orchestrated by atoms and the
laws of nature, these physical properties are unique to each material. These properties are often
static and hard to modify. The objective of programmable matter, is to create a physical material
that is programmable, scalable, autonomous, versatile, reconfigurable, robust to failures, and
nanoscopic. Currently, programmable matter is not conceivable since particles are macroscopic in
size, the advances of technology show promising results for the years to come. While we overcome
the engineering challenges on our quest for miniaturization, engineers often sacrifice capabilities
for size.

To model these limited particles, we use the geometric amoebot model. The amoebot model
provides a framework that defines how particles can interact with each other to solve a given
problem. In the amoebot model it is agreed that particles: are anonymous entities; operate on a
given graph; have limited computational power; have constant memory; interact and communicate
strictly locally; have limited locomotion capabilities; and are activated by a scheduler.

Under this model, we define a set of two problems: the Filling Problem and the Coating
Problem. We will solve these problems under the amoebot model and under a sequential scheduler.
We will prove that for any concurrent execution (asynchronous scheduler) with neighborhood
locking, there exists a sequential ordering of actions that yield the same output. In the Filling
Problem, an object forms a 2D perimeter of a bounded area to be filled by programmable particles.
In this thesis, we present an algorithm that solves the Filling Problem in O(n · R) asynchronous
rounds, where R is the length of the longest chain of connected particles.

In the Coating Problem, the surface of an object O must be coated with uniform layers of
programmable particles. The Coating Algorithm builds upon the Filling Algorithm to present a
novel algorithm which solves the Coating Problem in O(n · R) asynchronous rounds, where R is
the length of the longest chain of connected particles. The algorithm only assumes that the initial
set of particles in contact with the object to be coated is connected.

Universal Coating by Programmable Matter in 3D iii





Contents

Contents v

List of Figures vi

1 Introduction 1
1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Preliminaries 5
2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Amoebot Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Existing Subroutines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Amoebot Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 The Filling Algorithm 11
3.1 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Proof of Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Simulator for 3D Amoebot Research 29
4.1 Technologies Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Schedulers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 The Coating Algorithm 33
5.1 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2 Proof of Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6 Conclusions 51

Bibliography 53

Appendix 54

A 2D Test Figures 55

B Code 58

Universal Coating by Programmable Matter in 3D v



List of Figures

1.1 Comparing particle’s ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Example of objects in both dimensions . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 TI set of blue vertices and TS set of yellow vertices. Both trees include the leader
vertex in red . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 AmoeBot simulator by SOPS lab . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 UV Mapping a 3D cube by Wikipedia [17] . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 2D unfolding of a 3D cube projected on a triangular lattice. Black vertices area
bordering the region to be filled, grey vertices identify possible positions to be
occupied by particles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.4 Using a small leader to lock the position of the leader to a vertex (circled in black) 13

3.5 Possible role transitions in the Filling Algorithm . . . . . . . . . . . . . . . . . . . 15

3.3 Overview of the Filling Algorithm’s main stages . . . . . . . . . . . . . . . . . . . . 17

3.6 Example of an adverse scheduler choosing a bad sequence of activations . . . . . . 21

3.7 Worst case input scenario for C0. All particles are in a line and fill a line type object,
at any moment there can only be one leaf particle p and every expansion/contraction
cycle of p, p will initiate a handover that will travel through all particles in the system. 21

3.8 Comparing hexagon filling with line filling . . . . . . . . . . . . . . . . . . . . . . . 24

3.9 Showing pseudo random shapes of diameter 10 and diamter 20 . . . . . . . . . . . 25

3.10 Templates used for testing, here size 2 is shown, where size is the length of the
hexagon’s size. Sizes 2-16 were used to makes the charts in Figure 3.8. The line’s
area matched the hexagon’s area. Sub-Figure 3.10a and Sub-Figure 3.10b were
the templates used to make the chart in Sub-Figure 3.8a. Sub-Figure 3.10c and
Sub-Figure 3.10d were the templates used to make the chart in Sub-Figure 3.8b . . 25

3.11 Progression of particles though a corridor. It is worth noting that particles cant
extend far past the wall because if an arm of particles were to stretch out, it will
branch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.12 Impact of object width on run time . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.13 Impact of total number of particles on runtime on area of size 139. In black is
shown the the baseline, where the trial was 139 particles to coat an area of 139. . . 27

4.1 Screenshot of simulator. Top right we have statistics about the performance of the
system. On the right-hand side, we have the different control which enables inter-
actions with the simulator. At the bottom, we have current information about the
number of rounds elapsed as well as how many particles were activated. Lastly, in
the bottom right corner we have debugging information about the particle high-
lighted with the wireframe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 This pictures shows all the controls exposed by the simulator . . . . . . . . . . . . 31

vi Universal Coating by Programmable Matter in 3D



LIST OF FIGURES

5.1 We can see all the roles of the Coating Algorithm. In red is the super leader, which is
the root of tree TL connecting all the leader particles in orange. The trapped leaders
are converted to bridge particles, shown in yellow, which help other leaders complete
their layer. In darker blue are the follower particles, representing the initial particles
in TI rooted at a leader particle. In light blue are the coater particles, led by the
leaf particles in green which lead the tree TS . There are bifurcation in TS which
marked by the branch particles in brown. Lastly, retired particles which are done
coating are shown in purple. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2 Particle p with its subtrees. The grey subtree represents the children of p in TL.
The blue subtree represents the follower particles of p . . . . . . . . . . . . . . . . 43

5.3 2D Filling algorithm vs 3D Coating Algorithm while using similar initial parameters 45
5.4 Multiple leaders coating a rhombic dodecahedron object shape of size 4 using an

initial set of particles in orthotope configuration. The area is of the layer is of size 46
5.5 Comparing the distributions of roles along the number of rounds for the Hypothesis 7 47
5.6 Comparing SMA performances against SSA when coating a rhombic dodecahedron

of varying size using an othortope configuration for the initial set of particles. . . . 48
5.7 Observing the evolution of particle roles over the number of rounds . . . . . . . . . 48
5.8 Coating an rhombic dodecahedron of size 3. Initially the number of particles need

to coat the object is 162. Each point represents an average of 20 trials, for 243 (50%
increase), 324 (100% increase) and 485 (200% increase) . . . . . . . . . . . . . . . . 49

A.1 Shapes with varying size corridor for testing . . . . . . . . . . . . . . . . . . . . . . 55
A.2 Random shapes used for testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
A.3 Random shapes used for testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Universal Coating by Programmable Matter in 3D vii



Chapter 1

Introduction

Computer components have grown exponentially in computing power while simultaneously
decreasing exponentially in size. The computing power needed to send Neil Armstrong to the
Moon can now fit in a space smaller than a smartwatch. This progress has enabled advances in
the field of programmable matter. Programmable matter is the notion that a material can be
programmed to alter its physical properties (strength, shape, conductivity, etc.). In our world,
the properties of matter are controlled by atoms that constitute up everything around us. In
the concept of programmable matter, atoms are particles that can autonomously self-organize to
achieve a collective goal.

Programmable particles are small robots whose size is linked to the dimensions of their in-
ternal components (e.g. sensors, processors, memory, power). In the quest to miniaturize these
components, the functionalities and capabilities of particles are often sacrificed to gain space. As
these robots are pushed to their smallest size possible, with today’s technology, they are limited
in their operation (e.g. 2D locomotion, contact communication, shared power).

If programmable particles could become small enough, one hopes that they could mimic atoms
and assemble themselves in specific structures. The different structures created by programmable
particles aim to acquire certain properties, for example, programmable particles could arrange
themselves to form a knife, but at the click of a button, could morph into a glass, a helmet, or
anything one can think of, the main constraint being the number of programmable particles.

Just like the room-sized computers of the ’60s, today’s programmable particles are impractical
partially due to their size. The size of a particle is linked to the degree of precision to which it
can carry out its task. Particles 1 cm in size, reconfiguring into a knife won’t be able to reproduce
the serrated edge of the blade whereas particles 1 millimeter in size can form that serrated edge.
When they are 1 micrometer in size, they could arrange themselves in a crystalline structure to
give the knife its strength or sharpness. At the nanometer scale, particles can alter the way light
is reflected off an object to modify its color on command.

This ability to program the physical properties of programmable matter opens a wide gamut
of applications. Their size and autonomous behavior make programmable matter ideal for remote,
dangerous, or inaccessible areas. In space, where weight is paramount, an astronaut with program-
mable particles could virtually have any tool he might need. These programmable particles could
morph into a screwdriver, or the screw itself, they could be used to patch a hole in the hull of the
station or a hole in the astronaut suit while acting as a solar array tracking the sun. In medicine,
the particles’ size and autonomy could facilitate difficult treatments: by forming filters in arteries
that help the fight against leukemia; by targeting tumors or infectious bacteria and covering them
once identified; and by delivering drugs with superior precision. Most of these applications can be
boiled down to two main problems, coating and shape formation.

In this thesis, we have chosen to focus on the universal Coating Problem: using a system of
autonomous particles, how can we coat any object uniformly?

This Coating Problem is often referred to as smart coating [6] or universal coating problem
[7]. In this thesis, we will present two algorithms under the Amoebot model [1] that address the

Universal Coating by Programmable Matter in 3D 1



CHAPTER 1. INTRODUCTION

universal coating problem, one in 2D and the other in 3D.

(a) Contracted particle with ports labeled 0 to 5 (b) Expanded particle with ports labeled 0 to 9

Figure 1.1: Comparing particle’s ports

Amoebot Model. The amoebot model, introduced by Z. Derakhshandeh, S. Dolev, R. Gmyr
and A. W. Richa [5], is a computational model used to represent a collective system of nanoscopic
particles. This particle system is represented by a graph, where vertices represent all the possible
positions a particle can occupy and edges represent all the possible atomic transitions a particle
can perform from one position to another.

Particles can be in one of two states: contracted, or expanded, see Figure 1.1. In a contracted
state, particles occupy one vertex and expanded particles occupy two adjacent vertices. Two
adjacent particles are connected by a bond. A bond is used to exchange information and maintain
the connectivity of the system.

A particle can transition from a contracted state to an expanded state by expanding from its
current vertex to an adjacent vertex, furthermore an expanded particle can transition back into a
contracted state by contracting into a single vertex.

Via a series of expansions and contractions, a particle can move through the graph. To preserve
connectedness, adjacent particles coordinate their movement in one of two methods, namely pull
and push. When a particle is contracted, it can expand into a vertex occupied by an expanded
neighbor and push that neighbor to contract. When a particle is expanded it can contract by
pulling a neighboring particle, forcing that neighbor to expand into the freed vertex. Both processes
are called handover and they help particles move through the graph while maintaining connectivity.

To execute these handovers, both particles must synchronize their movement through commu-
nication via the bonds that connect them. Depending on the shape, particles make contact on
several faces with adjacent neighbors. Each face of a particle exposes a port, where adjacent faces
can make contact and form a port. Particles in 2D have six ports while in a contracted state and
ten ports while in an expanded state. Particles are assumed to have a common chirality. This
allows particles to order their ports in the same direction (i.e. clockwise direction). However, this
does not mean that particles share the same global orientation.

Choosing particles’ activation order is the role of the scheduler. There are two main types
of schedulers: synchronous schedulers and asynchronous schedulers. Firstly, under synchronous
schedulers, the timeframes for a particle’s activation cycle are fixed. There are three cases of
synchronous schedulers and they differ in the number of activated particles for each timeframe.
Under the semi-synchronous model at least one particle is activated in each timeframe whereas
in the sequential model, exactly one robot is activated for each timeframe. Under the fully syn-
chronous model all particles are activated each timeframe. Lastly, under the asynchronous model
the timeframes are not fixed, particle’s activation is random and independent, and any number of
particles can be active at any time.

Communication between particles occurs by writing to or reading from adjacent particles’
memory. It is assumed that the particle’s memory is of constant size (e.g. particles are anonymous,
because the number of particles is not constant). Under all schedulers except the sequential model,
concurrent operations can lead to conflicts. Memory access can be an example of such conflicting

2 Universal Coating by Programmable Matter in 3D



CHAPTER 1. INTRODUCTION

operations, where two particles attempt to access the same memory address, we assume that
memory conflicts are resolved arbitrarily.

When a particle activates, it operates in a look-compute-move cycle, where a particle observes
its local environment, performs an arbitrary bounded number of computations involving its own
local memory, its neighbors’ memory, and the environment; effectuates at most one movement;
then goes to sleep awaiting its next activation cycle. We assume that all particles are reliable,
meaning that all actions performed by the particles are faultless, and any cycle started will be
completed.

It is through these atomic activations that the system progresses. For each of these activ-
ations, particles need static information from at most N-neighborhoods depending on the al-
gorithm. To preserve the concurrent execution of multiple particles, information from a particle’s
N-neighborhood must be locked until its cycle completes. From research [15], when the system’s
actions are atomic and isolated, the set of actions can be serialized; this applies for any set of
actions performed by this system. For any concurrent execution, there exists a sequential ordering
of actions that yield the same output.

While in reality such a system of particles may run concurrently, we can analyze algorithms
under the amoebot model where at most one particle is active at any time. A round under this
model assumes that each particle has activated at least once and the rounds are fair. Fairness
ensures that every particle will be reactivated in the future, this property ensures that the system
can make progress.

Universal Coating Problem. In the Universal Coating Problem [7], a particle system must
coat an object with uniform layers of particles. While solutions have been explored in 2D under
the amoebot model, no paper addresses the 3D variant of this problem under the amoebot model.

In this problem, the object to be coated must be immutable, meaning the object is fixed and
cannot change shape during the execution of the algorithm, and the surface to be coated must be
connected.

The coating problem is solved once all particles make contact with the surface of the object
and particles are evenly distributed throughout all the layers. Furthermore, all particles must be
contracted and in a stable state, meaning that particles will not change state from the moment of
completion.

1.1 Related Work

The Universal Coating Problem has been solved under the Amoebot model in 2D [7]. In this
section, we will describe the model that is used to solve this problem as well as the different
subroutines used to solve the problem in 3D.

The solution found to the Universal Coating Problem cannot be directly used in 3D. The
solution found utilizes the fact that there exists only one path along the boundary of a 2D object
whereas in 3D, this path is not unique.

Research under the Amoebot is still an emerging technology and little research has been done on
the topic. There are some subroutines that are used in this paper, most notably: tree formation
and leader election. Furthermore, a pre-existing simulator was used to visualize the algorithm
created in this paper.

