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Abstract

Many students at the Technische Universiteit Eindhoven and the Avans Hogeschool use the
secure exam environment STEP to make their exams on their own computers within a secured
custom Linux distribution. It is important that there is some automated way to detect fraud
and faults in logs generated by STEP, such that the integrity of the examination process remains
intact. Potential machine learning solutions are explored for anomaly detection for secure exam
environments. A deep learning bidirectional LSTM for predicting the probability distribution of
the vocabulary trained on non-anomalous logs is the most promising solution. It is attempted to
add methods from the interpretability domain, however an existing model can not be found that
works with the output of the bidirectional LSTM. Instead a visualization in Excel is created to
visualize the anomaly scores.
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for thinking with me, helping me throughout the project with STEP related questions and his
feedback. I would also like to thank Huub from Secure Testing B.V. for providing the business
problem. From the TU/e I would also like to thank Joaquin Vanschoren for his help as my
first supervisor, dr. Natasha Stash and Ms. Katie MacLeod for their help in their capacity as
academic advisor for master students. I would like to thank my father and mother, Karel and
Susan for proofreading my master’s thesis and supporting me throughout, as well as my sister
Jitske. Finally, I would like to thank my activity supervisor Mary who has helped me decrease
my agoraphobia and helped me to go out again and work on my thesis at Carapax IT.

This master’s thesis finally marks the end of my journey to finally graduate. It took longer than
expected but we have finally reached the destination. I hope you will enjoy reading this master’s
thesis, and appreciate the journey it took to finally get to this point. As Brandon Sanderson
states in his book The Way of Kings - “Journey before Destination.”, but I am still happy to
have finally reached the destination.

Hugo Spee

Towards Interpretable Anomaly Analytics for Secure Testing Environments v





Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Background and Business Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 STEP system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 Stakeholders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.3 Considerations for the Evolution of the STEP Project in the Future . . . 4
1.2.4 Anticipated Utility of Research Results . . . . . . . . . . . . . . . . . . . 4
1.2.5 Business Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Formulation, Scope and Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.2 Research Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.3 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Literature Review 9
2.1 Anomaly Detection Literature Review . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Anomaly Detection Challenges . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Anomaly Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.3 Anomaly Detection Machine Learning Approaches . . . . . . . . . . . . . 11

2.2 Interpretability Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Transparency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Post-hoc Interpretability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Interpretable Anomaly Analytics for Secure Testing Environments Definition . . 13
2.4 Characterization of Machine Learning Approaches for Anomaly Detection and

Choices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.1 Machine Learning Approaches for Anomaly Detection . . . . . . . . . . . 15

2.5 Preliminary Overview of Machine Learning Approaches Used . . . . . . . . . . . 18
2.5.1 Isolation Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5.2 Long Short-Term Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5.3 Autoencoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5.4 Attention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 Preliminary Overview of Evaluation Metrics for Anomaly Detection Techniques . 21
2.6.1 Precision and Recall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Towards Interpretable Anomaly Analytics for Secure Testing Environments vii



CONTENTS

2.6.2 F1 Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.6.3 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.6.4 Area Under the Receiver Operating Characteristic Curve . . . . . . . . . 24
2.6.5 Precision-Recall Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.7 Design Choices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Deep Learning Approach for Anomaly Detection in Secure Testing Environ-
ments 27
3.1 General Model Development Approach . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Business Understanding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 Main Business Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.2 Secondary Business Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.3 Business Goal Measure of Evaluation . . . . . . . . . . . . . . . . . . . . . 29

3.3 Data Understanding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.1 Available Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.2 Data Choices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Data Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4.1 Drain for Log Key Extraction . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4.2 Data Preparation Methods from Natural Language Processing . . . . . . 32
3.4.3 Other Data Preparation Methods . . . . . . . . . . . . . . . . . . . . . . . 32
3.4.4 Data Preparation Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5 Modeling Development and Selection . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.5.1 Deep Anomalous Collective Events Prediction . . . . . . . . . . . . . . . . 34
3.5.2 Deep Anomalous Log-Line Prediction . . . . . . . . . . . . . . . . . . . . 36
3.5.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.5.4 Other Anomaly Prediction Methods . . . . . . . . . . . . . . . . . . . . . 39

3.6 Modeling Interpretability for Bidirectional LSTM . . . . . . . . . . . . . . . . . . 41
3.6.1 Interpretable Anomaly Alert Processing for Bidirectional LSTM . . . . . 42

3.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.7.1 Evaluation for Anomaly Detection . . . . . . . . . . . . . . . . . . . . . . 43
3.7.2 Evaluation for Alert Processing . . . . . . . . . . . . . . . . . . . . . . . . 43

3.8 Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Experiments and Results 45
4.1 Anomaly Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1.1 Preliminary Experiments with Pentest Logs for Character-Based Methods 45
4.1.2 Word-based Methods and the Inclusion of the Fault Dataset . . . . . . . . 46
4.1.3 Clustering with Normalized Compression Distance . . . . . . . . . . . . . 49
4.1.4 Using TF-IDF for Anomaly Detection and Revisiting the Attention Layer 52
4.1.5 Experiments with Hackathon Logs and Removal of Non-Verbose Pentests 53
4.1.6 Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.1.7 Summary Anomaly Detection Experiments and Results . . . . . . . . . . 54

4.2 Interpretability and Model Optimisation . . . . . . . . . . . . . . . . . . . . . . . 56
4.2.1 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2.2 Expert Feedback and Model Optimisation . . . . . . . . . . . . . . . . . . 56
4.2.3 Model Optimisation Based on Feedback . . . . . . . . . . . . . . . . . . . 57
4.2.4 Adjusting Drain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2.5 Summary Interpretability Experiments and Results . . . . . . . . . . . . . 59

viii Towards Interpretable Anomaly Analytics for Secure Testing Environments



CONTENTS

5 Conclusions and Lessons Learnt 61
5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.3 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.4 Lessons Learnt and Recommendations . . . . . . . . . . . . . . . . . . . . . . . . 63

Bibliography 65

Appendix 69

A Glossary 69

B Preliminary Experiments 72
B.0.1 Preliminary experiments with pentest logs . . . . . . . . . . . . . . . . . . 72

C Visualization Feedback 78
C.0.1 Example Feedback Received from the Technical Expert Original (Dutch) 78
C.0.2 Example Feedback Received from the Technical Expert Translated . . . . 79

Towards Interpretable Anomaly Analytics for Secure Testing Environments ix





List of Figures

1.1 An overview of the fraud analytics framework used and stakeholders. . . . . . . . 6

2.1 An example of an anomaly in a 2D dataset. . . . . . . . . . . . . . . . . . . . . . 10
2.2 Contrasting intruder detection with jailbreak detection. . . . . . . . . . . . . . . 14
2.3 An example of an isolation tree isolating an anomalous instance in Figure (a) and

a normal instance in Figure (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 An example of a basic recurrent neural network. . . . . . . . . . . . . . . . . . . 20
2.5 An example of a LSTM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.6 An example of an autoencoder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.7 An example of how precision and recall are defined visually. . . . . . . . . . . . . 23
2.8 An example of how the ROC curve is constructed. . . . . . . . . . . . . . . . . . 24

3.1 The cross-industry standard process for data mining (CRISP-DM). . . . . . . . . 28
3.2 An example of log-lines from pentest log 0 without the main data preparation

steps performed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 An example of log-lines from pentest log 0 with the main data preparation steps

performed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4 Deep anomalous collective events prediction LSTM Autoencoder model. . . . . . 35
3.5 Deep anomalous log-line prediction model (BEM). . . . . . . . . . . . . . . . . . 38

4.1 Different δlog−line,wordl threshold value of pentest 0 and 17 for the word-based
BEM. The red line denotes the baseline from the isolation forest model with an
anomaly threshold of 0. It can be seen that the word-based BEM outperforms
the character-based BEM from Fig. B.3 on all metrics on its optimal δlog−line,wordl

threshold value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 The δlog−line,wordl scores for the TU/e dataset (blue) versus the new fault dataset

(orange) and the pentests (red) for the word-based BEM using only unique events.
Most fault logs have low scores which makes them distinguishable at the cost of
some false positives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 The decision boundary given by the support vector machine on the data of Fig. 4.2.
It neatly divides most of the fault logs. . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4 Clustering syslogs by Normalized Compression Distance in 2D (a) and 3D (b).
The dots denote normal TU/e logs and the stars denote anomalous pentest logs.
Each colour denotes a different cluster. . . . . . . . . . . . . . . . . . . . . . . . . 50

4.5 NCD clustering on individual log-lines of pentest syslog 0 in (a) and (c) and pentest
syslog 17 in (b) and (d). A clustering of all log-lines is shown in (a) and (b) and a
clustering of only the anomalies (true anomalies (stars) and false positives (dots))
according to the word-based BEM are shown in (c) and (d). . . . . . . . . . . . . 51

Towards Interpretable Anomaly Analytics for Secure Testing Environments xi



LIST OF FIGURES

4.6 The TF-IDF scores of the “〈EOS〉” character for TU/e logs, pentests and fault
logs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.7 The BEM against the A-BEM with anomaly scores set against the TF-IDF scores
for the “〈EOS〉” character for TU/e logs, pentests and fault logs. . . . . . . . . . 53

4.8 The decision boundary given by the support vector machine on all log types. It
is possible to divide all anomalous logs with minimal false positives. . . . . . . . 54

4.9 An example of how the visualization of the model looks like in Excel with an
anomaly in red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.10 Effects of fine-tuning and using the new tokenizer without stopwords and single
characters. Fine-tuning decreases the performance of the model. Note that the
original high resolution version of Subfigure (a) with proper axis labeling was lost
and this image is the only one still available. . . . . . . . . . . . . . . . . . . . . 58

4.11 As expected removing the error caused by the new STEP log-lines pushes the
hackathon and fault logs further towards normal instances. . . . . . . . . . . . . 59

B.1 Different metrics values over the δlog−line,charl threshold values for pentest 0 and
17. The orange line denotes the baseline when only using the naive substring
filtering method of 3.5.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

B.2 The log anomaly score δlog,char for the TU/e dataset (blue) versus the pentest
dataset (red) for the LSTM given by the character-based EM. A subset of pentest
logs is easily separable from the TU/e logs. . . . . . . . . . . . . . . . . . . . . . 74

B.3 Different metrics values over δlog−line,charl threshold value of pentest 0 and 17 for
the character-based BEM. The red line denotes the baseline from the isolation
forest model with an anomaly threshold of 0. It can be seen that the character-
based BEM outperforms the isolation forest for both pentests at an error threshold
near 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

B.4 In (a) the isolation forest log anomaly score for the TU/e dataset (blue) versus the
partial fault dataset (orange). In (b) the log anomaly score δlog,char for the TU/e
dataset (blue) versus the partial fault dataset (orange) for the character-based
bidirectional LSTM. The vertical red dotted line in (a) denotes the anomaly score
threshold of the isolation forest set at 0. The isolation forest cannot distinguish
fault logs but the character-based BEM can. . . . . . . . . . . . . . . . . . . . . . 76

B.5 In (a) the isolation forest log anomaly score for the TU/e dataset (blue) versus the
pentest dataset (red). In (b) the log anomaly score δlog,char for the TU/e dataset
(blue) versus the pentest dataset (red) for the character-based bidirectional LSTM.
The vertical red dotted line in (a) denotes the anomaly score threshold of the
isolation forest set at 0. Both the isolation forest and the character-based BEM
have some success in distinguishing the pentest logs from the TU/e logs. . . . . . 77

B.6 The decision boundary given by the support vector machine on the data of Fig. B.5
(b). It divides the TU/e logs and the pentest logs, but not perfectly. . . . . . . . 77

xii Towards Interpretable Anomaly Analytics for Secure Testing Environments



List of Tables

1.1 Research questions for this study. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 The definition of a confusion matrix . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 Overview of different datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1 Performance metrics for intra-log anomaly detection for the word-based BEM on
pentest 0 and 17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Performance metrics for inter-log anomaly detection for Fig. 4.3 . . . . . . . . . . 49
4.3 Performance metrics for inter-log anomaly detection based on clustering with the

NCD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.4 Performance metrics for Fig. 4.8. All 70 anomalies are found, with only 11 false

positives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.5 Overview of different methods used . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.6 Performance metrics for Fig. 4.11. Performance decreases significantly by adjust-

ing Drain’s similarity threshold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

B.1 Performance metrics for character-based EM on pentest 0 and 17. . . . . . . . . 72

Towards Interpretable Anomaly Analytics for Secure Testing Environments xiii





Chapter 1

Introduction

Anomalous data can indicate interesting non-standard behaviour within a computer system, ana-
lysis of this data can provide clues for failures of the system and non-proper usage amongst other
uses. This thesis focuses on developing a machine learning framework for detecting anomalies
within a custom Linux distribution on a USB stick that limits the capabilities of the system
to which the USB stick is connected. This Linux distribution is used during exams to allow
students to use their own laptop within a walled garden environment and is henceforth referred
to as STEP. It is therefore useful to be able to detect failures within this Linux distribution and
possible attempts by students to bypass the walled garden as well as explain why these failures
happened and how the walled garden was bypassed.

1.1 Background and Business Case

The TU/e based start-up company Secure Testing B.V., in partnership with the IT company
Carapax IT, has developed a secure Linux based operating system that is loaded onto a USB
stick. These USB sticks are given to students to be used during exams, they will insert the
USB sticks into their laptops which gives them access to their laptop during the exam within a
secured environment. Because Secure Testing B.V. is selling their system to different educational
institutions they would like to include some method of detecting patterns or instances in their
data which do not conform to expected behaviour, i.e. anomalies. Anomalies can help the
educational institutions identify where certain faults in the system originate, as well as identifying
cases of fraud within the system. Faults of the STEP system are defined as failures in software
and/or hardware which occur when a computer system is running the STEP System. The cause
of a fault is logged in Linux and/or STEP logs, but might not be easy to find for a layperson.
Fraud in the STEP system is defined as a malicious attack on the STEP system by a bad faith
actor. When a malicious attack on the STEP System succeeds, this will allow the bad faith actor
to cheat on an examination. Having an anomaly detection system will allow Secure Testing B.V.
to more efficiently provide support by in-house experts and a way to more easily investigate
suspicious behaviour. Just having an anomaly detection system, however, does not mean that
it will be clear why something was flagged as an anomaly. Because the system will be used
by lay people and software engineers from Carapax IT, it is useful to offer more insight into
why something was flagged as an anomaly. Therefore it would be useful to add a interpretable
anomaly alert processing framework which can explain the decision of an algorithm in a way that a
human can understand it. Moreover, in Europe the General Data Protection Regulation (GDPR)
provides its citizens with the ”right to explanation” (Goodman and Flaxman, 2017), the right to
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CHAPTER 1. INTRODUCTION

be provided with an explanation on why an important decision regarding yourself was taken with
help of an algorithm. So, if a student is penalized for having committed fraud, based on a decision
reached using the system, and this student asks for an explanation, it is ideal if the system is able
to provide the end users with an explanation for why a certain log was flagged. It is important
to stress that in the end a human will make decision on what to do when the system flags an
anomaly. If a student takes the educational institutions using the secure testing environment to
court over a decision made by the model, it is important that the decision can be explained by
the model such that it can hold up in court. Preferably, therefore, any fraud detection system
should be GDPR compliant. In recent times, with the ongoing 2019–20 coronavirus pandemic
massive quarantines are deployed by governments around the world to prevent the severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) from spreading. Due to these quarantines
many examinations will be held online and dealing with fraud in these cases is expected to become
an important problem in the foreseeable future. The need for research into interpretable secure
testing environments therefore becomes more important than ever. This work is divided into two
distinct parts, an anomaly detection framework and an interpretable anomaly alert processing
framework.

1.2 Problem Context

Secure Testing B.V. would like to improve and further integrate their methods of detecting faults
and fraud attempts. As the STEP system is used for administering exams by educational insti-
tutions, Secure Testing B.V. would like to be able to further assure their clients that the STEP
system can inform administrative users of fraud attempts and faults caused by new computer
configurations. Despite the wish of Secure Testing B.V. to specifically detect fraud attempts,
it was decided to limit the scope of this problem to finding any anomaly within a set of Linux
logs. This is due to the secretive nature of the fraud detection domain which limits access to
information about the state of the art of detection systems specifically designed to detect fraud.
The state of the art of more general anomaly detection systems is less secretive and therefore it
was decided to limit the scope to the more general task of finding anomalies rather than finding
fraud attempts in particular. Our goal is creating a machine learning model which can:

1. Find anomalous sessions1 i.e. sessions that contain faults or fraud attempts.

2. Find and visualize anomalous log-lines within an anomalous session.

Furthermore, since every educational institution has its own version of the STEP system
the model should be able to provide the end users who are not domain experts with enough
information such that they can self-diagnose problems or know when to contact Secure Testing
B.V. if there are issues in their system requiring expert support.

1.2.1 STEP system

The STEP system (Secure Testing Environment Protocol) is a Linux based operating system
that is loaded onto a USB stick. When inserted into a computer the computer boots into a
secure environment with limited access to the internet and tools like calculators. Educational
institutions are able to select which internet domains they provide access to and which tools
they wish to include on the OS for each individual USB stick. The goals of this project are

1A session is the set of all logs that have been generated by the STEP system for a single USB stick entered
into a student machine from USB startup to shutdown. See 3.3.1 for the detailed definition.
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twofold, first is to apply anomaly detection on the collected logs to detect faults and cases of
fraud. Secondly the goal of this project is to apply interpretable anomaly alert processing on
the results of the anomaly detection to make the results easier to understand for a human and
to allow faster debugging of the faults and potential fraud cases found in the system.

1.2.2 Stakeholders

Three groups of stakeholders for the anomaly detection system are identified, as shown in Fig. 1.1:

• STEP software engineer and testers at Carapax IT.

• Exam Committee members at educational institutions.

• Technical staff at educational institutions.

STEP technical expert and tester at Carapax IT

The STEP Technical Expert of Carapax IT is the programmer behind the STEP system. He is
an expert in Linux systems and can manually find issues in Linux logs. There is also a software
tester who has less knowledge of Linux but can also find issues in logs, although not at the
same level as the technical expert. They are collectively referred to as the experts of Carapax
IT. Carapax IT often receives logs from Secure Testing B.V containing hardware issues. These
logs come from laptops which have experienced faults while using the STEP system and do not
contain personally identifiable information. Currently the experts have to go through each of
these logs manually to check where the fault occurs, which is very time consuming. Faults that
are found manually are annotated and fixed when possible. The experts would like a faster way
to find faults in these logs, so they do not have to spend so much time on manually going over
each log.

