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Abstract
In recent years there has been a rapid progress in Industrial robotic systems. However, this also
widened the scope and expectations of programming a robot. A robot should be easy to program
and reliable in task execution. Learning from Demonstration (LfD) also known as Robot Program-
ming by Demonstration (rPbD) offers a very promising alternative to mainstream approaches. We
try to encode dross skimming task on an industrial robot using Task Parameterised- Gaussian
Mixture Models (TP-GMM) - a type of probability based estimation LfD framework. A series
of demonstrations are provided to the robot using tele-operation and are encoded using Gaus-
sian distributions providing a method of spatio-temporal correlations. The trajectories are then
generalized using Gaussian mixture regression. Finally we compare and analyse the computed
dross skimming trajectory to the manual dross skimming and use this skill to generalize different
contexts.

Index Terms - Task Parameterised- Gaussian Mixture Models (TP-GMM), Learning from Demon-
stration (LfD), Robot Programming by Demonstration (PbD), tele-operation, dross skimming.
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1. Introduction

1.1 Background and Project Context

As Steel is in high demand for various sectors such as automotive industry, electric household and
civil, it is indeed necessary for large Steel and Iron companies, to produce high quality and low cost
Steel. Therefore, a metric for the Steel to be of highest quality is to be anti-corrosive. This could
be achieved by a process known as ”Galvanising”, where a continuous Steel strip runs through
a molten Zinc coating bath. The chemical characteristics of Zinc (Zn) on Iron (Fe), makes the
Steel able to withstand corrosion. The thickness of the coating is controlled by an air stream (also
called as air knife). [1] The level of corrosion resistant is directly proportional to the thickness of
the galvanising layer.

Figure 1.1: Continuous galvanizing Line. Image Source: [2]

When a Steel plate (or roll), gets immersed in the galvanising bath, it actively reacts with the
molten Zinc and affect the physio-chemical characteristics of the bath. Fe-Zn (along with Al)
intermetallics are formed at the interface between the coating and substrate. These intermetallics
are hard and brittle and commonly known as dross [2]. According to [2] the effects of dross on
commercial Zinc bath lines include, increase in the overall thickness due to Iron-Zinc compounds
therefore degrading the outward appearance and quality. There is also a considerable wastage of
pure Zinc in the form of dross which is undesired [3].

The dross formation is inevitable, that is one cannot prevent it. But there has to be a method
to remove the dross from the active Zinc bath inorder to maintain the desired quality of the end
product. Dross formation can be categorised as: Top Dross and Bottom Dross. Several commer-
cial galvanising units remove the top dross by skimming. the bottom dross on the other hand is
impossible to remove through skimming. However, one common solution is to convert the bottom
dross into top dross by adding Aluminium (Al) into the bath. It is then skimmed without dis-
turbing the galvanising bath. The concentration of Al has to be maintained at 0.12 wt.% (weight
percentage) in order to avoid the reaction between Fe and Al and actively aid the desired reaction
between Fe and Zn [4].

The dross removal is either done manually or using robotic solutions. In manual process, worker(s)
suite up in protective gear, skims the dross from the surface on the Zinc bath. The worker(s) stand
close by the hot Zinc bath which is usually 450 - 460 ◦C. Approximate weight of each dross scoop is
around 10 - 15 Kg, which makes the task laborious. The worker(s) are also subjected to extreme
working environments which causes serious health issues. Working very close to the hot Zinc
bath with a risk of splashing, high risk of fire, Zinc dust causing breathing issues, bare minimum
working distance from the hot Zinc bath posing high risk of injury, and continuous exposure to
high temperature working environment [5]. Considering the safety of the worker(s), most of the
industries deploy robotic solutions. Robots are considered as a potential alternate for performing
tasks which are too laborious for humans, with high precision, accuracy and speed. Most of the in-
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dustrial robotic solutions include a robotic arm with certain Degree of Freedom (DoF) which move
accordingly perform several tasks. Robots could be completely autonomous or semi-autonomous.
However, there could be a high risk of damages caused by an autonomous robot deployed in a
(un)structured environment if not properly trained. When it comes specific to the application of
robotic solutions for Dross skimming(removal), one of the method is the use of tele-operated semi
autonomous robotic arm as it can deal with several uncertainties in the environment. [6].

Heemskerk Innovative Technology (HiT) is currently working on an approach to apply Artifi-
cial Intelligence (AI) to a dross skimming robot. The robot can be deployed at an industry which
will skim the dross from the Zinc bath. If done, the robot could replace human workers in such
challenging environments. Currently, a simulated robotic arm has been modelled which is con-
trolled by a haptic device. The device drives the robotic arm (in simulation) which aids the dross
skimming process. HiT wants to move a step ahead and develop policy driven solution for the
robot, which (semi-)automates the dross skimming process.

1.2 Robotics for Industrial tasks

1.2.1 Robot Programming

Industrial robots are generally designed, (pre-)programmed to attain a specific task. Depending
on the variations in the task environment, corresponding alterations are made to the robots by
re-programming them. However, the complexity of programming remains one of the major hurdles
preventing automation using various industrial robots [7]. This is usually done by software pro-
grammers who must have prior knowledge of the robot and it’s environment and various other
interactions. However, with the increase in task complexity, the time required to program the
robot also increases. In an ever changing world, this becomes far more impossible on the longer
run. Also once deployed, further alterations on the robot can be made only by those experts
who have domain knowledge about the robot. While considering all these, manual programming
doesn’t seem like an ideal solution[8].

1.2.2 Robot Learning

An alternative is to enable a robot to autonomously discover and learn an optimal behaviour
through exploration by trial-and-error interactions. This method is known as Reinforcement Learn-
ing (RL) as this deals with providing feedback to measure the robot learning performance instead
of explicitly detailing the exact solution to the problem [9]. The robot explores the environment
and learns by itself without an expertise to program the tasks. In an industrial environment it is
quite difficult for the robot to attain a convergence point to an optimum learned policy, considering
the complexity of the environment and various other parameters [10]. It takes a lot of time for
the robot to get trained in order to attain a generalised policy. During this time, the probability
of certain undesired decision taken by the robot is high, which could cause potential damage to
the robot or the environment itself. The risk could be avoided by training a robot in a simulated
environment. In a simulated environment, we do not have a proper knowledge on all task and
environment related factors. Because of this unavoidable differences in the simulated and actual
task environment, the robot could show undesired behaviour. The behaviour could be corrected
in the later stages but the risk of damage involved is always a concern. Hence, considering the
time and risk factors involved, RL approach is also not a desired solution to train the robot for
industrial specific tasks.

1.2.3 Robot Teaching

From the previous sections, it could be inferred that manual programming and autonomous learn-
ing are not the optimum solutions/ways to achieve a task completion using robots. Fortunately,
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an alternative technique could be Robot Learning from Demonstration (LfD), also known as Pro-
gramming by Demonstration (PbD) [11] [12]. The main idea behind LfD is that to train or make
the robot learn from demonstrations. These demonstrations are in the form of dataset which are
essential for deriving policies, where the examples (dataset) are gathered using several demonstra-
tions. LfD within itself has various methods for demonstration and is considered as a sub-sect
of Artificial Intelligence [13]. The robot maps the recording of the demonstration and tries to
mimic. There are 2 categories through which the robot can accumulate knowledge. One method
is through ”Direct” mapping in which the trainer operates the robot platform and the robot learns
through it’s own movements. The second option is known as ”Shadowing” technique in which it
records the data through various sensors on the trainer and tries to map and mimic [11]. The
main advantage of LfD is that, it doesn’t require much of domain knowledge or technical insights
about programming the robot which makes it even more simpler and efficient for common people
to train the robot.

Figure 1.2: General Block Diagram of LfD
Image Source - [11]

From Figure 1.2 LfD can be categorised into 3 main process. A demonstration, a policy derivation
using low-level encoding techniques, and finally a task execution or replication by the robot in the
real world. An in-depth study on various evaluation factors and low-level encoding techniques are
presented under Chapters 2 and 3 respectively.

Demonstrations can be done in several ways. Such as, ”Teach box”. This is a portable, pro-
grammable controller which enables the controller to examine the state and drives the robot [14].
This approach is quite tedious since it requires some pre-programming of the teach box according
to task specifications [15].

Another common method of task demonstration is using Kinaesthetic teaching, where the hu-
man teacher or trainer demonstrates the task using the actual robot as a tool. The robot records
the actions and parameters according to the movements initiated by the trainer. This method
produces the best results in terms of simplicity, time factor and efficiency [16]. However, there
are some disadvantages such as, the inability of the human trainer to Kinaesthetically teach the
robot in hazardous environments (which is exactly the case to be considered for dross skimmer,
since the environment is hazardous to work and also the size of robot is large making it practically
impossible to carry out Kinaesthetically teaching). Additionally the demonstrator- induced dy-
namics during the training stage, might alter the dynamical conditions between the demonstration
and the autonomous stages [17].

A third demonstration technique in which a robot is operated by the trainer via a joystick (haptic
device) from a (not necessarily) remote location. Both the Kinaesthetic teaching and Teleoper-
ation are categorised under ”Direct” method of knowledge transfer from trainer to robot [11].
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The teaching can be done remotely which is actually an advantage in Dross Skimming opera-
tion. One challenge in LfD using Teleoperation should be manageable [11]. That is, low-level
motion demonstrations are difficult on systems with complex motor control (such as high degree
of freedom robots). Further more, Teleoperation is limited due to the spatial-temporal variations,
compared to other demonstrations methods [18]. A good learned policy depends on the quality of
teleoperated teaching, or in other words, the success of teaching process is highly dependent on
the experience of the demonstrator.

