
 Eindhoven University of Technology

MASTER

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection

Zhao, Y.

Award date:
2020

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/105fcaae-abf7-4421-916e-ddb0ff8e5ac7

Domain Adaptation
Graph Convolutional

Network for
Cross-Platform

Cyberbully Detection

Master Thesis

Yuanzhi Zhao

Department of Mathematics and Computer Science
Data Mining Research Group

Supervisors:
Prof. Dr. Mykola Pechenizkiy

Dr. Yulong Pei
External Assessor:
Dr. Robert Peharz

Eindhoven, October 2020

Acknowledgement

The completion of this master project is undoubtedly exciting and relieving. Its process is definitely
educative and fruitful, but also arduous and brings intermittent stress, especially at the beginning
stage. With the worsening Corona outbreak in the middle of its process, this project takes a
considerably long period of time to finish, even longer than the usual one-year maximum duration.
Thus, I must thank my two supervisors, Mykola Pechenizkiy and Yulong Pei, for their careful
instructions from the most difficult, the very beginning stage. I have greatly increased both
academic skills and experience in handling this kind of long and relatively large project. I will
take these, as well as the self-confidence accumulated through the project with me, whatever the
field I will delve into in the future.

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection i

Abstract

The occurrences of cyberbully phenomena has increased significantly due to the dramatic growth
of social platforms and their users. The amount of available data for cyberbully detection research
does not keep pace with the social platform development. Therefore, a cross-platform cyberbully
detection technique using existing labeled data from one social platform to examine data from an-
other platform for potential cyberbully instances will be very helpful. In this project, we apply an
newly proposed domain adaptation method-DAGCN(Graph Convolutional Networks for Domain
Adaptation) to the field of cross-platform cyberbully detection. The experiments based on this
application provides valuable data for evaluating the generalization of DAGCN to the cyberbully
detection realm. The experiment topic also includes comparing graph construction method and
alleviating the class imbalance issue for disproportionate data.

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection ii

Contents

List of Figures v

List of Tables vi

1 Introduction 1
1.1 Motivation . 1
1.2 Research Content . 2
1.3 Research Questions . 2

2 Related Work 4
2.1 Cyberbully Detection . 4
2.2 Domain Adaptation . 5
2.3 Graph-based Semi-supervised Learning . 6

3 Problem Statement 7

4 Framework 9
4.1 Framework of DAGCN . 9
4.2 Framework of the Project . 10

4.2.1 Data Cleaning . 10
4.2.2 Sentence to Embedding . 10
4.2.3 Network Construction . 13
4.2.4 Semi-Supervised Learning . 14
4.2.5 Time Complexity Analysis . 16

5 Experiment Setup 17
5.1 Goal of Experiment . 17
5.2 Dataset . 17
5.3 Data Cleaning&Embedding Conversion . 18
5.4 Baseline Methods . 18
5.5 Oversampling Schemes . 19
5.6 Implementation Details . 20

5.6.1 Network Construction . 20
5.6.2 Semi-supervised Learning . 20

5.7 Computer System&Hardware . 21

6 Result Analysis 22
6.1 Preparation . 22

6.1.1 Introduction to Sign Test . 22
6.1.2 Introduction to Holm-Bonferroni Method 23
6.1.3 Introduction to Experiment Variations and Result Metrics 23
6.1.4 Processing Invalid Results . 25
6.1.5 Normality Test for All Data . 25

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection iii

CONTENTS

6.2 Comparison Between Two Graph Construction Methods 27
6.3 Comparison Between DAGCN and Baselines . 28

6.3.1 Comparison Among Baseline Methods . 29
6.3.2 Comparison Among DAGCN Variations . 30
6.3.3 Comparison Between DAGCN and Baseline 30

6.4 Comparison Regarding Oversamplings . 31
6.4.1 Comparison of Oversamplings and No Oversamplings 31
6.4.2 Comparison of Oversamplings Methods . 34

6.5 Comparison Between Word Embedding Methods 34
6.6 Comparison About the Data Pairs’ Origins . 35
6.7 Individual Cases Analysis . 36

7 Conclusion 40
7.1 Main Contributions . 40
7.2 Limitations . 41

7.2.1 Definition of Cyberbully Detection . 41
7.2.2 Dataset Selection . 41
7.2.3 Graph Construction . 42
7.2.4 Baseline . 42
7.2.5 Statistic Test . 42

7.3 Future Work . 42

Bibliography 44

Appendix 48

A Full List of Oversampling Cases 48

B Source-bridge edges and Bridge number For the First Construction Method 50

C List of Cases Included for Comparison Between No Sampling, 1st Order Normal
Oversampling and 2nd Order Normal Oversampling 53

D List of Cases Included in ADASYN Oversampling and maGAN oversampling 54

E Normality Test Results 55

F All Experiment Results 57

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection iv

List of Figures

1.1 Illustration of Relationship Between Cross Platform and Domain Adaptation . . . 2

4.1 DAGCN Structure . 9
4.2 Framework Illustration . 10
4.3 Process of Embedding Conversion . 11
4.4 Illustration of CBOW and SkipGram model.The CBOW architecture predicts the

current word based on the context, and the Skip-gram predicts surrounding words
given the current word. [30] . 11

4.5 Illustration of Word Similarity Assessment from article [36] 12
4.6 Illustration of BERT’s Input Representation. The input embeddings are the sum of

the token embeddings, the segmentation embeddings and the position embeddings.
[18] . 13

4.7 Illustration of GraphSAGE’s Sampling and Aggregation from [21] 14
4.8 Illustration of FastGCN’s Integral Estimation from [9] 15

5.1 ADDA Framework . 19
5.2 Structure of Classifier and Encoder . 19
5.3 FastGCN Structure with Discriminator . 21

6.1 Auxiliary Illustration of the Concept of Precision and Recall[3] 24
6.2 Illustration of Replacing Invalid Result, Example: F-C,W2V 25
6.3 Scatter Plot: Construction Method Comparison, Full Data 27
6.4 Scatter Plot: Construction Method Comparison, C-F 28
6.5 Illustration of Data Combination . 36

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection v

List of Tables

3.1 Notations and Meanings . 7

5.1 Dataset Parameters . 18
5.2 GraphSAGE parameters . 20
5.3 FastGCN parameters . 20

6.1 Variations of Experiment Parameters . 24
6.2 Construction Method Comparison: All Data . 28
6.3 Best Baseline Results Demonstration . 29
6.4 Comparison of Baseline Methods: F1 Micro Score 29
6.5 Comparison of Baseline Methods: Difference Between F1 Micro and F1 Macro . . 29
6.6 Best DAGCN Results Demonstration . 30
6.7 Comparison of DAGCN Methods: F1 Micro Score 30
6.8 Comparison of DAGCN Methods: Difference Between F1 Micro and F1 Macro . . 30
6.9 Comparison Between DAGCNs and Baseline . 31
6.10 Comparison Between DAGCNs and ADDA . 31
6.11 Best Oversampling Results Demonstration . 32
6.12 The Trend of Oversampling: F1 Micro Score . 33
6.13 The Trend of Oversampling: Difference Between F1 Micro and F1 Macro 33
6.14 The Trend of Oversampling: F1 Macro Score . 33
6.15 Comparison of Oversampling Methods: F1 Micro Score 34
6.16 Comparison of Oversampling Methods:Difference Between F1 Micro and F1 Macro 34
6.17 Word Embedding Comparison: F1 Micro Score . 35
6.18 Word Embedding Comparison: Difference Between F1 Micro and F1 Macro 35
6.19 Comparison About the Data Pairs’ Origins . 36
6.20 Original Textual Examples of Cyberbully Data,Correct Non-bully 37
6.21 Original Textual Examples of Cyberbully Data,Correct Bully 37
6.22 Original Textual Examples of Cyberbully Data,False Non-bully 38
6.23 Original Textual Examples of Cyberbully Data,False Bully 38

A.1 All Oversampling Cases . 49
A.2 Minority Numbers in Oversampling . 49

B.1 Bridge Nodes Number and Source-Bridge Edges Degree 52

C.1 Cases Included for Comparison Between No Sampling and Normal Oversampling . 53

D.1 Cases using maGAN and ADASYN Oversampling Methods 54

E.1 Normality Test For All Data Groups . 56

F.1 All Experiment Results . 77

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection vi

Chapter 1

Introduction

1.1 Motivation

Cyberbully is defined as “any behavior performed through electronic media by individuals or
groups of individuals that repeatedly communicates hostile or aggressive messages intended to
inflict harm or discomfort on others”[48]. In other researches, the “repeat” component is taken
out of the definition of cyberbully[42]. It is a harmful phenomena that frequently happens in
many online social platforms. Various surveys have found that the frequency of prevalence of cy-
berbully in teenagers ranges from 5% to 55%. Typical cyberbully victims will feel sad, frustrated,
angry, anxious, embarrassed and afraid. A significant portion of them have emotional and peer
problems. This could lead to poor concentration and depression, eventually inducing low school
achievement. They could also undergo clinical symptoms such as headaches, recurrent abdominal
pain and problems sleeping. The negative effect of cyberbully is substantial and severe, hence de-
mands method of prevention and remedy,in case it already happened. To automatically recognize
cyberbully content among the huge amount of text in social platforms is crucial to the prevention
of its occurrence.

The extensive existence of cyberbully phenomena and its conspicuous harm require almost all
online social platforms to have cyberbully detection mechanism to prevent or punish these in-
stances. However, not all social platforms have specific data for training a cyberbully detection
framework. In fact, most of the cyberbully detection related data are from the most popular
platforms, like Twitter, Youtube, Wikipedia, Reddit or Instagram. And generating a new dataset
involves human labeling(meaning hiring people to manually classify each instance of data), which
is very time consuming and expensive. Even within the same platform, the use of language could
change over time, leading to datasets collected from different timestamps to have differences in
language usage. The differences may include frequency of words and structure of sentences. Those
differences could cause the datasets to emerge like from different platforms. Dataset collected
under different topics or different subgroups of users could also have those differences in language
usage, despite they might be from the same social platform. it is impossible to develop labeled
dataset and train corresponding cyberbully detection classifier for each social platform and its
sub-topics and sub group of users, and renew them in a fixed period of time. Consequently, it is
very beneficial to have a cross platform cyberbully detection framework that is trained through
dataset from one platform and applicable to data from a different platform.

Domain adaptation solves the problem when the probability distributions of source data and
target data are different. There are labeled source data and a well-trained classifier for the source
domain, and we want the classifier to also work well for the unlabeled target data, which follow
different distributions. In cross platform scenario, it is assumed that data from different plat-
forms have their own unique language traits, and these traits result in the different distributions

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 1

CHAPTER 1. INTRODUCTION

of embedding vectors that are learnt from the data. Hence, different social platforms, or other
conditions that causes different distributions between training data and test data, could be treated
as different domains. And when classifier is needed in the domain that only has unlabeled data,
the domain adaptation method naturally comes into use—to train classifier in the domain that
has labeled data and then adapt the classifier. Figure 1.1 briefly summarizes of reason why cross
platform could be regarded as a special case of domain adaptation.

Figure 1.1: Illustration of Relationship Between Cross Platform and Domain Adaptation

1.2 Research Content

Our domain adaptation framework is a graph-based semi-supervised learning method. It was first
proposed in [35] and in this project we extend it to cross platform cyberbully detection scenario. In
real world, there is significantly more unlabeled data than labeled data. Semi-supervised learning
uses labeled data along with an often relatively small portion of unlabeled data to train the
classifier, and then performs prediction. Graph-based semi-supervised methods define a graph in
which nodes are labeled and unlabeled instances in the dataset, and edges (weighted or unweighted)
are usually based on the correlations,e.g. similarity, between the node instances. The predicting
of unlabeled nodes could utilize network attributes. (Note that in the following part of this article,
the word ”graph” and ”network” will be used interchangeably)

1.3 Research Questions

This project focuses on using DAGCN to solve cross platform cyberbully detection problem. There
are several aspects to explore about DAGCN’s application. The principal one is that if DAGCN
is effective in cross platform cyberbully detection problem and has its performance
surpassed the existing methods? We will set up three non domain adaptation baseline meth-
ods and one domain adaptation baseline methods to compare with DAGCN. These methods are
going to be experimented in different combinations of source-target datasets, with different word
embeddings. And the results will undergo statistical tests to see if DAGCN’s advantage in per-
formance is statistically significant.

For graph-based semi-supervised learning part of the method, the way of constructing graph

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 2

CHAPTER 1. INTRODUCTION

is believed to have great influence on the classification performance. There are two graph con-
struction method proposed for this project, which will be thoroughly introduced in Section 4.2.3
and Section 5.6.1. The second research question is: Are the two graph construction meth-
ods in this project conspicuously different in terms of performance?. Again, the way
of resolving this question is experimenting them in all combinations of source-target datasets and
word embeddings, and compare these two groups of results through statistic tests.

One outstanding feature of cyberbully detection training data is the uneven distribution of bully
and non-bully instances—usually non-bully instances is much larger in amount. This often causes
class imbalance in the classification result, meaning that the non-bully instances in the data have
a significantly higher prediction accuracy overall. Ideally the two(or more) classes should be pre-
dicted with the same accuracy. The third research question is thus: Will oversampling the
minority class(the bully class) to increase their number help alleviate the class im-
balance problem?. Depending of the amount of samples increased, there will be several orders
of oversampling. Higher order means more samples increased. After finishing all the experiments,
the no-oversampling result will be compared to first order oversampling result through statistic
tests, and first order oversampling result to the second order, and so on.

Two of our three datasets are from the same social platform, Twitter, but one is several years
older than the other. They are still treated as different domain despite the same origin of social
platform. The research question on this topic is: If the surmise that data collected with
large time discrepancy could be viewed as belonging to different domain? The answer
to the question lies in the comparison of results between two Twitter data pairs and Twitter-
Formspring(also a social platform) data pairs—should the results from these two data pairs are
better, especially if the results are better for the non domain adaptation methods, then perhaps
they ought not to be regarded as being from different domain.

This paper is organized as follows. Chapter 2 introduces the related work in the realm of cyber-
bully detection, domain adaptation and graph-based semi-supervised learning. Chapter 3 gives
the mathematical formulation of domain adaptation, cyberbully detection and the cross platform
condition. Chapter 4 discusses the experiment setup, including the detailed introduction to all
the procedures in the DAGCN framework. In Chapter 5, we will introduce the parameters used in
the experiment. Chapter 6 is a full analysis on the experiment results. Chapter 7 will get to the
conclusions to the research questions and the corresponding experiment, as well as the limitation
of our work and direction of future work.

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 3

Chapter 2

Related Work

Since the method in this project is application of a domain adaptation approach through a graph-
based semi-supervised learning method on the field of cyberbully detection, here three realms of
related work will be introduced: cyberbullying detection, domain adaptation and graph-based
semi-supervised learning.

2.1 Cyberbully Detection

Most of cyberbully detection detection algorithms are supervised learning methods for binary
classification, i.e., dividing the data for prediction into “bully” and “non-bully” classes[41]. The
complicated nature of cyberbully leads to complicated features used in these algorithms. Four
types of features are most common: content-based features, sentiment-based features, user-based
features and network-based features. The earliest content-based features is to construct a profanity
dictionary and see if the script has profanity word in it. [37] pointed out that real bullying contents
may not have profanity word at all while some non-bullying text have. [8] also incorporated per-
son identification module to detect if the text is about a person. [15] includes more features, such
as length of the comments, whether usernames containing profanities and non-standard spelling
of the words, in addition to profane words in the comments and personal pronouns. Works in
[16] counted the ratio of capitalization as features and [19] took race, culture, sexuality, physical
appearance, and intelligence related themes as feature.

To extract the sentiment feature from the comments, most of works used emotional lexicons
to categorize the polarity of sentiment(positive, neutral,negative). [31] adapted a different way,
using Probabilistic Latent Semantic Analysis (PLSA) to get sentiment features. However, [55]
found that only 6% of tweets they extracted contained emotional information. Among them, half
of the emotion is fear, but in most cases fear is expressed in a joking way. Hence, a detection
system based on sentiments alone is not effective because of non-genuine emotions.

User-based features range from age and gender to sexual orientation,race. [12] and [13] showed
that considering the gender feature helps improvement the classification performace. But it must
be noted that user information is very easy to falsify. Hence, a verification scheme is necessary
after these information is collected.

Network-based features include the user’s number of friends, uploads, likes, total time spent online,
etc. The early work such as [44] used total time online through mobile phone as feature, while
the most frequently used network-based feature is the ego-net feature. [24] discovered that the
probability of performing cyberbullying is decreased if ego networks has more people and higher
interconnectivity. In other works, membership duration, subscriptions[14] as well as followers’
numbers[23] are used as network-based features.

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 4

CHAPTER 2. RELATED WORK

While some cyberbully detection algorithms only use content-based features for classification[58],
more recent work often utilize multi-modal information. When the comments are about an image,
not only is it the combination of two or more type of features mentioned above, but it involves in-
formation about the image as well. In addition to content-based features like presence of informal
language, use of sexual words and personal pronouns, [45] also incorporated sentiment element
inferred from text and information of the image that comments focused on. The Xbully framework
proposed by [11] made use of 5 different kinds of features: text, user profiles, relations between
users, image related information(number of shares and likes, image labels),timestamp and location
of posting the image. It then constructs an heterogeneous network which has 5 different nodes,
corresponding to these 5 different features. After decomposing into sub-network and training node
embedding for classification, it achieves excellent result for cyberbully detection.

2.2 Domain Adaptation

Domain adaptation is a subfield in machine learning that deals the problem when the distributions
of training data and test data are different but the label space is unchanged[28]. To reduce this
distribution difference named domain shift, one approach is to manipulate the feature learning of
both source and target domain to minimize this domain shift. Many methods used Maximum Mean
Discrepancy(MMD) loss for this purpose. MMD computes the norm of the difference between the
means of two domains’ data. [34] The Deep Adaptation Network (DAN) uses MMD to layers
embedded in a reproducing kernel Hilbert space to match higher order statistics of source and
target data distributions. Transfer Component Analysis(TCA) method learns transfer component
of the two feature space using maximum mean discrepancy. When the data of these two feature
space are projected to the subspace of transfer component, the difference in data distributions
is reduced and data properties are preserved. Beside using MMD, deep correlation alignment
(CORAL) [47] proposed to reduce domain shift by matching the mean and covariance of the two
data distributions.

Another major branch of algorithms are to assume some instances from the source domain can
also belong to the target domain, and give some weights to these instances. TrAdaBoost[17] uses
AdaBoost-based technology to filter out source data that does not fit target data distribution.
Then, it trains model using the re-weighted instances from source domain and origin instances
from target domain. Bi-weighting domain adaptation (BIW) [53] can projects the feature spaces
of two domains into a common coordinate system, and then find the suitable instances from source
domain to add into target domain. [56] proposes a metric transfer learning framework ,weights for
instances in the source domain are learned in one framework while Mahalanobis distance is learned
simultaneously to maximize the intra-class distances and minimize the inter-class distances for the
target domain in a parallel framework. [29] introduce an ensemble transfer learning framework.
First, there is a weighted resampling method for transfer learning, TrResampling, to resample
the data with heavy weights in the source domain in each iteration. TrAdaBoost algorithm is
used to adjust the weights. Then, three classic machine learning algorithms, namely, naive Bayes,
decision tree, and Support Vector Machine(SVM), are used as the classifiers for the data after
TrResampling.

The most popular family of method is adversarial-based method, which adds a domain adversarial
loss to the usual class discriminative loss. [49] first proposed to add a domain classifier to predict
the binary domain label of all data and encourage its prediction to be half-half. The gradient re-
versal algorithm (ReverseGrad)[20] directly maximizes the domain adversarial loss by reversing its
gradients. Adversarial Discriminative Domain Adaptation is a general framework that subsumes
most of its previous adversarial-based algorithms. It involves encoders to get feature representa-
tion for both domains and a discriminator to bring the distribution of these two representations
closer. Then it applies the classifier trained in source domain to target domain.

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 5

CHAPTER 2. RELATED WORK

2.3 Graph-based Semi-supervised Learning

There are two main branches of semi-supervised learning algorithms: inductive and transduct-
ive. Inductive methods is about finding a classification model, whereas transductive provides
predictions for unlabeled data without any model. Most transductive methods are graph-based
semi-supervised learning method, which is the emphasis here. Graph-based methods usually have
three phases: graph construction,graph weighting and inference.[51]

The first graph-based semi-supervised algorithm is graph min-cut[7]. It constructs graph based
on k-nearest neighbor or ε neighbourhood (connecting data points whose distance is smaller than
ε). Then, a single source node v+ is added and connected with infinite weight to the positive
data points, and a single sink node v−, connected with infinite weight to the negative data points.
Min-cut is to find a set of edges with minimal combined weight that, when removed, result in a
graph in which no paths from the source node to the sink node. All unlabelled nodes in the final
graph that are left in the part containing v+ are labelled positive, and all unlabelled nodes that
are in the component containing v− are labelled negative.

In many cases, it would be better to estimate the probability that an unlabelled data point
has a certain label c. One way to do this is to add auxiliary nodes to let the graph conform to
Hammersley-Clifford theorem. Then the random variables binding to each unlabeled node corres-
ponds to a Markov random field. [59] proposed to use Gaussian random field to make computation
faster. [61] also introduced the label propagation algorithm for estimating label probabilities. It
is an iterative algorithm that calculate unlabeled node’s label probabilities by propagating the
estimated label at each node to its neighbouring nodes based on the edge weights.

For algorithms focusing on graph construction, there are three well-known approaches: ε neigh-
bourhood, k-nearest neighbor and b matching. As the graph structure is so volatile when the value
of ε or similarity measure changes, ε neighbourhood is rarely used now. K-nearest neighbor is the
most common method. It has two variations:symmetric k-nearest neighbours constructs an edge
if node i is in the k-neighbourhood of node j or vice versa, and mutual k-nearest neighbours, in
which an edge is constructed if i and j are both in each other’s k-neighbourhood. But k-nearest
neighbor could lead to severe node unbalance problem: some nodes has much more edges than
other nodes, especially when using symmetric k-nearest neighbours. This has bad influence on
prediction results[25]. B-matching’s goal is to set each nodes to have b degrees and the sum of all
edge weights is maximized. Matching refers to the process of trying to find a subset of edges in
the graph such that the edges do not share any vertices.

