
 Eindhoven University of Technology

MASTER

Evaluation of Model Transformation Testing in Practice

Chen, Zijun

Award date:
2020

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/12f3610c-39f1-4c44-92a9-756f8529071d

Evaluation of Model

Transformation Testing in

Practice

Master Thesis

Zijun Chen

Department of Mathematics and Computer Science

Software Engineering and Technology Group

Supervisors:

Mark van den Brand

Ivan Kurtev

Wilbert Alberts

Rob Posthumus

Eindhoven, September 2020

Abstract

Model Driven Engineering (MDE) is a software development methodology that aims at increasing

the productivity and quality of software development. MDE uses abstract models as primary

artifacts to drive development. Software developers in MDE specify software systems in models.

A model transformation chain can transform models into code. A model transformation chain

consists of one or several model transformations. The correctness of a model transformation will

significantly affect the quality of the generated software. In industry, the model transformation

testing is a common method to detect faults in model transformations and to ensure the quality of

the model transformation tool. However, the model transformation testing practice in the industry

is facing multiple challenges demonstrated by the large workload of the processes and failures in

the results of the transformations. Meanwhile, there are several approaches proposed in the lit-

erature that focus on model transformation testing. However, the suitability of these approaches

is unclear. There is a knowledge gap between the industry and academia. The suitability of the

approach proposed by the academics is unclear to the industry and the needs of the industry are

unclear to academia. Therefore, we conducted this research to narrow the knowledge gap between

the industry and academia.

To understand the challenges in testing model transformations in industry, we conducted inter-

views with testers in a project group called ASOME at Altran. From the interviews, we gained

knowledge of the current model transformation testing process and the key needs of the testers

at Altran. To search for suitable approaches in the literature, we conducted a literature review.

We reviewed, analyzed, and selected the approaches that address the challenges of model trans-

formation testing. We selected two types of approaches. The first one is to check the correctness

of model transformations using formal specifications. The second one is dedicated to automatic

model generation and equivalence partitioning. There are two tools for the first approach: Tract-

sTool and Matching Table Builder. For the second approach, there are two tools: USE and Efinder.

To evaluate the suitability of these tools, we proposed four criteria for suitability evaluation. We

first conducted small case studies using these tools. During the small case studies, we identified

the problems and limitations of the four tools. TractsTool, Matching Table Builder, and USE can

Evaluation of Model Transformation Testing in Practice iii

not be used for industrial cases. Only Efinder showed positive results in the small case study and

we further conducted several industrial case studies with Efinder. We discuss and evaluate the

suitability of the four tools using the proposed criteria in the thesis. Moreover, we discuss the

possible usage and suggestions for further improvements for the four tools.

iv Evaluation of Model Transformation Testing in Practice

Acknowledgement

This master thesis is the last part of my Master’s program Computer Science and Engineering at

Department of Software Engineering and Technology, Eindhoven University of Technology. First

of all, I would like to thank my supervisor, prof. Mark van den Brand for supervising this thesis

project. I would like to thank my manager, Aad van Gerwen and dr. Ivan Kurtev at Altran for

giving me the chance to work at Altran as an intern.

Second, I would like to thank dr. Ivan Kurtev, dr. Wilbert Alberts and Rob Posthumus for their

valuable and comprehensive guidance during the project. They were very patient and thoughtful

during the project. I appreciate their hard-working spirits, kindness, patience, and positivity.

Third, I would like to thank Koen Staal, Adrain Yankov, Vivek Vishal from the ASOME project

group for patiently answering me questions and providing useful information. I also would like

to thank other group members of the ASOME project group. Even though it was a short time

working together in the same office, they created a friendly and kind atmosphere for me.

Last but not least, I would like to thank my boyfriend Jan Emrich for loving and caring for me

during the coronavirus outbreak.

Evaluation of Model Transformation Testing in Practice v

Contents

Contents vii

List of Figures xi

List of Tables xiii

Listings xv

1 Introduction 1

1.1 Background . 1

1.2 Problem Statement . 1

1.3 Research Questions . 2

1.4 Methodology . 2

1.5 Thesis Outline . 3

2 The study of the practice and the literature review 5

2.1 Definitions . 5

2.1.1 Model Transformation Development . 5

2.1.2 Model Transformation Testing . 6

2.1.3 Test Quality Evaluation . 6

2.1.3.1 Test Coverage . 7

2.1.3.2 Mutation Analysis . 7

2.1.3.3 Model Diversity . 7

2.2 Altran Practice . 8

2.2.1 Interview Guidelines . 8

2.2.2 Findings from Interviews . 9

2.2.3 Challenges at Altran . 10

2.3 Literature Review . 11

2.3.1 Procedure for Executing the Review . 11

Evaluation of Model Transformation Testing in Practice vii

CONTENTS

2.3.2 Challenges and Open Issues Mentioned in the Literature 12

2.3.3 Summary of the Approaches . 13

2.3.3.1 M2M Transformation Testing . 13

2.3.3.2 M2T Transformation Testing . 18

2.3.4 Further Selection and Prioritization . 19

2.3.5 Prioritization . 22

2.4 Reflection on Interviews and the Literature Review 23

2.5 Evaluation Criteria for the Selected Approaches . 24

3 TractsTool and Matching Table Builder 25

3.1 TractsTool . 25

3.1.1 Introduction of TractsTool . 25

3.1.2 Case Study . 26

3.1.2.1 Introduction of UML2Relational transformation case 26

3.1.2.2 Implementation of the UML2Relational case study using TractsTool 27

3.1.2.3 Results . 28

3.1.3 Discussion on TractsTool . 31

3.1.4 Conclusions . 31

3.2 Matching Table Builder . 32

3.2.1 Introduction of Matching Table Builder . 32

3.2.2 Discussion on Matching Table Builder . 33

3.2.3 Conclusion . 34

4 UML-based Specification Environment and Efinder 35

4.1 The UML-based Specification Environment . 35

4.1.1 Introduction to UML-based Specification Environment 35

4.1.2 Introduction of Classifying Terms . 36

4.1.3 Case Study . 36

4.1.3.1 Invariants . 38

4.1.3.2 Configuration in USE . 39

4.1.3.3 Results . 39

4.1.4 Discussion on USE . 40

4.1.5 Conclusions . 40

4.2 Efinder . 43

4.2.1 Introduction of Efinder . 43

4.2.2 Case Study: Generating multiple instance models 43

4.2.2.1 Generating OCL files . 43

viii Evaluation of Model Transformation Testing in Practice

CONTENTS

4.2.2.2 Configure and Run the Tool . 45

4.2.2.3 Results . 46

4.2.3 Discussion on Efinder . 47

4.2.4 Conclusion . 49

5 Conclusions 51

Bibliography 53

Appendix 61

A ASOME Case Study Reports 61

A.1 Industrial case study 1: to compile and generate one instance model of data.ecore . 61

A.1.1 Implementation . 61

A.1.1.1 1. Remove the operations in the ecore models that Efinder can not

compile . 63

A.1.1.2 2. Ignore some original OCL constraints of the ASOME metamodels 63

A.1.1.3 3. Remove the OCL expressions so that there is no type conform-

ance problems in USE . 65

A.1.2 Results . 66

A.2 Industrial case study 2: to generate multiple instance models using classifying terms 67

A.2.1 Implementation . 67

A.2.2 Results . 69

A.3 Problem 1 of Efinder: compilation error in OCL constraints 69

A.4 Problem 2 of Efinder: unsatisfiable proof . 71

A.5 Problem 3: Efinder does not support generating a pair of models 73

B Code 75

B.1 QVTo Transformation for UML2Relational . 75

B.2 uml.use generated by TractsTool . 77

B.3 Generated USE Specifications By TractsTool . 78

B.4 Generated USE Specifications By Efinder . 80

B.5 The code for generating OCL files with classifying terms 83

B.6 The code for spliting a model into one ASOME model and one generator model . . 87

Evaluation of Model Transformation Testing in Practice ix

List of Figures

2.1 The general model transformation process . 5

2.2 The model transformation testing process in ASOME project 9

2.3 The methodology of literature review . 11

3.1 TractsTool GUI . 26

3.2 uml.ecore shown in Eclipse . 27

3.3 relational.ecore shown in Eclipse . 27

3.4 uml model.xmi shown in Eclipse . 28

3.5 relational model.xmi shown in Eclipse . 28

3.6 Results . 29

3.7 ATL Transformation Types Extractor GUI . 33

3.8 Matching Table Builder GUI . 33

4.1 Classifying term dashboard shown in USE GUI . 37

4.2 Configuration . 39

4.3 Generated models . 42

4.4 the generated models shown in Eclipse . 47

A.1 data.ecore . 62

A.2 Unsupported operations in Efinder . 64

A.3 helper operations defined by ASOME developers 65

A.4 Class ’Operation’ in system.ecore . 66

A.5 the USE specification for Class ’Operation’ . 66

A.6 the generated model shown in Eclipse . 66

A.7 the expected model shown in ASOME . 67

A.8 the expected model shown in ASOME . 70

A.9 a monolithic model generated by Efinder . 74

A.10 first figure . 74

Evaluation of Model Transformation Testing in Practice xi

LIST OF FIGURES

A.11 second figure . 74

xii Evaluation of Model Transformation Testing in Practice

List of Tables

2.1 The result of the first screening: test generation with coverage criteria 14

2.2 The result of the first screening: mutation analysis 15

2.3 The result of the first screening: equivalence partitioning 16

2.4 The result of the first screening: developing oracle functions 17

2.5 The result of the first screening: M2T transformation testing 19

2.6 The result of the second screening: test generation with coverage criteria 20

2.7 The result of the second screening: equivalence partitioning 21

2.8 The result of the second screening: M2T transformation testing 22

2.9 The priority list of the 11 approaches . 23

3.1 Evaluation results of TractsTool . 32

3.2 Evaluation results of MTB . 34

4.1 The characteristic values of partitions . 40

4.2 Evaluation results of USE . 41

4.3 Evaluation results of Efinder . 49

A.1 The deleted operations . 63

A.2 the test results . 69

Evaluation of Model Transformation Testing in Practice xiii

Listings

3.1 Mapping rule type2type in UML2Relational.qvto 28

3.2 Tract for type2type() . 28

3.3 Generated commands . 29

4.1 Classifying term dashboard . 37

4.2 constraints for Model . 38

4.3 constraints for Type . 38

4.4 constraints for Classes . 38

4.5 constraints for Attribute . 39

4.6 an integer-type classifying term . 44

4.7 an integer-type classifying term is rewritten into two boolean-type classifying terms 44

4.8 3 classifying terms . 44

4.9 The full OCL file with characteristic value 000 . 44

A.1 data.ocl . 62

A.2 Model configuration . 62

A.3 4 classifying terms . 67

A.4 the complete OCL file for partition 0000 . 68

A.5 Test bounds configuration . 70

A.6 OCL constraints . 70

A.7 Error message . 71

A.8 The invariant ”nonNull type Collection ordered” in model.use 71

A.9 Model configuration . 71

A.10 OCL constraints . 72

A.11 Unsatisfiable proof . 72

B.1 UML2Relational.qvto . 75

B.2 Class.use . 77

B.3 ClassifyingTerms . 83

B.4 generateClassifyingTermOCLFiles . 83

Evaluation of Model Transformation Testing in Practice xv

LISTINGS

B.5 Partition7.ocl . 85

B.6 The class ClassTest . 86

B.7 The code for spliting a model into one ASOME model and one generator model . . 87

xvi Evaluation of Model Transformation Testing in Practice

Chapter 1

Introduction

1.1 Background

Model Driven Engineering (MDE)[40] is a software development methodology that uses models

as primary artifacts to drive development. It aims at increasing productivity and improving the

quality of the software development process. Instead of writing code manually, software developers

in MDE specify the software system to be developed in abstract models expressed in a suitable

modeling language. Models can be analyzed for correctness so that defects in the generated

software are avoided thus improving the quality of the final product. Model transformation is

an important part of MDE. Model transformation automates the software development. It is the

process where the transformation software transforms the source models into target models or

code in the target language following certain rules.

1.2 Problem Statement

Like any other software artifact, model transformations need to be specified, designed, imple-

mented, and checked for correctness. One particular way of checking is testing. MDE has been

increasingly applied in the industry and testing of transformations is becoming an important task

in the development process. The current testing processes in the industry are facing multiple

challenges demonstrated by the large workload of the processes and failures in the results of the

transformations. A number of approaches have been proposed in the literature to improve the

model transformation testing processes. However, there is still insufficient information about the

suitability of these approaches in an industrial context. Therefore, the problem is how suitable

these approaches are and why these approaches fail if they are not suitable.

Evaluation of Model Transformation Testing in Practice 1

CHAPTER 1. INTRODUCTION

1.3 Research Questions

The focus of this thesis is on implementing the existing approaches for testing model transforma-

tions and evaluating their suitability in an industrial context. The project is executed at Altran

Netherlands, where several industrial projects are using MDE techniques for software development

including model transformations. The following research questions are formulated:

RQ1: What are the main challenges in the practice of model transformation testing

in the industry?

• Objective 1: Describe the current model transformation testing process in the industry.

• Objective 2: Identify the major problems and key needs in the current model transformation

testing processes.

• Objective 3: Describe the current model transformation testing processes at Altran and

identify the major problems and key needs in the model transformation testing process at

Altran.

RQ2: What are the existing approaches that can improve the testing process in the

industry?

• Objective 1: A description of the existing approaches about model transformation testing.

• Objective 2: Select the approaches that can be used to improve the current testing practice

at Altran for further investigation and motivate the choices.

RQ3: How suitable are these approaches?

• Objective 1: Implement the selected approaches on small cases and evaluate their suitab-

ility. If the selected approach is considered suitable in small cases, implement the selected

approaches for ASOME cases. 1

• Objective 2: Analyze and report the suitability of the selected approaches.

1.4 Methodology

For RQ 1, we intend to assume that Altran sufficiently represents the industry for this thesis.

Other companies may have different challenges. However, the scope in this thesis is on Altran

1ASOME cases are referred to the case studies for testing the model transformations of the ASOME tool.

2 Evaluation of Model Transformation Testing in Practice

CHAPTER 1. INTRODUCTION

practices. If we want to enlarge the scope then another method should be selected: interviews and

cases from multiple industries and companies. We conducted several interviews with developers at

Altran to gain a better understanding of the current testing process in the industry. We interviewed

developers of model transformations, testers, and test architects at Altran to understand the major

problems of the model transformation testing. We summarized the problems by discussing with

the testers.

For RQ2, we conducted a literature review. We classified the approaches. We listed the tools and

languages used in the literature and analyzed their suitability in the given context. We selected

some of the approaches for further investigation and motivated our choices.

For RQ3, we implemented the selected approaches on small cases and further on industrial cases

inspired by the ASOME tool.

1.5 Thesis Outline

Chapter 2 introduces the concepts of model transformation testing, the model transformation

testing process at Altran and the results of the literature review. Chapter 3 and Chapter 4

introduces 4 model transformation tools. Since TractsTool[6] and Matching Table Builder[68] have

similar purposes, they are introduced in Chapter 3. Chapter 4 introduces UML-based Specification

Environment (USE)[23] and Efinder because Efinder and USE have the same purpose and Efinder

is based on USE. Both Chapter 3 and 4 provide the case studies and the discussions of the tools.

The industrial case study reports are shown in Appendix A.

Evaluation of Model Transformation Testing in Practice 3

Chapter 2

The study of the practice and the

literature review

2.1 Definitions

2.1.1 Model Transformation Development

Figure 2.1: The general model transformation process

Model In MDE, a model is referred to as a domain model that describes a software system in

a formal way.

Metamodel A metamodel is a model of a modeling language[15]. A metamodel specifies a set

of rules and constraints that define a modeling language. The metamodel is the definition of

the abstract syntax of the modeling language. Every model expressed in that modeling language

conforms to the metamodel.

Model Transformation Model transformation is an automated process to generate models or

text. It takes a model as input and generates a model or text as output. Figure 2.1 shows the

Evaluation of Model Transformation Testing in Practice 5

CHAPTER 2. THE STUDY OF THE PRACTICE AND THE LITERATURE REVIEW

general model transformation process. As can be seen from Figure 2.1, input models conform to

a metamodel and a set of constraints. The transformation program uses the input metamodel

and the output metamodel. It defines how elements in the input model are transformed into the

output model. The transformation program can be implemented in a general-purpose language

like Java or a dedicated model transformation language such as QVTo1, ATL2, etc. A transform-

ation engine executes the transformation program and generates possibly multiple output models

that conform to their metamodels. There are two types of model transformation: model-to-model

(M2M) transformation and model-to-text (M2T) transformation. An M2M transformation gener-

ates models conforming to metamodels, whereas an M2T transformation results in text that can

be anything: program code, documents, plain text, etc. Typically, when the difference between

an input language and an output language in the level of abstraction becomes large, monolithic

transformations may have some inherent problems, such as little reuse opportunities, bad scalab-

ility, etc [65]. A monolithic M2T transformation can be composed into a model transformation

chain[65]: a sequence of smaller sub-transformations which enables isolated testing of individual

model transformations[42].

2.1.2 Model Transformation Testing

We first present four basic concepts used throughout this report.

Fault and Failure In the context of this study, a fault is an error of a model transformation.

Failure is an unexpected result of a transformation. Failure is an indication of a fault. The purpose

of testing is to detect faults in the transformation and manage risks of failures. In general, it is

impossible to detect all faults. Moreover, it is not the responsibility of testing to locate, clear

faults, or analyze the cause of faults.

Oracle Function In model transformation testing, oracle functions are used to check if the

result of the transformation is correct. Typically, oracle functions can use user expectations,

transformation specifications, previous versions of the same program, comparable products, etc

[66][16].

2.1.3 Test Quality Evaluation

Testers need to measure the quality of a test suite. This measurement process is called test quality

evaluation. Test coverage and mutation analysis are commonly adopted in the literature to qualify

a test suite[67]. Model diversity is less common but was also used in the literature[54].

1https://wiki.eclipse.org/QVTo
2https://www.eclipse.org/atl/

6 Evaluation of Model Transformation Testing in Practice

CHAPTER 2. THE STUDY OF THE PRACTICE AND THE LITERATURE REVIEW

2.1.3.1 Test Coverage

In this study, a set of test cases using a set of test models as input is referred to as a test

suite. A good test suite should be large enough to satisfy certain criteria but small enough to

avoid redundant testing. Redundant testing means using structurally similar test models. A

coverage criterion aims at measuring the quality of a test suite and deciding when testers can

stop testing so that the model transformations are qualified[62]. There are three types of coverage

commonly adopted in the state of the art of model transformation testing: transformation coverage,

specification coverage, and metamodel coverage.

Transformation Coverage Transformation coverage measures how much of the transformation

implementation is used by a test suite. For example, Schönböck et al.[52] adopted rule coverage

to ensure every transformation rule is invoked at least once by a test suite.

Specification Coverage The specifications are formalized requirements of correctness of trans-

formations. Specification coverage measures how many specifications and combinations of these

specifications are covered by a set of test models[31].

Metamodel Coverage Metamodel coverage measures how much of a source metamodel is used

by a test suite. For example, [18] and [19] adopted class coverage. The class coverage criterion

states that for each concept defined in the metamodel, at least one concrete instance can be found

in the test models.

2.1.3.2 Mutation Analysis

Mutation analysis can show the sensitivity of a test suite[53]. Mutation analysis mutates units

in the transformation implementations to create faults. This faulty version of a transformation is

called mutant [43]. If at least one test model can detect the mutant, then the mutant is called a

killed mutant [43]. The tester usually creates a set of mutants to check whether a test suite can

detect and kill all the mutants. The proportion of the killed mutants in the total non-equivalent

mutants are called mutation score[43]. The mutation operators are used to generate mutants[53].

If a test suite gets a high mutation score, it indicates that this test suite is able to detect man-made

faults of the system under test.

2.1.3.3 Model Diversity

Model diversity measures the diversity of a test suite. An efficient test suite should be diverse to

prevent redundant testing. Therefore, the model diversity can indicate the quality of a test suite.

Evaluation of Model Transformation Testing in Practice 7

CHAPTER 2. THE STUDY OF THE PRACTICE AND THE LITERATURE REVIEW

Studies [54], [51], [35] and [64] gave different definitions of model diversity metrics. The defined

model diversity metrics were further applied in equivalence partitioning techniques.

2.2 Altran Practice

To study the Altran practice, we will focus on the ASML Software Modeling Environment (ASOME)

project. The ASOME project is aimed at modeling and construction of software systems that ad-

here to the Data-Control-Algorithm (DCA) architecture pattern. A tool also called ASOME has

been developed for modeling and generating a part of the ASML software in this project. In

particular, the tool allows the modeling of data structures and generating software repositories for

managing the data.

To understand the current practice of model transformation testing and its main challenges in

the context of Altran, we conducted interviews with three testers. A testing process flowchart

was formed according to the answers of the testers. Moreover, an explanation of the flowchart is

presented. Both the flowchart and the description were confirmed by the testers.

2.2.1 Interview Guidelines

In this section, we present the interview questions for ASOME testers. These questions are in the

context of the ASOME project.

Questions about the model transformation chain

• What is the structure of the model transformation chain?

• How is the software development process using this model transformation chain?