1.2.4 Interaction Environment

A fundamental factor to be considered while dealing with the interactions of robot with the
environment is, the task specific parameters. Depending on these factors, certain manipulations
of the robot should be taken into consideration, such as, the contact force, velocity etc. In case of
dross skimming, the task environment is considered as structured and predictable, in which the
external disturbances are less, it could be said that the task parameters are much related to the
task itself rather than the surrounding environment. For example, the robot for dross skimmer is
positioned at a particular spot and bath dimensions, extrudes, steel strip, ingot could be considered
as task parameters. Whereas when certain robots are deployed in an unstructured environment
such as a care robot in a hospital, it is expected from the robot to interact in dynamic objects.
Therefore, while training a robot in an unstructured environment, dynamic objects should also
be considered as task parameters. optimal logical solution within this dynamic environment is
quite hard. In such cases a more strategic level of learning is required rather than an operational
level. Given the fact that, CGL is structured environment, an operational level of model learning
could be logical. This could yield a fundamental solution that does the task of autonomous dross
skimming. An additional step to this could be more strategic approach to incorporate the dynamic
behavior of dross formation while learning.

1.3 Motivation

Several challenges exists in manual dross skimming operation such as, the safety concerns of human
workers working in the proximity of the Zinc bath, the time and complexity involved in manual
programming of robots, and learning a task using RL. Based on these challenges, the motivation
for this research assignment can be formalised as follows:

Considering the importance of worker safety, time involved, ease of programming and reliability,
robotic autonomous dross skimming operation using LfD has a good scope of research as it can
serve as a potential alternate to problems involved in manual dross skimming and other mainstream
robotic solutions.

4 Learning an Industrial Dross Skimming Task Using LfD Framework



1.4 Problem Statement and Goal

Due to the difficulties in the working environment in commercial galvanising lines, extra care
should be taken by the worker(s) in order to prevent serious hazards. Inspite of using certain
safety measures, serious health issues are inevitable in the long run. So, to prevent the exposure
of human workers to such hazardous environment, a robotic dross removal solution is investigated.
If such a solution would prove successful in terms of performance and efficiency, it could also help
in speeding up the process of Galvanising in CGL. To achieve this, the primary milestone is to
mimic the dross skimming task done by a human worker by hand. Since the CGL runs for 24/7,
developing and testing a robotic solution on actual line is not (yet) a feasible approach. Therefore,
a simulated setup of CGL with tele-operation is considered.

The goal of this assignment is to develop a simulated autonomous dross skimmer by extract-
ing the motion profiles demonstrated by the operator and encode these motion profiles into the
robot. The generated or learned profile is then compared with manual dross skimming opera-
tion. That is, the autonomous execution is assessed with the manual dross skimming using the
performance parameters considered in this assignment. The assignment is more focused on the
operational level of learning so that the importance is given to extracting the movement profiles
of dross skimming which is similar to human worker performing the same task by hand and less
concentrated on the strategic level. That is, the dynamic behavior of the dross is not considered in
this assignment such as tracking of dross and choosing a particular strategy according to different
dross formation while executing the trajectory.
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1.5 Research Question

Based on the Problem Statement and discussed in Section 1.4, the research question is formulated
as follows:

1. How the skills of an expert can be incorporated in automating dross skimming using Learn-
ing from Demonstration with a tele-operated haptic device in a simulated environment?

(a) What are the important factors associated with the Zinc bath and the robot aiding
the skimming process?

(b) Which low-level encoding techniques can be utilized for learning dross skimming op-
eration?

(c) How to build a policy driven platform for dross skimming with Unity in a simulated
environment?

(d) How the key performance factors could be validated with respect to autonomous
dross skimming in a simulated environment?

1.6 Approach

To achieve the overall goal previously stated the approach will be as follows: Initially a new
dross skimming setup is developed with an ABB industrial robot in Unity simulator. The task
is demonstrated using a tele-operated haptic device called ”Geomagic Touch”. The task is then
encoded using a python based TP-GMM model. The generalised trajectory obtained from the
model is then executed in the same Unity setup.

1.7 Report Outline

This section presents the outline of this thesis. Chapter 2 describes the parameters with which the
dross skimming is evaluated. Additionally, it presents an overview of the parameters related to Zinc
bath and robot separately. Due to the lack of knowledge on some factors, they are either assumed
to be constant or ignored during the course of implementation. Chapter 3 discusses various low-
level encoding techniques under LfD framework and are analysed with a set of requirements. A
suitable algorithm is chosen to encode the dross skimming task based on the evaluation of each
algorithm with these set of requirements. Chapter 4 proceeds with the implementation of dross
skimmer using TP-GMM model in a Unity simulator. The demonstration, dataset preparation,
learning and trajectory extraction are detailed under this chapter. Finally, in Chapter 5 conclusion
are drawn based on the experiments conducted with respect to the performance of autonomous
dross skimming. Moreover, recommendations are suggested for future work.
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2. Performance Indicators for Dross Skim-
ming

In order to create a policy for any application using Artificial Intelligence, before defining the
algorithm, one has to have a complete idea on what factors should the model work. In other
terms, depending on a number of factors, a model has to be implemented and evaluated. These
factors are more specific based on the application. For example, a robotic pick and place task has
specific factors to be considered whereas a robotic dross skimmer has certain other requirements.
Starting from the task environment to the type of robot used everything differs. These could be
considered as evaluation factors/ parameters for that particular application. In this section, we
would be discussing about these factors that are related to dross skimmer. Based on these factors,
the final implementation would be evaluated. This chapter is divided into two sections: in which
the parameters related to Zinc bath and those related to the robotic arm discussed separately.
Although, these two go hand-in-hand, categorising them would lead to a broader prospect of
including as much factors as possible. Since there is no international standard set in designing
a dross skimmer, it is upto the industry to determine the bath and robotic arm specifications.
Therefore most these parameters are based on the visual inspection and analysis rather than
supported by literature. The sub-question that will be answered here is:

1. (a) What are the important evaluation criteria associated with the Zinc bath and the
robot aiding the skimming process?

2.1 Parameters Related to Zinc Bath

• Dimension of the bath

Initially, the most important thing to start with is the dimension of the bath. A
robot must know it’s limits of dross skimming. These limits correspond to mapping
the dimensions of the Zinc bath in x, y, z plane. A 3-D mapping is sufficient as this
should remain constant for a particular bath. During the course of this assignment, the
dimensions of the bath are set constant. As there are no specific standards in defining
the dimensions of the bath, different industry can have varied dimensions of the bath.
It is therefore necessary for the robot to know the exact dimensions of the bath so as
to train the model for the task skimming task. For this experiment, the dimensions are
as per the bath design specified in Figures 2.1 and 2.2.

• Level of Zinc

For a robot to have a reference on removing the top dross, it has to know the level of
Zinc in the bath. Since the steel sheet moves continuously inside the CGL, considerable
amount of Zinc is removed from the bath over time. Therefore, the level of Zinc is
varying in the y-axis. A constant monitoring is required inorder to provide a reference
to the robot. Failing to do, the end effector will either skim air or submerge fully
insides the Zinc bath (both of which are completely undesired). Figure 1.1 represents
the y-plane representation of CGL which represents a much clear depiction of the im-
portance of determining the level of molten Zinc using level sensors. However, for this
implementation we consider the level of Zinc to be constant and train the robot.
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Figure 2.1: This Figure represents the top view of the CGL on x-z plane. The area available for
dross skimming is bounded within x and z limits are highlighted here. For this experiment, these
dimensions remain constant and the model is trained with reference to these dimensions.

Figure 2.2: This Figure represents the side view of the CGL on y-z plane. Here the level of
molten Zinc in the bath is bounded within the y-limits.

• Disturbances in bath during skimming

If, during skimming, the robot creates a lot of disturbances (in the form of waves) in
bath, the incoming steel plate gets inconsistent galvanised coating and creates pimples
on steel strip (dross getting coated on the steel strip). Also dross might get coated along
with pure Zinc. If such a scenario arises, the robot should sense this and decrease the
contact force and velocity of dross skimming has to be adjusted at an optimum point.
Since there is no possibility to temporarily stop the galvanising process, the optimum
velocity has to be adjusted without interrupting the galvanising process.

• Periodicity of dross removal

8 Learning an Industrial Dross Skimming Task Using LfD Framework



An analysis over a period of time has to be done to determine the mass of dross. If
the quality of end product has more % of impurities in form of dross, the frequency
of dross skimming has to be increased to remove as much dross as possible. With this
estimation, one could also analyse the number of skimming operations required for a
period. It should be noted that, the dross skimming process is not continuous.

2.2 Parameters Related to Robotic arm

While considering the factors related to robotic arm, these are directly associated to the specific-
ations of the industrial robot being deployed in the task environment. Replacing a robot must
make sure to re-consider all the factors.