Exam Committee members at educational institutions

The educational institutions are currently using the STEP system and want to assure that if
they award someone with a diploma, this person verifiably meets the standards required for that
diploma. The educational institutions do not want to devalue the credibility of their diplomas if
suspicions are substantiated that it is possible to cheat your way through certain exams. Hence
they want a way to identify fraud attempts within sessions generated during their exams. If
the exam commitee suspects someone of committing fraud during an exam, for example if an
exam invigilator suspects that fraud might have occurred, based on their surveillance, then Secure
Testing B.V. expects that the exam committee could request Secure Testing B.V. to check specific
log files associated with the exam for fraud, if the educational institutions have issues figuring
out if there is fraud in the logs themselves. These log files will then be sent to Carapax IT by
Secure Testing B.V. and the technical expert and tester of Carapax IT will then be asked to
find evidence of fraud within the logs. Having a system that would mark potentially fraudulent
lines would be useful for the technical expert and tester of Carapax IT in providing additional
evidence to substantiate the fraud claims to the exam committee, as accusing someone of fraud
is a serious matter. The technical expert and tester of Carapax IT will only indicate to the
exam committee which log-lines are anomalous, the decision whether or not the found log-lines
indicate indictable fraud is left to the exam commitee.
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Technical staff at educational institutions

If something goes wrong with a laptop running STEP during an exam the technical staff of
the educational institution will be informed. The technical staff will send clean new logs of the
laptops that had problems running STEP to Secure Testing B.V. which will ask the expert and
tester of Carapax IT to find the faults within the logs and fix them. Because the time of the
technical expert of Carapax IT is valuable and there might be a lot of logs of faulty laptops, it
is useful for there to be a method for the technical expert of Carapax IT to find faults faster.

1.2.3 Considerations for the Evolution of the STEP Project in the
Future

It is important to note that STEP is still a system in development; as such the business require-
ments and stakeholders might change over time. Right now it is assumed that logs are reported
by skilled staff at the TU/e but in the future, as STEP is sold to more educational institutions,
the use case presented in Fig. 1.1 might change. Note that, while STEP is used by Avans Ho-
geschool too, in this report we will focus primarily on the Tu/e only, as the TU/e is where we
get most of our logs from. It is reasonable to expect that finding anomalous user sessions within
a group of sessions (inter-log anomaly detection) in addition to anomalous log-lines (intra-log
anomaly detection) will become an important business goal in the future. It is also reasonable
to expect that the technical expert of Carapax IT will not be able to go through logs for the
lifetime of the STEP system, therefore any solution should also be usable for people with less
technical knowledge, such as employees of educational institutions.

1.2.4 Anticipated Utility of Research Results

The anticipated utility of the research results is as follows:

• A machine learning model and machine learning pipeline is provided that finds anomalies
within Linux logs (intra-log anomaly detection) which can be implemented into STEP.

• A machine learning model and machine learning pipeline that finds Linux logs that are
anomalous (inter-log anomaly detection) is provided.

• Users can be notified of suspicious logs.

• A visualization of the model alerts is provided which is suitable for a lay person and aids
the experts at Carapax IT in finding faults and anomalies within the logs.

1.2.5 Business Requirements

As this is an exploratory work into the feasibility of anomaly/fraud detection for the STEP
system there are no strict requirements for the approach from the company side. The best
case scenario for the client would be to have an approach that can be integrated into STEP.
This approach should find logs with faults/fraud automatically with high true positives rates
and low false positives rates and produce an easy to use overview of the faults/fraud. Since no
requirements were given for performance of the model the goal of this study will be to find the
best possible approach within the time limit given. The success of the project in terms of business
goal will ultimately be decided by the customer outside the scope of this work. Furthermore,
regarding other business requirements, any machine learning algorithm is allowed to be picked
and no requirements regarding processing time were given. The analysis may take place after an
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exam is over and all data has been gathered, therefore at this moment it is not a goal to perform
data analysis during an exam in near real-time.

1.3 Formulation, Scope and Approach

1.3.1 Approach

An overview of the data analytics framework is given in Fig. 1.1.

Anomaly Analytics for Exam Fraud Detection

STEP logs are received, they are preprocessed and then sent to the anomaly detector which
generates anomaly scores. Manually labeled logs by the technical expert of Carapax IT can
be used to evaluate intra-log detection performance. All logs are labeled for being normal or
containing faults/hack attempts, which can be used to evaluate inter-log detection performance.
Carapax IT employs data engineers who can maintain the machine learning pipeline.

Interpretable Anomaly Alert Processing

The alert processing unit receives the anomaly scores from the anomaly detector and uses Ex-
plainable AI or a visualization to add a measure of explainability such that the technical expert
and tester of Carapax IT can understand the results faster which helps them save precious time.
The solution is evaluated by the technical expert and the tester of Carapax IT for its usability
in simplifying their work.

1.3.2 Research Formulation

The main research question is:

How should an interpretable anomaly detection framework be created that detects sys-
tem faults and fraud cases and then provides users with valuable information about
those system faults and fraud cases.

In order to answer this question this research question is split into two sub-questions:

How should an anomaly detection framework be created that can rank the content
of Linux logs and user data on their abnormality in comparison with known normal
Linux logs and user data. As well as detect and generate an anomaly alert for those
Linux logs and user data which are likely to contain system faults or fraud cases based
on their ranking?

and

How should an interpretable anomaly alert processing framework be created that provides
an overview of the detected anomalies, as well as providing a human understandable
explanation of the reasons that these anomalies were detected by the anomaly detec-
tion framework.

These two research questions encompass the two core domains of this study: anomaly detec-
tion and interpretable anomaly alert processing. To further define these two research questions
a couple of supporting sub-questions are provided, a summary of which is found in Table 1.1.
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Fig. 1.1: An overview of the fraud analytics framework used and stakeholders.
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1. Which methods of anomaly detection and interpretable anomaly alert processing
are the most appropriate to implement for anomaly detection for secure testing en-
vironments.

To answer this question a literature review will be performed to determine the best algorithms
to implement.

2. To what extent does the anomaly detection framework help with the detection of
anomalies.

Performance metrics will be calculated for inter-log and intra-log anomaly detection using
the available examples of anomalies for intra-log anomaly detection and the different log types
i.e. TU/e logs, pentests, fault logs and hackathon logs for inter-log anomaly detection.

3. To what extent does the interpretable anomaly alert processing framework help
users gain a better understanding of faults and fraud cases within the system.

A case study will be performed where it will be measured how useful the technical expert
and the tester perceive the system.

Research
Question

Goal Method Data Analysis

1

Find anomaly
detection and inter-
pretable anomaly
alert processing
algorithms that are
suitable for monit-
oring secure testing
environments.

Literature review.

Categorize and
select algorithms
based on their
characteristics and
how they match
the requirements of
the business case.

2

Determine whether
the anomaly detec-
tion framework has
good performance.

Choose relevant
performance met-
rics and benchmark
on provided/con-
structed datasets.

Selecting the best
performing model
based on perform-
ance metrics.

3

Determine whether
the interpretable
anomaly alert pro-
cessing framework
provides value for
users.

Perform a user
evaluation to
gather perceived
usefulness and
comments.

Analyse the data
from this user eval-
uation session.

Table 1.1: Research questions for this study.

1.3.3 Scope

This study includes only those logs as laid out in section 3.3.1. Two pentest logs have been
labeled by the software engineer from Carapax IT, these are the only measures of intra-log
anomaly detection that are used. Because only two logs are used and they were labeled by a
single person, without anybody else with the knowledge available to verify their labeling, it is
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not possible to make a strong case for generalization of the machine learning pipeline as laid out
in this study. The results of this study only pertain to the performance of the machine learning
pipeline for the STEP system. The usability of the visualization method is only measured by two
of the end-users of the visualization at Carapax IT, therefore the visualization is only evaluated
within the context of the perceived usability for Carapax IT and the people that are ultimately
going to use the visualization and no claims about generalization can be made.

1.3.4 Outline

In Chapter 2 the theory behind this study is explained. The literature review is laid out and
preliminary information about algorithms used in this study is given. Techniques for anomaly
detection and interpretability are explained and the evaluation metrics that are used in this study
are outlined. In Chapter 3 The approach is explained, the data that is used, preprocessing steps,
evaluation methods used and interpretability options used. In Chapter 4 the experiments and
results for the anomaly detection and interpretability frameworks are shown. Chapter 5 contains
the conclusion to the study.

1.4 Contributions

• We defined the problem of anomaly and fraud detection for secure testing environments as
a machine learning problem. Different machine learning approaches of the state of the art
were defined and applied to the problem. Our thorough search of the relevant literature
yielded no other studies exploring this problem domain, thus suggesting that this is the
first study to explore the problem domain of anomaly and fraud detection for secure testing
environments.

• We proposed Several (modifications of) state of the art deep learning approaches for the
secure testing environment domain. In particular, we focused on the LSTM Autoencoder
model from (Grover, 2018) in context of the problem and an implementation of the Bi-
directional Event Model (BEM) from (Brown et al., 2018) on the problem.

• We conducted a case study of the usability of the visualization in Excel with real logs
where it is not known where the real anomalies are. The experts from Carapax IT think
the visualization is useful and might help them save time.

• Last, but not least, we turned the lessons learnt from the case study into a guideline to
the company how to further develop the machine learning framework for secure testing
environments.
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Chapter 2

Literature Review

In this chapter a literature review of the anomaly detection domain and interpretability domain
is performed. Preliminary information is given about machine learning methods that are used in
this work. Further, evaluation metrics used for anomaly detection techniques are outlined and
the choices for machine learning approaches made are motivated.

2.1 Anomaly Detection Literature Review

In anomaly detection finding patterns within the data that do not conform to expected behaviour
is the main interest (Chandola et al., 2009). In Fig. 2.1, N1, N2 and N3 show examples of areas
where within data could be considered as conform normal behaviour. Point A1 shows an example
of an anomalous data instance.

2.1.1 Anomaly Detection Challenges

Anomaly detection is a large research field with several sub-domains e.g. (credit card) fraud
detection, intrusion detection, fault detection to name but a few. In (Chandola et al., 2009)
Chandola, Banerjee and Kumar identify 6 key challenges within the anomaly detection domain.

• It is challenging to define a normal region that encompasses every single instance of normal
behaviour. Also observations that lie near the decision boundary can easily be misclassified.
An example of this can be seen in Fig. 2.1. Consider the uppermost point of cluster N3,
there is a valid case to be made that this point is actually an anomaly as its distance to the
cluster center is large and its location is distinct from the other points within the cluster.

• When the anomalous data is generated by a bad faith actor in order to commit fraud
or other crimes, then the bad faith actors will try to game the system by generating the
anomalous data in such a way that it appears to be conform normal behaviour. This makes
it harder to identify anomalies within the fraud and intrusion detection domains, and is of
special significance to this study as well.

• Normal behaviour might not be static and evolve over time. This means a model trained
now might not be effective a year later.

• The notion of what constitutes an anomaly is different per domain. A definition of an
anomaly in one domain might constitute normal behaviour in another. Hence techniques
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Fig. 2.1: An example of an anomaly in a 2D dataset.

for one domain might not transfer well to another domain. For example a Linux log
that contains traces of fraudulent activity, but not faults, can be considered to be an
anomalous instance in the fraud detection domain, but a normal instance in the fault
detection domain. Even though both are technically anomalous compared to logs that do
not contain fraudulent activity and faults.

• In many cases there is no labeled data available because anomalous data is by definition
rare and it can be challenging to correctly label anomalous data. Moreover, data that is
labeled can be confidential especially in the fraud detection domain. Therefore applying
(semi-)supervised learning is often not possible. This makes it harder to build strong
models and evaluate them.

• The data might also contain noise that is similar to the anomalies. For example a log-line
generated by a verbosity mode can describe normal behaviour but if we do not train on
logs using the verbosity mode these log-lines can become noise that will most likely be
misidentified as anomalous. It is hard to know whether an instance that is marked as an
anomaly is actually a highly valued observation (novelty) or that it is noise that does not
have any novelty value. We might not immediately recognize that these log-lines that were
incorrectly marked as anomalous are actually describing normal behaviour in a verbose
way.

2.1.2 Anomaly Types

In general there are three types of anomalies that are identified.

• Point Anomalies. These are specific data instances that are anomalous to the rest of the
data. For example A1 in Fig. 2.1 represents a point anomaly. In the context of exam fraud
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detection A1 might represent a single log-line which accesses a forbidden website.

• Collective Anomalies. These are collections of data instances that as individual data
instances might conform to normal behaviour, but as a collective constitute an anomalous
sequence. For example consider the regular sequence of a heartbeat in an electrocardio-
gram, when somebody experiences a heart attack the sequence of the heartbeat changes
and this changed sequence is a collective anomaly when compared with the regular heart-
beat sequence. In the context of exam fraud detection a collective anomaly might be a
large amount of specific actions in a sequence probing for weaknesses in the system.

• Contextual Anomalies. These are point anomalies that are only anomalous within a
certain given context. For example consider a sensor that measures the temperature every
15 minutes, if the measurements for an hour are [28,29,10,31] then the “10” measurement
is anomalous within the context of this sequence, but not on its own. In the context of
exam fraud detection a contextual anomaly might be accessing the built-in calculator when
it has been disabled for that particular exam.

The anomaly detection challenges as laid out in this section are projected onto the anomaly
analytics for secure testing environments domain in Section 2.3.

2.1.3 Anomaly Detection Machine Learning Approaches

Anomaly detection problems deal with limited or no labels and, as a consequence of anomalies
generally occurring very infrequently, often have imbalanced datasets where the normal class
vastly outnumbers the anomaly class. The goal is to classify data instances/sequences as be-
longing either to the normal class or the anomaly class, often the data instances get an anomaly
score and those scores that are below a given threshold are considered anomalies. There are
three types of machine learning that are employed in anomaly detection.

• Supervised Anomaly Detection. Using a supervised anomaly detection approach is only
possible if the dataset is fully labeled and is therefore often not an option in the anomaly
detection domain. Furthermore, it has the additional issue that the datasets are often
imbalanced so therefore it requires a specific approach that takes this into account.

• Semi-Supervised Anomaly Detection. For this type of anomaly detection methods it is not
a requirement that all cases are labeled, in general it’s only required that the normal cases
are labeled. A model for normal behaviour for the problem domain can then be computed.

• Unsupervised Anomaly Detection. For this type of anomaly detection no labels are re-
quired at all. Anomalies are found based on only the data instances. The assumption for
unsupervised anomaly detection is that the data is imbalanced and normal instances vastly
outnumber anomalous ones.
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2.2 Interpretability Literature Review

In the interpretability domain finding human understandable explanations of machine learning
models and their output is the main interest. Many machine learning algorithms are black
boxes which do not tell clearly why a certain output was chosen by the model. To reason about
model interpretability a set of definitions which are formalized and agreed upon by experts are
needed. In this study the comprehensive taxonomy of the interpretability research domain given
by Lipton (Lipton, 2016) will be used.

2.2.1 Transparency

The transparency of a model denotes to what extent the model can be understood. It is the
opposite of opacity or blackbox-ness. Transparency can be subdivided into three sub-terms:
simulatability, decomposability and algorithmic transparency.

Simulatability

The simulatability of a model is a measure of how transparent the model itself is, simulatability
is high if a person can contemplate the entire model at once. A person should be able to take the
input of a model and the parameters and in a reasonable time, step through all of the calculations
that the model does.

Decomposability

The decomposability of a model is a measure of to what extent each part of the model—each
input, parameters and calculation—has a human understandable explanation. For example a
decision tree where each node has a plain-text explanation of its role would have high decom-
posability according to this definition.

Algorithmic Transparency

The algorithmic transparency of a model is a measure of which the learning algorithm used
is understandable by humans. For example if it can be proven that an algorithm will always
converge regardless of input then it is known that it will still perform on new data. Modern deep
learning algorithms however are weak in algorithmic transparency.

2.2.2 Post-hoc Interpretability

The post-hoc interpretability of a model is a measure of the information that can be extracted
from a model after training. An advantage of post-hoc interpretability is that already trained
models can be understood without having to sacrifice predictive performance by creating a weaker
transparent model. Post-hoc interpretability can be subdivided into four sub-terms: text explan-
ations, visualization, local explanations and explanation by example.

Text Explanations

Text explanations in post-hoc interpretability is the usage of natural language text to explain
the decisions of a model.
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Visualization

Visualization in post-hoc interpretability is the usage of visualization of the model to see if the
model has learnt the right things. For example in a convolutional neural network one could
visualize the activation of the nodes in a hidden layer for a picture of a dumbbell to see if the
model learnt to look at the right features in the image.

Local Explanations

Local explanations in post-hoc interpretability is about trying to explain what a model depends
on locally and not globally, for example saliency maps in convolutional neural networks can show
which regions of an image produce the most change in output when changed.

Explanation by Example

Explanation by example in post-hoc interpretability is about explaining a decision by giving
examples as justification. For example the model could return a certain log-line as anomalous
and return the k-nearest neighbours in the model learnt space as explanation for why this log-line
is anomalous.

2.3 Interpretable Anomaly Analytics for Secure Testing
Environments Definition

A secure testing environment is a custom operating system for the purpose of administering
tests/examinations to students where usage of the computer is required but in which certain
functions e.g. internet access or access to a calculator are prohibited. Since a custom operating
system is used the primary method of determining what happened during a session is by inspect-
ing the logs generated by the custom operating system. We define the interpretable anomaly
analytics for secure testing environments domain as follows: It is the intersection between fraud
detection, fault detection and jailbreak detection, using log-based anomaly analytics methods
for secure testing environments. The jailbreak detection for secure testing environments is novel
to this work to our knowledge. Figure 2.2 contrasts jailbreak detection with intruder detection.
In intruder detection, there is a secure environment which is locked and bad faith actors are at-
tempting to circumvent the lock and enter the secure environment. In jailbreak detection there
is a secure environment which is locked, however the bad faith actors are locked inside the secure
environment and their goal is to circumvent the lock to exit the secure environment while still
having access to the privileges provided by the secure environment. It is also possible for a bad
faith actor to first intrude into the system to change it in preparation for a later attempt at
a jailbreak attack. The anomaly detection challenges as laid out in Section 2.1.1 relate to the
anomaly analytics for secure testing environments domain as follows.