Questions about the model transformation testing process

• Please describe the process of model transformation testing.

• How do you verify the results of M2M/M2T transformation?

• Is there any formal specification for the model transformation testing?

• Is there any automatic test model generation?

Questions about faults and failures of the model transformation

• Do you have a classification for the failures? If yes, what are the types? (e.g. the generated

code can not compile or the program has unexpected behaviors? Can you name them all?)

• Why were the faults not detected during testing?

8 Evaluation of Model Transformation Testing in Practice

CHAPTER 2. THE STUDY OF THE PRACTICE AND THE LITERATURE REVIEW

Questions about test quality

• Do you measure the metamodel/transformation/specification/code coverage? If yes, how do

you measure? How much is the metamodel/transformation/specification/code coverage? If

no, why not?

• Have you made duplicate or structurally similar test models or have you seen duplicate or

structurally similar test models made by other testers?

2.2.2 Findings from Interviews

Figure 2.2: The model transformation testing process in ASOME project

Figure 2.2 shows the transformation chain and the testing process in the ASOME project

of Altran. The model transformation chain of the ASOME project is composed of two model

transformations. The first model transformation is an M2M model transformation in QVTo. The

Evaluation of Model Transformation Testing in Practice 9

CHAPTER 2. THE STUDY OF THE PRACTICE AND THE LITERATURE REVIEW

second model transformation is an M2T model transformation in Xtend. The ASOME test models

together with the generator models will be transformed into intermediate models by the QVTo

transformation. The intermediate models are DCA models that conform to the DCA metamodel.

DCA is the central architectural pattern for the software systems at ASML. DCA is referred

to as three aspects: Data, Control, and Algorithm. The QVTo transformation is executed by

the QVTo interpreter. Further, the DCA models are transformed into C++ code by the Xtend

transformation which is executed by the Java virtual machine. The high-level requirements are

often recorded in text informally by ASML architects/toolsmiths. The tester manually creates

test models and generator models according to the informal requirements. There are no low-level

requirements or formal specifications shared among the testers.

Testers use oracle functions to verify the results. The oracle functions return the results of a

comparison between the actual output and the expected output. The results are binary answers,

which indicate whether the actual output is acceptable. There are two types of oracle functions.

One is to compare the code of the model/generated code line by line. The other one is to evaluate

the execution results of the generated C++ code with test cases made by the testers. Initially,

there are no available expected DCA models. The tester needs to manually check the correctness

of the actual output. Once the actual output is considered as correct, they will be set as the

expected output. When the transformation implementation changes, the tester will give the same

input and manually compare the actual output with the expected output again. There is no formal

specification made for the testing and there is no automatic test model generation.

There are reports about the failures including types and occurrences. However, there is no report

about the faults in the transformations which cause the failures and no analysis of why these faults

were not detected during testing. Most of the faults occurred in the M2T transformation.

There is no measurement for test quality. Duplicate test models were found during testing.

2.2.3 Challenges at Altran

In summary, the challenges of model transformation testing reported by the testers in the ASOME

project at Altran are:

The difficulty to generate a qualified test suite The high-level requirements are the in-

formal descriptions for the expected features for the generated C++ code. Moreover, the trans-

formation does not produce the correct result for a new feature of an input model since the new

feature has not been used by any input models during testing. There is no metamodel coverage

or transformation coverage measurement. Therefore, there is no indicator of the test suite quality

to assist the testers in completing a test suite. Moreover, the manual generation of test models is

inefficient.

10 Evaluation of Model Transformation Testing in Practice

CHAPTER 2. THE STUDY OF THE PRACTICE AND THE LITERATURE REVIEW

The difficulty to generate an efficient test suite An efficient test suite should be diverse

to prevent redundant testing. It is often the case that testers make duplicate or structurally

similar test models without awareness. It is a challenging task for testers to make sure duplicate

or structurally similar test models are avoided by identifying and distinguishing the input models

manually.

2.3 Literature Review

2.3.1 Procedure for Executing the Review

Figure 2.3: The methodology of literature review

Figure 2.3 shows the methodology of the literature review. There were two rounds of screening

and a prioritization.

For the first round of screening, we searched for the studies that aim at solving problems related to

model transformation testing. The result of the first round screening is 36 studies. A description

of the 36 approaches is presented in Section 2.3.3.1 and Section 2.3.3.2. There are three main

search strategies adopted during the first screening.

• First, we used keywords to search studies (written in English) in Google Scholar search

engine3.

"model transformation" AND/OR "model to model" AND/OR "model to text"

AND "testing"

• Second, we briefly read the content of all the studies after the first screening and excluded

those that did not discuss (M2M and M2T) model transformation testing. Then we searched

for the references in the related work section of the selected studies.

3https://scholar.google.com/

Evaluation of Model Transformation Testing in Practice 11

CHAPTER 2. THE STUDY OF THE PRACTICE AND THE LITERATURE REVIEW

• Third, those cited by the model transformation testing studies are also likely to talk about

model transformation testing. Therefore, these studies with the right contents were also

considered.

• Fourth, we avoided overlapping of primary studies. This means if several studies are conduc-

ted as an evolution of the same testing approach, then only the latest study will be included

in the result of the first screening. The information about the studies in the result of the

first screening is further summarized and presented in the tables. These tables will be used

to analyze the feasibility of the proposed approaches in the given context.

The first screening resulted in 36 papers. For the second round of screening, we reviewed the

36 studies and identified 11 studies that may solve or alleviate the problems at Altran (Section

2.2.3). We motivated our choices in Section 2.3.4. Due to the time limitation, we can not explore

all 11 approaches. Taking the interests of the stakeholders into consideration, we prioritized the

approaches and made a priority list of the 11 approaches in Section 2.3.5.

2.3.2 Challenges and Open Issues Mentioned in the Literature

Automated generation of a qualified and efficient test suite Most of the literature

reviews[13][3][44][49][4][53][31] about model transformation testing pointed out two major con-

cerns. The first one is the automated generation of a qualified and efficient test suite. A good

test suite generation should be automatic since manual input model generations will limit the

productivity of testers. A good test suite generation approach should also be qualified so that the

test suite can ensure the model transformations meet the requirements. A good test suite should

also be efficient, which means duplicate or similar tests can be identified and avoided.

The availability of a suitable oracle The second most discussed challenge is the availability

of a suitable oracle. Therefore, some studies aim at providing alternative oracles when the testers

do not know how oracles should be like.

The definition of test criteria Gerpheide et al.[22] pointed out the need to identify thresholds

for the quality metrics of a test suite. The thresholds can also be called criteria. The definitions

of the criteria are important since they should guide the testers to stop testing at the right time.

The justification of the choices of test quality metrics The justification of the choice of a

test suite quality metric is lacking in the literature. For example, Guerra et al.[31] proposed to use

transformation specification coverage criteria instead of metamodel coverage criteria. According

to Guerra et al.[31], the purpose of model transformation testing is to test the intention of the

12 Evaluation of Model Transformation Testing in Practice

CHAPTER 2. THE STUDY OF THE PRACTICE AND THE LITERATURE REVIEW

transformation. Therefore, specification coverage criteria are more suitable than metamodel cov-

erage criteria. However, this claim was not elaborated in this study and there is a lack of sufficient

study about the comparison between the proposed coverage criteria.

2.3.3 Summary of the Approaches

In this section, we will classify and discuss the 36 studies we found after the first screening.

2.3.3.1 M2M Transformation Testing

Different classifications of studies in M2M transformation testing have been proposed in the liter-

ature. [66] sorted the state of the art into 9 categories according to the techniques: graph search

algorithms, random testing, evolutionary testing, constraint solving, model checking, static analysis,

abstract interpretation, partition testing, and slicing. [4], [53], and [31] classified studies according

to three phases of model transformation testing: generating test models, defining coverage criteria

and developing oracle functions. [3], [44] and [49] merged generating test models and defining cov-

erage criteria into one classification generating test models. The first classification is not suitable

for comparison because it is unclear which approach improves which part of the testing process.

The last classification is more reasonable because the approaches are grouped by their purpose.

Moreover, since the coverage criteria are used as a stopping condition for the phase of test model

generation, these two activities belong to one phase of testing. Therefore, in this study, we classify

studies into two categories: test model generation and developing oracle functions.

A. Test Model Generation There is a significant amount of proposed approaches that focus

on automatic test model generation. These test model generation approaches can be classified

into three categories: test coverage criteria, mutation analysis, and equivalence partitioning based

on different test quality evaluations. Studies in Section A.1 Test Model Generation with

Coverage Criteria aim at reaching high test coverage criteria. Studies in Section A.2 Mutation

Analysis aim at generating a test suite that can achieve high mutation scores. Studies in Section

A.3 Equivalence Partitioning aim at obtaining a test suite with as many diverse models as

possible.

A.1 Test Model Generation with Coverage Criteria Table 2.1 shows the result of the

first screening of the studies which aim at reaching the chosen test coverage criteria. As can be

seen from Table 2.1, the majority of the test coverage is metamodel coverage and transforma-

tion coverage. Brottier et al.[5] proposed an algorithm to generate a test suite that can satisfy

metamodel coverage with a test generation tool called OMOGEN. Sen et al.[55][56] proposed a tool

called Cartier to generate test models to reach metamodel coverage criteria. The tool Cartier can

Evaluation of Model Transformation Testing in Practice 13

CHAPTER 2. THE STUDY OF THE PRACTICE AND THE LITERATURE REVIEW

Table 2.1: The result of the first screening: test generation with coverage criteria

Year Title Test Criteria Model
Trans-
formation
Language

Used Technologies Evaluation
for the
Approach

2006 Metamodel-based Test Generation
for Model Transformations: an Al-
gorithm and a Tool[5]

Metamodel
coverage

Not men-
tioned

MOF, OCL Mutation
analysis

2009 Automatic model generation
strategies for model transforma-
tion testing[56]

Metamodel
coverage

Not men-
tioned

Alloy Mutation
analysis

2012 Formal specification and testing of
model transformations[63]

Not mentioned ATL, QVT,
RubyTL,
JTL

ASSL language,
USE

Correctness
of output
models
checked by
using USE

2012 ATLTest: A White-Box Test
Generation Approach for ATL
Transformations[26]

Transformation
coverage

ATL OCL Not men-
tioned

2013 TETRABox - A Generic White-
Box Testing Framework for Model
Transformations[52]

Transformation
coverage

Not men-
tioned

PAMOMO, QVT-
Relations, OCL

Only obser-
vations

2014 A Search Based Test Data Gen-
eration Approach for Model
Transformations[38]

Transformation
coverage

ATL MOTTER Not men-
tioned

2015 Specification-driven model trans-
formation testing[31]

Specification
coverage

ATL/ETL PAMOMO, Ec-
lipse, Z3 solver,
USE, OCL

Mutation
analysis

2017 Translating target to source
constraints in model-to-model
transformations[14]

Metamodel
coverage

ATL, ETL,
QVT,
TGGs

OCL, anATLyzer Measured
solving
time and
total time,
precision
and recall
metrics

2019 On Analyzing Rule-Dependencies to
Generate Test Cases for Model
Transformations[46]

Rule-
dependency
coverage

TGG OCL, USE frame-
work and USE
model validator

Rule de-
pendencies

make use of the OCL constraints on the Ecore metamodels. The OCL constraints on the Ecore

metamodels are used to expressed invariants and model transformation pre-conditions. Then

Cartier invokes the Alloy API and then launch a SAT solver to generate models. However, the

OCL constraints need to be transformed to Alloy facts manually. This study [56] adopted two

Input-domain Partition based Strategies as metamodel coverage criteria from [18] to guide model

generation, called AllRanges Criteria and AllPartitions Criteria. Vallecillo et al.[63] proposed to

use OCL invariants as the specifications of the transformation and use ASSL(A Snapshot Sequence

Language) to generate test models. The test models can either satisfy all constraints or violate

at least one constraint. But coverage criteria of the specifications were not discussed in [63]. The

framework TETRABox[52] proposed by Schonbock et al. also requires formalized requirements

of transformation. TETRABox can generate a test suite that ensures a certain level of trans-

formation coverage. Jilani et al.[38] proposed an OCL-based approach for test model generation,

which adopted transformation coverage criteria. Guerra et al.[30] presented a visual, declarative

language called PAMOMO to specify behavioral contracts. They also presented the PAMOMO

Contract-Checker which assists in the compilation of PAMOMO into QVT-Relations. Based on

the PAMOMO language, Guerra et al.[31] proposed a framework called specification-driven model

transformation testing. In this testing framework, the requirements are formalized into specific-

14 Evaluation of Model Transformation Testing in Practice

CHAPTER 2. THE STUDY OF THE PRACTICE AND THE LITERATURE REVIEW

ations in PAMOMO. The PAMOMO specifications can derive oracle functions and test models

automatically. The generated test models can cover all the specifications using SAT solving tech-

niques. This study also proposed 7 levels of specification coverage criteria. Cuadrado et al.[14]

presented a method which can also be used to generate test models considering the constraints

over the target models. This method translates OCL constraints to the source meta-model using

the anATLyzer tool. Hermann et al.[32] proves that rule dependencies directly impact the quality

properties of a model transformation for TGG. TGG is a formal, declarative, bidirectional model

transformation language[41][33]. Based on this proof, Nguyen et al.[46] proposed a method to dis-

cover rule dependencies of TGG and automate test model generation based on the rule-dependency

coverage.

Table 2.2: The result of the first screening: mutation analysis

Year Title Mutation Operat-
ors

Model
Trans-
formation
Language

Evaluation for the Ap-
proach

2006 Mutation analysis testing for model
transformations[43]

Semantic operat-
ors

Kermeta,
Tefkat

Compared with MuJava

2015 Towards systematic muta-
tions for and with ATL model
transformations[60]

Syntactic operat-
ors

ATL Not mentioned

2015 Towards an automation of the muta-
tion analysis dedicated to model
transformation[1]

Semantic operat-
ors

Kermeta Result analysis

2016 Static analysis of model
transformations[13]

Typing operators ATL Usefulness and perform-
ance

2019 Towards effective mutation testing
for ATL[28]

Zoo operators ATL Applicability, resilience,
stubbornness

A.2 Mutation Analysis The concept of mutation analysis is explained in Section 2.1.3.2. Table

2.2 shows the result of the first screening of studies about mutation analysis. The studies about

mutation analysis in model transformation testing focused on automatically generating qualified

mutants and reducing computational costs. However, most of the mutation analysis approaches

are language-dependent since the definition of a mutation operator requires knowledge of the

language. Therefore, the mutation analysis technique used for model transformation testing is not

as developed as the one used for C, C++, and Java. Troya et al.[60] proposed syntactic operators

which can create, delete, or update the elements of the ATL metamodel. However, syntactic

mutation operators do not mimic real developer mistakes. Mottu et al.[43] and Aranega et al.[1]

proposed semantic operators on ATL and Kermeta that take semantics of model transformation

into account. Cuadrado et al.[13] focused on typing errors and proposed typing operators that

aim at testing anATLyzer (ATL static analyzer). Guerra et al.[28] proposed zoo operators that

emulate the most common errors in ATL zoo4. Mutation analysis is computationally costly. A few

studies discussed sufficient operators[2][47][45]. Their understanding may be valuable for mutation

testing on model transformations even though they focused on imperative languages like C, C++,

4https://www.eclipse.org/atl/atlTransformations/

Evaluation of Model Transformation Testing in Practice 15

CHAPTER 2. THE STUDY OF THE PRACTICE AND THE LITERATURE REVIEW

and Java. Furthermore, mutation analysis is commonly used to evaluate the quality of a test suite

generated by other testing approaches (See Table 2.1).

Table 2.3: The result of the first screening: equivalence partitioning

Year Title Equivalence
Partitioning
Techniques

Model
Trans-
formation
Language

Used Technologies Evaluation
for the
Approach

2014 Test data generation for
model transformations
combining partition and
constraint analysis[27]

OCL constraints
analysis

Not men-
tioned

OCL, OCLBBTesting
EMF2CSP

Not men-
tioned

2015 Employing classifying
terms for testing model
transformations[25]

Classifying Terms Not men-
tioned

ASSL, USE, OCL Not men-
tioned

2017 Testing transformation
models using classifying
terms[7]

Classifying Terms Not men-
tioned

OCL, USE Performance
analysis

2018 Testing models and
model transforma-
tions using classifying
terms[34]

Classifying Terms Medini-
QVT, JTL

USE, OCL, ASSL,
Kodkod

Usability,
perform-
ance and
scalability

2018 Test Model Genera-
tion using Equivalence
Partitioning[36]

Equivalence
classes definition
in EPL

Not men-
tioned

EMG, EOL, EPL,
KodKod

Not men-
tioned

2018 Iterative Generation
of Diverse Models for
Testing Specifications of
DSL Tools[54]

Neighborhood
shapes

Not men-
tioned

Alloy, VIATRA-
Generator

Mutation
analysis

A.3 Equivalence Partitioning Table 2.3 shows the result of the first screening of the studies

which tried to avoid structurally similar tests. This technique is called equivalence partitioning.

The main idea of equivalence partitioning is to identify structurally similar models and put them

into the same partition. Only one model in the same partition needs to be tested. This idea has

been considered by several studies[27][25][34][7][36]. Gonzalez et al.[27] proposed a mechanism to

fine-tune the partitions by systematically analyzing OCL constraints in the source metamodels.

Some studies[25][34][7][36] focus on classifying terms, which is a kind of equivalence partitioning

technique. Classifying terms is an instrument that can identify the structural properties of models.

Models in the same partitions are considered equivalent. Therefore, testers only need to test one

model from the same partition instead of all models. Hilken et al.[34] and L. Burgueño[7] proposed

to combine classifying terms with tracts. Vallecillo et al.[63] introduced the concept tracts. Tracts

is a special kind of model transformation contract. Tracts can specify the constraints for a model

transformation in OCL. Additionally, every tract provides a set of test models that satisfy a corres-

ponding set of constraints. The generation of test models is done by ASSL (A Snapshot Sequence

Language) within the USE (UML-based Specification Environment) environment5. Semeráth et

al.[54] proposed diversity metrics based on neighborhood shapes and a model generation technique

which aims at deriving structurally diverse models.

5http://useocl.sourceforge.net/w/index.php/Main Page#Download

16 Evaluation of Model Transformation Testing in Practice

CHAPTER 2. THE STUDY OF THE PRACTICE AND THE LITERATURE REVIEW

Table 2.4: The result of the first screening: developing oracle functions

Year Title Proposed Tech-
niques

Model
Trans-
formation
Language

Used Technologies Evaluation
for the
Approach

2007 Matching model-
snippets[50]

A generic pattern
framework

graph MT
languages

Kermeta, EMF, Flora-2 Not men-
tioned

2008 Model transformation
testing: oracle issue[44]

6 types of oracles Not men-
tioned

MOF, OCL Not men-
tioned

2010 A visual specific-
ation language for
model-to-model
transformations[29]

A specification
language for
oracle

QVT, ATL,
ETL

OCL, GMF, eol Not men-
tioned

2013 Using Meta-model Cov-
erage to Qualify Test
Oracles[17]

An oracle quality
metric

Not men-
tioned

Not mentioned Mutation
analysis

2013 Partial Test Oracle in
Model Transformation
Testing[16]

Partial oracles ATL EMFCompare, EMF,
XMI, VIATRA, CSP

Not men-
tioned

2014 Testing model trans-
formation programs
using metamorphic
testing[37]

Metamorphic
testing

ATL Not mentioned Empirical
Evaluation

2018 Automated inference
of likely metamorphic
relations for model
transformations[61]

Automated infer-
ence of MRs

ATL ATL/EMFTVM, Java,
EMT

Precision
measure

B. Developing Oracle Functions Table 2.4 shows the result of the first screening of studies

on the development of oracle functions. In general, an oracle function is a predicate that states if

the result of the test is correct. Some oracle functions compare the test results with the expected

results. It is also possible to evaluate some expressions on the produced result. Mottu et al. [44]

presented six kinds of oracle functions. However, oracle functions can still be difficult to develop.

There are two main challenges of developing oracle functions[49].

B.1 How to obtain oracles? It is difficult for the tester to produce expected models for all

test models. Metamorphic testing [11] can provide an alternative when the expected output of a

test model is unknown. Metamorphic testing checks whether multiple executions of a program

under test have certain properties, which are called metamorphic relations (MRs). Jiang et al.[37]

demonstrated the application of metamorphic testing in the context of model transformation

testing and empirically proved its effectiveness. However, the MRs are manually constructed by

a domain expert. Troya et al.[61] followed the work of Jiang et al.[37] and proposed an approach

to generate likely MRs automatically and improved the feasibility of metamorphic testing.

B.2 How to compare the results of a transformation with the oracles?[49] There

are three techniques to implement oracle functions: model comparison, contracts, and pattern

match[44].

• Model comparison: Model comparison requires available expected models to compare

with the output model. However, it can be difficult for a tester to know all the properties

that an expected model should have due to the complexity of specifications. Finot et al.