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 6

Chapter 3

Problem Statement

Table 3.1 lists all the notations and corresponding meanings used in this chapter.

Notation Meaning Notation Meaning
Ds Source Domain xi Data Instance in Source Do-

main
yi Label of xi Rd Real Coordinate Space of Di-

mension d
Y Label Space Dt Target Domain
? Unknown Label ns/nt Amount of Data in Source/Tar-

get Domain
xs/ys Data/Label From Source

Domain
P/Q Data Distribution of

Source/Target Domain
xt/yt Data/Label From Target

Domain
G Classifier for Domain Adapta-

tion
w1, w2...wn Individual Words C Classifier for Cyberbully Detec-

tion
xc/yc Data/Label for Cyber-

bully Detection
ui/y

u Unlabeled Data/Its True Label

P1/P2 Different Social Platform S1/S2 Set of All Words Emerged in
P1/P2

M1/M2 Multiset of All Words
Emerged in P1/P2

Q1/Q2 Discrete Distribution of Ele-
ments in M1/M2

QP1/QP1 Distribution of Averaged
Word Embedding

xP1/xP2 Averaged Word Embedding

Table 3.1: Notations and Meanings

This chapter will introduce the mathematical definitions of cyberbully detection problem, domain
adaptation problem and cross platform cyberbully detection problem, and explain why the cross-
platform condition could be treated as a variant of domain adaptation.

Problem 1. Cyberbully Detection: In the cyberbully detection problem, each piece of data
xi is a sentence consisting of indefinite number of words(punctuations included sometimes) xi =
{w1, w2, w3...wn}(n is not the same for different i). And word wj can be represented in Rd space.
The data xi has label “0” or “1”. “0” means “not bully”,sometimes refered to as “non-bully”.
“1” indicates that it is a bully instance. The key of cyberbully detection is to train a classifier
C : xc −→ yc using these labeled data(xi) to correctly give label to previously unlabeled data ui.
ui is the same type of sentence as xi, and has a true label yu unknown beforehand. In reality,
cyberbully detection is to make the probability C(ui) = yu as high as possible as the classifier may

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 7

CHAPTER 3. PROBLEM STATEMENT

not be perfect.

Problem 2. Domain Adaptation: In unsupervised domain adaptation problem, there is a
source domain Ds = {(xi, yi)}ns

i=1 ⊂ Rd × Y , in which the total amount of data is ns, d is the
dimension of the data xi itself , Y is the label yi’s realm. There is also an unlabeled target domain
Dt = {(xi, ?)}nt

i=1 ⊂ Rd × Y of size nt. The data in source domain follows the joint distribution
P = (xs, ys) and data in target domain follows joint distribution Q = (xt, yt). The goal of this
project is to extend DAGCN classifier(refered to as G here) so that the classifier G : xt −→ yt

trained through source data is able to make correct prediction G(xt) = yt with high probability.
In this project Y = {0, 1}, with 0 representing “non-bully” and 1 indicating “bully”. The domain
adaptation method could also be extended to problems involving multiple classes.

Problem 3. Cross P latform Cyberbully Detection: In cross platform cyberbully detec-
tion problem, we assume that different social platform has different habits in their language. That
is, for two social platforms P1 with labeled data and P2 with unlabeled data, the sets of all words in

respective platforms are S1 = {w(P1)
1 , w

(P1)
2 , w

(P1)
3 ...w

(P1)
n1 } and S2 = {w(P2)

1 , w
(P2)
2 , w

(P2)
3 ...w

(P2)
n2 },

with n1 and n2 being the total number of different words in each platform. Consider the union
of S = S1

⋃
S2 and let S1 and S2 become multisets M1 and M2, we can have discrete probabil-

ity distributions Q1 representing the frequencies of all elements in M1 and Q2 representing the
frequencies of all elements in M2. Q1 and Q2 are distinct discrete probability distributions that
belong to probability space (S, S1, Q1) and (S, S2, Q2). One essential step is to average the word
embeddings in data xi to get sentence embedding si:

si =

n∑
k=1

wk (3.1)

Now the data from the two platforms fall within the space Rd × Y , they can be represented by
joint distribution QP1 = (xP1 , yP1) and QP2 = (xP2 , ?). Here we also assume that the difference in
discrete probability distribution Q1 and Q2 lead to the different distribution of xP1 and xP2 after
averaging. Thus, the cross platform cyberbully detection problem becomes the same form as the
domain adaptation problem formulated in paragraph 1. So the cross platform cyberbully detection
problem can be tackled by domain adaptation method.

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 8

Chapter 4

Framework

In this chapter, there will be introduction to the DAGCN framework and introduction to the
framework of the whole project. Framework of the whole project includes a more detailed DAGCN
introduction and the data cleaning, data-to-embedding conversion.

4.1 Framework of DAGCN

The original DAGCN has 4 steps:

1. Neural Network Pre-training

2. Bridge Selection

3. Affinity Graph Construction

4. Classification on the Graph

DAGCN in this project will not incorporate neural network pre-training step. And the order
of item 2 and 3 is not strictly followed. The bridge selection step requires a source matrix of
size ns × d and a target matrix nt × d. Part of the target samples will be chosen as bridge
nodes. Affinity graph construction involves in-domain edge construction(source domain and target
domain) as well as intra-domain—source to bridge and bridge to target. Classification on the
graph is performed through the selected graph based semi supervised classifiers. Figure 4.1 gives
a graphic demonstration of structure of DAGCN:

Figure 4.1: DAGCN Structure

There will be a more elaborated explanation in Section 4.2.3 and 4.2.4 as to how the graph is
constructed and which classifiers used in the last step.

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 9

CHAPTER 4. FRAMEWORK

4.2 Framework of the Project

The framework of this project is divided into 4 parts: cleaning of cyberbully data; converting each
instance of data to embedding vectors; constructing graph based on the embedding vectors;and
performing classification. Figure 4.2 shows the four steps as well as the production after each of
these steps.

Figure 4.2: Framework Illustration

4.2.1 Data Cleaning

Cleaning the text data is divided into three steps: first is to remove the unwanted content in
the original text, such as the punctuation in the sentence when using Word2Vec vocabulary, as
Word2Vec vocabulary does not contain the corresponding embedding for punctuation, or some
meaningless strings; then is to tokenize the sentence, i.e., separate the individual words inside a
sentence; the last step is to lemmatize each word, i.e., map a word’s all declension and other type
of morphs to its origin and decapitalize the letters.

4.2.2 Sentence to Embedding

Word embedding is a language model that uses high dimensional, real valued vectors to represent
words. We use 4 types of embeddings:Word2Vec, Glove(Global Vectors for Word Representation),
Bert(Bidirectional Encoder Representations from Transformers) and a Bert based model named
Sentence Transformer. Figure 4.3 gives a graphic demonstration of a general way of converting
text instances to embedding vectors.

Word2Vec

Word2vec is initially published in [30] in 2013. It improved neural network based langauage
models Feedforward Neural Net Language Model(NNLM) and Recurrent Neural Net Language
Model(RNNLM) by removing the non-linearity brought by the hidden layer. In Word2Vec model,

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 10

CHAPTER 4. FRAMEWORK

Figure 4.3: Process of Embedding Conversion

the projection layer is shared for all words and their vectors are average. It uses continuous bag-
of-words (CBOW) or continuous skip-gram model to get the distributed representation of words,
i.e, the high dimensional vectors. In the continuous bag-of-words architecture, the model predicts
the current word through a window encompassing the surrounding words. It ignores the order of
surrounding words due to the bag-of-words assumption. In the continuous skip-gram architecture,
the model uses the current word to predict the surrounding words. The skip-gram architecture
weighs nearby words heavier than distant words. Figure 4.4 briefly demonstrates the structure of
these two models. CBOW is faster while skip-gram does a better job for infrequent words. It is
easily comprehensible as CBOW’s bag of words assumption is simpler.

Figure 4.4: Illustration of CBOW and SkipGram model.The CBOW architecture predicts the
current word based on the context, and the Skip-gram predicts surrounding words given the
current word. [30]

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 11

CHAPTER 4. FRAMEWORK

Glove

Glove stands for “Global Vectors for Word Representation”. It was firstly published in 2016[36].It
manages to capture statistical information of a word-word co-occurrence matrix and the context
information of the neighboring words(Word2Vec only used the latter). Instead of using the co-
occurrence probability directly to evaluate similarity, they pick several context words for the two
target words and compare the ratios of conditional probability between these two target words in
the presence of a certain context word. If the ratio is close to one, then both the target words
are not relevant to the context word. If the ratio is significantly larger or smaller than one, the
one of the target word is much closer to this context word than the other. In Figure 4.5, “ice”
and “steam” are the target words and “solid”,“gas”,“water”,“fashion” are the context words. It
clearly showcases that ”ice” is much closer to ”solid” than “steam” while “steam” is much closer
to “gas” than “ice”. They are equally close to “water” and “fashion”.

Figure 4.5: Illustration of Word Similarity Assessment from article [36]

Glove model assesses the similarity between words in the following way: Also, Glove’s model trains
only on the nonzero elements in the word-word co-occurrence matrix instead of the entire sparse
matrix by setting weight to each element of the word-word co-occurrence matrix.

f(x) =

{
(x/xmax)α if x < xmax

1 otherwise
(4.1)

In the equation, f(x) is the weight, x is the element in the sparse matrix, α and xmax are preset
values. They use α = 0.75 and xmax = 100. Thus, the zero elements have zero weights and are
ignored.

Bert

The full name of BERT is Bidirectional Encoder Representations from Transformers. It was pub-
lished in 2018[18]. It uses a “masked language model”(MLM) to pretrain a deep bidirectional
Transformer(Transformer is a machine learning model published in [52]).After converting each
word in the sentence to tokens, the masked language model randomly masks some of the tokens,
and trains the model to predict the masked word based only on the context. There are two steps
in BERT framework: pre-training and fine-tuning. In the pre-training stage, BERT is trained
on unlabeled data from different tasks. For fine-tuning, the model is first initialized with the
pre-trained parameters, then all of the parameters are fine-tuned using labeled data from the
downstream tasks. A distinctive feature of BERT is its unified architecture across different tasks.

In BERT’s input representation, the first token of every sequence input is always a special clas-
sification token ([CLS]). Sentence pairs are merged into a single sequence. If the input is a pair
of sentence, they are separated with a special token ([SEP]). This scheme is further explained in
Figure 4.6.

A learned embedding(Segment Embeddings in Figure 4.6) is added to every token indicating
which sentence it belongs to. During the pre-training stage, 15% of tokens in each sequence are
masked at random. However, [MASK] token does not appear in fine-tuning. So in practice, if a

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 12

CHAPTER 4. FRAMEWORK

Figure 4.6: Illustration of BERT’s Input Representation. The input embeddings are the sum of
the token embeddings, the segmentation embeddings and the position embeddings. [18]

token is chosen as mask, it is replace with the [MASK] token 80% of the time, a random token
10%of the time and itself 10% of the time. In order to let the model catch sentence relationships,
BERT is trained with a binarized next sentence prediction task: when choosing sentences A and
B as pre-training sample, 50% of the time B is the actual next sentence to A , and 50% of the
time B a random sentence from the corpus.

In the fine-tuning stage, a common way for dealing with text pairs is to independently encode them
before applying bidirectional cross attention. BERT encodes the concatenated text pair directly,
effectively including bidirectional cross attention between two sentences. The acquired token rep-
resentations are fed into an output layer for token level tasks, such as sequence tagging or question
answering, and the [CLS] token’s representation is fed into an output layer for classification, such
as entailment or sentiment analysis.

Sentence Transformer

Sentence Transformer, originally published in [39],is a model that fine-tunes BERT / RoBERTa
/ DistilBERT with a siamese or triplet network structure[43] to produce semantically meaningful
embeddings for sentences. Sentence transformer adds a pooling operation to the output of BERT
to get fixed sized sentence embedding. There are three pooling strategies: Using the output of
the CLS-token, computing the mean of all output vectors (MEANstrategy), and computing a
max-over-time of the output vectors (MAX-strategy). In the fine-tuning stage, there are three
distinct objective functions for siamese and triplet networks: Classification Objective Function,
which includes calculating the element-wise difference |u−v| for sentence embeddings u and v and
multiplies it with the trainable weight Wt and optimizes cross-entropy loss; Regression Objective
Function, which is to calculate the cosine similarity between the two sentence embeddings and
optimizes mean squared-error loss; Triplet Objective Function, which means setting up an anchor
sentence a, a positive sentence p, and a negative sentence n and optimizes the following triplet
loss function:

max(||sa − sp|| − ||sa − sn||+ ε, 0) (4.2)

In Equation 4.2, sx is the sentence embedding for a, n, p. || · || is Euclidean distance and ε = 1
is a preset margin. The embeddings generated by Sentence Transformer are reported to achieve
much improvement compared to embeddings acquired from directly averaging BERT or Glove
word embeddings.

4.2.3 Network Construction

We use k nearest neighbor(kNN) method to first construct in-domain subgraphs as kNN is the
most common graph construction method[51].Then there is connecting the subgraphs of source

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 13

CHAPTER 4. FRAMEWORK

domain and target domain. We preset k as 20. Each vector representing the source data is
connected to its k nearest neighbor vectors which also represent other source data and share the
same label. The same applies to the part of network constructed in target data. But for in-domain
subgraph construction, there is no “share the same label” requirement. Then some data from the
target domain is selected to form a bridge to connect these two part of the network. Let si denote
a data point in the source domain and ti being one from target domain. If for a certain ti, it
has at least m neighbors in the source domain that share the same label,then ti is a candidate
for being bridge node. Once selected, the bridge node ti will also acquire pseudo label which is
identical to their neighbors in the source domain. In the situation that number of bridge nodes
candidates is too large, an upper threshold can be set or increase the value of m. In the next stage
of semi-supervised learning, these bridge nodes will be treated as labeled data.

4.2.4 Semi-Supervised Learning

The original DAGCN framework uses Graph Convolution Network(GCN)[27] classifier for the semi-
supervised learning step. We use three graph-based semi-supervised learning method:GraphSAGE,
FastGCN, and an adapted version of FastGCN—FastGCN plus a discriminator—for the classific-
ation task. GraphSAGE and FastGCN are both derived from GCN with some improvements.

GraphSAGE

The full name of GraphSAGE framework is Graph Sample and Aggregate[21]. Based on the GCN
approach, GraphSAGE uses aggregator function to learn the topological structure of each node’s
neighborhood and the information of its neighbor’s features. Then it comes up with a embedding
function that is also applicable to unseen nodes. Figure 4.7 shows how GraphSAGE algorithm
works.

Figure 4.7: Illustration of GraphSAGE’s Sampling and Aggregation from [21]

GraphSAGE model parameters can be learned through standard stochastic gradient descent and
back-propagation algorithms. And it uses forward propagation for embedding generation. When
sampling neighbors, GraphSAGE defines a fixed size of each node’s neighborhood in order to keep
constant batch size. Three types of aggregators are studied: Mean aggregator, which takes element-
wise mean of the vectors of neighbor’s features and is invariant to order of neighbors(symmetric);
LSTM aggregator, which has larger expressive capability but arranges a random permutation of
the node’s neighbors due to asymmetry; Pooling aggregator, in which each neighbor’s vector is
independently fed through a fully-connected neural network and, an element-wise max-pooling is
applied. The pooling aggregator is also symmetric.

FastGCN

One of the major improvement FastGCN[9] over GCN is also to relax the necessity for all data to
be present to learn node embeddings. Training algorithm like Stochastic Gradient Descent(SGD)
and its batch generalization requires independent data samples. However, for graphs, each vertex

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 14

CHAPTER 4. FRAMEWORK

is convolved with all its neighbors and hence loses independence. FastGCN assumes that there is
a larger graph G′ with vertex set V ′ in the probability space (V ′;F ;P). For the given graph G, it
is an induced subgraph of G′ and its vertices are iid samples of V ′ conforming to the probability
measure P . FastGCN also holds that each layer of GCN defines an independent embedding
function of the vertices. The embedding functions from two consecutive layers are related through
convolution, expressed as integral transform. Figure 4.8 explains how the approximation of graph
convolution through integrals works. In the left part(graph convolution view), each dot represents a
node in the graph . For two consecutive rows, a dot i in one row is connected in gray line to dot j in
the other row if they are connected in the graph. The convolution layer mixes the node embeddings
based on the graph connectivity features. Nodes are subsampled through bootstrapping in each
layer to approximate the convolution. The sampled portions are denoted by the solid blue dots
and the orange lines.In the right part is the integral transform view. The embedding function in
the next layer is an integral transform (illustrated by the orange fan-out shape) of the one in the
previous layer.

Figure 4.8: Illustration of FastGCN’s Integral Estimation from [9]

Now the integrals can be evaluated by the Monte Carlo method, which enables batched training
algorithm and a separation of training and test data and makes the algorithm run at a faster
speed.

FastGCN with Discriminator

The goal of adding a discriminator is to bridge the distribution gap between source embedding
vectors and target embedding vectors. This could be done before graph construction, as edges’
weights are determined by embedding vector’s similarity so embedding vector can no longer be
changed after constructing graph. [46] is an example of bridging the distribution gap by aligning
their second-order statistics. The FastGCN architecture in this project has two layers,and the first
one is a fully connected layer. The outcome of this layer is the intermediate embedding vector of
the same size as the original embedding vector. The intermediate embedding vectors could still
belong to two different group with distinct distribution. The discriminator is able to help bridge
the possible distribution gap the intermediate embedding vectors.

The input of discriminator is the original embedding vector with domain label—“0” meaning
from source domain and “1” indicating target domain. The discriminator has two fully connected
layers: the input of both layers and output of the first layer are all of the same dimension as the
input embedding vector, and the output dimension of the second layer is 2. The discriminator will
predict the domain label for the intermediate embedding vectors. If the discriminator is completely
unable to tell which domain the node embedding is from, then the distribution gap has been filled
in intermediate embedding vectors. Suppose being label “1” is positive and being labeled “0” is

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 15

CHAPTER 4. FRAMEWORK

negative, then the discriminative loss is defines as:

Discriminative Loss =
1

2
(
|TP − FN |
TP + FN

+
|TN − FP |
TN + FP

) (4.3)

TP,TN,FP,FN implicate true positive, true negative, false potive, false negative respectively. The
best case is the discriminator cannot distinguish the domain origin of the node embeddings. When
it happens, half of the originally “positive” instances will be predicted positive and the other half
negative, so do the originally “negative” instances. In this case, the loss is equal to zero. The
worst situation is that when the origin domain of all instances are correctly predicted or falsely
predicted. In that case the mixing attempt of the domain origin is completely failed. Hence the
loss reaches its maximum, which is 1. The discriminative loss will multiply a coefficient and add
to the FastGCN loss. The detailed structure of the discriminator is introduced in Chapter 5,
Experiment Setup.

4.2.5 Time Complexity Analysis

For our algorithm, the conversion from text to embedding has time complexity O(N)(N is the
number of nodes in the constructed graph, which is also the total number of instances in both
source and target dataset). Calculating sorted similarities matrices inside source domain, inside
target domain and between these two domains to select bridge nodes in total cost O(N2logNK)
time. Here is a brief explanation: Let S denote number of data in the source domain ,T represent
the number in target domain ,B denote the number of selected bridge nodes and K is the length of
embedding, computing two in-domain similarity sorted matrix takes S2logS and T 2logT time and
one cross domain similarity matrix takes ST logS time. N2logN = (S2 + T 2 + 2ST)logN >
(S2 + T 2 + ST)logN > S2logS + T 2logT + ST logS, so in total it costs O(N2logN) time.
Taking the embedding length K into account, we get time complexity O(N2logN)K. Con-
structing source-source and target-target edges with the help of previously calculated sorted
matrices has time complexity O(mN) and O(kB). According to [62], the time complexity for
GraphSAGE is O(bKsLnode + bK2sL−1node) and for FastGCN is O(LKs2layer + LK2slayer). b is
batch size. L is the number of GCN layers. snode is the number of sampled neighbors per
node for node-wise sampling, and slayer is number of sampled nodes per layer for layer-wise
sampling. In our case, batch size b for GraphSAGE is 128. L equals to 2, snode is 20 for
the first layer and 8 for the second layer. For FastGCN, slayer = 256. For GraphSAGE,
the time complexity is for one batch. The time complexity for running all batches should be
O(NKsLnode + NK2sL−1node). Since all the parameters from GraphSAGE and FastGCN algorithms
are significantly smaller than the total nodes N , as none of the unique parameters from Graph-
SAGE and FastGCN is larger then 200 while N is larger than 10000, the overall time com-
plexity of our algorithm is O(N) + O(N2logNK) + O(bKsLnode + bK2sL−1node) = O(N2logNK) or
O(N) +O(N2logNK) +O(LKs2layer + LK2slayer) = O(N2logNK).

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 16

Chapter 5

Experiment Setup

In this chapter, we will give a detailed introduction to our experiment settings. It includes the
introduction to the dataset we used, the method for converting text in the dataset to embed-
dings, the selection of baseline method for comparison, the oversampling for source data and the
parameters for network construction and semi-supervised learning approaches.

5.1 Goal of Experiment

The goal of the experiments is to explore the aspects mentioned in the research questions. Each
experiment has 5 variables: source-target data pairs, embedding, oversampling, graph construction
method, classifier. By allocating result data into different groups based solely on one variable and
compare these groups through statistic tests, we can evaluate the choices under this variable.
Specifically,

1. Classifier: Dividing result data into groups by the “classifiers” variable enables comparison
between different classifiers, thus if DAGCN classifiers have better performance than baseline
classifiers.

2. Graph Construction Method: Telling if graph construction method yields different res-
ults requires result data from DAGCN classifiers to be separated by graph construction
method.Then do the analysis through statistic tests.

3. Oversampling: Dividing result data by different oversampling schemes could illustrate if
oversampling reduces class imbalance problem.

