
 Eindhoven University of Technology

MASTER

A practical data structure for the dynamic lower envelope of pseudo-lines

van Loon, B.

Award date:
2020

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/cdec50d3-4917-42a3-8c67-70e1fac36418

A practical data structure
for the dynamic lower

envelope of pseudo-lines

Master Thesis

Bas van Loon

Department of Mathematics and Computer Science
Architecture of Information Systems Research Group

Supervisors:
Kevin Buchin

Wolfgang Mulzer

Additional committee member:
Irina Kostitsyna

Final version

Eindhoven, September 2020

Abstract

Many algorithms to compute convex hulls or envelopes are static and cannot be extended to work
dynamically, that is, to support changes like insertions or deletions in the data set. Overmars and
van Leeuwen [11] proposed a data structure that allows this for both convex hulls and envelopes.
The data structure is a binary search tree where elements are stored in the leafs and the internal
nodes are augmented with another data structure to store the convex hull or envelope. Recently a
new algorithm was developed to maintain the lower envelope of pseudo-lines by Agarwal et al. [1]
which is based on the Overmars and van Leeuwen data structures.

While dynamic convex hulls have been studied extensively from a theoretical perspective, there
is only very little experimental work. In this work we evaluate the practicability of the Overmars
and van Leeuwen data structure and its extension by Agarwal et al.

We implemented and compared several versions of the data structure by Overmars and van
Leeuwen and compared it to a simple approach based on maintaining the Delaunay triangulation.
In our experiments, Delaunay triangulations outperformed the dedicated data structures except
for very large sizes of convex hulls.

We also implemented the data structure for maintaining the lower envelope of pseudo-lines
by Agarwal et al. The algorithm performs as expected, but our implementation suffers from
robustness issues.

A practical data structure for the dynamic lower envelope of pseudo-lines iii

Acknowledgements

I want to start with thanking Kevin Buchin and Wolfgang Mulzer for their guidance, feedback
and trust in me during this project. All the discussions we had were very interesting and I learned
a lot from them. I would like to thank Lars and Michael for the time we spent together studying,
computer science related discussions and feedback on my thesis progress.

I would also like to thank my parents and my sister for their support during the past years
because it was sometimes a rough time, especially the last year. You will be missed mom.

And of course all my friends in and around Breda for their support and friendships. You made
my student live a lot more fun and gave me a lot of great stories to remember.

Finally, I’m grateful to all the interesting people I met in Berlin which are too many to name
for a wonderful time over there that ended way too soon unfortunately. But I specifically want to
thank Andreas for being a good friend and always being available.

Bas van Loon

Teteringen
September 2020

iv A practical data structure for the dynamic lower envelope of pseudo-lines

Contents

Contents v

1 Introduction 1
1.1 Contributions . 2

2 Preliminaries 4
2.1 Operations . 4

2.1.1 Random access . 4
2.1.2 Linear scan . 4
2.1.3 Binary search . 4
2.1.4 Split . 4
2.1.5 Concatenate . 6
2.1.6 Rebalancing trees . 7
2.1.7 Other relevant functions . 8

2.2 Computing a convex hull . 8
2.3 Duality of the plane . 9
2.4 CGAL libary . 12

2.4.1 Computing a convex hull . 12
2.4.2 Delaunay triangulation . 12

3 A dynamic data structure for convex hulls 14
3.1 Dynamically maintaining convex hulls by Overmars and van Leeuwen 14

3.1.1 Mathematical representation . 14
3.1.2 The data structures . 15
3.1.3 Combining two hulls into one . 18
3.1.4 Insertions and deletions . 20
3.1.5 Running time . 21

3.2 Implementation details . 22
3.2.1 Design choices and structure of the code . 22
3.2.2 Completing the convex hull implementation 22
3.2.3 Height balancing the trees . 23
3.2.4 Correctness . 23

3.3 Related work . 24

4 A dynamic data structure for envelopes 25
4.1 What is an envelope? . 25

4.1.1 Computing an envelope . 26
4.1.2 Duality . 26

4.2 Dynamically maintaining envelopes by Overmars and van Leeuwen 27
4.2.1 Finding the intersection . 28

4.3 Implementation details . 29
4.4 Related implementations . 31

A practical data structure for the dynamic lower envelope of pseudo-lines v

CONTENTS

5 A dynamic data structure for pseudo lines 32
5.1 What is a pseudo-line? . 32
5.2 Ordering pseudo-lines . 34
5.3 Maintaining the envelope by Agarwal et al. 35

5.3.1 Determining the intersection . 36
5.3.2 Running time . 38

5.4 Implementation details . 38
5.4.1 Structure of classes . 38
5.4.2 Other practical details . 39

6 Experiments 40
6.1 Measuring running times . 40

6.1.1 Visualising running times . 41
6.1.2 Dealing with outliers . 41

6.2 Verifying correctness . 43
6.3 Test cases . 45

6.3.1 Convex hulls . 45
6.3.2 Envelopes of pseudo-lines . 45

6.4 Expectations and hypotheses . 46
6.4.1 Height balancing of trees . 46
6.4.2 Running times for convex hulls . 46
6.4.3 Running times of envelopes for pseudo lines 46

6.5 Results for convex hulls . 46
6.6 Results for envelopes . 49
6.7 The code . 52

7 Conclusions 53
7.1 Convex hulls . 53

7.1.1 Running time evaluation . 53
7.1.2 Outlier detection . 54

7.2 Envelopes . 54
7.2.1 Correctness . 54
7.2.2 Running time evaluation . 54

7.3 Future work . 55

Bibliography 56

Appendix 59

A Running time plots 59
A.1 Convex hulls . 59
A.2 Envelopes . 67

A.2.1 Unsorted input . 67
A.2.2 Sorted input . 74

vi A practical data structure for the dynamic lower envelope of pseudo-lines

Chapter 1

Introduction

Convex hulls of a set of points, or similarly envelopes of a set of lines, are geometric structures
which are studied extensively. A lot of work has been done for developing algorithms to compute
these structures, but almost all of them are non-dynamic. This means that changes in the set
(by insertions or deletions) require a recomputation of the complete structure which is terribly
inefficient. Overmars and van Leeuwen [11] were the first to propose a data structure and different
algorithms to maintain convex hulls or envelopes dynamically, so allowing insertions or deletions.
Section 3.3 contains an overview of further theoretical work on dynamic convex hulls. While later
work improved the running time of operations, this also comes at the cost of considerably more
complicated data structures.

The data structures proposed by Overmars and van Leeuwen are the most important ones to
this thesis project. These data structures store the convex hull (right of Figure 1.1) in two parts:
the lower hull (left side of Figure 1.1) and the upper hull which is the same but mirrored. The
points are stored in the leafs of a binary search tree and each internal node is augmented with the
two hulls of the subtree rooted at this node, so the convex hull of the entire set is stored at the
root (as two separate parts). The hulls on their turn are stored as an ordinary binary search tree.
An insertion or deletion requires the convex hull to be updated and this can be done in O(log2 n)
time. The convex hull is defined in Section 2.2 and more details about the dynamic maintenance
of a convex hull by Overmars and van Leeuwen are explained and described in Chapter 3.

Figure 1.1: Left: the upper hull and lower hull of a set of points. Right: an example of a convex
hull.

A new algorithm to maintain the lower envelope of pseudo-lines was recently proposed by a
team of computer scientists led by Agarwal [1] based on the data structures by Overmars and
van Leeuwen. The original algorithm by Overmars and van Leeuwen for envelopes could not be
used because it was unclear how this could be abstracted to pseudo-lines. This is the first time

A practical data structure for the dynamic lower envelope of pseudo-lines 1

CHAPTER 1. INTRODUCTION

a solution was found for this specific problem and it is proved to work in theory, but it has not
been evaluated yet in practice. Insertions and deletions can be done in log2 n time. Examples
of envelopes are given in Figure 1.2 which also shows various shapes of pseudo-lines. A detailed
description about envelopes is found in Section 4.1 and details about pseudo-lines are found in
Section 5.1.

The first step of this thesis project was to make an implementation for the convex hull because
it was difficult to find existing implementations online and in existing literature (Section 3.3). The
dynamic maintenance of envelopes of lines based on Overmars and van Leeuwen (Chapter 4) was
studied and implemented afterwards and the envelope for pseudo-lines (Chapter 5) in the end
using the new algorithm by Agarwal.

For pseudo-lines, the first step was to decide, which types of pseudo-lines to support in the im-
plementation. Pseudo-lines may have various shapes and a few are shown in Figure 1.2: Overmars
and van Leeuwen only covered the top-left case (ordinary lines) while the new algorithm should
be able to cover all three cases shown in the figure, and more in the future. The implementation
is evaluated in Chapter 6 along with the dynamic convex hull structures.

Figure 1.2: In clockwise order: lines, x-monotone collections of line segments, parabolas. The
envelopes are presented by the fat blue parts. The x-monotone lines vary between dashed, dotted
and solid lines so that distinguishing them is easier.

Eventually we want to know how well maintaining the envelope of pseudo-lines works in practice
regarding the theoretical running time, its correctness and if it works on different types of pseudo-
lines, hence the evaluation of the various structures in Chapter 6. These results are used to draw
conclusions and recommendations for future work in Chapter 7.

1.1 Contributions

The goal of this thesis project is to verify if the data structure and algorithm proposed by Agar-
wal [1] are not only of theoretical interest, but can also lead to a practically efficient implement-
ation. In order to achieve this, I present an implementation to maintain convex hulls since it is
based on this, designed by Overmars and van Leeuwen [11]. This has been implemented before,
but those implementations turned out to be outdated.

The dynamic maintenance of convex hulls has three variations: two variants of the Overmars
and van Leeuwen structures where the data structure for the subhull differs and all variations are

2 A practical data structure for the dynamic lower envelope of pseudo-lines

CHAPTER 1. INTRODUCTION

experimentally evaluated for efficiency and correctness.

Overmars and van Leeuwen also described an algorithm to maintain envelopes based on the
same data structure. This algorithm is theoretically correct but it turned out that implementing
it is not trivial and requires additional work, which is explained in Chapter 4.

Because pseudo-lines are barely researched before, there was no good definition available until
now. This definition and a practical guideline that makes it possible to use for the lower envelope
of pseudo-lines which was necessary before implementing the pseudo-code [1]. The algorithm is
implemented for three types of pseudo-lines: straight lines (that give ordinary envelopes) and two
types of parabolas: y = (x− a)2 + b and y = ax2 + bx+ c. The running times and correctness for
insertions and deletions of lines are evaluated for the first two types of lines. The implementation
of the new algorithm is not bug free yet but it works almost correct.

This report finishes with recommendations for possible future improvements of maintaining
dynamic convex hulls and envelopes of pseudo-lines.

A practical data structure for the dynamic lower envelope of pseudo-lines 3

Chapter 2

Preliminaries

This section covers some more in depth theoretical background which is needed in order to un-
derstand this thesis project. It is mainly about introducing the Overmars and van Leeuwen data
structure and algorithm to maintain convex hulls dynamically along with the definition of envel-
opes, the concept of duality and the introduction of Delaunay triangulations. The algorithm to
dynamically maintain envelopes will be covered in Chapter 4 and (envelopes of) pseudo lines will
be covered in Chapter 5.

2.1 Operations

There are a few operations on data structures essential for this thesis project that are used often
in the project and often can be performed on multiple types of data structures, but will work
different for each type of data structure.

2.1.1 Random access

This means that for a data structure X of size n it is possible to retrieve any element in X at any
arbitrary index in constant time. Arrays, sets, maps and lists like the C++ vector support this,
but linked lists in C++ do not and trees cannot by their design.

2.1.2 Linear scan

A linear scan is a way to search for an element in a structure. You simply start in the beginning of
the list and iterate through it until you find the element or the end is reached. It is not required
that the list is sorted in order to search. It runs in linear running time in the worst case and less
if the element is found.

2.1.3 Binary search

A more efficient of searching is done with a binary search. This works on lists as well as trees and
runs in O(log n) time. Note that every log has a base of 2 in this report. A binary search halves
the number of elements left to search in every iteration. The only requirement is for lists in order
to be used is that they should be ordered and it works on binary search trees as well.

2.1.4 Split

For a collection S and element u, partition S into S1 and S2 such that S1 ∩ S2 = ∅, S = S1 ∪ S2,
S1 = {v : v ∈ S1 ∧ v ≤ u} and S2 = {v : v ∈ S2 ∧ v > u} = S \ S1. This operation works on lists
and trees. The splitting of X into Y and X ′ is denoted as Y = X[a, b] where the items in the

4 A practical data structure for the dynamic lower envelope of pseudo-lines

CHAPTER 2. PRELIMINARIES

range [a, b] are stored in Y and X ′, the items outside of this range, will be stored as X. X ′ and
Y will be sorted, assumed that X is sorted before the split.

In practice, we will see that either a or b is unbounded (denoted as . . .). This means the
splitting function will only have one parameter c = Xi and splits X into [. . . , Xi], [Xi+1, . . .]. The
function has some additional parameters to determine in which subset to include c and which
subset to store as Y .

Lists

The implementation of this differs depending on how the list is designed. Splitting a linked list is
really efficient if you know where to split but it is more intensive for lists or vectors because the
elements have to be copied to a new container. So the running time is O(n) time in the worst
case. But linked lists do not support random access which means you first have to search for the
place to split and each data structure has its own pros and cons.

Trees

Splitting for trees can be done in O(log n) time. Splitting a binary search tree on a key e works
recursively. We go down to the node with value v ≤ e and for every internal node n we separate
the left and right child from n and recursively split one of its children, depending on e. The leaf is
the base case, where we simply do nothing. Traverse the tree back up to the root after e is found
and concatenate all the subtrees to one of the two resulting trees.

SplitTree(T, includeLeft, e)

if T.v < e then
(T1, T2)← SplitTree(T.left, includeLeft, e)
create a new tree T3
T3.left← T2, T3.right← T.right
T3.height← 1 + max(T3.left.height, T3.right.height)
return (rebalance(T1), rebalance(T3))

else if T.v > e then
(T1, T2)← SplitTree(T.right, includeLeft, e)
create a new tree T3
T3.left← T.left, T3.right← T1
T3.height← 1 + max(T3.left.height, T3.right.height)
return (rebalance(T3), rebalance(T2))

else . The node or leaf containing e is found
if includeLeft then

Tr ← T.right
empty T.right
T.height← 1 + T.left.height
return (rebalance(T), rebalance(Tr))

else
Tl ← T.left
empty T.left
T.height← 1 + T.right.height
return (rebalance(Tl), rebalance(T))

end if
end if

SplitTree splits a binary search tree T into T1 = {a ∈ T : a < e ∨ includeLeft ⇔ a = e} and
T2 = {a ∈ T : e < a∨¬includeLeft⇔ a = e}. So using the boolean includeLeft we can choose on
which side e is stored. One of the trees is returned by the algorithm in the end of the split and the
other tree replaces the old tree, this is determined by an additional parameter. This parameter

A practical data structure for the dynamic lower envelope of pseudo-lines 5

CHAPTER 2. PRELIMINARIES

here is not mentioned in the pseudocode because SplitTree is wrapped by a helper function in
the code. The rebalance is not necessary, but it is recommended to keep the depth of the tree
around O(log n) nodes. Note that setting the heights is not necessary if rebalancing the trees is
implemented because rebalancing should take care of that.