Evaluation of Model Transformation Testing in Practice 17

CHAPTER 2. THE STUDY OF THE PRACTICE AND THE LITERATURE REVIEW

[16] presumed that the output models can be divided into a predictable part and a non-

predictable part. They proposed partial oracle to compare the predictable part. However,

the model comparison is still challenging. Comparing expected models and output models

can be done syntactically or semantically. The model comparison is a graph isomorphism

problem since a model can be considered as a graph. However, this can be problematic since

two models can be semantically equivalent while syntactically different[49]. Additionally,

checking graph isomorphism is computationally costly[54].

• Contracts: Contract-based comparison requires knowledge of the semantics of the target

language[49]. The goal of a contract is to define what to expect. Therefore, the second

technique is to use contracts as oracle functions. Carious et al. [9] used OCL contracts to

define oracles. Guerra et al.[29] proposed a visual specification language called PAMOMO,

which can be compiled into OCL, to simplify the specification of oracles.

• Pattern match: Pattern match, focus on checking the presence of a set of model elements

in the target models[50].

2.3.3.2 M2T Transformation Testing

Table 2.5 shows the result of the first screening of studies in M2T transformation testing. Stuer-

mer et al.[57] proposed a systematic testing architecture for code generators. The tool ModeSSa

generates test models that are targeted at the optimization of the code generator. Polack et

al.[48] proposed a unit testing framework for both M2M and M2T transformation. Fraternali et

al.[20] proposed a model transformation framework for model-driven web application testing (a

kind of M2T transformation). This paper focuses on solving the testing environment issues that

come with this framework. Tiso et al.[58] proposed definitions of three adequacy criteria based on

the concrete syntax of the input models. This study[58] also classified transformation tests into

three categories: conformance tests, semantic tests, and textual tests. Chavez et al.[10] proposed

an automated testing approach called CCUJ to test whether the Java implementations conform

to their UML class models. Tiso et al.[59] proposed a unit testing framework for U-OWL M2T

transformation. Garćıa et al. [21] proposed a debugging tool called HandyMOF for MOFScript

transformation. Although it focuses on debugging, the tool can be used to measure the transform-

ation coverage obtained by a test model suite. Wimmer et al.[68] proposed a generic metamodel

for text to transform an M2T/T2M transformation specification problem into an M2M trans-

formation specification problem. Based on this study, Burgueno et al.[8][6] extended the tracts

approach from M2M transformation testing and defined a mechanism based on matching tables6.

The matching tables aligns a model transformation implementation with its tracts which are the

6http://atenea.lcc.uma.es/projects/MTB.html

18 Evaluation of Model Transformation Testing in Practice

CHAPTER 2. THE STUDY OF THE PRACTICE AND THE LITERATURE REVIEW

Table 2.5: The result of the first screening: M2T transformation testing

Year Title Test Criteria Model
Transform-
ation Lan-
guage/Tool

Used Technologies Evaluation
for the
Approach

2007 Systematic Testing
of Model-Based Code
Generators[57]

Model coverage and
code coverage

TargetLink ModeSSa, UML,
TargetLink

Not men-
tioned

2008 Unit Testing
Model Management
Operations[48]

Not mentioned EGL Epsilon, EUnit Not men-
tioned

2010 Multi-level Testes for
Model Driven Web
Applications[20]

Not mentioned Groovy BPMN, WebML,
Canoo

Not men-
tioned

2013 A Method for Test-
ing Model to Text
Transformations[58]

Conformance, textual,
semantic

Acceleo UML Not men-
tioned

2013 An Approach to Test-
ing Java Implementation
against Its UML Class-
Model[10]

Branch-coverage RSA OCL, UML, RSA,
Java

Compared
with other
approaches

2014 Unit Testing of
Model to Text
Transformations[59]

Not mentioned U-OWL MeDMoT, OWL Not men-
tioned

2014 Testing MOFScript
Transformations with
HandyMOF[21]

Transformation cover-
age

MOFScript Eclipse, Not men-
tioned

2014 Back-To-Back Testing
of Model-Based Code
Generators[39]

Not mentioned Genesys Genesys Not men-
tioned

2015 Testing
M2M/M2T/T2M
Transformations[6]

Constraint/rule/relatedness
of constraints and rules
coverage

ATL TractsTool,
Matching Tables
Builder, USE

Precision
and recall

specifications of this model transformation. The matching tables can both detect and locate the

fault in the transformation. Jörges et al.[39] proposed a back-to-back testing approach for the

Genesys code generator. The main idea of the back-to-back testing is to execute an input model

and its generated code and check whether the outputs of both executions are the same. If the

outputs are the same, then it shows that the semantics of the input models are preserved. It

requires that the input models can be executed by a model execution tool. However, this is not

always available.

2.3.4 Further Selection and Prioritization

The second screening is to review the 36 studies in detail. We selected 11 studies that are worth

further case studies. In this section, We summarize and classify the content of the 11 studies.

We discuss the possibility of each group of approaches to improve the current testing practice at

Altran. We prioritize the 11 studies based on the needs in the Altran practice.

Test Coverage Criteria The result of the second screening for Table 2.1 is shown in Table 2.6.

The input test models of the ASOME project are created manually. There is no measurement on

the metamodel coverage nor the model transformation coverage. There is no specification available

for the M2M transformation. There is no coverage measurement on the M2T transformation either.

This leaves the approaches using metamodel/transformation/specification coverage as possible

Evaluation of Model Transformation Testing in Practice 19

CHAPTER 2. THE STUDY OF THE PRACTICE AND THE LITERATURE REVIEW

improvement approaches. The test generation approaches in Table 2.1 are promising to alleviate

this testing problem.

Some approaches in Table 2.1 do not directly apply to the ASOME project at Altran. The study

[14] requires constraints on the target metamodel. The model transformation chain in the ASOME

project does not have constraints on the target metamodels. The stakeholders decided not to create

constraints for the target metamodels. Therefore, the study [14] will not be considered for further

selection. The approach proposed by the study [46] depends on the language TGG. However, we

do not use TGG in the model transformation chain at Altran. Using TGG can be time-consuming.

Therefore, the study [46] will not be considered.

Table 2.6: The result of the second screening: test generation with coverage criteria

Year Title Test Criteria Model
Trans-
formation
Language

Used Technologies Evaluation
for the
Approach

2006 Metamodel-based Test
Generation for Model
Transformations: an
Algorithm and a Tool[5]

Metamodel coverage Not men-
tioned

MOF, OCL Mutation
analysis

2009 Automatic model gen-
eration strategies for
model transformation
testing[56]

Metamodel coverage Not men-
tioned

Alloy Mutation
analysis

2012 ATLTest: A White-
Box Test Generation
Approach for ATL
Transformations[26]

Transformation cover-
age

ATL OCL Not men-
tioned

2013 TETRABox - A Gen-
eric White-Box Testing
Framework for Model
Transformations[52]

Transformation cover-
age

Not men-
tioned

PAMOMO, QVT-
Relations, OCL

Only obser-
vations

2014 A Search Based Test
Data Generation Ap-
proach for Model
Transformations[38]

Transformation cover-
age

ATL MOTTER Not men-
tioned

2015 Specification-driven
model transformation
testing[31]

Specification coverage ATL/ETL ocl2smt,
PAMOMO, Ec-
lipse, Z3 solver,
USE, OCL

Mutation
analysis

Equivalence Partitioning The result of the second screening for Table 2.3 is shown in Table

2.7. The partitioning equivalence techniques aim at identifying similar test models and helping

testers create an efficient test suite automatically. The study [36] will not be considered because

this study does not explain how to define equivalence classes in Epsilon Pattern Language (EPL).

The study [54] will not be considered because the VIATRA-Generator7 used in the study [54] does

not incorporate OCL constraints. However, Altran uses OCL invariants with the metamodels.

This shows low compatibility with the input models at Altran.

7https://github.com/viatra/VIATRA-Generator/wiki

20 Evaluation of Model Transformation Testing in Practice

CHAPTER 2. THE STUDY OF THE PRACTICE AND THE LITERATURE REVIEW

Table 2.7: The result of the second screening: equivalence partitioning

Year Title Equivalence Partition-
ing Techniques

Model
Trans-
formation
Language

Used Technologies Evaluation
for the
Approach

2014 Test data generation for
model transformations
combining partition and
constraint analysis[27]

OCL constraints ana-
lysis

Not men-
tioned

OCL, OCL-
BBTesting
EMF2CSP

Not men-
tioned

2015 Employing classifying
terms for testing model
transformations[25]

Classifying Terms Not men-
tioned

ASSL, USE, OCL Not men-
tioned

2017 Testing transformation
models using classifying
terms[7]

Classifying Terms Not men-
tioned

OCL, USE Performance
analysis

2018 Testing models and
model transforma-
tions using classifying
terms[34]

Classifying Terms Medini-
QVT, JTL

USE, OCL, ASSL,
Kodkod

Usability,
perform-
ance and
scalability

Mutation Analysis The mutation analysis in Model transformation testing is used to assess

the sensitivity of a test suite. There are three types of mutation operators proposed in the

literature: syntactic operators, semantic operators, and ATL zoo operators. All of them require

rich knowledge about the transformation language, ATL. However, the transformation languages

used in the ASOME tool are QVTo and Xtend. Therefore, no mutation operators are available

for QVTo and Xtend.

Developing Oracle Functions The availability of test oracles is a challenge in the literature

but it has not been complained by the testers in the ASOME group. The ASOME project does

not focus on testing the intermediate model transformation but the whole generator chain and the

correctness of the generated C++ programs. Metamorphic testing in model transformation testing

proposed in the literature is a new approach for the availability problem of test oracles. It aims at

providing alternative oracles when there is no available oracle to verify the output. However, this

technique is not mature enough for model transformation testing. There is a lack of studies on the

applicability of this technique. Moreover, the oracle problem has not been requested with a high

priority by the stakeholders. Therefore, this group of studies will not be considered for further

investigation for now. However, if during the future experiment the oracle problem occurs, then

we may reconsider the studies listed in Table 2.4.

M2T Transformation Testing Most of the M2T transformation testing in the literature fo-

cuses on the single M2T transformation, which means there is no transformation chain which

includes M2M transformation. In these studies, the M2T transformation is also called a code

generator. The code generator testing mentioned in these studies is close to the idea of compiler

testing. The code generator testing approach [57] focuses on the optimization features of the

generated code. However, code optimization is not part of the M2T transformation at Altran.

The second difference is that the back-to-back testing[39] for the code generator does not apply

Evaluation of Model Transformation Testing in Practice 21

CHAPTER 2. THE STUDY OF THE PRACTICE AND THE LITERATURE REVIEW

to the M2T transformation at Altran because the input ASOME models are not executable. The

M2T approach[6] extended the tract [63] approach from M2M transformation testing by creating

a general metamodel for JAVA. According to the testers, when there is a failure in the generated

code, the fault causing this failure often occurs in the M2T transformation. The M2T approach[6]

looks into the structure of the generated code, whereas the practice in Altran is to run functional

tests on the generated code. The general metamodel of JAVA is not practical for industrial cases

of M2T transformations. But this will be considered for further investigation of its suitability on

M2M transformations.

Table 2.8: The result of the second screening: M2T transformation testing

Year Title Test Criteria Model
Transform-
ation Lan-
guage/Tool

Used Technologies Evaluation
for the
Approach

2015 Testing
M2M/M2T/T2M
Transformations[6]

Constraint/rule/relatedness
of constraints and rules
coverage

ATL TractsTool,
Matching Tables
Builder, USE

Precision
and recall

2.3.5 Prioritization

In this step, we prioritize the approaches from the last section considering the interests of all stake-

holders and the feasibility of the studies. Table 2.9 shows the priority list of the 11 studies. Due

to the time limitation, we can only implement 2 approaches in detail. We will focus on approaches

1 and 2 first and the other approaches in the list will be alternative options.

Approach 1 is aimed at testing transformations using tracts. The tracts can specify what to ex-

pect in the target model according to the source model using OCL. This addresses the need for

increasing the quality of testing at Altran.

Approach 2 proposed and used the idea of classifying terms to generate a set of models auto-

matically. This approach addressed the problem of manual modeling at Altran. Moreover, this

addresses the problem of redundant testing. Classifying terms define partitions of generated mod-

els. Each partition will have exactly one satisfiable model.

If approaches 1 and 2 are found out to be completely infeasible during the early implementation

(e.g. the tool is damaged or the example provided does not work), we will report this and try the

next approach in the list.

22 Evaluation of Model Transformation Testing in Practice

CHAPTER 2. THE STUDY OF THE PRACTICE AND THE LITERATURE REVIEW

Table 2.9: The priority list of the 11 approaches

Order Keywords Year Title Used Technologies
1 tracts 2015 Testing M2M/M2T/T2M Trans-

formations [6]
TractsTool, Matching
Tables Builder, USE

2 classifying terms
2015 Employing classifying terms for test-

ing model transformations [25]
ASSL, USE, OCL

2017 Testing transformation models using
classifying terms [7]

OCL, USE

2018 Testing models and model trans-
formations using classifying terms [6]

USE, OCL, ASSL,
Kodkod

3 specification-driven
testing

2015 Specification-driven model trans-
formation testing [31]

ocl2smt, PAMOMO, Ec-
lipse, Z3 solver, USE,
OCL

4 source constraint ana-
lysis

2014 Test data generation for model trans-
formations combining partition and
constraint analysis [27]

OCL, OCLBBTesting,
EMF2CSP

5
transformation coverage

2014 A Search Based Test Data Gen-
eration Approach for Model
Transformations[38]

MOTTER

6 2013 TETRABox - A Generic White-
Box Testing Framework for Model
Transformations[52]

PAMOMO, QVT-
Relations, OCL

7 2012 ATLTest: A White-Box Test
Generation Approach for ATL
Transformations[26]

OCL

8
metamodel coverage

2009 Automatic model generation
strategies for model transforma-
tion testing[56]

Alloy

9 2006 Metamodel-based Test Generation
for Model Transformations: an Al-
gorithm and a Tool[5]

MOF, OCL

2.4 Reflection on Interviews and the Literature Review

Based on the interviews at Altran and the literature review, we have several observations.

Lack of industrial examples in the literature Most of the cases are simple examples. How-

ever, the industrial model transformation chain is way more complicated than those simple ex-

amples in the literature. This can be an obstacle for testers in the industry to adopt the approaches

in literature because the simple examples do not address some problems that may occur in indus-

trial testing. For example, all the test model generation approaches only consider simple M2M

transformation examples which only take one type of test model as input. However, at Altran,

the M2M transformation takes both the ASOME model and the generator model as input. No

studies have proposed a solution taking this into consideration.

Lack of knowledge about the causes of faults There is a lack of knowledge of why these

faults were not detected during testing. If we have this knowledge, we can know better which

approaches in the literature to choose and the researchers may have a clearer research direction.

For example, if we know the most common faults, then we can adapt the mutation operators in

[28].

Lack of knowledge about the current test coverage at Altran There is no formal meas-

urement of the test coverage, which makes it difficult to choose an appropriate approach from the

Evaluation of Model Transformation Testing in Practice 23

CHAPTER 2. THE STUDY OF THE PRACTICE AND THE LITERATURE REVIEW

literature. Since there is no coverage information, we do not know whether it is the low test cov-

erage that hurts the effectiveness of the current testing at Altran. For example, if the metamodel

coverage is actually high but the testing still misses out a significant number of faults, then using

the metamodel coverage approaches will be insufficient.

2.5 Evaluation Criteria for the Selected Approaches

We define four criteria to evaluate the suitability of the selected approaches. These criteria are

not quantifiable yet since there is no tool that can be directly applied to industrial cases. We can

only qualitatively analyze the suitability of the selected approaches with these criteria.

• Criterion 1: The tool used in the proposed approach(es) can run without errors in small case

studies.

• Criterion 2: The tool can handle the industrial-size model transformations.

• Criterion 3: The total time required by the proposed approaches should be less than the

time required by the current practice of model transformation testing at Altran. For the

same set of features of a model transformation, the proposed approach should require less

time compared to the current model transformation process described in Section 2.2.3. The

total time consists of two parts.

Ttotal = Tpreparation + Texecution

The first part is the time spent in preparation before running the tool. The second part is

the execution time for the tool. The preparation time is usually the time spent in making

the input files acceptable for the tool. The execution time is the duration from starting the

execution of the tool until getting the results.

• Criterion 4: The proposed approach has the potential to improve the current practice of

model transformation testing. There are two ways to improve current testing practice. First,

according to the interview results with the Altran testers, it is a challenge to generate a qual-

ified test suite. The current testing method often fails to detect faults in the transformations

and these faults cause failures in the generated code. Therefore, the proposed approach is

expected to assist testers in detecting faults in the transformations that human testers fail

to detect. Second, according to the interview results, testers create structurally similar test

models by mistake. Moreover, manual modeling is a time-consuming job. Therefore, the

proposed approach should improve the efficiency of the current practice.

24 Evaluation of Model Transformation Testing in Practice

Chapter 3

TractsTool and Matching Table

Builder

In this chapter, we will introduce and evaluate two tools, TractsTool and Matching Table builder.

These tools make use of the same approach, tract[6][24]. A tract is a transformation contract. It

describes the logic of transformations and allows testers to verify M2M transformation formally.

For both TractsTool and Matching Table Builder, testers need to specify a tract constraint file

that makes use of the knowledge of source metamodels and target metamodels.

3.1 TractsTool

3.1.1 Introduction of TractsTool

TractsTool is a tool that checks the correctness of the implementation of an M2M transformation

with the tracts. Tracts specify what to expect in the target model according to the source model.

The tracts are specified in OCL. Figure 3.1 shows the GUI of TractsTool. TractsTool is lan-

guage independent. To test ATL transformations, TractsTool needs to take the source and target

metamodels, tracts, an ATL transformation, and an ASSL script as input. For ATL transforma-

tions, TractsTool can generate source models using the ASSL script. For non-ATL transformations,

TractsTool needs to take the source and target metamodels, tracts, source, and target models as

input. The main idea of TractsTool is to transform the source metamodel and target metamodel

into one single USE (UML-based Specification Environment) specification file. TractsTool also

needs to generate source and target models in USE. TractTool uses the USE tool as an engine for

the evaluation of the OCL expressions in the tracts and checks if the models satisfied the tracts.

TractsTool will then return evaluation results.

Evaluation of Model Transformation Testing in Practice 25

CHAPTER 3. TRACTSTOOL AND MATCHING TABLE BUILDER

Figure 3.1: TractsTool GUI

3.1.2 Case Study

In this section, a case study of applying them on a small transformation called UML2Relational,

and the evaluation of TractsTool’s suitability will be present.

3.1.2.1 Introduction of UML2Relational transformation case

We defined one source metamodel called UML, One target metamodel called Relational, and a

QVTo transformation. This small case was used in the small case studies of the four tools. The

source language is a small set of UML and the target language is a simple relational database.

The QVTo transformation can transform a UML model into a relational database model. The

transformation rules are defined in the QVTo transformation shown in Appendix B.1.

26 Evaluation of Model Transformation Testing in Practice

CHAPTER 3. TRACTSTOOL AND MATCHING TABLE BUILDER

Figure 3.2: uml.ecore shown in Eclipse

Figure 3.3: relational.ecore shown in Eclipse

3.1.2.2 Implementation of the UML2Relational case study using TractsTool

We first need to check whether this tool can work without errors and detect the failure in this

QVTo transformation. We need to write tracts to capture the logic of mapping rules and then

inject defects in the target model. The tool should return a negative result.

To simplify the problem, a rule called type2type() in the QVTo transformation is taken as an

example (The code is listed in Listing 3.1). This transformation rule maps each primitive type in

Evaluation of Model Transformation Testing in Practice 27

CHAPTER 3. TRACTSTOOL AND MATCHING TABLE BUILDER

the source model to a primitive type in the target model.

1 mapping UML::Type::type2type () : RELATIONAL::Type{

2 name := s e l f . name ;

3 }

Listing 3.1: Mapping rule type2type in UML2Relational.qvto

Therefore, in the tracts file (The code is listed in Listing 3.2), we define that all instances of

the source types should find at least one type with the same name in the target model. The

naming of elements in the tract is different from the QVTo mapping rule. To distinguish the

source metamodel from the target metamodel, TractsTool will add prefixes to the names of the

elements in both metamodels. For example, TractsTool will rename Type in the source metamodel

to src Type and the Type in the target metamodel as trg Type. The tract for the type2type()

is shown in Listing 3.2.

1 context src Type inv Type2Type :

2 src Type . a l l I n s t an c e s−>f o rA l l (t s r c | trg Type . a l l I n s t an c e s−>e x i s t s (t t r g |

3 t t r g . name = t s r c . name))

Listing 3.2: Tract for type2type()

Fig. 3.4 shows a source model and a target model. As can be seen in Fig. 3.5, the types in the

target model (relational.xmi) are different from the ones in the source model (uml.xmi). We added

this defect deliberately and we expected that the TractsTool could detect this failure.

Figure 3.4: uml model.xmi shown in Eclipse Figure 3.5: relational model.xmi shown in
Eclipse

3.1.2.3 Results

The result in Figure 3.6 shows that the TractsTool failed to detect the failure. Listing 3.3 shows

the generated commands. These commands are for transforming the source model and the target

model into models in USE. After analyzing the commands generated by the tool, we found that

the tool invoked USE and used commands to generate 2 source types and 2 target types. The

two source types are named as ”Type 102” and ”Type 103”. The two target types are named as

”Type 108” and ”Type 109”.