Existing solutions to the leader election problem vary in the pre-conditions. Some solutions
assume that the particles have a common chirality, others use randomness to find a leader, whereas
some assume that the particle system does not have holes, and others yet may find multiple
leaders [1, 3, 8, 11, 12]. Recent work has managed to solve the leader election problem assuming
a sequential scheduler in O(Ln2) rounds [10].

While the work for leader election has solely been conducted in 2D, we will be reducing the
3D leader election problem to a 2D problem; the leader will be elected in the subset S from the
initial set of particles P where S is the set of particles adjacent to object O.

Universal Coating by Programmable Matter in 3D 3



CHAPTER 1. INTRODUCTION

The tree formation problem has been addressed in a paper under the name of Spanning Forest
Primitive[7]. The paper proposes a solution to the tree formation problem and can be modified to
work for both the Filling Problem and the Coating Problem. The Universal Coating Algorithm in
the same paper, uses the Spanning Forest Primitive subroutine to organize particles in a spanning
forest. This structure is used to guide particles throughout the coating process while maintaining
connectivity.

1.2 Contribution

In this thesis we solve the Universal Coating Problem by self-organizing particle systems in
3D by proposing a set of two algorithms. A simulator was developed to visualize and test the
created 3D coating algorithm. The first algorithm reduces the Universal Coating Problem on self-
organizing particle systems from a 3D problem to a 2D problem. We will refer to the 2D problem
as the Filling Problem, defined in Section 2.5. We know that by filling a 2D space representing the
net of a 3D shape, this 2D texture map can be folded to reconstruct a 3D coat. This technique is
inspired by UV mapping: the process of projecting 2D planes onto a 3D object.

The second algorithm, called Coating Algorithm found in Chapter 5, will be inspired by the
Filling Algorithm found in Chapter 1. While the 3D algorithm is built on the same core concept as
the 2D algorithm, it greatly improves upon it. The Coating Algorithm uses, for example, multiple
leaders and multiple layer coating. The Coating Algorithm is a solution to the Universal Coating
Problem in 3D.

To visualize and test the algorithm, a 3D simulator was created. The simulator was extended
to allow other researchers to visualize their 3D algorithms. Tools in the simulator were added to
provide users with statistics, debugger functionality, and execution history.

4 Universal Coating by Programmable Matter in 3D



Chapter 2

Preliminaries

2.1 Definitions

Particle. In this thesis, we present two algorithms: one solves the Filling Problem in 2D and
the other solves the Coating Problem in 3D, both problems are solved under the amoebot model,
defined in Section 2.2. For each problem, we will define the graph G on which the problem is solved.
In 2D, G = G2D where G2D is an equilateral triangular lattice, whereas in 3D, G = G3D where
G3D is a rhombic dodecahedral honeycomb which is the Voronoi diagram of the face-centered
cubic sphere-packing. For any particle p ∈ P2D or p ∈ P3D, p has a state s where s ∈ S where:

S = { Contracted, Expanded }

∀ p has a role q where q ∈ Q2D in 2D and q ∈ Q3D in 3D. We will define Q2D as the set of roles
exclusive to the Filling Algorithm and Q3D to be the roles exclusive to the Coating Algorithm.
We will further define Q2D and Q3D in their respective sections.

A particle also maintains a constant size memory that can be read/written by any adjacent
particle. The content of a p particle’s local memory will be denoted as p.x where x represents a
piece of fixed information. The content of this memory will be implementation-specific and will
be described in the respective section for each algorithm. Notations like p.parent and p.child will
also be used, and while this information is not stored in local memory, it can be inferred from the
local context and makes the ownership of memory being described easier to explain.

Object & Layer. We will define A2D as the area for the 2D problem and L3D to define the
layer for the 3D problem. For A2D, the object O2D is a perimeter represented by a set of boundary
vertices v ∈ V (O) forming an inner region to be filled. This finite empty region is the area A2D to
be filled by the Filling Algorithm. V (L) denotes the available positions a particle can occupy and
E(A) denotes the possible path from one vertex to another. One boundary vertex v ∈ V (O) will
be empty and reserved for the leader particle. For L3D, the object O3D is an immutable connected
shape. In 3D, multiple layers exist, hence we will denote Li where i denotes the layer number and
distance to object O. We define d(u, v) as the minimum distance between vertex u and vertex
v. Hence L1 is composed of all vertices v where d(v, V (O)) = 1. A layer Li is deemed complete,
when L is connected, when all vertices v ∈ Li are occupied by a contracted particle p ∈ P where p
is contracted and p is stable (in our case, when p is in role retired, p is stable). We call a particle
p stable when p does not perform any role change or movement.

Configurations. A configuration c represents a snapshot of the particle system at a time t, and
will be designated as ct. The set of all configurations will be called C. Information such as the
state of all particles, local memory, and the object is stored in a configuration c. We will define
a configuration c to be stable if, from a moment t onwards, no particle p ∈ c ever performs an

Universal Coating by Programmable Matter in 3D 5



CHAPTER 2. PRELIMINARIES

(a) O2D a hexagon of size 4 (b) O3D a rhombic dodecahedron of size 4

Figure 2.1: Example of objects in both dimensions

operation or a movement. This is commonly achieved by having a role s ∈ Q, where a particles
with role s clears its local memory and cannot perform a role transition.

In 2D, we will define a configuration to be legal if for all particles p ∈ P (L) are contracted and
stable. In 3D, we will define a configuration to be legal if for all particle p ∈ {L1 ∪ ... ∪ Li−1} for
all i > 1, are contracted and stable.

We will define an initial configuration c at t = 0 for both problems. In 2D, there must exist at
least one particle p1, where p1 ∈ C0 and d(p1, L) = 1 (p1 is adjacent to the layer). In 3D, there
must exist at least one particle p1, where p1 ∈ C0 and d(p1, V (O)) = 0 (p1 is on the layer). The
layer must be valid for the given problem.

Tree Definitions. There are three tree structures used throughout this thesis: TI standing for
Tree of Initial particles, TS standing for Tree of Surface particles, and TL standing for Tree of
Leader particles. The first two trees are used in the 2D Filling Algorithm and all three are used
in the 3D Coating Algorithm. The first two trees, TS and TI are illustrated in Figure 2.2. TI is
created by the Tree Formation Algorithm, see Section 2.3, and it is used to link inactive particles
to the leader particle. TS is used to link the particles as they fill/coat the area/layer. The tree
TL similarly to the tree TI , is rooted at a specific particle. In 3D, the initial blob of particles can
have more than one contact point with the object, and hence all these surface particles (leaders)
must be rooted at a specific particle, which we denote as a super leader in the Coating Algorithm.
The tree TL is used to link all the leader particles on the surface of O to the super leader.

Figure 2.2: TI set of blue vertices and TS set of yellow vertices. Both trees include the leader
vertex in red

2.2 Amoebot Model

In this section, we will formally define the Amoebot model for both problems. In the first
section, we will define the Amoebot model for the 2D filling algorithm and in the second section,

6 Universal Coating by Programmable Matter in 3D



CHAPTER 2. PRELIMINARIES

we will explain how the model differs for the 3D Coating Algorithm.

2D Particles denoted as p, make up a particle system P where the positions of each particle
are mapped to a vertex on an infinite triangular lattice graph G2D = (V2D, E2D) in 2D, where
V2D represents all possible positions and E2D represents all possible interactions from a vertex to
another. Vertices v ∈ V (G2D) can be occupied by a particle, an object, or neither.

When a particle p expands, as seen in Figure 1.1, from a vertex n1 into a vertex n2, we call
the part of p in n2 the head of p and we call the part of p in n1 the tail of p. Since a contracted
particle p occupies a single vertex n, its head and tail are the same single vertex n that the particle
p occupies. When a particle expands, we assume it is always the head of the particle moving into
the new adjacent vertex and when a particle contracts its tail moves to the adjacent vertex.

Particles have six ports labeled 0 through 5 when in a contracted state and ten ports labeled
0 through 9 when in an expanded state.

The programmable particle’s memory is constant. This memory limitation has multiple implic-
ations, such as: particles are unable to maintain a unique identifier (i.e. are anonymous), particles
are unaware of the total number of particles in the system. Any information that increases with
the size of the problem or number of particles cannot be stored in a particle. There are ways
to circumvent this limit, some algorithms may need to keep track of a counter. In the coating
problem, for example, particles are interested in knowing whether a particle is on the current or
on the previous layer. While the layer counter is not constant, the modulo of that counter is. This
way, a particle can identify whether a particle is on the current layer or previous layer.

Given that a particle p ∈ P activates at a time t, we know by our fairness assumption that
such particle will activate again at t′ > t.

3D In the 3D variant of the problem, particles are not 2D hexagons but rather are represented by
a 3D Rhombic Dodecahedron. To arrange rhombic dodecahedrons on a graph, we use a different
graph G = G3D where G3D = (V3D, E3D) is an infinite face-centered cubic (fcc) lattice graph. A
Rhombic Dodecahedron is a polygon with 12 congruent faces, for any particle p ∈ P in 3D, p has
12 ports when contracted, and 22 ports when expanded.

2.3 Existing Subroutines

The algorithms present in this section have been taken from existing papers. Algorithms
have had slight modifications made to them while maintaining their validity. The leader election
algorithm runs its routine on all particles in the system, while we only want particles on the
surface to be eligible for leadership. In the tree formation algorithm, the root of the tree is the
particle actively coating, where as in our scenario, the position of the root of the tree remains
fixed, while other particles perform the coating/filling task. The leader election subroutine must
complete before the tree formation can start. Once the tree formation subroutine has begun, the
Filling Algorithm or the Coating Algorithm can start.

Leader Election. In this thesis, we will assume the existence of a leader particle. Extensive
research on the leader election problem [1, 3, 8, 11, 12] shows that in our initial configuration, a
leader can be found. For our algorithm, we are interested in a leader algorithm which does not
use movement and finds exactly one leader. The work presented in this paper [8] presents an
algorithm that meets these conditions.

This leader election algorithm relies on probability and communication to elect a leader in a
static system. Initially, all particles in the system consider themselves a potential leader candidate.
The particles first identify if they are on the boundary of the particle system and the subset of
particles on this boundary form a directed cycle. This cycle is divided into segments which decide
the particles’ successors and predecessors. Particles along the segments decide through coin flips
if a particle will revoke its own candidacy and in turn promote the candidacy of its successor.
A segment consists of one candidate and particles promoting that candidate, and each segment

Universal Coating by Programmable Matter in 3D 7



CHAPTER 2. PRELIMINARIES

maintains an identifier which is used to compete with other segments. When a segment recognizes
its own identifier, the final solitude check begins to identify whether that segment is the last.
The algorithm has been proven to converge towards exactly one leader with high probability. A
variation of the algorithm, in the same paper, proposes a solution that converges to one leader
with a probability of 1.

For the Coating Algorithm, we make a slight modification to the algorithm by choosing the sub-
set of particles which participate in the leader election algorithm. Instead of choosing all particles
as initial candidates, only the subset of particles on the surface of the object O will be chosen as
potential leader candidates for the system. This ensures that the set of potential candidates is a
2D set on which we can run the leader election algorithm.

Tree Formation. The algorithm used for tree formation is presented in the following paper [8],
it has also been thoroughly explained in this book [14].

The algorithm relies on the existence of a special particle ps, called a root in the tree formation
algorithm, but called a leader in our algorithm. The purpose of the algorithm is to structure
the particle system into a tree, such that particles are oriented toward ps. Such a tree structure
is formed with the interaction of two groups of particles: active particles and inactive particles.
An inactive particle p1 becomes active by following an active particle p2. By following p2, p1

creates a connection to p2. These connections can only be created by adjacent particles. The
conversion process is fairly straightforward, when a particle p wakes up, if p is inactive, it will scan
its adjacent ports looking for an adjacent active particle (i.e. follower or leader in our case). If an
active particle is found, particle p will follow the newly found particle. Initially, there is only one
active particle, ps, chosen by the Leader Election Algorithm and only particles adjacent to ps will
become active and are assigned a follower role. Subsequently, inactive particles will be able to
follow other followers. If no active particle is present in its surrounding, particle p will sleep and
await its next activation. This iterative process and the fairness property of the system ensures
that all particles will eventually become active. The connection created by the active particles
creates a tree that is rooted at ps.

2.4 Amoebot Simulator

Visualization and experimental results for the 2D filling algorithm were created using Amoe-
botSim 1. AmoebotSim is a visual simulator operating under the amoebot model. This simulator
was used to explore ways to solve the Universal Coating Problem under the amoebot model.
This research led to the creation of the Filling Algorithm, an approach to the Universal Coating
Problem.

It is worth noting that the AmoebotSim is using a specific scheduler. We will call this scheduler
sequential multiple activations. This scheduler activates a single particle at random for each
activation and a round is incremented once each particle has been activated at least once. We will
discuss in Section 5.1 the implications of using such a scheduler.

1https://amoebotsim.readthedocs.io/en/latest/

8 Universal Coating by Programmable Matter in 3D



CHAPTER 2. PRELIMINARIES

Figure 2.3: AmoeBot simulator by SOPS lab

2.5 Problem Definition

2D Filling Problem. In this paragraph, we will formally define the 2D Filling Problem. In
this problem we are given a 2D object O. This object is a set of vertices V (O) which forms a
boundary. The object O is connected and immutable. The area formed by O is the area A and
this area A is also connected. For all p ∈ P , we denote the subset of particles in A as p ∈ TS . We
say that a system of particles has filled the area A, if:

∀ p { p ∈ TS | p.state = contracted ∧ p.role = retired } ∧ |TS | = |A|

3D Coating Problem. In this paragraph, we will formally define the 3D Coating Problem. In
this problem, we are given a 3D object O. This object is a set of vertices V (O) which forms a 3D
polyhedron. The object O is connected and immutable. The surface of O is the first layer L1 and
this layer L1 is also connected. When a layer Li is complete, the surface of Li becomes layer Li+1.

For all p ∈ P , we denote the subset of particles in L as p ∈ TS ∪ TL. We say that a system of
particles has coated layer Li if:

∀ p { p ∈ {TSi
∪TLi

} | p.state = contracted ∧ p.role = retired ∧ d(p, V (O)) = i } ∧ |TS∪TL| = |Li|

The statement states, that for all particles participating in coating layer Li, the layer is com-
plete once all participants have retired in a contracted state.