• Velocity of dross skimming

As discussed in previous section 2.1, a disturbance in the bath is created if the robot
approaches the bath with a greater velocity. Doing so, the disturbances might cause
inconsistent coating of Zinc and reduces the quality of the end product. The lower
the velocity, the efficiency of dross skimming is too less as there is a tendency of dross
getting solidified. This often results in dross sticking onto the end effector increasing
the payload of the robot. A balance has to be achieved between these two conditions
as: the dross skimming shouldn’t introduce disturbances in the bath and the efficiency
of dross skimming is maintained at optimum levels. It is relatively much easier to vary
the velocity of the robot to find this balance.

• Amount of dross skimming for a period

This goes hand in hand with the bath parameters. An estimation on the dross volume
could be extracted in simulation by using a Unity package: ”Flex” for this project. In
practical application dross skimming, if traces of dross in the end-product, additional
skimming has to be performed to minimize the % of dross. This feedback is not obtained
immediately. After galvanizing, the steel roll goes through several stages. One such
(much later) stage is quality inspection. The quality control team has to give feedback
on the % of dross found. So that, necessary changes could be made in the skimming
operation.

• Collision avoidance

It is expected from an autonomous manipulator to detect and avoid collision in the task
environment. A collision with CGL could result in serious damage to the bath/ steel
strip or to the robot itself. To avoid such undesired situations, a collision avoidance
safety mechanism has to be incorporated within the robot system so that no collision
occur. Even if one has to occur, then the robot has to stop it’s autonomous execution.

• Trajectory deviation

The human worker has to be continuously notified with the robot’s trajectory in real
time in order to see whether the desired operation is performed by then robot. If not,
then necessary corrections has to be made to the learning model through additional
demonstrations or by adding task parameters. The deviation boundary surrounding
the bath serves as a reference for the robot to check for it’s deviation. If the end-
effector violates any such boundary condition, the human worker has to be notified
about the trajectory deviation.
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3. Low-Level Encoding Techniques
This chapter provides an overview of the available low-level encoding techniques. An encoding
technique refers to capturing or encoding the demonstrated data (in our case, the skimming
operation) by creating a state-action policy. A policy might contain several state-action pairs.
Based on this, a policy finds an appropriate action depending on the current state. An encoding
technique can be categorised as follows: a” low-level representation” where a nonlinear form of
mapping between the sensor and motor information are taken. A”high-level representation” follows
encoding the skill into a sequence of action-perception units [19].

The robotic arm has to function based on all the evaluation parameters discussed in Chapter 2.
Therefore, how various encoding techniques can learn a policy based on all these evaluation factors
will be addressed by the sub-question:

1. (b) Which low-level encoding techniques can be utilized for learning dross skimming op-
eration?

A generalised policy in LfD is derived based on the demonstration data. However, some methods
do not require demonstration data to derive a policy. These include, Reinforcement Learning
(RL) where the robot the environment through exploration or trial-and-error. Although, RL can
be used where in the robot explores the environment, chances of undesired results raises a safety
concern among industries. Fearing of damages caused in the environment due to exploration, an
alternative solution is to simulate the environment and train the robot. The results achieved are
only as good as the environment used in simulation. It also depends on the differences in mapping
between the simulation and real world (either in terms of the environment or the manipulator
itself). For all these reasons, a pure Reinforcement Learning approach for Dross Skimming has
not been adopted for Dross Skimming. Therefore initially, a Human-In-the-Loop (HIL) approach
wherein a human demonstrator teaches what has to be done by the robot using a tele-operated
device is analysed.

On the other hand, recent developments from [13] talks about Deep Reinforcement Learning,
where an approach to train the robot based on human demonstrations. When a trained model has
been achieved, it is only as good as a human demonstrator. Here is where, Reinforcement Learning
has been utilized to improve the robot performance using some reward functions. The reasons for
adapting this method could be categorised as a drawback for using Reinforcement learning alone.
Which is, too much RL could result in overload of states producing undesired results and also the
training time [20]. So first the skill is learned from human in simulation using tele-operation and
RL is further used to optimize or refine the skill. The human demonstration provides information
how to perform dross skimming. And additionally use RL to improve or optimize the dross
skimming process. Because certain adaptive methods has to be utilized to further optimize or
make corrections with the inaccuracies in robot model description in simulation.

This chapter analyses few methods for learning the skill (behaviour). A common distinction
between trajectory-based which uses time as a function for motions, and state-based use states of
robot for motion is discussed extensively in [21]. But this chapter focuses mainly on two distinctive
categories:

• Probabilistic Methods

• Deterministic Methods

as the probabilistic methods outputs the variances from the observed behaviour while in a determ-
inistic model, the actual goal is determined (always the same without no output variances) based
on the input behaviour.
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3.1 Requirements for Low-level Encoding Techniques

This section describes a set of requirements that provides an idea on comparing and capturing
important characteristics of various low-level encoding techniques. The set of requirements are
categorised according to the task execution and learning behaviour. Based on these requirements,
a cost function could be derived determining the success rate of the learning policy on applications.
The requirements are generalised as it can be adapted for any practical application.

3.1.1 Requirements for Task Performance

• Application

– The learned policy should be suitable to handle various types of tasks encountered by
the robot. For example, a dross has to be scooped using different scoop angles, using
different velocity and force, adapt to the changes in the bath level.

• Demonstrations

– The number of demonstrations required to learn a skill. A smaller set of demonstrations
is favorable since this will reduce the time required for learning and more economically
feasible in practical applications.

• Parameters

– Parameters or Constraints should be able to be integrated into the learning framework.
For instance, a complete movement profile should lie within the range of the robot.
Choosing a task parameter for learning which is not within the robot range would be
meaningless.

• Generalisation

– The techniques should be able to generalize well such that they are able to handle new
conditions for motion behavior. For instance, the references or task parameters for the
dross skimming are the dimensions of the bath. If there might occur a scenario, where
the dimension of the bath can change. In such a case, the technique should adapt to
the new task parameters.

3.1.2 Requirements for Skill Learning

• Scaling

– Scaling or more specifically Temporal Scaling refers to the ability of the method to be
sped up, or slowed down during the autonomous execution phase.

• Robustness

– No dataset is free without noise. A good encoding method should be able to cope up
with noisy data from sensor recordings which often contain stochastic signals or missing
data.

• Encoding and Regression

– A technique discussed in [22] and [23] uses an optimisation technique called ”Dynamic
time Warping (DTW)” for encoding and regression. A requirement for a Skill Learning
is to simultaneously perform encoding and regression without DTW (or other tech-
niques).

• Incremental Learning
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– A type of learning method is Incremental/ Online Learning [11] [24] where the operator
is allowed to make alterations to the demonstration/ learning process. The encoding
technique should allow the human in the loop to perform such modifications.

3.2 Algorithms

This section discusses some of the Deterministic and Probabilistic low-level encoding techniques in
order. For each method, the algorithm will be reviewed highlighting some important advantages
and limitations. The final section 3.3 of this chapter discusses how these techniques meet the
requirements (as in Section 3.1).

3.2.1 Dynamic Movement Primitives (DMP)

The idea behind Dynamic Movement Primitives (DMP) is finding a method for adjusting complex
motor actions without manually tuning the associated parameters. A dynamic system with a
specific stable behaviour can be modulated with nonlinear terms. The goal is to achieve the
desired point attracted behaviour using modulation with the nonlinear terms.

Figure 3.1: Illustration of a position tracking mechanism in DMP using position variables. Image
Source: [25]

This can be represented using first-order systems as:

τ ż = αz(βz(g − y)− z) + f(x) (3.1)

τ ẏ = z (3.2)

Equations 3.1, 3.2 look very similar to a damped spring model with an additional forcing term.
The system is made to be critically damped with βz = αz

4 so that y could monotonically converge
towards the goal g.

Where,

• τ is a temporal scaling constant

• αz and βz are positive gains

• g is the goal point

• y and z are the state variables

DMPs have some interesting properties of generation of Kinematic movement primitives. One such
and important advantage of DMPs is that it is possible to train with just one sample profile since
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the system is deterministic and time invariant. Thus allowing a better control to speed up or slow
down the policy learning. This properly of DMPs allows us to use increment/ online learning since
the temporal scaling allows the synchronisation of learned profile and training data. To realise
this, in [26] online learning was implemented using an phase estimator which, depending on the
output of the human tutor changes the speed of sawing(the example taken by the authors). Based
on the human tutor, the phase and state estimator adapts the learning policy of motion and speed
by identifying whether the current demonstration is very close to the previously demonstrated
data. When the demonstration is close, the robot is treated as a leader increasing stiffness. When
the demonstration deviates more, the tutor is the leader with normal path and force. After a few
demonstrations with online adjustments, progressive automation with few demonstrations can be
realised [25] [27].

Figure 3.2: Illustration of A single canonical system with several independent function profiles.
Normally this is the case with any robotic system. A typical robotic system has multiple DOFs.
This figure depicts that each DOF has it’s own forcing function and trajectories(transformations)
Image Source: [28]

The ability to generate movement primitives using DMP is easy and quick. However, adapting
DMPs to new task requirements becomes difficult when the manipulator parameters donot provide
a trajectory corresponding to the parameters associated with the actual task [29]. Consider a
Zinc bath with certain dimensions where the task parameters corresponding to the joint space
parameters of the robot. When the dimension changes, the joint space parameters no longer
makes sense and DMP encoding produces non-desired behaviour. Therefore, the trajectory profile
is not much generalised in DMP when the environment is scaled implying the importance of task
associated parameters. A common approach to tackle this is to generalise the demonstrations by
performing it several times and an average of all these is applied to the new environment. This
contradicts the advantage of DMP as discussed in previous paragraph where it was summarised
that DMP requires only one demonstration.