• Defining a normal region that encompasses every single instance of normal behaviour is also
challenging within the anomaly analytics for secure testing environments domain. Log-lines
and logs can similarly be plotted according to their anomaly scores, this leads to the same
issue that normal behaviour might not be easily defined by a normal region.

• In the anomaly analytics for secure testing environments domain anomalous data that is
purposely generated by bad faith actors to avoid detection is also a real problem. Gen-
erating log-lines in such a way that related log-lines are not next to each other can make
anomaly detection by collective or contextual anomalies harder. Also generating a lot of
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Fig. 2.2: Contrasting intruder detection with jailbreak detection.
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(unique) normal log-lines might allow a log with only a couple of malicious log-lines to
fall through the cracks, especially when using a anomaly score that uses the mean over all
log-line anomaly scores.

• In the anomaly analytics for secure testing environments domain, normal behaviour also
changes over time. As the environment is updated over time with new capabilities, it is
highly likely that normal behaviour will change over time.

• In the anomaly analytics for secure testing environments domain, the notion of what con-
stitutes an anomaly can be different things. In this work it is either a point anomaly in a
single log-line or a point anomaly between full logs. Collective and contextual anomalies
between log-lines are also possible within this domain.

• In the anomaly analytics for secure testing environments domain, it is also the case that
there often is no labeled data available. Logs that are known to include fraud are needed
for this. However, since fraud on exams is relatively rare it would be hard to know which
logs contain fraud, unless you generate fraud cases by letting professional hackers loose in
the environment. Then the question will still be whether fraud generated by professionals
is visible in logs in a similar way as fraud generated by a student during a real exam.

• In the anomaly analytics for secure testing environments domain, noise can also be similar
to anomalies. Noise in logs can be described as log-lines that are irrelevant but rare, then
they are technically anomalous but not novel and useless for finding fraudulent logs. As
well as logs that are highly different from the norm, but not anomalous, for example when
log-lines from a log are generated using a verbosity setting.

2.4 Characterization of Machine Learning Approaches for
Anomaly Detection and Choices

The goal of this section is to explain all the background information that is required in order to be
able to answer the first research question: “Which methods of anomaly detection and interpretable
anomaly alert processing are the most appropriate to implement for anomaly detection for secure
testing environments.”

2.4.1 Machine Learning Approaches for Anomaly Detection

Introduction

In order to decide which machine learning model is most appropriate to implement for the
anomaly detector from the use case in Fig. 1.1 the data and solution space of the problem is
analysed. From the amount of logs that are received in a live environment, extremely few will
contain fraud attempts, some will have faults, but this is rare as laptops are tested by the TU/e
in advance to make sure STEP runs on the laptops. This means the problem has an imbalanced
nature as there are many more normal logs than anomalous logs. If a log is anomalous then
within the log, the anomalous lines might not be very imbalanced compared to the normal lines.
The anomalous lines are mostly imbalanced with regards to the total distribution of log-lines
over all logs received, this is a property that can be exploited in order to classify anomalous
lines using one-class classification on normal log-lines. An important choice to make is whether a
generative or a discriminative model will be used and whether on-line or off-line learning should
be used.
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Imbalanced Classification

The dictionary definition of an anomaly is “something that deviates from what is standard,
normal, or expected.” 1. By definition therefore, the search is for specific behaviour or instances
in the data which are not standard and thus rare. This leads to the primary characteristic and
problem of anomaly detection, dealing with imbalanced datasets where the number of normal
instances or behaviour is much higher than the number of abnormal instances. This makes
anomaly detection challenging with traditional classification algorithms if the imbalanced nature
of the data that one is interested in classifying is not explicitly accounted for e.g. if there is
a dataset with 1000 instances of which 10 are anomalies a classification algorithm might say
“classify every instance as normal” and this algorithm will have an accuracy of 99% whilst
having absolutely no utility for finding the anomalies one is interested in finding. This means
some special strategies need to be used to apply classification for anomalies, for example false
negatives can be weighted down aggressively such that the model will be more likely to generate
false positives in order to not misclassify the anomalies.

One-Class Classification

In one-class classification the goal is to create a model recognizing objects from a single class
using data containing only that single class (Tax, 2001). Once a model has been created that
can recognize a single class, anomalies are defined as any object that does not belong to this
class. For example in anomaly detection one-class classification is used to classify only normal
instances. Then this model can be used to classify everything that does not fall under the normal
class as anomalous.

Statistical Outlier Detection

There are also statistical definitions of outliers, for example the Z-score can be used for finding
outliers in Gaussian distributed data. The Z-score for a single data instance x is given by
z = x−µ

σ for population mean µ and population standard deviation σ and computes the number
of standard deviations a data instance is away from the data mean. A threshold value can be
compared with the absolute Z-score of a data instance to determine if this instance is an outlier.

Supervised vs Unsupervised Learning

Two kinds of learning methodologies are considered, supervised and unsupervised learning. For
supervised learning every data instance needs to have a label, the goal of a supervised learning
algorithm is to learn a model which tells which label to give to a new data instance. In unsuper-
vised learning data instances do not have a label, the model has to infer the different classes of
the data instances itself.

Generative vs Discriminative Models

There are two kinds of statistical outlier models, generative and discriminative. A generative
model models the actual distribution of a class i.e. P (x, y). A discriminative model models
only the decision boundary between classes i.e. P (y|x). A generative model works well with
unsupervised learning, but requires a lot of data. A discriminative model requires less data and
is less computationally expensive but does not work well with unsupervised learning. Examples
of generative models are näıve bayes and hidden markov models, examples of discriminative
models are nearest neighbour models and logistic regression.

1https://www.lexico.com/en/definition/anomaly
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Engineered Features vs Raw Data

Two kinds of available data are considered. Data which has engineered features, usually extracted
and constructed manually from the data by an expert and raw data which does not have features.
The mathematical space created by the data features is called the feature space. There are
machine learning algorithms that can work directly on the feature space like nearest neighbour.
Not in all cases it is desirable to manually craft the features from the data, for example if the
data is highly complicated or not understandable for humans. In fact it can be argued that an
important goal for artificial intelligence is to remove the need for manual feature engineering. In
the case of raw data, where it’s not possible or desirable to engineer features, a machine learning
algorithm is required that can work directly on the raw data and automatically extract the
features it needs. While engineered features can be really powerful it is also possible for specific
machine learning algorithms to learn features from raw data which match or exceed the features
created by an expert. Whether it is better to use engineered features or raw data depends on the
data. If the data is from a domain that is known to use machine learning algorithms that perform
best on raw data, e.g. image recognition, or where features are hard to engineer manually then
using the raw data is the way to go. If manual feature engineering outperforms algorithms that
automatically extract features or if human understandable features are required for other reasons
then using manual feature engineering is the way to go.

Deep Learning vs Traditional Machine Learning

Both deep learning and traditional machine learning algorithms are machine learning algorithms.
The advantage of deep learning over traditional machine learning is that deep learning models
can also extract features from raw data, negating the need for feature extraction. Deep learning
models are therefore useful for dealing with problems that are complicated to solve with tradi-
tional machine learning or have complicated feature engineering steps. Examples of problems
that deep learning is better fit to solve than traditional machine learning are natural language
processing (NLP) and image recognition. Deep learning also shines when there is a lot of data
available, but in cases where less data is available traditional machine learning algorithms will
often outperform deep learning methods.

On-line vs Off-line Algorithms

An on-line algorithm is an algorithm that can receive a sequence of requests and performs an
immediate action to each request (Karp, 1992). In contrast, off-line algorithms cannot process
a sequence of requests because they require full knowledge of whatever it is they are processing.
While off-line algorithms often perform equally well or better than on-line algorithms, their
requirement to know the sequence makes it infeasible in situations where the sequence is very
long or even theoretically infinite. In machine learning, on-line algorithms are those that update
the predictor after being fed each data instance in a sequence, while off-line algorithms—more
often called batch learning for machine learning problems—learn on the entire training data at
once. Batch learning can be infeasible if the training data is very large.

Motivation of Choices

The data is imbalanced and since there are not a lot of labels for anomalous data instances it
makes more sense to use an unsupervised learning algorithm rather than a supervised learning
algorithm. Then because it was decided to use an unsupervised learning algorithm, creating a
generative model is preferred over a discriminative model because generative models work well
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with unsupervised learning and discriminative models do not. Moreover, there is a lot of data
available so the large amount of data needed for a generative model should not be a problem.
Because the data is very complicated and does not have clear features, it seems a reasonable
idea to use raw data and try to create a deep learning model over a traditional machine learning
model. The data being lines of text would be a good fit for an NLP model which works better
with deep learning and there is enough data available to make a deep learning model feasible.
Another feasible approach would be a model using autoencoders. While deep-learning seems to
be the best fit, there are several unsupervised traditional machine learning methods which could
be useful and will be explored like an isolation forest and clustering using similarity measures
that work with complicated data. Since the model is allowed to be created during off-hours
and there are no time constraints, there is no specific reason to use on-line learning over off-
line learning. The data can be quite large but it is not large enough to warrant using on-line
learning at this moment. Another reason to not use on-line learning is because on-line learning
is more challenging than off-line learning due to added time-constraints and the constraint of the
model looking at examples only once as they are streaming in. From a practical applicability
perspective, it is interesting to study both off-line and on-line learning. However, it was decided
to only look at off-line learning because, given the characteristics of this domain, the problem is
already expected to be highly challenging.

2.5 Preliminary Overview of Machine Learning Approaches
Used

2.5.1 Isolation Forest

Isolation forest (Liu et al., 2008) (Liu et al., 2012) is an anomaly detection method whose goal it
is to find anomalies by isolating them. While most anomaly detection methods work by creating
a profile of normal instances and comparing new instances to that profile, isolation forest in
comparison does not create a profile but searches for anomalies exclusively. The advantages of
the isolation forest compared with profile based models are that the amount of false positives
are reduced because profile based models are optimised for creating a profile of normal instances
rather than finding anomalies and that isolation forest has a linear computational complexity,
which makes it faster than most methods.

Isolation forest works by creating a forest of k isolation trees with a height limit of l. Each
isolation tree is built on a sub-sample of ψ instances from input data X, the height limit is defined
as l = dlog2 ψe, this is approximately the average tree length (Knuth, 1998). The isolation tree
is created by selecting a random attribute and selecting a random split value between the min
and max values of this attribute. Based on this split value the sub-sampled data is divided
into two smaller isolation trees which are recursed on until there are less than 2 instances in
the division (isolation) or the height limit l is reached. The idea behind the isolation forest is
that anomalous instances require on average less splits to isolate than normal instances, this is
illustrated in Fig. 2.3. A sub-sample is used because the algorithm works better on a smaller
set of data, as the amount of instances increases it becomes harder to properly isolate individual
instances. The reason that the height limit is set to approximately the average tree length is
because only short path lengths are interesting because they denote anomalous instances. The
anomaly scores of individual instances can then be found by running them through the forest of
isolation trees and calculating the expected path length for each instance.
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(a) Isolating an anomalous instance (b) Isolating a normal instance

Fig. 2.3: An example of an isolation tree isolating an anomalous instance in Figure (a) and a
normal instance in Figure (b).
Images by Sal Borrelli [CC BY-SA (https://creativecommons.org/licenses/by-sa/4.0)]

2.5.2 Long Short-Term Memory

Long Short-Term Memory (Hochreiter and Schmidhuber, 1997) (LSTM) is a type of recurrent
neural network (RNN) created to solve the problem of vanishing gradients in regular RNNs. In
a basic RNN—such as the one shown in Fig. 2.4—the state of the network is retained and can be
used as a sort of memory for earlier input in a sequence of inputs. In theory this would allow the
model to use context from the past in order to give better predictions. In practice however the
gradients tend to “vanish” (i.e. getting a value close to 0) exponentially over time when there is
a big temporal delay between big events in the network. LSTMs were created as a solution to
this problem. LSTMs have a cell state (denoted by ct for a given timestep t in Fig. 2.5) which
flows through every recursion of the cell and contains information from the past which the model
has decided is important to remember. The cell state is regulated by a forget gate with a sigmoid
layer—denoted by Ft—a sigmoid layer returns values in the range [0,1], hence when multiplied
with the cell state Ct it regulates how much of the previous cell state Ct−1 to keep. Next there is
the input gate layer denoted by It, the sigmoid layer decides which values to update and the tanh
layer selects the candidate values to add to the state, these two layers are then multiplied and
added to the state. Finally, in the output layer Ot a sigmoid layer decides what values of the cell
state that are going to be output. The LSTM allows to remember long-term dependencies while
also more carefully regulating the gradient decay preventing the exponential gradient decay of
the vanishing gradient problem.

2.5.3 Autoencoders

Autoencoders, as shown in Fig. 2.6, are a type of neural network configuration that encodes
its input to a latent space and then decodes/reconstructs a learned representation of the input
from the latent space (Kramer, 1991). Autoencoders can be used for dimensional reduction of
the input. Of note to the anomaly detection problem is their recent application as a generative
model. If the latent space has learned a good representation of the input space it can generate
its own output from the latent space. For anomaly detection, if an autoencoder is trained on
only normal data, then when anomalous data is encoded the autoencoder will not be able to
capture the details of the anomalous data correctly in the latent space leading to reconstruction
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Fig. 2.4: An example of a basic recurrent neural network.
Image by François Deloche [CC BY-SA (https://creativecommons.org/licenses/by-sa/4.0)]

Fig. 2.5: An example of a LSTM.
Image by François Deloche [CC BY-SA (https://creativecommons.org/licenses/by-sa/4.0)]
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Fig. 2.6: An example of an autoencoder.

errors after the decoding step. The measure of reconstruction error for an input can be used as
an anomaly score for that input.

2.5.4 Attention

Attention mechanisms are a way to model dependencies within the input of a deep learning model
without regard for the distance between the values in the input. This is important because regular
RNNs forget states that came much earlier in a sequence. For example, in the input sentence
“The man picks up the ball, looks around, pauses, and throws it at the wall.” an attention
mechanism would allow the model to learn the dependency between “ball” and “it”. Rather
than adding attention within the RNN layer, the attention mechanisms were captured in a single
deep learning layer that can be used on its own (Vaswani et al., 2017). The attention layer
is trained to learn which states to pay more attention to when predicting the next token in a
sequence. For example when predicting “it” in the previous example the attention layer will give
a high weight to the word “ball” and a low weight to the other words.

2.6 Preliminary Overview of Evaluation Metrics for Anomaly
Detection Techniques

The evaluation metrics that are used are outlined and explained in this section.

2.6.1 Precision and Recall

When performing binary classification there are four categories to which the predictions can
belong. Each element has a true value, either negative or positive, and after classification, each
element will have a predicted value of either negative or positive. When the predicted value is
correct with regards to the true value there are the following two categories: negative values
that were predicted as negative are called true negatives (TN), likewise positive values that
were predicted as positive are called true positives (TP). When the predicted value is mistaken
with regards to the true value, there are the following two categories. Positive values that were
incorrectly predicted as negative are called false negatives (FN) and negative values that were
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incorrectly predicted as positive are called false positives (FP). The distribution of the elements
into these four categories is often presented in the form of a confusion matrix. An example of a
confusion matrix is given in Table 2.1.

Confusion
Matrix

Predicted Values

True
Values

Negative Positive
Negative True Negative (TN) False Positive (FP)
Positive False Negative (FN) True Positive (TP)

Table 2.1: The definition of a confusion matrix

From the confusion matrix several model performance metrics can be derived. Precision is
a measure of how many of the positive predicted elements are truly positive, it is given by:
precision = TP

TP+FP . Recall is a measure of how many of the elements that are truly true were
predicted to be true, i.e. how many of the relevant elements have been found by the algorithm,
in the case of the anomaly detection problem it is how many anomalies have been found versus
the ones that are not found by the model. Recall is defined by: Recall = TP

TP+FN . Visually an
example of precision and recall is offered in Fig. 2.7.

2.6.2 F1 Score

The F1 Score is defined as the harmonic mean of the precision and recall metrics.

F1 = 2 · precision · recall
precision+ recall

It is a stronger measure of performance than the precision and recall alone, as it combines
precision and recall to give a single score. The F1 Score is useful in anomaly detection because
often the precision and recall alone give a skewed view of the performance of the model. For
example, if the model has high precision but low recall, then most of its predictions are correct
but the model is missing a lot of anomalies. If the model has high recall but low precision then
the model predictions are mostly wrong, but it does find most of the anomalies. It is of course
very bad for an anomaly detection model if it would predict 80% of the data elements to be
anomalous, even if 100% of the actual anomalies are within this set. Keeping false positives low
is especially important in anomaly detection, as datasets contain many more false elements than
true elements. The case where precision is high but recall is low is preferable to the case where
recall is high but precision is low, in the best case however, both recall and precision should be
high. As the F1 computes the harmonic mean of precision and recall it punishes models which
excel in either high precision or high recall but not in the other metric. Hence the F1-Score is a
better metric than only the precision or recall for anomaly detection. However, since neither the
precision nor recall take into account the imbalanced nature of the dataset in anomaly detection
the F1-score does not either.

2.6.3 Accuracy

Accuracy is defined as the total amount of correct predictions over all predictions:

ACC =
TP + TN

TP + TN + FP + FN
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Fig. 2.7: An example how precision and recall are defined visually. Image by Walber [CC BY-SA
(https://creativecommons.org/licenses/by-sa/4.0)]
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Balanced Accuracy

In imbalanced datasets the accuracy is often not as useful because the majority class will dominate
the accuracy score. Often the minority class is more of interest in imbalanced datasets so the
balanced accuracy measure is more useful in those cases, as positives and negatives are balanced
to be equal even if the class sizes are highly imbalanced. Balanced accuracy is given by:

BACC = (
TP

TP + FP
+

TN

TN + FN
)/2

The difference between the balanced accuracy and F1 Score is that the F1 Score does not take into
account the amount of true negative instances at all and the amount of total negative instances is
irrelevant. The balanced accuracy in comparison does take into account the negative instances,
but balances it out by giving half of its weight to the percentage of true positives found and half
of its weight to the percentage of true negatives found. The F1 Score can be more useful than
the balanced accuracy in the case where you have an imbalanced dataset and you care about
finding true positives, but (the amount of) true negatives are unimportant.