Universal Coating by Programmable Matter in 3D 9





Chapter 3

The Filling Algorithm

In this thesis, we will first simplify the Universal Coating Problem to a 2D filling problem.
From geometry, we know that some 3D objects can be unfolded onto a 2D area. A popular 3D
rendering technique called UV Mapping, illustrated in Figure 3.1, is used to wrap 2D texture
maps onto 3D meshes and vice-versa. Using this technique, we will simplify the coating problem
to a filling problem, where an algorithm will fill the 2D net of a 3D shape. The purpose of this
algorithm is to establish a better understanding of the problem.

Figure 3.1: UV Mapping a 3D cube by Wikipedia [17]

There are limitations to this technique, as not all 3D objects can be unwrapped into connected
self-non-overlapping 2D maps. There are two known problems related to this issue: Edge-Unfolding
Convex Polyhedra [9, 16] and Vertex-Unfolding Polyhedra [4]. We know that the Edge-Unfolding
of Non-Convex Polyhedra has been proven to be unsolvable [2] and we know that there exists a
vertex unfolding for simplicial polyhedra [4]. The overall hunch is that Edge/Node Unfolding of
Convex Polyhedra is solvable [13] but no formal proof for all cases has emerged.

For cases where a 2D map exists for a polyhedron, we can represent this map with a connected,
non-overlapping net which can be projected onto a discrete triangular graph G2D, as seen in
Figure 3.2. An available position, that a particle can occupy, is represented by a vertex v ∈
V (G2D). Edges represent the available paths between vertices. The boundaries of this 2D map are
marked with object vertices v ∈ V (O). These vertices can be seen as black vertices in Figure 3.2).
On one hand, the perimeter of the inner region is delimited by black vertices. On the other hand,
the inner region to be filled is represented by grey vertices (which we will commonly refer to as the
filling area), both are shown in Figure 3.1). The net shown in the figure can be folded to obtain
a 3D cube.

Universal Coating by Programmable Matter in 3D 11



CHAPTER 3. THE FILLING ALGORITHM

Figure 3.2: 2D unfolding of a 3D cube projected on a triangular lattice. Black vertices area
bordering the region to be filled, grey vertices identify possible positions to be occupied by particles.

3.1 The Algorithm

For a higher-level overview of the algorithm, please refer to Figure 3.3 which explains the main
phases of the algorithm. The Filling Algorithm uses a set of two trees; one tree TI , connects all
follower particles to the leader, and another tree TS is created as particles fill the area, ensuring
that leaf particles can pull particles through the leader. In essence, the filling task is accomplished
by leaf particles which expand through the area to be filled. For each expansion a leaf particle
makes, it initiates a series of handovers from itself through the leader to a leaf particle in TI ,
see green particles Figure 3.3b. Each expansion/contraction cycle completed by a leaf increases
the area covered by the particles and reduces the size of the problem. To accelerate the process,
some filler particles can branch off from their path and hence, create a new leaf particle. Where
the new leaf branched off, a branch particle sits at the bifurcation to funnel filler particles in
either direction, see brown particles in Figure 3.3c. When a leaf particle p can not expand into
any direction, all adjacent ports are occupied by either particles or the boundary of the object O,
then that particle becomes retired. Subsequently, the parent of p becomes a leaf. This recursive
handover of the leaf role ensures that no blank holes are left inside the area to be filled. Once the
child of the leader particle has retired, we know that the filling process is complete. The leader
now becomes a retired particle and hands his role to his parent follower particle.

Roles. Any particle p has a finite set of roles Q, below are enumerated the possible roles in which
p can be, along with a description for each of these roles. Furthermore, Figure 3.3 showcases the
different roles in an example. There are two main types of roles: static and dynamic. Static roles
are tied to a vertex v, meaning that any particle p which has its head or tail on that vertex v
will have that role, and when a particle leaves that vertex, it loses that role. Dynamic roles are
tied to a particle, while a particle fulfills a set of conditions, the particle will keep its role during
movement. Movement in this thesis will only occur through one of the two handovers: pull. An
expanded particle p can only pull a contracted parent. Note that in this thesis we will mention
roles in italic, this is to distinguish between the role leaf and the leaf of a tree in data structures.
Throughout these descriptions, we will be referring to memory registers, which will be explained
thoroughly in the next paragraph section. Memory registers for particle p will follow this format,
where p.x refers to the memory register labeled x, we will also use p.parent and p.child to refer to
the parent and child of p respectively. Combining a parent reference with a memory registry can
yield; p.parent.role which refers to the role of the parent of p. We will now distinguish p particle’s
behavior based on its role:

• Leader is a static role. As a leader, p acts as a gateway through which all the particles

12 Universal Coating by Programmable Matter in 3D



CHAPTER 3. THE FILLING ALGORITHM

flow. After the leader election phase, a leader is elected at vertex v where d(v, V (L)) = 1.
A leader will always have either its head or tail on vertex v. When an expanded particle
p has its tail on v, p is a leader particle, and when p only has its head on v, p is a small
leader for reasons explained in the paragraph below. When an expanded leader p1, initiates
a handover, pulling a contracted particle p2, the leader p1 will hand its role to p2 which will
be converted to a small leader. When the small leader contracts, it will become a leader
particle and will not hand the leader role to another particle. A contracted leader l checks
for l.child particle, via the p.childDir register. If l.child.state is contracted and l.child.role
is retired, l can safely retire and this terminates the Filling Problem. A contracted leader
can also have no child, in that case p.childDir is −1, this will trigger a special condition
enabling the leader to expand inside the shape and upon its next contraction will become a
leaf particle.

Pulling: when p pulls a particle p1, p1 will always be converted to a small leader.
Leader p will either become a leaf if p.child does not exist, else it will become a filler
particle.

Pulled: when p is pulled by a leaf particle or a filler particle, p will always remain a
leader particle.

• Small Leader is a static role. Small leader is a precursor to the leader role. In Figure 3.4,
we can observe what happens when the leader hands over its role after every pull handover.
To prevent the particle’s position from shifting, which happens when the leader pulls another
particle, the leader will converted its follower to a small leader role. This is because, when
a small leader pulls another particle, it will not hand its role to its follower.

Pulling: when p pulls a particle p1, p1 will always keep its role p1.role. Small leader
p will always become a leader.

Pulled: a small leader cannot be pulled because it only exists as an expanded particle.

(a) The leader’s position is shifted (b) Using a small leader locks leader position

Figure 3.4: Using a small leader to lock the position of the leader to a vertex (circled in black)

• Leaf is a dynamic role. A leaf is the only particle able to expand into a new position (with
the exception of the first expansion of a leader). Leaf particles are also the only particles
able to transition to a retired role. This ensures that a particle cannot retire while there
exists an empty adjacent vertex. When a leaf p retires, its role is handed over to p.parent.

Pulling: when p pulls a particle p1, p1 will always keep its role p1.role. One exception
being when a leaf initiates a branch, its first pull will convert a filler particle into a
small branch particle. Leaf particle p will always remain a leaf after the handover.

Pulled: a leaf p cannot be pulled because p.child does not exist (we defined that the
pull handover can only occur when a parent particle).

Universal Coating by Programmable Matter in 3D 13



CHAPTER 3. THE FILLING ALGORITHM

• Filler is a dynamic role. A filler particle only exists in TS . When p.state is expanded, p
pulls its parent if p.parent.state is contracted. When p.state is contracted, p checks whether
both p.parent.role and p.child.role are filler, if both are fillers, p then checks for each port
in p.port if p can expand into any adjacent position to its ports. Finally, if such a position
exists, p becomes a leaf and expands into an available adjacent position. At the next pull
initiated by the leaf, p.parent will become a small branch.

Pulling: when p pulls a particle p1, p1 will always keep its role p1.role. Filler particle
p will always remain a filler particle after the handover.

Pulled: since filler particles only exist in TS , a filler particle p can be pulled by a
branch or a branching leaf such that p will become a small branch. Filler particle p
can also be pulled by another filler, leaf or small branch, these handover will not alter
p.role.

• Follower is a dynamic role. A follower is a particle in TI . TI is a tree created by the tree
formation algorithm is rooted at the leader particle. Any follower f ∈ TI is connected to
the leader particle l. When p.state is expanded, f can either pull on f.parent, if such parent
exists, else f can contract if f.parent does not exist, as it is a leaf in TI .

Pulling: when p pulls a particle p1, p1 will always be a follower and p1 will always
keep its role p1.role. Follower particle p will always keep its role after the handover.

Pulled: since follower particles only exist in TI , a follower particle p can be pulled
by a leader such that p will become a small leader. Particle p can also be pulled by
another follower, where it will keep its own p.role role.

• Branch is a static role: Similarly to the leader role, the branch role is linked to a vertex
v in the graph. The branch role marks a bifurcation in the tree TS . Each branch marks
the beginning of the path of either two leaf particles, the beginning of both path are re-
membered using two memory registers b.childDir and b.branchChildDir which marks the
port adjacent to either particles at the beginning of either paths. For a branch particle b,
when either particles at b.childDir or b.branchChildDir retires, p becomes a filler and keeps
the b.childDir register pointing to the remaining active particle. Similar to the leader, when
a branch pulls b.parent, p.parent.role will be small branch. This prevents the branch from
shifting from its position v.

Pulling: when p pulls a particle p1, p1 will always become a small branch. Branch
particle p will always become a filler after the handover.

Pulled: since filler particles only exist in TS , a filler particle p can be pulled by a
branch or a branching leaf such that p will become a small branch. When particle p is
pulled by a small branch, it will keep its role after the handover.

• Small Branch is a static role: Small branch is a sub role of the branch role. To prevent the
branch from shifting position, when a branch pulls another particle p1, p1.role will become
small branch. We can see in the small leader description an explanation for why that is the
case.

Pulling: when p pulls a particle p1, p1 will always keep its role p1.role. Small branch
p will always become a branch.

Pulled: a small branch cannot be pulled because it only exists as an expanded particle.

• Retired : When a leaf particle lf can not expand into any position adjacent lf.port, then
lf.role becomes retired. When a particle retires, the content of its local memory is cleared
and no further transition can occur. Particle p is said to then be stable and inactive. Particles
can distinguish the difference between the initial inactive particle and a retired particle.

Pulling & Pulled: a retired particle can neither pull a particle nor be pulled by any
particle.

14 Universal Coating by Programmable Matter in 3D



CHAPTER 3. THE FILLING ALGORITHM

Memory. Any particle p has a constant memory. A particle p can read the information in its
own memory as well as read/write any adjacent particle’s local memory. We will describe the
different memory registers held by a particle p:

State: p.state will either return contracted or expanded.

Role: p.role will return the role of a particle p. A particle p must have exactly one role
r ∈ Q2D where Q2D is a finite set of states:

Q2D = { Leader, Small Leader, Branch, Small Branch, Follower, Leaf, Retired, Inactive Filler }

A particle can transition from one role to another according to Figure 3.5. Roles are defined
in the previous paragraph.

Figure 3.5: Possible role transitions in the Filling Algorithm

Port: p.ports is an array that uniquely labels each port of particle p. When p.state is
contracted, p.port will return 6 unique labeled ports and when p.state is expanded, p.port
will return 10 unique labeled ports (it is worth noting that, when p.state is expanded, 2
pairs of ports point to the same adjacent vertex, as seen in Figure 1.1).

ChildDir: If a particle p follows a particle p1, then we call p1 the child of p and p the parent
of p1. In order to remember this relationship, particle p uses a register called p.childDir
which saves the port adjacent to p1. The register is initialized at −1, and this also indicates
that a particle does not have a child.

BranchChildDir: p.branchChildDir is exclusively used by branch particles. With childDir
and branchChildDir, a branch particle can be pulled by either of its two children. By defini-
tion, a branch only keeps track of exactly 2 children, and when either child retires, p becomes
a filler particle.

Universal Coating by Programmable Matter in 3D 15



CHAPTER 3. THE FILLING ALGORITHM

Algorithm 1 Contracted Particle Activation vs
Expanded Particle Activation

Particle is Contracted

switch Role do
case Fill

if child is retired then
if particle can Expand then

particle becomes a Leaf
else

particle becomes Retd

else if parent is Fill and child is Fill then
if particle can Expand then

particle becomes Leaf
add pointer to child
particle Expands

case Brch
if either child is Retd then

Become Fill

case Leaf
if particle can Expand then

Expand
else

particle becomes Retd

case Lead
if child is Retd then

Done filling
else if child is does not exist then

Expand

Particle is Expanded

1: switch Role do
2: case Fill
3: if particle has a ready parent then
4: pull parent

5: case Brch
6: if particle has a ready parent then
7: pull parent
8: parent becomes SBrch
9: update parent pointers

10: become Fill

11: case Leaf
12: if particle has a ready parent then
13: pull parent
14: else if particle has second pointer then
15: pull parent
16: parent role SBrch
17: drop second pointer

18: case Lead
19: pull a ready parent
20: parent becomes a SLead
21: if particle has no parent then
22: particle becomes Leader
23: else
24: particle becomes Fill

25: case SBrch
26: if particle has a ready parent then
27: pull parent
28: particle becomes Brch

29: case SLead
30: if particle has no parent then
31: Contract
32: particle becomes Lead
33: else
34: pull a parent
35: particle becomes Lead

Algorithm 2 Particle p1 pulling particle p2

if p1 is expanded then
if p2 is contracted then

if p1.parent is p2 then
contract p1

p2 expands into p1 direction
update p2.childDir

16 Universal Coating by Programmable Matter in 3D



CHAPTER 3. THE FILLING ALGORITHM

(a) Inactive particles (in grey) become active (in
blue) as they join the tree TI . The tree formed,
funnels the particles through the leader (in orange).

(b) Particles flow from TI through the leader (in
orange) to the filling area forming TS which will
be more evident with the branching in the next
Subfigure. The flow is controlled by the leaves (in
green) which initiate the pull handovers to fill the
inner region.

(c) It is possible for filler particles (in light blue)
to branch off under certain conditions. When that
happens a branch (in brown) particle will appear
at the bifurcation until both branches retire.

(d) Leaf particle retires when it has no adjacent
space to expand into. We can see that the bottom
right most leaf l cannot expand and will retire at
its next activation

(e) The leaf l has retired handing its role to its par-
ent. That parent also retired during its activation
because it had no adjacent space to expand into.