3.2.2 Probabilistic Movement Primitives (ProMP)

A framework development in which the Movement Primitives (MP) is formulated using a probab-
ilistic approach was introduced by Paraschos et al. in [30] as Probabilistic Movement Primitives
(ProMP). Unlike DMPs, the advantage of using ProMP is that it is a probabilistic approach
thus allowing to encode variance in some linear systems. On comparing ProMP with DMP, the
former allows to determine a relation between different movement profiles, incorporates the tem-
poral modulation needed for speeding up or slowing down the execution of Rhythmic and Discrete
movements.

Learning an Industrial Dross Skimming Task Using LfD Framework 13



Figure 3.3: This figure represents a Hierarchical Bayesian Model. The probability of observed
trajectories p(yt | w) depends on the weight vector p(w | θ). Image Source:[21]

y(t) =

[
qt

q̇t

]
= ΦTt w + εy (3.3)

p(τ | w) =
∏
t

N

(
yt | φTt w,

∑
y

)
(3.4)

where,

• Φt is a vector of dimension 2 x n = [φt, φ̇t]
T for joint positions qt and velocities q̇t

• n defines number of basis functions

• εy ∼ N (0,
∑
y) represents zero-mean Gaussian noise with

∑
y

The variance is computed with the weight vector w using a distribution p(w; θ) is introduced

• Parameter θ = {µw,
∑
w}

Figure 3.4: Comparison between two primitives. Combination of 2 movement primitives (shown
in red and blue) and the resultant in green. (a) shows the optimal behavior of distribution obtained
by adding both cost-functions. (b) shows combining DMPs which results in a linearly interpolated
trajectory. The resultant misses all the via-points. (c) Co-activation of two ProMPs results
movement passing through all via-points. (d) smooth blending from red movement primitive and,
subsequent switching to follow blue movement primitive.
Image Source: [30]

While on the upside, ProMP encodes variance of the trajectories which was not possible in DMP.
With the option of encoding variance, an exact right trajectory is of less emphasis but certain
highlighted points are to be reached within the time. But, human trajectories could differ from
demonstration to demonstration, an additional synchronisation component as used in DMP(phase
estimator) has to be used to synchronise humans and robots [31]. This is where ProMP out per-
forms DMP as it facilitates simultaneously encoding without the need for time-alignment process.
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Both DMP and ProMP can encode various profiles independently. However, a relation between
these profiles can be derived using ProMP which was not possible in DMP. This relation provides
useful information by exploiting the mean and variance. This boundary for the mean weight vector
helps in maintaining stability providing a Confidence Interval (CI). As certain parameters such
as joint angles, speed are considered, ProMP can find relation between these parameters and tra-
jectory among various demonstrations. In an attempt utilise the advantages of DMP and ProMP,
Meier and Schaal proposed a method in [32] called ”Probabilistic Dynamic Movement Primitive
(PDMP)”. The authors tried to improve DMP with probabilistic properties to measure likelihood
that the MP is executed correctly. However, this method suffers from the absence of data-driven
generalization which could result in trajectories deviating from demonstrations [33]. And because
of it’s unstable encoding nature (until now : anticipating future developments and improvements)
and lacking data-driven generalization, PDMP is not considered for this research.

3.2.3 Hidden Markov Models (HMM)

The mathematical model developed by Baum et al. in a series of publications [34, 35, 36, 37, 38] is
an probabilistic approach to determine is a state is directly visible to the observer. A mathematical
representation using HMM could be made only to a finite model which can have a probability
distribution over an infinite (not necessarily) number of possible sequences. A HMM model consists
of state based modelling, where a number of states could be visualised as localised position on a
3-D plane. In general, a HMM algorithm could be segregated into three divisions:

• With a given HMM, the probability to generate a sequence could be determined

• Determine the optimum state sequence to generate the HMM sequence

• Identifying the necessary parameters and structures that has to be considered in a HMM for
a very large data

In a HMM, a set of ”Observed Sequence” help to predict a sequence of unknown or ”Hidden” states.
A HMM takes influence from ”Bayes Theorem” through observations made a sequence of time
steps in order to probabilistic prediction of the best sequence of hidden states [39]. Terminology
related to HMM:

• Hidden States (or) States

• Observations (or) Observed Symbols

• State Transition Probabilities

– denotes the probability of moving from a state to another state (hidden)

• Output/ Emission Probabilities

– denotes the probability of an observing a symbol from a particular hidden state

To put it in Mathematical perspective, the probabilities of moving to state j in a timestamp t+ 1
from a state i in time t is given by:

aij = P (st+1 = j | st = i) (3.5)

A state transition matrix is formed for all such transitions.

A = {aij} ∀ i, j = {1, 2, ....Ns} (3.6)

For a given model at state i, the probabilities of observing a symbol qk at a time stamp t,
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bi = P (qk at t | st = i) (3.7)

In terms of Observation probability matrix,

B = {bi(k)} for i = {1, 2, ....Ns} and k = {1, 2, ....Q} (3.8)

where,

• Ns is the number of states within the model

• Q denotes the number of observational symbols.

Finally, HMM is described using
λ = {π,A,B} (3.9)

Where,

• π is the initial state distribution πi = P [q1 = Si]

• λ is the model

Figure 3.5: State Transition diagram of a Hidden Markov Model (HMM). [40]

A well defined and tuned HMM generally provides a stable mathematical probabilistic model.
They allow online insertion and deletion of sequence profiles, making it increment/ online learning
effectively possible. Because of the strong statistical foundation, effective learning could take place
just my raw sequence data and any noise are better compressed than other low-level encoding
techniques [41]. Just like ProMP, representation of variation in probability distributions provide
a confidence interval which can be presented to the operator to provide information. In [42],
a generalization of trajectories was achieved using key point identification based on significant
changes in joint position and velocity. An external Dynamic Time Wrapping was used to represent
the trajectories in temporal space. It also provides synchronisation of learned profiles and currently
demonstrated profiles to realize incremental learning. Even though HMM out performs other low-
level encoding techniques, it is computationally expensive to train. Also it is not recommended to
use HMM in which time factor is involved [43] as the time spent in a given state is not explicitly
captured. However, a Hidden semi-Markov model does capture time [44]. The Viterbi algorithm
is cost expensive interms of memory and computation. Alternative is to use other algorithms such
as forward-backward algorithm, but even this comes at a cost that doesn’t under cut the former
[45]. While considering HMM, smaller models are very much easier to train and as the model
length increases, chances of hidden state overflow is high. Large number of hidden states increases
the complexity of task generalization.
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3.2.4 Task Parameterized Gaussian Mixture Models (TP-GMM)

Just like HMM, and differing from DMP and ProMP, TP-GMM uses states to derive and drive
profiles. TP-GMM is an extension to the basic Gaussian Mixed Models (GMM) where several task
parameters are related to the model parameters increasing the exploration capabilities. Difference
lies in the fact TP-GMM adapts to different profiles automatically.

Task- Parameterised Gaussian Mixture Models (TP-GMM) was proposed by [46] to improve the
generalisation or the extrapolation of typical GMM/GMR [47]. There are also other new ap-
proaches developed based on TP-GMM such as: partial observable task parameters [48], applying
minimal interval control theory [49], TP-GMM to transfer skills on a soft robot [50].

In TP-GMM the task parameters (TP) are considered as P coordinate systems, which are defined
at each time step t by:

{TPj : bj , Aj}Pj=1 (3.10)

where,

• bj and Aj represents the origin of the jth reference frame

For a set of basis vectors {e1, e2, ....}, the transformation matrix A could be denoted as A = [e1e2...]
respectively. All task parameters are specified beforehand. The demonstrator should have prior
knowledge on the TP before demonstrating the task. The TPs are usually associated with the
position and orientation of the objects/ landmarks in the scene. In our case, it is the position and
orientation of the virtual frames in the simulated setup.

For every demonstration m ∈ M containing T data points of D dimensions {ξ} ∈ RD×T is
projected in different reference frames to obtain a third order tensor dataset: RD×T×P . This is
composed of P trajectory samples projected on P candidate frames, corresponding to matrices of
D- dimensional observations at T time steps. The model parameters are defined as follows:πi, {µ(j)

i ,

(j)∑
i

}Pj=1


K

i=1

(3.11)

where,

• πi is the mixing coefficients

• µ(j)
i is the mean and

•
∑(j)
i is the co-variance

of the i-th Gaussian component in frame j in a TP-GMM with K components.

Learning of the TP-GMM model parameters is done by maximizing the log-likelihood under the
constraint that the data in the reference frames are originated from the same source, leading to
the Expectation-Maximization (EM) algorithm, to update the model parameters iteratively, until
the convergence is achieved [51]. With this learned model, new trajectories are reproduced. At the
first step, the model retrieves GMM at each time step t. This is done by computing the product
of linearly transformed Gaussian:

(µt,i,
∑
t,i

) ∝ πPj=1(At,jµ
(j)
i + bt,j , At,j

(j)∑
i

A>t,j) (3.12)
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Figure 3.6: This figure illustrates the overall approach of TP-GMM. First multiple demonstra-
tions are performed in (a). These demonstrations are observed from different reference frames
(b) which are the task parameters. In (c), the different reference frames are combined such that
TP-GMM is obtained. From obtained distributions, a new trajectory is regressed in (d) by using
a regression technique. Image Source: [52]

Finally, Gaussian Mixture Regression (GMR) which exploits the joint probability density function
of data (both input and output) modelled by TP-GMM is used for reproduction of the new traject-
ory. The TP-GMM in Equation 3.12 encodes the joint distribution of the dataset. Defining the ϑ
and ς to represent the sets of dimensions spanned by the input and output variables respectively,
at each time step t, the datapoint ξt comprises of both ξϑt and ξςt . As a result, it could be written
as:

ξt =

[
ξϑt
ξςt

]
, µi =

[
µϑi
µςi

]
,
∑
i

=

[∑ϑ
i

∑ϑς
i∑ςϑ

i

∑ϑ
i

]
(3.13)

At each reproduction step t, (ξ
ϑ|ξςt
t ) is computed as the conditional distribution and estimated ξ̂ςt

is used as a command for position of the end-effector of the robot.