2.1.5 Concatenate

Concatenate should create the union of two collections S1 and S2 which can be sets, lists or trees
among other things. A requisition is that for each u ∈ S1 and v ∈ S2 u ≤ v should hold. The result
of the concatenation is S = S1 ∪ S2. For this thesis project we only consider the concatenation of
ordered lists and trees. In both cases it is denoted as Z = X ∪ Y for X and Y .

Ordered lists

Concatenating is similar to splitting with regard to the running time. It is easy for vectors or
lists, we just have to insert all the elements from S2 at the end of S1. Linked lists are easy and
efficient: we only have to point end of S1 to the first element in S2 and this takes constant time.

Trees

Concatenating two trees can be done in multiple ways. Let T1 and T2 be two binary search trees
where every element in T1 is smaller than the elements in T2 and these will be concatenated into
a new tree T3. The easiest solution is to add T1 to the leftmost leaf of T2, but this can make
T3 extremely unbalanced. Another way is to create a new node n, assign T1 to n.left and T2 to
n.right. These solutions are fast but the result can be extremely unbalanced.

Figure 2.1: A sketch of how two trees are concatenated when the right tree is higher than the
left one. Finding nl and nr take both at most O(log n) time and rearranging the children takes
constant time. Therefore the total running time is O(log n) time.

A more efficient but more complicated way is the following: let h be the height of T1 and
assume that T2 has a bigger height for simplicity. Denote n′ as the rightmost leaf of T1. Now we
traverse T2 h nodes down until node n. Then we move n.left to n′.right and T1 to n′.left. The
other around when T1 is higher will also work. The pseudo code to concatenate them is given
below and it covers both cases. A visual example is provided in Figure 2.1. Rebalancing is not
mandatory but it is recommended to do.

ConcatenateTrees(T1, T2)

hl ← height of T1, hr ← height of T2
if hl < hr then

nl ← rightmost leaf of T1, split nl from T1

6 A practical data structure for the dynamic lower envelope of pseudo-lines

CHAPTER 2. PRELIMINARIES

nr ← the node reached when traversed hr − hl to the left from T2.root
nl.left← T1
nl.right← nr.left
nr.left← nl
return rebalance(T2)

else if hl > hr then
nr ← leftmost leaf of T2, split nr from T2
nl ← the node reached when traversed hl − hr to the right from T1.root
nr.left← nl.right
nr.right← T2
nl.right← nr
return rebalance(T1)

else
n← rightmost leaf of T1 and split n from T1
Let T3 be a new tree with n as root.
n.left← T1, n.right← T2
return rebalance(T3)

end if

2.1.6 Rebalancing trees

A lot of running times involving trees assume that the tree is height balanced. Height balanced
means that every path from the root to the leaf contains approximately log n nodes. The height of
a balanced tree can be out of balance after an insertion, deletion, splitting or a concatenation so
then it will be necessary to restore the height balance. The way to do this is by ‘rotating’ trees using
local operations called tree rotations. A tree rotation takes a node and increases one side of its
subtree while decreasing the other side. The contents of the subtree of this node remains the same.
Every node or leaf n has a height factor h which is defined as h = n.right.height− n.left.height
or 0 for leafs and it has to be either −1, 0 or 1. So n has to be restored if n.h is neither of those
and it depends on the value what we have to do.

There are two possible rotations: left and right rotation, both are displayed in Figure 2.2. The
left rotation decreases the height of P by 1 while increasing the height of Q by 1. It is the other
way around for a right rotation. The subtrees α, β and γ remain unchanged. Pseudocode for the
rotations can be found in the literature [6].

Figure 2.2: Subtrees α, β and γ stay intact while rotating.

A practical data structure for the dynamic lower envelope of pseudo-lines 7

CHAPTER 2. PRELIMINARIES

2.1.7 Other relevant functions

The function |X| is defined as the size of collection X and |∅| = 0. dxe is used as the rounding
function. It rounds x to the nearest higher integer of returns x if it already is an integer. The
intersection of a list is defined as X[a, b] from the start point a to the end point b. These points
could also be replaced by X[. . . , b] or X[a, . . .] which should be interpreted as ‘from the beginning
to b’ ‘or from a to the end’.

2.2 Computing a convex hull

A subset S ⊂ Rd is convex if for any pair of point p, q the line segment [p, q] is completely contained
in S. This is visualised in Figure 2.3 for d = 2: [p, q] on the left goes through the exterior of S.
This makes it concave set while S′ on the right is a convex set: it only contains pairs of points
whose line segments go through the interior of S′. In the scope of this project we are limited to
planar sets of points (or lines later on) which are always finite. This means two things: that a set
S ∈ R2 only contains points and that |S| 6=∞. But convex hulls for d > 2 also exist.

(a) Concave.

(b) Convex.

Figure 2.3: The difference between concave and convex.

A convex hull is defined in the following way [7]: for a finite set of points S ⊂ R2, the convex
hull of S is the smallest convex set that contains S. Also, the convex hull of S is the intersection
of all convex sets containing S. Because the convex hull of S is the smallest possible set, it follows
that the convex hull is a subset or equal to S and since S it finite it follows that the convex hull
of S is also finite. The points of S contributing to the convex hull are called vertices and a convex
hull is represented by its vertices, usually ordered in some sort of order (like anti-clockwise) that
enables us to retrieve the line segments of the convex hull by traversing the vertices. An example
of a convex hull and how it changes after the set of points increases is showed in Figure 2.4.

So the goal of computing a convex hull is to retrieve a subset C ⊆ S that is as small as possible
but still contains S: for every pair of points a, b ∈ S we have that [a, b] is in the interior of C.
There exist a few different algorithms to compute convex hulls with running times varying from
O(n3) or even O(n4) [13] as the slowest to O(n log h) as the fastest with h as the size of the output.
Each of these algorithms takes S as its input and outputs the convex hull of S.

One of these algorithms [7] is an incremental algorithm called Graham’s scan that iterates over
the input set and extends the convex hull if the new point is on the convex hull. It runs in O(n)
time, but the input should be sorted which means that the running time increases to O(n log n)
time in practice and might go up to O(n2) time depending on the size of the convex hull [13]. The
points are sorted lexicographic: they are sorted on x, but if the x coordinates is the same for some
points then they are sorted on their y coordinates. It works by walking around the border of the

8 A practical data structure for the dynamic lower envelope of pseudo-lines

CHAPTER 2. PRELIMINARIES

Figure 2.4: An example of a convex hull for a set of points P before and after insertion p into the
set. p is in the exterior of P before the insertion, so the convex hull changes after the insertion.
The convex hull is updated by removing line segments [x, q] and [q, y] and adding line segments
[x, p] and [y, p]. The same works for deletions.

polygon and add the vertex to the convex hull if it is a part of it. This is done for the lower and
upper hull which are concatenated at the end.

Graham’s scan focuses on finding the points of the convex hull. Another algorithm called
Jarvis’s march or gift wrapping [13] [7] focuses on the line segments of the convex hull instead.
This results in an algorithm that runs in O(nh) time and depends on the size of the convex hull
h. It starts at a point that is certainly on the convex hull, so the lowest point or the right most
point for example. Then it ‘walks around’ the convex hull (hence the name) and tracks all the
points of the convex hull. Because it depends on the output size it might not be the most efficient
algorithm to choose because it can get up to O(n2) time in the worst case.

Another interesting algorithm is Chan’s algorithm [4] which is a combination of Graham’s scan
and Jarvis’s march. Suppose the size of the convex hull h is known. First we divide the point set
in n/h subset, run Graham’s scan over these subsets, and then we apply gift wrapping to these

results. The first step takes O
∑n/h

i=1 O(h log h) = h ∗O
∑n/h

i=1 O(log h) = h ∗ n
hO(log h) = (n log h)

time and the second part takes O(n log h) time as well. If we know h, which is often not the case.
When h is unknown we have to change the first step: suppose we iterate t ∈ {0, 1, 2, . . . } and run

the Chan’s hull using min(n, 22
t

) as h. We continue until a correct convex hull is computed and
the running time now evaluates to O(n log h) because the last iteration of t would be t = log(log h).

2.3 Duality of the plane

A point and a line have two parameters: a point has an x and an y coordinate and a line has a
slope and the y-coordinate where it intersects the y-axis at x = 0. Using these parameters it is
possible to map a point into a line and a line into a point. This is called ‘duality’. The dual of a
point p := (x, y) is defined as the line p∗ := (y = ax − y) and the dual of a line l : y = ax + b is
defined as the point l∗ := (a,−b). The dual of a vertical line does not exist.

These duals have a few properties [7] and are illustrated with the help of examples in Figure 2.5:

• The incidence is preserved: p is on l if and only if l∗ is on p∗;

• The order is reversed. If point p lies above line l, then p∗ passes below point l∗ in the dual
plane. Examples are the red line l goes through the green dot in the primal plane, but l∗ is
on the dual line of the top green dot and the cyan dot and purple line;

• Vertical distances between p and l are preserved for p∗ and l∗. The best example of this are
the green dots and their duals;

A practical data structure for the dynamic lower envelope of pseudo-lines 9

CHAPTER 2. PRELIMINARIES

Figure 2.5: On the left we have an example of points in the primary plane and we see their dual
lines on the right. The red points p3, p6, p7 share the same x-coordinates which results in parallel
dual lines. The intersection of lines represents the line through their dual points.

• Duals are self-inverse: (p∗)∗ = p and (l∗)∗ = l;

• The intersection point l∗ of points p1 and p2 is the dual of the line l that goes through p1
and p2.

Duality can be used to maintain the envelope of a set of lines L. First we take the duals of every
l ∈ L, denoted as L∗, and maintain the convex hull of L∗. The lower hull of L∗ corresponds to the
upper envelope of L and the upper hull corresponds to the lower envelope because of the reversing
of the order. This is visualised in Figure 2.6. The top plot contains a set of lines L in the primal
plane. The light blue lines are the first and last lines on both the lower and upper envelope, which
corresponds to the leftmost and rightmost points on the convex hull. The lines on the upper
envelope are painted in purple and correspond to the lower hull of L∗. The red lines correspond to
the upper hull of L∗. All duals of lines that do not contribute to an envelope (coloured in green)
are contained in the interior of the envelope of L∗. This way of maintaining envelopes is a lot
easier as the Overmars and van Leeuwen algorithm but this is covered in Chapter 4 to present a
complete picture of ways to maintain envelopes dynamically.

10 A practical data structure for the dynamic lower envelope of pseudo-lines

CHAPTER 2. PRELIMINARIES

(a) The original set of lines L

(b) The envelopes of L in the primal plane and the convev hull of L∗ in the dual plane.

Figure 2.6: An example of duality and envelopes. The envelopes and convex hull are drawn in
black lines

A practical data structure for the dynamic lower envelope of pseudo-lines 11

CHAPTER 2. PRELIMINARIES

2.4 CGAL libary

The Computational Geometry Algorithms Library or CGAL in short is a library containing a wide
variation of packages to solve mathematical problems. Most of them are aimed at geometric prob-
lems like: convex hulls, envelopes, operations on polygons, 3D surfaces, triangulations, processing
or generating meshes (most of these problems have 2D and 3D versions). But CGAL also provides
various complex data structures and algebraic operations.

CGAL is used in this thesis for a few reasons among others: the representations of points
and lines, operations on lines (intersections, finding the y-value at a x-coordinate, derivatives),
computing intersections between circles and Delaunay triangulations. Polynomials is also an inter-
esting package that might be useful to compute intersections between pseudo-lines. This is some
future work however (Chapter 7).

2.4.1 Computing a convex hull

There are a few algorithms to calculate the convex hull of a set of points and CGAL 1 has imple-
mentations for some of them. None of these algorithms can be used for dynamically maintaining
a convex hull though since every change of the point set requires a recomputation of the convex
hull. This is why these algorithms are not evaluated in practice (Chapter 6).

2.4.2 Delaunay triangulation

Triangulations of sets of points are important geometric constructions and there is one type that is
especially interesting: Delaunay triangulations because it can be used to dynamically maintain a
convex hull. Delaunay triangulations are closely related to Voronoi diagrams and Figure 2.7 shows
an example of these. For more details about Voronoi diagrams and Delaunay Triangulations, see
the book by de Berget al. [7]

Figure 2.7: A Voronoi diagram in blue of a set of points and its coresponding Delaunay triangu-
lation in red. The dark red edges for the edges of the convex hull.

A Delaunay triangulation can be used to maintain a convex hull using the fact that the vertices
on the boundary of the triangulation form the convex hull of the set of points contained in the
triangulation. So the only thing to do is traverse the outer edges of the Delaunay triangulation
after an insertion or deletion to update the convex hull. In fact, CGAL even provides this as

1documentation is found here.

12 A practical data structure for the dynamic lower envelope of pseudo-lines

https://doc.cgal.org/latest/Polynomial/index.html#Chapter_Polynomial
https://doc.cgal.org/5.0/Convex_hull_2/index.html

CHAPTER 2. PRELIMINARIES

an example of maintaining a convex hull using the Delaunay triangulation 2. Insertions have a
running time of roughly O(

√
n) when the points are uniformly distributed but the worst case

running time is O(n) time. Removing a vertex from the Delaunay triangulation takes O(d2) time
(unless d ≤ 7) where d is the degree of the vertex but first we have to find this vertex of course
(it is not clear in the literature how much time this takes). The practical running times of the
Delaunay triangulation will be compared with the Overmars and van Leeuwen structures to see
how practical both are. See Chapter 6 for more details.

2Documentation is found here.

A practical data structure for the dynamic lower envelope of pseudo-lines 13

https://doc.cgal.org/latest/Triangulation_2/index.html

Chapter 3

A dynamic data structure for
convex hulls

From this point it is assumed that the data structures and algorithms described in Chapter 2 are
clear to the reader. In this chapter we will discuss the implementation of the algorithms and data
structures and other practical sides.

3.1 Dynamically maintaining convex hulls by Overmars and
van Leeuwen

The problem with the algorithms to compute convex hull we saw is that they cannot be adapted
to allow insertion or deletions from the point set. Insertions could be possible, but this is not the
case for deletions since no information about the interior of the convex hull is maintained. This
was the motivation for Mark Overmars and Jan van Leeuwen to develop a data structure that
allows maintenance of the convex hull after insertions or deletions in O(log2 n) time [11]. It is
designed using a binary search tree that store all the points in the point set in its leafs and each
internal node is augmented with the convex hull of the points rooted in the subtree of this node.
Each convex hull is composed of two separate subhulls: the upper hull and the lower part of the
convex hull, the lower hull which are essentially the same thing but mirrored, see Figure 3.1. It
can be retrieved by concatenating the lower and upper hull of the root.

3.1.1 Mathematical representation

The points in the tree are ordered on there x-coordinates and these coordinates are assumed to be
unique for simplicity. The most optimal way to store subhulls is using trees because the algorithm
depends on an elaborate binary search, but ordered lists are also possible to use although this
would increase the running time.

The lower and upper hull are computed in the highly similar way since the only differences are
the conditions to find the point at the convex hull to split or merge. So for simplicity only the
computation of the lower hull is described.

A convex hull can be split into two parts: the upper and lower subhull (Figure 3.1). Let C be
a convex hull, a ∈ C the leftmost point and b ∈ C the rightmost point. The upper subhull U ⊆ C
are the points encountered if we start traversing the points of C in counter-clockwise direction
starting at b and ending at a. The lower subhull D are the points encountered if we start traversing
C in clockwise direction from b to a. Note that a and b are both on the upper and lower hull.