(f) Final configuration, all particles in the filling
area are contracted and stable

Figure 3.3: Overview of the Filling Algorithm’s main stages

Universal Coating by Programmable Matter in 3D 17



CHAPTER 3. THE FILLING ALGORITHM

3.2 Proof of Correctness

In this section, we will describe the building block required to prove the correctness of the
algorithm. We will begin by proving that the system is connected and that connectivity is main-
tained as the system progresses. We will then prove that the particle system progresses and such
progress reduces the size of the problem. Finally, we will prove that this progress will lead to a
final state, and when the particle system terminates, that it finds a solution to the Filling Problem.

Let V (·) denote the vertex representation, likewise for E(·) with edge representation, we will
denote | · | as the size. The particle system P will fill an area A bounded by an object O. To
differentiate between the particles in the initial blob and particles actively filling the area A, we
use two tree structures TI and TS respectively. The tree formation algorithm forms the tree TI ,
used by follower particles to flow through the gate leader particle. The leader particle always
resides on vertex g where g is at the hole marking the opening of the shape (this hole can be seen
in Figure 2.1). As follower particles flow through the gate particle, they enter the area A to be
filled. Leaf particles direct this expansion into the area and as they do, they form TS , rooted at
the leader g.

In the Filling Algorithm, only the pull handover will be used. A particle p can only pull
p.parent if such parent exists, and p.parent.state is contracted. For p to identify which adjacent
partiles are its parent, p uses the registry p.port to know where to look for its child or parent.
Movement without handover is only possible with expansion for certain roles.

For the following lemma, we will assume that |P | ≥ |A|. The section below will create small
building blocks which will lead to the theorem proving the correctness of the algorithm.

Lemma 1. At any moment t, particles in TI form a directed tree.

Proof. Claim 1. Particles that join the directed tree TI maintain connectivity.
In order to prove this Lemma, we will use a similar structure to Claim 1 in Lemma 2 from

[7]. At some time t, the tree is valid with a single particle: the leader particle. We will show that
this property of the graph will hold at t + 1. Suppose that at t + 1, a follower particle f becomes
active. If f is adjacent to another active particle p1, f will set its register f.childDir to the port
adjacent to p1. As a parent of p1, f extends the tree as a new leaf. At time t, TI was a tree, at
time t′ > t, f joins the graph, maintains connectivity and the tree property.

Claim 2. Particle movement in the directed tree TI maintains connectivity.
From Claim 3.2, we know that particles joining the tree maintain connectivity. At some initial

time t, the tree is valid as defined in Claim 3.2, we now want to prove that for all times t + 1 a
movement will occur in the tree, and this movement will also maintain connectivity. At some time
t′ > t, the first particle movement will occur in the tree. For the tree to disconnect, a particle in
p.state expanded with an existing p.parent must contract without causing p.parent to expand. We
know from our initial assumptions that the contraction of a particle can only occur in a handover.
There is however one exception to this rule, the follower role can contract its tail under certain
conditions. Only when a follower particle f does not have a parent, can a follower contract. This
condition ensures that no parent is disconnected from f .

In the previous two claims we show that when a particle joins the tree and when a particle
moves that the connectivity is maintained at all times t.

Lemma 2. At any moment t, particles in the filling area A form a directed tree TS.

Proof. Claim 1. Particles that join the directed tree TS maintain connectivity.
Initially, TS contains a single particle: the leader particle chosen during by the leader election

algorithm. There exists a time t′ > t when a new particle joins TS . We want to prove that for
all times t′ > t, connectivity will be maintained. When the leader l first pulls a follower f , the
leader becomes the first leaf to join TS . At this moment, f has a register f.childDir pointing to
its child l. Every time the leader pulls a particle, a new particle joins TS in a similar process.
Connectivity is maintained as the expanded leader pulls a follower and connectivity is maintained
when the small leader pulls another follower.

18 Universal Coating by Programmable Matter in 3D



CHAPTER 3. THE FILLING ALGORITHM

Claim 2. Particles movement in the directed tree TS maintain connectivity.
From Claim 3.2, we know that particles joining the tree maintain connectivity. At some initial

time t, the tree is valid as defined in Claim 3.2, we now want to prove that for all times t′ > t
a movement will occur in the tree, and this movement will also maintain this connectivity. At
some time t′ > t, the next particle movement will occur in the tree. For the tree to disconnect, a
particle in p.state expanded with an existing p.parent must contract without causing p.parent to
expand. We know from our initial assumptions, that the contraction of a particle can only occur
in a handover. Furthermore, the follower role which can perform a contraction outside a handover
cannot exist in TS , for reasons explained in Lemma 3.

In the previous two claims we show that when a particle joins the tree and when a particle
moves in the tree, connectivity is maintained at all times t.

Corollary 1. TI ∪ TS forms a single connected component linked by a single leader particle.

Lemma 3. When a particle occupies a new position v ∈ A, this position v will remain occupied.

Proof. We recall that for clarity of presentation, we assume that |P | ≥ |A|. Assume that this
statement is false. At some time t, vertex v becomes occupied by some particle. For this proposition
to be false, there would exist a time t′ > t when v becomes unoccupied. We know that when a
particle contracts, by definition the tail collapses on the head position. For this scenario to occur,
a particle p must be expanded while having its tail on v and subsequently contract at time t′.

In this algorithm, there exists only one role which is able to contract itself outside of a handover,
this role is follower. However, the follower particle only exists in TI . There exists only one vertex
x, where x ∈ V (TI) ∩ V (A), and this vertex is g, occupied by the leader. We know from the
algorithm that any particle with either its tail or head on g is a leader or a small leader.

We assumed that it would be possible for a particle p to contract its tail away from v, but we
have shown that such an operation can only be performed by a particle in a role that cannot exist
in the filling area A. This contradicts our initial assumption.

Lemma 4. When a particle p retires, it holds that p is contracted, and that there does not exist
an unoccupied position adjacent to a port label l ∈ pport.

Proof. By observing the behaviors of a leaf particle l, we know that a contracted leaf will scan
each position adjacent to each port in l.port. If there at exist at least one unoccupied position
which l can expand into, then l will expand into any unoccupied position, there is no pre-condition
preventing l from expanding. If there does not exist an available position, then for all positions x
adjacent to p.port there is either a particle or a boundary object. We will distinguish the possible
states of position x:

Case 1: position x is occupied by a boundary object: by definition, we assumed O to be immutable,
hence once x is occupied by a boundary object, it will remain occupied for the whole filling
duration.

Case 2: position x is occupied by a particle: in Lemma 3, we proved that once a vertex position
x is occupied by a particle at a time t, this position x will remain occupied for all t′ > t.

Lemma 5. When all particles p ∈ A retire, there does not exist an empty region R ⊆ A where
there exists a vertex v ∈ R that is unoccupied.

Proof. Let us assume that such a region R exists. Then, there exists a configuration ct, where
there is at least one vertex v ∈ V (A), where v is unoccupied and v must also have an adjacent
vertex occupied by a particle. We will now look at time t′ < t when the last leaf particle l adjacent
to v retires. At t′ − 1, particle l was a leaf particle. From Lemma 4, for l to retire there must not
exist a position adjacent to v that l can expand into. From our original assumptions we know that

Universal Coating by Programmable Matter in 3D 19



CHAPTER 3. THE FILLING ALGORITHM

l is adjacent to position v where l can expand to at t′ − 1, this contradicts the assumption that l
will be retired at t′. Our initial assumption that a region R exists is thus wrong. This reasoning
applies for any region R in cfinal.

Lemma 6. While there exists a leaf particle l, either l will retire or l will expand at a time t′ > t.

Proof. We recall that for clarity of presentation, we assume that |P | ≥ |A|. Let us assume that l
cannot retire. We will observe what happens when l is contracted and when l is expanded:

Case 1: l is expanded. We know from Corollary 1 that TI ∪ TS are both connected and linked by
leader le. Therefore, there exists a path between any particle in TI and le. Knowing |P | ≥ |A|;
there exists a path connecting all follower particles to l, this entails that l will eventually contract.
We can now look and what happens to l when it is contracted in Cases 2 & 3.

Case 2: l is contracted and has an available adjacent position: l expands at its next activation,
because the scheduler is fair we know this will happen and hence l makes progress by increasing
the total number of particles in the layer.

Case 3: l is contracted and does not have an available adjacent position to expand into: l retires
at its next activation, because the scheduler is fair we know this will happen and hence l makes
progress by increasing the number of retired particles in the layer.

Theorem 1. The algorithm solves the Filling Problem.

Proof. To solve the Filling Problem, the particle system must reach a legal configuration.
The algorithm will terminate in a legal configuration which will solve the filling problem. From

Lemma 6, we know the particle system progresses by increasing the total number of particles or
increasing the number of retired particles in the filling area. Because the size of the filling area is
constant, there exists a time t, when no more particles can fit in |A|. In such a case, Lemma 6
ensures that all particles p ∈ A will eventually retire at a time t′ > t. We now know that at time t′

the particle system is stable, particles cannot change state or perform a move. Through Lemma 5,
we know that such configuration cannot contain an empty region R. This makes ct′ a final stable
legal configuration that solves the Filling Problem.

Theorem 2. Tree formation has a running time complexity of O(n) rounds.

Proof. From Lemma 13 in [6] we know the running time tree formation is O(n). We would like
to highlight that this bound could be made tighter using the in-degree of edges in the tree. We
define the degree of a vertex as the number of edges connecting to a vertex. In a directed tree,
the in-degree of a vertex v is the number of edges coming into v. In the worst-case, the maximum
in-degree of a particle is 1. In that case, only one particle transitions from inactive to active (i.e.
when one particle joins the tree).

Theorem 3. Our algorithm has a running time complexity of O(n · R) rounds where R is
max d(u, v) for any u, v.

Proof. We define d(u, v) as the distance separating two particles. Because u and v exist on either
trees (TI or TS), there exists only one path between u and v, and the number of particles on
that path signifies the distance between u and v. The proof of running time can be divided into
two sections; the time it takes to form TI and the time it takes for all particles p ∈ P to join A
(fill/coat the area).

For the filling problem, we have |P | potential filling particles which can be in an area A.
Assuming the |A| = |P |, then all particles must transition to the area to fill. In the worst case,
throughout this filling process, there is only one leaf particle p1 expanding/contracting. For p1 to
complete this contraction/expansion, the worst case is determined by the longest path of particles

20 Universal Coating by Programmable Matter in 3D



CHAPTER 3. THE FILLING ALGORITHM

(a) Round Initial (b) Round 1 (c) Round 2 (d) Round 3 (e) Round 4

(f) Round 5 (g) Round 6 (h) Round 7 (i) Round 8 (j) Round 9

Figure 3.6: Example of an adverse scheduler choosing a bad sequence of activations

from p1 to a leaf p2 in TI , if all particles are in a line, this chain is at most of size |R|. Hence, it
would take a O(|R|) for a contraction/expansion to propagate through the longest path; at round
r, particle p1 expands, all particles between p1 and p2 are expanded, at round r + 1, particle p2

contracts, at round r+ 2, p2.child can contract by pulling p2, this repeats until p1 can contract at
round r+ |R|. At the end of this cycle, the number of available positions in A are reduced by one.
Since there are |A| = |P | positions to be filled, the filling algorithm has a run time complexity of
O((|R|) · n) to complete the filling phase.

The O(n2) rounds complexity only applies to a single input when all particles are lined up
behind each other. For any other configurations, we can use O((|R|) · n).

Figure 3.7: Worst case input scenario for C0. All particles are in a line and fill a line type object,
at any moment there can only be one leaf particle p and every expansion/contraction cycle of p,
p will initiate a handover that will travel through all particles in the system.

3.3 Experimental Results

This section will present the experimental results of the Filling Algorithm. This section will
explain the bridge between the theoretical analysis made in this thesis and the empirical results
obtained through testing.

To test and visualize the algorithm, the AmoebotSim 1 software was used. From the theoretical

1https://amoebotsim.readthedocs.io/en/latest/

Universal Coating by Programmable Matter in 3D 21



CHAPTER 3. THE FILLING ALGORITHM

analysis of the developed algorithm, we developed the first two hypotheses. As we ran the ex-
periment some findings led to more hypotheses to further investigate the results found. For each
hypothesis a battery of tests was prepared; using different initial particle shapes and different
shapes for the object.

Hypothesis 1. Changing the shape of O while maintaining an equal-sized area A to fill yields the
same running time.

Setup. To test the impact of an object’s shape, we first came up with extreme shapes, one
is maximizing the diameter and another minimizing the diameter of O. We also prepared some
pseudo-random shapes to see if the running time would fall in between the running times from
the extreme shapes.

To maximize the diameter, we used a line object as shown in Subfigure 3.10c, and to minimize
the diameter of the object, we used a hexagon object as shown in Subfigure 3.10a. In the two
extreme cases, we scaled the size of the area to be filled to observe how the run time would grow
with the size of the area and the shape of the object. We used an equal number of particles for
each size used and ensured that the area of both shapes was equal. For each of the 16 sizes used,
10 trials were made and averaged out to yield a data point for each size. These 160 trials were
run for each of the two extreme shapes.

For each of the pseudo-random shapes shown in Figure A.2 and Figure A.3, we ran a total of
4 trials. Each set of 4 trials was averaged to yield a data point.

Observations. While it was easy to compare the custom shapes performances with the line fill
experiment, it is hard to compare with the hexagon fill experiment. This is because the hexagon
area size is not granular enough. We can however observe in Figure 3.8 that the hexagon running
times are stable enough to sketch a prediction line to estimate what its run time would be for the
specific cases. What we observe is that both extreme shapes running time diverges significantly.
This divergence increases at a constant rate. An interesting trend is distinguishable when looking
at the run time for the pseudo-random shapes; we can see in Figure 3.9 that all pseudo-random
shapes performed very similarly to the hexagon shape. A new Hypothesis 3 springs from this
observation and it will explore the impact of the diameter of an object on the running time.

Hypothesis 2. The run time of the Filling Algorithm is linked to the size of the longest path
max d(u, v) for any u, v.

Setup. To explore the hypothesis, a set we prepared a set of 64 experiments with the templates
provided in Figure 3.10. Each experiment is a data point on the charts present in Figure 3.8. A
total of 32 experiments were run to fill 16 different size hexagons, as seen in Subfigure 3.10a & 3.10b,
and the other 16 were run on lines of matching sizes, as seen in Subfigure 3.10c & 3.10d. For both
shape and each of the 16 sizes, we ran 10 trials with particles arranged in a line configuration
and 10 trials with particles arranged in a hexagon configuration. The four different types of
experiments are shown in Figure 3.10.