Figure 3.7: This figure illustrates a linear product between the three Gaussian distributions from
frame (a) with frame (b), output a single task frame with the three resulting distributions in (c).
Image Source: [46]

In HMM and TP-GMM, differing from DMP and Pro-MP uses task parameters for profile gen-
eration and generalization using states of the task environment and robot. TP-GMM also uses
probabilistic approach providing a confidence interval through variance to determine and provide
additional information to the operator. TP-GMM could be generated only through a set of demon-
strations present. The reason is, in order to find a probabilistic approach, a variance among
demonstrations should be present. There is an advantage of having demonstrations, as multiple
frame references could deal with noise more efficiently. Since TP-GMM could easily encode a
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profile based on task parameters, several parameters such as contact force, velocity could easily be
modified and learned. A final step is to use a regression technique GMR to generalise and generate
a trajectory. When using GMR it an additional requirement has to be met by aligning trajectories
to time space. This is achieved using Dynamic Time Warping technique [22] or other similar tech-
niques such as ”Functional Data Analysis”, in which time series are regarded as discretizations
of smooth (differentiable) functions of time [53]. This approach has been successfully applied to
analyze patterns and variability of speech movements in [54] and [55]. This could be adapted
to dross skimming applications to analyse patterns and variability in dross skimming velocities.
Since these methods takes into account the task parameters with variances, this approach is best
suited for complex tasks which require tracking of specific paths and speeds.

3.3 Evaluation w.r.t Requirements

The purpose of this section is to evaluate the encoding techniques with the requirements discussed
in Section 3.1. The comparison was made on two distinctive types of low-level encoding types:
Deterministic and Probabilistic, time-driven and state-driven. Below is an evaluation relating to
task learning and reproduction profiles.

• Application

– Applicability plays a strong factor in defining how well the generated profiles are more
likely to follow the correct/ expected trajectory. By taking low variance as a factor,
the important constraints are determined. While considering these individual task
parameters in which time is considered as an important evaluation parameter, state-
driven probabilistic approaches does perform well. Therefore, a HMM or TP-GMM
would be very useful.

• Demonstration

– It is a known fact that, in order to obtain a confidence interval, multiple demonstrations
are to be performed. Hence, probabilistic methods (Pro-MP, HMM, GMM) requires
multiple demonstrations as compared to deterministic approach (DMP) which requires
only one demonstration. With tasks where time factor is considered, it is obvious that
more demonstrations are required to determine task parameters with low variance.
Therefore, a probabilistic approach with multiple demonstrations are chosen when task
parameters are aligned to time space, and a deterministic approach with fewer/ single
demonstration when the task parameters put less emphasis on time space.

• Parameters

– Here the possibility of determining a relation between various model parameters and
determine how they could be incorporated inside the learning framework. Probabilistic
approach models these task parameters into Gaussian components. Therefore, Pro-MP,
HMM, TP-GMM could be used.

• Generalisation

– As by the literal meaning, generalised profile could be observed only through multiple
demonstrated data. Probabilistic approach which provides a variance allows a better
generalisation compared to deterministic approach. Amongst probabilistic approach,
TP-GMM provides more generalisation with less computation, memory cost than HMM
and Pro-MP.

• Scaling
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– Scaling in terms of temporal behaviour does go well with time-driven low level encoders
as it allows manipulation of coefficients. These coefficients could relate to various task
parameters such as velocity, contact force, and other localised movements.

• Robustness

– Robustness provides a metric on how the encoder responds to uncertain situation such
as noise. Deterministic approach simply replicates the noise while reproducing the tra-
jectory as neither they donot consider variance nor they take multiple demonstrations
into account. Therefore, it is expected of all probabilistic encoders to have a robust
learning framework than deterministic.

• Encoding and Regression

– This has been described briefly under each encoding technique. A time-driven approach
such as Pro-MP allows simultaneous encoding and regression, whereas DMP, HMM
and TP-GMM use an external function such as DTW for simultaneous encoding and
regression.

• Incremental Learning

– Any learning framework should allow certain modifications to be done on it. These
modifications are carried out in temporal space and online. All probabilistic methods
require a demonstration data and hence it could be considered that the learning happens
offline. However, an incremental learning could be done on these offline data. But while
considering incremental learning through online modification, DMPs are most suitable
as the framework allows online modification in temporal space.

• Miscellaneous

– Factor(s) which are not a necessary metric for evaluating a low-level encoding technique
but determines the ease of use are discussed here. One such factor is providing addi-
tional information to the trainer. For example, as extensively discussed, probabilistic
methods provide a variance parameter as an additional information. This is used by
the trainer to find the low variance task parameters to estimate a certainty in replic-
ating the task. This allows the trainer to estimate a confidence interval. A statistical
model always gives an estimate on whether more number of demonstrations are further
required.

Summarising the above evaluation, DMP takes a deterministic approach as it requires fewer demon-
stration, possibility of incremental/ online learning, simultaneous encoding and regression without
any need for external algorithms. DMP performs well when the system itself is less complex
without any noise. However, as the system has complex movement profiles in the presence of
noise, DMP fails to adapt and provide generalisation. The possibility of online learning could be
utilized to the fullest if the task environment is a structured with simple trajectories. So, DMPs
are suitable for less complex tasks in an environment with very less disturbance.

When it comes to applying robotic solutions to industries, the environment is considered as un-
structured and also very complex. More complex tasks increases the scope of robot to learn a wide
variety of task demonstrations. Hence there is one more reason to drop deterministic frameworks
(DMP) and choose a probabilistic approach. These methods contribute to include variances of
task parameters providing a robust generalisation. Therefore, Pro-MP which provides generalisa-
tion and simultaneous encoding and regression is an option. However, while considering individual
independent task parameters, Pro-MP does not provide a relation, and integrating all these para-
meters into a single framework becomes complex. An alternative is to choose HMM, where each
and individual parameter can be modelled into respective states. The problem arises where, HMM
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uses external algorithms for synchronisation. All these comes with a cost both interms of memory
and computations. If the system is a bit more complex, there is always a high probability of more
(irrelevant) hidden states if the key tasks points are not chosen properly.

Requirements Deterministic (Time-driven) Probabilistic (Time-driven) Probabilistic (State-driven)

Task Requirements DMP Pro-MP HMM TP-GMM

Applicability - + + ++

Demonstrations for generalisation ++ + + +

Task Parameters – - – ++

Generalisation – ++ ++ ++

Learning Requirements

Temporal Scaling - + + ++

Robustness - ++ ++ ++

Simultaneous Encoding & Regression – ++ – +

Incremental learning ++ + - -

Provision of Additional Info. – + + ++

Table 3.1: Summarizing LfD techniques

Therefore, to summarise a HMM model could build a strong statistical framework only if the
key points are chosen properly. TP-GMM contributes to learning individual task parameters and
create a model. Thus a variety of tasks dependencies can easily be encoded and a relation could
be derived with less computation and memory costs. Additionally, TP-GMM provides a variance
index to the trainer highlighting the important feature points. This could be used to improve
generalisation. It should also be noted that HMM and TP-GMM also uses eternal algorithms for
synchronisation (DTW). Keeping memory footprint in mind, additional care has to be taken while
extracting only the important features of a movement primitive we could use Pro-MP, HMM since
there could be state overflow condition. It is because of these reasons, TP-GMM was chosen which
has an efficient memory utilization and low computation costs.
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4. Experimental Setup
This chapter gives a brief explanation and the steps involved in encoding dross skimming task
on the robot. First, in section 4.1, the LfD framework is discussed and how it encodes the task
in general perspective. Then we narrow down to our specific task (dross skimming) and discuss
how the task is demonstrated, the preparation of demonstrated dataset for learning, the algorithm
used to learn the dross skimming task and obtaining a trained dataset from the model in Section
4.2. The sub-question that will be answered here is:

1. (c) How to build a policy driven platform for dross skimming in a simulated environ-
ment?

4.1 The LfD Framework

As discussed in Section 1.2.3, the main principle of LfD is that the end-users can teach the robots
new tasks without programming. In a traditional programming scenario, a human programmer
would have to reason in advance and code a robot controller that is capable of responding to any
situation the robot may face, no matter how unlikely. In contrast, LfD - PbD allows the end-user
to ’program’ the robot simply by showing it how to perform the task. when failures occur, the
end-user needs only to provide more demonstrations, rather than calling for professional help. LfD
- PbD hence seeks to endow robots with the ability to learn what it means to perform a task by
generalizing from observing several demonstrations. Therefore, the key factors in a typical LfD
framework boils down to: ”What to imitate? and How to imitate?”.