Let A and B be subhulls (upper and lower hulls work both) such that all the points in A are
strictly left of B and we want to merge them into one subhull. What we need to do is to find a
so called ‘bridge’ between the hulls. This bridge is a line segment starting in u ∈ A and ending in

14 A practical data structure for the dynamic lower envelope of pseudo-lines

CHAPTER 3. A DYNAMIC DATA STRUCTURE FOR CONVEX HULLS

Figure 3.1: The lower hull (left) are the points on the convex hull encountered going clockwise
from the rightmost point to the leftmost point on the convex hull in clockwise direction. The
upper hull (right) are the points on the convex hull encountered from the rightmost point to rhe
leftmost point in counter-clockwise direction.

v ∈ B such that all the points left of u in A, u, v and all the points right of v in B form a subhull.
Mathematically this is defined as C = A[. . . , u] ∪B[v, . . .]. The algorithm designed by Overmars
and van Leeuwen is made to find u and v.

3.1.2 The data structures

The data structure consists of a special binary search tree where points in the plane are stored
in the leafs, sorted on their x-coordinates. It is special because usually points are also stored in
internal nodes. And on top of that every internal node is augmented with two data structures to
store the upper and lower hull for the left and right subtree rooted at this node. This augmented
data structure should be a tree for the most optimal running times, but it could also be another
data structure like a list.

So, there are two data structures to be considered: a binary search tree where the points
are stored in the leafs which will be referenced as the main tree and a data structure that will
be augmented in the internal nodes of the main tree. This is originally called a concatanable
queue but this is confusing since it does not work like a queue so it is renamed the augmented
structure from now on.

The main tree should have the properties and attributes. Originally, the algorithm was given
as a for loop traversing from the root down to a leaf and then traversing back to the root. This
traversal was possible because every node in the main tree had a pointer to its parent. However,
this is not necessary anymore once the for loop is refactored to a recursive traversal.

1. α contains pointers to its left and right child α.left and α.right and a pointer to the leaf in
the left subtree with the highest x-coordinate α.lmax = max(α.left).

2. Each node has two augmented structures to store the upper and lower hull α.Qd and α.Qu

respectively. The leafs are also augmented with this in practice and initially contain the
point they represent. Because of how the tree is used in the algorithm, only the parts of
α.Qd and α.Qu that do not contribute to the parent of α.Qd and α.Qu respectively are
stored.

3. The points are sorted x-coordinates. The points were originally sorted on the y-coordinates.
This does not result into a convex hull, but something similar and rotated 90 degrees.

A practical data structure for the dynamic lower envelope of pseudo-lines 15

CHAPTER 3. A DYNAMIC DATA STRUCTURE FOR CONVEX HULLS

4. The points a ∈ Ql and b ∈ Qr for Ql = α.left.Qu and Ql = α.right.Qu are the points that
form the new subhull between Ql and Qr. This pair of points is stored for both the lower
hull in α.Bd and for the upper hull α.Bu. These pairs are the bridges.

5. A leaf α has a field v to store a point.

An insertion or deletion of a point p are highly similar to each other. It works as follows: we start
with a binary search in the main tree using the x-coordinates of the points. On the way back
we split n.Qu and n.Qd according to their bridges and merge the results to the hulls of n.left
and n.right for every internal node n we encounter on the way down. After we found the leaf l
containing p (in case of a deletion) or where p will be inserted, we insert or delete p. Now we start
traversing back up to the root while and restore the subhulls at the internal nodes we encounter
including the root (these are the same as on the way down). See Figure 3.2 for a step by step
example of an insertion.

The structure for the augmented structure has to support the following actions. It should be
possible to split one into two, or merge two into one. There are several ways to implement the
augmented structure. The simplest one is using a list or vector which is already provided by C++.
However, merging and splitting a vector is not efficient so this will slow the algorithms down a
lot. Searching in a vector can be done in O(log n) time by implementing a binary search and
the easiest but slowest way is just using a linear scan in O(n) time. The best but more complex
way to implement the augmented structure is using a binary search tree (with points stored in the
internal nodes), especially if it is height balanced. This will bring the running times of the required
actions to O(log n) time. This is the most complex though hence a vector was used initially in
this thesis project. Using multiple data structures also allows us to see the impact on the running
times in practice.

The augmented structure does not require the points to be stored only in the leafs, when using
a tree. So every node or leaf stores a point in the field p.

16 A practical data structure for the dynamic lower envelope of pseudo-lines

CHAPTER 3. A DYNAMIC DATA STRUCTURE FOR CONVEX HULLS

(a) Case 1
(b) Case 2 (c) Case 3

(d) Case 4 (e) Case 5
(f) Case 6

(g) Case 7

Figure 3.2: A step by step example for inserting g into {a, b, c, d, e, f} starting from the topleft.
The leaf containing d in panel 4 is replaced by a node n such that n.left contains d and n.right
contains g. The green arrows indicate the traversal down while the the blue arrows indicate the
traversal up. Removing g is also displayed here if you start at the bottom panel and traverse the
arrows in reversed direction. Although this example only shows the upper hull, computing the
lower hull is equivalent.

A practical data structure for the dynamic lower envelope of pseudo-lines 17

CHAPTER 3. A DYNAMIC DATA STRUCTURE FOR CONVEX HULLS

3.1.3 Combining two hulls into one

The algorithm to compute the convex hull is based on this recursive structure. Computing subhull
α.Qd is based on the assumption that the subhulls α.left.Qd and α.right.Qd are known. Finding
a hull is defined recursively. Every node in the main tree represents the convex hull using the
upper and lower hull of the points that are stored in the subtree rooted in this node. For leafs
this means that the convex hull is just the point itself.

Let α be an internal node and assume that the upper and lower hull for α.left and α.right
are known. So if you want to know the complete convex hull, you build it up starting at the leafs
and finish at the root. Then you take the union of the lower and upper hull of the root and you
have the convex hull. How this building exactly works is described in this section.

Figure 3.3: The result of looking for the bridge of two hulls in a point set P = A∪C. The points
contained in the convex hull are represented as squares, the points that are in the interior as circles.
The subhull A′ = {a0, a1, p, a3} of A and subhull C ′ = {c0, c1, 1, , c3, c4} of C are represented with a
line. The bold blue parts of the line will be discarded by the bridge B and those points will become
a part of the interior. The new upper hull will be (A′ \{a3})∪ (C ′ \{c0, c1}) = {a0, a1, p, q, c3, c4}.

We see an example of how the bridging works in Figure 3.3. Subsets A and C can be separated
by a vertical line, as well as subhulls A′ and C ′ since A′ ⊆ A and C ′ ⊆ C.

However, u and d are not known, so we need to find them. We do this by taking arbitrary
points p ∈ A′ and q ∈ C ′ and creating bridge pq. It is likely that pq will not give us the correct
bridge, but we do know where to continue the search depending on where pq intersects A′ and
C ′. Figures 3.4a and 3.4b show us which situations can occur when testing the bridge. We reduce
the search space by half every time we investigate a new pq because if the augmented structure is
implemented as a binary tree than it is basically a binary search. The figures only show the cases
for the upper hull, but the cases for the lower hull are exactly the same, but then horizontally
mirrored.

18 A practical data structure for the dynamic lower envelope of pseudo-lines

CHAPTER 3. A DYNAMIC DATA STRUCTURE FOR CONVEX HULLS

(a) These are the possible cases we may encounter while making a bridge of hulls of set U1 and
U2. U1 is always the one the left, U2 on the right. Case e is the one we want, then we are done
searching. A bold blue line represents the part of the hull that can be discarded which means
we will search in the other direction. Case a is special, it needs some help to determine what
needs to happen.

(b) The two possible subcases of case a.

Figure 3.4: An overview of all the case distinctions.

A practical data structure for the dynamic lower envelope of pseudo-lines 19

CHAPTER 3. A DYNAMIC DATA STRUCTURE FOR CONVEX HULLS

Figure 3.4a shows the possible cases we can encounter when searching for the bridge and all
are straightforward. However, case a has two subcases a1 and a2 shown in Figure 3.4b, and these
exist because it is not clear on first sight which direction we need to go. The case distinction is
based on the line lp through the current left point pi and the point pi+1 next to it on the right,
the line lq through the current right point qj and the point qj−1 next to it on the left and a line m
in the middle of the hulls. Let s be the intersection of lp and lq. If s is right of m, then we are in
case a1 and if it is left of m then we are in case a2. The blue part of the hull can be ignored and
the points for the bridge are in the grey area. Instead of checking on which side s is, in practice
the y-values of lp and lq are compared. In case a1 go left on U2 and in case a2 we go left on U1.

This pseudo-code describes how a bridge can be found for an internal node α. It is assumed
that α.left.Qd and α.right.Qd are already computed. The same holds for the upper hulls. Only
the lower hull is covered here for simplicity.

findBridge(α) . α is the pointer to a node from the main tree.

1: lPointer ← α.left.Qd.root, rPointer ← α.right.Qd.root
2: while true do
3: slope← b.y−a.y

b.x−a.x
4: iL← DetermineStateDown(lPointer.p, slope)
5: iR← DetermineStateDown(rPointer.p, slope)
6: if Bridge is found (e.g. iL, iR = case e) then
7: break loop
8: end if
9: lPointer ← lPointer.left or lPointer ← lPointer.right; rPointer ← rPointer.left

or rPointer ← rPointer.right . Depending on case from 3.4a or 3.4b
10: end while
11: a← lPointer.p
12: b← rPointer.p
13: α.Bd ← (a, b)
14: Q1 ← α.left.Qd[. . . , a] . Including a to Q1

15: Q2 ← α.right.Qd[b, . . .] . Excluding b to Q2

16: α.Qd ← Q1 ∪Q2

3.1.4 Insertions and deletions

Restoring the convex hull is done using the procedures DOWN on the way down and UP on the
way up. DOWN split the convex hulls at a node and puts the results back in its children and UP
restores the convex hulls on the way up. These procedures are using in the recursive functions
insert and delete. The pseudo-code is given for insert, but deleting a point is almost the same.
This pseudo-code assumes that p.x does not occur yet in the data set.

insert(α, p) . Start with α = root for inserting a point p

1: if α is a leaf then
2: Insert p into α
3: else
4: DOWN(α)
5: if p.x ≤ α.lmax.p then
6: α.left← insert(α.left, p)
7: else
8: α.right← insert(α.right, p)
9: end if

10: end if
11: UP(α)
12: return α

20 A practical data structure for the dynamic lower envelope of pseudo-lines

CHAPTER 3. A DYNAMIC DATA STRUCTURE FOR CONVEX HULLS

The procedure DOWN splits α.Qu into P and Q using α.Bu = (a, b) such that {β ∈ P : β.x ≤ a.x}
and {β ∈ Q : b.xleqβ.x}. Then it concatenates this to its children: α.left.Qu ← P ∪ α.left.Qu

and α.right.Qu ← α.right.Qu ∪Q. The bridges remain unchanged but will be overwritten using
UP.

UP is responsible for updating the convex hull and the bridges for node α using calls to
findBridge.

Inserting p in a leaf n means that we create a new node n′ for p and set n′ as the left or right
leaf of n, depending on the value of p. When deleting p we halt at n where p is stored in one of
its children, remove the child and start traversing back starting at n.

Now the convex hull can be retrieved by root.Qu ∪ root.Qd. Note that the left-most and right-
most point of the convex hull is stored twice, so this is something to keep in mind. This union
is simply traversing both subhulls. The order of the traversal influences the order of the points,
so starting with the upper hull gives the points in clockwise direction and starting with the lower
hull gives the points in anti-clockwise direction.

3.1.5 Running time

Updating a subhull while inserting or deleting a point consists of various parts and both contribute
differently to the running time. The first part DOWN runs in O(log n) time. Let k be the size
of the convex hull and the tree to traverse be height balanced. While traversing down, DOWN
splits the hull log n times and reduces the size of the hull k by half every step. In the worst
case we have that all the points are on the convex hull, so k = n at the root. This evaluates to
ki ∈ K = {n, n2 ,

n
4 , . . . , 1 = 2logn, 2log(n/2), 2log(n/4), . . . , 20} where K is the set of the worst case

sizes for the hulls in the traversed path. It sums up to O(log2 n):

logn∑
i=0

O(log ki) ≤

logn∑
i=0

O(log(2i)) =

logn∑
i=0

O(i) = O(log2 n)

(3.1)

UP is bit more complex: while it traverse upwards it searches for the bridge, splits at the bridge
and merges the results. All of these things take O(log n) time individually, and it happens every
step on the way up for the same set of K as for DOWN. It evaluates to the same running time as
DOWN :

logn∑
i=0

O(3 log ki) =

logn∑
i=0

O(log ki) ≤

logn∑
i=0

O(log(2i)) =

logn∑
i=0

O(i) = O(log2 n)

(3.2)

The total running time for an insertion or deletion is O(2 log2 n) = O(log2 n) time while using
trees as the data structure for envelopes. It is also possible to use sorted lists for the envelopes

A practical data structure for the dynamic lower envelope of pseudo-lines 21

CHAPTER 3. A DYNAMIC DATA STRUCTURE FOR CONVEX HULLS

but this will increase the running time as splitting, merging and finding the bridge all take O(n)
time now. For the same k ∈ K while traversing down and up it becomes:

logn∑
i=0

O(ki) ≤

logn∑
i=0

O(2i) = O(n)

(3.3)

The running time for trees is O(log2 n) time and for ordered lists O(n) time which is obviously
worse. So why bothering with lists? Trees are the most efficient to work with, but also more
complex to start with. There is no default implementation provided for C++ and the trees used
are adapted so the trees and their algorithms to split and merge had to be implemented first before
starting on the convex hull. So if there is a bug in the code, it could be in the trees or in finding the
bridge. Starting first with lists eliminates the possibility that there are bugs in the data structure
because these implementations are given. This made it possible to correct the bridging algorithm
a lot faster and the lists were replaced by trees after this step.

3.2 Implementation details

These data structures and algorithms have been implemented twice before. Once in C++ 1 for
another Master Thesis project in 2007 and one in Java 2. The source code for both implementations
were online available but unfortunately it turned out after some tests that the C++ version did
not work anymore. Insertions worked partly and deletions not at all and it was slow if it worked so
this was not a good base to start building on. The Java version worked really well, it was fast and
correct. Only the upper hull was implemented initially, but adding the lower hull was no issue.
This was translated into C++ and the current class structure is based on this. So the plan was
now to translate this Java code to C++ which had its rough edges and it basically turned out to
be reimplementing most things. Especially the details of the trees had to be implemented again
but the bridge algorithm was very usable as a base.

3.2.1 Design choices and structure of the code

The class structure consists of five different classes, ignoring the CGAL classes used. The main
class is ConvexHull which has functions to insert a point, remove a point, retrieve the convex hull
or the separate hulls separately, implementations of DOWN and UP. The main tree is composed
of nodes of the type CNode and is stored in ConvexHull. CNode has pointers its left child, right
child and maximum leaf in the left child. It also contains both subhulls stored as SubHull and
their two bridges. It also contains a field to store a point which is only used when it is a leaf.

SubHull contains functions to find the bridge of two subhulls and specialises Base which con-
tains the binary search tree AVLTree for the subhull and a list (std::vector) to store points.
Depending on the version of the convex hull, either the tree or the list is used. Despite the name,
AVLTree is not an AVL-tree (a height balanced tree). It is named this way, but height balancing
is never implemented.

3.2.2 Completing the convex hull implementation

The data structure is rather complicated, so it is divided into multiple parts to implement it
correct and as fast as possible.

1Implementation can be found on Google Code.
2Implementation can be found on GitHub.