Observations. We can see from Figure 3.8 a clear distinction between filling a line and filling a
hexagon. We can see a consistent improvement when the max path length is minimized in a shape
by using a compact initial particle organization. The hexagon fill outperforms the line fill in every
case after size 6. We can see that at size 5, line fill outperforms hexagon fill. This discrepancy can
probably be due to an unlucky series of runs due to the low number of particles in the system.

Hypothesis 3. The diameter of a shape has a linear impact on the running time.

Setup. Since the particle system will often branch off and expansions are random, it is hard to
control the size of the longest path. However, what we can control is the diameter of the shape
created. We started with the smallest diameter of 1 (i.e. a line).

22 Universal Coating by Programmable Matter in 3D



CHAPTER 3. THE FILLING ALGORITHM

For this hypothesis, we prepared 22 experiments on shapes with a total filling area of 500 along
with 500 particles. We began with a shape of diameter 1 and for each experiment, we increased
the diameter of the shape by 1 until the shape became a square. Subsequent experiments past the
square would yield the same results as the previous 22 experiments. For each experiment, we ran
5 trials and averaged the runs to exclude outliers.

Observations. We can see a steady decrease in the number of rounds needed to fill an area. As
seen in Figure 3.11, the algorithm tends to form a wall of particles moving from the root towards
the end of the shape. As the overall diameter of the shape increase, so does that wall, which
minimizes the length of the longest path in the tree. It is worth noting that we did not expect to
see a linear decrease in the number of rounds needed. As the overall diameter of the shape would
increase, the average length of the path should have increased faster in the first few corridor sizes.
As the linear decrease that we observed did not match our expectations, we did not run the rest
of the battery of tests. We did however run corridor size 20 and 22 to ensure that the trend would
continue. As it did follow the trend, it was safe to assume that the rest of the sizes would fall in
line.

Hypothesis 4. Increasing the total number of particles to coat an area of equal size will increase
the average running time.

Setup. To test this hypothesis we used a hexagon object of size 7, where 7 stands for the length
of one side of the hexagon. This yields a total area of 139 particles. Initially, we ran the test with
139 particles, adding 25%, 50%, 100%, and finally 200% of the original number of particles.

Observations. As seen in Figure 3.13, we can see that the total number of rounds needed
decreases as the total number of particles decrease. Our initial assumption was that the total
number of rounds would increase but we failed to take into account the type of scheduler being
used here. The simulator uses a sequential multiple activation scheduler which activates a particle
at random until all particles were activated at least once. As the total number of particles increases,
so does the probability that most particles will activate an increasing number of times.

Universal Coating by Programmable Matter in 3D 23



(a) Filling a Hexagon with two different initial particle configuration, namely line and hexagon

(b) Filling a Line with two different initial particle configuration, namely line and hexagons

Figure 3.8: Comparing hexagon filling with line filling



Figure 3.9: Showing pseudo random shapes of diameter 10 and diamter 20

(a) (b) (c) (d)

Figure 3.10: Templates used for testing, here size 2 is shown, where size is the length of the
hexagon’s size. Sizes 2-16 were used to makes the charts in Figure 3.8. The line’s area matched
the hexagon’s area. Sub-Figure 3.10a and Sub-Figure 3.10b were the templates used to make the
chart in Sub-Figure 3.8a. Sub-Figure 3.10c and Sub-Figure 3.10d were the templates used to make
the chart in Sub-Figure 3.8b



Figure 3.11: Progression of particles though a corridor. It is worth noting that particles cant
extend far past the wall because if an arm of particles were to stretch out, it will branch

Figure 3.12: Impact of object width on run time



Figure 3.13: Impact of total number of particles on runtime on area of size 139. In black is shown
the the baseline, where the trial was 139 particles to coat an area of 139.





Chapter 4

Simulator for 3D Amoebot
Research

In this section we describe the simulator developed for the purpose of visualizing the 3D
algorithmic solution to the 3D Universal Coating problem. Controls and custom interactions
facilitate the use of this simulator for research under the Amoebot model.

Figure 4.1: Screenshot of simulator. Top right we have statistics about the performance of the
system. On the right-hand side, we have the different control which enables interactions with the
simulator. At the bottom, we have current information about the number of rounds elapsed as
well as how many particles were activated. Lastly, in the bottom right corner we have debugging
information about the particle highlighted with the wireframe.

4.1 Technologies Used

For the first algorithm, we used an already existing simulator; AmoebotSim 1. This solution
offers a robust simulator to work under the Amoebot model in 2D, which was satisfactory for
the filling implementation. The same simulator has a 3D extension under development but in its
current stage was not yet suitable for the 3D coating algorithm. The first option was to extend the
simulator to work in 3D but since the project was at such an early stage, creating a new solution
was preferred over extending this one.

When choosing which technology to use to implement the simulator, ease of use and accessibility
was a priority. Installing the 2D simulator was a lengthy setup before one could implement a

1https://amoebotsim.readthedocs.io/en/latest/

Universal Coating by Programmable Matter in 3D 29



CHAPTER 4. SIMULATOR FOR 3D AMOEBOT RESEARCH

prototype. Prototyping should be hassle-free and accessible to facilitate research in the field of
programmable matter.

To facilitate access of the simulator to other researchers, we chose a web-based solution. The
simulator was created using Three.js version r120, a cross-browser JavaScript 3D computer graph-
ics library using WebGL. The advantage of a web-based simulator is that little to no setup (depend-
ing on whether or not the simulator is hosted) is required. The browser of choice can be utilized
on all platforms supporting a browser 2. For development, performance is slightly hindered due
to the innate nature of web browsers not being able to maximize the performance of the hardware
they run on (i.e. multi-threaded, hardware acceleration). The role of this simulator is mainly to
provide visual feedback for algorithm design and compare the performances of different schedulers.

4.2 Schedulers

For the algorithm, a set of three schedulers were built; sequential single activation, sequential
multiple activations, and sequential adversary. The sequential single activations randomly per-
mutes the order of the particle system P at the beginning of each round r. This ensures that the
number of activations after each round r is |P |. The sequential multiple activations activate a ran-
dom particle in P and maintain a dictionary d of particles activated that round. When |d| = |P |,
we know that each particle p was activated at least once, this marks the end of the round, the
dictionary is initialized as empty and a new round starts. We cannot predict the number of activa-
tions for the round, we can monitor and record it once the round is complete. The final scheduler,
sequential adversary scheduler, activates particles by attempting to maximize the total number of
rounds from initial configuration c1 to final stable configuration cend. In Section 5.1, we explain
how the sequential adverse scheduler chooses particles to maximize the number of rounds.

4.3 Tools

Particle & Tree. Enables the extent of a particle. While a particle in the 3D simulator is
represented by a rhombic dodecahedron, it is impossible to see what is happening inside the
initial set of particles when particles are tightly packed. This feature can alter the visibility of the
particle’s geometry. Setting a tree to visible can help visualize how the particles are linked together.
While particles use a series of target markers to indicate which particles they are pointing to, the
line between them enables visualization of the tree formed and facilitates pointer error detection
while developing the algorithm. The tree labels are explained in Chapter 5.

Simulation. The first two options are used to start and stop the simulation. The next button
runs one step of the algorithm, which corresponds to the step size chosen which can be either
one activation or one round. An activation step indicates that one particle will be activated and
one round step means that one round will be executed. A round is a series of activations defined
by the scheduler which can be either SSA (sequential single activation), SMA (sequential multiple
activations) or adversary. For more information about the schedulers, refer to Section 5.1. The
stop at field allows the simulation to stop at a specific activation number, this can be useful when
randomization is disabled at it allows us to observe predictable repeating behaviors. Step delay
induces a delay in-between step, this can be used to fine-tune the speed at which the algorithm
proceeds. It is worth noting that the speed of the simulation is capped at the computer monitor’s
refresh rate. For example, a monitor at 60Hz will run the simulation at 60 activations per second,
this is an intended feature of Three.js as the framework will only update the scene as many times
as can be displayed by the monitor. For long simulations, it is advised to run on a round by round
basis for the first few rounds and then lower the speed to activation by activation basis.

2for supported browser check https://threejs.org/docs/manual/en/introduction/Browser-support

30 Universal Coating by Programmable Matter in 3D

https://threejs.org/docs/manual/en/introduction/Browser-support


CHAPTER 4. SIMULATOR FOR 3D AMOEBOT RESEARCH

Figure 4.2: This pictures shows all the controls exposed by the simulator

Debug Tools. Contains an array of tools needed for debugging purposes. The particle highlight
is a useful tool which, at the click of a button, shows information about a particle. By pressing
the ”n” key, it is also possible to activate the particle at that position indicated by the highlight
(seen as the red wireframe in Figure 4.1 ). This feature enables the exploration of edge cases,
and testing for specific activations sequences. The debug option enables or disables the particle
highlight system. The toggle features are straightforward and enable the visualization of some of
the elements of the simulator, such as the positions of the lights to understand the shadows; what
is the direction of the axis; or having a perspective for the sizes in the simulation by enabling the
grid.

Universal Coating by Programmable Matter in 3D 31





Chapter 5

The Coating Algorithm
Note: This chapter will follow the same structure as Chapter 3. While both sections can be read independently, we
have marked with an asterisk redundant information which can be skipped if Chapter 3 has been read.

In this section, we will be describing a solution to the Universal Coating Problem in 3D. This
new solution is the Coating Algorithm, an algorithm created using the similar concepts as the
Filling Algorithm presented in Chapter 3. While the Coating Algorithm is a generic solution to
the Universal Coating Problem 3D, there are some preconditions for the initial configuration of
the particle system.

In Chapter 1, we addressed some of the Filling Algorithm pitfalls: some 3D shapes are not
mappable to 2D; one leader bottlenecking the filling process. The Coating Algorithm overcomes
these limitations set by the Filling Algorithm. Firstly, the Coating Algorithm can use multiple
leaders, if the initial configuration permits. All particles, initially on the surface, are chosen as
leader particles and amongst them a super leader is designated. Secondly, the algorithm can coat
multiple layers, as one layer Li completes, particles p ∈ Li retire and form a new object to coat.
The main challenge in this Coating Algorithm is to manage the multiple leaders actively coating
the layer.

For the multiple leader setup to be efficient, particles need to be shared evenly between all
leaders. This is a challenge of its own as the leaders are oblivious to the initial configuration of
the set P of particles; particles linking to these leaders are also oblivious to the size of the subtree
they are joining. We will see in the analysis the impact of this disparity.

Furthermore, we assume the set S of particles p ∈ V (P )∩V (L1), where S represent the subset
of initial particles adjacent to the layer L1, is connected. This assumption enables us to use an
existing leader election algorithm [8] to elect a super leader in S.

5.1 The Algorithm

The Coating Algorithm behaves very similarly to the Filling Algorithm. Once particles pass
the leader or super leader, their behaviour is identical to the Filling Algorithm. Leaf particles
lead the coating effort initiating a series of expansions and contractions to coat the layer. These
series of handovers propagate through the tree structure, created in the earlier phases, to reach
leader type particles. These leader gateway particles link the coating branches to the initial set of
particles which has yet to enter the coating layer.

For a higher level overview of the algorithm, please refer to Figure 5.1 which shows the different
roles of the algorithm.

The Coating Algorithm uses a set of three trees; one tree TI , defined in Section 2.3, connects
all follower particles to their respective leader, the second tree TL connects the leader particles to
the super leader, the third tree TS is created as particles coat the layer ensuring that leaf particles
can pull particles through the leader particles. Initially, the leader election algorithm is designed
to find a leader in a 2D set of particles. For the leader election process to work with the 3D
Coating Algorithm, a subset of particles on the surface is chosen for leader election. As assumed

Universal Coating by Programmable Matter in 3D 33



CHAPTER 5. THE COATING ALGORITHM

previously that the contact point between O, and the initial set P is connected. As the set is
in 2D, the leader election algorithm from Chapter 3 can be used. However, instead of electing a
leader, it will elect a super leader. We then proceed to run the tree formation subroutine on the
particle system. The difference here is that particles on the surface can only connect to particles
on the surface; instead of becoming a follower particle.

In essence, the coating task is accomplished by leaf particles which expand through the area
to be filled, where for each expansion a leaf particle makes, it initiates a series of handovers from
itself through the leader and onto a leaf particle in TI , see Figure 5.1. Each expansion/contraction
cycle completed by a leaf increases the area covered by the particles and reduces the size of the
problem. In order to accelerate the process, some coater particles can branch off from their path
and hence create a new leaf particle. Where the new leaf branched off, a branch particle sits at the
bifurcation to funnel coater particles in either direction, see Figure 5.1. When a leaf particle p can
not expand into any direction, all adjacent ports are occupied by either particles or the boundary
of the object O, then that particle becomes retired. Subsequently, the parent of p becomes a leaf.
This recursive handover of the leaf role ensures that no blank holes are left inside the area to
be filled. Once the child of the leader particle has retired, we know that the filling process is
complete. The leader can now become a retired particle and hand his role to his parent follower
particle. Once leaders are done coating, they alter their role and become bridge particles. Bridges
can move particles up and down TL. We will discuss in the role description when and how bridge
particles move particles in order to provide for other leaders/bridges.

When a layer is completed, the particles on the layer will use the retired particles of the previous
layer to move toward the super leader of the previous layer. Once the first particle p1 has reached
the super leader of the previous layer, the super leader will hand its role to p1, making p1 the
super leader of the new layer.

Figure 5.1: We can see all the roles of the Coating Algorithm. In red is the super leader, which is
the root of tree TL connecting all the leader particles in orange. The trapped leaders are converted
to bridge particles, shown in yellow, which help other leaders complete their layer. In darker blue
are the follower particles, representing the initial particles in TI rooted at a leader particle. In
light blue are the coater particles, led by the leaf particles in green which lead the tree TS . There
are bifurcation in TS which marked by the branch particles in brown. Lastly, retired particles
which are done coating are shown in purple.

Note: This section will follow the same structure as Chapter 3. While both sections can be read

34 Universal Coating by Programmable Matter in 3D



CHAPTER 5. THE COATING ALGORITHM

independently, we have marked in grey the differences between both sections if Chapter 3 has been
read.