Figure 4.1: Generic LfD

Figure 4.2: Task Parameterised LfD

4.2 Dross Skimming

With the factors discussed in previous section, we could apply an LfD framework to the dross
skimming task. It is evident that, we have to demonstrate how to skim dross from the Zinc bath,
also, the means by which we demonstrate is through tele-operation.

Task Demonstration

Since the assignment was aimed at generalising dross skimming task in a simulated environment,
an Unity simulation set up was made which had the Zinc bath and the robotic arm with the
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desired end-effector. The simulation setup was then linked to a haptic device ”Geomagic Touch”
using the ”Open Haptics plugin” in Unity from 3D-Systems. The physics on the simulation was
controlled using Unity’s default physics engine- ”Nvidia PhysX Engine”. A general Block diagram
of the setup with the simulation environment is shown below.

Figure 4.3: The setup of the experiment for dross skimming demonstration. There is a hu-
man operator operating the robot through a master device which controls the slave device that
manipulates the environment (Zinc bath).

Figure 4.4: : Schematic overview of the simulator environment. The control data flow shows
the interaction of the master device with the in-built Physics engine in Unity for Force feedback.
Adapted from: [56]

A typical skimming task could be sub-divided to three tasks. Namely,

• From the initial position to one end of the bath (T1).

• Moving from one end of the bath to the exit point or another end. This process is also called
as ”Raking” (T2).

• After reaching the exit point, the end-effector is lifted from the bath collecting the dross.
This operation is known as ”Scooping”. And finally, trajectory towards the dross bucket to
dump the dross (T3).

One full dross skimming operation is learned in terms of steps or sub-trajectories in cycle as men-
tioned above. The reason being is that, the entire trajectory is complex and if it is demonstrated as
a single trajectory, it is impossible for the model to learn and generalise. The task is demonstrated
using a master- slave configuration as shown in Figure 4.3
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Figure 4.5: Dross skimming sub- trajectories. The green colour corresponds to the initial traject-
ory from Robot’s initial position to the entry point in the bath (T1). The Yellow sub-trajectory
represents the Raking operation (T2) and the Red colour corresponds to the Scooping operation
(T3).

The dataset consists of the end-effector’s position and orientation in 3D- plane corresponding to
the world coordinates- which is the base of the robot. The data is logged at a Frequency of 100
Hz.

Task Learning

Similar to task demonstrated in previous sub-section, Task learning is also done in terms of
sub-trajectories. For each sub-trajectory, a dedicated TP-GMM model is used to encode the
behaviour. 3 reference frames or Task parameters are used to encode the behaviour. Over the
course of learning, the reference frames are static and hence their transformations with respect to
the world frame remains constant. Whereas, the end-effector frame transformations are calculated
for each time step.

The main idea is to consider the objects (which modulate the movement: in this case the end-
effector of the robot) in the working environment as external task parameters (or frames of ref-
erences). Then, the demonstrated trajectory is projected into these frames of references and a
Gaussian mixture model (GMM) is fit for each sub- task. The resulting GMMs are combined with
each other to get the final TP-GMM model. In the reproduction phase, new location of the objects
will be captured and used with TP-GMM to estimate a new trajectory. This implementation is
based on the method proposed in [51].

LfD using Task Parameterized- Gaussian Mixture Models

Algorithm

1. Task Demonstration

for m← 1 to M (for each demonstration Sample of Dross- Skimming)

– for j ← 1 to P (for Task Parameter) record trajectory data tξm and tTPmj at each
time step.
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Figure 4.6: Static reference frames/ Task parameters considered to encode the dross skimming
task

– end

end

2. Model fitting and TP identification

for t← 1 to T (for each task) (in this case, 1)

– Consider all TPs as relevant

– Fit a TP-GMM model for the task (TP−GMMt)

– Identify the TPs

– Update TP−GMMt using relevant TP
– Store TP−GMMt and indexes of relevant TPs

end

3. Reproduction

– Collect TPs

– Load the corresponding TPs and TP−GMMt

– for n← 1 to N (for each reproduction step or time step)

∗ Use TP-GMR formulation to estimate the values of trajectory ξ̂ςn, at each time
step.

– end

One thing that to be noted is that, in this experiment all TPs are considered as relevant to the
experiment. That is it is assumed that the TPs are known and available prior to the demonstrator.
However, this assumption is not always a case in an unstructured environment. In such scenarios
where certain TPs are irrelevant, one has to differentiate between relevant and irrelevant TPs
based on the importance in the given task. One way to identify a relevant TP is to record the
demonstrations including the TP information such as the position and orientation of the TP, a
TP-GMM model is fit to the demonstrations. Then a trial reproduction is performed where the
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importance of each TP is identified using normalized determinant of the inverse covariance matrix
as mentioned in [57]. However, since we have prior knowledge on the TPs, we go for a simpler
TP-GMM implementation by assuming the TPs to be relevant. Based on Figure 4.6, a summary
of TPs in this experiment is given below in Table 4.1. The Task parameters could also be dynamic
in general (moving frames), though in this experimental setup only static TPs are used.

Task Parameters (TPs) Frames (Referring to Figure 4.6)

TP1 Entry point into the bath

TP2 Exit point from the bath

TP3 Dross bucket

Table 4.1: Task Parameters for the TP-GMM model

Tasks Description Relevant frames

T1 Initial trajectory from robotic arm’s initial position towards the entry point of the bath TP1

T2 Raking operation (entry point of the bath towards the exit point TP1, TP2

T3 Scooping operation (exit point from the bath towards the dross bucket) TP2, TP3

Table 4.2: A tabular description of the sub-trajectories and their relevant Task parameters

Figure 4.7: A schematic overview of the implementation

Task Reproduction

Once learning is done, the Output of the TP-GMM model is the generalised position of the end-
effector over time. The output file in fed to the Unity simulator and the end-effector position and
orientation are manipulated according to the model inputs. We use FABRIK algorithm (Forward
And Backward Reaching Inverse Kinematics) [58] – a heuristic method using vectors and the
concept of reaching the goal on the those vectors, to move the Robotic arm links according to the
end-effector. The autonomous execution in simulation is shown below in the following Figure 4.8

26 Learning an Industrial Dross Skimming Task Using LfD Framework



(a) (b)

(c) (d)

(e)
Figure 4.8: Unity: Autonomous Execution. (a) and (b) represents the sub-trajectory from the
initial position of the robot to the entry point into the bath (T1). (c) represents the Raking
operation (T2). (d) represents the Scooping operation. And finally, (e) represents the final sub-
trajectory of exit point from the bath to the dross bucket for dross dumping (T3).
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5. Results, Discussions and Conclusions
Now that the proposed Autonomous dross skimming is described, the next step is to validate it.
This Chapter focuses on the experimental validation of the simulation proposed in Chapter 4.
In this chapter, the autonomous dross skimmer is evaluated against the manual (tele-operated)
dross skimming with the help of certain evaluation parameters considered in Chapter 2. How-
ever, not all evaluation parameters are considered since some parameters could not be quantified
for comparison. For example, collision detection and deviation evaluation parameter cannot be
quantified but it is a critical safety parameter to be taken into consideration with higher priority.
Therefore, this parameter is not compared with manual dross skimming however, it is expected to
be implemented in the autonomous execution to avoid all kinds of collision and to notify the user
if the trajectory deviates. Other factors such as, the dimensions of the bath and the level of Zinc
are considered to be constant during the course of implementation and hence they are disregarded
for this experimental validation. The sub-question that will be addressed in this Chapter is:

1. (d) How the key performance factors could be validated with respect to autonomous
dross skimming in a simulated environment?

5.1 Results

5.1.1 Task Generalisation

One metric to analyse or evaluate the degree of learning is to compare the demonstrated trajectories
and learned trajectory. In order to generalise, or to make sure that the learned trajectory does
not deviate much, additional demonstrations are necessary. Deviation here denotes the variance
factor. If the variance is more, the learned trajectory could deviate more.

Figure 5.1: Average of all Demonstrated trajectories Vs Learned trajectory of dross skimming

5.1.2 Disturbance Induced in the Bath

To evaluate the performance is to determine the disturbances caused in the Zinc bath during the
skimming operation.
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Figure 5.2: The plots show a comparison of disturbance in the bath. Average of all Manual
Raking operation vs the Raking operation of Autonomous execution. Level 0 on the y-coordinate
denotes the level of Zinc in the bath. The smoothness in trajectory results in creating less dis-
turbance in the bath.

5.1.3 Velocity of Dross Skimming

To evaluate the performance index few experiments were conducted. One experiment was to
compare the time taken to complete one full trajectory (time taken to complete trajectory T1+ T2+
T3) and individual time taken to complete each sub-trajectory (T1, T2, T3). For this experiment,
dross factor is excluded and comparison is based only on the time factor.

Figure 5.3: Experiment 1- Time Comparison of sub-trajectories between average of all demon-
strated sub-trajectories and autonomous execution

5.1.4 Time Period for Dross Removal

In another experiment, the overall time period to remove a certain amount of dross in both
autonomous and manual operation was conducted. The results of this experiment are shown
below in Figure 5.4. An efficiency metric is placed based on the number of balls removed in a
certain amount of time. Successful removal of each dross ball adds to 3.333% efficiency. A penalty
factor is also included where in 2% of efficiency is deduced in case of undesired execution such as
dross spill.
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Figure 5.4: Experiment 2- Overall time taken to remove the dross in both manual execution and
autonomous execution

Figure 5.5: Experiment 2 - With the same setup of 30 simulated balls, this plot shows how
the sub- trajectories compare against manual and autonomous dross skimming with respect to
number of operations taken to achieve the particular task. Currently, in autonomous execution,
the control to choose between Raking and Scooping is manually selected by the human worker
during runtime.