22 A practical data structure for the dynamic lower envelope of pseudo-lines

https://code.google.com/archive/p/convex-hull-of-dynamic-set/
https://github.com/yunchi/Dynamic_Convex_Hull

CHAPTER 3. A DYNAMIC DATA STRUCTURE FOR CONVEX HULLS

Using a list: vector

C++ has several implemented data structures to offer and all of them have different properties,
but the one we need has to support the following operations: insertions, deletions, keeping it
sorted, merging and splitting. Using a list would make the most sense. There are several list-like
structures: vector, forward list and list. The last two are linked lists, while vector works like an
array with a variable size. vector turned out to be the best option at first sight, because it is the
only one supporting random access which is the easiest to use in this setting. A vector is not a
sorted list by default, but it can be by carefully choosing how to merge and split it such that it is
always ordered.

Using this in the algorithm works roughly the same as the pseudocode for trees given in
Chapter 2. But instead of a binary search in a tree, it now uses a linear scan over an ordered list
starting at the middle or beginning of the list. I would also be possible to implement a binary
search on the list to reduce the running time a bit, but it does not lower the asymptotic running
time as splitting and merging still takes linear time. Procedures DOWN is also a bit different
simply because now it has to split lists instead of trees.

Using a linked list

Another data structure that can be interesting to use is the linked list, implemented as list.
Merging two linked lists takes up to O(n) time, like vector does, but splitting a linked list takes
only constant time (but it still has to copy the elements to split) 3 which is a big advantage over
the O(n) time for splitting a vector. The only downside is that it lacks random access, so it is only
possible to perform a linear scan while it should be possible to implement a binary search for the
vector based structure. The data structure would be a bit more complex in order to achieve this
constant splitting time. Since there is no random access, we have to store pointers to the places
in the list where we need to split and this turned out to be too tricky in practice to be useful.

Using a tree

This is exactly like the pseudocode describes, using merge and split functions from Chapter 1.
Implementing trees as the structure for convex hulls was done the last.

3.2.3 Height balancing the trees

Unfortunately it was not possible to implement tree rotations to height balance trees due to time
limits. It will work anyway regardless if the tree is height balanced or not but it might slow some
inputs down a lot. This is discussed more in detail in the results (Chapter 6).

3.2.4 Correctness

A visual debugging tool was made to inspect the hulls and spot where things go wrong. A more
formal way of testing was made after everything seemed to work and this is discussed in Chapter 6.
A proof of correctness is given in the original paper [11].

The approach using vector is slow and the one using linked lists is even worse, but they work.
It works the same as the approach using trees, aside from the running time and splitting and
concatenating the data structures. We have to assume that Lhull and Rhull are correct subhulls
and correctly ordered, but this does not really differ from the original assumptions. Since the
subhulls are correct, the points a ∈ Lhull and b ∈ Rhull exist such that a new subhull can be
formed using the bridge from a to b. These points exist, independent of the underlying data
structure. The only thing to mind is that the splitting and concatenating functions for trees
should work correct and be tested, since those functions for the vector are available by default.

3Documentation about C++ containers can be found here.

A practical data structure for the dynamic lower envelope of pseudo-lines 23

http://www.cplusplus.com/reference/stl/

CHAPTER 3. A DYNAMIC DATA STRUCTURE FOR CONVEX HULLS

3.3 Related work

Overmars and van Leeuwen were the first to propose a way of dynamically maintaining a convex
hull, but it is not the only one as this topic has been studied a lot before. We have seen in
the preliminaries (Section 2.4.2) that Delaunay triangulations can be used for this 4, but there
is more. A new algorithm for planar point sets with O(log n) amortized time was introduced by
Gerth Stølting Brodal and Riko Jacob [2]. They also present some operations on convex hulls in
O(log n) time.

At least one other algorithm exists as well, made by Franco Preparata in 1979 [12], but it is
restricted to only allow insertions because it was not clear how information about the interior of
the convex hull should be maintained. Insertions are performed in O(log n) time in the worst case,
so processing an entire set takes O(n log n) time. Expanding the convex hull is no problem, but
removing a vertex and thus shrinking the convex hull is because then a point from the interior
could be on the new convex hull, but it is impossible to know which point because the interior is
not maintained. So Overmars and van Leeuwen were the first ones to propose a data structure
that allows deletions as well.

Computing convex hulls or envelopes is also possible in Python. The package scipy5 offers some
functionality to computes convex hulls incrementally, the intersection of half spaces and Delaunay
triangulations. [14]

Overmars and van Leeuwen present applications of dynamic convex hulls and this is extended
by for example Timothy Chan [5] who presents three more applications related to dynamic convex
hulls or envelopes with some extensions to 3D versions.

In the last years there has been some work on dynamically maintaining geodesic convex hulls
in the plane. This means that the plane contains ‘barriers’ where a segment of the convex hull has
to go around, but in such a way that this segment has the shortest possible length. Ishaque and
Tóth [8] introduced a semi-dynamic solution that only supports insertions of barriers and point
deletions in O((m + n)polylog(mn)) time for m barriers and n points. Eunjin Oh and Hee-Kap
Ahn [10] present data structures and algorithms that is fully dynamic for geodesic convex hulls
which means it also allows deletions of barriers and insertions of points.

4Delaunay triangulations are also implemented in Python.
5Documentation about convex hulls can be found here. Documentation about envelopes here.

24 A practical data structure for the dynamic lower envelope of pseudo-lines

https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.Delaunay.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.ConvexHull.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.HalfspaceIntersection.html

Chapter 4

A dynamic data structure for
envelopes

In the previous chapter we made the first big step: implementing the Overmars and van Leeuwen
method for maintaining convex hulls dynamically. The next step is to implement their method
for envelopes. This is step is not entirely necessary, but we will look into it now to have a
complete picture about maintaining envelopes dynamically. It turned out unfortunately that the
implementation is a lot more complex as expected.

4.1 What is an envelope?

Let L be a set of lines in the plane. All these lines are infinitely long, so at any x-coordinate there
is a line of L which is the lowest. Consider the following question: ‘for an x ∈ R, which line l ∈ L
is the lowest at x?’. This line has a range on the x-axis where it is the lowest which means that a
segment of this l contributes to the envelope. This question can be extended to the entire x-axis
and this results in a sequence of line segments which is called the lower envelope of L (blue in
Figure 4.1). Each line of the envelope is a part of a line in L and each line in L contributes at
most once to the lower envelope. The same question can be mirrored and this results in the upper
envelope (red in Figure 4.1).

Figure 4.1: An example of an upper envelope (in red) and a lower envelope (in blue).

A practical data structure for the dynamic lower envelope of pseudo-lines 25

CHAPTER 4. A DYNAMIC DATA STRUCTURE FOR ENVELOPES

4.1.1 Computing an envelope

A lower envelope has a few properties. It is a x-monotone collection of line segments, covers the
entire x-axis and the slope of the line segments are increasing from left to right. The fastest
descending segment is on the left, the fastest ascending segment on the right. Every line can
contribute at most once to the envelope.

The Overmars and van Leeuwen algorithm only works for straight lines, but it is also possible
to have an envelope of different kind of shapes like circles or curves and line segments. This can
be computed using CGAL, but not dynamically. This algorithm provided by CGAL is able to
compute the convex hull of a mixed set of polygons like in Figure 4.2. We will see in a bit that an
envelope can also be maintained using duality and the convex hull, but this also works only for
lines.

Figure 4.2: This is an example of a lower envelope and an upper envelope of polygons that contains
multiple types of polygons instead of just straight lines. The purple part means that this segment
is both on the upper as the lower envelope. Note that we only can use normal lines in our data
structure. This will be abstracted in Chapter 5.

4.1.2 Duality

A point p ∈ P is on the convex hull if there is a line l through p such that all the other points
in P are below l [7]. This translates to p∗ being the lowest line of all the dual lines in P at some
point. A point p ∈ P in the interior has its dual line p∗ always above some other line in the dual
plane.

The lines on the envelope of the dual lines from right to left correspond to the points of the
upper hull from left to right. So it is possible to compute the lower envelope of a set of lines L by
taking the dual set L∗ and compute the convex hull for L∗. To get the upper or lower envelope we
just traverse the lower or upper envelope respectively. The concept of duality was still unknown
at the time when Overmars en van Leeuwen designed their data structures and this the reason
they did not use duality.

Because of the dual properties, the lower envelope corresponds to the upper hull and the upper
envelope corresponds to the lower hull and the order of appearance of the points is the reverse of

26 A practical data structure for the dynamic lower envelope of pseudo-lines

CHAPTER 4. A DYNAMIC DATA STRUCTURE FOR ENVELOPES

the envelopes. Also, the left and right most points of the convex hull appear both on hulls which
means that the corresponding lines contribute to both the lower and upper envelope. This is also
visible in the envelope: the line with the fastest increasing slope and the line with the fastest
decreasing slope both appear on the lower envelope and the upper envelope. When a line does not
contribute to an envelope its dual point will lay in the interior of the convex hull.

4.2 Dynamically maintaining envelopes by Overmars and
van Leeuwen

Overmars and van Leeuwen designed an algorithm using the same data structure to maintain
convex hulls dynamically to solve a different problem than convex hulls: the maintenance of the
intersection of halfspaces like in Figure 4.3. A halfspace divides the space into two parts and has
a convex shape. This can be used for envelopes by simply ignoring the lower half of both spaces
and this results as an envelope. The algorithm is designed to find intersection points p and q of
two halfspaces. These points are found separately, so this algorithm can be adapted to find the
intersection point of two envelopes. This is done be ignoring q so we only look for p and assume
the halfspaces are envelopes. It is also possible to ignore the upper half of the halfspaces and find
q instead. This means we are looking for the intersection point of two upper envelopes.

Figure 4.3: The original algorithm will find the intersections p and q between these halfspaces.

Dynamically maintaining the lower envelope uses the same data structures as used for the
convex hull, but with lines instead of points. Finding a bridge between two hulls is now replaced
by finding the intersection of two envelopes to merge them into a new envelope. More specifically:
it finds the two intersecting lines of the envelope. The same data structures are used as for the
dynamic maintaining of convex hulls (Chapter 3). The lines in the data structures are ordered in
the same way as the lower envelope is ordered. We can see in Figure 4.4 how this works.

A practical data structure for the dynamic lower envelope of pseudo-lines 27

CHAPTER 4. A DYNAMIC DATA STRUCTURE FOR ENVELOPES

Figure 4.4: This is an example of an lower envelope, showed as a dashed blue line and it is made
of line segments from the lines in the set. The order of the lines is g, f, e, d, c, b, a and d is the only
line that does not contribute to the lower envelope. The envelope will be stored as the open line
segment g ending in p5, [p5, p4], [p4, p3], [p3, p2], [p2, p1] and the open line segment a starting at p1.

Some assumptions or restrictions are necessary in order to make the algorithm work and to
make sure situations like Figure 4.5 do not occur.

1. An envelope covers the entire x-axis so there always exists an intersection between the two
envelopes.

2. The slopes of the lines in the envelope of n.left are strictly lower than the slopes of the lines
in n.right for a node n in the main tree.

3. The left and right envelope should be valid envelopes of the lines stored in the subtree of
this node.

4. Each line in the set of lines has a distinct slope.

5. The lines in the set are sorted on their slopes from the fastest decreasing on the left to the
fastest increasing on the right.

Figure 4.5: This situation cannot occur in practice.

4.2.1 Finding the intersection

There are four cases that can be encountered while finding the intersection and the algorithm is
designed to handle accordingly. This is similar to the case distinction for convex hulls. Before
we go into details, we need to introduce some variables. Sl = [p′, p] is the current segment in the
left envelope and Sr = [q1, q2] is the current segment of the right envelope. For each step points

28 A practical data structure for the dynamic lower envelope of pseudo-lines

CHAPTER 4. A DYNAMIC DATA STRUCTURE FOR ENVELOPES

p ∈ Sl and q ∈ Sr are sampled and used in the case distinction. See the implementation details
(Section 4.3) for more details about sampling p and q. Let m be a horizontal line through p and
l the line through Sl. The case distinction is based on the fact that l and m split the plane into
four parts and the intersection point between the envelopes is somewhere in one of these parts,
but we do not know where. The cases are based on the fact that q is also in one of these four parts
hence there are four possible cases for the pointers to be updated. One of the cases is illustrated
in Figure 4.6 but all the cases are also illustrated in the original paper [11]. The possible cases
and actions we need to perform are:

1. q is in region I. means that the part below q can be ignored.

2. q is in region II. means that the part above p can be ignored.

3. q is in region III. means that the part above q can be ignored.

4. q is in region IV . means that the part below p can be ignored.

These cases replace the bridge algorithm for convex hulls and is highly similar, so this algorithm
is also based on a binary search. The order of the splitting and merging at the end of finding the
intersection is exactly the same and the running time remains O(log2(n)) time for insertions and
deletions.

Figure 4.6: An illustration of the algorithm finding the segments that intersect. Lines m and l
divide the plane into 4 parts and the intersection point must be in one of them, hence there are 4
possible cases.

This intersection algorithm is used in the place where the bridge algorithm is used for convex
hulls. So the same procedures UP and DOWN are used to split the envelope at a node n and
merge the split parts in n.left and n.right on the traverse down while inserting or removing a line.
We traverse the tree back up all the way to the root and restore the envelope at every internal
node encountered. This is again similar to the convex hulls and the only difference is this new
algorithm to find the intersection. The complete envelope is stored in the root.

4.3 Implementation details

Maintaining dynamic envelopes without duality turned out to be a lot more complex to implement
as expected. It was not finished because of this and because it is not really necessary to implement.

A practical data structure for the dynamic lower envelope of pseudo-lines 29

CHAPTER 4. A DYNAMIC DATA STRUCTURE FOR ENVELOPES

Maintaining envelopes dynamically can also be done using convex hulls and duality and the data
structure for pseudo-lines is a bit different, so we actually do not really need it for that. We will
see in Chapter 5 that lines can also be used as pseudo-lines.

Convex hulls are straightforward: a point is either on the convex hull or not, but lines are not
that binary: a line can be partly on the envelope which means that the contributing part should
be tracked somehow and this was not mentioned by Overmars and van Leeuwen. A possible
solution is to augment lines with endpoints which is also done for pseudo-lines (Section 5.4) and
that seemed to work reasonable, but there are more severe issues.

Overmars and van Leeuwen were a bit unclear about how the lines should be ordered. They
only mentioned that the lines should be ordered on slope, but not in which direction: fastest
increasing to fastest decreasing or the other way around. It took some time to figure out the
correct way and this is important because the case distinctions do not work otherwise.

The biggest issue is the sampling of p and q. There are a lot of options and the most reasonable
thing would be to pick one of the endpoints but the big question is: which one to pick? The big
problem is that one part of a line segment lies in a different section then the other, so you would
get different outcomes on how to traverse depending on how you sample. Because of this is it
not really possible to just pick the middle point of the segment. An example of this is given in
Figure 4.7. The cases are technically correct, the problem is how it translates into practice. The
cases are correct about ignoring parts of the envelope but with the current way representing the
envelopes it is possible to discard more than necessary which makes it possible to move away from
the right segment and this is not trivial to solve. It could probably be solved by adding side cases
but this problem can be solved much easier by just using duality for example.