2.6.4 Area Under the Receiver Operating Characteristic Curve

The Area Under the Receiver Operating Characteristic curve (AUROC or more commonly AUC
(Area Under the Curve)) is one of the most commonly used metrics for machine learning models.

Fig. 2.8: An example of how the ROC curve is constructed. Image by kakau based on original
by Sharpr [CC BY-SA (http://creativecommons.org/licenses/by-sa/3.0/)]

The Receiver Operating Characteristics (ROC) graph is created by plotting the tp rate against
the fp rate (Fawcett, 2006). The tp rate is the same as the recall and the fp rate is the false
alarm rate (what percentage of negative instances is given as false positives). They are given by:

tp rate =
TP

TP + FN
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and

fp rate =
FP

FP + TN
The ROC curve is created by varying a threshold value which decides which instances are pos-

itive or negative based on their probability being positive according to a model. As the threshold
is varied, as shown in Fig 2.8 the trade-off between fp rate and tp rate is plotted, the point at
0% fp rate and tp rate represents the case where all instances are classified as negative, no false
positives are given but no true positives either. In contrast, the point at 100% fp rate and tp
rate represents the case in which all instances are classified as positives, finding all true positives
but also giving every negative instances as a false positive. The ROC graph thus represents the
trade-off between fp rate and tp rate, it shows the price you pay in the amount of false positives
for a specific detection rate/recall. By plotting the fp rate versus the tp rate a curve in created
in ROC space, the AUC is then calculated by taking the area under this curve giving a single
valued metric summarizing the performance of the machine learning model.

It is important to note that the minimal useful value the AUC can take is 0.5 as, if the AUC
would take a value below 0.5 one could simply reverse the classification of positives and negatives
by the algorithm to get an AUC score of 1 − x for some x ≤ 0.5 which is then always larger or
equal to 0.5.

The AUC is considered to be superior to accuracy as a performance metric, as there has been
a realization that accuracy is often a poor metric for measuring performance (Provost et al.).

Partial AUC

For imbalanced data it can often be useful to compute only the AUC of a partial section of
the ROC graph (McClish, 1989). For example, this can be the case if it is known that cases
with a fp rate > 0.2 are not useful. In those cases the partial AUC (pAUC) can be computed
by taking the area of the ROC graph up to a fp rate of 0.2. However, the pAUC cannot be
fully interpreted as the same metric as the AUC in this way because information about actual
negatives is removed (Carrington et al., 2019).

2.6.5 Precision-Recall Curve

Comparable with the ROC graph, the precision-recall graph plots the model precision against
the model recall. The precision-recall curve is plot in the same way as the ROC curve by varying
a threshold value over the probability of instances being positive. It shows the trade-off between
precision and recall and the price you pay in lower precision for higher recall or vice-versa. The
precision-recall curve can be a better metric than the ROC curve for imbalanced data (Saito and
Rehmsmeier, 2015).

Average Precision

Like the AUC is equal to the area under the ROC curve, the average precision (AP) of a model
is defined as the area under the precision-recall curve (Su et al., 2015).

2.7 Design Choices

The literature of the anomaly detection domain and interpretability domain was reviewed and
a definition of the anomaly analytics for secure testing environments domain was defined. Next,
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different machine learning approaches for anomaly detection were discussed. The following design
choices were made. Because the dataset is imbalanced with regards to anomalies and labels are
missing, it was decided that unsupervised learning algorithms look the most promising. Because
of this it was decided that a generative model is the preferred model type for the problem. The
data is complicated and does not have clear features so a deep learning model was chosen as the
most promising kind of model to look into. Because there are no execution time restraints from
the company and the amount of data is not too large, it was decided that on-line learning was
not necessary and off-line learning will be used. A model using an autoencoder or NLP seems to
be a natural choice to look into further. Next an overview of machine learning approaches and
evaluation metrics is given.
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In this work the cross-industry standard process for data mining (CRISP-DM) (Shearer, 2000)
is adopted. CRISP-DM provides a clear helicopter overview of the different phases in a data
mining project. Our approach is framed within CRISP-DMs distinct phases to provide a clearer
overview of the approach.

3.1 General Model Development Approach

CRISP-DM consists of 6 phases as shown in Fig. 3.1:

1. Business Understanding: The first phase of CRISP-DM is to understand the needs of
the customer and converting their needs to a data mining problem definition and a project
plan. It is important to understand the true needs of the customer such that there will not
be any mistakes in the end, like finding the right answers to the wrong question. A measure
of evaluation should be established which determines whether or not a model is successful
in the eyes of the customer. The goal of the model should be established in business terms.
Moreover it is important to assess which data is available.

2. Data Understanding: The second phase of CRISP-DM is to understand the data. The
data will be collected and a description of the data will be made. The important question
in this phase is: “Does the data acquired satisfy the relevant requirements?”. Then the
data will be explored and any data mining questions that can be answered already with
querying, visualization and reporting are answered. Finally the quality of the data will be
verified by noting whether the data is complete or if there are strange attributes in the
data that conflict with common sense.

3. Data Preparation: The third phase of CRISP-DM is the preparation of the final data
set from the raw data. First the data that will be used is selected and an argumentation
for the choices made for the selected data is given. Second the selected data is cleaned and
issues with the data quality as outlined in the data understanding phase are addressed.
Once the data is cleaned the data is prepared by creating new records or producing derived
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Fig. 3.1: The cross-industry standard process for data mining (CRISP-DM). Image by Kenneth
Jensen [CC BY-SA (https://creativecommons.org/licenses/by-sa/3.0)]

attributes. Then the data is integrated by combining data from multiple tables or records
into new records. Data integration also includes aggregation of data. Finally the data is
formatted by changing the format or design of the data. This includes the removal of stop
words, trimming text and other formatting steps. This is an especially important step for
the STEP problem especially if NLP is used to address it.

4. Modeling: The fourth phase of CRISP-DM is the modeling phase. In this phase the
modeling techniques are selected and applied and parameters of those techniques are set.
First the modeling techniques and algorithms are selected. Second the quality and validity
of the model is determined by empirical testing. This includes splitting the data into a
train and test set to estimate the quality of the model by measuring the error rate on the
test set. Then the model is built and assessed.

5. Evaluation: The fifth phase of CRISP-DM is the evaluation of the model in terms of the
achievement of business objectives. First the results are evaluated and it is checked whether
the model still has some business deficit. If there is time and budget the model can also
be tested in real-world applications. Next the model itself is reviewed to see if anything
has been missed or overlooked. Then quality assurance steps will be triggered. Finally it
is decided whether the model is ready for deployment or that it still needs revisions, in
this case the model development returns back to the first phase of CRISP-DM business
understanding.

6. Deployment: In the final phase of CRISP-DM the model will be handed over to the
customer who will deploy it into their decision making processes. It is important that the
customer is informed about all the details of the model and knows how to use the model in
their processes. The documentation of the model into a report can be part of this phase,
as well as reflection on the process. The deployment phase is not explicitly part of this
thesis, the focus is on the first five phases of CRISP-DM.
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3.2 Business Understanding

The business understanding is outlined in sections 1.1 and 1.2. The goal of the model in business
terms is outlined in subsection 1.2.5.

3.2.1 Main Business Goals

• The development of a solution to find fraud and faults in STEP sessions.

• The development of a presentation of the results that decreases the time experts require
to find fraud and faults in STEP sessions.

3.2.2 Secondary Business Goals

• An implementation of the solution incorporated into STEP.

• The development of a solution to automatically find STEP sessions that contain a relevant
amount of fraud or faults.

• The presentation of the results is made understandable for lay people.

3.2.3 Business Goal Measure of Evaluation

There is no explicit measure of success for the project. The goal is to find the best possible
solution to the problem within the allotted time frame. The evaluation of success will happen
outside of the scope of this work.

3.3 Data Understanding

An overview of the collected data is given and the preliminary choices made in regards to what
data is being used are explained.

3.3.1 Available Data

The available data comes in part from the Linux distribution, which are either standard Linux
logs or custom logging. Furthermore, there is data available through other collected logs. The
complete set of the packages of logs will be referred to as a session. There are 3639 sessions
generated during exams at the TU/e and used with permission. The assumption is made that
these logs only contain non-anomalous data and these logs will be used as examples of normal
data. It is unknown whether this is actually the case, as it’s infeasible and prone to mistakes to
manually confirm this for each package of logs. Henceforward these 3639 sessions shall be called
the TU/e dataset. There also is a set of 27 sessions which were generated by a pentest company
while testing the security of the STEP system. A pentest stands for “penetration test” and is a
form of ethical hacking where hackers attempt to break into a computer system in order to test
the security of said system. While the pentest company was not able to breach the security of the
STEP system, it is assumed these sessions contain examples of anomalous data, however it cannot
be confirmed with absolute certainty that all 27 sessions contain hack attempts. Henceforward
these 27 sessions shall be called the pentest dataset. Furthermore, there is a set of 41 sessions
which contains faults that were reported in order to improve the STEP system. Because these
sessions were sent in because of errors and they were checked by Carapax IT, there is a high
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degree of confidence that these logs actually contain anomalies. A disadvantage of this dataset is
that the sessions are from different versions of the STEP system, sessions might contain unique
log-lines depending on the version of the STEP system which generated it. Henceforward these
41 sessions shall be called the fault dataset. In addition to this, not all 41 fault sessions were
available from the start. The older version of the fault dataset is called the partial fault dataset
and contains 13 sessions which are also still part of the full fault dataset. It is important to
note that the 13 sessions from the partial fault dataset are older than the 28 sessions that were
added for the full fault dataset. Finally there is a set of 37 sessions which contain hack attempts
by students during a hackathon organized by Secure Testing B.V. at the TU/e. As with the
pentest dataset it is assumed that these 37 sessions contain anomalous behaviour. However, it
cannot be confirmed with absolute certainty that all 37 of these sessions actually contain hack
attempts. Henceforward these 37 sessions shall be called the hackathon dataset. Not all datasets
were available at the start of the project, the fault dataset and hackathon dataset were added
several months after the start of the project. Hence, the results in chapter 4 show the evolution
of experimentation as new data became available. Table 3.1 gives an overview of the available
sessions.

Dataset List
Dataset Name Overview Number of Sessions Datatype Limitations
TU/e Dataset Sessions generated

during real TU/e
exams.

3639 Non-Anomalous No complete con-
fidence that every
single session is
non-anomalous.

Pentest Dataset Sessions generated
during pentests.

27 Anomalous (Hack) No certainty that
every session
contains hack
attempts.

Fault Dataset Sessions that con-
tain known faults.

41 Anomalous (Fault) Many sessions are
from different ver-
sions of the STEP
system

Hackathon Dataset Sessions generated
during TU/e hack-
athon.

37 Anomalous (Hack) No certainty that
every session
contains hack
attempts.

Table 3.1: Overview of different datasets.

3.3.2 Data Choices

Because the syslog includes an overview of many different processes in the STEP system and to
avoid over complicating the data extraction it was decided to focus on using the syslog only. The
technical expert of Carapax IT was asked to label all log-lines that contain anomalies he could
find in two syslogs of the pentest dataset. These two labeled syslogs are the primary method
of evaluation for the intra-log anomaly detection models. We use these labels to evaluate our
predictions for anomalies on log-line level (intra-log anomaly detection). And we can use many
log-line predictions/scores to predict anomalies on log level which can be evaluated by checking
which dataset our predictions belong to (inter-log anomaly detection). In a language model we
can also predict anomalies on character and word level, however these cannot be evaluated at
that level.
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Limitations of Data Choice

The decision to only use the syslog has an important limitation in that the syslog does not
contain log-lines about every single fault and hack attempt possible in the system. Hence there
are certain faults or fraud attempts that cannot be found using only the syslog. Because there
are only two labelled datasets which have been manually labelled by the technical expert of
Carapax IT there is currently no very strong evaluation framework. Furthermore, it cannot be
assured that every anomaly that is in the dataset has been found. The assumption is made that
the pentest dataset contains logs that are similar to real fraudulent student logs. The same is
true of the hackathon dataset. An open question is to what extent these datasets align with
actual fraudulent student logs. Furthermore, since it cannot be assumed that the pentests which
were labelled have a complete labelling with no mistakes, actual fraudulent student logs would
have to be seen to know for sure if the model can find them. It is possible that the pentest
datasets are just fundamentally different to the TU/e datasets because of changes to the system
that were made after the TU/e datasets were generated. Another consideration is that a part of
the pentest logs appear to have some kind of verbosity mode on, which means they have a lot
of very in-depth log-lines that do not appear in any of the logs of the TU/e dataset but are not
necessarily anomalous. Therefore this reduces the usability of the pentest logs as any generative
model that uses TU/e logs as a training set will potentially have a lot of false positives on the
pentest logs with verbosity mode on. The question is whether these logs are still of any use with
the verbosity mode on. Another limitation of the syslog is that the space of potential log-lines
is very large and even infinite in theory. This is because log-lines can be added by the STEP
system and the Linux distribution over time. Also, if the code that defines the log-line has a
variable in it, any log-line created by this code can be unique. This can be an issue for machine
learning methods that rely on sets of unique events for example, as well as for methods that use
vocabularies of words as it can explode the size of the vocabulary with unique words that are
low quality, which can drown out actual rare words that capture anomalous behaviour.

3.4 Data Preparation

To address the limitation of the syslog containing too many unique events a method is needed to
reduce the amount of unique events that exist within the syslog. Unique events can be reduced
by using a log key extraction algorithm which attempts to remove variables from log-lines so
log-lines with variables in them no longer generate infinite events. The two pentest syslogs that
were labelled are one with the verbosity mode off (pentest 0) and one with the verbosity mode
on (pentest 17). This assures that both kinds of logging behaviour are captured. It was decided
to use the Drain algorithm (He et al., 2017) for this because it has decent performance on Linux
Logs and best performance overall of the log key extraction algorithms.

3.4.1 Drain for Log Key Extraction

The Drain algorithm is used to extract log keys from the logs. A log key is a reduced represent-
ation of a log-line with variables removed. Formally, let perfect log key extraction in the case
of this work be defined as: let L be the language which contains any combination of substrings
over every single existing log in the universe, including the empty string ε. Given a string s ∈ L
and k ∈ N, constant substring c ∈ L and variable substring v ∈ L. Let

s =

k∑
i=0

(ci ∪ vi)
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.
Let LKEp be a perfect log key extractor with replacement string r =< ∗ >

∀s1∈s∃s2∈s∧s2 6=s1∀(c1,v1∈s1),(c2,v2∈s2)(c1 = c2 ∧ v1 6= v2 ⇒ LKEp(s1) =

k∑
i=0

(ci ∪ r))

In practice log key extractors are not perfect and will make mistakes, this can be due to not
knowing the full extend of the universe of log-lines and cases where there are multiple variables
in a row. Drain has an accuracy of 0.690 on Linux logs (He et al., 2016; Zhu et al., 2019). While
both SHISO and LenMa log key extractors perform better at an accuracy of 0.701 on Linux
logs, the difference with Drain is minor. Moreover Drain is the best performing log key extractor
overall with an average accuracy of 0.865 over any type of log in the logpai benchmark (Zhu
et al., 2019), versus respectively 0.669 and 0.721 for SHISO and LenMa. It was decided to use
Drain over SHISO and LenMa for two reasons. First, because the STEP logs might not exactly
mimic the Linux logs used in the benchmark. Second, because creating a benchmark of different
log key extraction methods for the STEP logs is outside the scope of this work. This is due to
the amount of time required versus potentially little gain.

3.4.2 Data Preparation Methods from Natural Language Processing

For NLP methods additional data preparation methods are used. This includes limiting the
length of log-lines to a fixed amount, tagging log-lines with 〈BOS〉 and 〈EOS〉 characters, re-
moving stop words, tokenization and removing punctuation. In the case of character based
methods each character can be transformed to its ASCII value. The extent to which these data
preparation methods are used varies over the different experiments run.

3.4.3 Other Data Preparation Methods

Another data preparation method that is used, entails removing duplicate log-lines. Some logs
have a large amount of non-anomalous duplicate log-lines that can have a big influence on possible
outcomes of the methods used when trying to find point anomalies. To cope with this it was
decided to remove duplicate log-lines. While this does remove those collective anomalies that
rely on repetition of log-lines, in the case that we are only searching for point anomalies we would
not recognize those as collective anomalies anyway.

3.4.4 Data Preparation Steps

The main data preparation steps are:

1. Parse the syslog which is roughly structured like: “〈date〉 〈time〉 〈operating system〉 〈pro-
cess〉 〈additional process information〉 〈message〉” as shown in Fig 3.2. Then using a regular
expression to remove the date, time, operating system and any additional process infor-
mation. The results are log-lines in the form ”〈process〉 〈message〉”.

2. Perform log key extraction using Drain.

3. Shortening the log-lines to a fixed length.

4. Tagging log-lines with 〈BOS〉 and 〈EOS〉 characters at the start and end.
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An example of the resulting log-lines after these main data preparation steps is given in Fig. 3.3.

Fig. 3.2: An example of log-lines from pentest log 0 without the main data preparation steps
performed.

Fig. 3.3: An example of log-lines from pentest log 0 with the main data preparation steps
performed.

The optional data preparation steps in no particular order are:

• Removing duplicate log-lines.

• Removing stop words and punctuation.

• Tokenizing words and transformation to vocabulary values.

• Transforming characters to ASCII values.