28 Evaluation of Model Transformation Testing in Practice

CHAPTER 3. TRACTSTOOL AND MATCHING TABLE BUILDER

Figure 3.6: Results

However, the names of the source and target types are all ’null’. We traced back to the com-

mands that TractsTool generated. We found that all the attributes were assigned with null as a

value by the commands. This is the reason why the source type and the target type were con-

sidered the same and the tool failed to detect the transformation fault. This also means TractsTool

can not detect other kinds of faults as well since it will set every attribute value as ’null’.

1 ! new src Model (’ Model 99 ’)

2 ! new s r c C l a s s e s (’ C la s s e s 100 ’)

3 ! new s r c A t t r i bu t e (’ Att r ibute 101 ’)

4 ! new src Type (’ Type 102 ’)

5 ! new src Type (’ Type 103 ’)

6 ! i n s e r t (@Model 99 , @Classes 100) in to s r c c l a s s e s C l a s s e s Mod e l

7 ! i n s e r t (@Model 99 , @Type 102) in to src type Model Type

8 ! i n s e r t (@Model 99 , @Type 103) in to src type Model Type

9 ! @Classes 100 . name := nu l l

10 ! i n s e r t (@Classes 100 , @Attr ibute 101) in to s r c a t t r i b u t e c l a s s e s A t t r i b u t e C l a s s e s

11 ! @Attr ibute 101 . name := nu l l

12 ! @Attr ibute 101 . mult iva lued := nu l l

13 ! i n s e r t (@Attribute 101 , @Type 103) in to s r c c l a s s i f i e r A t t r i b u t e C l a s s i f i e r

14 ! @Type 102 . name := nu l l

15 ! @Type 103 . name := nu l l

16 ! new trg Schema (’ Schema 104 ’)

17 ! new trg Tab le (’ Table 105 ’)

18 ! new trg Column (’ Column 106 ’)

19 ! new trg Column (’ Column 107 ’)

20 ! new trg Type (’ Type 108 ’)

21 ! new trg Type (’ Type 109 ’)

22 ! i n s e r t (@Schema 104 , @Table 105) in to t rg tab le Schema Table

23 ! i n s e r t (@Schema 104 , @Type 108) in to trg type Schema Type

24 ! i n s e r t (@Schema 104 , @Type 109) in to trg type Schema Type

25 ! @Table 105 . name := nu l l

26 ! i n s e r t (@Table 105 , @Column 106) in to trg co lumn table Column Table

27 ! i n s e r t (@Table 105 , @Column 107) in to trg co lumn table Column Table

28 ! @Column 106 . isPrimaryKey := nu l l

29 ! @Column 106 . name := nu l l

30 ! i n s e r t (@Column 106 , @Type 108) in to trg type Column Type

Evaluation of Model Transformation Testing in Practice 29

CHAPTER 3. TRACTSTOOL AND MATCHING TABLE BUILDER

31 ! @Column 107 . isPrimaryKey := nu l l

32 ! @Column 107 . name := nu l l

33 ! i n s e r t (@Column 107 , @Type 109) in to trg type Column Type

34 ! @Type 108 . name := nu l l

35 ! @Type 109 . name := nu l l

36 check −d

Listing 3.3: Generated commands

30 Evaluation of Model Transformation Testing in Practice

CHAPTER 3. TRACTSTOOL AND MATCHING TABLE BUILDER

3.1.3 Discussion on TractsTool

TractsTool’s capability to detect faults depends on the quality of the tracts given by

testers The challenge that the testers in the industry are facing is that an unacceptable number

of transformation faults are not detected during the model transformation testing. It means that

human testers are not able to make a comprehensive and qualified test set so that all the faults

can be detected. However, TractsTool’s capability of fault detection is completely based on the

quality (such as completeness and correctness) of the tracts given by testers. If the user makes

a simple tract file, TractsTool will return positive results. But it does not necessarily mean that

the transformation under test is free of faults. Therefore, TractsTool’s capability to detect faults

depends on the quality of the tracts given by testers.

Inconsistent naming in the tract file. There is a naming inconsistency problem in the tract

file. The generated USE file for UML2Relational case is shown in Appendix B.3. It will add a

prefix to the name of every element in the Ecore metamodel to distinguish between the source

metamodel and the target metamodel. Therefore, testers need to be careful about this naming

difference among generated USE specifications and Ecore metamodels when writing a tract. It is

a problem from a practical point of view but can be solved by further development.

TractsTool still contains defects. TractsTool will generate a command file to generate runtime

instances in USE according to the source models and target models. However, it assigned null to

all the attributes as a value. Therefore, the current version of TractsTool still contains defects.

TractsTool may solve the oracle problem in M2M transformations As mentioned in

Section 2.2.2, the oracle function will compare the generated target model with an expected model.

TractsTool may be useful when there is no available expected model or the available expected

model is not reliable. The expected model is verified manually in the testing. This model will be

used as the expected transformation result. But it is only verified manually. However, if the tester

makes a mistake and takes a wrong model as an expected model, the whole testing process will

have problems and the faults in the transformation may remain undetected. Therefore, TractsTool

may serve a role in checking the models formally so that the testing can be less error-prone.

3.1.4 Conclusions

Table 3.1 summarizes the suitability evaluation of TractsTool. As can be seen from the table,

TractsTool did not pass the small case study and we do not conduct a further industrial case

study on TractsTool. Therefore, TractsTool does not satisfy the first two criteria and for criterion

Evaluation of Model Transformation Testing in Practice 31

CHAPTER 3. TRACTSTOOL AND MATCHING TABLE BUILDER

3 we do not have the answer since there is no further industrial case study. For criterion 4, the

result is positive because TractsTool has the potential to solve the oracle problem.

Table 3.1: Evaluation results of TractsTool

No. Criteria Results
(Yes
or No)

Reasons

1 The tool used in the proposed ap-
proach(s) can run without errors in the
small case studies.

No TractsTool still contains defects in its
program.

2 The tool can handle industrial-size
model transformations

No TractsTool does not satisfy criterion 1.

3 We did not use TractsTool for indus-
trial case studies. Therefore, we did not
measure.

NA We do not know what will take longer:
writing a set of tracts or creating a set
of input test model and expected result
model.

4 The proposed approach has the poten-
tial to improve the current practice of
model transformation testing.

Yes TractsTool may solve the oracle prob-
lem in the M2M transformations.

3.2 Matching Table Builder

3.2.1 Introduction of Matching Table Builder

The Matching Table Builder (MTB) is an ATL-dependent model transformation testing tool.

Like TractsTool, the goal of MTB is also to check the correctness of transformations. The logic

of transformations also needs to be expressed in OCL constraints. These constraints are similar

to tracts in TractTool. What is different from TractsTool is that it does not generate models in

USE. Instead, it requires the user to first extract information of the source and target metamodels,

called types, in the ATL Transformation Types Extractor (shown in Figure 3.7). Since the ATL

Transformation Types Extractor can only work for ATL transformations, we can not directly

apply it to our QVTo transformations. Then the information of the source and target metamodels

should be taken as the input of the MTB. The GUI is shown in Figure 3.8. The MTB will check

the ATL rules according to the OCL constraints.

32 Evaluation of Model Transformation Testing in Practice

CHAPTER 3. TRACTSTOOL AND MATCHING TABLE BUILDER

Figure 3.7: ATL Transformation Types Extractor GUI

Figure 3.8: Matching Table Builder GUI

3.2.2 Discussion on Matching Table Builder

MTB works with ATL transformations but there are no conceptual and technical

obstacles to adapt it to QVTo In the ASOME tool, the M2M transformation language is

QVTo. Therefore, we can not conduct a simple case study nor the industrial study. MTB can not

be directly applied to non-ATL transformations but in principle can be adapted to QVTo because

we have traces produced as a result of the transformation execution. From these traces, we can

extract QVTo transformation types.

MTB’s capability to detect faults depends on the quality of OCL constraints In the

context of model transformation testing, the purpose of testing is to detect faults in the model

transformations. The tool should help the tester to detect faults in the transformations which are

hard to detect. However, whether MTB can detect faults in the transformation fully depends on

the quality of the OCL constraints. If the tester writes a simple OCL constraint, MTB will return

Evaluation of Model Transformation Testing in Practice 33

CHAPTER 3. TRACTSTOOL AND MATCHING TABLE BUILDER

the results as positive while the transformation still contains faults. The MTB can check whether

the transformation is expected by the tester.

3.2.3 Conclusion

In conclusion, we will not conduct an industrial case study with MTB. Similarly like TractsTool,

MTB uses OCL contraints to verify transformations formally. It can be a solution of the oracle

problems but the adaption of the tool is needed. Table 3.2 shows the suitability evaluation results

of MTB according to the four criteria and the reasons are listed in the table.

Table 3.2: Evaluation results of MTB

No. Criteria Results
(Yes
or No)

Reasons

1 The tool used in the proposed ap-
proach(s) can run without errors in the
small case studies.

NA The example provided by the author
can run without errors as shown in the
tool’s webpage1. But MTB does not
support QVTo transformations. There-
fore, we can not make a judgment on
this criterion.

2 The tool can handle industrial-size
model transformations

NA MTB does not support non-ATL trans-
formations. Therefore, we can not
make a judgment on this criterion.

3 The total time required by the pro-
posed approaches should be less than
the time required by the current prac-
tice of model transformation testing at
Altran.

NA MTB does not support non-ATL trans-
formations. Therefore, we can not
make a judgment on this criterion.

4 The proposed approach has the poten-
tial to improve the current practice of
model transformation testing.

Yes MTB can be a solution for oracle prob-
lems and it can be adapted for QVTo
transformations.

1http://atenea.lcc.uma.es/projects/MTB.html

34 Evaluation of Model Transformation Testing in Practice

Chapter 4

UML-based Specification

Environment and Efinder

In this chapter, we will introduce and evaluate two tools that realize automatic model generation

for equivalence partitioning. We will first introduce USE and then Efinder. Efinder extends USE

and makes it more suitable to Eclipse Modeling Framework.

4.1 The UML-based Specification Environment

4.1.1 Introduction to UML-based Specification Environment

The UML-based Specification Environment (USE) is a system that can generate models by solving

OCL constraints automatically. USE is based on a subset of Unified Modeling Language (UML).

Main features1 of USE are:

• The user can create UML models on the GUI by drag-and-drop or by commands or by an

ASSL script.

• USE can evaluate OCL expressions for the model and return values of the OCL expressions.

• USE has a plug-in called ”model validator”. Although the name of this plug-in is ”model

validator”, its main function is to generate instance models according to the OCL constraints

specified by the user.

With these features, USE can generate and partition models using classifying terms. The concept

of classifying terms is introduced in the following section.

1http://useocl.sourceforge.net/w/index.php/Quick Tour

Evaluation of Model Transformation Testing in Practice 35

CHAPTER 4. UML-BASED SPECIFICATION ENVIRONMENT AND EFINDER

4.1.2 Introduction of Classifying Terms

Classifying terms are OCL expressions that describe features of models. Classifying terms with

values are OCL constraints. These values construct a characteristic value. Characteristic values

are used to identify partitions. OCL invariants and classifying terms with characteristic values are

both OCL constraints.

The number of partitions is

2N ,

where N is the total number of classifying terms. In the following test case, N is 3. The number of

partitions is 8. Studies[6][7][25] proposed the idea of classifying terms based on USE. Classifying

terms are used to construct a characteristic value that identifies an equivalence partition. For each

partition, USE can generate an instance model.

4.1.3 Case Study

As we are interested in the model validator of USE, we conducted a simple case study to check if

the model validator could generate a set of instance models with classifying terms. Given Ecore

metamodels, we used the tool to generate instance models such that every partition will have one

model. We used the previously-defined source metamodel from UML2Relational case (see Figure

3.2).

Implementation steps:

• Translate the Ecore metamodels into USE specifications’. The complete USE specification

file consists of the information of metamodels, OCL invariants shared by all instance models,

and classifying terms with characteristic values.

• Specify the OCL invariants of the metamodel in the USE specification file. These OCL

invariants are shared by all generated models. They are not classifying terms.

• Configure the model properties in the GUI of the Model Validator.

• Start the generation and get the instance model in the object diagram view.

USE Specifications USE only takes USE specifications as input. Therefore, the source metamodel

and the OCL constraints were translated into USE specifications in one single USE file (shown

in Appendix B.2). USE does not have this translation function. This translation was done by

TractsTool.

36 Evaluation of Model Transformation Testing in Practice

CHAPTER 4. UML-BASED SPECIFICATION ENVIRONMENT AND EFINDER

Classifying term In this small case, we define three boolean Classifying terms: MultiValued,

PrimAttr, and ClassAttr. A combination of the boolean values constructs a characteristic value

for an equivalence partition. If MultiValued is true, it means there exists at least one multivalued

attribute. If PrimAttr is true, it means there exists at least one attribute whose type is a primitive

type. If ClassAttr is true, it means there exists at least one attribute whose type is a class type.

We defined a classifying term dashboard in the USE specification.

1 c l a s s CTDashboard

2 a t t r i b u t e s

3 Mult iValued: Boolean

4 PrimAttr: Boolean

5 C la s sAt t r : Boolean

6

7 ope ra t i on s

8 MultiValued OP () : Boolean = Attr ibute . a l l I n s t an c e s−>e x i s t s (a | a . mult iva lued =

true)

9 PrimAttr OP () : Boolean = Attr ibute . a l l I n s t an c e s−>e x i s t s (a | a . c l a s s i f i e r .

oc l IsTypeOf (Type))

10 ClassAttr OP () : Boolean = Attr ibute . a l l I n s t an c e s−>e x i s t s (a | a . c l a s s i f i e r .

oc l IsTypeOf (C la s s e s))

11 end

12

13 context CTDashboard inv CT Operation :

14 MultiValued = MultiValued OP () and PrimAttr = PrimAttr OP () and ClassAttr =

ClassAttr OP ()

Listing 4.1: Classifying term dashboard

This dashboard is simply an indicator of characteristic value and will indicate which equivalent

partition that the model belongs to. Figure 4.1 shows an example how the dashboard present in

the GUI. In this example, the characteristic value is 110 (binary).

Figure 4.1: Classifying term dashboard shown in USE GUI

Evaluation of Model Transformation Testing in Practice 37

CHAPTER 4. UML-BASED SPECIFICATION ENVIRONMENT AND EFINDER

4.1.3.1 Invariants

The OCL invariants of the metamodel should also be included in USE specifications. We spe-

cified some basic constraints. The explanations are shown as follows. some of the invariants are

part of the language definition (for example, type names are unique) whereas some are just for

experimentation (for example, there must be at least 2 types).

• An generated instance should have exactly one Model .

1 context Model inv Model Size :

2 Model . a l l I n s t an c e s−>s i z e () = 1

Listing 4.2: constraints for Model

• There should be at least 2 Types.

• There should be no Types with the same name.

1 context Type

2 inv Type Size :

3 Type . a l l I n s t a n c e s ()−>s i z e () >= 2

4 inv Type Name :

5 Type . a l l I n s t a n c e s ()−>e x i s t s (a , b | (a . name = b . name) and a <> b) = f a l s e

Listing 4.3: constraints for Type

• There should be at least one Classes.

• There should be no Classes with the same name.

• There should be no Type with the same name as any Classes.

• There should be no Attributes with the same name as any Classes.

1 context C la s s e s

2 inv C l a s s e s S i z e :

3 C la s s e s . a l l I n s t a n c e s ()−>s i z e () >= 1

4 inv Unique ClassesName AmongClasses :

5 C la s s e s . a l l I n s t a n c e s ()−>e x i s t s (a , b | (a . name = b . name) and a <> b) = f a l s e

6 inv Unique ClassesName AmongType :

7 C la s s e s . a l l I n s t a n c e s ()−>e x i s t s (a | Type . a l l I n s t a n c e s ()−>e x i s t s (b | a . name = b .

name)) = f a l s e

8 inv Unique ClassesName AmongAttribute :

9 C la s s e s . a l l I n s t a n c e s ()−>e x i s t s (a | Attr ibute . a l l I n s t a n c e s ()−>e x i s t s (b | a . name =

b . name)) = f a l s e

Listing 4.4: constraints for Classes

38 Evaluation of Model Transformation Testing in Practice

CHAPTER 4. UML-BASED SPECIFICATION ENVIRONMENT AND EFINDER

• The number of Attributes should be no less than the number of Classes.

• There should be no Attributes with the same name.

1 context Att r ibute

2 inv At t r i bu t e S i z e :

3 Att r ibute . a l l I n s t an c e s−>s i z e () >= Clas s e s . a l l I n s t an c e s−>s i z e ()

4 inv Unique AttrName AmongAttr :

5 Att r ibute . a l l I n s t a n c e s ()−>e x i s t s (a , b | (a . name = b . name) and a <> b)

= f a l s e

Listing 4.5: constraints for Attribute

4.1.3.2 Configuration in USE

USE can generate instance models based on the specified constraints and boundaries. USE provides

a GUI for the user to configure the generation of all elements. If the expected value of a Classes

is ”Main” as shown in Fig.4.2, then USE will generate the Classes with the name ’Main’. Multiple

expected values can be specified in the configuration. If the field is left blank, then USE will

generate random strings.

Figure 4.2: Configuration

4.1.3.3 Results

USE generated 8 solutions shown in Fig. 4.3. Each solution belongs to a partition. The charac-

teristic values of each partition are shown in Table 4.1. This case shows that USE can generate

instance models according to the OCL constraints. However, this tool can only export the gen-

erated models as PDF files. Therefore, we did not conduct an industrial case study on USE.

Evaluation of Model Transformation Testing in Practice 39

CHAPTER 4. UML-BASED SPECIFICATION ENVIRONMENT AND EFINDER

Table 4.1: The characteristic values of partitions

MultiValued PrimAttr ClassAttr
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

4.1.4 Discussion on USE

USE can generate instance models according to the OCL constraints The most im-

portant feature is that USE can give a solution for a set of OCL constraints and generate run-time

instances. This feature is useful when testers need to make test models with combinations of

different features.

Limitations of USE The metamodel needs to be translated into USE specifications first but

USE does not have this feature. Moreover, USE can only save the instance models as a PDF file

therefore there is no native export mechanism to EMF.

4.1.5 Conclusions

Table 4.2 summarizes the evaluation results of USE and the reasons. In conclusion, USE has the

potential to improve the current testing process at Altran. We did not experience major errors.

But due to the two problems mentioned above and the fact that a tool named Efinder[12] has

been recently developed, we decided not to conduct a further industrial case study with USE.

We decided to explore Efinder’s suitability instead because it mitigated the limitation of USE by

offering better integration with EMF.

40 Evaluation of Model Transformation Testing in Practice

CHAPTER 4. UML-BASED SPECIFICATION ENVIRONMENT AND EFINDER

Table 4.2: Evaluation results of USE

No. Criteria Results
(Yes
or No)

Reasons

1 The tool used in the proposed ap-
proach(s) can run without errors in the
small case studies.

Yes According to the small case study, USE
can perform without errors.

2 The tool can handle industrial-size
model transformations

No USE does not accept Ecore metamod-
els and can not export models as Ecore
models.

3 The total time required by the pro-
posed approaches should be less than
the time required by the current prac-
tice of model transformation testing at
Altran.

NA We can not make a judgment on this
criterion because we can not apply it to
the industrial case study.

4 The proposed approach has the poten-
tial to improve the current practice of
model transformation testing.

Yes The classifying term approach using
USE model validator is to reduce the
workload of manual modeling so that it
can be easier for testers to generate a
qualified test suite. The idea of classi-
fying terms can help avoid structurally
similar test models.

Evaluation of Model Transformation Testing in Practice 41

CHAPTER 4. UML-BASED SPECIFICATION ENVIRONMENT AND EFINDER

Figure 4.3: Generated models

42 Evaluation of Model Transformation Testing in Practice

CHAPTER 4. UML-BASED SPECIFICATION ENVIRONMENT AND EFINDER

4.2 Efinder

4.2.1 Introduction of Efinder

USE is a tool that can be used to solve constraints and generate UML models. As shown in

Section 4.1, USE can not export the models as XMI files and does not accept Ecore metamodels.

Efinder[12] has solved these two problems of USE. Efinder is a USE-based tool. It has two new

features. The first one is that it can transform Ecore metamodels and OCL constraints into USE

specifications. An example of the translated USE specifications is shown in Appendix B.4. The

second one is that it can save the instance models as XMI data.

4.2.2 Case Study: Generating multiple instance models

The goal of this case study is to generate a set of models using classifying terms. We used the

UML metamodel from the UML2Relational case that we previously defined (shown in Figure 3.2).

Each model should belong to a partition identified by a characteristic value.

In general, the implementation of this case study contains two steps :

• Generate a set of OCL files using the script.

• Run Efinder with each OCL file and generate an instance model for a partition if satisfiable.

4.2.2.1 Generating OCL files

For each execution, Efinder takes an OCL file as input. It will then automatically transform

the corresponding Ecore metamodels into USE specifications and generate exactly one model.

Therefore, to generate multiple models, we need to prepare multiple OCL files. Each OCL file is

corresponding to a partition. The number of partitions is the same as the number of OCL files.