Figure 4.7: These examples show the same envelopes, but the right envelope is shifted a bit
upwards in the right example. Segment 3 is in both case the current segment on the left envelope
and the right endpoint is chosen as p. Segment 6 is the current segment on the right envelope.
There are 2 options possible to choose q from: a or b. b works fine in the left panel. It gives us
case 2: the part above p can be ignored so we move down to segment 2 or 1 which is great. In the
right panel however we get the wrong case if we use q = b (case 3 instead of 4). Technically it is
correct because the intersection point lies on segment 6 and below b but in practice we traverse
the tree down to segment 7 or 8 instead of moving from segment 3 to 4 and this is incorrect. So
for the right panel we should have q = a. This causes problems in the left panel for almost the
same reason: we have case 1 so everything below a can be ignored. In practice this means that
we move to segment 5 instead of moving to segment 2 and move away from the correct segment.

So because of all these difficulties, time pressure and the fact that this implementation is not
really necessary it was decided to let this rest and move on to the envelopes for pseudo-lines. The

30 A practical data structure for the dynamic lower envelope of pseudo-lines

CHAPTER 4. A DYNAMIC DATA STRUCTURE FOR ENVELOPES

main tree and the augmented tree used for the hulls were designed from the beginning in such a
way that they could store both points and lines. This is done by making use of an abstract type
T . This is still there although it is not really necessary anymore.

4.4 Related implementations

CGAL has implemented four algorithms to compute envelopes1: two to compute the lower or upper
envelope of x-monotone lines or curves and two to compute the lower or upper envelope of input
that does not have to be x-monotone. These are not dynamic algorithms and the documentation
is unfortunately unclear about how the algorithms work in theory. The positive side is that it is
possible to use a wide variation of input: lines, line segments, circles and geometrical shapes like
circles among others2. There is a dynamic way to maintain the envelopes of a set of lines, but this
uses duality so it is a different approach to tackle the same problem.

1Documentation of the functions.
2A full list is found here or here.

A practical data structure for the dynamic lower envelope of pseudo-lines 31

https://doc.cgal.org/latest/Envelope_2/index.html
https://doc.cgal.org/latest/Arrangement_on_surface_2/classArrangementTraits__2.html
https://doc.cgal.org/latest/Arrangement_on_surface_2/classArrangementXMonotoneTraits__2.html

Chapter 5

A dynamic data structure for
pseudo lines

Now we have seen how envelopes of straight lines can be maintained dynamically (Chapter 4). The
final implementation step of this project is to abstract the case for straight lines to pseudo-lines,
which is what we are going to do in this chapter. We start by defining what a pseudo-line is before
we move on to the Agarwal [1] algorithms to maintain the envelope of pseudo-lines. It is based
on the data structures designed by Overmars and van Leeuwen (Chapter 3) but the algorithm to
merge envelopes is new. This algorithm is used in the place where Bridge is used for the dynamic
convex hull.

Dynamically maintaining the envelope using duality is less complex as doing it without duality
so it would make sense to apply duality here as well. But until now there is no known notion of
duality for pseudo-lines which means the envelopes of pseudo-lines cannot be ‘simplified’ into an
easier problem using duality.

5.1 What is a pseudo-line?

Pseudo-lines are an abstraction of straight lines. Agarwal et al. uses a lot of x-monotone finite
sequences of line segments [1] in their examples but there are many possible options. The ones
that are relevant in this thesis are straight lines, parabolas, and approximations of unit disks.

In order for the algorithm to work, there are some conditions that a pseudo-line must comply
with in order to be used. Each type of line also has specific restrictions on its own.

1. A pseudo-line might follow a function f . This f must have an y-value for every x-value;

2. Every pair of pseudo-lines in a set has exactly one intersection point. The algorithm might
behave unexpected otherwise. And it should be known how to compute this intersection;

3. A pseudo-line must be x-monotone so it follows that the function it follows also must be
x-monotone in the case it follows a function.

The relevant types of pseudo-lines are listed below. Other possible pseudo-lines can be made
by using functions like exponential functions, higher polynomial functions, sequences using this
function or maybe even some goniometric functions as long as all the conditions for the algorithm
are met.

1. x-monotone curves. This is an infinite sequence of line segments. Each pair of consecutive
segments (a, b) is connected at point p: the right endpoint of a and the left endpoint of
b, which is also their only intersection point. A curve is x-monotone which means that
every point on a should be strictly left of every point in b, except for p. The first and last

32 A practical data structure for the dynamic lower envelope of pseudo-lines

CHAPTER 5. A DYNAMIC DATA STRUCTURE FOR PSEUDO LINES

segments of the curve are open segments: the first is unbounded on the left side and the
last is unbounded on the right side. Curves with only one segment are a special case: this
segment is unbounded on both sides since it is both the first and last segment and this means
that it is equivalent to a line. The segments are stored in a list ordered on their appearance
from left to right on the x-axis. A problem is that CGAL does not support open segments
so it is a bit difficult to implement but this problem is not specific for these curves but a
general issue. A more pressing issue is that there is no easy way to generate x-monotone
curves randomly and assure the intersection restriction will always hold. This is the reason
why x-monotone curves are not implemented, but they are mentioned because they appear
frequently in examples from the paper.

2. Ordinary lines. A pseudo-line is an abstraction of lines so this means that ordinary lines are
just an application of pseudo-lines or as even as an instance of x-monotone curves having
only one segment. It is defined as f : ax + by + c = 0 (provided by CGAL), where b is
constrained to a constant and a and c are generated randomly per line. A pair intersects
once because this function is a polynomial of the first degree but only if at least a, c are
unique for every line used. These lines can be easily generated by sampling points using
CGAL and taking the duals of the points.

3. Approximations to unit disks. A set of unit disks are disks where all the radii are equal to
a constant r. An unit disk is defined as r2 = (x − a)2 + (y − b)2 centred around a point
p = (a, b) and has a problem: this is not a pseudo-line so this definition needs to be changed
in order to use it as a pseudo-line. It is not x-monotone and not infinite and therefore we
only consider the lower half of the disk and append open line segments l1, l2 respectively at
the beginning and the end of the disk. It is not clear yet how these lines of the boundary
should look like since we have to make sure that two unit disks always can intersect.

4. Polynomial curves in the form of y = ax2 + bx+ c where a > 0 is constant and b and c are
random. Consider 2 curves f(x) = ax2 + bx+ c and g(x) = ax2 + dx+ e. The intersection
f(x) = g(x) evaluates like:

f(x) = g(x)

ax2 + bx+ c = ax2 + dx+ e

bx+ c = dx+ e

x =
e− c
b− d

, b− d 6= 0

(5.1)

The problem this polynomial equation has is that every line l runs through (0, l.c) because
the terms ax2 and bx are close to 0 when x approaches 0. So all the lines tend to go through
‘hang’ together around the origin because it is so difficult to spread them. This is visible in
Figure 5.1 where the curves were generated using a = 0.05,−100 < b, c < 100 and yet they
all tend to go through the same small area near the origin. This is a problem because now
it is difficult to influence the size of the envelope if it is not possible to spread these lines,
but they work.

5. The possible forms of polynomials is endless and polynomials in the form of y = (x−a)2 + b
work a lot better. This is similar to the one above but these are able to shift to the left
and right along the x-axis using a which is picked randomly for every line. This is a huge
advantage over the previous curves because now it is possible to increase the size of the
envelope by spreading the curves more around the plane. The intersection is evaluated as

A practical data structure for the dynamic lower envelope of pseudo-lines 33

CHAPTER 5. A DYNAMIC DATA STRUCTURE FOR PSEUDO LINES

follows:

f(x) = g(x)

(x− a)2 + b = (x− c)2 + d

x2 − 2ax+ a2 + b = x2 − 2cx+ c2 + d

− 2ax+ a2 + b = −2cx+ c2 + d

− 2ax+ 2cx = −a2 − b+ c2 + d

2ax− 2cx = a2 + b− c2 − d
2x(a− c) = a2 + b− c2 − d

x =
a2 + b− c2 − d

2(a− c)
, a 6= c

(5.2)

(a) Curves with equation y = ax2 + bx+ c. (b) Curves with equation y = (x− a)2 + b.

(c) Lines.

Figure 5.1: Examples of different types of pseudo-lines. Examples of x-monotone sets of line
segments can be found in the paper describing the algorithms [1].

5.2 Ordering pseudo-lines

Let K be a set of pseudo-lines of size n. Each line intersects every other line once, so this gives
n−1 intersections per line which sums up to n(n−1) intersection points for K. These intersection
points are called the vertices or the arrangement of K and is denoted as A(K).

In order to store the pseudo-lines we need to be able to sort the elements based on the ≤
relation between lines and this is done using a vertical line l : x = x0. x0 should be picked left of

34 A practical data structure for the dynamic lower envelope of pseudo-lines

CHAPTER 5. A DYNAMIC DATA STRUCTURE FOR PSEUDO LINES

the leftmost vertex of A(K), so −∞ or some approximation to −∞ will work. For two pseudo-lines
e1 and e2 the relation e1 ≤ e2 is based on the intersection between l and e1 and the intersection
between l and e2: e1 ≤ e2 if and only if e1 intersects l below e2 intersects l.

Instead of ordering based on this definition, e1 ≤ e2 is defined differently (which will be
explained more detailed in Section 5.4). Recall that the Overmars and van Leeuwen algorithm
for envelopes uses the slopes of the lines, from the fastest increasing on the left to the fastest
decreasing on the right. This actually gives us the same result as comparing the lines with −∞.
Slopes of lines are the same as derivatives of lines and it turned out that ordering pseudo-lines
based on the derivatives at their intersection point is a more practical solution because these
numbers are not as extreme as σ. This is stated in Lemma 5.2.2.

Lemma 5.2.1. Instead of comparing f(σ) and g(σ) for pseudo-lines f and g and σ ≈ −∞ when
evaluating f ≤ g it is equivalent to compare f and g at p.x− 1 for intersection point p.

Proof. Let f and g be pseudo-lines of the same type with intersection point p and assume f < g.
Because of this we know that f(σ) < g(σ) and since p is the only intersection point it follows that
{σ ≤ x < p.x : f(x) < g(x)}. This means that we can pick any σ ≤ x < p.x to evaluate f < g so
we can definitely pick x = p.x− 1.

However, it turned out that there is an easier way of comparing, but this was found after the
version using derivatives. e1 ≤ e2 can also be evaluated by comparing the y-values of the points
at e1 and e2 just left of the intersection point between e1 and e2. This is stated in Lemma 5.2.1.

Lemma 5.2.2. Instead of comparing f(σ) and g(σ) for pseudo-lines f and g and σ ≈ −∞ when
evaluating f ≤ g it is equivalent to evaluate f ′(p.x) > g′(p.x) at intersection point p.

Proof. Let f and g be pseudo-lines of the same type with intersection point p and assume f < g and
that f and g have a derivative f ′ and g′. Like Lemma 5.2.1 we have {σ ≤ x < p.x : f(x) < g(x)},
f(p.x) = g(p.x) and {p.x < x < ∞ : g(x) < f(x)}. In other words: f increases faster and faster
until it catches up with g which means f ′ is higher than g′ so f < g ⇔ f ′(p.x) > g′(p.x).

In some cases it could be useful to use the derivatives instead if that is easier or more efficient.
Lines for example can be compared using their slopes which are constant. This saves a bit of time.

5.3 Maintaining the envelope by Agarwal et al.

The proposed algorithm to dynamically maintain the lower envelope denoted as L(K) of a set of
pseudo-lines K is new, but it is based on the existing Overmars and van Leeuwen data structure.
The main tree T is almost identical except for the fact that it uses pseudo-lines instead of points
and the augmented structure for the envelope differs a bit more. It is described in detail what
it should look like which is different compared to Overmars and van Leeuwen who were more
abstract about it. Let us start with introducing variable names and names of operations. L(K) is
represented as a tree T and a node n ∈ T has the following attributes:

• Pointers to its left and right child n.left and n.right. And a pointer to the maximum
pseudo-line in the left subtree n.lmax = max(n.left);

• The envelope of the pseudo-lines stored in the (sub)tree of n is n.E;

• If n is a leaf of T then it stores a pseudo-line in n.l and n.E = {n.l} after initialising n;

A node α ∈ n.E has the following attributes:

• α has pointers to its left and right child α.left and α.right and pointers to the rightmost leaf
(containing the maximum pseudo-line) in the left subtree α.lmax = max(α.left) and the left-
most leaf (containing the minimum pseudo-line) in the right subtree α.rmin = min(α.right);

A practical data structure for the dynamic lower envelope of pseudo-lines 35

CHAPTER 5. A DYNAMIC DATA STRUCTURE FOR PSEUDO LINES

• Retrieving the envelope of α is also denoted as L(E). This is an in order tree traversal that
outputs the leafs;

• The lower envelope of α.lmax and α.rmin is stored in α.L if α is an internal node. Computing
α.L takes constant time so it is also adequate to only store α.lmax and α.rmin;

• α stores a pseudo-line in n.l if n is a leaf;

• The intersection point between α.lmax and α.rmin is stored in α.p. α.p on its turn has a
x-coordinate and y-coordinate and are denoted as α.p.x and α.p.y.

The envelope is maintained in exactly the same way the convex hull is maintained where
intersections work the same as deletions: when inserting a new pseudo-line l into T , we split the
envelopes of every internal node we encounter and merge the results back with the envelopes of
its children, and we do this all the way down until the leaf to insert l is found. Then we traverse
back up to the root and restore the lower envelope on every node using the new algorithm. The
complete envelope is stored at the root. Even the procedures DOWN and UP (which split and
merge envelopes the same as subhulls) are the same and used in the same places so the only
difference besides the fact that points are replaced by pseudo-lines is this algorithm to find the
intersection.

The splitting and merging of envelopes is a bit different compared to the convex hulls because
the tree differs a bit, but it is roughly the same. A difference is that splitting the envelope removes
an internal node and merging adds one. More details are found in the implementation details
(Section 5.4).

This data structure can be used for two things:

• The data structure is able to answer the following query: finding the pseudo-line e ∈ L(K)
that intersects the vertical line at x0 ∈ R. This query is a binary search in the envelope
which takes O(log n) time and works by comparing x0 to the endpoints of internal nodes to
find the right pseudo-line. This is a ray shooting query;

• Updating the envelope after an insertion or deletion of x which takes O(log2 n) time. We
traverse T to find the leaf v′ corresponding to x and we split v.E on the way down to v′ for
every internal node v ∈ T starting at the root of T using DOWN. Then we traverse T back to
the root starting at v′ and update v.E for every internal node v we encounter using UP and
the new intersection algorithm. At node v we split the envelopes v.left.E and v.right.E,
merge and store the parts we need in v.E while the unnecessary parts remain in v.left.E
and v.right.E. This is exactly the same as we already saw for the convex hulls. To update
v.E we need to find the intersection of v.left.E and v.right.E.

5.3.1 Determining the intersection

The new algorithm to merge two envelopes of pseudo-lines is based on searching for the intersecting
pair of pseudo-lines between the envelopes of n.left and n.righ for an internal node n in the main
tree. The envelopes will be represented as n.left.E = Ll and n.right.E = Lr respectively assuming
that these are computed correctly.

The envelopes intersect exactly once at point q and the goal is to find the intersecting lines
u′ ∈ Ll and v′ ∈ Lr that intersect at this point. Let u ∈ Ll and v ∈ Lr be the current nodes and
we start searching at the roots of Ll and Lr. We are performing a binary search using u.p, u.L, v.p
and v.L to find u′ and v′. u.p is compared to v.L and v.p to u.L. This comparison gives a few
cases and each hints us in which direction we need to traverse to find u′ and v′. Eventually we
stop when u = u′ and v = v′. Given the current nodes u and v, there are three possible cases
with a side note for p: a leaf x does not have a x.rmin or x.lmax to compute a x.p, so for leafs
we use one of its endpoints. The left endpoint of x is used if x is in the left envelope and the right
endpoint is used otherwise. The cases are visualised in Figure 5.2.