3.5 Modeling Development and Selection

Two modeling techniques are selected, in this work they are referred to as deep anomalous
collective events prediction and deep anomalous log-line prediction.
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3.5.1 Deep Anomalous Collective Events Prediction

The first method that is selected is deep anomalous collective events prediction which is an
implementation of the fourth experiment outlined in the master thesis “Anomaly Detection for
Application Log Data.” by Aarish Grover (Grover (2018)). The goal of deep anomalous collective
events prediction is to use an auto encoder deep learning model to find multisets of events that
constitute collective anomalies. The model uses two layers of LSTMs which are interfaced by
an LSTM-based Auto Encoder. The two-layer LSTM is originally used by Grover in his third
experiment; the fourth experiment adds the LSTM-based Auto Encoder as an interface to this
two-layer LSTM. The author achieved their best performance with the model of the fourth
experiment finding anomalies in HDFS (Hadoop Distributed File System) (Xu et al., 2009) and
BGL (Blue Gene/L, logs from a super computer) (Oliner and Stearley, 2007) labeled datasets.
Their model of the fourth experiment achieves an F1 score of 0.88 and 0.89 for the HDFS
and BGL datasets respectively. The model of the third experiment containing only the two-layer
LSTM performs slightly worse with an F1 score of 0.84 and 0.87 for the HDFS and BGL datasets
respectively.

Deep Anomalous Collective Events Prediction Method

Deep anomalous collective events prediction works by classifying multisets of events as either
normal or anomalous. Every unique log-line is an event e from the universe of all events E. In
practice only events that appear in any of the logs used are considered, i.e. Elog ⊆ E. The
multisets of events are generated by combining a number of events based on some grouping
criterion. In the case of HDFS logs for example this grouping criterion is one multiset of events
per HDFS block, another used criterion could be a specific time frame. The multisets of events
are converted to an event count vector which is a vector over every e ∈ Elog counting every
occurrence of each event in the multiset. These event count vectors are used as input for the
fourth experiment model outlined by Grover which consists of two layers of LSTMs which are
interfaced by an LSTM-based auto encoder, the structure of the model is shown in Fig. 3.4.
The goal of the model is for the auto encoder to learn a representation of the typical shape
of the event count vectors of normal blocks, such that when an anomalous event count vector
is attempted to be reproduced by the auto encoder it incurs a high reconstruction error. This
reconstruction error can then be used as a metric for finding the most anomalous event sequences.
Deep anomalous collective events prediction is useful for finding collective anomalies rather than
point anomalies. This is because only collections of log-lines are being classified as either normal
or anomalous rather than individual log-lines.

Data Preparation Steps for Deep Anomalous Collective Events Prediction

It is important to perform log key extraction on the logs for deep anomalous collective events
prediction. This is because the size of Elog must be kept as small as possible in order to not
explode the size of the event count vector making prediction infeasible with this method. As
explained in Section 3.4 the Drain algorithm is used for log key extraction in this work. Data
preparation steps from NLP, like stop words removal, are not as important for deep anomalous
collective events prediction because log-lines are converted to unique event ids rather than the
text being used explicitly.

Deep Anomalous Collective Events Prediction Limitations

There are several issues with this method that make it infeasible to solve the business problem.
First, the model can only predict for the events that are part of Elog. If some new log comes in for
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Fig. 3.4: Deep anomalous collective events prediction LSTM Autoencoder model.

classification that contains events which are not in Elog, then the whole model has to be retrained
to capture the change in input dimensions. While it is possible to drop events that do not exist in
the model from the input, these events are bound to be interesting because they are more likely
to depict anomalous events, due to not existing in normal logs. Second, while Drain assures that
the same log keys should always be hashed to the same event, because Drain does not have a
100% accuracy, it is possible for log keys that should hash to the same event id to hash to different
event ids. If there are many incorrect hashes it will hurt the performance of the model as well as
exploding the size of Elog, creating potential memory problems. Drain also has a relatively low
performance for Linux logs overall due to their complexity, so the amount of incorrect hashes
will be noticeable. Third, STEP logs do not have a strong grouping criterion. Grouping based
on fixed block sizes will just group parts together that should not go together. Grouping based
on time might be possible but many events happen at time 0 because the timer has not been
activated yet. With many events interleaving due to parallel running processes, this might group
events together that should not be together. The strongest grouping is probably a grouping based
on process, possibly in combination with time. Finally, by thoroughly studying the structure of
the syslogs it was concluded that syslogs might be too complicated to really benefit from this
method, a lot of events will not be distributed in the same way because different processes run
parallel and can be run and generate logs at the same time. This method is a better fit for logs
which are only monitoring a single process in which all events that can happen are known. The
number of events is just too large for this method to work well with STEP data. Drain mistakes
will decrease the performance and there are no strong event grouping available. This method can
possibly work if there is a specific process one is interested in monitoring, and this process has
some additional identifier which can be grouped together e.g. blocks created or user id. Because
of these limitations it was decided not to invest any more time into implementing this method.
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Comparison with HDFS logs

For HDFS logs this method works because the number of events is very limited at only about 30
events total, versus hundreds if not thousands for STEP logs. Because there are so few events
Drain will perform much better, Drain has an accuracy of 0.998 for the HDFS dataset in the
logpai benchmark versus 0.701 on the Linux dataset (Zhu et al., 2019). Finally, HDFS log-lines
are easily grouped on blocks and blocks are labeled as either normal or anomalous. Therefore
collective anomaly detection for all events in a block makes sense, as this is exactly what anomaly
detection consists of in HDFS datasets.

3.5.2 Deep Anomalous Log-Line Prediction

The second model that was selected is deep anomalous log-line prediction. Because of the
limitations that the deep anomalous collective events prediction model has it was decided to
look at another type of model, the deep anomalous log-line model that was selected is fit to find
point anomalies but has no means to find collective anomalies or contextual anomalies. Several
language models for finding anomalies in system logs are outlined in [Brown et al. (2018)].
The simplest model is the Event Model (EM). EM uses an unidirectional LSTM to predict the
probability of each next token in a sequence of tokens from a tokenized sentence. Tokens can
be either words or characters. The LSTM assures that long-term dependencies on tokens from
the past are remembered by the model. For every model the negative log-likelihood is used as a
loss function. EM is improved by replacing the unidirectional LSTM by a bidirectional LSTM,
this model is called the Bidirectional Event Model (BEM). In a bidirectional LSTM there is an
additional LSTM that predicts the tokens from the ending to the beginning in reverse order.
The results from both sides are combined to remember long-term dependencies on tokens from
both the past and the future for the prediction of every token. The BEM outperforms the
EM for both word and character-based models on the LANL (Kent, 2016)(Los Alamos National
Laboratory) dataset benchmark performed in [Brown et al. (2018)]. To further improve the
performance of the EM and the BEM, the authors propose to create a tiered model that adds a
higher layer contextual LSTM which chains log-lines together based on some grouping criterion
e.g. every log-line from a specific user. The contextual LSTM predicts on log-line level rather
than token level and takes in the result of the last log-line as well as a summary of the results
of the lower level EM and BEM. This allows for finding contextual anomalies by taking into
account the past log-lines. The tiered models are called the Tiered-Event Model (T-EM) and the
Tiered-Bidirectional Event Model (T-BEM). The main contribution of [Brown et al. (2018)] is the
improvement of the T-EM and the T-BEM by adding an attention layer. The output of the LSTM
is summarized by the attention layer rather than the mean. The tiered models with attention are
called the Tiered Attention-Event Model (TA-EM) and the Tiered Attention-Bidirectional Event
Model (TA-BEM). While not defined as such in [Brown et al. (2018)], in this work the event
models with attention but without the tiered architecture are called the Attention-Event Model
(A-EM) and the Attention-Bidirectional Event Model (A-BEM). The authors of [Brown et al.
(2018)] tested the A-EM with four different implementations of attention, with most attention
implementations the A-EM slightly outperforms the EM on word and character tokens, while
the TA-EM and the TA-BEM barely see an improvement versus the T-EM and the T-BEM on
word and character tokens. The best performing models on the LANL dataset are the TA-BEM
for word tokenization with an AUC of 0.988 and the T-BEM with character tokenization with
an AUC of 0.992.
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The Advantages of Attention Mechanisms

The main reason to use an attention layer is to provide a means of interpretability for the LSTM
models outlined in the previous section. The attention weights can be used to provide information
on relational mapping between features. In combination with feature importance based on a
percentage chance for a token during prediction, this provides a means of interpretability for
anomalies found by LSTM models in system logs.

Choice for Deep Anomalous Log-Line Prediction Models Used

It was decided to not use the tiered models due to the complexity of implementation in combin-
ation with the time limit. So it was decided to use the other models outlined in Section 3.5.2
the EM and the BEM as well as the attention models: A-EM and A-BEM. Models using both
character and word tokens are used. An example of the BEM architecture used is shown in
Fig. 3.5. In comparison the EM architecture only uses the first column of LSTMs from the
inputs. The A-EM and the A-BEM have a column of attention units where the output of the
LSTM(s) goes through before reaching the output node. As log-line anomaly score the mean
over the probabilities for individual tokens will be used. This is a measure of how common a
certain log-line is within the model. It is assumed that log-lines with a low anomaly score are not
(well) known by the model and are therefore more anomalous. The advantage of the word-based
model over the character-based model is that it is easier to use SHAP values for words than for
characters.

Character Token Anomaly Definition

In the case of character tokens let A be the ASCII alphabet and let the language length N be
defined as: N = 120. Let the language LN be the set of all permutations of strings ofN characters
that can be created by sampling with replacement from A. Let g be a function mapping some
x ∈ An representing the set of all permutations of strings up to N characters to a single ASCII
character y ∈ A. Function g approximates the probability of x and y happening simultaneously
and is defined as: g : An −→ A, g(x) ≈ P (x, y). The goal is to assign a log-line l ∈ LN an anomaly
score in the range [0, 1]. Training examples are defined as: T = {(x1, y1), ..., (xN , yN )}. Given

character ci ∈ l where i is the index of ci in l, let xi =
∑L−1
i=1 ci and yi = ci+1. For the reverse

case of the bidirectional LSTM let xi =
∑L−1
i=1 cL+1−i and yi = cL−i. The anomaly score δchari

of a single character at position i is defined as:

δchari = g(xi)

Note that high values for g(xi) indicate that a character is normal and belongs to the learnt
model, low values indicate that a character is abnormal and do not seem to be generated by the
learnt model. The name “anomaly score” is therefore slightly misleading in this case because one
would expect high scores to be anomalous. “normality score” would fit it better. An anomaly
score where anomalous instances are ranked closer to 1 and normal instances are ranked closed
to 0 can be easily achieved by computing the anomaly scores as 1− g(xi). However, in our case
we use the term anomaly score to refer to g(xi) and not 1 − g(xi) with lower scores indicating
anomalies and high scores indicating normal instances.

Word Token Anomaly Definition

In the case of word tokens let V be the vocabulary. Let the language LV be the infinite set of
all permutations of words from V sampled with replacement. Let g be a function mapping some

Towards Interpretable Anomaly Analytics for Secure Testing Environments 37



CHAPTER 3. DEEP LEARNING APPROACH FOR ANOMALY DETECTION IN
SECURE TESTING ENVIRONMENTS

Fig. 3.5: Deep anomalous log-line prediction model (BEM).
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x ∈ V n representing the set of all permutations of strings up to N words to a single word y ∈ V .
Function g approximates the probability of x and y happening simultaneously and is defined as:
g : V n −→ V , g(x) ≈ P (x, y). The goal is to assign a log-line l ∈ LV an anomaly score in the
range [0, 1]. Training examples are defined as: T = {(x1, y1), ..., (xN , yN )} where N is the amount

of words in log-line l, given word wi ∈ l where i is the index of wi in l, let xi =
∑L−1
i=1 wi and

yi = wi+1. For the reverse case of the bidirectional LSTM let xi =
∑L−1
i=1 wL+1−i and yi = wL−i.

The anomaly score δwordi of a single word at position i is defined as:

δwordi = g(xi)

Log-Line Anomaly Definition

Given the previously defined expressions and the anomaly score for token i in log-line l, δqi for

q ∈ {char, word}. The log-line anomaly function δlog−line,ql is defined as

δlog−line,ql =
1

(N − 1)
· (
N−1∑
i=1

δqi )

Log Anomaly Definition

Given the previously defined expressions and log-line li where i is the index of the log-line within
the log and LL is the amount of log-lines in the log. The log anomaly function δlog,q is defined
as

δlog,q =
1

LL
· (

LL∑
i=1

δlog−line,qli
)

Data Preparation Steps for Deep Anomalous Log-Line Prediction

The Drain algorithm can be used to simplify the vocabulary used for word tokens. Data prepar-
ation steps from NLP are important because it simplifies the vocabulary and removes words and
punctuation that appear often but are not very useful for prediction.

3.5.3 Limitations

Models using the tiered architecture would probably outperform the best models without tiered
architecture. Since it was decided to not use the tiered architecture in this work there is likely to
be a performance increase if tiered models were used in future work. The negative log-likelihood
would likely yield a better anomaly score than the mean over the probabilities for individual
tokens. This was realized late in the realization of this work, therefore it cannot be easily
changed and will be kept for future work.

3.5.4 Other Anomaly Prediction Methods

Three other anomaly prediction methods will be used, clustering using the Normalized Compres-
sion Distance (NCD), Inter-Log Anomaly Detection using Term Frequency-Inverse Document
Frequency (TF-IDF) and naive substring filtering.
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Clustering with Normalized Compression Distance

Normalized Compression Distance (Cilibrasi and Vitanyi, 2005) is a similarity measure between
two different data objects, which compares compressions of data objects individually and con-
catenated. NCD is defined by:

NCD(x, y) =
C(xy)−min{C(x), C(y)}

max{C(x), C(y)}

Where C is a compressor and C(x) is the binary length of the compression of x, C(y) is the
binary length of the compression of y. C(xy) is the binary length of the compression of the
concatenation of x and y. In this work Bzip2 is used for compression because it is the best
performing. Gzip can be used for a significant speed-up but slightly worse performance.

Inter-Log Anomaly Detection using TF-IDF

The “Term Frequency-Inverse Document Frequency” (TF-IDF) metric can also be used to find
inter-log anomalies. TF-IDF is a metric of how concentrated into relatively few documents the
occurrences of a given word are (Rajaraman and Ullman, 2011). It is the multiplication of the
TFij metric with the IDFi for a given word i in document j. The term frequency is the nor-

malized frequency fij of a word i in a specific document j and is defined as TFij =
fij

maxkfkj
due

to the normalization the word with the highest frequency in the document has a term frequency
of 1. The term frequency is therefore a measure of how frequent a specific word is compared
with the other words in a document. The inverse document frequency is a measure of how un-
common a word i is amongst the complete corpus of N documents. Suppose ni is the number
of documents which contain the word i within the complete corpus of N document, then the
inverse document frequency is defined as IDFi = log2(N/ni). Uncommon words have high IDF
scores while common words have low IDF scores. The TF-IDF score is given by: TFij ∗ IDFi.
The words with the highest TF-IDF scores are often those that uniquely characterize a spe-
cific document. In this work TF-IDF is not used for its intended purpose of finding words that
uniquely characterize a specific document, but rather as an additional anomaly measure. The
anomaly score of a document is defined as the TF-IDF score of the “〈EOS〉” End of Sequence
character, note that this score is identical to the “〈BOS〉” Begin of Sequence character TF-IDF
score. TF-IDF weighting of the vector space representation helps make the pairwise comparison
between vectors more meaningful, as it informs about the amount of weight a dimension deserves
globally (inter-log) and locally (intra-log). It is computationally expensive to carry out all pair-
wise comparisons between vectors though, but clustering for anomaly detection using TF-IDF
is possible. However, during experimentation with TF-IDF it was noticed that just the TF-IDF
score of the “〈EOS〉” End of Sequence character already provided a very decently performing
anomaly measure at a very low computational cost. Hence it was decided to use this TF-IDF
score as an additional dimension for the models. This is not the intended usage of TF-IDF and
it is strange that it would perform so well.

To find out why it performs decently well as an anomaly detection measure it is important to
look at the details of how the TF-IDF is computed in this case. TfidfTransformer from Scikit-
learn is used. 1 It computes the IDF score as: IDFTransformeri = log2(1 + N/1 + ni) + 1
which is slightly different from our definition as it tries to prevent division by zero. Note that
the “〈EOS〉” End of Sequence character has a couple of key properties in this case:

1https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.

TfidfTransformer.html
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1. “〈EOS〉” appears exactly once in every log-line.

2. Because of 1): “〈EOS〉” appears in every log.

3. Because of 2): The ni of “〈EOS〉” is N.

Now taking these properties into account it is found that IDFi = log2(N/N) = 0, which
means TF-IDF is always equal to 0 in the original definition. However, in the case of the Scikit-
learn definition of IDF it is found that IDFTransformeri = log2(1 +N/1 +N) + 1 = 1 hence
we find that the TF-IDf score is always equal to the term frequency TF, and the IDF score is
irrelevant. Since the TF is always bounded between 0 and 1, it always returns a score that is in
the same dimensions as the other anomaly scores defined from Section 3.5.2 onwards. Because the
TF is defined as the frequency percentage of a word compared with the highest frequency word
in a log, this also means that there is some word that, on average, appears more than once per
log-line for every log as otherwise “〈EOS〉” would have a TF score of 1, which hasn’t happened
for any of the logs. Because it appears that this metric has some worth in anomaly detection,
what it says is that a log is more anomalous based on how often the most frequent word appears
compared with the amount of log-lines. If the word appears much more often per log-line it is
more anomalous and if it appears less often per log-line it is less anomalous. Since this is kind of
a hacked metric the worth of it outside these specific circumstances is probably minimal. As for
the reason why this metric gives good performance, perhaps there is some relationship between
a particular word appearing more often and the log being anomalous. It’s also possible that the
anomalous logs simply have some word being more common because the logs were generated at
different times when this word would appear more commonly throughout the logs. It seems like
there might be a correlation between the size of the log and whether they belong to one of the
anomalous datasets. For example all pentest logs that use the verbose way of logging also have
a larger size than most if not all of the normal logs. It might be the case that the TF-IDF score
of the “〈EOS〉” character simply measures the size of the log and can thus be replaced with the
cheaper option of simply using the (normalized) size of a log as a metric. There is no answer for
this at the moment, more research would be required.

Naive Substring Filtering

A simpler albeit naive way of finding anomalies is to automatically mark any log-line that contains
a word from some preselected list of words. While this is a simpler way of finding anomalies it
is very easy to a get a lot of false positives if one does not look at the context. Naive substring
filtering can be used as a baseline of model performance. In practice this list of words was created:
[“error”, “invalid”, “bug”, “corrupt”, “failed”, “failure”]. If a log-line contains any word in this
list it will be automatically marked as an anomaly. Another approach can be to give an anomaly
score penalty to log-lines containing any of these words, in this way it is not as strict as marking
lines anomalous without context.