4. Source-target Pairs: Dividing result data by source-target data pairs and comparing the
results from two Twitter data pairs to others answers if the two Twitter dataset can be
regarded as two domains.

5. Embedding: Dividing result data by its embedding methods shows which embedding is
better.

The first 4 cases correspond to the research questions in Section 1.3.Although the aspect of em-
bedding method is not mentioned in the research questions, its analysis could help reduce the
number of experiments in the future work.

5.2 Dataset

we give a brief introduction to the 3 datasets used in the experiment. Table 5.1 shows some of
their information.

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 17

CHAPTER 5. EXPERIMENT SETUP

The first dataset is used in the [10]. It has 19993 pieces of comments collected from Twitter,
within which there are 3845 piece marked as “bully”. This originally unnamed dataset is referred
to as “CBASU”(meaning “Cyberbully data from Arizona State University”) and later “C” in the
experiment record chart.

The second dataset[40] has 12698 pieces of comments collected from Formspring, a online question-
answer social platform which was merged into other websites since 2015. This dataset is collected
in the year of 2010. Each piece in this dataset is decided to be bully or not by three independent
annotator. The rule here is an instance is considered bully only when two or more annotators
agree. So there are 773 pieces of comments marked as “bully”.It is referred to as “F” in the
experiment record chart.

The third dataset[57], OLID, has 13240 instances collected from Twitter, in which there are 4400
bully instances. OLID stands for “Offensive Language Identification Dataset”, which is originally
designed to classify cyberbully types. Unlike the other two dataset, which are collected several
years before, OLID dataset is collected around year 2018.

Dataset
Name

Abbreviation Size
Bully In-
stances

Bully
Ratio

Source

CBASU C 19993 3845 19.23% Twitter
Formspring F 12698 773 6.09% Formspring
OLID O 13240 4400 33.23% Twitter

Table 5.1: Dataset Parameters

5.3 Data Cleaning&Embedding Conversion

The method of data cleaning depends on the specific dataset and to which pretrained embedding
will it be converted. OLID dataset contains “@USER” string because it is collected from Twitter
and we need to remove this particular string. Similar case happens in Formspring dataset. Every
piece of data contains special string “Q:” and “A:”, which stand for “question” and “answer” as
Formspring is a question-answer platform. As mentioned before, punctuations need to be removed
for Word2Vec. And when using SentenceTransformer to get embeddings, we do not need to do any
further cleaning. Otherwise,the next is to tokenize the sentence and lemmatize each word. To get
the embedding, we look for each lemmatized word(or punctuation) in the pretrained embedding’s
library and average all words’ embedding as the sentence’s embedding. Some word has more than
one corresponding embedding in the pretrained Bert vocabulary, and we just average all these
embeddings.

5.4 Baseline Methods

We use support vector machine(SVM) with polynomial kernel(poly) and Radial Basis Func-
tion(RBF) kernel, as well as random forest method as non domain adaptation baseline. The
degree for the polynomial kernel is 5. Other parameters of both SVM classifiers are in accordance
with the default Python function sklearn.svm.SVC[6]. The parameter for the random forest classi-
fier is: number of estimators=600 ,max depth=15. Other adjustable parameters are in accordance
with the default sklearn.ensemble.RandomForestClassifier[1] function of Python package sklearn.

The domain adaptation method for comparison is Adversarial Discriminative Domain Adapta-
tion
(ADDA)[50]. The general framework of ADDA in our scenario is shown in Figure 1. The first

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 18

CHAPTER 5. EXPERIMENT SETUP

Figure 5.1: ADDA Framework

stage is to train a classifier using the data from source domain. Then we train an encoder for
target data. After a successful training, the discriminator can no longer tell a piece of data is
from source domain or encoded target domain. In the final stage, the classifier will work on the
encoded target data.

The detailed structures of classifier, discriminator and encoder are illustrated in Figure 5.2. The
discriminator and classifier have the exactly same structure. The embedding size is 200, 300 or 768
depending on the word embedding used. The output of dimension 2 in the final layer of classifier
gives the binary classification result. The classifier,encoder, discriminator are all trained for 150
epochs. The optimizer for training process is Adam optimizer and loss is cross-entropy loss. Batch
size is 150 and learning rate is 1e-4.

Figure 5.2: Structure of Classifier and Encoder

5.5 Oversampling Schemes

We use three different sampling method to increase the number of minority class in the source
data. We hypothesize that this approach could reduce the performance gap between majority class
and minority class in the target dataset. These four methods are Naive Random Over-sampling,
Adaptive Synthetic(ADASYN)[22] and Generative Adversarial Network(GAN). The first three are
provided by Python package Imbalanced-learn[5], and Margin Adaptation for GAN(maGAN)[54]
for the last one. For the CBASU dataset, the majority over minority ratio is 4.2, so the number
of minorities will be oversampled to 40%,60%,80%,100% of the majority group. The Formspring

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 19

CHAPTER 5. EXPERIMENT SETUP

dataset’s majority over minority ratio is 15.4, so the number of minorities will be oversampled
to 10%,20%,30%,40% of the majority group. The OLID dataset’s majority over minority ratio
is 2.0, so the number of minorities will be oversampled to 60%,80%,100% of the majority group.
Note that the oversampling schemes are different when the embeddings or source-target pairs
are different. All oversampling cases are shown in the Appendix A. In addition, there is a list
displaying the minority class number and the ratio of oversampled minority over majority in
the appendix. The description of sampling parameters consists of two parts: sampling method
“Normal”,“ADASYN”,“maGAN”; percentage, for example, “50P” meaning the minority class is
oversampling to 50% of the majority class.

5.6 Implementation Details

5.6.1 Network Construction

We tried two different network construction approaches. The first approach is to let the ratio
between number of bridge nodes and number of target nodes approximately between 1:5 and 1:4.
To keep the proportion of bridge nodes in target data, the number of source nodes connecting to
each bridge nodes varies from 8 to 67. In Appendix B, there is a list demonstrating the exact
bridge number and source-bridge edges per bridge node, as there is no unified equation for each
particular case. [60] suggests that for graph construction through k nearest neighbor method,
usually less edges lead to better performance. In the first approach, sometimes edge numbers
could be really large. The second approach is to set bridge nodes to a fixed number, 2098, and
the number of souce-bridge edges per bridge node to 5. Each source node is connected to 20 of
its nearest neighbors in the source domain with the same label. Each node in the target domain,
including bridge nodes, is connected to 20 of its nearest neighbors in the target domain. In two
situations, however, the only possible way to construct a reasonable graph is to let k equal to 3
and number of bridge nodes be 47(and 57, in another case).

5.6.2 Semi-supervised Learning

After constructing network, we use GraphSage, FastGCN and an adapted FastGCN classifier to
perform semi-supervised learning to see which one has the better performance. GraphSage is run
with a LSTM based aggregator. Table 5.2 shows the parameters for GraphSAGE classifier.

Parameters
Learning
Rate

Epochs Dropout
Weight
Decay

Samples
Layer1

Samples
Layer2

Batch
Size

Values 0.002 30 0.5 0.005 20 8 128

Table 5.2: GraphSAGE parameters

We use mixed layer structure for FastGCN classifier. The detailed parameters are shown in table
5.3.

Parameters
Learning
Rate

Epochs Dropout
Weight
Decay

Batch
Size

Values 0.002 150 0.5 0.0004 256

Table 5.3: FastGCN parameters

The loss for FastGCN and GraphSAGE is cross-entropy loss and optimizer is Adam optimizer.
The mixed layer structure is demonstrated alongside the discriminator, which we added in the
adapted FastGCN. The discriminator tries to tell the intermediate embedding between two layers
if they are from the source domain or the target domain, and adds the discriminative loss to the
total loss. Thus in theory, we bring the difference between source domain and target domain in

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 20

CHAPTER 5. EXPERIMENT SETUP

intermediate embedding to minimum. Figure 5.3 shows the details of FastGCN classifier with

Figure 5.3: FastGCN Structure with Discriminator

a discriminator. The first layer of FastGCN is a dense layer, with both input size and output
size being the embedding length(200,300 or 768, depending on the word embedding).The output
of this layer goes to the GraphConvolution layer and produces the classification result. The
output of the FastGCN’s dense layer is the discriminator’s input. The total loss is the prediction
loss of FastGCN plus the prediction loss of discriminator times 0.5. The FastGCN loss is also
softmax cross entropy loss. The discriminative loss is defined in Section 4.2.4. Other parameters
of FastGCN with discriminator are the same as FastGCN in Table 5.3.

5.7 Computer System&Hardware

All experiments are run on MSI GP63 leopard 8RE laptop, with CPU being Intel Core i7-8750H,
GPU being GeForce R© GTX 1060 with 6GB GDDR and 8GB memory. The Python codes are run
in Jupyterlab 1.1.4 on Anaconda.

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 21

Chapter 6

Result Analysis

In this chapter, we will answer the four research questions proposed in Section 1.3 by comparing
results from the experiment. First there is introduction to the statistic tests, the correction method
for multiple testings, the meaning of result metrics, and explanations of how the preparation for the
result data is done. Then, the comparison of different groups of data and analysis are presented.
At the end, there will be individual case analysis which will present some typical instances that
are classified as bully or non-bully, as well as typical instances that are falsely classified as bully
or non-bully.

6.1 Preparation

6.1.1 Introduction to Sign Test

Given a group of paired data, the sign test can determine if a member of a random pair tends to
be larger than the other member of the pair. Many statistic tests have distribution requirements
on the data, such as conforming to normal distribution, which is required by paired t test; or equal
variances between data groups, which is required by analysis of variance(ANOVA); or paired data
follow the same distribution, which is prerequisite for Wilcoxon signed-rank test. Our result data
may not satisfiy those requirements. Sign test only requires dependence(or can be paired) for the
two groups of data and independence of instances inside data groups, which the results from this
experiment could meet.

The computation of sign test’s statistics is as follows: suppose there are two groups of same-sized
data X and Y , each has data x1, x2...xnand y1, y2...yn that can be ordered and their difference
z1 = x1 − y1, z2 = x2 − y2...zn = xn − yn are mutually independent. Then the values of z are
counted: if z = 0 it is discarded; if z > 0 then N+ is added 1;if z < 0 then N− is added 1. Initially

N+ and N− are set to zero. Sign test’s statistic M is calculated by M = N+−N−
2 .

The null hypothesis H0 for sign test is that given paired data (X,Y), one member of a
random pair is not larger or smaller than the other member of the pair. In our ana-
lysis, one sided sign test is preferred as we want to know which group specifically has the better
performance. So the alternative hypothesis H1 is a random sample xi from X tends to be
larger than its pair yi in The probability p is calculated by:

p =

N++N−∑
k=N+

(N+ +N−)!

N+!N−!
(0.5)k(0.5)N++N−−k (6.1)

Then the result p value is compared to the significant level 0.05 to determine if the null hypothesis
is rejected. The p value means the highest probability of falsely rejecting null hypothesis that we

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 22

CHAPTER 6. RESULT ANALYSIS

can tolerate—even if the null hypothesis is rejected, it could still be true, but the probability of
null hypothesis being true is less than p value.

Sign test only records the ordinance of the data pairs and ignores the extent of their difference.
Hence, the data used for sign test is adjusted to 2 decimal precision instead of originally 4 or 5
decimal. Because the accuracy of algorithms often fluctuates in a range, too small a difference
does not imply that there exists a systematical difference.

6.1.2 Introduction to Holm-Bonferroni Method

We use Holm-Bonferroni Method to correct for p values in multiple comparisons. When performing
several statistic tests simultaneously, more inferences will increase the chances that erroneous
inferences occur. If there are m independent comparisons, then the probability ᾱ of at least
falsely rejecting one null hypothesis is given by:

ᾱ = 1− (1− αi)m , i = 1, 2, ...m (6.2)

This ᾱ is called family-wise error rate. Apparently the value of ᾱ rises with m. The Holm-
Bonfferoni method is to ensure that family-wise error rate is no higher than prescribed α value(0.05
in our case). The method is as follows:

1. Suppose there are m p-values from m independent statistic tests and the corresponding
hypotheses H1, H2, ...,Hm, first step is to sorted the p values in the order of lowest-to-highest
and get p1, p2, ...pm.

2. If pk <
α

m+1−k (k = 1, 2...,m),then reject hypothesis Hk and let k = k + 1. If Hk cannot be
rejected, then the rest hypothesis Hk+1, Hk+2...Hm will not be rejected and the calculation
could end at k.

Here is a brief proof for the correctness of Holm-Bonferroni Method[4]. Let I0 be the set of indices
corresponding to the (unknown) true null hypotheses, having m0 members and h be the serial
number of first (incorrectly) rejected true hypothesis (first in the ordering given above), then the
hypotheses before h, H1, H2...Hh−1 are all rejected and h − 1 ≤ m − m0. So 1

m−h+1 ≤
1
m0

.
Hh being rejected means ph ≥ α

m−h+1 . And α
m−h+1 ≥ αm0. Hence, if wrongly rejecting a true

hypothesis happens, there has to be a true hypothesis with corresponding p value at most α
m0

.
Define a random variable A = {pi ≤ α

m0
for i ∈ I0}, then we get Pr(A) ≤ α by the Bonferroni

inequalities[2]. In the tables displaying the results afterwards, p values after Holm-Bonferroni
correction will belong to the entry named “p Value(HB)”.

6.1.3 Introduction to Experiment Variations and Result Metrics

For each experiment, there are 5 distinct parameters that distinguish it from other experiments:
source-target data pairs, embedding method, oversampling,graph construction method and type
of classifier. Table 6.1 gives an intuitive view of the variations of these parameters.

*: Full list of oversampling is presented in Appendix A
**:FastGCN,D∗∗ is short of FastGCN with discriminator
***:Details of these two methods are introduced in 5.5.1

We use f1 score as the metric for our experiment result. Two kinds of results are recorded in
each experiment: f1 score, micro average and f1 score, macro average. Most of the time they are
referred to as “f1 micro/macro score” or simply “f1 micro/macro”. Below we will first introduce
the concept of precision and recall, then f1 score and how the micro/macro average is done.
Precision is defined by Precision = TP

TP+FP , and TP stands for true positive whereas FP is false
positive. True positives are the instances originally belong to “positive” class and are catalogued

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 23

CHAPTER 6. RESULT ANALYSIS

Source-Target
Data Pairs

Embedding Oversampling Graph Con-
struction

Classifier

CBASU-Formspring Word2Vec * 1∗∗∗ GraphSAGE
CBASU-OLID Glove 2∗∗∗ FastGCN
OLID-Formspring Bert FastGCN,D∗∗

OLID-CBASU Sentence
Transformer

SVM,poly

Formspring-OLID SVM,rbf
Formspring-CBASU Random

Forest
ADDA

Table 6.1: Variations of Experiment Parameters

Figure 6.1: Auxiliary Illustration of the Concept of Precision and Recall[3]

in “positive”. False postives are those originally belong to “positive” class but catalogued as “neg-
ative”. Recall is defined as Recall = TP

TP+FN . FN refers to false negative, which are the instances
originally belong to “negative” class but fall in “positive” class. Then f1 score is calculated by
F1 = 2Precision×RecallPrecision+Recall .

For the binary classification case, let TP1 refers to the true positives in class 1. Since there
are only two classes, the TN1(true negatives for class 1) is the true positives for class 2. The
way of micro-averaging precision for binary classification is Precisionmicro = TP1+TP2

TP1+FN1+TP2+FN2
.

Similarly, micro-averaging recall is Recallmicro = TP1+TP2

TP1+FP1+TP2+FP2
. Note that FP1 is equivalent

to FN2 and FP2 is equivalent to FN1, hence Precisionmicro = Recallmicro. So

F1micro =2
Precisionmicro ×Recallmicro
Precisionmicro +Recallmicro

= Precisionmicro =
TP1 + TP2

TP1 + FN1 + TP2 + FN2

=
TP1 + TN1

TP1 + FN1 + TN1 + FP1
= Accuracy

(6.3)

Thus we show that how F1 micro average score is calculated, and it is equal to accuracy. For macro
average, Precisionmacro = 1

2 (TP1

TP1+FN1
+ TP2

TP2+FN2
) and Recallmacro = 1

2 (TP1

TP1+FP1
+ TP2

TP2+FP2
).

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 24

CHAPTER 6. RESULT ANALYSIS

And f1 macro average score is calculated by:

F1macro = 2
Precisionmacro ×Recallmacro
Precisionmacro +Recallmacro

(6.4)

6.1.4 Processing Invalid Results

Some results are deeply disrupted by the class imbalance problem. There are situations that
all(sometimes almost all)instances are predicted as one class, while none or almost no instances
are predicted as the other class. These results are considered invalid. Also, if the prediction result
contains too few minority class, it is regarded as invalid as well. The ”too few” standard is set
to 40, which means if a result has less than 40 instances predicted as minority class, it will be
treated as invalid as well. The threshold of 40 is chosen based on our subjective observation of
the experiment results, so that not too many results are considered invalid. There are two most
probable explanations for this phenomena: one is that the classifier is too complex, e.g. overfits,
so that it can classify a very small portion of data to one class while the big majority in another
class; the other explanation is that the classifier is too simple, and its decision boundary is far
from the bulk of the whole data. Both cases lead to undesirable classifier so the result is treated
as invalid. In the following comparison sessions, invalid results will be nullified: f1 micro score is
set to 0, as it is the worse case of accuracy; f1 macro score is set to 1 to let the difference between
f1 micro and f1 macro reach its maximum, which is the worst scenario. Figure 6.1 shows how the
replacement is done.

Figure 6.2: Illustration of Replacing Invalid Result, Example: F-C,W2V

Not in all situations can the network be constructed in the two designated ways. When using Glove
embedding and the source data is OLID, regardless of which target dataset is, the graph could only
be constructed through one way because the bridge-source degree is less than 5. In this case, the
result from the first graph construction method is copied to the second graph construction method
so that their results are the same. Thus this part bears no weight in the graph construction method
comparison. All results data are presented in the table of Appendix F, in which the underlined
data are considered invalid.

6.1.5 Normality Test for All Data

Normality Test Results

To prove that the result data indeed do not meet the normality requirement, each group of data
will be examined by the Shapiro-Wilk test for normality. Note that invalid results have already
been substituted before doing this normality test. It has been proved that Shapiro-Wilk test has

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 25

CHAPTER 6. RESULT ANALYSIS

the biggest statistic power among the common normality tests[38]. The null hypothesis for this
test is that the data was drawn from a normal distribution. And the threshold for rejecting null
hypothesis is 0.05.

The list of results is placed in Appendix E, as it is too long. From the table, it is shown that
for most(39 out of 44) of the Shapiro-Wilk test performed, the consequential p values are less
than 0.05. Therefore, most of the result data are not normal distributed. Thus, Relatively more
powerful parametric test, such as paired t test, cannot be used for analysing results in this project.

Data Formation and Usage

This small section will introduce how these data in Table E.1(table of normality test results) are
selected and combined from the long table in Appendix F, and which section below will them be
used for comparison.

The first four rows in Table E.1 “All Data for Graph Construction Method” are used in Sec-
tion 6.2 for graph method comparison—method 1 comparing to method 2, micro to micro, macro
to macro. In the example of “All Data for Graph Construction Method 1, F1 Micro”, results
are first combined by the order of “Graphsage1”-“FastGCN1”-“FastGCN1d” in each variation of
source-target pair and embedding method, then combined by word embedding method “Glove”-
“W2V”-“ST”-“Bert”, then combined by source-target pair “CF”-“CO”-“OC”-“OF”-“FC”-“FO”.
The rest three are formed in a similar matter.

From the 5th row to the 24th row, there are f1 micro and macro results obtained by SVM-
poly, SVM-rbf, random forest, ADDA, GraphSAGE1, GraphSAGE2, FastGCN1, FastGCN1d,
FastGCN2 and FastGCN2d. They are first selected from the no-oversampling experiments by
the respective method, then combined by word embedding method “Glove”-“W2V”-“ST”-“Bert”,
then combined by source-target pair “CF”-“CO”-“OF”-“OC”-“FO”-“FC”. These results are used
in Section 6.3, which is the comparison between DAGCN methods and baseline methods.

25th to 32nd rows of Table 6.2 are the result data for word embedding comparison in Section
6.5. These data also excludes the instances with oversampling. The combination of Glove Results,
F1 Micro starts from the stack of results from all classifiers in the order of GraphSAGE1, Graph-
SAGE2, FastGCN1, FastGCN1d, FastGCN2, FastGCN2d, SVM-poly, SVM-rbf, random forest
and ADDA. Then they are combined across different source-target data pairs “CF”-“CO”-“OF”-
“OC”-“FO”-“FC”. The actual data used in Section 6.5 is the division of this data by classifier:
DAGCN results and baseline results are separated. The data in the rest 7 rows are obtained and
used in a similar matter.

33rd to 44th rows of Table E.1 are used in Section 6.4. Row 33rd to 40th are for comparison
between different orders of normal oversampling. Not all permutations of embedding and source-
target pairs are included. The exact cases are listed in Appendix C. Note that there is no Glove
C-F Normal 80P and Glove C-O Normal 80P in 3rd order normal oversampling data. Row 41st
to 44th are for comparison between normal oversampling and other oversampling methods. The
exact cases included are listed in Appendix D.

In the table above, results of DAGCN using GraphSAGE classifier will be referred to as ”graph-
sage1” or ”graphsage2” depending on the graph construction method. Similarly, results from
FastGCN classifier are labeled ”fastgcn1” or ”fastgcn2”. Results from FastGCN classifier with
discriminator are recorded as ”fastgcn1d” or ”fastgcn2d”.

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 26

CHAPTER 6. RESULT ANALYSIS

6.2 Comparison Between Two Graph Construction Meth-
ods

This section answers the second research question about graph construction method. Usually,
scatter plot could give a broad overview on the distribution of the data. But when the amount of
data is large and the difference between sub-categories of data is not very significant, scatter plot
could not lead to a clear conclusion.