The number of OCL files is the same as the number of partitions. In this test case, The number

of OCL files to be prepared is 8. The OCL files share the same OCL invariants. Different OCL

files have the same classifying terms but with different characteristic values. To automate this

generation, a script was developed (in Appendix B.5) to generate OCL constraints using boolean-

type classifying terms.

There are different types of classifying terms. If a classifying term does not have a boolean value, we

formulate it in a way that it ends with boolean values. For example, Listing 4.6 shows an integer-

type classifying term. If we need to generate partitions for models that their entity sizes are from

entity size 1 to entity size 1 to 3. In the meantime, there are other types of classifying terms. To

simply the generation of OCL files, we need to write integer-type classifying terms like boolean-

type classifying terms. Listing 4.7 shows two boolean-type classifying terms, Entity Size1 with

Evaluation of Model Transformation Testing in Practice 43

CHAPTER 4. UML-BASED SPECIFICATION ENVIRONMENT AND EFINDER

boolean value true and Entity Size2 with boolean value false. The characteristic value (binary)

is 01. The script in Appendix B.5 will assign these two classifying terms characteristic values from

00 to 11. When the characteristic value is 11, the model generation will fail because the number

of entities can not be true at the same time. In this case, Efinder will skip the generation. Only

satisfiable models will be generated.

1 Context Entity

2 inv En t i t y S i z e :

3 Entity . a l l I n s t a n c e s ()−>s i z e () = 1

Listing 4.6: an integer-type classifying term

1 Context Entity

2 inv En t i t y S i z e 1 :

3 Entity . a l l I n s t a n c e s ()−>s i z e () = 1 = true

4 inv En t i t y S i z e 2 :

5 Entity . a l l I n s t a n c e s ()−>s i z e () = 2 = f a l s e

Listing 4.7: an integer-type classifying term is rewritten into two boolean-type classifying terms

All classifying terms will be given a boolean value during this OCL file generation. All classifying

terms under the same context need to be specified in the same text file line by line. For example,

Listing 4.8 shows the content of classifying terms. These classifying terms will be given a boolean

value and will be inserted into an ocl file by the script.

1 Att r ibute . a l l I n s t a n c e s ()−>e x i s t s (a | a . mult iva lued = true)

2 Att r ibute . a l l I n s t a n c e s ()−>e x i s t s (a | a . c l a s s i f i e r . oc l IsTypeOf (Type))

3 Att r ibute . a l l I n s t a n c e s ()−>e x i s t s (a | a . c l a s s i f i e r . oc l IsTypeOf (Class))

Listing 4.8: 3 classifying terms

Listing 4.9 shows an example of a full OCL file. It specifies the file path of the Ecore metamodel,

invariants, and classifying terms with a characteristic value. The characteristic value is 000 (bin-

ary) in this file. The ”- -” is the comment symbol in OCL.

1 import ’ uml . e co re ’

2 package uml

3 context Model inv Model Size :

4 Model . a l l I n s t a n c e s ()−>s i z e () = 1

5

6 context Type

7 inv Type Size :

8 Type . a l l I n s t a n c e s ()−>s i z e () >= 2

44 Evaluation of Model Transformation Testing in Practice

CHAPTER 4. UML-BASED SPECIFICATION ENVIRONMENT AND EFINDER

9 inv Type Name :

10 Type . a l l I n s t a n c e s ()−>e x i s t s (a , b | (a . name = b . name) and a <> b) = f a l s e −−

the re should be no types with the same name

11

12 context Class

13 inv C l a s s S i z e :

14 Class . a l l I n s t a n c e s ()−>s i z e () >= 1

15 inv Unique ClassName AmongClass :

16 Class . a l l I n s t a n c e s ()−>e x i s t s (a , b | (a . name = b . name) and a <> b) = f a l s e −−

the re should be no Class with the same name .

17 inv Unique ClassName AmongType :

18 Class . a l l I n s t a n c e s ()−>e x i s t s (a | Type . a l l I n s t a n c e s ()−>e x i s t s (b | a . name = b . name)

) = f a l s e −− the re should be no Type with the same name as any Class .

19 inv Unique ClassName AmongAttribute :

20 Class . a l l I n s t a n c e s ()−>e x i s t s (a | Attr ibute . a l l I n s t a n c e s ()−>e x i s t s (b | a . name = b .

name)) = f a l s e −− the re should be no Att r ibute with the same name as any

Class .

21

22 context Att r ibute

23 inv CT1:

24 Att r ibute . a l l I n s t a n c e s ()−>e x i s t s (a | a . mult iva lued = true) = f a l s e

25 inv CT2:

26 Att r ibute . a l l I n s t a n c e s ()−>e x i s t s (a | a . c l a s s i f i e r . oc l IsTypeOf (Type)) = f a l s e

27 inv CT3:

28 Att r ibute . a l l I n s t a n c e s ()−>e x i s t s (a | a . c l a s s i f i e r . oc l IsTypeOf (Class)) = f a l s e

29 inv At t r i bu t e S i z e :

30 Att r ibute . a l l I n s t a n c e s ()−>s i z e () >= Class . a l l I n s t a n c e s ()−>s i z e ()

31 inv Unique AttrName AmongAttr :

32 Att r ibute . a l l I n s t a n c e s ()−>e x i s t s (a , b | (a . name = b . name) and a <> b) = f a l s e

−− the re should be no Class with the same name .

33

34 endpackage

Listing 4.9: The full OCL file with characteristic value 000

4.2.2.2 Configure and Run the Tool

The main test code is shown in Listing B.6. The model configurations are located from line 26 to

line 30 in Listing B.6. The user needs to configure the expected minimum values and the maximum

values of the elements.

Evaluation of Model Transformation Testing in Practice 45

CHAPTER 4. UML-BASED SPECIFICATION ENVIRONMENT AND EFINDER

4.2.2.3 Results

Efinder executed 8 times and generated a model for each of the 8 partitions. Figure 4.4 shows

the 8 generated instance models and their properties. The numbers of the first row are the

characteristic values. They are used to identify different partitions. This test case shows that

Efinder can generate a set of instance models of which each one belongs to a partition. We can

conclude that we can use Efinder to generate a set of models using classifying terms. Therefore,

we conducted industrial case studies on Efinder based on ASOME metamodels. The reports of

the case study are shown in Appendix A. The reader can first read reports in Appendix A and

then the discussion on Efinder in Section 4.2.3.

46 Evaluation of Model Transformation Testing in Practice

CHAPTER 4. UML-BASED SPECIFICATION ENVIRONMENT AND EFINDER

Figure 4.4: the generated models shown in Eclipse

4.2.3 Discussion on Efinder

The discussion summarizes all the problems we encountered during the small case study and

industrial case studies.

Efinder has the potential to increase the overall productivity in model transformation

testing at Altran. Both the small case study in Section 4.2.2 and the industrial case study in

Appendix A have shown that Efinder has two useful features compared to USE. It can transform

Evaluation of Model Transformation Testing in Practice 47

CHAPTER 4. UML-BASED SPECIFICATION ENVIRONMENT AND EFINDER

Ecore metamodel, OCL invariants, and Classifying term values into USE specification. Efinder

can also save generated instances as Ecore models. Efinder can generate a set of instance models

according to the defined classifying terms. It will generate an instance model for each partition

identified by the classifying terms. This feature reduces the effort in manually generating instance

models.

It also avoids the duplicate or structurally similar test models made by the testers while creating

ASOME models. When manually generating test models, the ASOME tester may create models

belonging to the same equivalence partition. This problem has been complained about by the

testers at Altran. Efinder can avoid the problem since it will generate different models identified

by a characteristic value.

The quality of the testing depends on the classifying terms given by testers. For the

current version of Efinder, the user not only needs to write classifying terms but also needs to

specify other invariants so that a solution is satisfiable. The quality of the testing depends on the

classifying terms specified by testers.

Several problems need to be considered in the future work of Efinder First, there are

some OCL operations that are still not supported including ”matches”, ”size”, ”at”, ”toUpper”,

”toUpperCase”, ”toLower”, ”subString”, and ”oclType”. This limits the constraints that a user

can specify. In the industrial case study, we need to ignore the original OCL invariants of the

ASOME metamodels so that Efinder can compile.

Second, an operation defined by the developers of the ASOME projects, called ”asError”, is not

supported by Efinder. This is a helper operation. In OCL, all failures of invariants are errors.

The ASOME developers introduced these helpers to distinguish errors and warnings. Efinder can

not compile them. However, these operations are not significant and can be neglected. If there

is an error in an ASOME model, then the result of the OCL expression of the invariant will be

evaluated as null and then will be transformed to null. This will cause a problem for Efinder.

Efinder then may produce invalid models.

Third, Efinder does not support interaction between OCL constraints and manually-written Java

operations in Ecore metamodels. If the testers in the ASOME project group want to benefit from

Efinder, they need to use OCL for constraints instead of Java.

Fourth, from the industrial case study on the ASOME tool in Appendix A.4, we found that the

message of an unsatisfiable proof is not clear for the user to interpret.

Fifth, Efinder does not support generating a pair of connected models. It is expected that the tool

can provide this feature for the user because the ASOME transformation chain takes two models

as input. We solved that by writing a program to split a monolithic model into one ASOME model

48 Evaluation of Model Transformation Testing in Practice

CHAPTER 4. UML-BASED SPECIFICATION ENVIRONMENT AND EFINDER

and one generator model.

Efinder’s classifying term plug-in Although the classifying term plug-in has not been de-

veloped yet, we have some expectations for it. The plug-in for classifying terms should ask the

user for the information of classifying terms according to the type of the classifying term. It should

have an engineer-friendly interface. It should automatically run Efinder to generate a model for

each partition according to the characteristic values. For example, for an integer type of classifying

term, the integer value is the characteristic value that identifies a partition. The user may expect

this integer value to vary from 1 to 100. Then this plug-in should ask the range that the partition

and generate OCL files automatically.

4.2.4 Conclusion

Efinder solved two major problems of USE. Efinder makes the idea of classifying terms more

suitable to the current model transformation testing in the industry. Table 4.3 shows the evaluation

results of Efinder. Despite the fact that Efinder still has some problems mentioned above, Efinder

with the idea of classifying terms has the potential to improve the current practice at Altran.

Table 4.3: Evaluation results of Efinder

No. Criteria Results
(Yes
or No)

Reasons

1 The tool used in the proposed ap-
proach(s) can run without errors in the
small case studies.

Yes According to the small case study,
Efinder can perform without errors.

2 The tool can handle industrial-size
model transformations

No In the industrial case studies, the com-
pilation of OCL files and Ecore models
failed. Some OCL operations and Java
operations are not supported.

3 The total time required by the pro-
posed approaches should be less than
the time required by the current prac-
tice of model transformation testing at
Altran.

NA We can not measure it since the current
version of the tool still has problems in
the industrial case studies.

4 The proposed approach has the poten-
tial to improve the current practice of
model transformation testing.

Yes Efinder extends USE. Therefore,
Efinder also can implement classifying
terms and bring the benefits of classi-
fying terms to model transformation
testing.

Evaluation of Model Transformation Testing in Practice 49

Chapter 5

Conclusions

In this section, we first answer the three research questions and then discuss future work.

RQ1: What are the main challenges in the practice of model transformation the in-

dustry?

In this study, we took the practice of model transformation testing at Altran as an example. We

interviewed the testers at Altran. From the interview results, we summarized that the current

model transformation practice of model transformation testing at Altran confronts two main chal-

lenges. One is the difficulty to generate a qualified test suite. The other is the difficulty to generate

an efficient test suite.

RQ2: What are the existing approaches that can improve the testing process in the

industry?

We conducted a literature review to search for the approaches proposed to improve model trans-

formation testing. We found 36 studies on model transformation testing approaches. We present

a description of the studies. After reviewing and discussing the studies, we selected 11 studies

out of the 36 studies considering the model transformation testing practice at Altran. We then

prioritized the 11 studies taking the interests of the stakeholders of the ASOME project group

into account.

RQ3: How suitable are these approaches?

We defined four criteria for the suitability evaluation of the selected tools. We explored 4 tools:

TractsTool, Matching Table Builder, USE, and Efinder. We explored the tools and implemented

small case studies on them. If the tool can run in a small case without major problems, we con-

ducted industrial case studies with ASOME examples. We evaluated the suitability of them in

terms of the defined criteria.

The suitability of TractsTool and Matching Table Builder

TractTool can be used to solve oracle problems. It uses tracts to verify the transformation results.

Evaluation of Model Transformation Testing in Practice 51

CHAPTER 5. CONCLUSIONS

It may avoid the mistakes caused by the manual result checking in the current testing process at

Altran. But there are two problems with TractsTool to be considered. First, the quality of the

testing using TractsTool depends on the quality of the tracts made by testers. Second, the current

version of TractsTool still contains errors but this problem can be solved by further improvement.

Matching Table Builder (MTB) can not directly be applied to the model transformations at Altran

but the tool can be adapted. MTB also uses OCL constraints like tracts. Therefore, the quality

of the testing using MTB also depends on the quality of OCL constraints made by testers.

The suitability of the USE and Efinder

We consider Efinder as a suitable solution to improve the current testing process at Altran. USE

and Efinder both can generate test models automatically according to the defined classifying terms.

However, USE is not adequate to improve the current practice at Altran. There are two main

drawbacks of USE. One is that it does not accept Ecore metamodels. The other is that it can not

export models as Ecore models.

Efinder extends USE with two new features, translating Ecore metamodels into USE specifications

and saving generated models as XMI files. These two new features make it possible to improve

the current model transformation testing at Altran. There are still some problems with this tool

including unsupported OCL and Java operations. Moreover, Efinder is expected to generate a pair

of connected models and have a classifying terms plug-in. Overall, the idea of classifying terms

has the potential to improve the current model transformation testing. It can not only generate

test models automatically but also avoid structurally similar tests. Therefore, we consider Efinder

is suitable and worth further development.

For future work, there are two possible research directions for extending this study. One is to

explore the rest of the list shown in Table 2.9. Especially for the third study [31] in the list, the

idea of it is similar to USE and Efinder. Instead of using OCL, [31] uses a specification language

called PAMOMO. The second direction is to improve the current version of Efinder and mitigate

its problems mentioned in this thesis.

52 Evaluation of Model Transformation Testing in Practice

Bibliography

[1] Vincent Aranega, Jean-Marie Mottu, Anne Etien, Thomas Degueule, Benoit Baudry, and

Jean-Luc Dekeyser. Towards an automation of the mutation analysis dedicated to model

transformation. Software Testing, Verification and Reliability, 25(5-7):653–683, 2015. 15

[2] Ellen Francine Barbosa, José Carlos Maldonado, and Auri Marcelo Rizzo Vincenzi. Toward

the determination of sufficient mutant operators for c. Software Testing, Verification and

Reliability, 11(2):113–136, 2001. 15

[3] Benoit Baudry, Trung Dinh-Trong, Jean-Marie Mottu, Devon Simmonds, Robert France,

Sudipto Ghosh, Franck Fleurey, and Yves Le Traon. Model transformation testing challenges.

2006. 12, 13

[4] Benoit Baudry, Sudipto Ghosh, Franck Fleurey, Robert France, Yves Le Traon, and Jean-

Marie Mottu. Barriers to systematic model transformation testing. Communications of the

ACM, 53(6):139–143, 2010. 12, 13

[5] Erwan Brottier, Franck Fleurey, Jim Steel, Benoit Baudry, and Yves Le Traon. Metamodel-

based test generation for model transformations: an algorithm and a tool. In 2006 17th

International Symposium on Software Reliability Engineering, pages 85–94. IEEE, 2006. 13,

14, 20, 23

[6] Loli Burgueno. Testing m2m/m2t/t2m transformations. In SRC@ MoDELS, pages 7–12,

2015. 3, 18, 19, 22, 23, 25, 36

[7] Loli Burgueño, Frank Hilken, Antonio Vallecillo, and Martin Gogolla. Testing transformation

models using classifying terms. In International Conference on Theory and Practice of Model

Transformations, pages 69–85. Springer, 2017. 16, 21, 23, 36

[8] Loli Burgueño, Javier Troya, Manuel Wimmer, and Antonio Vallecillo. Static fault localization

in model transformations. IEEE Transactions on Software Engineering, 41(5):490–506, 2014.

18

Evaluation of Model Transformation Testing in Practice 53

BIBLIOGRAPHY

[9] Eric Cariou, Raphaël Marvie, Lionel Seinturier, and Laurence Duchien. Ocl for the specifica-

tion of model transformation contracts. In OCL and Model Driven Engineering, UML 2004

Conference Workshop, volume 12, pages 69–83, 2004. 18

[10] Hector M Chavez, Wuwei Shen, Robert B France, and Benjamin A Mechling. An approach

to testing java implementation against its uml class model. In International Conference on

Model Driven Engineering Languages and Systems, pages 220–236. Springer, 2013. 18, 19

[11] Tsong Y Chen, Shing C Cheung, and Shiu Ming Yiu. Metamorphic testing: a new ap-

proach for generating next test cases. Technical report, Technical Report HKUST-CS98-01,

Department of Computer Science, Hong Kong . . . , 1998. 17

[12] Jesús Sánchez Cuadrado and Martin Gogolla. Model finding in the emf ecosystem. Journal

of Object Technology, 19(2), 2020. 40, 43

[13] Jesús Sánchez Cuadrado, Esther Guerra, and Juan de Lara. Static analysis of model trans-

formations. IEEE Transactions on Software Engineering, 43(9):868–897, 2016. 12, 15

[14] Jesús Sánchez Cuadrado, Esther Guerra, Juan de Lara, Robert Clarisó, and Jordi Cabot.

Translating target to source constraints in model-to-model transformations. In 2017

ACM/IEEE 20th International Conference on Model Driven Engineering Languages and Sys-

tems (MODELS), pages 12–22. IEEE, 2017. 14, 15, 20

[15] Jean-Marie Favre. Foundations of meta-pyramids: Languages vs. metamodels–episode ii:

Story of thotus the baboon1. In Dagstuhl Seminar Proceedings. Schloss Dagstuhl-Leibniz-

Zentrum für Informatik, 2005. 5

[16] Olivier Finot, Jean-Marie Mottu, Gerson Sunyé, and Christian Attiogbé. Partial test oracle in

model transformation testing. In International Conference on Theory and Practice of Model

Transformations, pages 189–204. Springer, 2013. 6, 17, 18

[17] Olivier Finot, Jean-Marie Mottu, Gerson Sunyé, and Thomas Degueule. Using meta-model

coverage to qualify test oracles. 2013. 17

[18] Franck Fleurey, Benoit Baudry, Pierre-Alain Muller, and Yves Le Traon. Towards dependable

model transformations: Qualifying input test data. 2007. 7, 14

[19] Franck Fleurey, Benoit Baudry, Pierre-Alain Muller, and Yves Le Traon. Qualifying input

test data for model transformations. Software & Systems Modeling, 8(2):185–203, 2009. 7

[20] Piero Fraternali and Massimo Tisi. Multi-level tests for model driven web applications. In

International Conference on Web Engineering, pages 158–172. Springer, 2010. 18, 19

54 Evaluation of Model Transformation Testing in Practice

BIBLIOGRAPHY

[21] Jokin Garćıa, Maider Azanza, Arantza Irastorza, and Oscar Dı́az. Testing mofscript trans-

formations with handymof. In International Conference on Theory and Practice of Model

Transformations, pages 42–56. Springer, 2014. 18, 19

[22] Christine M Gerpheide, Ramon RH Schiffelers, and Alexander Serebrenik. Assessing and

improving quality of qvto model transformations. Software Quality Journal, 24(3):797–834,

2016. 12

[23] Martin Gogolla, Fabian Büttner, and Mark Richters. Use: A uml-based specification envir-

onment for validating uml and ocl. Science of Computer Programming, 69(1-3):27–34, 2007.