3.6 Modeling Interpretability for Bidirectional LSTM

There is need for some way to understand the decisions the bidrectional LSTM makes. It can be
useful for experts to know why the LSTM generates a certain prediction. However since softmax
output is used finding a good interpretable anomaly alert processing framework is challenging.
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3.6.1 Interpretable Anomaly Alert Processing for Bidirectional LSTM

Interpretable anomaly alert processing methods are investigated to use for the deep anomalous
log-line prediction models. Interpretable anomaly alert processing for neural networks is a re-
latively new research domain and there is not a lot of research. Because neural networks are
basically a black box, interpretability is tricky. There are some methods for convolutional neural
networks that work reasonably well like saliency maps. This is most likely because convolutional
neural networks often uses images which are easy to understand so saliency maps also make sense
to humans. Two methods of interpretable anomaly alert processing for LSTMs were investigated,
attention and Seq2Seq-Vis (Strobelt et al., 2018).

Attention

By adding an attention layer to the bidirectional LSTM, the attention layer can be used to
visualize the dependencies on which the score of a word depends the most. In the end, the
attention layer decreased the performance of the model and increased the training time of the
model significantly. Because it was not possible to use the attention layer, attention based
interpretability could not be implemented.

SHAP Values

SHAP (SHapley Additive exPlanations) (Lundberg and Lee, 2017) is a method to find explan-
ations for individual predictions in a machine learning algorithm. It uses Shapley values from
game theory. SHAP calculates the individual contributions of each feature for a prediction. This
allows to explain which features were most important for a model to come to its prediction.
SHAP cannot be used to provide explanations for the model because the model provides higher
dimensional data as output while DeepExplainer expects vector data.

Seq2Seq-Vis

Seq2Seq-Vis is a visualization tool for sequence to sequence models. Because a full sequence to
sequence model is not being used Seq2Seq-Vis could not be used. It was also decided that the
interpretability options are too complicated and not very understandable when used with system
logs for lay persons.

Conclusions Interpretable Anomaly Alert Processing for Bidirectional LSTM

Our study of the applicability of the existing approaches showed that neither of them is applicable
in our case, directly or with small adaptations. The reasons for that are the following. The
attention layer decreased the performance of the model, SHAP DeepExplainer could not be used
because the model in its current form is incompatible and Seq2Seq-Vis could not be used because
a full sequence to sequence model is not being used. Instead of this and in the interest of time,
it was decided to implement an ad hoc visualization which turned out to be useful for the STEP
technical expert and tester at Carapax IT. The ad hoc visualization uses the anomaly scores
directly to colour words and log-lines according to their abnormality or normality.

3.7 Evaluation

In this section the evaluation metrics which are used are outlined.
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3.7.1 Evaluation for Anomaly Detection

We decided to use the AUC score as the main evaluation metric. However, due to an error in
computing the AUC scores, these scores were not reliable and had to be removed. Since a lot
of these scores were made with older versions of the model, it would be a challenging and time-
consuming task to find the correct versions of the model in which these scores were originally
generated. Therefore it was decided to report the balanced accuracy and F1 score instead as
these scores were calculated correctly. The balanced accuracy is a decent metric for imbalanced
datasets and the F1 score combines the precision and recall into a single score. The AUC or
pAUC are a better metric, but due to the error in computation it was decided to drop them from
this work and as such they are kept for future work.

Flagging criteria

In order to evaluate the performance of the method, it needs to be decided what the criteria are
to flag log-lines and logs as anomalous. There are multiple possibilities for flagging anomalies.

• Flag point anomalies only without session context.

• Flag collective or contextual anomalies as a sequence of log-lines.

• Flag logs as point anomalies then return point/collective/contextual anomalies for those
sessions only.

Given that in an anomaly detection problem it is inevitable that one will find many false
positives, it was decided that the session level would be looked at first. If sessions would be
disregarded and just point anomalies/contextual anomalies would be flagged on every session
then even the sessions that are not anomalous would contain log-lines that would be erroneously
flagged as anomalies. If one first looks at the most anomalous sessions and only of those return
the flagged anomalies, it reduces the workload for experts using the system. The downsides are
that it introduces an attack vector for fraudsters.

Finding Optimal Error Threshold

To find the optimal error threshold for the intra-log anomaly detection the performance metrics
m are measured at every threshold step t from 0 to 1. This gives a metric over error threshold
graph. The optimal error threshold is defined as mopt = max(mt). Different performance
metrics can have different optimal error threshold values. In practice, however, there is no
way to calculate the optimal error threshold, hence a different method of determining the error
threshold is required. Either manually based on which values worked in other cases, assuming
there is an universal optimal error threshold, or by setting it automatically based on some metric.

3.7.2 Evaluation for Alert Processing

A small study will be performed with the technical expert and the tester from Carapax IT in
order to determine if the interpretability solution is useful for the users of the model. This study
gathers ad hoc evidence from the technical expert and the tester from Carapax IT to determine
whether the ad hoc visualization is useful for them. Because the visualization is primarily meant
only for the technical expert and the tester from Carapax IT, numerical evidence for the worth
of the visualization is not as important as it would have been, had the visualization been written
for a larger group of people. A larger study that is meant to provide numerical evidence is left
to future work.
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Evaluation for Alert Processing Future Work

A larger study that is left for future work, because of time constraints, is detailed in this section.
The goal of this study is to achieve a better evaluation of the ad hoc visualization which is
supported by numerical evidence, rather than just the ad hoc evidence provided by the small
study. The research questions are: “Does using the ad hoc model visualization allow the experts
to check the logs faster than without using the visualization” and “Does using the ad hoc model
visualization allow the experts to find more anomalies in the logs”.

1. Select 4 logs: 2 pentest logs, 1 fault log and 1 hackathon log.

2. Randomly select 2 logs from this set with ad hoc model visualization and 2 without.

3. Ask the technical expert and the tester from Carapax IT to check these 4 logs for anomalies.

4. Notate the log-lines chosen as anomalous and notate the time taken to check each of the
logs.

5. Check and notate how many of the log-lines were correctly identified by the technical expert
and the tester from Carapax IT.

6. After 4 weeks, repeat step 2 through 5 but reverse the logs that are with the ad hoc model
visualization and those without.

7. Verify whether logs that were checked using the ad hoc model visualization have faster
checking times and a larger amount of correct anomalies found than the logs that were
checked without using the ad hoc model visualization.

The reason to let the technical expert and the tester from Carapax IT check two logs with
ad hoc model visualization, and two without, is to reduce bias from starting with one or the
other. Since the technical expert and the tester from Carapax IT will be checking the same logs
twice—because otherwise it is not possible to see if there are improvements—there needs to be a
sufficient time interval between checking the same log. This is to avoid them remembering where
the anomalies were in the logs. Because two of the logs were checked in random order with the
ad hoc visualization and two without, and after 4 weeks the same is done but reversed again in
random order, we hope this will eliminate the possible bias in the study.

3.8 Deployment

The deployment of the model is not a main focus of this work, a potential implementation of the
final model into STEP in compliance with the business requirements of the client as outlined in
Section 1.2.5 is given in Section 4.1.6.
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Experiments and Results

The first goal of the experimental study is to investigate whether or not the modeling techniques
outlined in Section 3.5 can be used to reliably find logs with hack attacks and logs with faults
amongst a large amount of normal logs without having a lot of false positives. This includes
investigating the best decision boundary for the anomaly scores returned by the modeling tech-
niques. The second goal is to create and evaluate an ad hoc visualization of the results from the
best method identified. The ad hoc visualization is evaluated with a small ad hoc study with
the technical expert and the tester from Carapax IT. Finally the first goal is revisited and the
chosen model is further optimized based on the feedback from the technical expert and the tester
from Carapax IT given during the small ad hoc study.

4.1 Anomaly Detection

A number of different experiments are run, mostly different versions of the deep anomalous
log-line algorithms were compared. The EM is compared with the BEM, character tokens are
compared with word tokens and the impact of attention on the model is examined.

4.1.1 Preliminary Experiments with Pentest Logs for Character-Based
Methods

For the first experiments only the TU/e dataset and the pentest dataset were available. An
overview of the first experiments using only the TU/e dataset, pentest dataset, and later the
partial fault dataset, is given in Appendix B. We discovered that the character-based EM with
duplicate log-lines, using naive substring filtering and employing intra-log anomaly detection,
can achieve a balanced accuracy of 0.8419 on pentest 0 and 0.7671 on pentest 17. The character-
based EM with duplicate log-lines removed, naive substring filtering and employed for inter-
log anomaly detection, shows that there is indeed a subset of pentest logs that can be easily
distinguished from TU/e logs by their δlog,char score. But there is also a subset of pentest logs
that is indistinguishable from TU/e logs using this model. We also tried to add an attention
layer to the character-based EM, however the performance of this model with attention layer
was much lower than the performance of this model without attention layer. Next, the EM was
replaced with the BEM and naive substring filtering was disabled as there are often log-lines
that include those substrings that are not anomalous. An isolation forest model was trained to
serve as a baseline comparison to our models. It was found that the BEM could outperform
the isolation forest in balanced accuracy and F1 score metrics at specific δlog−line,charl threshold
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intervals. Furthermore, we decided to keep using the BEM rather than the EM because of the
historical evidence from the original paper that shows that BEMs are always better than EMs,
even though our own study was not as conclusive. The isolation forest can distinguish a subset of
the pentest logs from TU/e logs but is unable to distinguish the logs of the partial fault dataset
from the TU/e logs. The character-based BEM however can distinguish both a subset of pentest
logs as well as all logs from the partial fault dataset with only a small amount of false positives.
Finally we trained a support vector machine in order to investigate if we can automatically
generate a good decision boundary, because the δlog,char scores differ wildly based on how long
the model has been trained for and do not have an obvious default decision boundary value like
the isolation forest has.

4.1.2 Word-based Methods and the Inclusion of the Fault Dataset

Towards the end of our preliminary experiments, the partial fault dataset became available, it is
important to note that many of the logs in the fault dataset are quite old. The other 28 logs as
mentioned in Section 3.3.1 were added at a later date and are more modern logs. We moved away
from character-based methods because they are often expensive to run, considering that every
character—up to some character limit per log-line—gets vectorized. We replaced the character-
based methods by word-based methods which vectorize every word to some vocabulary, which is
much more efficient but—as seen at the end of the intro to Section 3.5.2—can also have slightly
weaker performance compared to character-based methods.

Word-based BEM

We replaced the character-based BEM with the word-based BEM and recomputed the inter-log
anomaly detection metrics on the word-based BEM. The best results for pentest 0 and 17 for the
word-based BEM are shown in Table 4.1—note that the isolation forest baseline still uses the
character-based encoding rather than the word-based encoding—with an error threshold of 0.955
and 0.959 respectively. The balanced accuracy scores and F1 scores for both pentest 0 as pentest
17 are higher for the word-based BEM compared with the character-based EM given in Table B.1.

Another word-based BEM (Embedding to 16 dimensions, bidirectional LSTM with 64 cells
and a softmax output over the vocabulary size of 10000) was trained on 100 TU/e syslogs for 50

epochs per syslog for a total of 5000 epochs. Then δlog−line,wordl threshold plots were generated
for dataset 0 and 17 as shown in Fig. 4.1.

pentest 0 pentest 17
Balanced Accuracy 0.8512 0.7980
F1 Score 0.2712 0.5160
Confusion Matrix [[511 83] [ 3 16]] [[618 354] [ 8 193]]

Table 4.1: Performance metrics for intra-log anomaly detection for the word-based BEM on
pentest 0 and 17.

Word-based BEM for Fault Logs

At this point we expanded the partial fault dataset with 19 more recent fault logs, thus creating
the full fault dataset. The δlog−line,wordl scores for these faults logs are plotted together with the
pentest and the TU/e logs in Fig. 4.2. All of the logs have their duplicate log-lines removed.

46 Towards Interpretable Anomaly Analytics for Secure Testing Environments



CHAPTER 4. EXPERIMENTS AND RESULTS

(a) Pentest 0 Balanced Accuracy (b) Pentest 17 Balanced Accuracy

(c) Pentest 0 F1 Score (d) Pentest 17 F1 Score

Fig. 4.1: Different δlog−line,wordl threshold value of pentest 0 and 17 for the word-based BEM.
The red line denotes the baseline from the isolation forest model with an anomaly threshold of
0. It can be seen that the word-based BEM outperforms the character-based BEM from Fig. B.3
on all metrics on its optimal δlog−line,wordl threshold value.
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It can be seen that the pentests can still be distinguished from the TU/e logs. The fault logs
are closer in average to the TU/e logs but all of them can still be flagged as anomalies if we
are okay with a couple of false positive TU/e logs. We trained the support vector machine on

these δlog,wordl scores with the false negative “class weights” set as “12” instead of “50” and the
results can be seen in Fig. 4.3. The performance metrics for this decision boundary are given in
Table 4.2. We see that we have a balanced accuracy of 0.8158, ∼65% of the 46 anomalous logs
are correctly returned as anomalies and only ∼2% of the 633 TU/e logs were returned as false
positives.

Fig. 4.2: The δlog−line,wordl scores for the TU/e dataset (blue) versus the new fault dataset
(orange) and the pentests (red) for the word-based BEM using only unique events. Most fault
logs have low scores which makes them distinguishable at the cost of some false positives.

Fig. 4.3: The decision boundary given by the support vector machine on the data of Fig. 4.2.
It neatly divides most of the fault logs.
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Balanced Accuracy 0.8158
F1 Score 0.6742
Confusion Matrix [[620 13] [ 16 30]]

Table 4.2: Performance metrics for inter-log anomaly detection for Fig. 4.3

4.1.3 Clustering with Normalized Compression Distance

Clustering Logs for Inter-Log Anomaly Detection

250 TU/e syslogs and the 24 pentest syslogs are clustered using the normalized compression
distance (NCD). A similarity matrix with the NCD between each pair of 274 logs was generated.
Spectral clustering 1 was used with 8 clusters, running 100 iterations, using the “eigen solver”
“arpack” and “gamma” set to “1” on the similarity matrix. The results are then scaled using
multidimensional scaling 2 to 3D and 2D as shown in Fig. 4.4. The dots denote normal TU/e
logs and the stars denote anomalous pentest logs. Each colour denotes a different cluster.

We decided to take the red and blue clusters as anomalous, since they contain the most
pentest logs. The performance metrics for inter-log anomaly detection are computed as shown
in Table 4.3. While this clustering can distinguish 21 out of 24 pentests, almost half of the TU/e
logs are returned as false positives as well. With a balanced accuracy of only 0.7115 it does not
seem that clustering with the NCD is a very good method for inter-log anomaly detection.

Balanced Accuracy 0.7115
F1 Score 0.2658
Confusion Matrix [[137 113] [ 3 21]]

Table 4.3: Performance metrics for inter-log anomaly detection based on clustering with the
NCD.

Clustering Log-Lines for Intra-Log Anomaly Detection

The individual log-lines of pentest syslog 0 and 17 are clustered using the NCD. A more clear
masked view is also provided with all log-lines that are marked anomalous using the word-based
BEM with an optimal balanced accuracy δlog−line,wordl threshold of 0.955 and 0.959 respectively.
The results are shown in Fig 4.5. The two graphs (a) and (b) show a clustering for all log-lines
within a syslog while the two graphs (c) and (d) show the masked view which only shows the
true anomalous log-lines with a star and the remaining false positive log-lines with a dot. We
see that for both pentest syslog 0 and pentest syslog 17 most of the anomalous log-lines are
part of the larger red group. It does not seem possible to create a clustering using the NCD
that is useful for intra-log anomaly detection on pentest syslog 0 and pentest syslog 17. Since
both of our experiments with clustering using the normalized compression distance for inter-log
anomaly detection and intra-log anomaly detection were unsuccessful, we conclude that using
the normalized compression distance for anomaly detection on whole syslogs and syslog log-lines
is not a promising method for anomaly detection for and within Linux syslogs.

1https://scikit-learn.org/stable/modules/clustering.html#spectral-clustering
2https://scikit-learn.org/stable/modules/manifold.html#multidimensional-scaling
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(a) 2D clustering

(b) 3D clustering

Fig. 4.4: Clustering syslogs by Normalized Compression Distance in 2D (a) and 3D (b). The
dots denote normal TU/e logs and the stars denote anomalous pentest logs. Each colour denotes
a different cluster.
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(a) pentest syslog 0 all log-lines (b) pentest syslog 17 all log-lines

(c) pentest syslog 0 only anomalous log-lines (d) pentest syslog 17 only anomalous log-lines

Fig. 4.5: NCD clustering on individual log-lines of pentest syslog 0 in (a) and (c) and pentest
syslog 17 in (b) and (d). A clustering of all log-lines is shown in (a) and (b) and a clustering of
only the anomalies (true anomalies (stars) and false positives (dots)) according to the word-based
BEM are shown in (c) and (d).
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4.1.4 Using TF-IDF for Anomaly Detection and Revisiting the Atten-
tion Layer

Anomaly Detection with TF-IDF

The TF-IDF scores of the “〈EOS〉” characters are plotted in Fig. 4.6. It is important to note
that in this specific case the TF-IDF score is equal to the TF of “〈EOS〉” within the range [0,1],
as explained in Section 3.5.4. It can be seen that this metric seems to be able to get a good
separation between normal logs and a good number of pentests/fault logs. Because the TF-IDF
scores of the “〈EOS〉” character seem to have some predictive power, we decided to use them as
a new dimension to our inter-log anomaly detection plots.

Fig. 4.6: The TF-IDF scores of the “〈EOS〉” character for TU/e logs, pentests and fault logs.