5.2 Discussions

5.2.1 Task Generalisation

The variance factor plays a major role in terms of probabilistic modelling. If the variance of the
learned trajectory is high, it is less generalised and hence therefore, the learned trajectory could
deviate from the demonstrated trajectory showing stereotypical behaviours. In such cases, more
demonstrations are required to bring the variance factor down. From Figure 5.1, it is seen that
the learned trajectory is almost similar to that of what is being demonstrated. Except for the last
part, where during the scooping and dross dumping operation, a considerable amount of variance
is encountered. The reason is that, the number of demonstrations considered for generalisation
was less compared to the raking operation. The reason is because, the robot is actually moving
in free space, away from the bath environment, and there is very little possibility for the robot to
collide with the bath. Therefore, less generalised dross dumping operation with a lot of variance
doesn’t affect the performance of the autonomous dross skimming and reduces the training time.
Therefore, few demonstrations were needed to learn this part of the trajectory. However, for
the initial part and especially during the ”Raking” operation, the learned trajectory has to be
as close as possible to that of the demonstrated trajectory because, the end-effector is the bath
environment and any deviation could result in damages and thus, large number of demonstration
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were needed to generalise. The Figure 5.1 reflects the same behaviour of the learned trajectory as
it is as close as possible to what is being demonstrated.

5.2.2 Disturbance Induced in the Bath

It is evident from Figure 5.2, that the disturbance which is measured as a factor of end-effector
position in the y- coordinate, caused due to autonomous execution is less. this is because the
raking operation in autonomous execution is almost smooth thereby causing less disturbance in
the bath. It maintains the level of Zinc as a reference and performs the trajectory. Which was
not possible in manual tele-operation because it is difficult to maintain a constant level while
performing the trajectory. The frequency of variation between these is directly proportional to
disturbance induced in the bath. A trajectory is smooth if the frequency of variations in the
disturbance is less. However, this factor alone doesn’t determine the disturbance as one has to
keep in mind the optimum velocity with which the raking operation is performed. The lower the
velocity, the less disturbance is caused.

5.2.3 Velocity Dross Removal

With the velocity set to lower optimum level during autonomous execution, from Figure 5.3 it
takes less amount of time than average of all manual operation for all sub-trajectories (T1, T2,
T3). Hence, in terms of time taken to perform one trajectory, the autonomous execution is faster
(43 Seconds) even with the velocity set to optimum lower bound, when compared to manual
execution (52 Seconds) to complete one trajectory.

5.2.4 Time Period of Dross Removal

Now that we have seen how the sub-trajectories compare against each other in execution, we now
do another experiment, where they are put to use for a more realistic scenario. For this experiment
5.1.4, an Unity package from Nvidia called ”Flex” is used to simulate the liquid dross particles.
The amount of dross in the bath is equal to the number of simulated balls. A metric to evaluate
the dross skimming to quantify the number of balls removed over a period of time in simulation.
We try to place an evaluation criteria based on this concept in the experiment which gives an
overall time taken to remove certain amount of dross from the bath. So, we simulate 30 dross
balls in the bath and compare the performance in both manual and autonomous dross skimming.

From Figure 5.4, variance is expected in manual dross skimming but there is also some variance
during autonomous execution. This is seen because of the velocity of the autonomous execution
which could be varied during run-time by the operator. This means that the optimum speed at
which the autonomous execution has to be carried out could be set by the operator. It could be
inferred that the manual dross skimming out performs the autonomous execution by a considerable
margin. The reason is the ease of skimming dross in manual tele-operation. The performance is
improved due to the fact that, tracking dross in manual tele-operation is easy and straight forward.
Half way down the experiment, it was noted that most of the dross was concentrated near the exit
of the bath. Since in manual execution, the operator has the possibility to manually move the
robot end-effector towards the specific target and perform the skimming operation. This improves
the performance by reducing the time required to skim a given quantity of dross from the bath.

To investigate the performance deterioration in the autonomous execution, the number of op-
erations to achieve a sub-task was counted. It is from Figure 5.5, the setup took around 3 Raking
operations in manual, 4 Raking operations in autonomous execution to rake the dross from one
end to the other end. The performance is on par against each other as there is no much decrease
on efficiency during the raking operation. However, the manual execution could skim the dross in
just 7 skimming operations whereas, the autonomous execution took 13 operations to completely
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remove 30 simulated dross balls from the bath. This causes a considerable drop in the efficiency
of dross removal. The reason is also due to the fact of the tracking the dross and adjusting the
end- effector (scoop) to remove the dross in an efficient manner.

Figure 5.6: The performance decrease caused due to the lack of dross tracking in autonomous
execution

The Figure 5.6 explains the drawback in autonomous execution. Most of the dross is concentrated
at the exit point (TP2). But the generalised trajectory follows the learned order, T1− > T2− >
T3 and the cycle continues. In this case, even though the dross is concentrated at reference frame
TP2, the robot starts all the way from TP1, executing T1 first (marked with a yellow indicator
in the Figure 5.6). This takes considerable amount of time and thus, increasing the overall time
taken to skim the dross.

With the same setup, fixing the time constant at 100seconds, and 30 dross balls, the autonomous
execution was able to remove 21 out of 30 dross balls giving an overall efficiency of about 68%
with the penalty factor of spilling one dross ball. In manual execution, the efficiency was 100%.

While considering a real life scenario, we find that the autonomous execution to get the fun-
damentals right by performing a single strategy dross skimming operation. The shortcomings
are: not responding and adapting to the dynamic behavior of the dross because of lack of a dross
tracking mechanism, inability of the simulation setup to choose between different strategies during
execution. The dross formation is not location specific and it gets spread out through the entire
bath area. This experiment performs dross skimming by choosing a specific strategy at a time. If
we were to use the same set-up and strategy to clean an entire bath filled with dross, this method
could take a very long period to remove dross. As the raking operation T2 uses TP1 as task para-
meter, the dross accumulated on the bath walls in TP1 could not be removed. This is because,
some amount of dross could drift away from the end-effector during raking and towards the bath
walls making it inaccessible for the robotic arm. In such situations, different strategy has to be
applied by translating the robot base and changing the orientation of the robot and performing a
scoop only (T3) operation near TP1. In another situation, where the dross gets accumulated on
the bath walls near TP2, the orientation of the scoop has to be changed so that, during scooping
task (T3), the drifted dross is collected by the end-effector. To achieve this, different orientations
of the scoop has to be learned by changing the task parameter TP2, where scooping operation
with different orientations correspond to different strategy of autonomous scooping task. Hence,
by incorporating these different strategies according to the real life scenario and behavior of the
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dross in the bath, an entire bath could be cleaned using the autonomous execution.

In such a situation, the task parameters associated with the model learning has to be changed
relevantly so that the model could learn new movement profiles and the robot can perform a dross
skimming task relevant to that situation and condition.

5.2.5 Collision Avoidance and Deviation Check

The autonomous execution is incorporated with a safety mechanism which continuously monitors
for possible collisions during run-time. The autonomous execution avoids any collision with the
bath environment and if in case, a collision has to happen, the autonomous execution is stopped
and the control is given to the manual tele-operation to continue with the trajectory. This is done
to avoid any further damage. The autonomous execution also parallely checks for deviation in
the trajectory that is being executed. In such a case, the user is notified about the deviation as
a warning. Few additional demonstrations could result in a more generalised movement profile
which doesn’t deviate from the expected trajectory.
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5.3 Conclusion

To validate the learned model, we make use of the evaluation parameters discussed in Chapter
2. These are: the disturbances caused in the bath, velocity of the trajectory, time period to
remove a certain amount of dross. Other additional factors include: collision avoidance and tra-
jectory deviation check. These factors are evaluated against a base-line: Manual tele-operated
dross skimming. Initial results show that, the autonomous execution takes less time to execute
the sub-trajectories (T1, T2, T3) when compared with manual tele-operation. This indicates that
the autonomous execution induces less disturbance in the Zinc bath during Raking operation. The
autonomously executed trajectory is as smooth when compared to manual tele-operation.

The autonomous execution takes less time to execute the trajectories or in other words, it is
faster in executing the trajectory as it’s velocity is higher as it took only 43 seconds to execute
T1, T2, T3. Whereas, manual tele-operation takes considerable amount to time to perform the
dross skimming trajectory. To perform the same set of tasks: T1, T2, T3, the manual tele- opera-
tion took around 52 seconds. It can be inferred that the autonomous execution faster. However
the manual tele- operation outperformed the autonomous execution in terms of the overall time
taken to clean the bath by removing certain amount of dross. The reason is because it is easy
to track dross in manual operation. Thus in spite of being faster in terms of execution, due to
the lack of dross tracking mechanism, autonomous execution takes more time to clean the bath.
It’s efficiency stands as 68% against manual execution, which is at a 100%. The efficiency could
be improved having a human to select different scooping strategies and design a dross recognition
algorithm so that the robot could autonomously execute as well as track dross and adapt the
strategy of dross skimming according to the dynamic behavior of dross. Despite the fact that, the
autonomous execution takes more time to remove dross, it provides much operational safety and
reliability by avoiding obstacles within the task environment.
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5.4 Recommendations

However, there are still improvements in this field where the possibility of multiple task demon-
strations technique encoding could be taken care by a single learning framework. This means,
changing the position and orientation of the robot and performing different trajectories. Cur-
rently, only a single set task encoding technique that could be learned by the robot. Also, recent
development in TP-GMM allows incremental/ online learning using external algorithms which
allows the operator to refine the predicted trajectory during run-time. This was not considered
in this research because, the learning was done offline and not within the Unity environment.
There is also a possibility to create a TP-GMM model within Unity environment leading to future
developments in online learning.