Roles. Any particle p has a finite set of roles Q, below are enumerated the possible roles in which
p can be, along with a description for each of these roles. Furthermore, Figure 5.1 showcases the
different roles in one example. There are two main types of roles: static and dynamic. Static roles
are tied to a vertex v, meaning that any particle p which has its head or tail on that vertex v
will have that role, and when a particle leaves that vertex, it loses that role. Dynamic roles are
tied to a particle while a particle fulfills a set of conditions, it will keep its role during movement.
Movement in this thesis will only occur through one of the two handovers: pull. An expanded
particle p can only pull a contracted parent. Note that in this thesis we will mention roles in italic,
this is to distinguish between the role leaf and the leaf of a tree in data structures. Throughout
these descriptions we will be referring to memory registers to explain the roles. Memory registers
for particle p will follow the following format, where p.x refers to the memory register labeled x, we
will also use p.parent and p.child to refer to the parent and child of p respectively. Combination
of both usage can yield; p.parent.role which refers to the role of the parent of p. We will now
distinguish particle p behavior based on its role:

• Leader p acts as a gateway through which particles flow. A leader is not chosen by the leader
election algorithm, but rather is a special kind of follower. A leader in the Coating Algorithm
is a follower that is adjacent to the object O. Furthermore, a leader can connect to particles
in the role leader or super leader. Leader particles participate in TS tree formation. We will
denote v as v the vertex where leader l joins the tree TL. A leader will always have either
its head or tail on vertex v. When an expanded particle p has its tail on v, p is a leader
particle, and when p only has its head on v, p is a small leader for reasons explained in the
paragraph below. When an expanded leader p1, initiates a handover, pulling a contracted
particle p2, the leader p1 will hand its role to p2 which will be converted to a small leader.
When the small leader contracts, it will become a leader particle and will not hand the leader
role to another particle. A contracted leader l checks for l.child particle, via the p.target
register. If l.child.state is contracted and p.target is retired, l will become a bridge to help
other leaders finish their coaitng process. A contracted leader can also have no child, in that
case p.target is −1, this will trigger a special condition enabling the leader to expand inside
the shape, and upon its next contraction will become a leaf particle. A Leader particle p
will be converted to a bridge if p.child.role is retired, or if p cant expand (e.g. surrounded
by other leaders, adjacent positions occupied by particles)

Pulling: when p pulls a particle p1, p1 will always be converted to a small leader. Leader p
will either become a leaf if p.child does not exist, or it will become a coater.

Pulled: when p is pulled by a leaf or a coater particle, p will always remain a leader.

• Small Leader is a static role. Small leader is a precursor to the leader role. In Figure 3.4
we can observe what happens when the leader hands over its role after every pull handover.
To prevent this shift, when the leader pulls another particle, it will convert it to a small
leader. When a small leader pulls another particle, it will not hand its role over and will
convert itself to a leader. There is a scenario when a small leader will convert its parent to
a bridge. With the existence of TL, there is a time t′ < t when p was a leader. When p was
a leader, if p pulls a particle on the layer, then p converts a bridge to a small leader. Now
back to time t when p is an expanded small leader, when p pulls a follower onto the layer,
the follower must become a bridge

Pulling: when p pulls a particle p1, p1 will always keep its role p1.role. Small leader p will
always become a leader. As discussed above, there is a scenario when p will convert P1 to a
bridge particle. To distinguish between both scenarios (leave p1.role as is or change p1.role
to bridge), p will look at p1.leaderPointer. If p1.leaderPointer is a valid pointer then p
knows that p1 was on the layer and hence must convert it to a bridge

Universal Coating by Programmable Matter in 3D 35



CHAPTER 5. THE COATING ALGORITHM

Pulled: a small leader cannot be pulled because it only exists as an expanded particle.

• Super Leader is a static role. A super leader shares the same characteristics as the leader.
The super leader is the root of TL, TS and TI .

Pulling: when p pulls a particle p1, p1 will always be converted to a super small leader .
Leader p will either become a leaf if p.child does not exist, or it will become a coater.

Pulled: when p is pulled by a leaf or a coater particle, p will always remain a leader.

• Super Small Leader is a static role. Super Small leader is a precursor to the super leader
role and behaves in the same way as a small leader. The only modification is that p converts
to a super leader when contracting. Just as for the small leader, there is a scenario when a
super small leader will convert its parent to a bridge. With the existence of TL, there is a
time t′ < t when p was a leader. When p was a leader, if p pulls a particle on the layer, then
p converts a bridge to a super small leader. Now back to time t when p is an expanded super
small leader, when p pulls a follower onto the layer, the follower must become a bridge

• Leaf∗ is a dynamic role. A leaf is the only particle able to expand into a new position (with
the exception of the first expansion of a leader or the super leader). Leaf particles are, with
bridge particles, the only particles able to transition to a retired role. This ensures that a
particle cannot retire while there exists an empty adjacent vertices. When a leaf p retires,
its role is handed over to p.parent.

Pulling: when p pulls a particle p1, p1 will always keep its role p1.role. One exception being
when a leaf initiates a branch, its first pull will convert a filler into a small branch. Leaf
particle p will always remain a leaf after the handover.

Pulled: a leaf p cannot be pulled because p.child does not exist for any leaf.

• Coater∗ is a dynamic role. A filler particle only exists in TS . When p.state is expanded, p
pulls its parent if p.parent.state is contracted. When p.state is contracted, p checks whether
both p.parent.role and p.child.role are filler, if both are filler, p then checks for each port in
p.port if p can expand into any adjacent position to its ports, and finally if such a position
exists, p becomes a leaf and expands into an available adjacent position. At the next pull
initiated by the leaf, p.parent will become a small branch.

Pulling: when p pulls a particle p1, p1 will always keep its role p1.role. Coater particle p
will always remain a coater after the handover.

Pulled: since Coater particles only exist in TS , a coater particle p can be pulled by a branch
or a branching leaf such that p will become a small branch. Coater particle p can also be
pulled by another caoter , leaf or small branch, these handovers will not alter p.role.

• Follower∗ is a dynamic role. A follower is a particle in TI . Tree TI is created by the tree
formation algorithm rooted at the leader particle. Any follower f ∈ TI is connected to the
super leader particle l. When p.state is expanded, f can either pull on f.parent, if such a
parent exists, else f can contract if f.parent does not exist, as it is a leaf in TI .

Pulling: when p pulls a particle p1, p1 will always be follower and p1 will always keep its
role p1.role. Follower particle p will always keep its role after the handover.

Pulled: since follower particles only exist in TI , a follower particle p can be pulled by a
leader such that p will become a small leader. Particle p can also be pulled by another
follower, where it will keep its own p.role role.

• Branch∗ is a static role: Similarly to the leader role, the branch role is linked to a vertex
v in the graph. The branch role marks a bifurcation in the tree TS . Each branch marks
the beginning of the paths for two leaf particles, these two paths are remembered using one
memory register, b.target which marks the port adjacent to either particle at the beginning
of either path. For a branch particle b, when either particle at b.target retires, p becomes

36 Universal Coating by Programmable Matter in 3D



CHAPTER 5. THE COATING ALGORITHM

a filler and keeps the b.target register pointing to the remaining active particle. Similar to
the leader, when a branch pulls b.parent, p.parent.role will be small branch. This prevents
the branch from shifting from its position v.

Pulling: when p pulls a particle p1, p1 will always become a small branch. Branch particle
p will always become a filler after the handover.

Pulled: since filler particles only exist in TS , a filler particle p can be pulled by a branch
or a branching leaf such that p will become a small branch. When particle p is pulled by a
small branch, it will keep its role after the handover.

• Small Branch∗ is a static role: Small branch is a sub role of the branch role. In order to
prevent the branch from shifting position, when a branch pulls another particle p1, p1.role
will become small branch. We can see in the small leader description an explanation for why
that is the case.

Pulling: when p pulls a particle p1, p1 will always become a small branch. Branch particle
p will always become a filler after the handover.

Pulled: a small branch cannot be pulled because it only exists as an expanded particle.

• BridgeBridge is a static role. When a leader or a super leader completes its coating process
(marked when p.child is in p.role retired), p becomes a bridge particle. A bridge hands his
follower particles down TL. If p does not have any follower particle, it will wait until either
its parent becomes a bridge and feeds p particles, or it will wait for p.child to become a
reverse bridge. A reverse bridge is a bridge that sends particles up TL. A bridge particle p
only reverses: if bridge p is a child in TL, and p has p.parent.role follower ; if all parents of
bridge p in TL are reversed bridges or retired. To check if a bridge is reversed, a particle will
check if p.leaderPointer matches a p.target. A bridge can retire in one of two scenarios:
when it is a child in TS and it does not have p.parent.role follower or if its parent in TL has
retired.

Pulling: when p pulls a particle p1: if p1.role is follower, the p1.role will be small bridge;
if p1.role is bridge, then p1 will keep its role. Bridge particle p will always become a bridge
after the handover.

Pulled: When a bridge is pulled by another leader, it is converted to a small leader

• Small BridgeSmall Bridge is a static role. Small bridge is a sub role of the bridge role. In order to prevent
the bridge from shifting position, when a bridge pulls another particle, it is converted to a
small branch.

Pulling: when p pulls a particle p1, p1 will always become a small branch. Branch particle
p will always become a filler after the handover.

Pulled: a small bridge cannot be pulled because it only exists as an expanded particle.

• Retired : When a leaf can not expand in any position adjacent to p.ports, then p retires.
When a particle retires, its local memory is cleared and no further transition can occur.
Retired is a stable role. Furthermore, a retired particle will keep its p.leaderPointer flag,
this flag will be used by particles in the next layer Li+1.

Memory. Any particle p has a constant memory. A particle p can read the information in its
own memory as well as read/write any adjacent particle’s local memory. We will describe the
different memory registers held by a particle p:

State∗: p.state will either return contracted or expanded.

Role∗: p.role will return the role of a particle p. A particle p must have exactly one role
r ∈ Q. Most roles remain similar to the ones presented in the Filling Algorithm.

Universal Coating by Programmable Matter in 3D 37



CHAPTER 5. THE COATING ALGORITHM

Port∗: p.ports is an array that uniquely labels each port of particle p. When p.state is
contracted, p.port will return 12 uniquely labeled ports and when p.state is expanded, p.port
will return 22 uniquely labeled ports (it is worth noting that, when p is expanded, 4 pairs
of ports point to the same adjacent vertex).

Target: p.target[i] is a fixed array used to save the port pointing to the particle p1 that p
is following. Particle p1 is considered the child of p and if a particle p2 has a p2.target[i]
pointing to p, we call p2 the parent of p. Branch and Bridge particles have more than one
target and use both slots of Target to keep track of the bifurcation in their respective tree.

LeaderDir: p.leaderDir is exclusively used by leader, super leader and bridge particles. This
flag is used to know which leader is next in-line when p becomes a bridge or follower. We
will discuss in the Bridge role how this flag is used.

OldLeaderDir: p.oldLeaderDir is exclusively used by leader, super leader and bridge particles.
This flag is used in conjunction with the LeaderDir regisry to know which leader is next in-
line when p.state is expanded. We will discuss in the Bridge role how this flag is used.

Scheduler. For the 3D Simulator a set of 3 schedulers were used; sequential multiple activa-
tions, sequential single activation and adversary. The sequential multiple activations (used in the
Amoebot simulator) activates a single particle p ∈ P at random for each activation and does so
until each particle p has been activated at least once. In the sequential single activation sched-
uler, at the beginning of each round all particles are shuffled in a random order, this means that
each particle gets activated exactly once each round. The adversary scheduler aims to maximize
the total number of rounds from initial configuration to final configuration. In this process, the
adversary scheduler begins by activating all particle p ∈ P where p.state is contracted, there is
one exception, when p.role is in role leaf we check the following condition; if p.parent.state is
contracted and p cant expand then first activate p.parent then p. Next, for all particles p ∈ P
where p.state is expanded, if p does not have a child or its child is in state contracted, then we
activate p, else if p has a child p1 where p1.state is expanded, we place these expanded particles
in a queue q = {p, p1, ..., pn} until we find a particle pn where pn either does not have a child (i.e.
is a leaf particle) or pn has a contracted child. We then activate all the particles in q in reverse
order (i.e. from the last particle in the queue to the last particle in the queue). This ensures that
only one particle in q makes progress. In reality, programmable particles operate asynchronously
in look-compute-move cycles. Particles wake up, most often multiple at a time, to perform their
routine and repeat their cycle after it has finished. Under this assumption, the differences in
particle activation would be at most tdiff = 2 · btmax/tminc where tmax and tmin are the the
maximum and minimum activation times respectively. Under this behaviour it is unlikely that
particles’ activations vary significantly in each round. When the total number of particles is small,
then this behaviour is closely modeled by the sequential multiple activation scheduler. However, as
the total number of particles in P increases, the sequential multiple activation scheduler increases
the frequency that some number will be picked multiple times. Past a certain total number of
activations, the sequential single activation better represents real particle activations.

38 Universal Coating by Programmable Matter in 3D



CHAPTER 5. THE COATING ALGORITHM

Algorithm 3 Contracted Particle Activation vs
Expanded Particle Activation

Particle is Contracted

1: switch Role do
2: case Coat
3: Identical

4: case Brch
5: Identical

6: case Leaf
7: Identical

8: case Lead
9: if child is Retd then

10: particle becomes Bridge
11: else if child is does not exist then
12: Expand

13: case SupLead
14: if child is Retd then
15: particle becomes Bridge
16: else if child is does not exist then
17: Expand

18: case Bridge
19: if child in TS is Retd then
20: if parent in TI is Retd then
21: if parent in TL is Retd then
22: particle becomes Retd

23: else
24: if all parent in TL is Retd or is Bridge

reverse then
25: particle becomes Bridge reversed

Particle is Expanded

1: switch Role do
2: case Coat
3: Identical

4: case Brch
5: Identical

6: case Leaf
7: Identical

8: case Lead
9: pull a ready parent

10: parent becomes a SLead
11: if particle has no child then
12: particle becomes Leaf
13: else
14: particle becomes Coat

15: case SupLead
16: pull a ready parent
17: parent becomes a SSupLead
18: if particle has no child then
19: if all parent in TL are Retd then
20: particle becomes Retd
21: else
22: particle becomes Leaf

23: else
24: particle becomes Coat

25: case SSupLead
26: if particle has no parent then
27: Contract
28: particle becomes Lead
29: else
30: pull a parent
31: particle becomes SupLead

32: case SBridge
33: if particle has no parent then
34: Contract
35: particle becomes Lead
36: else
37: pull a parent
38: particle becomes Bridge
39: target adjacent Leader

40: case SBrch
41: if particle has a ready parent then
42: pull parent
43: particle becomes Brch

44: case SLead
45: if particle has no parent then
46: Contract
47: particle becomes Lead
48: else
49: pull a parent
50: particle becomes Lead

Universal Coating by Programmable Matter in 3D 39



CHAPTER 5. THE COATING ALGORITHM

5.2 Proof of Correctness

In this section, we will describe the building block required to prove the correctness of the
algorithm. We will begin by proving that the system is connected and that connectivity is main-
tained as the system progresses. We will then prove that the progress reduces the size of the
problem. Finally, we will prove that this progress will lead to a final state, and when the al-
gorithm terminates, it finds a solution to the Coating Problem.