Attention layer for word-based BEM

Even though the A-EM had bad results, we decided to revisit the attention layer for the word-
based BEM, because it could give us an avenue for interpretability. The attention layer was
added to the word-based BEM LSTM, creating the A-BEM. The results are set against the TF-
IDF scores for the logs with and without attention layer in Fig. 4.7. We see that the TF-IDF
scores of the “〈EOS〉” character indeed have a positive impact on the potential performance of
the support vector machine, as most of the fault logs would overlap with the TU/e logs if only

the δlog,wordl scores were used. As for the attention layer, we see that the fault logs have higher
scores using the A-BEM versus the BEM compared with the TU/e logs. We also see that the
pentest logs that are similar to the TU/e logs seem to form a vertical grouping using the A-BEM,
while with the BEM they display no such grouping. While training a support vector machine
with non-linear decision boundary might provide a better performance on the A-BEM due to the
vertical grouping of pentests, this would require an overfitting of the data which we are not sure
will transfer well when used on general data. While the performance of the A-BEM seems better
than the A-EM, we still decided to use the BEM rather than the A-BEM because the A-BEM
assigned the highest δlog,wordl scores to the fault logs while we would like the model to assign
lower scores to logs with faults in them. The A-BEM is also really computationally expensive,
so we would rather train a slightly weaker model than one that takes multiple days to train.
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(a) BEM (b) A-BEM

Fig. 4.7: The BEM against the A-BEM with anomaly scores set against the TF-IDF scores for
the “〈EOS〉” character for TU/e logs, pentests and fault logs.

4.1.5 Experiments with Hackathon Logs and Removal of Non-Verbose
Pentests

At this point in our work a hackathon was held at the TU/e where the goal was for the students
to hack into the STEP system. The logs from the hackathon were compiled into the hackathon
dataset and from this pont onward we gained access to this dataset. We now have access to the
complete dataset described in Section 3.3.1 for all our experiments from here onwards. We also
found out that there are two kinds of pentest logs. Pentest syslogs that seem to have a verbosity
mode on and have large file sizes, these are the ones that are easy to distinguish from TU/e
logs because none of the TU/e logs use this verbosity mode. And pentest syslogs that do not
have this verbosity mode on, which are the ones that are challenging to distinguish from TU/e
logs. The problem that we are facing, is that we do not know whether or not the non-verbose
pentests are actually of hack attempts, it is possible they were created when the pentesters were
testing the STEP USB sticks and do not constitute fraud. Hence, we made the decision to
remove the non-verbose pentests. We decided to keep the verbose pentests because the usage
of the verbosity mode might be an indicator of a hack attempt, just not a very useful one if we
want to find anomalous log-lines within a normal syslog. The issues with this decision are that
the verbose pentests already were easily distinguishable because of the fact they were using the
verbosity mode, so we conclude that the pentests do not tell us anything interesting because
of the verbosity mode and that we cannot be sure that the non-verbose pentests are actually
of hack attempts. Because of this we also decided not to run any intra-log anomaly detection
experiments anymore because we have doubts about the degree to which these two logs—pentest
0 as the non-verbose syslog and pentest 17 as the verbose syslog—actually mirror a log that we
would find from an actual hack attempt.

Decision Boundary with Hackathon Logs

We now recompute the decision boundary for the complete dataset including the hackathon logs.
The support vector machine is used with “kernel” set to “rbf”, “class weights” set to “8” for an
anomaly and “1” for the normal class with the “C” parameter set to “2” and “gamma” set to
“auto”. The decision boundary for all verbose pentests, fault logs, hackathon logs and the 636
normal test TU/e logs is given in Fig. 4.8 and the performance metrics in Table 4.4. As it can be
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seen this decision boundary works extremely well with a balanced accuracy of 0.9914, finding all
anomalous logs and returning only 11 false positives out of 636 logs. The hackathon logs seem
to have similar scores to the fault logs. While the performance seems extremely good, we will
see in Section 4.2.2 that these results will not scale as well to the general case when the model
is fined-tuned and some bias is removed.

Fig. 4.8: The decision boundary given by the support vector machine on all log types. It is
possible to divide all anomalous logs with minimal false positives.

Balanced Accuracy 0.9914
F1 Score 0.9272
Confusion Matrix [[625 11] [ 0 70]]

Table 4.4: Performance metrics for Fig. 4.8. All 70 anomalies are found, with only 11 false
positives.

4.1.6 Deployment

The base trained model (BEM) can be included with every copy of the STEP system. This can
be used as a basis and should be retrained when new data comes in. A subset of sessions that
have high anomaly scores should be used to continue training the model on, here it is assumed
that sessions with high anomaly scores do not have any or very few anomalous log-lines. It is
also possible to get (partially) labelled anomalous sessions. These could be used to fine-tune
the model in the future, for example by training a supervised model once enough data has been
gathered.

4.1.7 Summary Anomaly Detection Experiments and Results

We tested the EM, BEM, A-EM and A-BEM introduced in Section 3.5.2 using both character and
word-based methods. We found that the character-based EM was the weakest model and that
the added attention layer in the character-based A-EM severely decreased the performance of the
model. An isolation forest was also considered for anomaly detection, but its performance was
not good enough for us to consider it as a viable alternative to the EM-based models. Instead, the
isolation forest was used as a baseline for intra-log anomaly detection on the EM-based models.
The character-based EM and the character-based BEM performed similarly with both models
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not really outperforming the other in different aspects. We still decided to go with the BEM
because of historical evidence that the BEM outperforms the EM from the original paper. We
then tested the BEM with the word-based method and found that it outperformed the other
character-based methods tested thus far. For increased training speed and because we got good
results, we decided to look further into word-based methods rather than character-based methods.
We also tested a support vector machine in order to set a good general decision boundary and
got decent results. Next we tried to cluster syslogs and log-lines with the normalized compression
distance for inter and intra-log anomaly detection, but found that neither clustering produced
good results. We then decided to try clustering on TF-IDF score, and we found out that we
can use the TF-IDF score of the “〈EOS〉” character of each log-line as a decent anomaly score.
However we later found out that the TF-IDF score was actually computing only the TF score
because of special circumstances with the “〈EOS〉” character, therefore it will not be a good
method if used in this way outside this very specific scope. We tried the attention layer again on
the A-BEM and we got better results than the A-EM, but we still decided not to use the A-BEM
because it was assigning high anomaly scores to the fault logs and its computation time was very
high. Finally we got access to the whole dataset and we decided to remove non-verbose pentests
because we were not sure if they actually resulted from hack attempts. Because of this we are
not sure to what extent the pentest 0 and pentest 17 log used for intra-log anomaly detection
mimic true hack attempts. Because the verbose pentests are actually anomalous—because using
verbosity mode is already an anomaly—we decided to keep them. Then we tried to create a
decision boundary with the support vector machine again, and we achieved very good results,
partly because of the removal of the non-verbose pentests. However, we will see in the next
section that this model does not scale as well after improving the model further. Table 4.5 has
a summary of all the methods used.

Name Sub-types Reason Limitations

Event-based LSTM Autoencoder Find collective anomalies

1) Input shape mismatch with new
logs
2) Drain errors decrease performance
3) Logs too complicated for this
method to work well

No Attention (EM)

Find point and
collective anomalies
Vocabulary is constant

Performance is
sub-optimal without
bidirectional LSTM

Unidirectional
Attention (A-EM)

Attention can improve
performance and
interpretability

Attention decreases
performance and
significantly
increases training time

Character-Based

Bidirectional No Attention (BEM)
Bidirectional LSTM
has better performance

The output of the model
was not compatible with
SHAP DeepExplainer

No Attention (BEM)

Word-Based method adds
additional options for
interpretability (SHAP values)

Performance is slightly
worse than the character-based
model. Vocabulary becomes
larger as corpus increases,
leading to memory issues

LSTM

Word-Based Bidirectional
Attention (A-BEM)

Attention can improve
performance and
interpretability

Attention decreases
performance and
significantly
increases training time

Isolation Forest
Fast model that
works reasonably
well out of the box

Performance
is not very good

Normalized Compression Distance

Can cluster raw log-lines
using only their binary values,
always usable

Results are mediocre

TF-IDF
Better metric for which
words are important
Provides more clustering options

In our case only the TF value is used

Table 4.5: Overview of different methods used
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4.2 Interpretability and Model Optimisation

It was decided to do a simple visualization of the model rather than more in-depth interpretability
options because none of the interpretability methods discussed in Section 3.6.1 looked promising
for the model. A small case study was held with experts from Carapax IT and further improved
the model based on the feedback from the case study.

4.2.1 Visualization

The predictions of the model were visualized by generating Excel files for every syslog. These
Excel files contain the δlog−line,wordl for every log-line and the δwordi for every word is visualized
using a colour mapping from red to green where red is closer to 0 and green is closer to 1. An
example of the visualization in Excel is given in Fig. 4.9.

Fig. 4.9: An example of how the visualization of the model looks like in Excel with an anomaly
in red.

4.2.2 Expert Feedback and Model Optimisation

Feedback

The visualization was shown to the technical expert and tester from Carapax IT and they
provided feedback on the visualization. The textual feedback received from the experts is shown
in Appendix C. The technical expert’s opinion was that the visualization helped him to find
faults faster by putting emphasis on the problem areas within a log. They noted that some
faults were not found because they were collective anomalies. Finally, they said that seeing the
average anomaly scores in combination with the context of the log-lines helps them the most in
finding faults faster. Additionally, when examining the visualization in more detail it was found
that several new STEP log-lines were not being extracted to log keys satisfactorily, this caused a
large amount of functionally the same log-lines to not be removed correctly. Since it was decided
to use unique reduced log-lines only, having one log-line that is not unique could skew the results
of the anomaly scores for the newer logs which always contained those new STEP log-lines as
these log-lines have a very low anomaly score. In fact in Fig. 4.8 there is a good separation
between anomalous and normal logs, however all hackathon (purple) and a subset of the fault
(yellow) logs contain these new STEP log-lines which skews their log-line anomaly score session
average further to the left than they should be. While it will likely reduce performance it is
better to resolve this issue so as to better model the reality.
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Since it was decided to find point anomalies rather than collective anomalies, it will be
impossible for the model to find these collective anomalies, therefore expanding the model to
find collective anomalies will fall under future work.

4.2.3 Model Optimisation Based on Feedback

After the case study, it was decided to further optimize the model. The technical expert and
tester of Carapax IT were asked to mark false positives log-lines with anomaly scores of 0.2 or
lower. This provided a list of 73 false positives. The training phase was also scaled up and the
model is now being trained on 1000 logs rather than just 100 logs. Training on more logs will
increase the anomaly scores for normal lines and should push non-anomalous logs further to an
anomaly score of 1.

Fine-tuning on False Positives

Because there will always be log-lines that will be incorrectly indicated as anomalous—which
decreases the usability of the model—it is in our interest to add a way to fine-tune the model
on these false positive log-lines. The idea we came up with to fine-tune the model is that we
generate a couple of new logs which contain false positives identified by the experts. Those logs
will automatically get trained on by the model in order to give those false positive log-lines a
higher δlog−line,wordl score. The BEM was first trained on two logs (one for each visualized log
that the experts looked at) containing all false positives identified by the experts. However,

a relatively large change was noticed in absolute average changes between δlog−line,wordl scores
before and after the fine-tuning, disregarding score changes in any log-lines that were trained
on during fine-tuning. It is possible that the model might be overfitting on the false positives.
In order to avoid overfitting on the false positives a new log of 700 log-lines was created which
contains the 73 false positives and 627 normal lines randomly sampled without replacement from
the 1000 logs in the training set. The reason to create this kind of log is to give the model a log
that is similar to a TU/e log but with the false positive log-lines added such that it hopefully
does not overfit the model on the false positives anymore. The order of these 700 log-lines is
randomized to avoid bias for the false positives.

Batch Size

Originally a batch size of 512 was used, which is on the high side. Because the fine-tuning on
false positives logs with only the 73 false positives gave rather large absolute changes in log-line
anomaly scores for log-lines that were not trained on during the fine-tuning step, it was decided
to tune the batch size to decrease the differences in the rest of the model. Large batch sizes can
lead to decreased ability to generalize in models that use stochastic gradient descent (Keskar
et al., 2016). Hence it was decided to change the batch size to 32 which is the most common
safe option for a batch size. While a number of different batch sizes were tried before arriving
at 32 it is still an open question whether a batch size of 64, 128 or 256 performs better than 32
for the model.

Early Stopping

Now that 1000 logs are being used in the training phase it is important that the model is not
overfitting. Early stopping was implemented to monitor the validation loss with a “min delta” of
“0.0005” and “patience” set to “3”. Early stopping on loss gave worse results than early stopping
on validation loss.
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Adjusting Tokenizer

It was noticed that stop words were getting high anomaly scores and single characters were still
a part of the vocabulary. Stop words can skew the anomaly scores up since they often have high
anomaly scores and are not indicative of anomalous behavior. The tokenizer was modified to
remove stopwords and single characters.

Effects of Fine-tuning

The new model that is trained on 1000 logs is used, with a batch size of 32 and early stopping set
to on. The effects of fine-tuning and the new tokenizer are shown in Fig. 4.10. Subfigure (a) has a
very nice separation between normal and anomalous cases. However once the model is fine-tuned
this nice separation disappears and the performance decreases. This seems to indicate that the
false positives that were removed are actually a large part of the reason that this nice separation
happened in the first place. It is possible that these are new log-lines that were added in newer
logs and it reveals a weakness in the model where any log that is newer than the version of STEP
used for training might be automatically ranked as anomalous, even if this is not necessarily the
case. An important question for further work is whether or not the model has to be retrained on
new normal logs for every new version of STEP or whether or not it is fine to continue training
the existing model on logs from new versions of STEP.

(a) No fine-tuning, old tokenizer (b) No fine-tuning, new tokenizer

(c) Fine-tuning, old tokenizer (d) Fine-tuning, new tokenizer

Fig. 4.10: Effects of fine-tuning and using the new tokenizer without stopwords and single
characters. Fine-tuning decreases the performance of the model. Note that the original high
resolution version of Subfigure (a) with proper axis labeling was lost and this image is the only
one still available.
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4.2.4 Adjusting Drain

Because of the feedback from the technical expert from Carapax IT that several STEP log-
lines were not being extracted to log keys satisfyingly, it was decided to adjust Drain’s similarity
threshold from 0.5 to 0.3. This change proved to be enough to correctly extract the log keys of the
new STEP log-lines. It is important to note that Drain will extract all log keys more aggressively,
hence any other log-line might have changed too. Fig. 4.11 shows what happens with the anomaly
scores when Drain’s similarity threshold is set to 0.3. From the performance metrics in Table 4.6
it is observed that the performance decreases when Drain’s similarity threshold is lowered to 0.3.
A large amount of hackathon and fault logs now become non-separable from the non-anomalous
logs. While it seems like a bad result, it was expected that the hackathon and a subset of the
fault logs would become more normal as the bias induced by the new STEP log-lines is removed.
These results should, however, give a more accurate representation of how the model will work
in a real environment.

Fig. 4.11: As expected removing the error caused by the new STEP log-lines pushes the
hackathon and fault logs further towards normal instances.

Balanced Accuracy 0.7505
F1 Score 0.5397
Confusion Matrix [[586 50] [ 37 51]]

Table 4.6: Performance metrics for Fig. 4.11. Performance decreases significantly by adjusting
Drain’s similarity threshold.

4.2.5 Summary Interpretability Experiments and Results

In this section we looked into interpretable machine learning models to use for the BEM and
model optimisation based on expert feedback. In Section 3.6 it was found that interpretability
using SHAP values and Seq2Seq-Vis were not possible because those methods do not work with
softmax output. The most promising interpretability method that was found for the BEM is some
form of attention mechanism, however because the attention layer had a very negative effect on
the model’s predictions this path was not continued. Instead a visualization in Excel was created
using the softmax values predicted for each word in the log-line. A case study was conducted
where experts from Carapax IT tried to find faults and hack attempts in a fault and hackathon
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log. The experts found the visualization useful and potentially a time saver when going over logs,
but they noted that some anomalies are collective anomalies which cannot be found with this
method. Based on the feedback of the experts the model was further improved. The experts had
compiled a list with false positives which the model should be able to learn without compromising
the integrity of the existing model weights as much. To combat degrading the model too much,
the batch size was changed from 512 to 32, early stopping was implemented, the tokenizer was
adjusted by removing stopwords and single characters and finally a new log was created with
false positive log-lines randomly mixed with normal TU/e log-lines sampled without replacement
from the training set. While the performance decreased, the new settings should mirror the real
environment better. Furthermore, the Drain algorithm was set to generate log keys more tightly
to combat similar log-lines not being reduced to unique instances and introducing bias into more
modern logs. While the performance continues to decrease with this improvement, this should
still mirror the real environment better. Further research will be needed to test the performance
of this new model in a real environment as well as the performance for finding point anomalies
on log-line level with the new method.
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Conclusions and Lessons Learnt

We conclude the thesis with our conclusions, summary of the main contributions, overview of
limitations and future directions and well as recommendations to the company how to further
develop the anomaly detection system.

5.1 Conclusions

Possible machine learning methodologies for anomaly analytics to use for finding faults and fraud
attempts in a secure testing environment have been explored. We discovered that using an event
model with bidirectional LSTM (BEM) to predict the next word in a sentence gives the best
results. The model was trained on logs that are considered to only contain normal behaviour
and so the model can reconstruct normal behaviour but will struggle with abnormal behaviour.
If the model reconstructs abnormal behaviour the model will have a high reconstruction error, in
other words, the model will have a low probability for a specific word in a specific context, these
probabilities were used to identify anomalous logs and log-lines. Finally, it was concluded that
there were no interpretable anomaly alert processing solutions that were suitable for the model
implementable within the scope of this study, hence a simpler visualization of the output was
created in Excel.

5.2 Main Contributions

We determined that Machine learning for anomaly detection (jailbreak detection) in secure test-
ing environments is a new research sub-domain within anomaly detection and fraud detection
machine learning research after performing a thorough search of the relevant literature, which
yielded no related papers. An initial exploration was performed of the problem space and we
found that techniques from the natural language processing field proved moderately successful in
finding anomalous sessions and log-lines. In particular using an event model with bidirectional
LSTM (BEM) to predict the probabilities of all words in the vocabulary for the next word in a
sentence. Then, the probability of the actual word in a sentence can be used as a word-based
anomaly score; words that are known in this specific order by the model will then be considered
normal and words that are not known in this specific order will be considered anomalous. An
assumption that is made is that the model is only trained on normal logs hence any anomalous
lines will not appear in these logs and these anomalous lines can be detected by the model.
Furthermore, we tried to apply interpretable anomaly alert processing techniques but it was
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concluded that none of the techniques would work on the model within the scope of our research,
some kind of attention mechanism seems to be the most promising for future research. Instead
a visualization of the model was created in Excel and we conducted a case study of the model
with the technical expert and the tester from Carapax IT. The technical expert and the tester
thought the visualization was useful and might help them save time when searching for anomalies
in logs in the future. Based on the feedback of the experts the best performing implementation
of BEM was updated again with a fine-tuning mechanism and some parameters were tweaked.
The improvements to BEM should mirror reality better but the performance of BEM is less than
BEM without the improvements. Future research should look further into improving the new
model and implementing it into a real environment.