36 A practical data structure for the dynamic lower envelope of pseudo-lines

CHAPTER 5. A DYNAMIC DATA STRUCTURE FOR PSEUDO LINES

Case 1: u.p lies on or above v.L. This means that q = u.p or that q.x < u.p.x so u′ is definitely not
in u.right but in u.left or left of u if u is a leaf.

Case 2: v.p lies on or above u.L. This means that q = v.p or that v.p.x < q.x hence v′ is not in
v.left but in v.right or right of v is v is a leaf.

Case 3: u.p lies below v.L and v.p lies below u.L. This cases is more complex because now there are
some more possibilities: u.p is strictly left of q (so u′ ∈ u.right or right of u if u is a leaf),
v.p is strictly right of q (so v′ ∈ v.left or v′ is left of v is v is a leaf) or both.

There are subcases so it is a bit more complex than this. These subcases exist because it is
possible to take the wrong path while traversing down and are all covered in the pseudo-code.
So the subcases make sure the right direction is always taken. We can change the direction by
traversing one step back to the root and simply traverse in the other direction. This is done using
two stacks that keep track of the traversed paths from the roots. Taking a step back simply means
we take the first node of the stack. The left path is stored in the stack πl and the right path inπr.

(a) Case 1 (b) Case 2

(c) Case 3

Figure 5.2: An overview of the three different main cases.

The intersection points u.p and v.p are compared against the envelope of two lines v.L or u.L,
but it is also possible and valid to compare them to the entire envelope L(v) or L(u) respectively.
This would slow the algorithm down though because it requires a tree traversal. Both are eval-
uated in practice anyway and it turned out there is not a noticeable difference between the two
(Chapter 6).

A practical data structure for the dynamic lower envelope of pseudo-lines 37

CHAPTER 5. A DYNAMIC DATA STRUCTURE FOR PSEUDO LINES

5.3.2 Running time

The running time should be the same as with maintaining the convex hull, namely O(log2 n)
time because it uses the same techniques. However, the running time increases in theory if L(v)
is used instead of v.L. This is because comparing points to L(v) means there is an additional
tree traversal while comparing to v.L takes constant time. Finding the intersection using L(v)

takes
∑logn

i=0 log n = O(log2 n) time in the worst case. Let k be the size of the envelope at step
0 ≤ i ≤ log n:

logn∑
i=0

log2 k ≤

logn∑
i=0

log2(2i) =

logn∑
i=0

(log(2i))2 =

logn∑
i=0

i2 = O(log3 n)

(5.3)

The intersection algorithm was implemented first using L(v) instead of v.L. In the test results
(Chapter 6) the algorithm using L(v) will be referred to as the old way of finding the intersection
(or it is not mentioned) and the intersection using v.L is referred to as the new way.

Using sorted input

Let L be a set of ordered pseudo-lines. When we insert l ∈ L one by one in order into the envelope
T we will see that T will become extremely unbalanced: each li+1 will be inserted at max(T)
(or min(T) depending on the ordering) which means that T becomes a long trail with depth n.
So in order to insert li+1 we have to traverse O(n) nodes and perform splitting and merging
operations, and perform the intersection algorithm. The running time for sorted inputs evaluates
to

∑n
i=0 log n = O(n log n) time, ignoring the possible influence of the size of the envelope on

the running time. Sorted inputs are used in experiments (Chapter 6) to illustrate the issue of
unbalanced binary search trees.

5.4 Implementation details

5.4.1 Structure of classes

The class PseudoEnvelopeWrapper is responsible for delegating insertions and deletions into the
main tree of PseudoLNode. It also has the implementations for UP, DOWN, retrieving the envel-
ope, ray shooting queries and other similar functions can be put here. PseudoLNode is used as a
node in a tree and can act both as a node and a leaf. it has a field to store a pseudo-line but this
is only used if it is a leaf. It also stores the envelope of type PseudoEnvelope and has pointers to
the left child, right child and maximum leaf in the left subtree.

The implementation of the intersection algorithm can be found in PseudoEnvelope along with
a binary search tree of type ElementsInLeafs which stores objects of type PseudoLine and uses
some basic tree functions of AVLTree which is the same tree used for convex hulls (and still not
height balanced). PseudoEnvelopeWrapper uses PseudoEnvelope from the root of the main tree
(has type PseudoLNode) to answer ray shooting queries and the retrieval of the envelope and also
contains a binary search function that uses the intersection points.

Pseudo-lines are represented in a class called PseudoLine. It has multiple constructors and
each intialises a different type of pseudo-line. The specific type of the pseudo-line is stored in

38 A practical data structure for the dynamic lower envelope of pseudo-lines

CHAPTER 5. A DYNAMIC DATA STRUCTURE FOR PSEUDO LINES

a field of type BaseLine (which corresponds to n.l for a node n) and every type of pseudo-line
has a class derived from this. In this way it is possible to put the responsibilities for things like
finding the intersection of lines, retrieving y-coordinates at a certain x and derivatives of the line
for each type of pseudo-line. The intersection algorithm does not know what type of pseudo-lines
it is working with and fails if two pseudo-lines are used with a special type to represent nodes. In
fact only the end user and PseudoLine know what type of pseudo-lines are used. The endpoints
are stored in PseudoLine as attributes and n.p also has a field. Each node in ElementsInLeafs
representing the envelope stores an object of type PseudoLine but only the leafs store actual
pseudo-lines. Internal nodes have a special type of pseudo-line to denote that is empty and n.p is
only set when the pseudo-line has this empty type and n.p is never set if the pseudo-line contains
and actual pseudo-line conversely.

The tree ElementsInLeafs storing the envelope is different from the tree storing hulls, so merging
and splitting is implemented twice unfortunately. Merging is implemented in the most easy way
possible (Section 2.1.5), so this may result in highly unbalanced trees and thus inefficient running
times and this still needs to be improved.

5.4.2 Other practical details

Merging two envelopes is implemented differently compared to merging convex hulls. The easiest
way of merging is implemented (Section 2.1.5) first, but this never changed. A quick reminder
about this method: it simply creates a new root node α, stores the left tree in α.left and the right
tree in α.right and updates α.p. The first part takes constant time but updating α.p takes two
tree traversals for α.lmax and α.rmin which take O(log n) or even O(n) time each depending on
the tree. So this merging algorithm has room for optimisation.

Although unit disks are not implemented to use by the algorithm, some work has been done: the
intersection can be found using CGAL and the other functions are implemented as a first version.
CGAL’s algorithm to compute envelopes (Section 4.4) can be used to validate the correctness.

The original sorting is based on working with x = −∞ and this was initially implemented in
the code. −∞ was approximated as σ = −10000 because it is not really possible to put∞ into an
equation but using an approximation should work. It turned out after a while and a lot of bugs
that −10000 was not enough at all. A new problem arose because sorting should use an x-value
left of all vertices of A(K), but this approximation was just not enough which failed the sorting
often. Decreasing this approximation to σ = −4999000 helped a lot but essentially pushed the
problem away instead of solving it. That is why sorting was approached differently. First using
derivatives (Lemma 5.2.2) and later using an x-value just left of the intersection point of the two
lines that are compared, which is actually easier than derivatives (Lemma 5.2.1).

The very same σ is still used however to cap open endpoints. Open segments are not supported
by CGAL, so they are capped at σ if the open end is on the left and capped at −σ if the open
end is on the right. It is also possible that a segment is capped at both ends. Capping segments
occurs after splitting an envelope: for the new envelopes E1 and E2 we need to reset the right
endpoint of max(E1) and the left endpoint of min(E2) because these just became open segments.
And equivalent for merging: after the merging of two envelopes we need to update the endpoints
to α.p for segments α.lmax and α.rmin where n is the new root and where α.p is the intersection
point between α.lmax and α.rmin. We also reset both endpoints in the intersection algorithm
when we reached a leaf.

Evaluating the correctness for the envelope using lines was not too difficult. CGAL has an
algorithm to compute envelopes so this could be used but it is faster to maintain the upper envelope
of the duals instead. For parabolas it was initially not clear how this algorithm could be used but it
should be possible so this would be something to look into in the future. This algorithm might be
useful for unit disks later on but for now this means that correctness of curves is based on visually
inspecting the result. More details about correctness can be found in the results (Chapter 6).

A practical data structure for the dynamic lower envelope of pseudo-lines 39

Chapter 6

Experiments

The results of the test are represented in two different ways. There are three types of convex hulls
to test and three different inputs for each type which means there is a lot of different data. The
results are visualised in plots along with the approximated asymptotes. This is a good way to see
the details (e.g. how the times vary at a certain n and how well the asymptote matches the data)
but it is not the best way to compare different inputs or types of computing convex hulls. Some
plots are found in this chapter but more detailed plots are contained in Appendix A.

6.1 Measuring running times

Every algorithm discussed has a running time which is proven in theory, but is not yet evaluated
in practice. So one of the goals is to find out if the theoretical bounds are correct and if the
running time is influenced by different inputs. The running times of insertions and deletions will
be evaluated with respect to different types of input that influence the size of the output (convex
hull or envelope). Each operation is timed from the moment the insertion or deletion starts until
the moment that the augmented data structure (convex hull or envelope) at the root is updated.

This process of measuring time is repeated k times at different input sizes n′ ∈ {δ, 2δ, 3δ, . . . , N−
2δ,N − δ} where mod (N, δ) = 0 for the final size N and a constant δ. We need to do two things
when testing k operations for a certain n′: insert some random points until the set of the set
of elements (points or pseudo-lines) in the data structure contains n′ elements. Then we create
a random set K of size k and for each k′ ∈ K we insert k′ to measure the insertion time and
immediately delete it to measure the deletion time. The insertion and deletion times are stored
with the corresponding n′.

Eventually there are k running time measurements for each n′ ∈ {δ, 2δ, 3δ, . . . , N − 2δ,N −
delta}. The running time measurements correspond to the y-axis of the plots and the x-axis
corresponds to the size of the set contained in the data structure. It is important to remember
that n′ is not the same as the size of the convex hull or envelope but the amount of elements
stored in the tree. This data is saved in JSON format and processed using Python to make plots
and approximate asymptotes.

The constants a, b in an asymptote like O(a ∗ n log(n) + b) are hidden by the definition of
big O notation but that does not mean these constants do not impact the running time. These
constants matter a lot for visualisations and it is our task to approximate them as good as possible.
There exists a Python package scipy 1 that contains a function curve fit that takes input data, a
function f and parameters for f to fit according to the data. This is exactly what we need to see
for asymptotes as {a+ b log(n) = O(log n), a+ bn log(n) = O(n log n), a+ b log2 n = O(log2 n), a+
b log3 n = O(log3 n), a + bn = O(n)} for parameters a and b are suitable for a certain algorithm.

1Documentation is found here.

40 A practical data structure for the dynamic lower envelope of pseudo-lines

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html

CHAPTER 6. EXPERIMENTS

The parameters are constrained to 0 < a, b <∞ but stay close to 0 in practice. Every call of log x
is replaced with log(x + ε) with ε close to 0 to prevent calculating log 0. This method works so
well because it will never be possible to fit the wrong asymptote perfectly since these functions
differ a lot in shape (see Figure 6.1). The asymptotes are visually inspected to conclude if they
are reasonable. scipy.optimize.curve fit can also be used to compute the residuals between the
data and the asymptote. The best approximation should have its residuals close to 0 so this
is a secondary way of verifying an asymptote for cases like O(log2 n) and O(log3 n) where the
differences are small in practice. These differences are small although O(log3 n) is a lot worse than
O(log2 n) but they might become similar after fitting them to the data.

Figure 6.1: Examples of different asymptotes.

6.1.1 Visualising running times

Each figure in Appendix A shows a test with a certain input. Each test contains six subplots
divided in two columns and three rows. The first column displays insertions and the second
deletions. The first and second row display the running time data but the second one is cropped
around the mean while the first one shows all the data points. Both rows contain asymptotes
which are fitted using curve fit along with the means of the data to compare the asymptote with
the means.

An important note to make is that the representation of the convex hull is different for every
variation of maintaining the convex hull. For the Overmars and van Leeuwen versions it is stored
in two separate trees or two separate lists and for the Delaunay triangulation we need to traverse
the outer face of the triangulation to retrieve the convex hull. In Figure 6.2 we see how traversing
the outer face after an insertion or deletion impacts the running time. This difference is small but
it would be bigger if the size of the convex hull increases. Each test is run without outputting the
convex hull as a list because this gives unnecessary overhead and makes comparing each variation
unfair.

6.1.2 Dealing with outliers

The data may contain outliers which may influence the averages (means) negatively. They also
have a negative effect on the estimations for asymptotes, so it would be better if those are removed.
The challenge is now to find out what an outlier is for each set of data points for every size n.

A practical data structure for the dynamic lower envelope of pseudo-lines 41

CHAPTER 6. EXPERIMENTS

Figure 6.2: Averages of two kinds of tests: one traverses the outer face after an insertion or deletion
and the other one does not. Each variation is run five times.

Most outlier detections are based on one or more assumptions and outlier detections are usually
based on the assumption that the data is normal distributed. The running time data should be
normal distributed according to the central limit theorem [9] which in general can be applied for
sample sizes of n > 30 but in practice it can be applied sometimes for even smaller sample sizes.
However, it seems that a lot of data points were not random distributed as they failed the Anderson-
Darling test or the D’Agostini test for normality. A way to find outliers is Tukey’s method which
relies on boxplots and is also based on the assumption of normality. Regardless whether the data
is normal distributed or not, applying it does not improve the asymptote estimations significantly
hence this method is not used in general. In most cases it only shifts the averages a bit up or
down and it is not useful to make conclusions. There is one case though where it actually is really
useful: Figure 6.3 shows an example of running times for maintaining the convex hull of points
sampled on a disk using std::vector. We clearly see that the running times are really low or really
high and there is not much in between. In this case it makes sense to remove the lowest points to
fit the upper parts of the data better. The asymptotes on the adjusted data go nicely through the
upper part of the data points. This is the only case where it is really clear that outliers should
be removed. The other data sets are more spread over the plane or divided into multiple denser
regions but not as extreme as here.

42 A practical data structure for the dynamic lower envelope of pseudo-lines

CHAPTER 6. EXPERIMENTS

Figure 6.3: The only case where removing outliers made a lot of sense. The convex hull is
dynamically maintained using std::vector and points are sampled on a disk. The outliers are
displayed in black.

6.2 Verifying correctness

Besides the running time it is also important to verify if the computed result is correct. One of
the ways to verify if the computed convex hull is actually valid is using a visual debugger 6.4.
This method was extremely useful while developing the algorithms because it makes debugging a
lot easier. However, this visual method it is not really a good way to test intensively and on large
data sets because it takes too much time and will be prone to human errors. A more robust way of
verifying is similar to testing running times by comparing the convex hull from the dynamic data
structure to the convex hull computed by CGAL, which is always correct, so when the results do
not match then the dynamic structure must be wrong.

Convex hulls can be easily compared but validating envelopes is more complex. Envelopes
of lines can be validated by taking the upper hull of a Delaunay triangulation and duality (Sec-
tion 2.3). Parabolas are more difficult to verify using the CGAL algorithm for envelopes although
should work on parabolas but it is unclear yet how, so only the visual debugger can be used in
this case.