3

[24] Martin Gogolla and Antonio Vallecillo. Tractable model transformation testing. In European

Conference on Modelling Foundations and Applications, pages 221–235. Springer, 2011. 25

[25] Martin Gogolla, Antonio Vallecillo, Loli Burgueno, and Frank Hilken. Employing classifying

terms for testing model transformations. In 2015 ACM/IEEE 18th International Conference

on Model Driven Engineering Languages and Systems (MODELS), pages 312–321. IEEE,

2015. 16, 21, 23, 36

[26] Carlos A González and Jordi Cabot. Atltest: a white-box test generation approach for atl

transformations. In International Conference on Model Driven Engineering Languages and

Systems, pages 449–464. Springer, 2012. 14, 20, 23

[27] Carlos A González and Jordi Cabot. Test data generation for model transformations combin-

ing partition and constraint analysis. In International Conference on Theory and Practice of

Model Transformations, pages 25–41. Springer, 2014. 16, 21, 23

[28] Esther Guerra, Jesús Sánchez Cuadrado, and Juan de Lara. Towards effective mutation test-

ing for atl. In 2019 ACM/IEEE 22nd International Conference on Model Driven Engineering

Languages and Systems (MODELS), pages 78–88. IEEE, 2019. 15, 23

[29] Esther Guerra, Juan De Lara, Dimitris Kolovos, and Richard Paige. A visual specification

language for model-to-model transformations. In 2010 IEEE symposium on visual languages

and human-centric computing, pages 119–126. IEEE, 2010. 17, 18

[30] Esther Guerra, Juan de Lara, Manuel Wimmer, Gerti Kappel, Angelika Kusel, Werner

Retschitzegger, Johannes Schönböck, and Wieland Schwinger. Automated verification of

model transformations based on visual contracts. Automated Software Engineering, 20(1):5–

46, 2013. 14

Evaluation of Model Transformation Testing in Practice 55

BIBLIOGRAPHY

[31] Esther Guerra and Mathias Soeken. Specification-driven model transformation testing. Soft-

ware & Systems Modeling, 14(2):623–644, 2015. 7, 12, 13, 14, 20, 23, 52

[32] Frank Hermann, Hartmut Ehrig, Ulrike Golas, and Fernando Orejas. Formal analysis of

model transformations based on triple graph grammars. Mathematical Structures in Computer

Science, 24(4), 2014. 15

[33] Stephan Hildebrandt, Leen Lambers, Holger Giese, Jan Rieke, Joel Greenyer, Wilhelm

Schäfer, Marius Lauder, Anthony Anjorin, and Andy Schürr. A survey of triple graph gram-

mar tools. Electronic Communications of the EASST, 57, 2013. 15

[34] Frank Hilken, Martin Gogolla, Loli Burgueño, and Antonio Vallecillo. Testing models and

model transformations using classifying terms. Software & Systems Modeling, 17(3):885–912,

2018. 16, 21

[35] Ethan K Jackson, Gabor Simko, and Janos Sztipanovits. Diversely enumerating system-level

architectures. In 2013 Proceedings of the International Conference on Embedded Software

(EMSOFT), pages 1–10. IEEE, 2013. 8

[36] Sorour Jahanbin and Bahman Zamani. Test model generation using equivalence partitioning.

In 2018 8th International Conference on Computer and Knowledge Engineering (ICCKE),

pages 98–103. IEEE, 2018. 16, 20

[37] Mingyue Jiang, Tsong Yueh Chen, Fei-Ching Kuo, Zhiquan Zhou, and Zuohua Ding. Testing

model transformation programs using metamorphic testing. 2014. 17

[38] Atif Aftab Jilani, Muhammad Zohaib Iqbal, and Muhammad Uzair Khan. A search based

test data generation approach for model transformations. In International Conference on

Theory and Practice of Model Transformations, pages 17–24. Springer, 2014. 14, 20, 23

[39] Sven Jörges and Bernhard Steffen. Back-to-back testing of model-based code generators. In

International Symposium On Leveraging Applications of Formal Methods, Verification and

Validation, pages 425–444. Springer, 2014. 19, 21

[40] Stuart Kent. Model driven engineering. In International Conference on Integrated Formal

Methods, pages 286–298. Springer, 2002. 1

[41] Alexander Königs. Model transformation with triple graph grammars. In Model Transform-

ations in Practice Satellite Workshop of MODELS, page 166, 2005. 15

[42] Jochen M Küster, Thomas Gschwind, and Olaf Zimmermann. Incremental development of

model transformation chains using automated testing. In International Conference on Model

Driven Engineering Languages and Systems, pages 733–747. Springer, 2009. 6

56 Evaluation of Model Transformation Testing in Practice

BIBLIOGRAPHY

[43] Jean-Marie Mottu, Benoit Baudry, and Yves Le Traon. Mutation analysis testing for model

transformations. In European Conference on Model Driven Architecture-Foundations and

Applications, pages 376–390. Springer, 2006. 7, 15

[44] Jean-Marie Mottu, Benoit Baudry, and Yves Le Traon. Model transformation testing: oracle

issue. In 2008 IEEE International Conference on Software Testing Verification and Validation

Workshop, pages 105–112. IEEE, 2008. 12, 13, 17

[45] Akbar Siami Namin, James Andrews, and Duncan Murdoch. Sufficient mutation operators for

measuring test effectiveness. In 2008 ACM/IEEE 30th International Conference on Software

Engineering, pages 351–360. IEEE, 2008. 15

[46] Thi-Hanh Nguyen, Duc-Hanh Dang, and Quang-Trung Nguyen. On analyzing rule-

dependencies to generate test cases for model transformations. In 2019 11th International

Conference on Knowledge and Systems Engineering (KSE), pages 1–6. IEEE, 2019. 14, 15,

20

[47] A Jefferson Offutt, Ammei Lee, Gregg Rothermel, Roland H Untch, and Christian Zapf. An

experimental determination of sufficient mutant operators. ACM Transactions on Software

Engineering and Methodology (TOSEM), 5(2):99–118, 1996. 15

[48] Dimitrios S Polack, Richard F Paige, Louis M Rose, and Fiona AC Polack. Unit testing

model management operations. In 2008 IEEE International Conference on Software Testing

Verification and Validation Workshop, pages 97–104. IEEE, 2008. 18, 19

[49] Lukman Ab Rahim and Jon Whittle. A survey of approaches for verifying model transform-

ations. Software & Systems Modeling, 14(2):1003–1028, 2015. 12, 13, 17, 18

[50] Rodrigo Ramos, Olivier Barais, and Jean-Marc Jézéquel. Matching model-snippets. In Inter-

national Conference on Model Driven Engineering Languages and Systems, pages 121–135.

Springer, 2007. 17, 18

[51] Stuart C Reid. An empirical analysis of equivalence partitioning, boundary value analysis

and random testing. In Proceedings Fourth International Software Metrics Symposium, pages

64–73. IEEE, 1997. 8

[52] Johannes Schönböck, Gerti Kappel, Manuel Wimmer, Angelika Kusel, Werner Retschitzegger,

and Wieland Schwinger. Tetrabox-a generic white-box testing framework for model trans-

formations. In 2013 20th Asia-Pacific Software Engineering Conference (APSEC), volume 1,

pages 75–82. IEEE, 2013. 7, 14, 20, 23

Evaluation of Model Transformation Testing in Practice 57

BIBLIOGRAPHY

[53] Gehan MK Selim, James R Cordy, and Juergen Dingel. Model transformation testing: The

state of the art. In Proceedings of the First Workshop on the Analysis of Model Transforma-

tions, pages 21–26, 2012. 7, 12, 13

[54] Oszkár Semeráth and Dániel Varró. Iterative generation of diverse models for testing spe-

cifications of dsl tools. In FASE, volume 18, pages 227–245, 2018. 6, 8, 16, 18, 20

[55] Sagar Sen, Benoit Baudry, and Jean-Marie Mottu. On combining multi-formalism knowledge

to select models for model transformation testing. In 2008 1st International Conference on

Software Testing, Verification, and Validation, pages 328–337. IEEE, 2008. 13

[56] Sagar Sen, Benoit Baudry, and Jean-Marie Mottu. Automatic model generation strategies for

model transformation testing. In International Conference on Theory and Practice of Model

Transformations, pages 148–164. Springer, 2009. 13, 14, 20, 23

[57] Ingo Stuermer, Mirko Conrad, Heiko Doerr, and Peter Pepper. Systematic testing of model-

based code generators. IEEE Transactions on Software Engineering, 33(9):622–634, 2007. 18,

19, 21

[58] Alessandro Tiso, Gianna Reggio, and Maurizio Leotta. A method for testing model to text

transformations. In AMT@ MoDELS, 2013. 18, 19

[59] Alessandro Tiso, Gianna Reggio, and Maurizio Leotta. Unit testing of model to text trans-

formations. In AMT@ MoDELS, pages 14–23, 2014. 18, 19

[60] Javier Troya, Alexander Bergmayr, Loli Burgueno, and Manuel Wimmer. Towards systematic

mutations for and with atl model transformations. In 2015 IEEE Eighth International Con-

ference on Software Testing, Verification and Validation Workshops (ICSTW), pages 1–10.

IEEE, 2015. 15

[61] Javier Troya, Sergio Segura, and Antonio Ruiz-Cortés. Automated inference of likely meta-

morphic relations for model transformations. Journal of Systems and Software, 136:188–208,

2018. 17

[62] Mark Utting and Bruno Legeard. Practical model-based testing: a tools approach. Elsevier,

2010. 7

[63] Antonio Vallecillo, Martin Gogolla, Loli Burgueño, Manuel Wimmer, and Lars Hamann.

Formal specification and testing of model transformations. In International School on Formal

Methods for the Design of Computer, Communication and Software Systems, pages 399–437.

Springer, 2012. 14, 16, 22

58 Evaluation of Model Transformation Testing in Practice

BIBLIOGRAPHY

[64] Dániel Varró, Oszkár Semeráth, Gábor Szárnyas, and Ákos Horváth. Towards the automated

generation of consistent, diverse, scalable and realistic graph models. In Graph Transforma-

tion, Specifications, and Nets, pages 285–312. Springer, 2018. 8

[65] Jens von Pilgrim, Bert Vanhooff, Immo Schulz-Gerlach, and Yolande Berbers. Constructing

and visualizing transformation chains. In European Conference on Model Driven Architecture-

Foundations and Applications, pages 17–32. Springer, 2008. 6

[66] Stephan Weißleder. Test models and coverage criteria for automatic model-based test gen-

eration with UML state machines. PhD thesis, Humboldt University of Berlin, 2010. 6,

13

[67] Martin Wieber, Anthony Anjorin, and Andy Schürr. On the usage of tggs for automated

model transformation testing. In International Conference on Theory and Practice of Model

Transformations, pages 1–16. Springer, 2014. 6

[68] Manuel Wimmer and Loli Burgueño. Testing m2t/t2m transformations. In International

Conference on Model Driven Engineering Languages and Systems, pages 203–219. Springer,

2013. 3, 18

Evaluation of Model Transformation Testing in Practice 59

Appendix A

ASOME Case Study Reports

Here we present the industrial case studies using the ASOME metamodels. To check if Efinder

can generate one model, we first tested Efinder using ASOME metamodels with a simple invariant

(see industrial case 1 in Section A.1). Then we checked if Efinder can generate a set of ASOME

models using classifying terms (see the industrial case 2 in Section A.2). Since the ASOME tool

takes an ASOME model and a generator model as input. In Section A.3, A.4 and A.5, we reported

three problems of Efinder. After reading these reports, the reader can go back to Section 4.2.3.

We summarize the discussion on Efinder in Section 4.2.3.

A.1 Industrial case study 1: to compile and generate one

instance model of data.ecore

The purpose of this test case is to check whether Efinder can transpile the metamodels of ASOME

and generate a simple ASOME model. A domain interface with several entities is a typical design

pattern of ASOME models. In this case study, the expected model is a domain interface with two

entities. This report shows how to use Efinder so that it can generate an instance model satisfying

certain constraints. It explains what an ASOME developer needs to do in order to successfully

compile ASOME metamodel and generate an ASOME model.

A.1.1 Implementation

Figure A.1 shows the content of the data.ecore file. The data.ecore is the ecore metamodel of

ASOME. As can be seen from Figure A.1, the data.ecore refers to five other ecore files.

Evaluation of Model Transformation Testing in Practice 61

APPENDIX A. ASOME CASE STUDY REPORTS

Figure A.1: data.ecore

We defined a simple OCL invariant in data.ocl. This OCL invariant requires the instance

model to be a domain interface with two entities. The code in data.ocl is listed in Listing A.1.

1 import ’ data . e co re ’

2

3 package data

4

5 context DomainInterface

6

7 inv CT1:

8 elements−>s e l e c t (e | e . oc l I sKindOf (Entity))−>s i z e () = 2

9 endpackage

Listing A.1: data.ocl

To simplify the case, we limit the number of domain interfaces to 1. The configuration code is

shown in Listing A.2.

1 TestBoundsProvider boundsProvider = new TestBoundsProvider ()

2 . w i th In t e rva l (”DomainInter face ” , 1 , 1) ;

Listing A.2: Model configuration

There were several problems when Efinder compiled data.ecore and data.ocl into USE specifica-

tions. We ignored the following problems for now to explore the suitability of Efinder. To be able

to use Efinder, one should implement the following steps.

62 Evaluation of Model Transformation Testing in Practice

APPENDIX A. ASOME CASE STUDY REPORTS

A.1.1.1 1. Remove the operations in the ecore models that Efinder can not compile

There are some Java operations in the ASOME metamodels not recognized by Efinder. We needed

to delete these operations so that the metamodels could be compiled. But if the developers of the

ASOME project want to use Efinder, they can express the operations in OCL instead.

Table A.1: The deleted operations

Operations Filename
getAllDomainInterfaces

data.ecore
getDomainInterfaceDependencies
getAllElements
getAllTypes
getAllConstants
getAllImportedModels

system.ecore

getAllImportedModelsRecursive
calcOperations
getInterfaceDependencies
multiplicityValue
getAllSystems
intValue

expression.ecoregetRepr
evaluate
getBasicType

type.ecore
getRepr

A.1.1.2 2. Ignore some original OCL constraints of the ASOME metamodels

The original OCL constraints of the ASOME metamodels contain a number of expressions that

Efinder currently does not support. Figure A.2 shows a part of the code of Efinder. It shows that

there are 8 OCL operations that are not supported by Efinder including ”matches”, ”size”, ”at”,

”toUpper”, ”toUpperCase”, ”toLower”, ”subString”, and ”oclType”.

Evaluation of Model Transformation Testing in Practice 63

APPENDIX A. ASOME CASE STUDY REPORTS

Figure A.2: Unsupported operations in Efinder

Additionally, we found that a helper function called ”asError” caused a problem for Efinder.

There are some helper operations defined by the ASOME developers. As can be seen from Fig-

ure A.3, there are two boolean functions called ”asErrors” and ”asWarning”. They are used to

distinguish errors and warnings in ASOME modeling. If an invariant is violated and considered

as an error, the OCL expression will be first evaluated as false and given null. This will cause a

problem for Efinder because it should not produce invalid models.

64 Evaluation of Model Transformation Testing in Practice

APPENDIX A. ASOME CASE STUDY REPORTS

Figure A.3: helper operations defined by ASOME developers

If we run the test with the original OCL files, Efinder will report errors and stop. Therefore,

we ignored the original OCL files of the ASOME metamodels so that we could explore further

with Efinder.

A.1.1.3 3. Remove the OCL expressions so that there is no type conformance prob-

lems in USE

As can be seen from Figure A.4 and A.5, the translation from ecore to USE caused a type con-

formance problem. The attribute ’inParams’ is derived according to the expression specified in

system.ecore model. The Efinder compiled the attribute ’inParams’ to a set. However, the ex-

pression given in the system.ecore is an ordered set. The ordered set does not conform to the set.

Evaluation of Model Transformation Testing in Practice 65

APPENDIX A. ASOME CASE STUDY REPORTS

Figure A.4: Class ’Operation’ in system.ecore

Figure A.5: the USE specification for Class ’Operation’

The other two attributes ”outParams” and ”inoutParams” also have this problem. It could

be the case that the OCL expressions specified by ASOME developers are problematic or the

Efinder’s compilation is problematic. However, this problem is considered as less significant as

they are derived from other elements. Therefore they were removed to simplify the problem.

A.1.2 Results

The test ran successfully and generated an instance model. The model is shown in Figure A.6. It

satisfies the defined constraints.

Figure A.6: the generated model shown in Eclipse

66 Evaluation of Model Transformation Testing in Practice

APPENDIX A. ASOME CASE STUDY REPORTS

A.2 Industrial case study 2: to generate multiple instance

models using classifying terms

The purpose of this case study is to show how to use classifying terms to generate a set of ASOME

models with Efinder. This case is derived from the requirements of the testers of the ASOME

project. They want to test the combinations of possible interesting features in the input models.

Figure A.7 shows one of the expected models. We try to generate two entities that are associated

with each other and different ranges for their entity multiplicities.

Figure A.7: the expected model shown in ASOME

A.2.1 Implementation

For this industrial case, the 4 classifying terms about the source multiplicity and the target multi-

plicity are listed in Listing A.3. The script will add a boolean value at the end of each classifying

term.

1 Entity . a l l I n s t a n c e s ()−>e x i s t s (e | (e . name = ’A ’) and e . a s s o c i a t i o n s−>e x i s t s (a | a .

t yp e r e f e r en c e . type . oclAsType (Entity) . name = ’B ’) and e . mu l t i p l i c i t y .max .

oclAsType (e xp r e s s i o n : : I n tExp r e s s i o n) . va lue = 1 and e . mu l t i p l i c i t y . min . oclAsType

(e xp r e s s i o n : : I n tExp r e s s i o n) . va lue = 0) −− CT1

2 Entity . a l l I n s t a n c e s ()−>e x i s t s (e | (e . name = ’A ’) and e . a s s o c i a t i o n s−>e x i s t s (a | a .

t yp e r e f e r en c e . type . oclAsType (Entity) . name = ’B ’) and e . mu l t i p l i c i t y .max .

oclAsType (e xp r e s s i o n : : I n tExp r e s s i o n) . va lue = 5 and e . mu l t i p l i c i t y . min . oclAsType

(e xp r e s s i o n : : I n tExp r e s s i o n) . va lue = 0) −− CT2

3 Entity . a l l I n s t a n c e s ()−>e x i s t s (e | (e . name = ’B ’) and e . mu l t i p l i c i t y .max . oclAsType (

e xp r e s s i o n : : I n tExp r e s s i o n) . va lue = 1 and e . mu l t i p l i c i t y . min . oclAsType (

Evaluation of Model Transformation Testing in Practice 67

APPENDIX A. ASOME CASE STUDY REPORTS

e xp r e s s i o n : : I n tExp r e s s i o n) . va lue = 0) −− CT3

4 Entity . a l l I n s t a n c e s ()−>e x i s t s (e | (e . name = ’B ’) and e . mu l t i p l i c i t y .max . oclAsType (

e xp r e s s i o n : : I n tExp r e s s i o n) . va lue = 5 and e . mu l t i p l i c i t y . min . oclAsType (

e xp r e s s i o n : : I n tExp r e s s i o n) . va lue = 0) −−CT4

Listing A.3: 4 classifying terms

For partition 0000, the complete OCL file is shown in Listing A.4. We limit the number of

Entity A and B to 1.

1 import ’ data . e co re ’

2

3 package data

4

5 context Entity

6 inv CT1:

7 Entity . a l l I n s t a n c e s ()−>e x i s t s (e | (e . name = ’A ’) and e . a s s o c i a t i o n s−>e x i s t s (a | a

. t yp e r e f e r en c e . type . oclAsType (Entity) . name = ’B ’) and e . mu l t i p l i c i t y .max .

oclAsType (e xp r e s s i o n : : I n tExp r e s s i o n) . va lue = 1 and e . mu l t i p l i c i t y . min .

oclAsType (e xp r e s s i o n : : I n tExp r e s s i o n) . va lue = 0) = f a l s e

8 inv CT2:

9 Entity . a l l I n s t a n c e s ()−>e x i s t s (e | (e . name = ’A ’) and e . a s s o c i a t i o n s−>e x i s t s (a | a

. t yp e r e f e r en c e . type . oclAsType (Entity) . name = ’B ’) and e . mu l t i p l i c i t y .max .

oclAsType (e xp r e s s i o n : : I n tExp r e s s i o n) . va lue = 5 and e . mu l t i p l i c i t y . min .

oclAsType (e xp r e s s i o n : : I n tExp r e s s i o n) . va lue = 0) = f a l s e

10 inv CT3:

11 Entity . a l l I n s t a n c e s ()−>e x i s t s (e | (e . name = ’B ’) and e . mu l t i p l i c i t y .max . oclAsType

(e xp r e s s i o n : : I n tExp r e s s i o n) . va lue = 1 and e . mu l t i p l i c i t y . min . oclAsType (

e xp r e s s i o n : : I n tExp r e s s i o n) . va lue = 0) = f a l s e

12 inv CT4:

13 Entity . a l l I n s t a n c e s ()−>e x i s t s (e | (e . name = ’B ’) and e . mu l t i p l i c i t y .max . oclAsType

(e xp r e s s i o n : : I n tExp r e s s i o n) . va lue = 5 and e . mu l t i p l i c i t y . min . oclAsType (

e xp r e s s i o n : : I n tExp r e s s i o n) . va lue = 0) = f a l s e

14 inv uniqueEntityA:

15 Entity . a l l I n s t a n c e s ()−>s e l e c t (e | e . name = ’A ’)−>s i z e () = 1

16 inv uniqueEntityB:

17 Entity . a l l I n s t a n c e s ()−>s e l e c t (e | e . name = ’B ’)−>s i z e () = 1

18

19

20 endpackage

Listing A.4: the complete OCL file for partition 0000

68 Evaluation of Model Transformation Testing in Practice

APPENDIX A. ASOME CASE STUDY REPORTS

Table A.2: the test results

Partition No. CT4 CT3 CT2 CT1
Satisfiable

Decimal Binary Entity B
multipli-
city: (0,
1)

Entity B
multipli-
city: (0,
1)

Entity A
multipli-
city: (0,
1)

Entity A
multipli-
city: (0,
5)

0 0000 0 0 0 0 Yes
1 0001 0 0 0 1 No
2 0010 0 0 1 0 Yes
3 0011 0 0 1 1 No
4 0100 0 1 0 0 Yes
5 0101 0 1 0 1 Yes
6 0110 0 1 1 0 Yes
7 0111 0 1 1 1 No
8 1000 1 0 0 0 Yes
9 1001 1 0 0 1 Yes
10 1010 1 0 1 0 Yes
11 1011 1 0 1 1 No
12 1100 1 1 0 0 No
13 1101 1 1 0 1 No
14 1110 1 1 1 0 No
15 1111 1 1 1 1 No

A.2.2 Results

The script generated 16 OCL files and Efinder executed 16 times. Table A.2 shows the partitions

for the 4 classifying terms. As can be seen from the table, this test generated 8 instances in total.