5.3 Limitations and Future Work

All of the abnormal logs have been obtained through controlled experiments with students and
pentesters and the fault logs were only those that were reported by the educational institutions.
Many logs might also be from an older version of the STEP system, so those logs might have
differences in STEP related log-lines that have changed over time. An open question is to what
extent this influences the results of the model. While most of the abnormal logs were found with
BEM, was this because these logs were abnormal or because they contained normal log-lines that
were not in the training set. These limitations will make it more challenging to keep the system
up-to-date, as every time a new version of the STEP system is rolled out there potentially is
a need to gather a large amount of new normal logs to train the model on from scratch. This
leads to another open question of whether the model should be retrained from scratch with every
new version of STEP or if the existing model should be updated, does it degrade the predictive
capabilities if logs from different versions of STEP are used or does it not matter.

There are only two labeled logs from the pentesters which were labeled by the expert, the
pentester logs were also using some kind of verbosity mode in the logs which makes it impossible
to accurately gauge if these logs would be found without verbosity mode on. Since there are
only two logs paired with the verbosity mode issue it’s hard to decisively conclude anything from
these logs about the model performance.

The expert told us that there were collective anomalies that the model did not find. Because
the model can currently only find point anomalies it is future work to extend this to collective
anomalies. This might be done by adding tiering to the BEM model, i.e. building the T-BEM
or TA-BEM models. However, the model is currently using the fact that we are only looking for
point anomalies in its fine-tuning mechanism.

The anomaly scores can be updated to use the negative log-likelihood instead of using the
mean over the probabilities for individual tokens.

The AUC or pAUC can be used as a better performance metric for future iterations of the
methods.

There is no absolute confirmation that the TU/e dataset only contains normal data, if the
TU/e dataset does contain anomalous data that is of interest to the company, then those anom-
alies might be impossible to find by the model.

62 Towards Interpretable Anomaly Analytics for Secure Testing Environments



CHAPTER 5. CONCLUSIONS AND LESSONS LEARNT

5.4 Lessons Learnt and Recommendations

What we learned is that building a model of normal behaviour—and using this model to identify
anomalous behaviour outside of the model—seems promising for finding anomalies in custom
Linux log data. However, because the data was gathered in such a way that we cannot be sure
that TU/e logs and logs with fraud or faults are truly comparable, we do not yet know how
well our method will generalize to a live environment. Deep learning techniques from natural
language processing seem promising to build a good normal model of sentences within Linux
logs. Vocabulary of Linux logs differs from natural language, several rules of natural language
processing should be tweaked such that they work optimally for log data. Many log-lines are
generated with the same code which contains variables, it is important to filter variables out
and only keep the original log-line with a stand-in for variables, as excessive variable values can
easily fill the vocabulary with bogus words and increase the amount of unique lines.

The recommendation for the company is to implement the solution into STEP and experiment
using the predictions in practice. Care must be taken that the model translates correctly to a
real environment. To get better data for testing, it is our recommendation to hold a hackathon
during a live exam where security students—who do not have to actually take this exam—
attempt to circumvent the STEP system. In this case, the logs from normal students and the
hacker students can be better compared to each other and this should prevent issues where the
logs were generated under vastly different circumstances. An open question is whether or not
the model has to be retrained for every new version of the STEP system or that the model
continues to be trained in an on-line fashion on new logs from the educational institutions. If
the model is trained on many logs at the same time, it will likely take hours or days depending
on the hardware available. It might also be worth it to develop a new method to find collective
anomalies or implemented the TA-EM or the TA-BEM.
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Appendix A

Glossary

Domain Terms

• STEP System: (Secure Testing Environment Protocol) is a Linux based operating system
that is loaded onto a USB stick.

• USB stick: In the context of this thesis this always refers to a USB stick with the STEP
System loaded onto it.

• Session: All logs that have been generated by the STEP system for a single USB stick
entered into a student machine from USB startup to shutdown.

• Log-line: A single line from any of the logs generated during a session.

• Fault: A failure in software and/or hardware which occurs when a computer system is
running the STEP System. The cause of a fault is logged in Linux and/or STEP logs, but
might not be easy to find for a layperson. Finding what causes faults in the STEP system
helps improving the system in newer iterations.

• Fraud: A malicious attack on the STEP system by a bad faith actor. When a malicious
attack on the STEP System succeeds this will allow the bad faith actor to cheat on an
examination. Fraudulent log-lines are log-lines which show or give evidence for the claim
that a fraudulent action has taken place.

• Anomaly: A pattern or an instance in the data which does not conform to expected
behaviour. An anomaly in the STEP System may denote either a fault or fraud but can
also be neither.

• TU/e dataset: A set of 3639 sessions generated during real use at the TU/e. Considered
to only contain non-anomalous data.

• Pentest dataset: A set of 27 sessions generated by a company trying to hack the STEP
System. Considered to contain anomalous data.

• Fault dataset: A set of sessions with known faults.

• Hackathon dataset: A set of sessions from the TU/e hackathon who attempted the same
hacks as the pentesters.
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• Inter-log anomalies: Anomalies on log level i.e. inter-log anomaly detection finds anom-
alous logs.

• Intra-log anomalies: Anomalies on log-line level i.e. intra-log anomaly detection finds
anomalous log-lines.

Abbreviations

• STEP: Secure Testing Environment Protocol

• TU/e: Technische Universiteit Eindhoven

• NLP: Natural Language Processing

• LSTM: Long Short-Term Memory

• RNN: Recurrent Neural Network

• TN: True Negative

• TP: True Positive

• FN: False Negative

• FP: False Positive

• AUC: Area Under the Curve

• pAUC: Partial Area Under the Curve

• CRISP-DM: CRoss-Industry Standard Process for Data Mining

• ASCII: American Standard Code for Information Interchange

• BOS: Begin Of Sentence

• EOS: End Of Sentence

• HDFS: Hadoop Distributed File System

• BGL: Blue Gene/L

• LANL: Los Alamos National Laboratory

• EM: Event Model

• BEM: Bidirectional Event Model

• T-EM: Tiered-Event Model

• T-BEM: Tiered-Bidirectional Event Model

• A-EM: Attention-Event Model

• A-BEM: Attention-Bidirectional Event Model

• TA-EM: Tiered Attention-Event Model

• TA-BEM: Tiered Attention-Bidirectional Event Model
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• SHAP: SHapley Additive exPlanations

• Seq2Seq-Vis: Sequence To Sequence Visualization

• NCD : Normalized Compression Distance

• TF-IDF: Term Frequency-Inverse Document Frequency

• MAC address: Media Access Control address

• PCI: Peripheral Component Interconnect

• USB: Universal Serial Bus
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Preliminary Experiments

B.0.1 Preliminary experiments with pentest logs

For the first experiments only the TU/e dataset and the pentest dataset were available.

Character-Based EM with Duplicates for Intra-Log Anomaly Detection

The labeled pentest 0 and 17 were used for evaluation. The character-based EM of 64 cells and a
dropout layer of 0.2 has been trained. The model was trained on a set of 100 logs for 900 epochs,
then on a new set of 100 logs for 200 epochs and finally on a set of 1000 logs for 20 epochs. The
full logs were used for this without any duplicate log-lines removed. Intra-log anomaly detection
is employed, the log-line anomaly score δlog−line,charl as defined in Section 3.5.2 is calculated for
every log-line in pentest 0 and 17 and naive substring filtering is used as well to mark every
log-line that contains a certain substring as defined in Section 3.5.4 as anomalous. The metrics
are calculated by varying the δlog−line,charl threshold from 0 to 1 in 1000 increments of 0.001 and

plotting the metrics for pentest 0 and 17 versus the δlog−line,charl threshold. Since certain log-
lines are always tagged as anomalous due to naive substring filtering, this creates a baseline for
the metrics as shown with the orange lines in Fig. B.1. The best performance based on highest
balanced accuracy achievable on pentest 0 and 17 was with an δlog−line,charl threshold of 0.501

and 0.539 respectively and are shown in Table B.1. Since it is not known what the δlog−line,charl

threshold will be that gives the best performance, it is a challenge to set one that works well in
the general case on any log without labels available.

Character-Based EM without Duplicates for Inter-Log Anomaly Detection

Next the character-based EM (with 64 cells and dropout layer of 0.5) was trained on 100 logs
from the TU/e dataset with duplicate log-lines removed for 900 epochs, then on a new dataset
of 100 TUE/e logs for 200 epochs and finally on a dataset of 1000 TU/e logs for 120 epochs.
The predictor is validated against 1/3 of the input. Inter-log anomaly detection is employed,

pentest 0 pentest 17
Balanced Accuracy 0.8419 0.7671
F1 Score 0.2481 0.4777

Table B.1: Performance metrics for character-based EM on pentest 0 and 17.
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(a) Pentest 0 Balanced Accuracy (b) Pentest 17 Balanced Accuracy

(c) Pentest 0 Recall (d) Pentest 17 Recall

(e) Pentest 0 Precision (f) Pentest 17 Precision

(g) Pentest 0 F1 Score (h) Pentest 17 F1 Score

Fig. B.1: Different metrics values over the δlog−line,charl threshold values for pentest 0 and
17. The orange line denotes the baseline when only using the naive substring filtering method
of 3.5.4.
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Fig. B.2: The log anomaly score δlog,char for the TU/e dataset (blue) versus the pentest dataset
(red) for the LSTM given by the character-based EM. A subset of pentest logs is easily separable
from the TU/e logs.

the log anomaly score δlog,char, as defined in Section 3.5.2, is calculated for every TU/e syslog
and pentest syslog which were not trained on, and naive substring filtering is used as well. The
results—with TU/e syslogs in blue and pentest syslogs in red—plotted in one dimension by their
log anomaly score are shown in Fig. B.2. The results show that one half of the pentest logs are
easily separable from the TU/e logs while the other half are not.

Attention for Character-Based EM

We tested the addition of an attention layer to the character-based EM model. The imple-
mentation of the attention layer from Datalogue 1 is used to create the A-EM. However, the
A-EM—after training until the training loss stops decreasing and starts increasing—performs
significantly worse (balanced accuracy of 0.31) than the EM (balanced accuracy of 0.74) and the
A-EM has fairly low δlog,char scores.

Character-Based BEM and Isolation Forest

For the next experiment the EM was replaced with the BEM. The BEM was trained on 100 logs
from the TU/e dataset for 250 epochs. From this point onward, naive substring filtering will
not be used anymore to flag anomalies because we realized that there often are non anomalous
log-lines that contain words like “error”. A potential future direction for the naive substring
filtering system is to let certain words add (negative) weights to the log-line anomaly score for
log-lines containing those words, but this is left to future work. It was also decided to keep
using logs with all duplicate log-lines removed, the reason for this choice is because some log-
lines would repeat many times skewing the log anomaly score towards the log-line anomaly score
of that log-line. While there might definitely be some value in keeping duplicate log-lines, for
example when employing collective and contextual anomaly detection, since we are only using
point anomaly detection removing all duplicates does not interfere with the usefulness of the
method. This means our method is not fit to find any anomalies that are collective or contex-
tual in nature, for example a large amount of repeating log-lines could indicate an anomalous log.

1https://github.com/datalogue/keras-attention/blob/master/models/custom_recurrents.py
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We also use an isolation forest as a new baseline to replace the naive substring filtering.
The isolation forest model is fitted on the same 100 logs as the BEM using the character-based
encoding of log-lines also used for the BEM. The isolation forest is used to predict whether
log-lines or logs are anomalous using its default anomaly threshold of 0. The meta features
of the isolation forest are set as follows: “behavior” is set as “new”, “max samples” is set as
100 and “contamination” is set as “auto”. The isolation forest model is evaluated using the
default isolation forest threshold 0 as the threshold between normal and anomalous log-lines.
The evaluation metrics of the isolation forest model are shown as a red line baseline. In Fig. B.5
it is shown that both the BEM and the isolation forest can separate about half of the pentests
sessions from TU/e sessions. In Fig. B.3 some evaluation metrics are shown for the BEM when

varying the value of the δlog−line,charl threshold between 0 and 1 in 1000 steps of 0.001 on pentest
0 and 17. We see that the BEM outperforms the isolation forest. While the exact performance
metrics were lost, we see that the EM is better on pentest 0 and the BEM is better on pentest
17. We decided to keep using the BEM because of its increased performance versus the EM in
the original paper.

(a) Pentest 0 Balanced Accuracy (b) Pentest 17 Balanced Accuracy

(c) Pentest 0 F1 Score (d) Pentest 17 F1 Score

Fig. B.3: Different metrics values over δlog−line,charl threshold value of pentest 0 and 17 for the
character-based BEM. The red line denotes the baseline from the isolation forest model with an
anomaly threshold of 0. It can be seen that the character-based BEM outperforms the isolation
forest for both pentests at an error threshold near 1.
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(a) Isolation Forest (b) Character-Based BEM

Fig. B.4: In (a) the isolation forest log anomaly score for the TU/e dataset (blue) versus the
partial fault dataset (orange). In (b) the log anomaly score δlog,char for the TU/e dataset (blue)
versus the partial fault dataset (orange) for the character-based bidirectional LSTM. The vertical
red dotted line in (a) denotes the anomaly score threshold of the isolation forest set at 0. The
isolation forest cannot distinguish fault logs but the character-based BEM can.

Character-Based Fault Logs

Next we add the 13 logs from the partial fault dataset. Plots of the distribution for the partial
fault dataset versus the TU/e dataset are shown in Fig. B.4. The isolation forest cannot distin-
guish between logs from the partial fault dataset and those from the TU/e logs at all. The BEM
fares a lot better and can distinguish a large part of the fault logs without any mistakes. From
the image it is clear that the character-based BEM could find all faults logs with a relatively low
cost in false positives, as most TU/e logs have higher scores than all fault logs.

Anomaly Detection Threshold for Character-Based Models

Another question is whether we can train an algorithm to automatically set a good anomaly
detection threshold for inter-log anomaly detection because the LSTM models need a variable
anomaly detection threshold and do not use 0 as the standard anomaly detection threshold like
an isolation forest model does. Since the δlog,char scores might differ greatly based on how the
model is trained, we need a more general applicable method. We decided to use a support vector
machine for this purpose and train it on a set of known TU/e logs and pentest logs. Our hope is
that this would allow the support vector machine to also correctly classify logs that are not part
of the test set. The anomaly threshold is set manually by training the support vector machine
with a linear kernel, the “C” parameter is set as “25” and the “gamma” parameter is set to
“auto”. The “class weights” parameters are set as “1” for a false negative and “50” for a false
positive. The advantage of this method is that the support vector machine can be retrained
very quickly whenever the model is updated. The decision boundary given by the support vector
machine for the graph of Fig. B.5 (b) is shown in Fig. B.6. We see that the decision boundary
given is not perfect, as it includes two false positives. The pentests that are too similar to the
TU/e logs are impossible to distinguish from TU/e logs with the current method.

76 Towards Interpretable Anomaly Analytics for Secure Testing Environments



APPENDIX B. PRELIMINARY EXPERIMENTS

(a) Isolation Forest (b) Character-Based BEM

Fig. B.5: In (a) the isolation forest log anomaly score for the TU/e dataset (blue) versus the
pentest dataset (red). In (b) the log anomaly score δlog,char for the TU/e dataset (blue) versus
the pentest dataset (red) for the character-based bidirectional LSTM. The vertical red dotted
line in (a) denotes the anomaly score threshold of the isolation forest set at 0. Both the isolation
forest and the character-based BEM have some success in distinguishing the pentest logs from
the TU/e logs.

Fig. B.6: The decision boundary given by the support vector machine on the data of Fig. B.5
(b). It divides the TU/e logs and the pentest logs, but not perfectly.
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Appendix C

Visualization Feedback

One filled out feedback form was received from the technical expert at Carapax IT. The tester
of Carapax IT was asked to provide feedback as well, he did not have enough knowledge to mark
false positives in the logs. The tester did not fill in the feedback form but gave other written
feedback. He thinks the visualization makes reading the logs easier and he was 70% sure that
the pattern of the alerts was right.

C.0.1 Example Feedback Received from the Technical Expert Original
(Dutch)

Helpt de colortest om sneller fouten te vinden?:
————————————————
Ja, wel om de aandacht op probleemgebieden te richten.
————————————————
Waren er fouten die niet werden gevonden (”averageprobability” ≤ 0.2) door het
model?:
————————————————
Ja, maar dan moet het model met context zoeken: de stacktrace van de panic van de wifi-driver
en in colortest testlog 12.xslx een hoop verbose meldingen die er normaal niet zijn (bijvoorbeeld
”xxxx.timer: Timer elapsed.”). Die zitten ongeveer tussen 0,2 en 0,4.
————————————————
Welke elementen van de colortest helpen je sneller fouten te vinden?:
————————————————
Vooral de average probablity en de volledige logregels (dus context).
————————————————
Welke elementen van de colortest kunnen verbeterd worden om sneller fouten te
vinden?:
————————————————
geen idee ;)
————————————————
Andere opmerkingen?:
————————————————
-
————————————————
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C.0.2 Example Feedback Received from the Technical Expert Trans-
lated

Does the colortest 1 help to find faults faster?:
————————————————
Yes, to put attention on the problem areas.
————————————————
Were there faults that were not found (”averageprobability” ≤ 0.2) by the model?:
————————————————
Yes, but then the model has to search with context: the stacktrace of the panic of the wifi-driver
and in colortest testlog 12.xslx a lot of verbose notifications that are normally not there (for
example ”xxxx.timer: Timer elapsed.”). They are about 0,2 and 0,42.
————————————————
Which elements of the colortest help you find faults faster?
————————————————
Mostly the average probability and the complete log-lines (so context).
————————————————
Which elements of the colortest can be improved to find faults faster?:
————————————————
No idea ;)
————————————————
Other remarks?
————————————————
-
————————————————

1Name of the visualization Excel sheet during testing
2Of average probability
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