Convex hulls work correct. The dynamic structure contains the minimum and maximum point
twice and it is different ordered than the Delaunay triangulation but that is a small thing to keep
in mind. The envelopes on the other hand are sometimes incorrect unfortunately and parabolas
are more prone to errors as lines. Some examples of these errors are shown in Figure 6.5 where we
see that the envelope sometimes has small incorrectnesses. The envelope itself is continuous over
the x-axis and does not contain gaps. It is unclear why this happens but it is considered a bug in
the code, not an error in the algorithm.

A practical data structure for the dynamic lower envelope of pseudo-lines 43

CHAPTER 6. EXPERIMENTS

Figure 6.4: An example of how the debugger works. On the left we see a complete convex hull
and on the right we see one of the steps of updating the upper hull after an insertion. The lower
hull can be debugged in the same way. The steps to find the bridge are also able to be inspected.
It displays some information about the current case, like what the average size of the number of
steps should be: 2 logn for the current n. A similar debugger was made for envelopes.

Figure 6.5: Examples of envelopes of a set of parabolas containing small errors in the envelopes.

44 A practical data structure for the dynamic lower envelope of pseudo-lines

CHAPTER 6. EXPERIMENTS

6.3 Test cases

Testing running times will be done using all combinations of different inputs and different ways
of computations. The CGAL algorithms for convex hulls and algorithms are not tested because
they are too slow for dynamic applications (except the Delaunay triangulation).

6.3.1 Convex hulls

CGAL provides random generators to sample points in different ways 2: on a disk, inside a disk,
inside a square or on a square. This last one cannot be used because it will generate multiple
points with the same x-value which we cannot use so there are three ways of generating data sets.
These are combined with the multiple ways of maintaining a convex hull: using vector, using trees,
CGAL’s Delaunay triangulation.

Combining these should tell us how the different data structures are affected by different data
because each way of sampling has its own limits on the size of the convex hull. If all points are on
a disk, then the size of the convex hull will be the entire set of points. Sampling inside a square
will give the lowest size of the convex hull. Sampling in a disk is somewhere in between. So the
combinations of different algorithms and inputs can tell us a lot about when each algorithm should
be preferred. There are a lot of possible ways to sample points, but only these are chosen because
of the focus of this thesis project is about envelopes.

6.3.2 Envelopes of pseudo-lines

There is no built in function in CGAL to generate pseudo-lines, so this requires a bit of work.
While generating it is important to make sure the requirements from in Chapter 5 are met, but
this still leaves us different possibilities for different inputs. There are two types of pseudo-lines
tested: lines in the form of ax+ by + c = 0 and polynomials like (x− a)2 + b. Polynomials in the
form of ax2 + bx+ c where a is fixed and b, c are random are skipped because it is too difficult to
spread the curves over the x-axis and this makes it not possible to influence the number of lines
on the envelope.

Curves are generated by picking random numbers for each variable. It is easy to generate
correct sets in this way and it is possible to influence the size of the envelope by taking a larger
sample range for a and the range of c is fixed. Lines are generated by generating sets of points
and taking the duals. Inputs that give large envelopes are generated by sampling points on a disk
and the size of the envelope will be about n

2 since we only consider the lower envelope. Inputs
that give a small envelope are generated by sampling points in a disk or in a square.

For envelopes we also test the effect of sorted inputs to see if height balancing trees would be
a good feature to add. We insert the lines from a set L if we have either {l ∈ L : l < min(T)} or
{l ∈ L : l > max(T)}. In this way we make sure the tree is highly unbalanced to either the left
side or right side.

In Chapter 5 we discussed that an internal node n in the envelope should be augmented with
the envelope of min(n.right) and max(n.left) as L(n), but we can also traverse the subtree rooted
at n instead. Both are evaluated and the latter was implemented first so if there is this is referred
to as the ‘old way’ of traversing n and the first way is referred to as the ‘new way’ of representing
L(n). If there is no reference to the method used then it is the old way.

2https://doc.cgal.org/latest/Generator/classCGAL_1_1Random__points__in__disc__2.html

A practical data structure for the dynamic lower envelope of pseudo-lines 45

https://doc.cgal.org/latest/Generator/classCGAL_1_1Random__points__in__disc__2.html

CHAPTER 6. EXPERIMENTS

6.4 Expectations and hypotheses

6.4.1 Height balancing of trees

The trees used in the data structures are not height balanced and this probably the cause of
high variations of the running times. This also might make it more difficult to find the real
asymptote in some cases because the running times are more scattered. Height balancing was not
implemented mainly due to time limits. This means that some inputs would perform terribly bad
as a consequence, especially for sorted inputs.

6.4.2 Running times for convex hulls

The dynamic convex hull has an O(log2 n) update time per insertion and deletion using trees.
So it is expected that this will become visible in the plots. The asymptote should be worse for
dynamic convex hulls using a vector, since it theoretically takes O(n) time per update, so these
should also be slower in practice. We will see if this is also the case in practice. The Delaunay
triangulation should take O(

√
n) time or O(n) time in the worst case for insertions and O(

√
n) time

for deletions as discussed in Section 2.4.2. It is probably not possible to outperform the Delaunay
triangulation, but this is not the goal. The goal is to make a correctly working implementation
that can be extended to envelopes.

6.4.3 Running times of envelopes for pseudo lines

We want to know if and how the theoretical running time translates into practice. There are two
cases: unsorted inputs and sorted inputs and both are expected to behave different from each
other. As discussed in Chapter 5 the running time should be O(n log n) time for sorted inputs and
O(log2 n) or O(log3 n) time for unsorted inputs.

The variation in input size will likely have an effect on the running time, just like the type of
pseudo-line might have. It is also likely that we find a difference in the running times between the
old and new way of representing L(n). The new way should be faster, but again the trees are not
optimally implemented so the differences might be low.

6.5 Results for convex hulls

In Figure 6.6 we see every combination between inputs and ways of computing convex hulls in
a single overview. Each example is displayed more detailed in Appendix A more or less like
Figure 6.3 is.

It did not make sense to test inputs for high convex hull sizes for the Delaunay triangulation
and the dynamic version using std::vector because it is clear how slow it is with the current inputs.
There is also a difference between the sizes of the sets in other runs (n = 80000 and n = 160000)
mainly because the time it took to wait for a test, memory usage and its effect: a bigger test does
not always make the comparison better.

We see that the Delaunay triangulation is the fastest in general, followed by the dynamic version
using std::vector and the dynamic version using trees as last. However, the dynamic version using
trees is the only that can handle extremely large convex hulls. It is a surprise that the dynamic
version using std::vector is a bit faster than the dynamic version using trees because the version
using std::vector has to copy lists a lot which is not efficient. But surprisingly it turned out to
be faster than the tree version. It could be due to the fact that the operations on trees are not
optimized yet but the Delaunay triangulation implementation and the operations on std::vector
are.

The Delaunay triangulation has a running time of O(
√
n) for insertions and deletions when

the size of the convex hull is low but this increase to O(n log n) when the size of the convex hull

46 A practical data structure for the dynamic lower envelope of pseudo-lines

CHAPTER 6. EXPERIMENTS

is extreme. Its asymptotes go from O(log n) for low sizes of convex hulls to O(n) or O(n log n) for
high sizes of convex hulls. It is a bit difficult how the see the difference between O(n) or O(n log n).

It is interesting to see how the running time is not really affected by the size of the convex
hull although the running time increases a bit when the convex hull is lower. The asymptote of
O(log2(n)) time is nicely visible in the plots. But it is the slowest when the size of the convex hull
is low.

The Delaunay triangulation works really fast when the convex hull has a reasonable or small
size, like when the points are sampled in a disc or in a square. The running time increases rapidly
when the size of the convex hull is really large, so in the case of points on a disc. This is probably
due to the high number of adjacent vertices that need to be updated after an insertion or deletion.
Deletions are even slower. The results in Figures A.1 A.2 A.3 strongly suggest that insertions
and deletions run in O(

√
n) time. Deleting points when the size of the convex hull is really large

tends to take O(n2) time. This is the reason why testing with a large convex hull for Delaunay
triangulations was done with a much smaller input compared to the other versions.

A practical data structure for the dynamic lower envelope of pseudo-lines 47

CHAPTER 6. EXPERIMENTS

Figure 6.6: Overview of insertions and deletions of the different combinations for conex hulls. The
top plot contains all combinations and the bottom lacks Delaunay triangulation and the dynamic
version using std::vector with points sampled on a disk.

48 A practical data structure for the dynamic lower envelope of pseudo-lines

CHAPTER 6. EXPERIMENTS

6.6 Results for envelopes

Figure A.16 shows test results of all the combinations between inputs (lines or curves) and the size
of the envelope. All of them are also tested with theoretically the inefficient way (using E(v) in the
intersection algorithm) and the theoretical efficient way (using v.L: the envelope of max(v.left)
and min(v.right)). The first is referred to as ‘old way’ or is not explicitly named at all while the
latter is always referred to as ‘new way’. Appendix A contains plots of every test in more detail.

It turns out it is near impossible to see a difference in the asymptotes O(log2 n) and O(log3 n)
because these are really close to each other after fitting them. There is a small difference visible
in the beginning of the plot where the input size is still low and removing outliers with extremely
high running times does not really help either. The only thing we can do is look at the plots in
Figure A.16 where we can compare the differences. It turns out that there is no real difference in
running times except that the efficient way (storing only a part of the envelope) has a more stable
mean.

For some unknown reason we see that lines are a lot slower than curves and that curves are
less influenced by the size of the envelope. We can see this in Figure A.16 and 6.8.

The evaluation whether using L(n) or traversing n is better uses multiple runs with lines as
pseudo-lines. These results are visible in Figure 6.7b and as we see there is no clear difference
between the two methods. Similarly, curves are tested which we see in Figure 6.7a and there is no
real difference visible.

As expected, we see that the sorted input increases the running time enormously, and they
tend to run in linear time or more. Because this way of testing takes a lot of time it was not
possible to test larger inputs and even worse: the insertions and deletions started generating stack
overflow errors because these are defined recursively. So this is a more serious issue than time is.

A practical data structure for the dynamic lower envelope of pseudo-lines 49

CHAPTER 6. EXPERIMENTS

(a) curves (range of a = 100).

(b) Comparing old and new way for all combinations of inputs for lines.

Figure 6.7: An overview of several experiments to compare the old and new variation of the
intersection algorithm using unsorted inputs.

50 A practical data structure for the dynamic lower envelope of pseudo-lines

CHAPTER 6. EXPERIMENTS

Figure 6.8: An overview of different types inputs but all are sorted.

A practical data structure for the dynamic lower envelope of pseudo-lines 51

CHAPTER 6. EXPERIMENTS

6.7 The code

The code for this thesis project is written in C++ and Python. C++ is used for the data structures
and testing their efficiency. Python is used to process the results, generate plots of the data and
generate example plots throughout this report. The main reasons to use C++ are efficiency and
the use of the CGAL library, which is also written in C++. CGAL is used because it provides
a lot of computational geometric algorithms and data structures and it can be used to provide
floating-point precision 3 as much as possible, although this is not used yet in practice.

CGAL requires several other libraries to operate. One of them is Boost and is used to create
a GUI which is used to create the visual debugging tools. Qt is mainly used to generate JSON
files. All the C++ is developed with Visual Studio 2019 and CMake. GitHub is used for version
control and to publish the algorithms, data structures and results. 4 The Python is developed in
so called Python notebooks in Jupyter lab. Important Python packages are mathplotlib, numpy,
scipy and pandas.

3Documentation is found here.
4Implementation can be found on GitHub.

52 A practical data structure for the dynamic lower envelope of pseudo-lines

https://doc.cgal.org/latest/Number_types/index.html
https://github.com/DenBaas/dynamic-lower-envelopes-pseudo-lines

Chapter 7

Conclusions

In this chapter we present the conclusions about dynamically maintaining convex hulls, envelopes
of lines or pseudo-lines based on the results from the experimental evaluation (Chapter 6). We
also present recommendations for future work.

7.1 Convex hulls

We have seen multiple ways of maintaining a convex hull dynamically, the most important one
being the implementation of Overmars and van Leeuwen. It works correct and fast but it has some
room for improvement. Right now it is only possible to store points with a unique x-coordinate
so changing this would be a useful adaption. And the bridging algorithm can still be sped up: the
implementation for dynamic convex hulls made in Java by Yun Chi traverses the subhulls both at
the same time (it can take two steps in total: one in the left subhull and one in the right tree) but
the current implementation does either left or right (so one step at a time in one of the trees). The
figures showing the running times for dynamic data structure using a tree (Figures A.8 A.6 A.7)
all suggest that the O(log2 n) running time is correct in practice.

The maintenance of the convex hull using the Delaunay triangulation is faster than the Over-
mars and van Leeuwen implementation using trees, so it is natural to prefer the Delaunay trian-
gulation over the Overmars and van Leeuwen implementation unless the size of the convex hull
is extremely large or when the efficiency is improved in the future. Even the Overmars and van
Leeuwen implementation using lists is faster than the version using trees although the running
time is worse in theory. The reason behind this is likely that the trees are not optimised, while
the implementations of the Delaunay triangulation and std::vector are. There are also no tree
balances applied, which might slow down operations in some cases.

7.1.1 Running time evaluation

The size of the convex hull clearly has a strong influence on the running time in every differ-
ent variation of maintaining the convex hull, especially the Delaunay triangulation and dynamic
version using a std::vector perform awful when the size of the convex hull is extreme while the
dynamic version using a tree is surprisingly stable and only affected by the size of the convex hull
in a small amount.

Merging and splitting a std::vector take both O(n) time in the worst case. This translates
to a bad theoretical running time: insertions and deletions take 1 + 2 + 4 + · · · + n

2 + n =

20 +21 +22 + · · ·+2log(n)−1 +2logn =
∑logn

i=0 2i = O(n log n) time in the worst case, when a convex
hull is huge. However: the size of the convex hull k is not likely to be around n points, but a lot
less so the splitting is merging is not bounded to n, but to k. Hence, a more realistic asymptote
would be

∑logn
i=0 min(2i, k) = O(n log(min(n, k))) = O(n log k) time per insertion or deletion for

A practical data structure for the dynamic lower envelope of pseudo-lines 53

CHAPTER 7. CONCLUSIONS

O(1) ≤ k ≤ n. This is visible in the results (Figures A.4, A.5 and 6.3). It can be the case that the
final convex hull is smaller than intermediate results in which case k is not a good representation
but in general it should work. The Delaunay triangulation varies between O(

√
n) and O(n2) time

in practice. This last one is unexpected, because the worst case running time of the Delaunay
triangulation should be O(n) time in the worst case.

The effect of convex hull size is less dramatic for the Overmars and van Leeuwen implementation
using trees. We saw that insertions or deletions take O(log2 n) time in theory (Section 3) but the
results (Figures A.6 A.8 A.7) suggest that the size of the convex hull k influences the running
time mildly. The difference can be explained in the same way as with the std::vector version: the
size of the tree to split runs up to k, not to n so now we can change the original running time of∑logn

i=0 log(2i) = O(log2 n) to
∑logn

i=0 log(min(2i, k)) = O(log(n) log(k)) for O(1) ≤ k ≤ n.

7.1.2 Outlier detection

The only reason why testing for normality was necessary was to test which data points were
outliers. What we did now was just testing for normality and detecting outliers using boxplots
but there were only one or two cases were removing outliers made sense. Some test results had
multiple dense regions and that might be the problem why the data was not normal distributed.
This could be checked using histograms and the data could be transposed to a normal distribution
using Box-Cox transformations [3] if this is really desired. These methods were not used because
outlier detection was not as relevant as expected, but it might be in the future.