Figure 6.3: Scatter Plot: Construction Method Comparison, Full Data

Figure 6.3 are all the data for graph construction method comparison. Each data point’s abscissa
represents its f1 micro score and its ordinate represents f1 macro score. In total there are 518 data
points. So it is difficult to observe a difference. Even if we split the data by the source-target
datasets pairs to reduce the number of points, the trend of distribution could still be unclear, as
Figure 6.4 shows.
Figure 6.4 only has the data acquired when the source dataset is CBASU and target dataset is
Formspring. One may perceive that there is no systematical difference between these two class of
result, but statistic test is still needed to make a certain conclusion.

We will compare all the f1 micro scores acquired through graph construction method 1 and 2.
F1 micro score is equivalent to accuracy in our binary classification case. it is more important
than f1 macro score, which only helps us understand class balance issue. Then we take the f1 macro
score into consideration. The two dimensional result data (f1 micro, f1 macro) will be displayed
through using scatter plot. Since the best situation for f1 macro score is not equal to 1, but equal
to the corresponding f1 micro score, we take the absolute value of the difference between f1 micro
score and f1 macro score, D = |f1 micro − f1 macro|. Now the two dimensional data become
(f1 micro, D) and we can perform sign test on the dimension D. We name the f1 micro scores
from construction method 1 C1 and the difference between f1 micro and macro for construction
method 1 D1(name for construction method 2 is of a similar manner). The intermediate f1 micro
result for sign test is calculated by C1−C2 and the difference for sign test is D1−D2. So if the
null hypothesis is rejected, we will know which group of data tends to be larger based on the sign
of test statistics.
As the result Table 6.2 shows, in terms of accuracy, there is no difference between these two graph

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 27

CHAPTER 6. RESULT ANALYSIS

Figure 6.4: Scatter Plot: Construction Method Comparison, C-F

Data F1 Micro F1 Micro and
Macro Differences

Statistics -13.0 -26.0
p Value 0.09462 0.0009549

Table 6.2: Construction Method Comparison: All Data

construction method, as p value 0.095 is larger than 0.05. For the difference between f1 micro
and f1 macro, the sign test result tells us that there exists a significant distinction between the
two class of data, as the p value 0.0009550 is much smaller than 0.05. The test statistics -26.0
is negative, which means the difference for graph construction method 2 is larger. Class balance
requires that difference to be as smaller as possible. Hence, we can conclude that the two graph
construction method does not induce difference in accuracy, but has influence on class balance.
Graph construction 1 has a more balanced performance.

6.3 Comparison Between DAGCN and Baselines

This section aims to answer the main research question—whether DAGCN methods have better
performance than the baseline methods. In total, there are four baseline methods and six DAGCN
variations. Ideally, a one-to-one comparison is succinct and easy to understand. But that would
lead to too many pairs of comparisons. These will raise the p value greatly after Holm-Bonferroni
correction. The following sessions are the comparison within baseline methods and DAGCN
variations. After finding out the best performance among the two subgroups, there will be a one-
to-one comparison to conclude if DAGCN could outperform baseline methods. In addition, selected
DAGCN methods will be compared to ADDA to see if DAGCN is the better domain adaptation
framework. In this section, only the no-oversampling cases are involved in the comparison. Because
oversampling could only relieve the class imbalance problem at the expense of accuracy, it is not
recommended in this project(we will come to that conclusion in later section). Hence, only the
comparison result between no-oversampling method is needed. The oversampling cases are left
out lest their greater number affects the conclusion.

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 28

CHAPTER 6. RESULT ANALYSIS

6.3.1 Comparison Among Baseline Methods

First we will present some best results achieved by the four baseline methods individually as
example. Then there will be the sign test comparison results. The signs for performing sign tests
are acquired by let the results of the left side in “Methods for Comparison” in the tables minus
the right side. Since only non-oversampling results are involved in comparison, the best results
achieved by baseline methods when using oversampling are not listed here.

Methods Embedding Data Pairs F1 Micro F1 Macro

SVM,poly
W2V C-F 0.94 0.68
Glove O-F 0.94 0.60

SVM,rbf
Glove C-F 0.94 0.69
W2V C-F 0.94 0.68

Random Forest
W2V C-F 0.94 0.65
Glove O-F 0.94 0.63

ADDA
W2V O-F 0.86 0.49
Bert O-F 0.83 0.48

Table 6.3: Best Baseline Results Demonstration

The information in Table 6.3 shows that the best results from SVM-poly, SVM-rbf and Random
Forest are at the same level, but the best results from ADDA are conspicuously below this level.
This finding shows same inclination as the sign test comparisons, which are presented in Table 6.4
and Table 6.5.

Methods for Comparison Statistics p Value p Value(HB)
SVM,poly vs. SVM,rbf 1.0 0.6875 0.6875
SVM,poly vs. Random Forest -3.0 0.2379 0.4757
SVM,poly vs. ADDA 5.0 0.02128 0.06469
SVM,rbf vs. Random Forest -5.0 0.02127 0.08508
SVM,rbf vs. ADDA 4.5 0.02246 0.08508
Random Forest vs. ADDA 8.0 0.0004025 0.002415

Table 6.4: Comparison of Baseline Methods: F1 Micro Score

Methods for Comparison Statistics p Value p Value(HB)
SVM,poly vs. SVM,rbf -1.5 0.5078 1.0
SVM,poly vs. Random Forest 1.0 0.8238 1.0
SVM,poly vs. ADDA -5.5 0.007385 0.03692
SVM,rbf vs. Random Forest 0 1.0 1.0
SVM,rbf vs. ADDA -4.5 0.02246 0.08984
Random Forest vs. ADDA -10.0 1.907× 10−6 1.144× 10−5

Table 6.5: Comparison of Baseline Methods: Difference Between F1 Micro and F1 Macro

Table 6.4 suggests that Random Forest results have higher accuracy than ADDA. Table 6.5 shows
that in terms of class balance, SVM-poly and Random Forest have better performance than ADDA;
and there is no definitive superiority in other comparison pairs. Based on these information, we
can conclude that Random Forest is the best baseline method, as it is the only one that dominates
another in terms of accuracy and is of same level in class balance aspect. Therefore, Random
Forest is taken as the best representative in baseline methods.

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 29

CHAPTER 6. RESULT ANALYSIS

6.3.2 Comparison Among DAGCN Variations

The approach of comparison on DAGCN methods is very similar to that on baseline methods.
First there will be best results demonstration for each of the DAGCN variations. Again results
when using oversampling are not included.

Methods Embedding Data Pairs F1 Micro F1 Macro

GraphSAGE1
Glove C-F 0.93 0.49
Bert O-F 0.93 0.48

GraphSAGE2
Bert F-C 0.93 0.61
ST O-F 0.93 0.49

FastGCN1
W2V C-F 0.94 0.77
ST O-F 0.94 0.61

FastGCN1d
Glove C-F 0.94 0.49
Bert C-F 0.94 0.49

FastGCN2
ST C-F 0.94 0.61
ST O-F 0.93 0.55

FastGCN2d
ST C-F 0.94 0.48
Bert C-F 0.93 0.49

Table 6.6: Best DAGCN Results Demonstration

The results in Table 6.6 indicates that the accuracy of these DAGCN variations are very close,
while class balance could be distinctive. FastGCN1 obviously has better performance on the class
balance aspect.

Since Section 6.2 already concluded that graph construction method 1 is superior to method
2, we only consider the results from graphsage1, fastgcn1 and fastgcn1d.

Methods for Comparison Statistics p Value
graphsage1 vs. fastgcn1 -3.0 0.2631
graphsage1 vs. fastgcn1d 1.0 0.8318
fastgcn1 vs. fastgcn1d 0.5 1.0

Table 6.7: Comparison of DAGCN Methods: F1 Micro Score

Methods for Comparison Statistics p Value p Value(HB)
graphsage1 vs. fastgcn1 4.0 0.2631 0.3031
graphsage1 vs. fastgcn1d -5.5 0.03469 0.1040
fastgcn1 vs. fastgcn1d -3.0 0.3074 0.3074

Table 6.8: Comparison of DAGCN Methods: Difference Between F1 Micro and F1 Macro

Through Table 6.7 and Table 6.8, we found that no p value is less than 0.05. Therefore no
Holm-Bonferroni method is needed. We can directly conclude that these three method have no
performance difference and use all of them to compare with Random Forest classifier.

6.3.3 Comparison Between DAGCN and Baseline

Here there will be comparison between DAGCN and Random Forest, as Random Forest is the
best baseline method; and between DAGCN and ADDA, as ADDA is also a domain adaptation
framework.

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 30

CHAPTER 6. RESULT ANALYSIS

Methods for Comparison Type of
Result

Statistics p Value

graphsage1 vs. Random
Forest

F1 Micro -1.5 0.6636

fastgcn1 vs. Random Forest F1 Micro 1.5 0.8036
fastgcn1d vs. Random Forest F1 Micro -2.5 0.3833
graphsage1 vs. Random
Forest

F1 Macro 0.5 1.0

fastgcn1 vs. Random Forest F1 Macro -2.0 0.5412
fastgcn1d vs. Random Forest F1 Macro 3.0 0.2862

Table 6.9: Comparison Between DAGCNs and Baseline

All p values in Table 6.9 are larger than 0.05. Hence, we found no evidence that DAGCN methods
could achieve better performance than the random forest classifier.

Methods for Comparison Type of
Result

Statistics p Value p Value(HB)

graphsage1 vs. ADDA F1 Micro 11.0 2.980× 10−6 8.940× 10−6

fastgcn1 vs. ADDA F1 Micro 10.0 3.588× 10−5 7.176× 10−5

fastgcn1d vs. ADDA F1 Micro 8.0 4.024× 10−4 4.024× 10−4

graphsage1 vs. ADDA F1 Macro -9.5 6.604× 10−5 1.320× 10−4

fastgcn1 vs. ADDA F1 Macro -10.0 3.588× 10−5 1.076× 10−4

fastgcn1d vs. ADDA F1 Macro -8.0 4.024× 10−4 4.024× 10−4

Table 6.10: Comparison Between DAGCNs and ADDA

Table 6.10 is the comparison result between DAGCN and domain adaptation baseline ADDA. Now
it is clearly showed that all p values after Holm-Bonferroni correction are lower than 0.05. And
in the f1 micro group all tests have statistics larger than 0. In the f1 macro groups all tests have
statistics smaller than 0. Therefore, these selected DAGCN methods have superior performance
than ADDA in terms of accuracy and class balance.

6.4 Comparison Regarding Oversamplings

In this section, two comparison results will be introduced: comparison between results with no
oversampling and normal oversampling, as well as between normal oversampling and ADASYN
oversampling/maGAN oversampling. The first comparison aims to answer the third research
question: Is oversampling the minority class(the bully class)helping alleviate the class imbalance
problem?

6.4.1 Comparison of Oversamplings and No Oversamplings

The comparison of no sampling cases and normal sampling cases is divided into three stages:
comparison of no sampling and 1st order oversampling;comparison of 1st order oversampling and
2nd order oversampling; comparison of 2nd order oversampling and 3rd order oversampling. Note
that 1st order oversampling includes CBASU40P, Formspring 10P and OLID60P, 2nd order over-
sampling includes CBASU60P, Formspring 20P and OLID80P, 3rd order oversampling includes
CBASU80P, Formspring 30P and OLID100P and so on. In each stage, sign tests are performed
on the results produced by DAGCN variations(classification results from GraphSAGE, FastGCN
and FastGCN with discriminator) and baseline results. Since the result used for comparison has
two dimension– micro score and absolute difference between f1 micro and f1 macro, in total there

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 31

CHAPTER 6. RESULT ANALYSIS

are 4 sign tests results.

The cases included in no sampling, 1st order oversampling and 2nd order oversampling are listed
in Appendix C. All these results are concatenated to form a 1 dimensional array to perform one
time sign test. The size of the array is 64 for baseline results and 96 for results from DAGCN
methods. For 3rd order oversampling, The size of the array is 56 for baseline results and 84 for
results from DAGCN methods(It does not contain Glove C-F and Glove C-O cases). When com-
paring 2nd order normal oversampling and 3rd order normal oversampling, these instances will be
deleted from 2nd order normal oversampling group.

Like the comparison on baseline and DAGCN methods, in this section first there will be demon-
stration of best results for each oversampling order and method, then the sign test result analysis.

Oversampling Embedding Data Pairs Methods F1 Micro F1 Macro

No oversampling
W2V C-F FastGCN1 0.94 0.77
Glove C-F SVM,rbf 0.94 0.69

1st oversampling
W2V O-F Normal60P FastGCN1 0.94 0.69
Glove C-F Normal40P Random

Forest
0.94 0.68

2nd oversampling
Glove C-F Normal60P GraphSAGE2 0.93 0.49
Glove C-F Normal60P Random

Forest
0.92 0.66

3rd oversampling
W2V C-F Normal80P GraphSAGE1 0.92 0.50
Bert C-F Normal80P SVM,poly 0.90 0.53

ADASYN
Glove C-F ADASYN60P ADDA 0.94 0.48
Glove C-F ADASYN40P Random

Forest
0.92 0.65

maGAN
Glove C-F maGAN40P SVM,rbf 0.94 0.69
Glove C-F maGAN60P SVM,rbf 0.94 0.69

Table 6.11: Best Oversampling Results Demonstration

We can see from Table 6.11 that for normal oversamplings, both of the f1 micro and f1 macro
scores will drop with the increasing of oversampling numbers. This trend is also partially verified
with the sign test comparison, which will be introduced later. The permutation of data pairs for
ADASYN and maGAN oversampling are much less than normal oversampling. That is probably
the reason why their best results are all from baseline methods.

Table 6.12 shows a clear trend of oversampling: increasing the number of minority class leads
to the drop of f1 micro score(Note that ”No sampling” refers to ”No Oversampling” and so on).
All the p values of DAGCN results are smaller than the 0.05 threshold. Additionally, those three
test statistics are all positive, which means the groups on the left side(No oversampling,1st over-
sampling and then 2nd oversampling) are consistently larger than the groups on the right side(1st
oversampling, 2nd oversampling,and then 3rd oversampling). Hence, the conclusion here is that
for DAGCN methods, oversampling causes accuracy to drop and the more minority instances are
oversampled, the more accuracy will drop. But there is no such trend for baseline methods.

In Table 6.13, for baseline methods, there is a unwavering trend that the difference between f1
micro and f1 macro decreases as the oversampling of minority class increases. For DAGCN meth-
ods, this trend stops at the 2nd order oversampling. The orders of comparison groups are the
same as Table 6.12. Top 5 p values are less than 0.05 threshold, which indicates the gap between
f1 micro and f1 macro will definitely shrink for 1st and 2nd order oversampling. After 2nd order
oversampling, the effect of reduce class balance will not work for DAGCN based classifiers, but

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 32

CHAPTER 6. RESULT ANALYSIS

Comparison
Groups

Classifiers Statistics p Value p Value(HB)

No sampling vs. 1st
sampling

Baseline -1.0 0.8555 0.8555

No sampling vs. 1st
sampling

DAGCN 17.5 0.0001266 2.532× 10−4

1st sampling vs.
2nd sampling

Baseline 4.5 0.2110 0.4220

1st sampling vs.
2nd sampling

DAGCN 13.0 0.006673 6.674× 10−4

2nd sampling vs.
3rd sampling

Baseline 6.0 0.04277 0.1283

2nd sampling vs.
3rd sampling

DAGCN 19.0 5.853× 10−6 1.755× 10−5

Table 6.12: The Trend of Oversampling: F1 Micro Score

Comparison
Groups

Classifiers Statistics p Value p Value(HB)

No sampling vs. 1st
sampling

Baseline 11.0 1.951× 10−4 1.951× 10−4

No sampling vs. 1st
sampling

DAGCN 16.0 0.001111 0.003332

1st sampling vs.
2nd sampling

Baseline 16.0 1.831× 10−6 5.494× 10−6

1st sampling vs.
2nd sampling

DAGCN 13.0 0.0066739 0.04116

2nd sampling vs.
3rd sampling

Baseline 13.5 1.485× 10−5 7.427× 10−6

2nd sampling vs.
3rd sampling

DAGCN 6.0 0.2007 0.2006

Table 6.13: The Trend of Oversampling: Difference Between F1 Micro and F1 Macro

only effective on baselines(SVMs, Random Forest and ADDA). Still, it can be concluded that
oversampling reduces difference between f1 micro and f1 macro scores. But since it is already
known that for DAGCN results, f1 micro score drops when the oversampling increases, additional
tests need to be done to see if f1 macro scores are actually increasing.

Comparison
Groups

Classifiers Statistics p Value p Value(HB)

No sampling vs. 1st
sampling

DAGCN -12.5 0.009673 0.02902

1st sampling vs.
2nd sampling

DAGCN -1.5 0.8264 0.9140

2nd sampling vs.
3rd sampling

DAGCN -3.5 0.4570 0.9140

Table 6.14: The Trend of Oversampling: F1 Macro Score

Table 6.14 shows that only when comparing between no sampling cases and 1st oversampling
cases from DAGCN results, does the f1 macro score rises with a statistical significance. This res-

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 33

CHAPTER 6. RESULT ANALYSIS

ult suggests that oversampling methods work much more effectively for the baselines than for the
DAGCNs. Although the experiment results shows that oversampling is good for baseline methods,
for DAGCNs, it is not recommended to handle the class imbalance problem with oversampling
the minority class. Because f1 macro score is only improved with 1st order oversampling, and
oversampling is at a consistent cost of lowering accuracy, which is a more important indicator
than the class balance.

6.4.2 Comparison of Oversamplings Methods

This section contains the comparison between normal oversampling and ADASYN oversampling,
as well as the comparison between normal oversampling and maGAN oversampling. The instances
included for comparison are listed in Appendix D. The number of instances is significantly smal-
ler than normal oversampling, as the total instances in the other two oversampling approaches
are small. Only the corresponding cases in normal oversampling will be used to compare with
ADASYN or maGAN. The null hypotheses here for the sign tests are that the f1 micro scores(or
difference between f1 micro and f1 macro) from normal oversampling are the same as that from
ADASYN oversampling(or maGAN oversampling).

Comparison
Groups

Classifiers Statistics p Value

Normal vs. ADASYN Baseline 1.0 0.8450
Normal vs. ADASYN DAGCN 4.5 0.2110
Normal vs. maGAN Baseline 1.5 0.5488
Normal vs. maGAN DAGCN 4.0 0.1338

Table 6.15: Comparison of Oversampling Methods: F1 Micro Score

Comparison
Groups

Classifiers Statistics p Value

Normal vs. ADASYN Baseline -2.0 0.5846
Normal vs. ADASYN DAGCN 6.0 0.1114
Normal vs. maGAN Baseline -2.0 0.4239
Normal vs. maGAN DAGCN 5.0 0.05247

Table 6.16: Comparison of Oversampling Methods:Difference Between F1 Micro and F1 Macro

Table 6.15 and Table 6.16 shows that all the p values are larger than the threshold 0.05, hence there
is no need to use Holm-Bonferroni correction method.And we can conclude directly that ADASYN
and maGAN oversampling have no performance difference compared to normal oversampling.

6.5 Comparison Between Word Embedding Methods

We want to find out which word embedding method achieves the best performance for our pro-
ject. All the f1 micro and macro scores of DAGCN acquired in different source-target datasets
pairs are concatenated and compared in the same way in Section 6.3 to get the intended result.
There is also a similar comparison for all the baseline results. As the oversampling cases are not
equally distributed across all variations of word embeddings and source-target datasets pairs, here
only the results from non-oversampling cases are used. Otherwise these unbalanced oversampling
may cause the analysis result to be biased towards certain word embedding or source-target pairs
scenarios.

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 34

CHAPTER 6. RESULT ANALYSIS

Word Embedding G→ W G→ B W→ST B→ ST
Statistics, Baseline -2.5 1.5 6.0 1.0
p Value,Baseline 0.3017 0.6290 0.001831 0.7744
p Value(HB), Baseline 0.9051 1.0 0.007324 1.0
Statistics, DAGCN -9.0 -10.0 -0.5 3.0
p Value, DAGCN 5.335×10−4 3.249×10−4 1.0 0.3449
p Value(HB), DAGCN 0.001067 0.0009747 0.1655 0.3449

Table 6.17: Word Embedding Comparison: F1 Micro Score

Word Embedding G→ W G→ B W→ ST B→ ST
Statistics, Baseline 2.0 -0.5 -5.0 -3.0
p Value,Baseline 0.5234 1.0 0.04138 0.1795
p Value(HB), Baseline 1.0 1.0 1.0 0.5385
Statistics, DAGCN -2.0 0.5 -3.5 -8.5
p Value, DAGCN 0.6075 1.0 0.3105 0.004551
p Value(HB), DAGCN 1.0 1.0 0.9315 0.01365

Table 6.18: Word Embedding Comparison: Difference Between F1 Micro and F1 Macro

From Table 6.17, we know that both W2V(Word2Vec) and Bert(B) has a better performance
than for DAGCN methods, as their corrected p values are less than 0.05 and test statistics are
negative. For baseline methods, it can be concluded that W2V(Word2Vec) has a better perform-
ance than ST(SentenceTransformer). Table 6.18 indicates that in terms of class balance, Bert(B)
has a better result than SentenceTransformer(ST). (p value 0.01265 < 0.05 for DAGCN results).
Both W2V(Word2Vec) and ST(SentenceTransformer) surpass other embedding method, while not
surpassed by another method. Word2Vec is more efficient in running times but it captures less
information of the text,as its vocabulary is smaller than others and does not possess punctuations.
In the future work, we can leave out Bert and Glove word embedding method to reduce the number
of experiments.