We will denote V (·) as the vertex representation, likewise for E(·) with edge representation, we
will denote | · | as the size. The particle system P will coat layers L on object O. To differentiate
between the particles in the initial blob and particles actively coating the layers L, we use TI

and TS respectively. The tree formation algorithm forms the tree TI , used by follower particles
to flow through the gate leader particles. All leader particles are connected together in TL The
super leader particle always resides on vertex g where g ∈ V (TI) ∩ V (TS) ∩ V (TL). As follower
particles flow through the gate particles, they enter the layer L to be coated. Leaf particles direct
this expansion into the layer and as they do, they form TS , rooted at the super leader.

In the Coating Algorithm only the pull handover is used. A particle p can only pull p.parent if
such a parent exists, and p.parent.state is contracted and p.parent is adjacent to a port in p.port.
Movement without handover is only possible with expansion for certain roles.

For the following lemma will assume that |P | ≥ |Li|.

Lemma 7. At any moment t, particles in the initial form a directed tree TI .

Proof. Claim 1. Particles that join the directed tree TI maintain connectivity.
In order to prove this Lemma, we will use a similar structure to Claim 1 in Lemma 2 from this

paper [7]. At some time t, the tree is valid with a single particle: the super leader particle. We
will show that this property of the graph will hold at t + 1. Suppose that at t + 1, a particle f
becomes active. If f is adjacent to another active particle p1, f will set its register f.childDir to
the port adjacent to p1 if it is a follower, else it will set its port p.leaderDir. As a parent of p1,
f extends the tree as a new leaf. At time t, TI was a tree, at time t′ > t, f joins the graph, and
maintains connectivity and the tree property.

Claim 2. Particles movement in the directed tree TI maintain connectivity.
From Claim 3.2, we know that particles joining the tree maintain connectivity. At some initial

time t, the tree is valid as defined in Claim 3.2. We now want to prove that for all times t + 1,
a movement will occur in the tree, and this movement will also maintain this connectivity. At
some time t′ > t, the first particle movement will occur in the tree. For the tree to disconnect, a
particle in p.state expanded with an existing p.parent must contract without causing p.parent to
expand. We know from our initial assumptions that the contraction of a particle can only occur
in a handover. There is however one exception to this rule, the follower role can contract its tail
under certain conditions. Only when a follower particle f does not have a parent, can a follower
contract. This condition ensures that no parent is disconnected from f .

In the previous two claims we show that when a particle joins the tree and when a particle
moves in the tree, connectivity is maintained at all times t.

Lemma 8. At any moment t, particles on the coating layer Li form a directed tree TSi rooted at
the super leader.

Proof. Claim 1. Particles that join the directed tree TSi
maintain connectivity.

Initially, TSi
contains a single particle: the super leader, a particle chosen during by the leader

election algorithm. There exists a time t′ > t, when a new particle joins TSi . We want to prove
that for all time t′ > t, connectivity will be maintained. During the tree formation phase, new
leaders join TI . We have shown in Lemma 7, that these leaders are connected to the super leader.
When the leader l first pulls a small leader s, the leader becomes the first leaf to join TSi

. At this
moment, s has a register s.childDir pointing to its child l. Every time the leader pulls a particle,
a new particle joins TSi

in a similar process.
Claim 2. Particles movement in the directed tree TSi maintain connectivity.

40 Universal Coating by Programmable Matter in 3D



CHAPTER 5. THE COATING ALGORITHM

From Claim 3.2, we know that particles joining the tree maintain connectivity. At some initial
time t, the tree is valid as defined in Claim 5.2, we now want to prove that for all times t + 1,
a movement will occur in the tree, and this movement will also maintain this connectivity. At
some time t′ > t, the first particle movement will occur in the tree. For the tree to disconnect, a
particle in p.state expanded with an existing p.parent must contract without causing p.parent to
expand. We know from our initial assumptions that the contraction of a particle can only occur in
a handover. Furthermore, the follower role which can perform a contraction outside a handover
cannot exist in TS , for reasons explained in Lemma 3.

In the previous two claims we show that when a particle joins the tree and when a particle
moves in the tree, connectivity is maintained at all times t.

Lemma 9. At any moment t, leader particles on the coating layer Li form a directed tree TLi

rooted at the super leader.

Proof. Claim 1. Particles that join the directed tree TLi
maintain connectivity.

Initially, TLi
contains a single particle: the super leader, a particle chosen during by the leader

election algorithm. There exists a time t′ > t when a new particle joins TSi . We want to prove
that for all times t′ > t, connectivity will be maintained. We proved in Lemma 5.2 that every time
a leader joins it is connected to the super leader via TI . It thus holds, that it is also connected to
the super leader in TL

Claim 2. Particles movement in the directed tree TLi maintain connectivity.

From Claim 5.2, we know that particles joining the tree maintain connectivity. At some initial
time t, the tree is valid as defined in Claim 5.2, we now want to prove that for all times t + 1,
a movement will occur in the tree, and this movement will also maintain this connectivity. At
some time t′ > t, the first particle movement will occur in the tree. For the tree to disconnect, a
particle in p.state expanded with an existing p.parent must contract without causing p.parent to
expand. We know from our initial assumptions that the contraction of a particle can only occur in
a handover. Furthermore, the follower role which can perform a contraction outside a handover
cannot exist in TL, for reasons explained in Lemma 3.

In the previous two claims we show that when a particle joins the tree and when a particle
moves in the tree, connectivity is maintained at all times t.

Corollary 2. TI ∪ TS ∪ TL form a single connected component linked by a single super leader
particle.

Lemma 10. When a particle occupies a new position v ∈ L, this position v will remain occupied.

Proof. Assume that is statement is false. At some time t, vertex v becomes occupied by some
particle. For this proposition to be false, there would exist a time t′ > t when v becomes unoccu-
pied. We know that when a particle contracts, it is always the case that the tail collapses on the
head position. For this scenario to occur, a particle p must be expanded while having its tail on
v and subsequently contract at time t′.

In this algorithm, there exists only one role which is able to contract itself outside a handover,
this being the follower role. However, the follower only exists in TI . There exists only one vertex
x where x ∈ V (TI)∩V (A), and that vertex is the vertex g occupied by the leader. We know from
the algorithm that any particle with either its tail or head on g is a leader or a small leader.

We assumed that it would be possible for a particle p to contract its tail away from v, but we
have shown that such an operation can only be performed by a particle in a role which cannot
exist in the filling area A. This contradicts our initial assumption.

Lemma 11. When a particle p retires, it holds that p is contracted, that there does not exist a
port label l ∈ pport for which p can expand to;

Universal Coating by Programmable Matter in 3D 41



CHAPTER 5. THE COATING ALGORITHM

Proof. By observing the behaviors of a leaf particle l, we know that a contracted leaf will scan
each position adjacent to a port in l.port. If there is a position in which l can expand, then l will
expand into that position, and there are no pre-conditions preventing l from expanding. If there
does not exist an available positions then for all positions adjacent to a port in p.port there is
either a particle or a boundary object:

Case 1: position x is occupied by a boundary object: by definition we assumed O to be immutable,
hence, once x is occupied by a boundary object, it will remain occupied for the whole filling
duration.

Case 2: position x is occupied by a particle: in Lemma 3, we have proven that once a vertex
position x is occupied by a particle at a time t, this position x will remain occupied for all t′ > t.

Lemma 12. When all particles p ∈ L retire, there does not exist an empty region R ⊆ Li where
there exists a vertex v ∈ R that is unoccupied.

Proof. Let us assume that such a region R exists. Then there exists a configuration ct, where there
is at least one vertex v ∈ V (A) where v is unoccupied and and v must be adjacent to a position
occupied by a particle. We will now look at time t′ < t, when the last leaf particle l adjacent to v
retires. At t′−1, particle l was a leaf particle. From Lemma 4, for l to retire there must not exist a
position adjacent to l.ports that l can expand into. From our original assumptions, we know that
l is adjacent to position v where l can expand to at t′ − 1, this contradicts the assumption that l
will be retired at t′. Our initial assumption that a region R exists is thus wrong. This reasoning
applies for any region R in cfinal.

Lemma 13. Leaders and super leader will have enough particle to coat Li.

Proof. We will assume that |P | > |Li|. To prove this Lemma we will be using Figure 5.2. We can
distinguish three trees namely, X, Y and Z. We will denote | · | to be the sum of follower and
leader particles in the subtree.

Let us assume that the black particle in Figure 5.2 is the super leader. For the sake of simplicity,
we will assume that a particle has two parents in TL. Where X and Y are subtrees rooted at the
parents of the super leader. We will show that the proof can expand to any number of children
(bounded by the number of ports a particle has).

We will prove that enough follower particles exist in either 3 subtrees such that the super
leader sl will eventually contract.

If Z has enough particles for sl to finish coating, then we are done. Else;

Case 1: Neither X nor Y has enough particles for sl to finish coating its coating process. This
contradicts our original assumption that |P | > |Li| because |X| + |Y | + |Z| < |Li|. Initially, all
three subtrees represent all the particles in the system so |X| + |Y | + |Z| = |P | . Hence, it must
hold that either Case 1 or Case 2 holds.

Case 2: X has enough follower particles. If X has enough follower particles, then we can repeat
the scheme of Figure 5.2 to the root of X: claiming that the root will have enough particles in
either of the 3 subtrees. We can repeat this process until we reach a leaf in X in which case, we
know that there will be enough particles. As leaders in X finish their coating process, they become
bridge particles. According to the bridge role description, bridge particles can direct followers up
the tree. When a bridge sends particles up the tree, we call it a reverse bridge particle, a bridge
can reverse if: it is a leaf in TL and still has follower particles as parent(s);or all bridge parents in
TL are reversed. Once the root of X becomes a reverse bridge, the bridge at the super leader will
pass particles down to Y continue the coating process.

Case 3: Y has enough follower particles. The same argument as Case 1 can be made.

42 Universal Coating by Programmable Matter in 3D



CHAPTER 5. THE COATING ALGORITHM

Figure 5.2: Particle p with its subtrees. The grey subtree represents the children of p in TL. The
blue subtree represents the follower particles of p

Lemma 14. While there exists particles where l is a leaf in TS, either l will retire or l will expand
at a time t′ > t.

Proof. For this proof, we assume that |P | ≥ |A|. Let us assume that l cannot retire. We will
observe what happens when l is contracted and when l is expanded:

Case 1: l is expanded. From Lemma 13, we know that a leader will have enough follower particles
to enable l to contract until the layer is complete. We can now look and see what happens to l
when it is contracted in Cases 2 & 3.

Case 2: l is contracted and has an available adjacent position to expand into: l expands at its next
activation, because the scheduler is fair we know this will happen and hence l makes progress.

Case 3: l is contracted and does not have an available adjacent position expand into: l retires
at its next activation, because the scheduler is fair we know this will happen and hence l makes
progress.

Theorem 4. The algorithm solves the Coating Problem.

Proof. To solve the Coating Problem, the particle system must reach a legal configuration.
The algorithm will terminate in a legal configuration which will solve the coating problem. We

know the algorithm will terminate once the the leader particle retires. The root of the tree will
retire once all particles in the coating layer have contracted and retired.

From Lemma 14, we know that the particle system progresses by increasing the total number
of particles in the current coating layer. Because the size of the coating layer is constant, there
exists a time t when no more particles can fit in |L|. In such a case Lemma 14 ensures that all
particles p ∈ L will eventually retire at a time t′ > t. We now know that ct′ is a final and stable
configuration. Through Lemma 12, we know that such a configuration cannot contain an empty
region R. This makes ct′ a final stable legal configuration that solves the Coating Problem

Theorem 5. Tree formation has a running time complexity of O(n) rounds.

Proof. In the worst-case, the maximum in-degree of a particle is 1. In that case, only one particle
transitions from inactive to active (i.e. when one particle joins the tree).

Theorem 6. Our algorithm has a running time complexity of O(n · R) rounds where R is
maxd(u, v) for any u, v ∈ P .

Proof. The proof of running time can be divided into two sections; the time it takes to form TI

and the time to takes for all particles p ∈ P to join A (fill/coat the area).
For the coating problem we have |P | potential coating particles which can be in in an layer L.

Assuming that |L| = |P − 1|, then all particles must transition to the layer to coat. In the worst
case, throughout this coating process there is only one leaf particle p1 expanding/contracting. For
p1 to complete this contraction/expansion cycle, the worst case is determined by the longest path
of particles from p1 to a leaf p2 in TI , if all particles are in a line, this chain is of size n. Hence,

Universal Coating by Programmable Matter in 3D 43



CHAPTER 5. THE COATING ALGORITHM

it would take a O(n) to complete a cycle; at round r particle p1 expands, all particles between p1

and p2 are expanded, at round r+ 1 particle p2 contracts, at round r+ 2, p2.child can contract by
pulling p2, this repeats until p1 can contract at round r + n. At the end of this cycle, the number
of available positions in A has reduced by one. The coating algorithm has a run time complexity
of O((|P − 1|) · n) equivalent to O(n2) rounds to complete the coating phase. The size of the
handovers made by the bridge to shift particles in TL does not impact the running time. As the
size of TS increase, so does the number of particles already on the layer (reduces the size of the
problem).

The O(n2) rounds complexity only applies to a single input, we can make this bound tighter
by taking into account the longest chain for any ct.

5.3 Experimental Results

In order to test the Coating Algorithm we will be using the simulator presented in Chapter 4.
This section will explain the bridge between the theoretical analysis made in this thesis and the
empirical results obtained through testing.

44 Universal Coating by Programmable Matter in 3D



CHAPTER 5. THE COATING ALGORITHM

Hypothesis 5. The 2D Filling Algorithm performance should be similar to the 3D Coating Al-
gorithm under similar conditions (SMA scheduler and one leader).