Not every partition will have a satisfiable solution. For example, from partitions 1101 to 1111,

there is no generated model. Because for CT3 and CT4, the maximum value of entity multiplicity

can not be 1 and 5 at the same time. This is expected because of the script we use in this thesis.

However, we do not know why partition 0001 fails. We can not interpret the error message. We

also record this problem in Appendix A.4.

A.3 Problem 1 of Efinder: compilation error in OCL con-

straints

We encountered some problems while writing OCL files. And this test case shows that Efinder

still needs to be improved so that the amount of effort in writing OCL files will be acceptable.

This test will focus on the source multiplicity and target multiplicity of an association between an

Entity A and Entity B. As can be seen from Figure A.8, we expect to generate 2 entities, called

”A” and ”B”. Entity A is associated with Entity B. The source multiplicity can be either zero to

infinity or zero to two. The target multiplicity can be either zero to infinity or zero to one.

Evaluation of Model Transformation Testing in Practice 69

APPENDIX A. ASOME CASE STUDY REPORTS

Figure A.8: the expected model shown in ASOME

Listing A.5 shows the model configuration. We defined one and only one ImplementationModel

should be instantiated.

1 TestBoundsProvider boundsProvider = new TestBoundsProvider ()

2 . w i th In t e rva l (” ImplementationModel ” , 1 , 1) ;

Listing A.5: Test bounds configuration

In the OCL file, we define that:

• There should be at least one Entity called ”A”.

• There should be at least one Entity called ”B”.

• Entity A should be associated with Entity B.

• The type reference of the association with Entity B should be type:Collection.

1 import ’ data . e co re ’

2

3 package data

4

5 context Entity

6 inv CT1:

7 Entity . a l l I n s t a n c e s ()−>e x i s t s (e | e . name = ’A ’)

8 inv CT2:

9 Entity . a l l I n s t a n c e s ()−>e x i s t s (e | e . name = ’B ’)

10 inv CT3:

11 Entity . a l l I n s t a n c e s ()−>s e l e c t (e | e . name = ’A ’) . a s s o c i a t i o n s−>e x i s t s (a | a .

t yp e r e f e r en c e . type . oclAsType (Entity) . name = ’B ’)

12

70 Evaluation of Model Transformation Testing in Practice

APPENDIX A. ASOME CASE STUDY REPORTS

13 inv CT5:

14 Entity . a l l I n s t a n c e s ()−>e x i s t s (e | (e . name = ’A ’) and (e . a s s o c i a t i o n s−>e x i s t s (a |

a . t yp e r e f e r en c e . type . oclAsType (Entity) . name = ’B ’

15 and a . t yp e r e f e r en c e . oclIsTypeOf (t y p e : : C o l l e c t i o n)

16)))

17 endpackage

Listing A.6: OCL constraints

After running the test, Efinder returned an error message and stopped. Listing A.7 shows the

error message.

1 Inva r i an t ‘ t y p e Co l l e c t i o n : : n onNu l l t y p e Co l l e c t i o n o r d e r e d ’ i s not f u l f i l l e d in

generated system s t a t e .

Listing A.7: Error message

Efinder compiled the OCL file and generated a USE file called ”model.use”. Listing A.8 showed

where this error message came from. It is an invariant called nonNull type Collection ordered

in the generated USE file. This error message indicates that the boolean attribute ordered in

type::Collection should be assigned a value in the OCL file by the user.

1 context s e l f : t yp e Co l l e c t i on inv nonNu l l t yp e Co l l e c t i on o rd e r ed :

2 not s e l f . o rde red . i sUnde f ined ()

Listing A.8: The invariant ”nonNull type Collection ordered” in model.use

This test case shows that for the current version of Efinder, the user needs to specify not only

classifying terms but also other hidden invariants required by the metamodels.

A.4 Problem 2 of Efinder: unsatisfiable proof

For the current version of Efinder, the user may find it difficult to interpret the message given by

Efinder. When Efinder can not find a solution, it will return an unsatisfiable proof but we cannot

interpret the message. This case study shows an example of this problem.

Listing A.9 shows the model configuration of this test. It limits the number of Entity to be among

2 and 30.

1 TestBoundsProvider boundsProvider = new TestBoundsProvider ()

2 . w i th In t e rva l (”Entity ” , 2 , 30) ;

Listing A.9: Model configuration

Evaluation of Model Transformation Testing in Practice 71

APPENDIX A. ASOME CASE STUDY REPORTS

Listing A.10 shows three defined classifying terms. In the OCL file, we define that

• There should be at least one Entity called ”A”.

• There should be at least one Entity called ”B”.

• Entity A should be associated with Entity B. The maximum source multiplicity of Entity

B should be 1.

1 import ’ data . e co re ’

2

3 package data

4

5 context Entity

6 inv CT1:

7 Entity . a l l I n s t a n c e s ()−>e x i s t s (e | e . name = ’A ’)

8 inv CT2:

9 Entity . a l l I n s t a n c e s ()−>e x i s t s (e | e . name = ’B ’)

10 inv CT3:

11 Entity . a l l I n s t a n c e s ()−>e x i s t s (e | (e . name = ’A ’) and (e . a s s o c i a t i o n s−>e x i s t s (a |

a . t yp e r e f e r en c e . type . oclAsType (Entity) . name = ’B ’

12 and a . t yp e r e f e r en c e . oclAsType (t y p e : : C o l l e c t i o n) . mu l t i p l i c i t y .max . oclIsTypeOf (

e xp r e s s i o n : : I n tExp r e s s i o n)= 1

13)))

14 endpackage

Listing A.10: OCL constraints

For these classifying terms, it should be easily satisfied. However, Efinder considered it as ”trivially

unsatisfiable” and gave the proof as shown in Listing A.11. It is difficult for the user to interpret

the message and fix the OCL constraints.

1 [main] INFO . use . kodkod . UseKodkodModelValidator − Uns a t i s f i a b l e p r o o f :

2 < node: (a l l s e l f : one data Ent i ty | ((i f (data Ent i ty = Undef ined Set) then

Undefined e l s e (i f (some e : one data Ent i ty | (((i f (e = Undefined) then

Undefined e l s e (e . common NamedElement name)) = S t r i n g s t r i n g 3) && ((i f ((i f (

e = Undefined) then Undef ined Set e l s e (e . DomainType assoc iat ions)) =

Undef ined Set) then Undefined e l s e (i f (some a : one (i f (e = Undefined) then

Undef ined Set e l s e (e . DomainType assoc iat ions)) | (((i f ((i f ((i f ((i f (a =

Undefined) then Undefined e l s e (a . TypeRe f e r r a l t ype r e f e r enc e)) = Undefined)

then Undefined e l s e ((i f (a = Undefined) then Undefined e l s e (a .

TypeRe f e r r a l t ype r e f e r enc e)) . TypeReference type)) in data Ent i ty) then (i f ((

i f (a = Undefined) then Undefined e l s e (a . TypeRe f e r r a l t ype r e f e r enc e)) =

Undefined) then Undefined e l s e ((i f (a = Undefined) then Undefined e l s e (a .

TypeRe f e r r a l t ype r e f e r enc e)) . TypeReference type)) e l s e Undefined) = Undefined

72 Evaluation of Model Transformation Testing in Practice

APPENDIX A. ASOME CASE STUDY REPORTS

) then Undefined e l s e ((i f ((i f ((i f (a = Undefined) then Undefined e l s e (a .

TypeRe f e r r a l t ype r e f e r enc e)) = Undefined) then Undefined e l s e ((i f (a =

Undefined) then Undefined e l s e (a . TypeRe f e r r a l t ype r e f e r enc e)) .

TypeReference type)) in data Ent i ty) then (i f ((i f (a = Undefined) then

Undefined e l s e (a . TypeRe f e r r a l t ype r e f e r enc e)) = Undefined) then Undefined

e l s e ((i f (a = Undefined) then Undefined e l s e (a . TypeRe f e r r a l t ype r e f e r enc e))

. TypeReference type)) e l s e Undefined) . common NamedElement name)) =

S t r i n g s t r i n g 4) && (Boolean False = Boolean True))) then Boolean True e l s e

Boo lean False)) = Boolean True))) then Boolean True e l s e Boo lean False)) =

Boolean True)) , l i t e r a l : −2147483647 , env : {}>

Listing A.11: Unsatisfiable proof

For now, we can not interpret the message returned by Efinder. This problem may hurt the

productivity of model transformation testing.

A.5 Problem 3: Efinder does not support generating a pair

of models

The current version of Efinder does not support generating a pair of models where one refers to

another. It only support generating one monolithic model. But the ASOME tool needs to take

one ASOME model and one generator model as input and the generator model should refer to the

ASOME model. Therefore, we developed a script to split the model into one ASOME model and

one generator model. The code is listed in Appendix B.6.

Take a monolithic model generated by Efinder as an example. The model is shown in Figure

A.9. This monolithic model contains both objects of the generator metamodel and objects of the

ASOME metamodel. Using the script, the model can be split into an ASOME model shown in

Figure A.10 and a generator model shown in Figure A.11. This feature should be integrated into

Efinder.

Evaluation of Model Transformation Testing in Practice 73

APPENDIX A. ASOME CASE STUDY REPORTS

Figure A.9: a monolithic model generated by Efinder

Figure A.10: first figure

Figure A.11: second figure

74 Evaluation of Model Transformation Testing in Practice

Appendix B

Code

B.1 QVTo Transformation for UML2Relational

1 modeltype UML uses ’ h t tp : //www. example . org /uml ’ ;

2 modeltype RELATIONAL uses ’ h t tp : //www. example . org / r e l a t i o n a l ’ ;

3

4 t rans fo rmat ion c l a s s 2 r e l a t i o n a l (in uml : UML, out RELATIONAL) ;

5

6

7 main () {

8

9 uml . rootObjec t s () [UML::Model]−>map model2schema () ;

10 }

11 mapping UML::Model::model2schema () : RELATIONAL::Schema {

12 type := s e l f . type−>map type2type () ;

13 tab l e := s e l f . c l a s s e s−>map c l a s s 2 t a b l e () ;

14 tab l e += (s e l f . c l a s s e s . a t t r i b u t e

15 −>s e l e c t (e | e . mult iva lued and e . c l a s s i f i e r . oc l I sKindOf (C la s s e s)))

16 −>map mul t iC l a s sAt t r i bu t e2 tab l e ()

17 −>union (s e l f . c l a s s e s . a t t r i b u t e

18 −>s e l e c t (e | e . mult iva lued and e . c l a s s i f i e r . oc l I sKindOf (Type))

19 −>map mult iPr imAttr ibute2tab le ()) ;

20 }

21

22 mapping UML: :C l a s s e s : : c l a s s 2 t ab l e () : RELATIONAL::Table {

23 name := s e l f . name ;

24 var primaryKey := ob j e c t RELATIONAL::Column {name := ’ ob j e c t Id ’ ; type :=

getIntegerType () ; isPrimaryKey := true } ;

25 column := Sequence{primaryKey}

26 −>union (s e l f . a t t r i b u t e

Evaluation of Model Transformation Testing in Practice 75

APPENDIX B. CODE

27 −>s e l e c t (e | not e . mult iva lued and e . c l a s s i f i e r . oc l I sKindOf (C la s s e s))−>map

s ing l eC la s sAt t r ibute2co lumns ())

28 −>union (s e l f . a t t r i b u t e

29 −>s e l e c t (e | not e . mult iva lued and e . c l a s s i f i e r . oc l I sKindOf (Type))−>map

s ing lePr imAttr ibute2co lumns ()) ;

30

31 }

32

33 mapping UML: :At t r ibute : : s i ng l eC la s sAtt r ibute2co lumns () : RELATIONAL::Column {

34 name := s e l f . c l a s s i f i e r . name + ” Id” ;

35 type := getIntegerType () ;

36 }

37

38 mapping UML: :Attr ibute : : s ing l ePr imAttr ibute2co lumns () : RELATIONAL::Column {

39 name := s e l f . name ;

40 type := ge tC la s s i f e r 2Type (s e l f . c l a s s i f i e r) ;

41 }

42

43 mapping UML: :Att r ibute : :mul t iPr imAttr ibute2tab le () : RELATIONAL::Table {

44 name := s e l f . c l a s s e s . name + ” ” + s e l f . name ;

45 column := ob j e c t RELATIONAL::Column {name := s e l f . name ; type :=

ge tC la s s i f e r 2Type (s e l f . c l a s s i f i e r) } ;

46 column += ob j e c t RELATIONAL::Column {name := s e l f . c l a s s e s . name + ” Id” ; type :=

getIntegerType () } ;

47 }

48

49 mapping UML: :At t r ibu t e : :mu l t iC la s sAt t r ibu t e2 tab l e () : RELATIONAL::Table {

50 name := s e l f . c l a s s e s . name + ” ” + s e l f . name ;

51 column := ob j e c t RELATIONAL::Column {name := s e l f . c l a s s e s . name + ” Id” ; type :=

getIntegerType () } ;

52 column += ob j e c t RELATIONAL::Column {name := s e l f . name + ” Id” ; type :=

getIntegerType () } ;

53 }

54

55

56 query ge tC la s s i f e r 2Type (in targetType : UML: :C la s s i f i e r) : RELATIONAL::Type{

57

58 re turn targetType . oclAsType (UML::Type) .map type2type () ;

59 }

60

61 query getIntegerType () : RELATIONAL::Type {

62 re turn UML::Type . a l l I n s t a n c e s ()−>s e l e c t (e | e . name = ” In t eg e r ”)−>asSequence

()−> f i r s t () . oclAsType (UML::Type) .map type2type () ;

63 }

64 query UML : :C l a s s i f i e r : : g e tC l a s s i f i e rTyp e () : UML::Type {

76 Evaluation of Model Transformation Testing in Practice

APPENDIX B. CODE

65 re turn s e l f . oclAsType (UML::Type)

66 }

67

68 mapping UML::Type::type2type () : RELATIONAL::Type{

69 name := s e l f . name ;

70 }

71 mapping UML : : C l a s s i f i e r : : c l a s s i f i e r 2 t y p e () : RELATIONAL::Type{

72 name := s e l f . name ;

73 }

74 mapping UML: :C l a s s e s : : c l a s s 2 type () : RELATIONAL::Type{

75 name := s e l f . name ;

76 }

Listing B.1: UML2Relational.qvto

B.2 uml.use generated by TractsTool

1 model Class

2

3 c l a s s Model

4 a t t r i b u t e s

5 end

6

7 c l a s s C la s s e s < C l a s s i f i e r

8 a t t r i b u t e s

9 end

10

11 c l a s s Att r ibute

12 a t t r i b u t e s

13 name : S t r ing

14 mult iva lued : Boolean

15 c l a s s i f i e r : C l a s s i f i e r

16 end

17

18 c l a s s Type < C l a s s i f i e r

19 a t t r i b u t e s

20 end

21

22 c l a s s C l a s s i f i e r

23 a t t r i b u t e s

24 name : S t r ing

25 end

26

27 compos i t ion c on t a i n s C l a s s e s between

Evaluation of Model Transformation Testing in Practice 77

APPENDIX B. CODE

28 Model [1] r o l e c l a s s e s C l a s s e s Mode l d e r i v ed

29 C la s s e s [0 . . ∗] r o l e c l a s s e s C l a s s e s Mode l ordered

30 end

31

32 compos i t ion contains Type between

33 Model [1] r o l e type Model Type der ived

34 Type [1 . . ∗] r o l e type Model Type ordered

35 end

36

37 compos i t ion has Att r ibute between

38 C la s s e s [1 . . 1] r o l e c l a s s e s A t t r i b u t e C l a s s e s

39 Att r ibute [0 . . ∗] r o l e a t t r i b u t e A t t r i b u t e C l a s s e s ordered

40 end

Listing B.2: Class.use

B.3 Generated USE Specifications By TractsTool

1 model uml

2

3 c l a s s src Model

4 a t t r i b u t e s

5 end

6

7 c l a s s s r c C l a s s e s < s r c C l a s s i f i e r

8 a t t r i b u t e s

9 end

10

11 c l a s s s r c A t t r i bu t e

12 a t t r i b u t e s

13 name : S t r ing

14 mult iva lued : Boolean

15 end

16

17 c l a s s src Type < s r c C l a s s i f i e r

18 a t t r i b u t e s

19 end

20

21 c l a s s s r c C l a s s i f i e r

22 a t t r i b u t e s

23 name : S t r ing

24 end

25

26 c l a s s t rg Tab le

78 Evaluation of Model Transformation Testing in Practice

APPENDIX B. CODE

27 a t t r i b u t e s

28 name : S t r ing

29 end

30

31 c l a s s trg Type

32 a t t r i b u t e s

33 name : S t r ing

34 end

35

36 c l a s s trg Schema

37 a t t r i b u t e s

38 end

39

40 c l a s s trg Column

41 a t t r i b u t e s

42 isPrimaryKey : Boolean

43 name : S t r ing

44 end

45

46 compos i t ion s r c c l a s s e s C l a s s e s Mod e l between

47 src Model [0 . . ∗] r o l e c l a s s e s C l a s s e s Mode l d e r i v ed

48 s r c C l a s s e s [0 . . ∗] r o l e c l a s s e s C l a s s e s Mode l ordered

49 end

50

51 compos i t ion src type Model Type between

52 src Model [0 . . ∗] r o l e type Model Type der ived

53 src Type [0 . . ∗] r o l e type Model Type ordered

54 end

55

56 a s s o c i a t i o n s r c c l a s s i f i e r A t t r i b u t e C l a s s i f i e r between

57 s r c A t t r i bu t e [0 . . ∗] r o l e c l a s s i f i e r A t t r i b u t e C l a s s i f i e r d e r i v e d

58 s r c C l a s s i f i e r [0 . . 1] r o l e c l a s s i f i e r A t t r i b u t e C l a s s i f i e r

59 end

60

61 compos i t ion s r c a t t r i b u t e c l a s s e s A t t r i b u t e C l a s s e s between

62 s r c C l a s s e s [1 . . 1] r o l e c l a s s e s A t t r i b u t e C l a s s e s

63 s r c A t t r i bu t e [0 . . ∗] r o l e a t t r i b u t e A t t r i b u t e C l a s s e s ordered

64 end

65

66 compos i t ion trg tab le Schema Table between

67 trg Schema [0 . . ∗] r o l e tab le Schema Table der ived

68 t rg Tab le [0 . . ∗] r o l e table Schema Table ordered

69 end

70

71 compos i t ion trg type Schema Type between

Evaluation of Model Transformation Testing in Practice 79

APPENDIX B. CODE

72 trg Schema [0 . . ∗] r o l e type Schema Type derived

73 trg Type [0 . . ∗] r o l e type Schema Type ordered

74 end

75

76 a s s o c i a t i o n trg type Column Type between

77 trg Column [0 . . ∗] r o l e type Column Type derived

78 trg Type [1 . . 1] r o l e type Column Type

79 end

80

81 compos i t ion trg column table Column Table between

82 t rg Tab le [1 . . 1] r o l e table Column Table

83 trg Column [1 . . ∗] r o l e column Column Table ordered

84 end

85

86 c l a s s CTDashboard

87 a t t r i b u t e s

88 Mult iValued: Boolean

89 PrimAttr: Boolean

90 C la s sAt t r : Boolean

91

92 ope ra t i on s

93 MultiValued OP () : Boolean = Attr ibute . a l l I n s t an c e s−>e x i s t s (a | a . mult iva lued =

true)

94 PrimAttr OP () : Boolean = Attr ibute . a l l I n s t an c e s−>e x i s t s (a | a . c l a s s i f i e r .

oc l IsTypeOf (Type))

95 ClassAttr OP () : Boolean = Attr ibute . a l l I n s t an c e s−>e x i s t s (a | a . c l a s s i f i e r .

oc l IsTypeOf (C la s s e s))

96 end

97

98 context CTDashboard inv CT Operation :

99 MultiValued = MultiValued OP () and PrimAttr = PrimAttr OP () and ClassAttr =

ClassAttr OP ()

B.4 Generated USE Specifications By Efinder

1 model uml

2

3 c l a s s Model

4 ope ra t i on s

5 oc lConta iner () : OclAny = oclUndef ined (OclVoid)

6 oc lContents () : Set (OclAny) = s e l f . c l a s s i f i e r s −>asSet ()

7 end

8

9 c l a s s Class < C l a s s i f i e r

80 Evaluation of Model Transformation Testing in Practice

APPENDIX B. CODE

10 ope ra t i on s

11 oc lConta iner () : OclAny = oclUndef ined (OclVoid)

12 oc lContents () : Set (OclAny) = s e l f . a t t r i bu t e−>asSet ()

13 end

14

15 c l a s s Att r ibute

16 a t t r i b u t e s

17 name : S t r ing

18 mult iva lued : Boolean

19 ope ra t i on s

20 oc lConta iner () : OclAny = Class . a l l I n s t a n c e s ()−>s e l e c t (o | o . a t t r i bu t e−>i n c l ud e s (

s e l f))−>any (t rue)