6.6 Comparison About the Data Pairs’ Origins

At Section 1.3, the 4th research question is about the assumption that although the data set
CBASU and OLID are both from Twitter, the time discrepancy of their collections distances
these two data set so that their relationship is similar to data sets from two platforms. This
section will verify this assumption by comparing the non domain adaptation results of data pairs
being CBASU and OLID(regardless of being source or target) to other results. Specifically, the
comparisons are as follows:

1. CO+OC vs. CF+FC

2. CO+OC vs. FO+OC

It means the using concatenation of source-target pairs being CBASU-OLID and OLID-CBASU
to compare with source-target pairs being CBASU-Formspring and Formspring-CBASU. For
the second comparison it is a similar manner—“CO+OF” means Formspring-OLID and OLID-
CBASU. The approach to combine data is shown in Figure 6.5:

In total there are 3 different classifiers, 4 different embedding and 2 different source-target com-
binations. So the length of data array for sign test is 48. Results from oversampling experiments
are not included. If the results from data pairs being CBASU and OLID are better than data pairs
being CBASU and Formspring, and also better than Formspring and OLID, then one explanation

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 35

CHAPTER 6. RESULT ANALYSIS

Figure 6.5: Illustration of Data Combination

could be that they are actually from the same domain. The sign test results are placed in Table
6.19:

Comparison Data
Type

Statistics p Value p Value(HB)

CO+OC vs.
FO+OF

F1 Micro -1.0 0.7905 0.7905

CO+OC vs.
FO+OF

Micro-
macro
Difference

-7.5 6.103× 10−5 1.221× 10−4

CO+OC vs.
CF+FC

F1 Micro -4.5 0.04904 0.09567

CO+OC vs.
CF+FC

Micro-
macro
Difference

-6.5 0.002349 0.002349

Table 6.19: Comparison About the Data Pairs’ Origins

The table above shows that in terms of accuracy, there are no difference between the results from
both Twitter data sets and other combinations. However, in the class balance perspective, Twitter
data sets as source-target do have better results. In this case, the assumption that the two Twitter
data set can be treated as from different platform cannot be verified and need more corroborations.

6.7 Individual Cases Analysis

This section presents some well selected instances from the Formspring dataset, which is sub-
sequently converted to Word2Vec embedding, and predicted by FastGCN classifier. There will be
examples that are correctly classified as bully, correctly classified as non-bully, falsely classified
as bully and falsely classified as non-bully. The follow-up discussion includes the content of the
instance itself and the reasonableness of original label. Note that in the tables below, being labeled
1 means it is a bully instance, and being labeled 0 means non-bully.

Table 6.20 provides 3 examples of non-bully data that are correctly classified as non-bully. The
first example is an ordinary conversation that contains no component which could be interpreted
as aggressive, bullying, dirty or filthy. It is very reasonable to get this prediction result. The
second example contains the word “bitch”. But both the annotator and our classifier recognize
that this is an intimate address between friends. In the third example, there is again an expression
“stupid bitches” that might be construed as bully. In this case however, “stupid bitches” is not
target to any specific person or group of people. Hence it is not counted as bully, as both the an-
notator and our classifier do. This proves that the DAGCN classifier is able to distinguish at least
some non-bully instances even though they contain component that is usually treated as bullying.

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 36

CHAPTER 6. RESULT ANALYSIS

Order
Number

Text Content Original
Label

Prediction

6th Q: Are you a morning
or night person?A: Night
4shuree!!

0 0

41st Q: Hello bitch! How’s
ur day going? Good
I hope :) it’s beauti-
ful and sunny! A: Ohh
heyy bitchh!!! its goin
good..:D thx 4 askin

0 0

66th Q: If you could rid the
world of one thing what
would it be? A: HOE-
ISHNESS! lol um prob.
stupid bitches and SIN! i
just sinned!Opppzz

0 0

Table 6.20: Original Textual Examples of Cyberbully Data,Correct Non-bully

Order
Number

Text Content Original
Label

Prediction

34th Q: Hahah. Funny how u
defend that beiber kid. A:
its also funny how u stalked
my whole twitter! Nice
goin! BITCH!

1 1

213rd Q: Chick? Are you a fuck-
ing lesbain?A: No are you

1 1

236th Q: dude it seems like every-
one hates you. you should
just delete all your socialing
sites. (:A: should i care?

1 1

Table 6.21: Original Textual Examples of Cyberbully Data,Correct Bully

Table 6.21 shows the examples of correctly predicted bully instances. The second example is
a typical bullying instance that targets not only the person who gives the answer also the lesbian
people. The first example is a controversial bully instance. The person who answer the question
said “bitch” but it is a retaliation for the questioner’s cyberstalking behavior. If the cyberstalking
behavior does exist then it becomes an acceptable response. For the third example, it contains no
words or phrases that might be linked to bullying. But on the whole, the meaning of the question
is a personal attack to the answerer. Almost any person receiving this kind of message from a
stranger could be annoyed, irritated or frustrated. So this instance should be treated as having
bullying content. And it proves that our classifier is capable of recognizing bullying meaning even
if the instance has no explicit bullying words or phrases.

Table 6.22 gives some examples of DAGCN classifier falsely predicts bully instances as non-bully.
The first example is at the boundary between bully and non-bully. It does contain bully com-
ponent in the question, but the relationship between the two people and the real attitude of the
answerer is not known to us. It could be teasing of friends or bullying from a stranger. That
is one major shortage for this cyberbully detection branch: taking the “repeat” component off
the definition also large reduces the background information. The second example is obviously

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 37

CHAPTER 6. RESULT ANALYSIS

Order
Number

Text Content Original
Label

Prediction

47th Q: Hey. Why you such
a bitch?
A: Why
thank yuh!

1 0

51st Q: how many languages
do u speak?A: Umm.. i
think 2 but english is my
first! im learnin french!
d u?!

1 0

197th Q: :3 wow ashleeee your
fakes amuse me lmao
okay you are retarded to
keep this page upp :] A:
your retarded

1 0

Table 6.22: Original Textual Examples of Cyberbully Data,False Non-bully

an error made by the annotators. It definitely does not contain bullying component, but labeled
bully. And our classifier correctly recognized it as non-bully. The mis-classification in the third
example highlights several shortages of the DAGCN classifier. The whole classification process is
total unrelated to the semantics of the instances. It is not explainable. And averaging the word
embeddings to form a sentence embedding might lead to unpredictable result-such as making the
average of words that has bullying meaning very close to an embedding of non-bully sentence.

Order
Number

Text Content Original
Label

Prediction

25th Q: Do yuh have any
stalkers? A: Hell yes!
Lots of them and thats
including yuh!<3

0 1

32nd Q: haha check inside ur
closet u mind find out
who it is(; A: Lmao!! kk
lemme get my ass off this
toliet seat then ill check!!
Mwahah!!

0 1

56th Q: If you could ask
Barack Obama one
question what would
it be? A: Oh snap!! I
would actually hug him
first off ahah and say
Nigga where my weed
go? Hahaha jkjkjk i love
him!! He is doin a great
job!

0 1

Table 6.23: Original Textual Examples of Cyberbully Data,False Bully

Table 6.23 gives 3 examples of DAGCN classifier incorrectly predicts non-bully instances as bully.
The possible explanation for the mistake in the first example is that it contains element that shows

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 38

CHAPTER 6. RESULT ANALYSIS

strong, even aggressive feeling(the use of word “hell”) and it is toward the questioner. The reason
for incorrect prediction of the second and the third example is the same: they contain words that
itself might be understand as bully(“ass” in the second and “Nigga” in the third) but the meaning
of whole sentence is not.

The discussions on the listed examples above shows that DAGCN is better than the simple clas-
sifier based on restricted word lists, as it can grasp the bully sentence without explicit bullying
related words and recognize the non-bully meaning sentence with bullying related words. However,
it is not alway capable of doing that. And sometime it will miss some very obvious bullying cases
or incorrectly predict non-bully instance as bully.

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 39

Chapter 7

Conclusion

This chapter will summarize the research questions brought up in Section 1.3 and the analysis in
Chapter 6, and draw conclusions towards the 4 research questions. Then we will discuss the some
of the limitations of the current work, and the planned improvements for the future.

7.1 Main Contributions

The main research question we investigated in this thesis is whether the proposed DAGCN method
out-performs the state-of-the-art methods for cyberbully detection. Unfortunately, through the
test results in Section 6.3, there is no evidence that the complicated DAGCN achieves better per-
formance than the random forest classifier, which has the best performance among the baseline
methods. But all DAGCN variations cost much more time and memory space than the random
forest classifier. Running GraphSAGE classifier alone cost 30-40 minutes. FastGCN classifier is
indeed much faster, usually between 5 minutes to 15 minutes. In addition, running the graph
construction codes cost 30 minutes. It can be argued that once optimized, these codes’ running
time will be significantly reduced. But random forest classifier cost 5-10 minutes, which is lower.
And it requires much less memory and CPU resources. Hence, the conclusion for this question is
definite: there is no proof that DAGCN method could have better performance than the simple
random forest method.

The performance of DAGCN approach is also influenced by its graph construction method. This
is raised in the second research question and later investigated in Section 6.2. The conclusion from
sign test is that the two graph construction methods have equal performance in terms of accuracy,
but method 1 is better in perspective of class balance. Although this project only experiment
two graph construction method, a performance distinction already emerges between them. Con-
sidering the fact that these two graph construction method only differ in the number of bridge
nodes and source-bridge edges per bridge node, it naturally comes to mind that more changes in
the graph construction method may improves performance to a greater degree. Adopting a better
graph construction could not only relieve the class imbalance issue, but increase the accuracy as
well. The importance of graph construction in the realm of graph-based semi- supervised learning
make it worthwhile further exploring in future works.

The third research question proposes that oversampling the minority class in the source data
set could alleviate the class imbalance problem in the prediction result. Section 6.4.1 illustrates
how oversampling of the minority class in the source data affects the prediction result. For baseline
methods, it works very well—class imbalance is relieved while the accuracy is maintained. But for
DAGCN method, the class imbalance is reduced at the cost of drop in accuracy, while f1 macro
scores of DAGCN classifier results are only ameliorated for the first order of oversampling. So
the conclusion is that oversampling minority class in source data is not suitable in this project.

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 40

CHAPTER 7. CONCLUSION

F1 macro scores does increase with 1st order oversampling, together with the sign test result on
f1 micro-macro difference, is a sign of successfully relieving class imbalance. However, f1 micro
score is equivalent to accuracy, which bears heavier importance than f1 macro score. So there
needs to be a metric judging whether the trade-off between these two f1 scores is appropriate.
Due to the lack of such metric, this project cannot use oversampling to resolve the class imbalance
problem. Developing such a metric for trade off between accuracy and class imbalance will be
a very interesting work in the future. Regarding oversampling methods, this project finds that
ADASYN, maGAN and normal oversampling methods achieve very similar results.

The last research question is about the assumption that the two Twitter data set(CBASU and
OLID) can be treated as from different platform because their dates of collection are too far from
each other. This assumption is analysed In Section 6.6. The results from source-target data pairs
shows that CO and OC does not differ in accuracy from other two kinds(CF+FC and FO+OF)
of source-target data pairs, they do show different performance in terms of class balance. This
cast doubt on our previous assumption. In the future work, there should be more experiments to
explore this assumption in more details.

This project also concludes that adding a discriminator for the FastGCN classifier to fill the
possible distribution gap of intermediate embedding of bullying and non-bully instances does not
achieve better result. In Section 6.3.2, the sign test result shows that FastGCN1 and FastGCN1d
do not differ in accuracy and class balance. Moreover, with discriminator the FastGCN classifier
cost more time. Therefore it is not recommended.

7.2 Limitations

7.2.1 Definition of Cyberbully Detection

The divergent definition on cyberbully detection has caused some extra effort at the beginning of
this project. Two major branches of the definition differ on whether cyberbully should include
the “repeat” feature. On the first glance they may seem similar, but if cyberbullying must be a
repeat behavior, then much more information is needed. For one-time bullying, the researchers
could only gather the text itself, as the CBASU data in this project. Identifying repeating bully
not only increases the text needed, but the user and time information are required as well. Be-
cause the repeated bully has to be between these same two users and in a reasonable short time.
For one-time bullying, the target of the cyberbully detection classifier is the text; for repeated
bullying, the target becomes the relationship between these two users in a certain period, which
is more complex. In addition to the text processing, a cyberbully detection classifier for repeated
bullying should also consider the context of these text, such as if the users are strangers or friends.

The complication of repeating cyberbully detection problem leads to the complication of clas-
sifiers. The classifiers for repeating bullying could become too complex that they bear no meaning
as reference for people with the intention to study one-time cyberbully detection problem. Hence,
the mixed definition of cyberbully detection is bound to cause confusion and time waste for new
researchers in this field. In the future, the development of this realm will certain widen the gap
between these two generation of classifiers and growth of paper in number will cause more waste
in time for researchers. Therefore, giving distinctive names for the two branches of cyberbully
detection is very important. It is of the top priority in our future work.

7.2.2 Dataset Selection

Usually, the instances marked as ’bully” are much less in proportion to that in CBASU and
OLID dataset in real world cyberbully detection scenario. [32] reported that around 6% of Tweets
contain bullying information. The datasets CBASU and OLID are drawn from Twitter, but their

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 41

CHAPTER 7. CONCLUSION

cyberbullying proportions are much larger: CBASU has around 25% of instances marked as bully
and OLID has 33% bully instances. The ratio difference could lead to performance gap in the f1
macro scores. As the distribution of bully and non-bully instances are even more unbalanced, it
ought be more difficult to maintain balanced result between two class for real world data.

7.2.3 Graph Construction

Despite the fact that this project does not possess much discussion or detailed experiment on graph
construction, its method actually has a great influence in semi-supervised learning,according to [51]
and [60]. The k nearest neighbors method we use in this project is bound to lead severe uneven edge
degree distribution per node, and this weakens the classifier’s performance. In addition to graph
construction method, the whole graph construction time is too long at the current stage(around
30 minutes). And one of the most time-consuming part for kNN graph construction is to search
for nearest neighbors for each node. Optimizing the graph construction process will allow us to
run more experiments.

7.2.4 Baseline

The high proportion of invalid results in ADDA(19 invalid results out of 48) is one limitation
on the conclusion that DAGCNs have better performance than the baseline domain adaptation
framework ADDA. This unfavorable result from ADDA leads to the suspicion that the reason that
other methods outperforms ADDA is that the ADDA setting in this project is unsuitable for this
specific cyberbully detection problem. As a popular domain adaptation framework, ADDA ought
to yield better results.

7.2.5 Statistic Test

This project uses sign test for analysis as it has the least requirements on data distributions.
However, the statistic power of sign test is also among the weakest statistic tests. This might
cause the test result unable to distinguish the performance differences between certain methods.
A stronger statistic test could yield a more distinctive result.

7.3 Future Work

In accordance with the limitations raised in Section 7.1 and Section 7.2.1, the future work planned
for this project includes:

1. Definition of cyberbully detection: The first item on the future work list is to change
the name ”cyberbully detection” in our project to other names, such as cyber-abuse. Also,
we should urge other researchers doing similar research in the community to change the
”cyberbully” name used in their projects too.

2. Dataset Selection: Try to build our own dataset according to our special goals. Many
public dataset do not introduces how they are parsed and processed, and we want a dataset
that mimics the real platform situation. Our dataset could be collected from a specific
topic duration a specific short time period(could be when the topic is popular) under some
platform.

3. Graph Construction: In the future work, DAGCN could be tested through the b-matching
graph construction method proposed by [25]. B-matching not only could make the graph
symmetric(meaning the two nodes connected by an edge are both in each other’s k neigh-
borhood), but it also even the edge degree for the nodes as well. We could expect that
the improved graph construction method will increase the classifier’s performance. For the
long running time of graph construction, [26] proposed a more efficient similarity searching

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 42

CHAPTER 7. CONCLUSION

method, FAISS, for high dimensional dense vectors. The future work will include FAISS to
reduce the time and memory cost during the graph construction period.

4. ADDA baseline: There are several possibilities that ADDA produces so many invalid
results, such as underfitting, overfitting or converging at sub-optimal result. Future work
should include running more tests to determine which problem the current ADDA framework
has, and to reduce the invalid results proportion to a same level as other baseline methods.

5. Statistic Test: Future works could try Box-Cox transformation on the data to make them
conform to a normal distribution. Even if after transformation, the data are unable to pass
Shapiro-Wilk test so that paired t test cannot be used, reducing the existing substantial non-
normality of our data is still beneficial for statistic tests that do not demand normality[33].
Also, we should devise a better way to process invalid results, as the current way severely
disrupts the data’s original distribution. The most powerful test, paired t test, does not
strictly requires normal distribution. But if the distribution of data is far away from normal
distribution,then it will not be effective. We should try to make paired t test usable in the
future work.

6. F1 Micro-Macro Trade-off Metric: Applying oversampling method to DAGCN method
increases f1 macro score at the cost of reducing f1 micro score. Thus there should be a metric
to judge how much f1 macro score increase is worth 1 percent reduction in f1 micro score,
and to what extent this metric is suitable. Without this metric, all methods that causes f1
micro score to drop have to be rejected. Our current vague idea is that 3 percent increase
of f1 macro score is tradable for 1 percent reduction of f1 micro score and the reduction of
f1 micro score has to be within the range of 3 percent.

7. Distribution Difference in the two Twitter Datasets: Although the CBASU and
OLID datasets are both from Twitter, this project assumes that they should be treated as if
being from different social platforms because of the large gap on their collecting date. This
assumption is questioned by the results in Section 6.6. In the future, we should analyse the
results from domain adaptation classifiers, comparing the results’ differences between data
pairs being CBASU-OLID and other two cases(CBASU-Formspring and OLID-Formspring).
If CBASU-OLID’s performance is at the same level as the other two in accuracy and better
in class imbalance, which is the same conclusion in Section 6.6, then it will still be reasonable
to treat them as being from different domains.

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 43

Bibliography

[1] 3.2.4.3.1. sklearn.ensemble.randomforestclassifier. https://scikit-learn.org/stable/

modules/generated/sklearn.ensemble.RandomForestClassifier.html. Accessed: 2020-
08-11. 18

[2] Boole’s inequality. https://en.wikipedia.org/wiki/Boole%27s_inequality#

Bonferroni_inequalities. Accessed: 2020-09-05. 23

[3] F1 score. https://en.wikipedia.org/wiki/F1_score. Accessed: 2020-09-09. v, 24

[4] Holm–bonferroni method. https://en.wikipedia.org/wiki/Holm-Bonferroni_method#

Formulation. Accessed: 2020-09-05. 23

[5] imbalanced-learn. https://imbalanced-learn.readthedocs.io/en/stable/. Accessed:
2020-09-28. 19

[6] sklearn.svm.svc. https://scikit-learn.org/stable/modules/generated/sklearn.svm.

SVC.html. Accessed: 2020-08-11. 18

[7] Avrim Blum and Shuchi Chawla. Learning from labeled and unlabeled data using graph
mincuts. 2001. 6

[8] Uwe Bretschneider, Thomas Wöhner, and Ralf Peters. Detecting online harassment in social
networks. 2014. 4

[9] Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: fast learning with graph convolutional networks
via importance sampling. arXiv preprint arXiv:1801.10247, 2018. v, 14, 15

[10] Lu Cheng, Jundong Li, Yasin Silva, Deborah Hall, and Huan Liu. Pi-bully: Personalized
cyberbullying detection with peer influence. In IJCAI, 2019. 18

[11] Lu Cheng, Jundong Li, Yasin N Silva, Deborah L Hall, and Huan Liu. Xbully: Cyberbullying
detection within a multi-modal context. In Proceedings of the Twelfth ACM International
Conference on Web Search and Data Mining, pages 339–347, 2019. 5

[12] Maral Dadvar and Franciska De Jong. Cyberbullying detection: a step toward a safer internet
yard. In Proceedings of the 21st International Conference on World Wide Web, pages 121–126,
2012. 4

[13] Maral Dadvar, FMG de Jong, Roeland Ordelman, and Dolf Trieschnigg. Improved cyber-
bullying detection using gender information. In Proceedings of the Twelfth Dutch-Belgian
Information Retrieval Workshop (DIR 2012). University of Ghent, 2012. 4

[14] Maral Dadvar, Roeland Ordelman, Franciska de Jong, and Dolf Trieschnigg. Towards user
modelling in the combat against cyberbullying. In International Conference on Application
of Natural Language to Information Systems, pages 277–283. Springer, 2012. 4

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 44

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://en.wikipedia.org/wiki/Boole%27s_inequality##Bonferroni_inequalities
https://en.wikipedia.org/wiki/Boole%27s_inequality##Bonferroni_inequalities
https://en.wikipedia.org/wiki/F1_score
https://en.wikipedia.org/wiki/Holm-Bonferroni_method##Formulation
https://en.wikipedia.org/wiki/Holm-Bonferroni_method##Formulation
https://imbalanced-learn.readthedocs.io/en/stable/
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

BIBLIOGRAPHY

[15] Maral Dadvar, Dolf Trieschnigg, and Franciska de Jong. Experts and machines against bullies:
A hybrid approach to detect cyberbullies. In Canadian Conference on Artificial Intelligence,
pages 275–281. Springer, 2014. 4

[16] Maral Dadvar, Dolf Trieschnigg, Roeland Ordelman, and Franciska de Jong. Improving
cyberbullying detection with user context. In European Conference on Information Retrieval,
pages 693–696. Springer, 2013. 4

[17] Wenyuan Dai, Qiang Yang, Gui-Rong Xue, and Yong Yu. Boosting for transfer learning. In
Proceedings of the 24th international conference on Machine learning, pages 193–200, 2007.
5

[18] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018. v, 12, 13

[19] Karthik Dinakar, Roi Reichart, and Henry Lieberman. Modeling the detection of textual
cyberbullying. In fifth international AAAI conference on weblogs and social media, 2011. 4

[20] Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation.
arXiv preprint arXiv:1409.7495, 2014. 5

[21] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Advances in neural information processing systems, pages 1024–1034, 2017. v, 14

[22] Haibo He, Yang Bai, Edwardo A Garcia, and Shutao Li. Adasyn: Adaptive synthetic sampling
approach for imbalanced learning. In 2008 IEEE international joint conference on neural
networks (IEEE world congress on computational intelligence), pages 1322–1328. IEEE, 2008.
19

[23] Homa Hosseinmardi, Sabrina Arredondo Mattson, Rahat Rafiq, Richard Han, Qin Lv, and
Shivakant Mishra. Poster: Detection of cyberbullying in a mobile social network: Systems
issues. In Proceedings of the 13th Annual International Conference on Mobile Systems, Ap-
plications, and Services, pages 481–481, 2015. 4