7.2 Envelopes

We saw in Chapter 4 that the Overmars and van Leeuwen proposal for envelopes is not practical
although it works in theory. It is better to use a convex hull of the duals of the lines with for
example a Delaunay triangulation. This is only possible for normal lines though, but it is also
possible to maintain the envelope of pseudo-lines now.

7.2.1 Correctness

Although the CGAL algorithm is not suitable for dynamic applications it still can be used to verify
the correctness of the dynamic algorithms. This is unfortunately not implemented yet, mainly
because it was not straightforward to use. Hence the only method of checking for correctness is
the debugger.

The implementation of the intersection algorithm still contains some errors unfortunately which
show up sometimes after a number of insertions. It is unknown where these errors come from but
it appears that envelopes of parabolas are more error prone than envelopes of lines. The only way
to test this is by visual inspection unfortunately so a good first step would be to validate envelopes
automatically, most likely using CGAL.

Although the intersection algorithm is not perfect yet, we can conclude that it works in practice
as well and not only in theory. The only thing left to do now is to remove its sharp edges
(inaccuracies, bugs and other possible errors), optimise it and add support of more types of
pseudo-lines. Then it becomes possible to extend the structures with other functions to answer
queries.

7.2.2 Running time evaluation

It is difficult to see a difference between the O(log2 n) and O(log3 n) asymptotes in the plots (see
Appendix A). There is also barely a difference between the two different ways of finding the cases
using v.L or E(v). And if we look at the differences between smaller envelope sizes (approximately
20 ≤ k ≤ 50) and larger envelope sizes (k ≈ n

2), we see that the differences of the running times

54 A practical data structure for the dynamic lower envelope of pseudo-lines

CHAPTER 7. CONCLUSIONS

are small and this is similar to what we saw for the Overmars and van Leeuwen data structures
to maintain convex hulls. But the difference in running times exist so this implies that there is an
influence of the size of the envelope, although it is small.

If we apply the same logic for the convex hull running time analysis here, we have that
the running time depends on the size of the envelope k. This makes sense because the small
difference we saw actually suggests this. For the case of v.L we get the same asymptote of
O(log(n) log(k)) time for insertions and deletions by the same reasoning. For the case of E(v) we

have
∑logn

i=0 log2(min(2i, k)) = O(log(n) log2(k)) time for insertions and deletions. But the differ-
ences between O(log(n) log2(k)) and O(log(n) log(k)) are either small or insignificant in practice
because the experiments do not show a clear difference between the two variations.

7.3 Future work

Height balancing trees should decrease the variations in the running times and improve the average
running time. A lot of the running times (Figures A.4 A.12 for example) vary a lot which means
that the true asymptote is harder to approximate. Some even show multiple dense regions which
weakens the approximations of asymptotes. This is especially the case for convex hulls with the
dynamic versions using lists but less for trees. Balancing the trees should decrease these effects
and make it more predictable how the running times behave and what the true asymptote is. It
also solves the running time issue with sorted inputs and the stack overflows. The stack overflows
occurred once the tree had a depth of around 220. This tree would not have this depth in the first
place if it was height balanced but now imagine a height balanced tree with a depth of 220. The
depth of a tree is log n where n is the size of the set stored in the tree, so if log n = 220 then we
have that n = 2220 ≈ 1.68 ∗ 1066 and this kind of input sizes are completely unrealistic in practice
and that is why height balancing is important.

There is more optimisation possible, like merging of envelopes is implemented in a simple but
inefficient way. Updating n.lmax and n.rmax in a smarter way might save some unnecessary
tree traversals and thus save time. These are updated right now using a tree traversal, but there
might be smarter solutions. But most of all it is important to start with making the intersection
algorithm work correctly. CGAL also can help with verifying if the dynamic result is correct.

CGAL can be used to create polynomial equations of various forms 1. However, it was not
initially clear how to solve x for f(x) = g(x). It is of course possible to figure out how to solve
this by hand but it would just be more convenient if this is possible as it makes it a lot easier to
add different kinds of pseudo-lines. Unit disks and x-monotone lines should also work now once
they are implemented. This report provides a guideline to do this.

The problem with large numbers (while comparing pseudo-lines) should be solved further.
Generating the data sets and running experiments were difficult in the beginning because this
issue kept popping up. One of the causes was the sampling of inputs from a large sample space,
so reducing the sample space worked. It could also be that large numbers are not the issue but
small ones, so floating point errors might be another issue that not has been tackled or that lines
close to each other intersect far away from the origin.

1Documentation can be found here

A practical data structure for the dynamic lower envelope of pseudo-lines 55

https://doc.cgal.org/latest/Polynomial/index.html

Bibliography

[1] Pankaj K. Agarwal, Ravid Cohen, Dan Halperin, and Wolfgang Mulzer. Dynamic Mainten-
ance of the Lower Envelope of Pseudo-Lines. 35th European Workshop on Computational
Geometry (EuroCG’19), pages 1–7, 2019. iii, 1, 2, 3, 32, 34

[2] Gerth Stølting Brodal and Riko Jacob. Dynamic planar convex hull. Annual Symposium on
Foundations of Computer Science - Proceedings, 14186:617–626, 2002. 24

[3] R. J. Carroll and David Ruppert. On prediction and the power transformation family. Bio-
metrika, 68(3):609–615, 1981. 54

[4] T. M. Chan. Optimal output-sensitive convex hull algorithms in two and three dimensions.
Discrete and Computational Geometry, 16(4):361–368, 1996. 9

[5] Timothy M. Chan. Three problems about dynamic convex hulls. In International Journal
of Computational Geometry and Applications, volume 22, pages 341–364. World Scientific
Publishing Company, aug 2012. 24

[6] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms, Third Edition. The MIT Press, 3rd edition, 2010. 7

[7] Mark de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational Geometry.
Springer, 3rd edition, 2008. 8, 9, 12, 26

[8] Mashhood Ishaque and Csaba D. Tóth. Relative convex hulls in semi-dynamic arrangements.
Algorithmica, 68(2):448–482, aug 2014. 24

[9] Douglas C. Montgomery and George C. Runger. Applied Statistics and Probability for En-
gineers. John Wiley & Sons, 6th edition, 2014. 42

[10] Eunjin Oh and Hee Kap Ahn. Dynamic geodesic convex hulls in dynamic simple polygons.
Leibniz International Proceedings in Informatics, LIPIcs, 77(51):51:1–51:15, 2017. 24

[11] Mark H. Overmars and Jan van Leeuwen. Maintenance of configurations in the plane. Journal
of Computer and System Sciences, 23(2):166–204, 1981. iii, 1, 2, 14, 23, 29

[12] F. P. Preparata. An Optimal Real-Time Algorithm for Planar Convex Hulls. Communications
of the ACM, 22(7):402–405, 1979. 24

[13] Franco P. Preparata and Michael Ian Shamos. Computational geometry. An introduction.
Springer, 1985. 8, 9

[14] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David
Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J.
van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, An-
drew R.J. Nelson, Eric Jones, Robert Kern, Eric Larson, C. J. Carey, İlhan Polat, Yu Feng,
Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Hen-
riksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fa-
bian Pedregosa, Paul van Mulbregt, Aditya Vijaykumar, Alessandro Pietro Bardelli, Alex

56 A practical data structure for the dynamic lower envelope of pseudo-lines

BIBLIOGRAPHY

Rothberg, Andreas Hilboll, Andreas Kloeckner, Anthony Scopatz, Antony Lee, Ariel Rokem,
C. Nathan Woods, Chad Fulton, Charles Masson, Christian Häggström, Clark Fitzgerald,
David A. Nicholson, David R. Hagen, Dmitrii V. Pasechnik, Emanuele Olivetti, Eric Mar-
tin, Eric Wieser, Fabrice Silva, Felix Lenders, Florian Wilhelm, G. Young, Gavin A. Price,
Gert Ludwig Ingold, Gregory E. Allen, Gregory R. Lee, Hervé Audren, Irvin Probst, Jörg P.
Dietrich, Jacob Silterra, James T. Webber, Janko Slavič, Joel Nothman, Johannes Buchner,
Johannes Kulick, Johannes L. Schönberger, José Vińıcius de Miranda Cardoso, Joscha Re-
imer, Joseph Harrington, Juan Luis Cano Rodŕıguez, Juan Nunez-Iglesias, Justin Kuczynski,
Kevin Tritz, Martin Thoma, Matthew Newville, Matthias Kümmerer, Maximilian Boling-
broke, Michael Tartre, Mikhail Pak, Nathaniel J. Smith, Nikolai Nowaczyk, Nikolay Shebanov,
Oleksandr Pavlyk, Per A. Brodtkorb, Perry Lee, Robert T. McGibbon, Roman Feldbauer,
Sam Lewis, Sam Tygier, Scott Sievert, Sebastiano Vigna, Stefan Peterson, Surhud More,
Tadeusz Pudlik, Takuya Oshima, Thomas J. Pingel, Thomas P. Robitaille, Thomas Spura,
Thouis R. Jones, Tim Cera, Tim Leslie, Tiziano Zito, Tom Krauss, Utkarsh Upadhyay,
Yaroslav O. Halchenko, and Yoshiki Vázquez-Baeza. SciPy 1.0: fundamental algorithms
for scientific computing in Python. Nature Methods, 17(3):261–272, mar 2020. 24

A practical data structure for the dynamic lower envelope of pseudo-lines 57

Appendix A

Running time plots

A.1 Convex hulls

Figure A.1: Results of testing insertions and deletions using a Delaunay triangulation, points are
sampled in a disc.

A practical data structure for the dynamic lower envelope of pseudo-lines 59

APPENDIX A. RUNNING TIME PLOTS

Figure A.2: Results of testing insertions and deletions using a Delaunay triangulation, points are
sampled on a disc.

60 A practical data structure for the dynamic lower envelope of pseudo-lines

APPENDIX A. RUNNING TIME PLOTS

Figure A.3: Results of testing insertions and deletions using a Delaunay triangulation, points are
sampled in a square.

A practical data structure for the dynamic lower envelope of pseudo-lines 61

APPENDIX A. RUNNING TIME PLOTS

Figure A.4: Results of testing insertions and deletions in the dynamic data structure using a
vector, points are sampled in a disc.

62 A practical data structure for the dynamic lower envelope of pseudo-lines

APPENDIX A. RUNNING TIME PLOTS

Figure A.5: Results of testing insertions and deletions in the dynamic data structure using a
vector, points are sampled in a square.

A practical data structure for the dynamic lower envelope of pseudo-lines 63

APPENDIX A. RUNNING TIME PLOTS

Figure A.6: Results of testing insertions and deletions in the dynamic data structure using an
unbalanced tree, points are sampled in a disc.

64 A practical data structure for the dynamic lower envelope of pseudo-lines

APPENDIX A. RUNNING TIME PLOTS

Figure A.7: Results of testing insertions and deletions in the dynamic data structure using an
unbalanced tree, points are sampled on a disc.

A practical data structure for the dynamic lower envelope of pseudo-lines 65

APPENDIX A. RUNNING TIME PLOTS

Figure A.8: Results of testing insertions and deletions in the dynamic data structure using an
unbalanced tree, points are sampled in a square.

66 A practical data structure for the dynamic lower envelope of pseudo-lines

APPENDIX A. RUNNING TIME PLOTS

A.2 Envelopes

A.2.1 Unsorted input

Figure A.12: Results of testing insertions and deletions of curves with a small size of envelope.

A practical data structure for the dynamic lower envelope of pseudo-lines 67

APPENDIX A. RUNNING TIME PLOTS

Figure A.9: Results of testing insertions and deletions of lines with a small size of envelope.

68 A practical data structure for the dynamic lower envelope of pseudo-lines

APPENDIX A. RUNNING TIME PLOTS

Figure A.10: Results of testing insertions and deletions of lines with a small size of envelope, new
way.

A practical data structure for the dynamic lower envelope of pseudo-lines 69

APPENDIX A. RUNNING TIME PLOTS

Figure A.11: Results of testing insertions and deletions of lines with a large size of envelope.

70 A practical data structure for the dynamic lower envelope of pseudo-lines

APPENDIX A. RUNNING TIME PLOTS

Figure A.13: Results of testing insertions and deletions of curves with a medium size of envelope.

A practical data structure for the dynamic lower envelope of pseudo-lines 71

APPENDIX A. RUNNING TIME PLOTS

Figure A.14: Results of testing insertions and deletions of curves with a medium size of envelope,
new way.

72 A practical data structure for the dynamic lower envelope of pseudo-lines

APPENDIX A. RUNNING TIME PLOTS

Figure A.15: Results of testing insertions and deletions of curves with a large size of envelope.

A practical data structure for the dynamic lower envelope of pseudo-lines 73

APPENDIX A. RUNNING TIME PLOTS

Figure A.16: Comparing old and new way for all combinations of inputs.

A.2.2 Sorted input

74 A practical data structure for the dynamic lower envelope of pseudo-lines

APPENDIX A. RUNNING TIME PLOTS

Figure A.17: Results of testing insertions and deletions of lines with a small size of envelopeusing
a sorted input.

A practical data structure for the dynamic lower envelope of pseudo-lines 75

APPENDIX A. RUNNING TIME PLOTS

Figure A.18: Results of testing insertions and deletions of lines with a large size of envelopeusing
a sorted input.

76 A practical data structure for the dynamic lower envelope of pseudo-lines

APPENDIX A. RUNNING TIME PLOTS

Figure A.19: Results of testing insertions and deletions of curves with a small size of envelopeusing
a sorted input.

A practical data structure for the dynamic lower envelope of pseudo-lines 77

	Contents
	Introduction
	Contributions

	Preliminaries
	Operations
	Random access
	Linear scan
	Binary search
	Split
	Concatenate
	Rebalancing trees
	Other relevant functions

	Computing a convex hull
	Duality of the plane
	CGAL libary
	Computing a convex hull
	Delaunay triangulation

	A dynamic data structure for convex hulls
	Dynamically maintaining convex hulls by Overmars and van Leeuwen
	Mathematical representation
	The data structures
	Combining two hulls into one
	Insertions and deletions
	Running time

	Implementation details
	Design choices and structure of the code
	Completing the convex hull implementation
	Height balancing the trees
	Correctness

	Related work

	A dynamic data structure for envelopes
	What is an envelope?
	Computing an envelope
	Duality

	Dynamically maintaining envelopes by Overmars and van Leeuwen
	Finding the intersection

	Implementation details
	Related implementations

	A dynamic data structure for pseudo lines
	What is a pseudo-line?
	Ordering pseudo-lines
	Maintaining the envelope by Agarwal et al.
	Determining the intersection
	Running time

	Implementation details
	Structure of classes
	Other practical details

	Experiments
	Measuring running times
	Visualising running times
	Dealing with outliers

	Verifying correctness
	Test cases
	Convex hulls
	Envelopes of pseudo-lines

	Expectations and hypotheses
	Height balancing of trees
	Running times for convex hulls
	Running times of envelopes for pseudo lines

	Results for convex hulls
	Results for envelopes
	The code

	Conclusions
	Convex hulls
	Running time evaluation
	Outlier detection

	Envelopes
	Correctness
	Running time evaluation

	Future work

	Bibliography
	Appendix
	Running time plots
	Convex hulls
	Envelopes
	Unsorted input
	Sorted input