21 oc lContents () : Set (OclAny) = Set { }

22 end

23

24 c l a s s Type < C l a s s i f i e r

25 ope ra t i on s

26 oc lConta iner () : OclAny = oclUndef ined (OclVoid)

27 oc lContents () : Set (OclAny) = Set { }

28 end

29

30 abs t r a c t c l a s s C l a s s i f i e r

31 a t t r i b u t e s

32 name : S t r ing

33 ope ra t i on s

34 oc lConta iner () : OclAny = Model . a l l I n s t a n c e s ()−>s e l e c t (o | o . c l a s s i f i e r s −>i n c l ud e s (

s e l f))−>any (t rue)

35 oc lContents () : Set (OclAny) = Set { }

36 end

37

38 compos i t ion C l a s s i f i e r m o d e l Mod e l c l a s s i f i e r s between

39 Model [1] r o l e model

40 C l a s s i f i e r [∗] r o l e c l a s s i f i e r s

41 end

42

43 compos i t ion A t t r i b u t e c l a s s e s C l a s s a t t r i b u t e between

44 Class [1] r o l e c l a s s e s

45 Att r ibute [∗] r o l e a t t r i b u t e

46 end

47

48 a s s o c i a t i o n A t t r i b u t e c l a s s i f i e r between

49 Att r ibute [∗] r o l e A t t r i b u t e c l a s s i f i e r s o u r c e

50 C l a s s i f i e r [0 . . 1] r o l e c l a s s i f i e r

51 end

52

Evaluation of Model Transformation Testing in Practice 81

APPENDIX B. CODE

53 c on s t r a i n t s

54

55 context s e l f : Att r ibute inv At t r i bu t e 0 :

56 (Att r ibute . a l l I n s t a n c e s ()−>s i z e ()) >= (Class . a l l I n s t a n c e s ()−>s i z e ())

57

58 context s e l f : Att r ibute inv At t r i bu t e 1 :

59 (Att r ibute . a l l I n s t a n c e s ()−>e x i s t s (a , b | ((a . name) = (b . name)) and ((a) <> (b))))

= (f a l s e)

60

61 context s e l f : Att r ibute inv At t r i bu t e 2 :

62 (Att r ibute . a l l I n s t a n c e s ()−>e x i s t s (a | (a . mult iva lued) = (true))) = (true)

63

64 context s e l f : Att r ibute inv At t r i bu t e 3 :

65 (Att r ibute . a l l I n s t a n c e s ()−>e x i s t s (a | a . c l a s s i f i e r . oc l IsTypeOf (Type))) = (true)

66

67 context s e l f : Att r ibute inv At t r i bu t e 4 :

68 (Att r ibute . a l l I n s t a n c e s ()−>e x i s t s (a | a . c l a s s i f i e r . oc l IsTypeOf (Class))) = (f a l s e)

69

70 context s e l f : Class inv C l a s s 5 :

71 (Class . a l l I n s t a n c e s ()−>s i z e ()) >= (1)

72

73 context s e l f : Class inv C l a s s 6 :

74 (Class . a l l I n s t a n c e s ()−>e x i s t s (a , b | ((a . name) = (b . name)) and ((a) <> (b)))) = (

f a l s e)

75

76 context s e l f : Class inv C l a s s 7 :

77 (Class . a l l I n s t a n c e s ()−>e x i s t s (a | Type . a l l I n s t a n c e s ()−>e x i s t s (b | (a . name) = (b .

name)))) = (f a l s e)

78

79 context s e l f : Class inv C l a s s 8 :

80 (Class . a l l I n s t a n c e s ()−>e x i s t s (a | Attr ibute . a l l I n s t a n c e s ()−>e x i s t s (b | (a . name) = (

b . name)))) = (f a l s e)

81

82 context s e l f : Model inv Model 9:

83 (Model . a l l I n s t a n c e s ()−>s i z e ()) = (1)

84

85 context s e l f : Type inv Type 10:

86 (Type . a l l I n s t a n c e s ()−>s i z e ()) >= (2)

87

88 context s e l f : Type inv Type 11:

89 (Type . a l l I n s t a n c e s ()−>e x i s t s (a , b | ((a . name) = (b . name)) and ((a) <> (b)))) = (

f a l s e)

90

91 context s e l f : Att r ibute inv nonNu l l At t r ibu t e mu l t i va lued :

92 not s e l f . mult iva lued . i sUnde f ined ()

82 Evaluation of Model Transformation Testing in Practice

APPENDIX B. CODE

B.5 The code for generating OCL files with classifying terms

1 pub l i c c l a s s Class i fy ingTerms {

2 i n t s i z e = 0 ; //num of c l a s s i f y i n g terms (CT)

3 i n t va lue = 0 ; // the maximum c h a r a c t e r i s t i c va lue o f the c l a s s i f y i n g terms , e . g . ,

f o r 3 CTs , the maximum c h a r a c t e r i s t i c va lue = 111 , which i s 7 in decimal

4 HashMap<Str ing , L i s t<Str ing>> mapOfCTs = new LinkedHashMap<Str ing , L i s t<Str ing

>>() ;

5

6 pub l i c Class i fy ingTerms (LinkedHashMap<Str ing , Str ing> mapOfPaths) throws

IOException {

7 f o r (Map. Entry<Str ing , Str ing> m : mapOfPaths . entrySet ()) {

8

9 St r ing context = m. getKey () ;

10 St r ing path = m. getValue () ;

11 F i l e f i l eCT = new F i l e (path) ;

12 List<Str ing> CTs = new LinkedList<Str ing >() ;

13 BufferedReader readerCT = new BufferedReader (new Fi leReader (f i l eCT)) ;

14 St r ing ct = nu l l ;

15 whi l e ((c t = readerCT . readLine ()) != nu l l) {

16 CTs . add (ct) ;

17 System . out . p r i n t l n (ct) ;

18 }

19 t h i s . s i z e += CTs . s i z e () ;

20 t h i s .mapOfCTs . put (context , CTs) ;

21 readerCT . c l o s e () ;

22 }

23 // c a l c u l a t e the maximum c h a r a c t e r i s t i c va lue

24 i n t pow = th i s . s i z e − 1 ;

25 whi l e (pow != −1) {

26 t h i s . va lue += Math . pow(2 , pow−−) ;

27 }

28 }

29 }

Listing B.3: ClassifyingTerms

1 pub l i c void generateClass i fy ingTermOCLFi les (Class i fy ingTerms ct In fo , S t r ing

Path OCLfi le) throws IOException {

2 i n t c h a r a c t e r i s t i cVa l u e = c t I n f o . va lue ;

3 whi l e (c h a r a c t e r i s t i cVa l u e != −1) {

4 In t eg e r character i s t i cValueTmp = new In t eg e r (c h a r a c t e r i s t i cVa l u e) ;

5 S t r ing f i l ename = ” . . / . . / . . / C l a s s 2Re l a t i ona l / ” + character i s t i cValueTmp .

toS t r i ng () + ” . o c l ” ;

6 F i l e f i l eOu t = new F i l e (f i l ename) ;

Evaluation of Model Transformation Testing in Practice 83

APPENDIX B. CODE

7 F i l eWr i t e r fw = new Fi l eWr i t e r (f i l eOu t) ;

8 Buf feredWriter bu i l d e r = new Buf feredWriter (fw) ;

9 BufferedReader reader = new BufferedReader (new Fi leReader (Path OCLfi le)) ;

10 St r ing l i n e ;

11 In t eg e r numOfCT = new In t eg e r (1) ;

12 f o r (Map. Entry<Str ing , L i s t<Str ing>> m : c t I n f o .mapOfCTs . entrySet ()) {

13 St r ing context = ” context ” + m. getKey () ;

14 List<Str ing> CTs = m. getValue () ;

15 l i n e = reader . readLine () ;

16 i n t hasContext = l i n e . indexOf (context) ;

17 whi l e (l i n e != nu l l && hasContext == −1) {

18 bu i l d e r . append (l i n e + ”\n”) ;

19 System . out . p r i n t (l i n e + ”\n”) ;

20 l i n e = reader . readLine () ;

21 hasContext = l i n e . indexOf (context) ;

22 }

23 i f (l i n e . indexOf (context) != −1) {

24 bu i l d e r . append (l i n e + ”\n”) ;

25 f o r (S t r ing ct : CTs) {

26 i n t b i t = character i s t i cValueTmp & 1 ;

27 character i s t i cValueTmp = character i s t i cValueTmp >> 1 ;

28 System . out . p r i n t l n (l i n e) ;

29 bu i l d e r . append (” inv ” + ”CT” + numOfCT. toS t r i ng () + ” :\n”) ;

30 bu i l d e r . append (”\ t ” + ct + ” = ” + map . get (b i t) + ”\n”) ;

31 System . out . p r i n t (” inv ” + ”CT” + numOfCT. toS t r i ng () + ” :\n” + ”\ t ” +

ct + ” = ” + map . get (b i t) + ”\n”) ;

32 numOfCT++;

33 }

34 }

35 }

36 l i n e = reader . readLine () ;

37 whi l e (l i n e != nu l l) {

38 bu i l d e r . append (l i n e + ”\n”) ;

39 System . out . p r i n t (l i n e + ”\n”) ;

40 l i n e = reader . readLine () ;

41 }

42

43 cha r a c t e r i s t i cVa lu e −−;

44 bu i l d e r . c l o s e () ;

45

46 }

47

48 }

Listing B.4: generateClassifyingTermOCLFiles

84 Evaluation of Model Transformation Testing in Practice

APPENDIX B. CODE

1 import uml : ’ uml . e co re ’

2 package uml

3 context Model inv Model Size :

4 Model . a l l I n s t a n c e s ()−>s i z e () = 1

5

6 context Type

7 inv Type Size :

8 Type . a l l I n s t a n c e s ()−>s i z e () >= 2

9 inv Type Name :

10 Type . a l l I n s t a n c e s ()−>e x i s t s (a , b | (a . name = b . name) and a <> b) = f a l s e −−

the re should be no types with the same name

11

12 context C la s s e s

13 inv C l a s s e s S i z e :

14 C la s s e s . a l l I n s t a n c e s ()−>s i z e () >= 1

15 inv Unique ClassesName AmongClasses :

16 C la s s e s . a l l I n s t a n c e s ()−>e x i s t s (a , b | (a . name = b . name) and a <> b) = f a l s e −−

the re should be no Cla s s e s with the same name .

17 inv Unique ClassesName AmongType :

18 C la s s e s . a l l I n s t a n c e s ()−>e x i s t s (a | Type . a l l I n s t a n c e s ()−>e x i s t s (b | a . name = b .

name)) = f a l s e −− the re should be no Type with the same name as any c l a s s e s

.

19 inv Unique ClassesName AmongAttribute :

20 C la s s e s . a l l I n s t a n c e s ()−>e x i s t s (a | Attr ibute . a l l I n s t a n c e s ()−>e x i s t s (b | a . name =

b . name)) = f a l s e −− the re should be no Att r ibute with the same name as any

c l a s s e s .

21

22 context Att r ibute

23 inv At t r i bu t e S i z e :

24 Att r ibute . a l l I n s t a n c e s ()−>s i z e () >= Clas s e s . a l l I n s t a n c e s ()−>s i z e ()

25 inv Unique AttrName AmongAttr :

26 Att r ibute . a l l I n s t a n c e s ()−>e x i s t s (a , b | (a . name = b . name) and a <> b) = f a l s e

−− the re should be no C la s s e s with the same name .

27 inv CT1 MultiValued :

28 Att r ibute . a l l I n s t a n c e s ()−>e x i s t s (a | a . mult iva lued = true) = true −−C l a s s i f y i n g

Term 1 : the re e x i s t s at l e a s t one a t t r i b u t e that i s mult iva lued

29 inv CT2:

30 Att r ibute . a l l I n s t a n c e s ()−>e x i s t s (a | a . c l a s s i f i e r . oc l IsTypeOf (Type)) = true −−

C l a s s i f y i n g Term 2 : the re e x i s t s at l e a s t one a t t r i b u t e whose type i s a

p r im i t i v e type

31 inv CT3:

32 Att r ibute . a l l I n s t a n c e s ()−>e x i s t s (a | a . c l a s s i f i e r . oc l IsTypeOf (C la s s e s)) = true

−−C l a s s i f y i n g Term 3 : the re e x i s t s at l e a s t one a t t r i b u t e whose type i s a

c l a s s type

Evaluation of Model Transformation Testing in Practice 85

APPENDIX B. CODE

33

34 endpackage

Listing B.5: Partition7.ocl

1

2 pub l i c c l a s s ClassTest extends AbstractEmfOclTest{

3

4 pub l i c void reg i s terMetamodel (S t r ing pathOfEcoreModel) {

5 Resource . Factory . Reg i s t ry .INSTANCE. getExtensionToFactoryMap () . put (

6 ” ecore ” , new EcoreResourceFactoryImpl ()) ;

7 ResourceSet r s = new ResourceSetImpl () ;

8 // enable extended metadata

9 f i n a l ExtendedMetaData extendedMetaData = new BasicExtendedMetaData (r s .

getPackageRegistry ()) ;

10 r s . getLoadOptions () . put (XMLResource .OPTION EXTENDEDMETADATA,

11 extendedMetaData) ;

12 URI uriOfYourModel = URI . createURI (pathOfEcoreModel) ;

13 Resource r = r s . getResource (uriOfYourModel , t rue) ;

14 EObject eObject = r . getContents () . get (0) ;

15 i f (eObject i n s t an c e o f EPackage) {

16 EPackage p = (EPackage) eObject ;

17 EPackage . Reg i s t ry .INSTANCE. put (p . getNsURI () , p) ;

18 }

19 }

20

21 pub l i c void configureAndRunTest (S t r ing pathOfOCLFile , S t r ing pathOfOutputXMI)

throws FileNotFoundException , IOException {

22 CompleteOCLStandaloneSetup . doSetup () ;

23 Model p ivot = loadOclDocumentFromURI (pathOfOCLFile) ;

24

25 // Assume that in a l l t e s t s the re i s a root c l a s s c a l l e d Model

26 TestBoundsProvider boundsProvider = new TestBoundsProvider ()

27 . w i th In t e rva l (”Model” , 1 , 1)

28 . w i th In t e rva l (”Class ” , 1 , 1)

29 . w i th In t e rva l (”Type” , 1 , 2)

30 . w i th In t e rva l (”Att r ibute ” , 1 , 2) ;

31

32 UseMvFinder f i n d e r = new UseMvFinder ()

33 . withBoundsProvider (boundsProvider) ;

34

35 EFinderRunner runner = EFinderRunner .

36 withOclModel (p ivot) .

37 withFinder (f i n d e r) ;

38

39 Result r e s u l t = runner . f i nd () ;

86 Evaluation of Model Transformation Testing in Practice

APPENDIX B. CODE

40 System . out . p r i n t (r e s u l t . i s S a t ()) ;

41 as se r tTrue (r e s u l t . i s S a t ()) ;

42

43 i f (r e s u l t . i s S a t ()) { //Only when the c on s t r a i n t s are s a t i s f i a b l e , the model

w i l l be saved

44 HashMap<Str ing , Object> opts = new HashMap<Str ing , Object>() ;

45 opts . put (XMIResource .OPTION SCHEMA LOCATION, true) ;

46 Resource model = r e s u l t . getWitness () . getResource () ;

47 model . save (new FileOutputStream (pathOfOutputXMI) , opts) ;

48 }

49 }

50

51 @Test

52 pub l i c void c l a s sTe s t () throws FileNotFoundException , IOException {

53 // r e g i s t e r the uml metamodel in EMF

54 reg i s terMetamode l (” C la s s 2Re l a t i ona l /uml . e co re ”) ;

55 // generate c l a s s i f y i n g term i n f o ; the key i s the context name , and the value i s

f i l e path o f the c l a s s i f y i n g terms

56 LinkedHashMap<Str ing , Str ing> map = new LinkedHashMap<Str ing , Str ing >() ;

57 map . put (”Att r ibute ” , ” C la s s 2Re l a t i ona l /CTAttribute . t ex t ”) ;

58 Class i fy ingTerms c t I n f o = new Class i fy ingTerms (map) ;

59 St r ing pathOCL = ”Cla s s 2Re l a t i ona l / C la s s 2Re l a t i ona l . o c l ” ;

60 // generate a l l OCL f i l e s

61 generateClass i fy ingTermOCLFi les (c t In fo , pathOCL) ;

62 // s t a r t model gene ra t i on . I t e r a t e from the maximum c h a r a c t e r i s t i c va lue to zero

63 In t eg e r c h a r a c t e r i s t i cVa l u e = new In t eg e r (c t I n f o . va lue) ;

64 whi l e (c h a r a c t e r i s t i cVa l u e != −1) {

65 St r ing pathOfOCLFile = ”C la s s 2Re l a t i ona l /” + cha r a c t e r i s t i cVa l u e . t oS t r i ng () +

” . o c l ” ;

66 St r ing pathOfOutputXMI = ”outputs / r e s u l t ” + cha r a c t e r i s t i cVa l u e . t oS t r i ng () +

” . xmi” ;

67 configureAndRunTest (pathOfOCLFile , pathOfOutputXMI) ;

68 cha r a c t e r i s t i cVa lu e −−;

69 }

70 }

71 }

Listing B.6: The class ClassTest

B.6 The code for spliting a model into one ASOME model

and one generator model

1 ResourceSet metaResourceSet = new ResourceSetImpl () ;

Evaluation of Model Transformation Testing in Practice 87

APPENDIX B. CODE

2

3 Resource dataModel = metaResourceSet . c reateResource (URI . createURI (

pathOfOutputXMI1)) ;

4 Resource generatorModel = metaResourceSet . c reateResource (URI . createURI (

pathOfOutputXMI2)) ;

5

6 EList<EObject> l i s tOfdataMode l = dataModel . getContents () ;

7 EList<EObject> l i s tO fgene ra to rMode l = generatorModel . getContents () ;

8

9

10 whi l e (model . getContents () . s i z e () >= 1) {

11 EObject ob = model . getContents () . get (0) ;

12 St r ing nameOfEPackage = ob . eClass () . getEPackage () . getName () ;

13 System . out . p r i n t l n (nameOfEPackage) ;

14 i f (nameOfEPackage . equa l s (”imp”)) {

15 l i s tO fgene ra to rMode l . add (ob) ;

16 }

17 e l s e {

18 l i s tOfdataMode l . add (ob) ;

19 }

20 }

21

22 dataModel . save (new FileOutputStream (pathOfOutputXMI1) , opts) ;

23 generatorModel . save (new FileOutputStream (pathOfOutputXMI2) , opts) ;

Listing B.7: The code for spliting a model into one ASOME model and one generator model

88 Evaluation of Model Transformation Testing in Practice

	Contents
	List of Figures
	List of Tables
	Listings
	Introduction
	Background
	Problem Statement
	Research Questions
	Methodology
	Thesis Outline

	The study of the practice and the literature review
	Definitions
	Model Transformation Development
	Model Transformation Testing
	Test Quality Evaluation
	Test Coverage
	Mutation Analysis
	Model Diversity

	Altran Practice
	Interview Guidelines
	Findings from Interviews
	Challenges at Altran

	Literature Review
	Procedure for Executing the Review
	Challenges and Open Issues Mentioned in the Literature
	Summary of the Approaches
	M2M Transformation Testing
	M2T Transformation Testing

	Further Selection and Prioritization
	Prioritization

	Reflection on Interviews and the Literature Review
	Evaluation Criteria for the Selected Approaches

	TractsTool and Matching Table Builder
	TractsTool
	Introduction of TractsTool
	Case Study
	Introduction of UML2Relational transformation case
	Implementation of the UML2Relational case study using TractsTool
	Results

	Discussion on TractsTool
	Conclusions

	Matching Table Builder
	Introduction of Matching Table Builder
	Discussion on Matching Table Builder
	Conclusion

	UML-based Specification Environment and Efinder
	The UML-based Specification Environment
	Introduction to UML-based Specification Environment
	Introduction of Classifying Terms
	Case Study
	Invariants
	Configuration in USE
	Results

	Discussion on USE
	Conclusions

	Efinder
	Introduction of Efinder
	Case Study: Generating multiple instance models
	Generating OCL files
	Configure and Run the Tool
	Results

	Discussion on Efinder
	Conclusion

	Conclusions
	Bibliography
	Appendix
	ASOME Case Study Reports
	Industrial case study 1: to compile and generate one instance model of data.ecore
	Implementation
	1. Remove the operations in the ecore models that Efinder can not compile
	2. Ignore some original OCL constraints of the ASOME metamodels
	3. Remove the OCL expressions so that there is no type conformance problems in USE

	Results

	Industrial case study 2: to generate multiple instance models using classifying terms
	Implementation
	Results

	Problem 1 of Efinder: compilation error in OCL constraints
	Problem 2 of Efinder: unsatisfiable proof
	Problem 3: Efinder does not support generating a pair of models

	Code
	QVTo Transformation for UML2Relational
	uml.use generated by TractsTool
	Generated USE Specifications By TractsTool
	Generated USE Specifications By Efinder
	The code for generating OCL files with classifying terms
	The code for spliting a model into one ASOME model and one generator model