[24] Qianjia Huang, Vivek Kumar Singh, and Pradeep Kumar Atrey. Cyber bullying detection us-
ing social and textual analysis. In Proceedings of the 3rd International Workshop on Socially-
Aware Multimedia, pages 3–6, 2014. 4

[25] Tony Jebara, Jun Wang, and Shih-Fu Chang. Graph construction and b-matching for semi-
supervised learning. In Proceedings of the 26th annual international conference on machine
learning, pages 441–448, 2009. 6, 42

[26] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus.
IEEE Transactions on Big Data, 2019. 42

[27] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016. 14

[28] Wouter M Kouw and Marco Loog. An introduction to domain adaptation and transfer
learning. arXiv preprint arXiv:1812.11806, 2018. 5

[29] Xiaobo Liu, Zhentao Liu, Guangjun Wang, Zhihua Cai, and Harry Zhang. Ensemble transfer
learning algorithm. IEEE Access, 6:2389–2396, 2017. 5

[30] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781, 2013. v, 10, 11

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 45

BIBLIOGRAPHY

[31] Vinita Nahar, Sayan Unankard, Xue Li, and Chaoyi Pang. Sentiment analysis for effective
detection of cyber bullying. In Asia-Pacific Web Conference, pages 767–774. Springer, 2012.
4

[32] Charles E Notar, Sharon Padgett, and Jessica Roden. Cyberbullying: A review of the liter-
ature. Universal Journal of Educational Research, 1(1):1–9, 2013. 41

[33] Jason Osborne. Improving your data transformations: Applying the box-cox transformation.
Practical Assessment, Research, and Evaluation, 15(1):12, 2010. 43

[34] Sinno Jialin Pan, Ivor W Tsang, James T Kwok, and Qiang Yang. Domain adaptation via
transfer component analysis. IEEE Transactions on Neural Networks, 22(2):199–210, 2010.
5

[35] Yulong Pei. Graph convolutional networks for unsupervised domain adaptation. preprint on
webpage at math.rochester.edu/people/faculty/cohf. 2

[36] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for
word representation. In Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP), pages 1532–1543, 2014. v, 12

[37] Rahat Ibn Rafiq, Homa Hosseinmardi, Richard Han, Qin Lv, Shivakant Mishra, and Sab-
rina Arredondo Mattson. Careful what you share in six seconds: Detecting cyberbullying
instances in vine. In 2015 IEEE/ACM International Conference on Advances in Social Net-
works Analysis and Mining (ASONAM), pages 617–622. IEEE, 2015. 4

[38] Nornadiah Mohd Razali, Yap Bee Wah, et al. Power comparisons of shapiro-wilk, kolmogorov-
smirnov, lilliefors and anderson-darling tests. Journal of statistical modeling and analytics,
2(1):21–33, 2011. 26

[39] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. arXiv preprint arXiv:1908.10084, 2019. 13

[40] Kelly Reynolds, April Kontostathis, and Lynne Edwards. Using machine learning to detect
cyberbullying. In 2011 10th International Conference on Machine learning and applications
and workshops, volume 2, pages 241–244. IEEE, 2011. 18

[41] Semiu Salawu, Yulan He, and Joanna Lumsden. Approaches to automated detection of
cyberbullying: A survey. IEEE Transactions on Affective Computing, 2017. 4

[42] Allison M Schenk and William J Fremouw. Prevalence, psychological impact, and coping of
cyberbully victims among college students. Journal of school violence, 11(1):21–37, 2012. 1

[43] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for
face recognition and clustering. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 815–823, 2015. 13

[44] Stephen M Serra and Hein S Venter. Mobile cyber-bullying: A proposal for a pre-emptive
approach to risk mitigation by employing digital forensic readiness. In 2011 Information
Security for South Africa, pages 1–5. IEEE, 2011. 4

[45] Vivek K Singh, Souvick Ghosh, and Christin Jose. Toward multimodal cyberbullying detec-
tion. In Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in
Computing Systems, pages 2090–2099, 2017. 5

[46] Baochen Sun, Jiashi Feng, and Kate Saenko. Return of frustratingly easy domain adaptation.
arXiv preprint arXiv:1511.05547, 2015. 15

[47] Baochen Sun and Kate Saenko. Deep coral: Correlation alignment for deep domain adapta-
tion. In European conference on computer vision, pages 443–450. Springer, 2016. 5

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 46

BIBLIOGRAPHY

[48] Robert S Tokunaga. Following you home from school: A critical review and synthesis of
research on cyberbullying victimization. Computers in human behavior, 26(3):277–287, 2010.
1

[49] Eric Tzeng, Judy Hoffman, Trevor Darrell, and Kate Saenko. Simultaneous deep transfer
across domains and tasks. In Proceedings of the IEEE International Conference on Computer
Vision, pages 4068–4076, 2015. 5

[50] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adversarial discriminative
domain adaptation. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 7167–7176, 2017. 18

[51] Jesper E Van Engelen and Holger H Hoos. A survey on semi-supervised learning. Machine
Learning, 109(2):373–440, 2020. 6, 13, 42

[52] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural inform-
ation processing systems, pages 5998–6008, 2017. 12

[53] Chang Wan, Rong Pan, and Jiefei Li. Bi-weighting domain adaptation for cross-language
text classification. In Twenty-Second International Joint Conference on Artificial Intelligence,
2011. 5

[54] Ruohan Wang, Antoine Cully, Hyung Jin Chang, and Yiannis Demiris. Magan: Margin
adaptation for generative adversarial networks. arXiv preprint arXiv:1704.03817, 2017. 19

[55] Jun-Ming Xu, Kwang-Sung Jun, Xiaojin Zhu, and Amy Bellmore. Learning from bullying
traces in social media. In Proceedings of the 2012 conference of the North American chapter
of the association for computational linguistics: Human language technologies, pages 656–666.
Association for Computational Linguistics, 2012. 4

[56] Yonghui Xu, Sinno Jialin Pan, Hui Xiong, Qingyao Wu, Ronghua Luo, Huaqing Min, and
Hengjie Song. A unified framework for metric transfer learning. IEEE Transactions on
Knowledge and Data Engineering, 29(6):1158–1171, 2017. 5

[57] Marcos Zampieri, Shervin Malmasi, Preslav Nakov, Sara Rosenthal, Noura Farra, and Ritesh
Kumar. Predicting the Type and Target of Offensive Posts in Social Media. In Proceedings
of NAACL, 2019. 18

[58] Rui Zhao, Anna Zhou, and Kezhi Mao. Automatic detection of cyberbullying on social
networks based on bullying features. In Proceedings of the 17th international conference on
distributed computing and networking, pages 1–6, 2016. 5

[59] Xiaojin Zhu, Zoubin Ghahramani, and John D Lafferty. Semi-supervised learning using
gaussian fields and harmonic functions. In Proceedings of the 20th International conference
on Machine learning (ICML-03), pages 912–919, 2003. 6

[60] Xiaojin Jerry Zhu. Semi-supervised learning literature survey. Technical report, University
of Wisconsin-Madison Department of Computer Sciences, 2005. 20, 42

[61] Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and unlabeled data with label
propagation. 2002. 6

[62] Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou Sun, and Quanquan Gu. Layer-
dependent importance sampling for training deep and large graph convolutional networks. In
Advances in Neural Information Processing Systems, pages 11249–11259, 2019. 16

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 47

Appendix A

Full List of Oversampling Cases

Embedding
Type

Source Data Target Data
Oversampling
Method

Glove CBASU OLID maGAN40P
Glove CBASU OLID maGAN60P
Glove CBASU OLID maGAN80P
Glove CBASU OLID ADASYN40P
Glove CBASU OLID ADASYN60P
Glove CBASU OLID Normal40P
Glove CBASU OLID Normal60P
Glove CBASU Formspring ADASYN40P
Glove CBASU Formspring ADASYN60P
Glove CBASU Formspring Normal40P
Glove CBASU Formspring Normal60P
Glove CBASU Formspring maGAN40P
Glove CBASU Formspring maGAN60P
Glove CBASU Formspring maGAN80P
Glove Formspring OLID ADASYN10P
Glove Formspring OLID ADASYN20P
Glove Formspring OLID ADASYN30P
Glove Formspring OLID ADASYN40P
Glove Formspring OLID ADASYN50P
Glove Formspring OLID Normal10P
Glove Formspring OLID Normal20P
Glove Formspring OLID Normal30P
Glove Formspring OLID Normal40P
Glove Formspring OLID Normal50P
W2V OLID CBASU Normal60P
W2V OLID CBASU Normal80P
W2V OLID CBASU Normal100P
W2V OLID Formspring Normal60P
W2V OLID Formspring Normal80P
W2V OLID Formspring Normal100P
W2V Formspring CBASU Normal10P
W2V Formspring CBASU Normal20P
W2V Formspring CBASU Normal30P
W2V Formspring CBASU Normal40P

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 48

APPENDIX A. FULL LIST OF OVERSAMPLING CASES

W2V CBASU Formspring Normal40P
W2V CBASU Formspring Normal60P
W2V CBASU Formspring Normal80P
ST CBASU Formspring Normal40P
ST CBASU Formspring Normal60P
ST CBASU Formspring Normal80P
ST CBASU OLID Normal40P
ST CBASU OLID Normal60P
ST CBASU OLID Normal80P
Bert Formspring OLID Normal10P
Bert Formspring OLID Normal20P
Bert Formspring OLID Normal30P
Bert Formspring OLID Normal40P
Bert Formspring CBASU Normal10P
Bert Formspring CBASU Normal20P
Bert Formspring CBASU Normal30P
Bert Formspring CBASU Normal40P
Bert CBASU Formspring Normal40P
Bert CBASU Formspring Normal60P
Bert CBASU Formspring Normal80P
Bert CBASU Formspring Normal100P
Bert CBASU OLID Normal40P
Bert CBASU OLID Normal60P
Bert CBASU OLID Normal80P
Bert CBASU OLID Normal100P
Bert OLID CBASU Normal60P
Bert OLID CBASU Normal80P
Bert OLID CBASU Normal100P
Bert OLID Formspring Normal60P
Bert OLID Formspring Normal80P
Bert OLID Formspring Normal100P

Table A.1: All Oversampling Cases

Oversampling Minority Number
Ratio of Oversampled
Minority on Majority

F10P 1193 1.543
F20P 2385 3.085
F30P 3578 4.629
F40P 4770 6.17
F50P 5963 7.71
C40P 6459 1.679
C60P 9688 2.519
C80P 12918 3.360
C100P 16148 4.2
O60P 5304 1.205
O80P 7072 1.607
O100P 8840 2.01

Table A.2: Minority Numbers in Oversampling

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 49

Appendix B

Source-bridge edges and Bridge
number For the First
Construction Method

Embedding
Source-
Target

Oversampling
Method

Source-
Bridge Edges
Degree

Bridge Nodes
/Target
Nodes

Glove C-O None 14 5337/7886
Glove C-F None 11 2095/10602
Glove F-C None 25 3333/16652
Glove F-O None 55 2198/11026
Glove O-F None 3 47/12651
Glove O-C None 3 57/19928
Glove C-O maGAN40P 10 1642/11582
Glove C-O maGAN60P 10 687/12537
Glove C-O maGAN80P 10 753/12471
Glove C-O ADASYN40P 11 2547/10677
Glove C-O ADASYN60P 14 2547/10677
Glove C-O Normal40P 14 2550/10674
Glove C-O Normal60P 11 2539/10685
Glove C-F ADASYN40P 11 2095/10602
Glove C-F ADASYN60P 11 2095/10602
Glove C-F Normal40P 11 2095/10602
Glove C-F Normal60P 11 2095/10602
Glove C-F maGAN40P 10 133/12562
Glove C-F maGAN60P 10 791/11907
Glove C-F maGAN80P 10 804/11894
Glove F-O ADASYN10P 53 2514/10710
Glove F-O ADASYN20P 53 2514/10710
Glove F-O ADASYN30P 53 2547/10677
Glove F-O ADASYN40P 53 2514/10710
Glove F-O ADASYN50P 53 2514/10710
Glove F-O Normal10P 53 2514/10710
Glove F-O Normal20P 53 2514/10710
Glove F-O Normal30P 53 2514/10710
Glove F-O Normal40P 53 2514/10710

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 50

APPENDIX B. SOURCE-BRIDGE EDGES AND BRIDGE NUMBER FOR THE FIRST
CONSTRUCTION METHOD

Glove F-O Normal50P 53 2514/10710
W2V C-O None 55 2827/10388
W2V C-F None 40 3051/9583
W2V F-C None 15 3651/16059
W2V F-O None 15 2127/11088
W2V O-F None 20 2862/9772
W2V O-C None 20 3929/15781
W2V C-F Normal40P 40 3015/9619
W2V C-F Normal60P 40 3051/9583
W2V C-F Normal80P 40 3054/9580
W2V C-O Normal40P 55 2827/10388
W2V C-O Normal60P 55 2840/10375
W2V C-O Normal80P 55 2865/10350
W2V O-C Normal60P 20 3929/15781
W2V O-C Normal80P 20 3933/15777
W2V O-C Normal100P 20 3930/15780
W2V O-F Normal60P 20 2860/9774
W2V O-F Normal80P 20 2861/9773
W2V O-F Normal100P 20 2859/9775
W2V F-C Normal10P 20 2935/16775
W2V F-C Normal20P 20 2921/16789
W2V F-C Normal30P 20 2923/16787
W2V F-C Normal40P 20 2923/16787
ST C-O None 12 5119/8120
ST C-O Normal40P 13 944/12295
ST C-O Normal60P 13 944/12295
ST C-O Normal80P 12 5119/8120
ST C-F None 13 2829/9869
ST C-F Normal40P 13 2829/9869
ST C-F Normal60P 13 2829/9869
ST C-F Normal80P 13 2829/9869
ST F-C None 67 2498/17495
ST F-O None 60 3425/9815
ST O-F None 10 4274/8424
ST O-C None 13 3067/16926
Bert C-F None 18 2573/10125
Bert C-F Normal40P 18 2573/10125
Bert C-F Normal60P 18 2573/10125
Bert C-F Normal80P 18 2573/10125
Bert C-F Normal100P 18 2573/10125
Bert C-O None 12 2025/11215
Bert C-O Normal40P 12 2025/11215
Bert C-O Normal60P 12 2029/11211
Bert C-O Normal80P 12 2044/11196
Bert C-O Normal100P 12 2064/11176
Bert O-F None 8 2352/10345
Bert O-F Normal60P 8 2352/10345
Bert O-F Normal80P 8 2357/10340
Bert O-F Normal100P 8 2377/10320
Bert O-C None 8 3988/16005
Bert O-C Normal60P 10 2322/17671

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 51

APPENDIX B. SOURCE-BRIDGE EDGES AND BRIDGE NUMBER FOR THE FIRST
CONSTRUCTION METHOD

Bert O-C Normal80P 8 2323/17670
Bert O-C Normal100P 8 2377/17616
Bert F-O None 32 2472/11215
Bert F-O Normal10P 35 2136/11104
Bert F-O Normal20P 35 2136/11104
Bert F-O Normal30P 35 2136/11104
Bert F-O Normal40P 35 2136/11104
Bert F-C None 30 2984/17009
Bert F-C Normal10P 35 2442/17511
Bert F-C Normal20P 35 2442/17511
Bert F-C Normal30P 35 2442/17511
Bert F-C Normal40P 35 2940/17053

Table B.1: Bridge Nodes Number and Source-Bridge Edges Degree

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 52

Appendix C

List of Cases Included for
Comparison Between No
Sampling, 1st Order Normal
Oversampling and 2nd Order
Normal Oversampling

Embedding Source Target
Glove CBASU Formspring
W2V CBASU Formspring
Glove CBASU OLID
W2V CBASU OLID
W2V OLID Formspring
W2V OLID CBASU
Glove Formspring OLID
W2V Formspring CBASU
Bert CBASU Formspring
ST CBASU Formspring
Bert CBASU OLID
ST CBASU OLID
Bert OLID Formspring
Bert OLID CBASU
Bert Formspring OLID
Bert Formspring CBASU

Table C.1: Cases Included for Comparison Between No Sampling and Normal Oversampling

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 53

Appendix D

List of Cases Included in
ADASYN Oversampling and
maGAN oversampling

Oversampling
Method

Embedding Source Target

ADASYN40P Glove CBASU OLID
ADASYN60P Glove CBASU OLID
ADASYN40P Glove CBASU Formspring
ADASYN60P Glove CBASU Formspring
ADASYN10P Glove Formspring OLID
ADASYN20P Glove Formspring OLID
ADASYN30P Glove Formspring OLID
ADASYN40P Glove Formspring OLID
ADASYN50P Glove Formspring OLID
maGAN40P Glove CBASU OLID
maGAN60P Glove CBASU OLID
maGAN80P Glove CBASU OLID
maGAN40P Glove CBASU Formspring
maGAN60P Glove CBASU Formspring
maGAN80P Glove CBASU Formspring

Table D.1: Cases using maGAN and ADASYN Oversampling Methods

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 54

Appendix E

Normality Test Results

Data Group Test Statistics p Value
All Data for Graph Construction Method 1, F1
Micro

0.9125 0.04013

All Data for Graph Construction Method 1, F1
Macro

0.9090 0.03366

All Data for Graph Construction Method 2, F1
Micro

0.9577 0.3942

All Data for Graph Construction Method 2, F1
Macro

0.9361 0.1337

SVM Poly Results, F1 Micro 0.7362 3.158×10−5

SVM Poly Results, F1 Macro 0.7962 2.557×10−4

SVM Rbf Results, F1 Micro 0.7432 1.394×10−5

SVM Rbf Results, F1 Macro 0.8031 1.052×10−4

Random Forest Results, F1 Micro 0.7432 3.972×10−5

Random Forest Results, F1 Macro 0.8031 3.313×10−4

ADDA Results, F1 Micro 0.5195 8.767×10−8

ADDA Results, F1 Macro 0.5183 8.535×10−8

GraphSAGE1 Results, F1 Micro 0.7834 1.599×10−4

GraphSAGE1 Results, F1 Macro 0.9240 0.07189
GraphSAGE2 Results, F1 Micro 0.7663 8.706×10−5

GraphSAGE2 Results, F1 Macro 0.7937 2.336×10−4

FastGCN1 Results, F1 Micro 0.8033 3.345×10−4

FastGCN1 Results, F1 Macro 0.9831 0.9457
FastGCN1d Results, F1 Micro 0.7792 1.372×10−4

FastGCN1d Results, F1 Macro 0.6754 4.845×10−6

FastGCN2 Results, F1 Micro 0.7834 1.599×10−4

FastGCN2 Results, F1 Macro 0.9240 0.07189
FastGCN2d Results, F1 Micro 0.7663 8.706×10−5

FastGCN2d Results, F1 Macro 0.7937 2.336×10−4

Glove Results for Word Embedding Method
Comparison, F1 Micro

0.8040 1.707×10−7

Glove Results for Word Embedding Method
Comparison, F1 Macro

0.9087 2.785×10−3

W2V Results for Word Embedding Method Com-
parison, F1 Micro

0.6819 4.046×10−10

W2V Results for Word Embedding Method Com-
parison, F1 Micro

0.8643 8.315×10−6

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 55

APPENDIX E. NORMALITY TEST RESULTS

ST Results for Word Embedding Method Com-
parison, F1 Micro

0.8049 1.792×10−7

ST Results for Word Embedding Method Com-
parison, F1 Macro

0.7603 1.576×10−8

Bert Results for Word Embedding Method Com-
parison, F1 Micro

0.7857 6.053×10−8

Bert Results for Word Embedding Method Com-
parison, F1 Macro

0.8213 4.791×10−7

Non-Oversampling Results for Oversampling
Comparison, F1 Micro

0.7494 3.144×10−15

Non-Oversampling Results for Oversampling
Comparison, F1 Macro

0.8235 1.274×10−12

1st Order Normal Oversampling Results for
Oversampling Comparison, F1 Micro

0.7591 6.388×10−15

1st Order Normal Oversampling Results for
Oversampling Comparison, F1 Macro

0.8275 1.858×10−12

2nd Order Normal Oversampling Results for
Oversampling Comparison, F1 Micro

0.7374 1.348×10−15

2nd Order Normal Oversampling Results for
Oversampling Comparison, F1 Macro

0.8345 3.614×10−12

3rd Order Normal Oversampling Results for
Oversampling Comparison, F1 Micro

0.7807 3.411×10−13

3rd Order Normal Oversampling Results for
Oversampling Comparison, F1 Macro

0.8791 2.633×10−9

ADASYN Oversampling Results for Over-
sampling Comparison, F1 Micro

0.7373 2.168×10−11

ADASYN Oversampling Results for Over-
sampling Comparison, F1 Macro

0.8188 3.892×10−8

maGAN Oversampling Results for Oversampling
Comparison, F1 Micro

0.8135 1.313×10−5

maGAN Oversampling Results for Oversampling
Comparison, F1 Macro

0.8617 1.762×10−3

Table E.1: Normality Test For All Data Groups

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 56

Appendix F

All Experiment Results

Embedding
Source-
Target

Oversampling Classifier F1 Micro F1 Macro

Glove C-O None

GraphSAGE1 0.64285 0.43563
GraphSAGE2 0.61525 0.44859
FastGCN1 0.66349 0.30919
FastGCN1d 0.66712 0.40103
FastGCN2 0.61910 0.28118
FastGCN2d 0.62046 0.44709
SVM,poly 0.70992 0.59047
SVM,rbf 0.70924 0.56015
Random
Forest

0.69298 0.50643

ADDA 0.6673 0.4002

Glove C-F None

GraphSAGE1 0.93345 0.48514
GraphSAGE2 0.83052 0.46759
FastGCN1 0.93912 0.45302
FastGCN1d 0.93637 0.48603
FastGCN2 0.92463 0.28118
FastGCN2d 0.93062 0.48429
SVM,poly 0.93243 0.66809
SVM,rbf 0.93983 0.69473
Random
Forest