Setup. To test this hypothesis we used an arbitrary shape for the object and organized the
initial particles in a compact fashion. We set the initial set of particles such that only one leader
would emerge (closely matches the situation in the 2D filling algorithm). We also used the same
SMA scheduler as the 2D filling algorithm.

Observations. As seen in Figure 5.3, the 3D algorithm slightly outperforms the 2D filling
algorithm. The difference is most likely due to the fact that a leader in the 3D layer can expand
in any direction while the leader in the 2D is limited by the bounds of the object and the initial
set of particles behind in the same dimensions. This on average, increases the path that particles
must travel.

Figure 5.3: 2D Filling algorithm vs 3D Coating Algorithm while using similar initial parameters

Hypothesis 6. Increasing the number of leaders will improve the average running time.

Setup. To test this hypothesis, we will use a rhombic dodecahedron object of size 4. For each
test we will increase the total number of leaders allowed in the initial set of particles.

Observations. As the number of leader increases beyond 8, it is worth noting that some leaders
can trapped in between other leaders. This causes the efficiency of leaders to decrease as some
leaders cannot contribute a single particle to the layer. This is reflected by the trend line of
Figure 5.4 where we can see that as the number of leaders increases in the first few steps, the
number of rounds greatly decreases. Beyond 9 leaders, the improvements seem marginal. When
the number of leaders is 9, there are 8 boundary leaders, when there are 16 leaders there are
12 boundary leaders and when there are 25 leaders there are 16 boundary leaders. While the
number of boundary leaders accounts for some of the decrease in performance, we can note that
between 9 total leaders and 25 total leaders, the amount of boundary leaders differs by 8, while on

Universal Coating by Programmable Matter in 3D 45



CHAPTER 5. THE COATING ALGORITHM

Figure 5.4 we see close to no difference. This would suggests that another factor is bottle-necking
the performance of multiple leaders.

Figure 5.4: Multiple leaders coating a rhombic dodecahedron object shape of size 4 using an initial
set of particles in orthotope configuration. The area is of the layer is of size

Hypothesis 7. Increasing the number of boundary leaders improves the average running time

Setup. We denote boundary leaders as leaders which are not surrounded on all side by other
leaders. To test this hypothesis, we will be using the same setup as Hypothesis 6. But we will
explore different metrics of the particle system.

Observations. From Figure 5.5 we can observe in the 25 leaders case that the number of
branches in the first 100 rounds is very low in comparison to the previous cases. One could
suggest that this could be due the boundary leaders saturating the layer as they all attempt to
expand, this in turn limits the possible branching of the path and increases the average length of
the path on the layer. This limitation could be the second factor to the few performance gains
from adding more leaders to the layer.

46 Universal Coating by Programmable Matter in 3D



CHAPTER 5. THE COATING ALGORITHM

(a) 1 Leader (b) 4 Leaders

(c) 9 Leader (d) 16 Leaders

(e) 25 Leader

Figure 5.5: Comparing the distributions of roles along the number of rounds for the Hypothesis 7

Hypothesis 8. How does SMA compare with SSA?

Setup. To test this hypothesis we prepared a series of tests where we used two shapes of varying
radii. We created a line type shape to reflect the shape shown in Subfigure 3.10a. We create a
rhombic dodecahedron to reflect the shape shown in Subfigure 3.10c. For these setups, we will
only be using one leader to evaluate the performances one to one.

Observations. In Figure 5.6, we can see that when using the SSA scheduler, the algorithms
performs worse than the 2D Filling Algorithm. When using the SMA the algorithms performs
better than the 2D Filling Algorithm. The multiple leader implementation has been shown to lower
the number of rounds needed to coat the first layer. SMA will always outperform SSA because in
SSA every particle is activated exactly once, SMA simply performs many more activations.

Universal Coating by Programmable Matter in 3D 47



CHAPTER 5. THE COATING ALGORITHM

Figure 5.6: Comparing SMA performances against SSA when coating a rhombic dodecahedron of
varying size using an othortope configuration for the initial set of particles.

(a) SSA (b) SMA

Figure 5.7: Observing the evolution of particle roles over the number of rounds

Hypothesis 9. Under SSA scheduler increasing the number of particles needed for the same sized
layer will increase the average running time.

Setup. To test this hypothesis, we will use a rhombic dodecahedron object of size 3. We will
use an orthotope initial configuration with 9 leaders. We proceeded to run 20 trials for each data
point.

Observations. From previous observations about SMA, we know that increasing the number of
particles decreases the overall number of rounds needed to coat the layer. In Figure 5.8, we can
see that increasing the total number of particles for the same object yields similar results. It is
worth noting that the improvement in the number of rounds is marginal. Initially, 10 tests were
run for each data point, but as we increased the number of particles, the distribution spread out.

48 Universal Coating by Programmable Matter in 3D



CHAPTER 5. THE COATING ALGORITHM

In an attempt to iron out the outliers, we doubled the number of tests. Even then, the experiment
with 324 particles still yielded results outside the expectations.

Figure 5.8: Coating an rhombic dodecahedron of size 3. Initially the number of particles need to
coat the object is 162. Each point represents an average of 20 trials, for 243 (50% increase), 324
(100% increase) and 485 (200% increase)

Universal Coating by Programmable Matter in 3D 49





Chapter 6

Conclusions

In this thesis we have described a solution to the Filling Problem that runs in at most O(n2)
asynchronous rounds. We have shown that this bound only applies to a single input. As the bound
was made tighter, the Filling Algorithm ran in at most O(n · R) asynchronous rounds, where R
is the size of the longest chain of connected particles. The main idea of the algorithm is that
particles form two tree structures. One tree is used to funnel particles to the hole in the boundary
object, beyond which is the area to be filled. Once inside, a second tree directs particles to the
leaves in the tree. These leaves direct the filling effort by expanding/contracting to fill the area.
The particle at the hole is called a leader.

In the experimental results, we have explored how different factors such as the diameter of
the object, number of particles and edge cases affect the running time. We found that increasing
the number of particles decreased the number of rounds needed to fill an area, we discussed that
it was due to the nature of the scheduler. We observed that the diameter of a shape impacts
the average height of the filling tree. Furthermore, we also found that the single leader particle
bottlenecks the Filling Algorithm. We will explore in the Coating Algorithm experimental results
the implications of using multiple leaders.

In this thesis we have described a solution to the Coating Problem called the Filling Algorithm
that runs in at most O(n · R) asynchronous rounds, where R is the size of the longest chain of
connected particles. The Coating Algorithm builds upon the Filling Algorithm. In the Coating
Problem, a particle system is connected to an object. The particles on the surface of that object
form a connected set of particles. When this set contains more than one particle, multiple leaders
can be elected. Each leader behaves in the same way as in Filling Algorithm. In the Coating Al-
gorithm, all leaders are part of a tree structure rooted at a super leader. When a leader completes
its coating effort, it converts itself to a bridge role. The bridge role helps other leaders complete
their coating routine by handing over their spare particles. When testing the Coating Algorithm
we began by fine tuning a configuration which would match the Filling Algorithm. Using this
configuration, we proceeded to explore the implications of using multiple leaders. We discovered
that the improvements of multiple leaders soon plateaus. When we explored the impact of bound-
ary leaders, leaders not trapped by other surrounding leaders, we found that the performance was
bottle necked by another factor. When looking at the role distribution over the number of rounds,
we found that as the number of boundary leaders increases, the number of branches decreases.
This suggested that nearby leaders are competing on the same layer. When testing under the SSA
and SMA scheduler, we discovered that increasing the number of particles for the same layer did
not increase the number of rounds needed to coat the layer. When exploring the running time of
multiple layer coating, the sum area of all the layers will impact the running time, but the number
of particles to coat these layers will not impact the running time.

While both algorithms have been developed under sequential schedulers, research has shown
that when the system’s actions are atomic and isolated the set of actions can be serialized; this
applies to any set of actions performed by this system. Hence, for any concurrent execution, there
exists a sequential ordering of actions that yield the same output.

Universal Coating by Programmable Matter in 3D 51



CHAPTER 6. CONCLUSIONS

To visualize the Coating Algorithm a simulator was created. In its current state, the simulator
can only be used to explore the Coating Algorithm.

Future work. For the Filling Algorithm the bottleneck is the number of leaders. We have seen
that a single leader is the current bottleneck in the system. We have shown that the running time
for tree formation can be tighter using the in-degree of a node.

In the Coating Algorithm we make the assumption that the contact point between the set of
particles P and the object O is connected. This assumption can be removed by exploring the
potential implications of having a particle on the layer: a super leader that can be elected for each
contact group. This solution opens up new problems as the different group of super leaders might
disconnect from one another.

52 Universal Coating by Programmable Matter in 3D



Bibliography

[1] Rida A. Bazzi and Joseph L. Briones. Brief announcement: Deterministic leader election
in self-organizing particle systems. Computer Science Stabilization, Safety, and Security of
Distributed Systems, page 381–386, 2018. 1, 3, 7

[2] Marshall Bern, Erik D. Demaine, David Eppstein, Eric Kuo, Andrea Mantler, and Jack
Snoeyink. Ununfoldable polyhedra with convex faces. Comput. Geom. Theory Appl., pages
24(2):51–62, 2003. 11

[3] Joshua J. Daymude, Robert W. Gmyr, Andréa undefined Richa, Christian undefined
Scheideler, and Thim undefined Strothmann. Improved leader election for self-organizing
programmable matter. International Symposium on Algorithms and Experiments for Sensor
Systems, page 127–140, 2017. 3, 7

[4] Erik D. Demaine, David Eppstein, George W. Hart Jeff Erickson, and Joseph O’Rourke.
Vertex-unfolding of simplicial manifolds. Proceedings of the 18th Annual ACM Symposium
on Computational Geometry, pages 237–243, 2002. 11

[5] Z. Derakhshandeh, S. Dolev, R. Gmyr, and A. W. Richa. Brief announcement: Amoebot-a
new model for programmable matter. SPAA 14’, pages 220–222, 2014. 2

[6] Zahra Derakhshandeh, Robert Gmyr, Alexandra Porter, Andréa W. Richa, Christian
Scheideler, and Thim Strothmann. On the runtime of universal coating for programmable
matter. Lecture Notes in Computer Science DNA Computing and Molecular Programming,
page 148–164, 2016. 1, 20

[7] Zahra Derakhshandeh, Robert Gmyr, Andréa W. Richa, Christian Scheideler, and Thim
Strothmann. Universal coating for programmable matter. Theoretical Computer Science,
671:56–68, 2017. 1, 3, 4, 18, 40

[8] Zahra Derakhshandeh, Robert Gmyr, Thim Strothmann, Rida Bazzi, Andréa W. Richa, and
Christian Scheideler. Leader election and shape formation with self-organizing program-
mable matter. International Workshop on DNA Computing and Molecular Programming,
page 117–132, 2015. 3, 7, 8, 33

[9] Albrecht Dürer. The painter’s manual: A manual of measurement of lines, areas, and solids
by means of compass and ruler assembled by albrecht dürer for the use of all lovers of art
with appropriate illustrations arranged to be printed in the year mdxxv. Abaris Books, 1525.
11

[10] Y. Emek, S. Kutten, Jr William K., and R. Lavi. Deterministic leader election in program-
mable matter. arXiv:1905.00580v1, 2019. 3

[11] Nicolas Gastineau, Wahabou Abdou, Nader Mbarek, and Olivier Togni. Distributed leader
election and computation of local identifiers for programmable matter. Algorithms for Sensor
Systems, page 159–179, 2019. 3, 7

Universal Coating by Programmable Matter in 3D 53



BIBLIOGRAPHY

[12] Giuseppe A. Di Luna, Paola Flocchini, Nicola Santoro, Giovanni Viglietta, and Yukiko
Yamauchi. Shape formation by programmable particles. 21st International Conference on
Principles of Distributed Systems, 2017. 3, 7

[13] Joseph O’Rourke. Folding and unfolding in computational geometry. Japan Conf. Discrete
Comput. Geom, pages 258–266, 2000. 11

[14] Giuseppe Prencipe Paola Flocchini and Nicola Santoro. Distributed Computing by Mobile
Entities. Springer International, 2019. 8

[15] Vassos Hadzilacos Philip Bernstein and Nathan Goodman. Concurrency control and recovery
in database systems. Addison-Wesley, 1987. 3

[16] Geoffrey C. Shephard. Convex polytopes with convex nets. Math. Proc. Cambridge Philos.
Soc., page 78(3):389–403, 1975. 11

[17] Wikipedia. UV mapping — Wikipedia, the free encyclopedia. http://en.wikipedia.org/w/
index.php?title=UV%20mapping&oldid=958558656, 2020. [Online; accessed 28-May-2020].
vi, 11

54 Universal Coating by Programmable Matter in 3D

http://en.wikipedia.org/w/index.php?title=UV%20mapping&oldid=958558656
http://en.wikipedia.org/w/index.php?title=UV%20mapping&oldid=958558656


Appendix A

2D Test Figures

(a)

(b)

(c)

(d)

(e)

Figure A.1: Shapes with varying size corridor for testing

Universal Coating by Programmable Matter in 3D 55



APPENDIX A. 2D TEST FIGURES

(a) (b)

(c) (d)

(e)

Figure A.2: Random shapes used for testing

56 Universal Coating by Programmable Matter in 3D



APPENDIX A. 2D TEST FIGURES

(a) (b)

(c) (d)

(e)

Figure A.3: Random shapes used for testing

Universal Coating by Programmable Matter in 3D 57



Appendix B

Code

Provided that the code base for each of these algorithm would not fit nicely in an Appendix,
a link to each repository is shared below:

• 2D Filling Algorithm

• 3D Coating Algorithm

58 Universal Coating by Programmable Matter in 3D

https://github.com/WayanKita/AmoebotSim-dev
https://github.com/WayanKita/3D-Universal-Coating

	Contents
	List of Figures
	Introduction
	Related Work
	Contribution

	Preliminaries
	Definitions
	Amoebot Model
	Existing Subroutines
	Amoebot Simulator
	Problem Definition

	The Filling Algorithm
	The Algorithm
	Proof of Correctness
	Experimental Results

	Simulator for 3D Amoebot Research
	Technologies Used
	Schedulers
	Tools

	The Coating Algorithm
	The Algorithm
	Proof of Correctness
	Experimental Results

	Conclusions
	Bibliography
	Appendix
	2D Test Figures
	Code