An important performance criteria where this implementation doesn’t match up with the manual
dross skimming is the efficiency as it took more time to remove dross. This was because of the
lack of a visual feedback on the robot during the autonomous execution where the robot couldn’t
track the dross. In a more practical scenario, a strategical learning approach to perform a more
extensive skimming operations along with a visual feedback to aid the robot to track and choose
the best scoop position and orientation according to the dynamic behavior of the dross. Thus,
yielding a fully autonomous dross skimming solution.

The visual feedback could be implemented in two ways. One of which is a camera placement
on the robot which could track dross. The robot’s control system could use this information as
the target and navigate the end-effector of the robot. Another method is by including a HIL
approach, where an expert could use the information from a camera in the task environment as
a visual feedback on an interactive module. The expert could point the target on the GUI mod-
ule and this information is fed to the robot and the robot’s end-effector could navigate to that
particular target highlighted by the operator. Ofcourse, this requires continuous monitoring from
the human worker. This interactive set-up could make this robotic solution efficient and reliable,
yielding a semi-autonomous solution of dross skimming.
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6. Summary
Industrial robotic solutions are replacing manual/ human workers in extreme working conditions
and that is a welcoming sign. The key constraint of such robotics solution is to have autonom-
ous manipulation skills which could perform these tasks just like humans while operating in an
(un)structured environment. One such application is the autonomous dross skimming in a Con-
tinuous Galvanising Line (CGL).

The core problem of removing dross from a Zinc bath (or any industrial task in general) consists
of a wide variety of complex movements/ trajectories. Instead of manually hard-coding the robot,
which is challenging and requires an expert every time when alterations are encountered in the task
environment. An alternate approach is to conduct task demonstrations using the robot and the
robot learns from these demonstrations. Therefore, this research is aimed towards robot Learning
from Demonstration (LfD). A LfD framework captures the task and it’s associated parameters by
observing the human demonstrations. Then, the learning takes place where the skill is encoded.
The last phase, the reproduction phase where the skill is reproduced back in the task environment.

The main objective of this research is to investigate what factors are involved in dross skim-
ming, based on a tele-operation for a robotic dross skimming application and explore the possible
methods to implement an automated dross skimming in a simulated environment. Therefore, the
main research question is:

1. How the skills of an expert can be incorporated in automating dross skimming using Learn-
ing from Demonstration with a tele-operated haptic device in a simulated environment?

This report breaks down the main research question into 4 sub categories:

1. Evaluation factors related to Zinc bath and robotic arm (Chapter 2)

2. Learning dross skimming using low-level encoding techniques (Chapter 3)

3. Experimental Setup in Chapter 4 to implement a learned model in a simulated environment
to perform autonomous dross skimming

4. Experimental Validation in Chapter 5 validates the autonomous dross skimming based on
the evaluation parameters discussed in Chapter 2

Chapter 2 analyses the evaluation parameters/ factors. The sub-question answered in this chapter:

1. (a) What are the important evaluation criteria associated with the Zinc bath and the
robot aiding the skimming process?

The evaluation factors related to both Zinc bath and Robotic arm helps in determining how to
carry out dross skimming. In Human-In-the-Loop and LfD algorithm, robot tries to reproduce
human-demonstrations. It is necessary for us to first know what and how to perform the dross
skimming. Since these evaluation factors are industry specific and doesn’t follow a standard, a
visual investigation on the particular bath and type of robot used gives us an insight. Based on
these factors, it is analysed to see if there could be modifications or improvisations. And finally,
these evaluation factors could be used to validate the learned model.

The second component discusses technique that encodes a human behaviour in order to create
a policy to generalize dross skimming. The sub-question dealt here:

1. (b) Which low-level encoding techniques can be utilized for learning dross skimming op-
eration?
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Four methods are considered and analysed, viz: DMP, Pro-MP, HMM, TP-GMM. Categorised by
state-driven and time-driven, deterministic and probabilistic approaches. By evaluating:

• Probabilistic methods outperform deterministic methods, as the former include variance
factor which provides an insight in choosing the key factors, improve generalization, provides
additional information. Additional information provides a confidence interval for certain
profiles.

• Time-driven methods are better over State-driven methods given the dross skimming task.
The manipulator is expected to reach specific key points in time i.e, the dross skimming
velocity has to be done with optimum velocity (not too slow, not too fast).

• For less complex repetitive tasks, where task parameters are not critical, with fewer demon-
strations, DMP is recommended. As extensively discussed, DMP also allows synchronisation,
increment/ online learning, which gives way for an overall easy implementation.

• On the other hand, most of the industrial tasks are more complex. The robot is expected
to learn a wide variety of tasks and encode in a framework. Pro-MP, HMM, TP-GMM can
encode and adapt to complex trajectories. This research is focused only onto tele-operated
teaching. All these methods do well with these constraints. Pro-MP, HMM which are time-
based could be used in dross skimming only by properly selecting key points. TP-GMM
which is state-driven does well by generalising movement trajectories by considering large
spatial and temporal variability.

Thus, it is indeed possible to create a LfD framework with a tele-operated demonstration strategy
and low-level encoding techniques can contribute to automating dross skimming process in a
simulation. Deterministic methods(DMP) could be used for more simple task and Probabilistic
methods(Pro-MP, HMM, TP-GMM) for complex tasks. Keeping memory footprint in mind, addi-
tional care has to be taken while extracting only the important features of a movement primitive
we could use Pro-MP, HMM since there could be state overflow condition. It is because of these
reasons, TP-GMM was chosen which has an efficient memory utilization, low computation costs
and the possibility to relate the task parameters to model parameters.

The third component of the research question provides an overview about the implementation
process that encodes the dross skimming operation in a simulated environment. The research
question dealt in this Chapter:

1. (c) How to build a policy driven platform for dross skimming in a simulated environ-
ment?

The experiment was setup in Unity simulation platform, where the demonstrations were carried
out using a tele-operated haptic device ”Geomagic Touch” linked with Unity. The demonstrated
dataset were extracted and fed into a Python based implementation of TP-GMM model for en-
coding the behaviour. Three tasks (T1, T2, T3) and Three task parameters (TP1, TP2, TP3)
were taken as reference frames to learn the dross skimming. The three tasks together form one
complete dross skimming operation. Once learned, the obtained dataset is then fed into the same
simulation setup to perform autonomous dross skimming. This answers the third component of
the main research question.

The fourth and last component of the research question mainly focuses on the validation of the
experiment. That is:

1. (d) How the key performance factors could be validated with respect to autonomous
dross skimming in a simulated environment?
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The main performance factors considered were: collision avoidance, deviation detection, disturb-
ance induced, velocity of dross skimming and time period for dross removal. Other factors that
were a part of performance factors but ignored or assumed constant were the dimensions of the
bath and level of Zinc in the bath. The learning metric was measured in terms of variance. For
T1 and T2, the variance was very less as the trajectory has to be as close as possible to what was
demonstrated. But for T3, the learning was done with fewer demonstrations to save the training
time. This reflected in the trajectory having more variance. Since the trajectory T3 was moving
away from the bath towards the dross bucket in free air, chances of collision were less. Thus, having
a variance margin in T3 doesn’t raise a concern. Another learning metric was collision avoidance
and deviation check. The trajectory is continuously monitored in the simulation during run-time
to check for possible collisions. The autonomous execution avoids any collision with the bath
environment and if in case, a collision has to happen, the autonomous execution is stopped and
the control is given to the manual tele-operation to continue with the trajectory. The autonomous
execution parallely checks for deviation in the trajectory that is being executed. In such a case,
the user is notified about the deviation as a warning. Few additional demonstrations could result
in a more generalised movement profile which doesn’t deviate from the expected trajectory.

The autonomous execution is compared in terms of the execution velocity. The user can vary
the velocity depending on the condition and need. Lower the velocity, less jerk is caused during
execution hence less disturbance in the Zinc bath. With the velocity set to the minimum bound,
the tasks T1, T2 and T3 was executed in 43 seconds which was faster when compared to manual
tele-operation which took around 52 seconds to execute the same set of tasks. Therefore even if
CGL is faster (which increases the rate of dross formation), autonomous execution could adapt to
this and remove the dross at a much faster rate.

However, the time taken to remove a certain amount of dross from the bath is less in manual
tele-operation. Because, the autonomous execution is fundamentally carried out at operational
level and tracking of dross is not possible. Thus in spite of being faster in terms of executing the
trajectories, the autonomous execution takes more number of raking and scooping operation to
remove a certain amount of dross from the bath. This obviously results in taking more time. It’s
efficiency is around 68% whereas, the manual tele-operation has an efficiency of 100% for the same
experiment.
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