0.94266 0.63302

ADDA 0.9391 0.4843

Glove F-C None

GraphSAGE1 0.81131
0.46825

GraphSAGE2 0.78819
0.44607

FastGCN1 0.80721
0.42236

FastGCN1d 0.93684
0.48617

FastGCN2 0.80746
0.33583

FastGCN2d 0.80761 0.44678

SVM,poly 0.81581
0.52589

SVM,rbf 0.80760 0.44678

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 57

APPENDIX F. ALL EXPERIMENT RESULTS

Random
Forest

0.80745
0.52518

ADDA 0.8076 0.4468

Glove F-O None

GraphSAGE1 0.66500 0.40728
GraphSAGE2 0.64912 0.44595
FastGCN1 0.66765 0.46556
FastGCN1d 0.66735 0.40090
FastGCN2 0.61910 0.28118
FastGCN2d 0.62046 0.44709
SVM,poly 0.68315 0.46327
SVM,rbf 0.66764 0.40122
Random
Forest

0.67241 0.45328

ADDA 0.6673 0.4002

Glove O-F None

GraphSAGE1 0.66270 0.45224
FastGCN1 0.12159 0.24464
FastGCN1d 0.33777 0.29420
SVM,poly 0.94109 0.60304
SVM,rbf 0.93699 0.65718
Random
Forest

0.93754 0.63308

ADDA 0.9391 0.4843

Glove O-C None

GraphSAGE1 0.56963 0.50324
FastGCN1 0.40645 0.54676
FastGCN1d 0.56943 0.46237
SVM,poly 0.81341 0.64126
SVM,rbf 0.80645 0.68000
Random
Forest

0.82111 0.67089

ADDA 0.7951 0.5349

Glove C-O maGAN40P

GraphSAGE1 0.49433 0.48915

GraphSAGE2 0.63014
0.46331

FastGCN1 0.64126
0.28723

FastGCN1d 0.59271
0.49993

FastGCN2 0.65616
0.28923

FastGCN2d 0.63612
0.46759

SVM,poly 0.66477
0.58765

SVM,rbf 0.70908
0.56190

Random
Forest

0.69328
0.50409

ADDA 0.6305 0.4064

Glove C-O maGAN60P

GraphSAGE1 0.50197
0.48717

GraphSAGE2 0.62326 0.46627
FastGCN1 0.60216 0.67114
FastGCN1d 0.57864 0.50664

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 58

APPENDIX F. ALL EXPERIMENT RESULTS

FastGCN2 0.62719 0.57799
FastGCN2d 0.61283 0.47706
SVM,poly 0.66787 0.58957
SVM,rbf 0.70908 0.56213
Random
Forest

0.69419 0.50615

ADDA 0.6248 0.4148

Glove C-O maGAN80P

GraphSAGE1 0.56292 0.50173
GraphSAGE2 0.41016 0.40437
FastGCN1 0.56549 0.56237
FastGCN1d 0.58379 0.50131
FastGCN2 0.57615 0.40115
FastGCN2d 0.60345 0.47915
SVM,poly 0.67460 0.59587
SVM,rbf 0.71037 0.56685
Random
Forest

0.69517 0.50840

ADDA 0.6430 0.4199

Glove C-O ADASYN40P

GraphSAGE1 0.54900 0.50780
GraphSAGE2 0.57985 0.49344
FastGCN1 0.64171 0.29022
FastGCN1d 0.62931 0.47263
FastGCN2 0.65207 0.54674
FastGCN2d 0.61230 0.47332
SVM,poly 0.71067 0.63169
SVM,rbf 0.70924 0.56015
Random
Forest

0.70198 0.56638

ADDA 0.6673 0.4002

Glove C-O ADASYN60P

GraphSAGE1 0.56299 0.50286
GraphSAGE2 0.59929 0.48653
FastGCN1 0.60390 0.29776
FastGCN1d 0.60451 0.48695
FastGCN2 0.63052 0.49989
FastGCN2d 0.62008 0.46995
SVM,poly 0.69993 0.64369
SVM,rbf 0.71067 0.65521
Random
Forest

0.70477 0.60841

ADDA 0.6673 0.4002

Glove C-O Normal40P

GraphSAGE1 0.59037 0.49869
GraphSAGE2 0.64655 0.43042
FastGCN1 0.63256 0.29680
FastGCN1d 0.61222 0.48431
FastGCN2 0.64292 0.64292
FastGCN2d 0.62576 0.46788
SVM,poly 0.71347 0.62349
SVM,rbf 0.71347 0.62349
Random
Forest

0.71347 0.62349

ADDA 0.6673 0.4002

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 59

APPENDIX F. ALL EXPERIMENT RESULTS

Glove C-O Normal60P

GraphSAGE1 0.56518 0.50743
GraphSAGE2 0.60851 0.48863
FastGCN1 0.61199 0.27705
FastGCN1d 0.61766 0.48154
FastGCN2 0.61956 0.56648
FastGCN2d 0.63286 0.45939
SVM,poly 0.69222 0.64681
SVM,rbf 0.71324 0.66864
Random
Forest

0.70062 0.56631

ADDA 0.6552 0.4025

Glove C-F ADASYN40P

GraphSAGE1 0.86195 0.49378
GraphSAGE2 0.92062 0.49376
FastGCN1 0.83990 0.38040
FastGCN1d 0.90770 0.52352
FastGCN2 0.90873 0.50664
FastGCN2d 0.92487 0.49074
SVM,poly 0.86423 0.62656
SVM,rbf 0.87124 0.64424
Random
Forest

0.91644 0.64593

ADDA 0.9391 0.4843

Glove C-F ADASYN60P

GraphSAGE1 0.80753 0.50578
GraphSAGE2 0.91928 0.49408
FastGCN1 0.80832 0.31217
FastGCN1d 0.81911 0.51204
FastGCN2 0.90038 0.57260
FastGCN2d 0.91794 0.48801
SVM,poly 0.69222 0.64681
SVM,rbf 0.71324 0.66864
Random
Forest

0.70062 0.56631

ADDA 0.9391 0.4844

Glove C-F Normal40P

GraphSAGE1 0.59037 0.49869
GraphSAGE2 0.64655 0.43042
FastGCN1 0.63256 0.29680
FastGCN1d 0.61222 0.48431
FastGCN2 0.64292 0.64292
FastGCN2d 0.62576 0.46788
SVM,poly 0.71347 0.62349
SVM,rbf 0.71347 0.62349
Random
Forest

0.71347 0.62349

ADDA 0.9391 0.4843

Glove C-F Normal60P

GraphSAGE1 0.82714 0.51393
GraphSAGE2 0.93401 0.48649
FastGCN1 0.80903 0.28893
FastGCN1d 0.81556 0.50925
FastGCN2 0.88967 0.29680
FastGCN2d 0.91085 0.50572
SVM,poly 0.80059 0.58346
SVM,rbf 0.78232 0.58240

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 60

APPENDIX F. ALL EXPERIMENT RESULTS

Random
Forest

0.92250 0.65613

ADDA 0.9391 0.4843

Glove C-F maGAN40P

GraphSAGE1 0.60702 0.41255
GraphSAGE2 0.92487 0.49961
FastGCN1 0.65616 0.28118
FastGCN1d 0.63612 0.46759
FastGCN2 0.89061 0.54675
FastGCN2d 0.92314 0.49297
SVM,poly 0.81296 0.59114
SVM,rbf 0.93975 0.69368
Random
Forest

0.94306 0.63453

ADDA 0.9391 0.4843

Glove C-F maGAN60P

GraphSAGE1 0.89872 0.57309
GraphSAGE2 0.92629 0.49537
FastGCN1 0.79201 0.49988
FastGCN1d 0.81556 0.51784
FastGCN2 0.85580 0.30974
FastGCN2d 0.90006 0.50740
SVM,poly 0.77925 0.57083
SVM,rbf 0.93880 0.69457
Random
Forest

0.94329 0.63159

ADDA 0.9391 0.4843

Glove C-F maGAN80P

GraphSAGE1 0.29532 0.26468
GraphSAGE2 0.37171 0.30752
FastGCN1 0.54631 0.34818
FastGCN1d 0.71208 0.48324
FastGCN2 0.54631 0.34818
FastGCN2d 0.75516 0.49992
SVM,poly 0.75744 0.55983
SVM,rbf 0.93747 0.69114
Random
Forest

0.94251 0.62718

ADDA 0.0609 0.0574

Glove F-O ADASYN10P

GraphSAGE1 0.66735 0.40024
GraphSAGE2 0.63370 0.46041
FastGCN1 0.66720 0.40019
FastGCN1d 0.66720 0.40019
FastGCN2 0.66674 0.28711
FastGCN2d 0.66697 0.40271
SVM,poly 0.69404 0.51262
SVM,rbf 0.67445 0.42328
Random
Forest

0.67052 0.41632

ADDA 0.6673 0.4002

Glove F-O ADASYN20P

GraphSAGE1 0.60027 0.48262
GraphSAGE2 0.60428 0.48795
FastGCN1 0.66485 0.26494
FastGCN1d 0.66546 0.40619
FastGCN2 0.66682 0.26647
FastGCN2d 0.65449 0.42585

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 61

APPENDIX F. ALL EXPERIMENT RESULTS

SVM,poly 0.70757 0.57905
SVM,rbf 0.69517 0.49426
Random
Forest

0.66893 0.40559

ADDA 0.6673 0.4002

Glove F-O ADASYN30P

GraphSAGE1 0.57033 0.49601
GraphSAGE2 0.65563 0.43775
FastGCN1 0.64806 0.30817
FastGCN1d 0.62371 0.47010
FastGCN2 0.66553 0.26556
FastGCN2d 0.64844 0.42891
SVM,poly 0.71355 0.60353
SVM,rbf 0.69820 0.50718
Random
Forest

0.66855 0.40415

ADDA 0.6670 0.4010

Glove F-O ADASYN40P

GraphSAGE1 0.54462 0.49702
GraphSAGE2 0.54688 0.54688
FastGCN1 0.62954 0.47382
FastGCN1d 0.60345 0.47609
FastGCN2 0.54688 0.51581
FastGCN2d 0.64209 0.64209
SVM,poly 0.71082 0.60934
SVM,rbf 0.69820 0.50943
Random
Forest

0.66870 0.40464

ADDA 0.6671 0.4004

Glove F-O ADASYN50P

GraphSAGE1 0.66470 0.40443
GraphSAGE2 0.51550 0.49288
FastGCN1 0.59770 0.32714
FastGCN1d 0.58507 0.48312
FastGCN2 0.65434 0.30057
FastGCN2d 0.64201 0.44845
SVM,poly 0.71000 0.61591
SVM,rbf 0.69850 0.51450
Random
Forest

0.66863 0.40440

ADDA 0.6673 0.4002

Glove F-O Normal10P

GraphSAGE1 0.63506 0.45563
GraphSAGE2 0.63649 0.45799
FastGCN1 0.66697 0.23432
FastGCN1d 0.66697 0.40314
FastGCN2 0.66720 0.29421
FastGCN2d 0.66289 0.40853
SVM,poly 0.69207 0.52662
SVM,rbf 0.68315 0.45409
Random
Forest

0.67196 0.42283

ADDA 0.6673 0.4002

Glove F-O Normal20P

GraphSAGE1 0.62349 0.46690
GraphSAGE2 0.60670 0.48645
FastGCN1 0.66485 0.29398
FastGCN1d 0.66583 0.40379

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 62

APPENDIX F. ALL EXPERIMENT RESULTS

FastGCN2 0.66727 0.67935
FastGCN2d 0.66077 0.41710
SVM,poly 0.69630 0.58004
SVM,rbf 0.71052 0.56731
Random
Forest

0.66764 0.40122

ADDA 0.6673 0.4002

Glove F-O Normal30P

GraphSAGE1 0.57328 0.49498
GraphSAGE2 0.66735 0.40024
FastGCN1 0.64080 0.28095
FastGCN1d 0.62613 0.45488
FastGCN2 0.66485 0.25666
FastGCN2d 0.65162 0.43076
SVM,poly 0.69895 0.59742
SVM,rbf 0.70992 0.58798
Random
Forest

0.66757 0.40098

ADDA 0.6673 0.4002

Glove F-O Normal40P

GraphSAGE1 0.54658 0.49794
GraphSAGE2 0.54454 0.49839
FastGCN1 0.63596 0.51861
FastGCN1d 0.61124 0.47442
FastGCN2 0.66047 0.30419
FastGCN2d 0.64224 0.44888
SVM,poly 0.70183 0.60901
SVM,rbf 0.71166 0.60374
Random
Forest

0.66757 0.40098

ADDA 0.6670 0.4005

Glove F-O Normal50P

GraphSAGE1 0.65048 0.42706
GraphSAGE2 0.51626 0.49326
FastGCN1 0.60859 0.28756
FastGCN1d 0.58379 0.48017
FastGCN2 0.65850 0.26556
FastGCN2d 0.63203 0.46716
SVM,poly 0.69850 0.61560
SVM,rbf 0.71355 0.61374
Random
Forest

0.66749 0.40073

ADDA 0.4756 0.4565

W2V C-O None

GraphSAGE1 0.59304 0.49151
GraphSAGE2 0.62429 0.47062
FastGCN1 0.66258 0.31243
FastGCN1d 0.66583 0.40229
FastGCN2 0.66356 0.35929
FastGCN2d 0.66553 0.40154
SVM,poly 0.71517 0.58032
SVM,rbf 0.71714 0.58395
Random
Forest

0.68543 0.46148

ADDA 0.6673 0.4002

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 63

APPENDIX F. ALL EXPERIMENT RESULTS

W2V C-F None

GraphSAGE1 0.86141 0.51233
GraphSAGE2 0.84478 0.47409
FastGCN1 0.93779 0.76532
FastGCN1d 0.93430 0.49362
FastGCN2 0.92417 0.32313
FastGCN2d 0.93058 0.48765
SVM,poly 0.93549 0.67909
SVM,rbf 0.93525 0.67768
Random
Forest

0.94024 0.64821

ADDA 0.7253 0.4416

W2V F-C None

GraphSAGE1 0.82141 0.54956
GraphSAGE2 0.79508 0.44728
FastGCN1 0.80786 0.45478
FastGCN1d 0.80573 0.47161
FastGCN2 0.80512 0.64048
FastGCN2d 0.80502 0.44599
SVM,poly 0.83130 0.59382
SVM,rbf 0.81131 0.48297
Random
Forest

0.80649 0.45509

ADDA 0.8051 0.4460

W2V F-O None

GraphSAGE1 0.64646 0.44284
GraphSAGE2 0.65123 0.44267
FastGCN1 0.66727 0.28118
FastGCN1d 0.66727 0.28118
FastGCN2 0.66742 0.28118
FastGCN2d 0.66682 0.40071
SVM,poly 0.67370 0.42134
SVM,rbf 0.66863 0.40462
Random
Forest

0.66742 0.40114

ADDA 0.6673 0.4002

W2V O-F None

GraphSAGE1 0.86964 0.49839
GraphSAGE2 0.79658 0.47398
FastGCN1 0.77917 0.37491
FastGCN1d 0.79460 0.48353
FastGCN2 0.77940 0.27275
FastGCN2d 0.81756 0.49217
SVM,poly 0.86378 0.62454
SVM,rbf 0.86979 0.62945
Random
Forest

0.89187 0.63741

ADDA 0.8606 0.4889

W2V O-C None

GraphSAGE1 0.79817 0.48625
GraphSAGE2 0.60071 0.44333
FastGCN1 0.79655 0.51462
FastGCN1d 0.78234 0.48355
FastGCN2 0.75018 0.34526
FastGCN2d 0.78503 0.46472
SVM,poly 0.77625 0.71034
SVM,rbf 0.76763 0.70235

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 64

APPENDIX F. ALL EXPERIMENT RESULTS

Random
Forest

0.82227 0.71197

ADDA 0.8055 0.4461

W2V C-F Normal40P

GraphSAGE1 0.75336 0.48939
GraphSAGE2 0.83196 0.48683
FastGCN1 0.86932 0.98735
FastGCN1d 0.84494 0.51530
FastGCN2 0.85088 0.42236
FastGCN2d 0.82911 0.49908
SVM,poly 0.90984 0.66159
SVM,rbf 0.90216 0.66008
Random
Forest

0.92021 0.65317

ADDA 0.7416 0.4907

W2V C-F Normal60P

GraphSAGE1 0.72406 0.49974
GraphSAGE2 0.79642 0.48859
FastGCN1 0.80505 0.72406
FastGCN1d 0.81407 0.50927
FastGCN2 0.78265 0.58904
FastGCN2d 0.78091 0.48941
SVM,poly 0.87517 0.63493
SVM,rbf 0.83955 0.61296
Random
Forest

0.88618 0.62915

ADDA 0.6992 0.4648

W2V C-F Normal80P

GraphSAGE1 0.91760 0.50139
GraphSAGE2 0.52382 0.38658
FastGCN1 0.74149 0.68719
FastGCN1d 0.76904 0.49664
FastGCN2 0.76405 0.89823
FastGCN2d 0.76120 0.47272
SVM,poly 0.84779 0.61441
SVM,rbf 0.79040 0.57983
Random
Forest

0.84304 0.60163

ADDA 0.7367 0.4783

W2V C-O Normal40P

GraphSAGE1 0.61937 0.47086
GraphSAGE2 0.52123 0.49357
FastGCN1 0.63557 0.87865
FastGCN1d 0.62777 0.46105
FastGCN2 0.64253 0.46864
FastGCN2d 0.63859 0.45977
SVM,poly 0.72281 0.61925
SVM,rbf 0.73060 0.64453
Random
Forest

0.69572 0.50354

ADDA 0.6349 0.4634

W2V C-O Normal60P

GraphSAGE1 0.57510 0.50095
GraphSAGE2 0.57374 0.49255
FastGCN1 0.58017 0.85917
FastGCN1d 0.56406 0.49716
FastGCN2 0.58456 0.37862
FastGCN2d 0.60189 0.49128

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 65

APPENDIX F. ALL EXPERIMENT RESULTS

SVM,poly 0.72463 0.64128
SVM,rbf 0.73174 0.67647
Random
Forest

0.70715 0.54990

ADDA 0.5658 0.4615

W2V C-O Normal80P

GraphSAGE1 0.55551 0.49664
GraphSAGE2 0.54037 0.49332
FastGCN1 0.56542 0.37701
FastGCN1d 0.55785 0.49482
FastGCN2 0.58903 0.70569
FastGCN2d 0.54612 0.49406
SVM,poly 0.72364 0.64941
SVM,rbf 0.72811 0.68554
Random
Forest

0.71161 0.57977

ADDA 0.5915 0.5107

W2V O-C Normal60P

GraphSAGE1 0.79706 0.48299
GraphSAGE2 0.47128 0.38725
FastGCN1 0.69401 0.68787
FastGCN1d 0.93383 0.49112
FastGCN2 0.79848 0.55963
FastGCN2d 0.57494 0.43329
SVM,poly 0.76463 0.70230
SVM,rbf 0.75124 0.69157
Random
Forest

0.81674 0.71485

ADDA 0.6229 0.5095

W2V O-C Normal80P

GraphSAGE1 0.78432 0.47993
GraphSAGE2 0.52400 0.42091
FastGCN1 0.74871 0.52083
FastGCN1d 0.59929 0.49567
FastGCN2 0.76535 0.39585
FastGCN2d 0.64911 0.43497
SVM,poly 0.74997 0.69288
SVM,rbf 0.72739 0.67586
Random
Forest

0.80837 0.71999

ADDA 0.7083 0.4730

W2V O-C Normal100P

GraphSAGE1 0.73186 0.52501
GraphSAGE2 0.34044 0.30846
FastGCN1 0.69853 0.35929
FastGCN1d 0.70198 0.58383
FastGCN2 0.47555 0.80795
FastGCN2d 0.55687 0.42056
SVM,poly 0.73566 0.68182
SVM,rbf 0.70669 0.66099
Random
Forest

0.79218 0.71319

ADDA 0.7769 0.5048

W2V O-F Normal60P

GraphSAGE1 0.83164 0.48423
GraphSAGE2 0.87051 0.49458
FastGCN1 0.93913 0.68622
FastGCN1d 0.93383 0.49112

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 66

APPENDIX F. ALL EXPERIMENT RESULTS

FastGCN2 0.78186 0.51655
FastGCN2d 0.82041 0.48515
SVM,poly 0.84755 0.61345
SVM,rbf 0.84185 0.60921
Random
Forest

0.87304 0.62430

ADDA 0.8885 0.5053

W2V O-F Normal80P

GraphSAGE1 0.68569 0.46513
GraphSAGE2 0.85753 0.49703
FastGCN1 0.68054 0.35963
FastGCN1d 0.69345 0.46852
FastGCN2 0.73516 0.32176
FastGCN2d 0.72519 0.47163
SVM,poly 0.81890 0.59326
SVM,rbf 0.79768 0.58036
Random
Forest

0.82562 0.58985

ADDA 0.8641 0.5053

W2V O-F Normal100P

GraphSAGE1 0.69353 0.46761
GraphSAGE2 0.74331 0.48345
FastGCN1 0.70120 0.38062
FastGCN1d 0.69930 0.46992
FastGCN2 0.71529 0.30959
FastGCN2d 0.70057 0.46705
SVM,poly 0.79515 0.57730
SVM,rbf 0.75945 0.55541
Random
Forest

0.78731 0.56307

ADDA 0.3585 0.3091

W2V F-C Normal10P

GraphSAGE1 0.79548 0.52705
GraphSAGE2 0.79234 0.45030
FastGCN1 0.80700 0.37491
FastGCN1d 0.80736 0.46111
FastGCN2 0.80472 0.67313
FastGCN2d 0.80518 0.44987
SVM,poly 0.84312 0.65906
SVM,rbf 0.84023 0.65000
Random
Forest

0.80750 0.46116

ADDA 0.8051 0.4460

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 67

APPENDIX F. ALL EXPERIMENT RESULTS

W2V F-C Normal20P

GraphSAGE1 0.81380 0.53000
GraphSAGE2 0.79914 0.45799
FastGCN1 0.81644 0.62484
FastGCN1d 0.81639 0.52328
FastGCN2 0.80304 0.75684
FastGCN2d 0.80497 0.47838
SVM,poly 0.84956 0.69844
SVM,rbf 0.84277 0.84277
Random
Forest

0.80969 0.47338

ADDA 0.6144 0.4390

W2V F-C Normal30P

GraphSAGE1 0.77763 0.50669
GraphSAGE2 0.77123 0.47651
FastGCN1 0.80411 0.58593
FastGCN1d 0.78732 0.49105
FastGCN2 0.80639 0.50927
FastGCN2d 0.80644 0.45558
SVM,poly 0.84936 0.70804
SVM,rbf 0.84474 0.73803
Random
Forest

0.81146 0.81146

ADDA 0.7202 0.4780

W2V F-C Normal40P

GraphSAGE1 0.79691 0.49878
GraphSAGE2 0.73009 0.45381
FastGCN1 0.79827 0.45711
FastGCN1d 0.74937 0.45530
FastGCN2 0.80888 0.56532
FastGCN2d 0.80472 0.50140
SVM,poly 0.84977 0.71228
SVM,rbf 0.84165 0.74025
Random
Forest

0.81319 0.49404

ADDA 0.7825 0.4521

ST C-O None

GraphSAGE1 0.66503 0.40199
GraphSAGE2 0.57160 0.50127
FastGCN1 0.65566 0.58859

FastGCN1d 0.66405
0.41468

FastGCN2 0.66767 0.71886
FastGCN2d 0.66767 0.40036
SVM,poly 0.66767 0.40036
SVM,rbf 0.66767 0.40036
Random
Forest

0.66895 0.41505

ADDA 0.6677 0.4004

ST C-F None

GraphSAGE1 0.90652 0.49872
GraphSAGE2 0.66640 0.42067
FastGCN1 0.93912 0.56967

FastGCN1d 0.93912
0.48430

FastGCN2 0.93590 0.60967
FastGCN2d 0.93763 0.48391
SVM,poly 0.93912 0.48430

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 68

APPENDIX F. ALL EXPERIMENT RESULTS

SVM,rbf 0.93912 0.48430
Random
Forest

0.93203 0.52477

ADDA 0.9391 0.4843

ST F-C None

GraphSAGE1
0.79773
0.45773

GraphSAGE2 0.80618 0.44635

FastGCN1
0.80768
0.64047

FastGCN1d 0.80768 0.44681

FastGCN2
0.80768
0.78141

FastGCN2d 0.80768 0.44681
SVM,poly 0.80768 0.44680
SVM,rbf 0.80768 0.44680
Random
Forest

0.80703
0.45142

ADDA 0.8077 0.4468

ST F-O None

GraphSAGE1 0.66767 0.40036
GraphSAGE2 0.64977 0.44381
FastGCN1 0.66767 0.53366
FastGCN1d 0.66767 0.40036
FastGCN2 0.66767 0.46901
FastGCN2d 0.66767 0.40036
SVM,poly 0.66767 0.40036
SVM,rbf 0.66767 0.40036
Random
Forest

0.66971 0.40844

ADDA 0.6677 0.4004

ST O-C None

GraphSAGE1 0.82674 0.64045
GraphSAGE2 0.66718 0.46146
FastGCN1 0.80768 0.67686
FastGCN1d 0.80768 0.44681
FastGCN2 0.39369 0.70238
FastGCN2d 0.80768 0.44681
SVM,poly 0.80768 0.44680
SVM,rbf 0.80768 0.44680
Random
Forest

0.77537 0.52927

ADDA 0.8077 0.4468

ST O-F None

GraphSAGE1 0.92014 0.49815
GraphSAGE2 0.93408 0.49233
FastGCN1 0.93912 0.61215
FastGCN1d 0.74807 0.49724
FastGCN2 0.93133 0.55078
FastGCN2d 0.93912 0.48430
SVM,poly 0.93912 0.48430
SVM,rbf 0.93912 0.48430
Random
Forest

0.91093 0.52740

ADDA 0.9391 0.4843

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 69

APPENDIX F. ALL EXPERIMENT RESULTS

ST C-O Normal40P

GraphSAGE1 0.50642 0.48723
GraphSAGE2 0.50347 0.48761
FastGCN1 0.56427 0.92171
FastGCN1d 0.53618 0.53618
FastGCN2 0.54766 0.86177
FastGCN2d 0.60921 0.48093
SVM,poly 0.66767 0.40036
SVM,rbf 0.66767 0.40036
Random
Forest

0.66925 0.44403

ADDA 0.6677 0.4004

ST C-O Normal60P

GraphSAGE1 0.55952 0.49375
GraphSAGE2 0.61548 0.47810
FastGCN1 0.54260 0.89984
FastGCN1d 0.56964 0.49865
FastGCN2 0.61073 0.92166
FastGCN2d 0.62402 0.46527
SVM,poly 0.61087 0.52965
SVM,rbf 0.65929 0.50420
Random
Forest

0.66578 0.49490

ADDA 0.6677 0.4004

ST C-O Normal80P

GraphSAGE1 0.62266 0.47845
GraphSAGE2 0.59569 0.49064
FastGCN1 0.60823 0.91538
FastGCN1d 0.62024 0.47876
FastGCN2 0.59517 0.93756
FastGCN2d 0.60695 0.47751
SVM,poly 0.51676 0.51314
SVM,rbf 0.54154 0.53148
Random
Forest

0.65407 0.53433

ADDA 0.6677 0.4004

ST C-F Normal40P

GraphSAGE1 0.72444 0.47648
GraphSAGE2 0.91928 0.49408
FastGCN1 0.75358 0.45883
FastGCN1d 0.83045 0.50958
FastGCN2 0.71279 0.76089
FastGCN2d 0.72783 0.47455
SVM,poly 0.93912 0.48430
SVM,rbf 0.93912 0.48430
Random
Forest

0.91093 0.56338

ADDA 0.9391 0.4843

ST C-F Normal60P

GraphSAGE1 0.86620 0.50547
GraphSAGE2 0.92172 0.49801
FastGCN1 0.76398 0.65227
FastGCN1d 0.77894 0.50387
FastGCN2 0.84242 0.64629
FastGCN2d 0.85848 0.50486
SVM,poly 0.69294 0.48941
SVM,rbf 0.75909 0.51449

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 70

APPENDIX F. ALL EXPERIMENT RESULTS

Random
Forest

0.85359
0.54979

ADDA 0.9391 0.4843

ST C-F Normal80P

GraphSAGE1 0.77595 0.50315
GraphSAGE2 0.90093 0.50022
FastGCN1 0.70452 0.72805
FastGCN1d 0.70153 0.47718
FastGCN2 0.83194 0.63609
FastGCN2d 0.82052 0.48692
SVM,poly 0.43684 0.36058
SVM,rbf 0.39376 0.33399
Random
Forest

0.76437 0.51715

ADDA 0.0625 0.0593

Bert C-O None

GraphSAGE1 0.66692 0.40355
GraphSAGE2 0.66571 0.40310
FastGCN1 0.66631 0.74394
FastGCN1d 0.66767 0.40145
FastGCN2 0.66767 0.63297
FastGCN2d 0.66344 0.41119
SVM,poly 0.66767 0.40036
SVM,rbf 0.66767 0.40036
Random
Forest

0.66767 0.40036

ADDA 0.6677 0.4004

Bert C-F None

GraphSAGE1 0.87730 0.50346
GraphSAGE2 0.85439 0.48085
FastGCN1 0.92007 0.62485
FastGCN1d 0.93519 0.48687
FastGCN2 0.91085 0.70618
FastGCN2d 0.93227 0.49047
SVM,poly 0.93951 0.49708
SVM,rbf 0.93936 0.49203
Random
Forest

0.93912 0.48430

ADDA 0.9391 0.4843

Bert F-C None

GraphSAGE1 0.79878 0.51186
GraphSAGE2 0.92838 0.60735
FastGCN1 0.80763 0.64351
FastGCN1d 0.80768 0.44681
FastGCN2 0.77457 0.64926
FastGCN2d 0.80723 0.44744
SVM,poly 0.80768 0.44680
SVM,rbf 0.80768 0.44680
Random
Forest

0.80768 0.44680

ADDA 0.8077 0.4468

Bert F-C None

GraphSAGE1 0.79878 0.51186
GraphSAGE2 0.92838 0.60735
FastGCN1 0.80763 0.64351
FastGCN1d 0.80768 0.44681
FastGCN2 0.77457 0.64926
FastGCN2d 0.80723 0.44744

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 71

APPENDIX F. ALL EXPERIMENT RESULTS

SVM,poly 0.80768 0.44680
SVM,rbf 0.80768 0.44680
Random
Forest

0.80768 0.44680

ADDA 0.8077 0.4468

Bert F-O None

GraphSAGE1 0.66495 0.40515
GraphSAGE2 0.66707 0.40058
FastGCN1 0.66767 0.54932
FastGCN1d 0.66767 0.40037
FastGCN2 0.66752 0.46864
FastGCN2d 0.66692 0.40333
SVM,poly 0.66767 0.40036
SVM,rbf 0.66767 0.40036
Random
Forest

0.66767 0.40036

ADDA 0.6677 0.4004

Bert O-C None

GraphSAGE1 0.77117 0.60003
GraphSAGE2 0.78092 0.49401
FastGCN1 0.80776 0.91041
FastGCN1d 0.77947 0.57407
FastGCN2 0.59751 0.65619
FastGCN2d 0.79698 0.44689
SVM,poly 0.80768 0.44680
SVM,rbf 0.80768 0.44680
Random
Forest

0.57580 0.49036

ADDA 0.7453 0.4638

Bert O-F None

GraphSAGE1 0.93109 0.48443
GraphSAGE2 0.92007 0.49536
FastGCN1 0.85840 0.49988
FastGCN1d 0.92156 0.49324
FastGCN2 0.72350 0.57799
FastGCN2d 0.84675 0.50264
SVM,poly 0.93912 0.48430
SVM,rbf 0.93912 0.48430
Random
Forest

0.63443 0.43905

ADDA 0.8256 0.4801

Bert C-O Normal40P

GraphSAGE1 0.63421 0.46104
GraphSAGE2 0.66767 0.40477
FastGCN1 0.62304 0.59401
FastGCN1d 0.56352 0.49957
FastGCN2 0.65816 0.60306
FastGCN2d 0.59222 0.48492
SVM,poly 0.66767 0.40036
SVM,rbf 0.66767 0.40036
Random
Forest

0.66767 0.40036

ADDA 0.6313 0.4542

Bert C-O Normal60P

GraphSAGE1 0.62545 0.47385
GraphSAGE2 0.65801 0.42353
FastGCN1 0.62953 0.65816
FastGCN1d 0.63014 0.47004

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 72

APPENDIX F. ALL EXPERIMENT RESULTS

FastGCN2 0.65974 0.72677
FastGCN2d 0.57545 0.49678
SVM,poly 0.66767 0.40036
SVM,rbf 0.66767 0.40036
Random
Forest

0.66767 0.40036

ADDA 0.6210 0.4621

Bert C-O Normal80P

GraphSAGE1 0.66110 0.42416
GraphSAGE2 0.64003 0.45821
FastGCN1 0.62485 0.77408
FastGCN1d 0.62500 0.47417
FastGCN2 0.64071 0.88771
FastGCN2d 0.64086 0.45753
SVM,poly 0.66767 0.40036
SVM,rbf 0.66767 0.40036
Random
Forest

0.66767 0.40036

ADDA 0.5115 0.4735

Bert C-O Normal100P

GraphSAGE1 0.62530 0.47471
GraphSAGE2 0.66095 0.41833
FastGCN1 0.62326 0.70296
FastGCN1d 0.62296 0.47656
FastGCN2 0.63995 0.85554
FastGCN2d 0.64018 0.45915
SVM,poly 0.66767 0.40036
SVM,rbf 0.66767 0.40036
Random
Forest

0.66767 0.40036

ADDA 0.5330 0.4902

Bert C-F Normal40P

GraphSAGE1 0.75500 0.48217
GraphSAGE2 0.84580 0.48644
FastGCN1 0.67396 0.82914
FastGCN1d 0.78123 0.49020
FastGCN2 0.78776 0.47560
FastGCN2d 0.82076 0.99905
SVM,poly 0.93439 0.51450
SVM,rbf 0.93439 0.51450
Random
Forest

0.93912 0.48430

ADDA 0.7728 0.4476

Bert C-F Normal60P

GraphSAGE1 0.76177 0.47497
GraphSAGE2 0.74398 0.48793
FastGCN1 0.70145 0.67172
FastGCN1d 0.73744 0.47144
FastGCN2 0.66318 0.64592
FastGCN2d 0.71397 0.47449
SVM,poly 0.91612 0.53239
SVM,rbf 0.87785 0.53606
Random
Forest

0.93912 0.48430

ADDA 0.7808 0.4608

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 73

APPENDIX F. ALL EXPERIMENT RESULTS

Bert C-F Normal80P

GraphSAGE1 0.65207 0.45056
GraphSAGE2 0.74090 0.46157
FastGCN1 0.55434 0.69507
FastGCN1d 0.64357 0.44624
FastGCN2 0.52874 0.90471
FastGCN2d 0.52552 0.38659
SVM,poly 0.90171 0.53453
SVM,rbf 0.78122 0.50652
Random
Forest

0.93912 0.48559

ADDA 0.7499 0.4509

Bert C-F Normal100P

GraphSAGE1 0.51788 0.38189
GraphSAGE2 0.57702 0.40771
FastGCN1 0.57166 0.87422
FastGCN1d 0.57277 0.40949
FastGCN2 0.57166 0.76000
FastGCN2d 0.57277 0.40949
SVM,poly 0.89525 0.53522
SVM,rbf 0.70515 0.48051
Random
Forest

0.93920 0.48817

ADDA 0.5665 0.4189

Bert F-C Normal10P

GraphSAGE1 0.79623 0.53454
GraphSAGE2 0.73766 0.45826
FastGCN1 0.80203 0.68555
FastGCN1d 0.80733 0.46307
FastGCN2 0.76217 0.62485
FastGCN2d 0.80253 0.44969
SVM,poly 0.80768 0.44680
SVM,rbf 0.80768 0.44680
Random
Forest

0.80768 0.44680

ADDA 0.8077 0.4468

Bert F-C Normal20P

GraphSAGE1 0.77802 0.53700
GraphSAGE2 0.71065 0.45039
FastGCN1 0.79083 0.71222
FastGCN1d 0.79563 0.49411
FastGCN2 0.74396 0.64047
FastGCN2d 0.75011 0.47690
SVM,poly 0.80778 0.44990
SVM,rbf 0.80763 0.44883
Random
Forest

0.80768 0.44680

ADDA 0.8077 0.4468

Bert F-C Normal30P

GraphSAGE1 0.68299 0.51784
GraphSAGE2 0.71545 0.49592
FastGCN1 0.72260 0.77186
FastGCN1d 0.79853 0.46599
FastGCN2 0.64633 0.65886
FastGCN2d 0.79068 0.48407
SVM,poly 0.80823 0.45358
SVM,rbf 0.80773 0.46845

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 74

APPENDIX F. ALL EXPERIMENT RESULTS

Random
Forest

0.80768 0.44680

ADDA 0.7107 0.4499

Bert F-C Normal40P

GraphSAGE1 0.72730 0.44629
GraphSAGE2 0.65608 0.47959
FastGCN1 0.63907 0.65786
FastGCN1d 0.79058 0.45725
FastGCN2 0.60016 0.67026
FastGCN2d 0.65843 0.47025
SVM,poly 0.80833 0.45462
SVM,rbf 0.79942 0.48510
Random
Forest

0.80768 0.44680

ADDA 0.8050 0.4462

Bert F-O Normal10P

GraphSAGE1 0.66752 0.40031
GraphSAGE2 0.66609 0.40303
FastGCN1 0.66767 0.54446
FastGCN1d 0.66767 0.40036
FastGCN2 0.66752 0.53376
FastGCN2d 0.66760 0.40034
SVM,poly 0.66767 0.40036
SVM,rbf 0.66767 0.40036
Random
Forest

0.66767 0.40036

ADDA 0.6520 0.4319

Bert F-O Normal20P

GraphSAGE1 0.66760 0.40034
GraphSAGE2 0.66730 0.40088
FastGCN1 0.66684 0.55755
FastGCN1d 0.65514 0.42829
FastGCN2 0.66737 0.52063
FastGCN2d 0.66745 0.40115
SVM,poly 0.66767 0.40036
SVM,rbf 0.66767 0.40036
Random
Forest

0.66767 0.40036

ADDA 0.6400 0.4473

Bert F-O Normal30P

GraphSAGE1 0.66752 0.40096
GraphSAGE2 0.66699 0.40250
FastGCN1 0.65438 0.55023
FastGCN1d 0.63724 0.45044
FastGCN2 0.65937 0.54844
FastGCN2d 0.64811 0.43788
SVM,poly 0.66767 0.40036
SVM,rbf 0.66767 0.40036
Random
Forest

0.66767 0.40036

ADDA 0.6666 0.4006

Bert F-O Normal40P

GraphSAGE1 0.66669 0.40282
GraphSAGE2 0.66548 0.40365
FastGCN1 0.63927 0.51142
FastGCN1d 0.58444 0.49624
FastGCN2 0.66292 0.57158
FastGCN2d 0.64101 0.44387

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 75

APPENDIX F. ALL EXPERIMENT RESULTS

SVM,poly 0.66767 0.40036
SVM,rbf 0.66767 0.40036
Random
Forest

0.66767 0.40036

ADDA 0.6594 0.4213

Bert O-C Normal60P

GraphSAGE1 0.79948 0.58457
GraphSAGE2 0.79278 0.51947
FastGCN1 0.81293 0.74652
FastGCN1d 0.85943 0.49055
FastGCN2 0.62509 0.71858
FastGCN2d 0.73020 0.49171
SVM,poly 0.80768 0.44680
SVM,rbf 0.80768 0.44680
Random
Forest

0.76821 0.48831

ADDA 0.7667 0.4706

Bert O-C Normal80P

GraphSAGE1 0.87456 0.74290
GraphSAGE2 0.78202 0.55842
FastGCN1 0.79348 0.86317
FastGCN1d 0.77432 0.54413
FastGCN2 0.73856 0.68359
FastGCN2d 0.81403 0.48198
SVM,poly 0.80768 0.44680
SVM,rbf 0.46006 0.41885
Random
Forest

0.80503 0.45051

ADDA 0.7361 0.4366

Bert O-C Normal100P

GraphSAGE1 0.87256 0.73305
GraphSAGE2 0.83119 0.58819
FastGCN1 0.75011 0.88755
FastGCN1d 0.76992 0.50618
FastGCN2 0.67384 0.97587
FastGCN2d 0.73116 0.48019
SVM,poly 0.80768 0.44680
SVM,rbf 0.42354 0.39661
Random
Forest

0.80763 0.44679

ADDA 0.6629 0.4784

Bert O-F Normal60P

GraphSAGE1 0.92416 0.50957
GraphSAGE2 0.92763 0.50005
FastGCN1 0.90267 0.70475
FastGCN1d 0.91211 0.51501
FastGCN2 0.75193 0.99053
FastGCN2d 0.85746 0.49397
SVM,poly 0.93912 0.48430
SVM,rbf 0.93912 0.48430
Random
Forest

0.82831 0.50288

ADDA 0.9178 0.4987

Bert O-F Normal80P

GraphSAGE1 0.84257 0.51474
GraphSAGE2 0.91715 0.49755
FastGCN1 0.74319 0.51093
FastGCN1d 0.79642 0.51495

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 76

APPENDIX F. ALL EXPERIMENT RESULTS

FastGCN2 0.73185 0.52659
FastGCN2d 0.80918 0.50421
SVM,poly 0.93912 0.48430
SVM,rbf 0.49692 0.38556
Random
Forest

0.93770 0.48392

ADDA 0.9391 0.4843

Bert O-F Normal100P

GraphSAGE1 0.83438 0.52203
GraphSAGE2 0.90148 0.51573
FastGCN1 0.80832 0.52061
FastGCN1d 0.81344 0.50895
FastGCN2 0.77004 0.98350
FastGCN2d 0.83399 0.51318
SVM,poly 0.93912 0.48430
SVM,rbf 0.44337 0.35700
Random
Forest

0.93888 0.48424

ADDA 0.1833 0.1799

Table F.1: All Experiment Results

Domain Adaptation Graph Convolutional Network for Cross-Platform Cyberbully Detection 77

	List of Figures
	List of Tables
	Introduction
	Motivation
	Research Content
	Research Questions

	Related Work
	Cyberbully Detection
	Domain Adaptation
	Graph-based Semi-supervised Learning

	Problem Statement
	Framework
	Framework of DAGCN
	Framework of the Project
	Data Cleaning
	Sentence to Embedding
	Network Construction
	Semi-Supervised Learning
	Time Complexity Analysis

	Experiment Setup
	Goal of Experiment
	Dataset
	Data Cleaning&Embedding Conversion
	Baseline Methods
	Oversampling Schemes
	Implementation Details
	Network Construction
	Semi-supervised Learning

	Computer System&Hardware

	Result Analysis
	Preparation
	Introduction to Sign Test
	Introduction to Holm-Bonferroni Method
	Introduction to Experiment Variations and Result Metrics
	Processing Invalid Results
	Normality Test for All Data

	Comparison Between Two Graph Construction Methods
	Comparison Between DAGCN and Baselines
	Comparison Among Baseline Methods
	Comparison Among DAGCN Variations
	Comparison Between DAGCN and Baseline

	Comparison Regarding Oversamplings
	Comparison of Oversamplings and No Oversamplings
	Comparison of Oversamplings Methods

	Comparison Between Word Embedding Methods
	Comparison About the Data Pairs' Origins
	Individual Cases Analysis

	Conclusion
	Main Contributions
	Limitations
	Definition of Cyberbully Detection
	Dataset Selection
	Graph Construction
	Baseline
	Statistic Test

	Future Work

	Bibliography
	Appendix
	Full List of Oversampling Cases
	Source-bridge edges and Bridge number For the First Construction Method
	List of Cases Included for Comparison Between No Sampling, 1st Order Normal Oversampling and 2nd Order Normal Oversampling
	List of Cases Included in ADASYN Oversampling and maGAN oversampling
	Normality Test Results
	All Experiment Results

